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Abstract Researchers in empirical software engineering often make claims based
on observable data such as defect reports. Unfortunately, in many cases, these
claims are generalized beyond the data sets that have been evaluated. Will the
researcher’s conclusions hold a year from now for the same software projects? Per-
haps not. Recent studies show that in the area of Software Analytics, conclusions
over different data sets are usually inconsistent. In this article, we empirically in-
vestigate whether conclusions in the area of cross-project defect prediction truly
exhibit stability throughout time or not. Our investigation applies a time-aware
evaluation approach where models are trained only on the past, and evaluations
are executed only on the future. Through this time-aware evaluation, we show that
depending on which time period we evaluate defect predictors, their performance,
in terms of F-Score, the area under the curve (AUC), and Mathews Correlation
Coefficient (MCC), varies and their results are not consistent. The next release
of a product, which is significantly different from its prior release, may drasti-
cally change defect prediction performance. Therefore, without knowing about the
conclusion stability, empirical software engineering researchers should limit their
claims of performance within the contexts of evaluation, because broad claims
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about defect prediction performance might be contradicted by the next upcoming
release of a product under analysis.

Keywords Conclusion Stability, Defect Prediction, Time-aware Evaluation

1 Introduction

Defect prediction models are trained for predicting future software bugs using
historical defect data available in software archives and relating it to predictors
such as structural metrics (Chidamber and Kemerer, 1994; Martin, 1994; Tang
et al., 1999), change entropy metrics (Hassan, 2009), or process metrics (Mockus
and Weiss, 2000). The accuracy of defect prediction models is estimated using
defect data from a specific time period in the evolution of software, but the models
do not necessarily generalize across other time periods.

Conclusion stability is the property that a conclusion, i.e., the estimate of
performance, remains stable as contexts, such as time of evaluation, change. For
example, if the conclusion of a current evaluation of a model on a software product
is the same as that of an evaluation done a year ago, then we consider that conclu-
sion to be stable. A lack of conclusion stability would be if the model’s performance
is inconsistent with itself across time. Instead of over generalizing our conclusions
beyond the period of evaluation, if we claimed the model’s performance was within
the period of evaluation, our claim would still hold.

Prior work (Lessmann et al., 2008; Menzies et al., 2010; Turhan, 2012) exam-
ined various factors affecting the conclusion stability of defect prediction models.
However, none explored the conclusion stability across time. The goal of this pa-
per is to investigate conclusion stability of cross-project defect prediction models
(trained and tested using data from different projects) and understand how their
performance estimates, measured using F-Score, Area under the Curve (AUC),
Matthews Correlation Coefficient (MCC), and G-measure vary across different
time periods. In our evaluation, we carefully consider the time-ordering of ver-
sions and ensure our models do not involve time-travel. Time-travel is a colloquial
term to describe models that should be time sensitive but are trained on future
knowledge that should not be known for predicting defects in the past.

Existing defect prediction studies fail to avoid time-travel because of the choice
of a cross-validation evaluation methodology which,

1) Randomly splits data into partitions and uses these partitions for training
and testing, irrespective of the chronological order of data.

2) Reports the mean performance metrics without specifying the evaluated
time period, and assumes the performance generalizes over all time periods.

The main drawback of this methodology is that the defect prediction models
often get trained on future data which is not available, in reality, at the time of
training. For example, due to cross-validation, a version released in 2010 may be
used for training a model that predicts defects for a version released in 2009. This
situation is explained in Table 1 that shows a cross-validation evaluation for three
software releases (i, j, k), each from three different projects, released between 2008
and 2010. The table shows that not all Training (Tr) and Test combinations are
realistic for building defect prediction models, as some will lead to models that
are time insensitive (trained on future data). For instance, a case where Tr set =
{j} and Test set = {i}, the evaluation seemingly have engaged in time-travel.
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Table 1 An example illustrating three cross-validation settings (a=1/1, b=2/1, c=1/2) of
three releases of different projects over a period of three years (i-2008, j-2009, k-2010).

Cross Validation Training/Test

Training set Test set Time-travel

{i-2008} {j-2009} 7
{i-2008} {k-2010} 7
{j-2009} {i-2008} 3
{j-2009} {k-2010} 7
{k-2010} {i-2008} 3
{k-2010} {j-2009} 3

(a) Cross-validation (1/1) having 1 release in
Training set and 1 release in Test set

Cross Validation Training/Test

Tr set Test set Time-travel
{i-2008, j-2009} {k-2010} 7
{j-2009, k-2010} {i-2008} 3
{k-2010, i-2008} {j-2009} 3

(b) Cross-validation (2/1) having 2 releases in Train-
ing set and 1 release in Test set

Cross Validation Training/Test

Tr set Test set Time-travel
{i-2008} {j-2009, k-2010} 7
{j-2009} {i-2008, k-2010} 3
{k-2010} {i-2008, j-2009} 3

(c) Cross-validation (1/2) having 1 release in Train-
ing set and 2 releases in Test set

Rakha et al. (2018) refer to such evaluation as classical evaluation, whereas Hin-
dle and Onuczko (2019) call it time-agnostic. Many claim that ignoring time pro-
vides highly unrealistic performance estimates (Tan et al., 2015; Rakha et al., 2018;
Hindle and Onuczko, 2019), yet, there are several just-in-time based approaches
that only consider release order for within project defect prediction (Huang et al.,
2017; Yang et al., 2016), but engage in time-travel in cross project defect prediction
settings (Yang et al., 2016; Kamei et al., 2016; Yang et al., 2015).1

In this paper, we evaluate five cross-project defect prediction approaches us-
ing the publicly available Jureczko dataset (Jureczko and Madeyski, 2010), and
show that data from different time periods leads to varying conclusions. In our
evaluation, we strictly consider the chronological order of data and propose four
generic time-aware configurations that can be used to split the data set into train-
ing and testing. The purpose of proposing these configurations is to make the

1 Yang et al. (2015) used 10-fold cross-validation in their study. On the other hand, Yang
et al. (2016) used time-wise cross-validation for within-project models, however, in cross-project
prediction they trained on one project and tested on another project without ordering the
data set time-wise. Kamei et al. (2016) trained JIT cross-project models using the data from
one project and tested the prediction performance using the data from every other project,
irrespective of their time order.
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experiment performance-wise scalable for evaluating other approaches in which
running all possible Tr-Test set combinations is expensive, such as duplicate bug
reports retrieval involving extensive string matching (Hindle and Onuczko, 2019).

Our results indicate that the evaluated cross-project defect prediction ap-
proaches do not have perfect stability in their conclusions and time-travel produces
false estimates of performance. Therefore, while conducting defect prediction stud-
ies, researchers should not engage in time-travel and also avoid over generalizing
their conclusions, but instead couch the claims of performance within the contexts
of evaluation. To summarize, the main contributions of this paper are:

– A methodology for time-aware evaluation of defect prediction approaches;
– A case study of conclusion stability in cross-project defect prediction with

respect to time;
– A comparison of the performance rankings of five cross-project defect predic-

tion approaches using time-aware evaluation with performance of time agnostic
evaluation;

– Guidelines for researchers and practitioners for the time-aware evaluation of
defect prediction models.

2 Related Work

Software defect prediction has a plethora of approaches with the earliest proposals
dating back to the 1990s where linear regression models based on Chidamber and
Kemerer (CK) metrics (Chidamber and Kemerer, 1994) were used to determine
the fault proneness of classes (Basili et al., 1996). A number of metrics have been
used since then as indicators of software quality such as previous defects (Zimmer-
mann et al., 2007), process metrics (Hassan, 2009; Rahman and Devanbu, 2013),
and churn metrics (Nagappan and Ball, 2005). Within project defect prediction
(WPDP) uses data from the same project for training and testing whereas in cross
project defect prediction (CPDP), training and testing data comes from different
projects. Several approaches for both WPDP (Turhan et al., 2009; Basili et al.,
1996) and CPDP Zimmermann et al. (2009); Peters et al. (2013); Nam et al.
(2013) are available in the literature. There have also been benchmark studies
on both types of defect prediction (D’Ambros et al., 2012; Herbold et al., 2018).
WPDP approaches have better performance while CPDP approaches are likely
transferable to other projects with certain limitations (Zhang et al., 2014). Her-
bold (2017b) conducted a systematic mapping of defect prediction literature with
a focus on cross project defect prediction approaches. They identified that the
results of studies are not comparable due to the lack of use of common data sets
and experimental setups.

In their follow up work, Herbold et al. (2018) replicated 24 defect prediction
approaches using 5 publicly available data sets and multiple learners. Their goal
was to benchmark the defect prediction approaches using common data sets and
metrics so that state-of-the-art approaches can be ranked according to their per-
formance using Area under Curve (AUC), F-Score, G-measure, and Matthews
Correlation Coefficient (MCC) metrics. Jureczko (Jureczko and Madeyski, 2010)
is one of the well-known defect prediction data sets which was also used in the
benchmarking study. It originally contains open-source, proprietary and academic
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projects but Herbold et al. (2018) used only 62 versions of several open-source and
academic projects.

Prior to this paper, conclusion stability has been analyzed by several re-
searchers. Lessmann et al. (2008) and Menzies et al. (2010) investigated the effect
of classifiers, trained using same data, on the quality of prediction models whereas
Ekanayake et al. (2012, 2009) investigated the effect of data set and concept drift
respectively. Lessmann et al. (2008) found statistically significant difference among
the performance of two classifiers and Menzies et al. (2011) observed inconsistent
conclusions for different clusters within the same data. Inspired by this prior work,
another set of experiments were conducted by D’Ambros et al. (2012) to rank
approaches across several data sets following a statistically sound methodology.
McIntosh and Kamei (2017) investigated the time-based conclusions of just-in-time
defect prediction models and found that their descriminatory power can change
over time. In more recent work, Tantithamthavorn et al. (2018) concluded that
parameter optimization can significantly impact the performance stability, and
ranking of defect prediction models. This view is similar to Menzies’ view who
argued that a learner tuned to a particular evaluation criterion, performs best for
that criterion, hence it shall be critically chosen (Menzies et al., 2010).

Tantithamthavorn et al. (2015) in their work show that issue report misla-
belling significantly impacts the defect prediction models. In a later comparison
study, Tantithamthavorn et al. (2017) concluded that the choice of model vali-
dation technique for defect prediction models can also affect performance results.
Tan et al. (2015) identified that cross-validation produces false precision results for
change classifications and addressed the problem using time-sensitive and online
change classifications. Their emphasis is on removing imbalances in data using
re-sampling techniques for better change classifications. Turhan (2012) also stud-
ied the conclusion instability caused due to data set shift but their focus was not
specific to defect prediction, rather on software engineering prediction models in
general. Similarly Krishna and Menzies (2018) show that there can be large differ-
ences in conclusions depending on different source data sets and suggest mitigating
the problem with the help of bellwethers. Bellwethers seem to restrain instability
but based on the results of our study, we consider it of utmost importance to keep
regard of time while finding out the bellwether project. However, we believe this
work complements our work.

Time-agnostic evaluation has been criticized as unrealistic by Hindle and Onuczko
(2019) who argue that the results based on a time-agnostic evaluation might not be
applicable to any real-world context. Yang et al. (2016) hold a similar view and mo-
tivated by Śliwerski et al. (2005a) they adopted a time-wise cross-validation within
projects for evaluating the prediction effectiveness of unsupervised models. How-
ever, in their cross-project defect prediction setting, they seem to be time travelling
again. Instead of using their approach we propose four time-aware configurations
to avoid discarding some of the valid models that time-wise cross-validation will
not generate. Jimenez et al. (2019) assessed the impact of disregarding temporal
constraints on the performance of vulnerability prediction models and found that
the otherwise highly effective and deployable results quickly degrade to an unac-
ceptable level when realistic information is considered. Their work is limited to
the prediction of vulnerabilities though, which are just a subset of defects. Rakha
et al. (2018) also claim that time-agnostic evaluation overestimates performance.
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They argue that the range of performance estimates, rather than a single value
should be reported.

3 Methodology

In this section, we explain a time-aware evaluation methodology that we follow
for building the cross-project defect prediction models that do not engage in time
travel. To avoid time-agnostic evaluation in future, researchers can employ this
proposed methodology for the evaluation of their defect prediction techniques.

3.1 Select techniques to evaluate

The first step is to select techniques for validation, and these can either be newly
proposed techniques or existing defect prediction proposals. In general, defect pre-
diction techniques can be selected from a broad category of within project de-
fect prediction techniques (WPDP) or cross project defect prediction techniques
(CPDP). As the name suggests, WPDP uses the same project in training and
testing, whereas CPDP is across different projects. CPDP has several variants
including strict CPDP, mixed CPDP, and pair-wise CPDP (Herbold, 2017b). In
strict CPDP, there is a strict distinction between the projects used in training
and testing. This restriction implies that none of the projects used for training
the model remain part of the testing data so that information from same con-
text does not mix up. Contrarily, in mixed CPDP, some releases of a project are
used for training while others are used for testing. In pair-wise CPDP, a separate
model is trained using each project release, and their performance is averaged for
estimating the actual performance.

3.2 Extract software defect prediction metrics with dated releases

Existing software systems with issue trackers can be used to extract software
defect prediction metrics and post-release defects via mining software repositories.
Extraction methodologies discussed in prior work (Śliwerski et al., 2005b; Fischer
et al., 2003; Zimmermann and Nagappan, 2007) can be leveraged for the purpose
of gathering data. We can alternatively benefit from existing defect data sets used
by prior studies for evaluating the technique. One has to make sure that the data
set contains releases that have dates or time-stamps. Alternatively, if versions are
specified, one can extract and use version release dates. For example, if the data
set contains commit history ids, bug report ids, and version release tags, we can
extract version release dates from these factors. Before moving on to the next step,
one has to label the defect data set instances with dates or timestamps.

3.3 Sort and Split project versions into time buckets

In this step, the defect data set is first sorted according to the time available in
the form of version dates, and then split using N split points. A split point is the
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Bucket-1 (B1) Bucket-2 (B2) Bucket-3 (B3) Bucket-4 (B4)
……

Bucket-n (Bn)

P1V1 P2V1 P1V2 P2V2 P3V1 P1V3 P2V3 P3V2 PnVn

Year-1 (Y1) Year-2 (Y2) Year-3 (Y3) Year-4 (Y4)

B1 B2 B3 B4

Y1-Y2

Y2-Y3

Y3-Y4

Y2-Y3

Y3-Y4 Y3-Y4

K=1 K=2 K=3

Tr = {B1}
Test = {B3}

Tr = {B2}
Test = {B4}

Tr = {B3}
Test = {B5}

Tr = {B1,B2}
Test = {B4,B5}

Tr = {B2,B3}
Test = {B5,B6}

Tr = 
{B1,B2,B3}
Test = 
{B5,B6,B7}

CC Configuration

IC Configuration

Y2-Y3

Y3-Y4

K=1

Tr = {B1}
Test = {B3,

… Bn}

Tr = {B2}
Test = {B4,

… Bn}

Tr = {B3}
Test = {B5,

… Bn}

Y3-Y4

Tr = {B1,B2}
Test = {B4,

…Bn}

Tr = {B2,B3}
Test = {B5,

…Bn}

Y1-Y2

Y2-Y3

K=2

CI Configuration

Y2-Y3

Y3-Y4

K=1

Tr = {B1}
Test = {B3}

Tr = {B1,B2}
Test = {B4}

Tr = {B1,B2,
B3}

Test = {B5}

Y1-Y2

Y2-Y3

Y3-Y4

K=2

Tr = {B1}
Test = {B3,B4}

Tr = {B1,B2}
Test = {B4,B5}

Tr = {B1,B2, 
B3}
Test = {B5,B6}

Y1-Y2

Y2-Y3

Y3-Y4

K=3

Tr = {B1}
Test = {B3,

B4,B5}

Tr = {B1,B2}
Test = {B4,

B5,B6}

Tr = {B1,B2,
B3}

Test = {B5,B6,
B7}

Y1-Y2

II Configuration

Tr = {B1}
Test = {B3,

...Bn}

Y1-Y2

Tr = {B1,B2}
Test = {B4,

…Bn}

Y2-Y3

Y3-Y4

Tr = {B1,B2,
B3}

Test = {B5,
…Bn} K= ∞

Y1-Y2

Tr = {∅, B1}
Test = {B3, B4}

Y1-Y2

Tr = {∅, B1}
Test = {B3,B4}

Y2-Y3

Tr = {∅, B1,B2}
Test = {B4,B5,

B6}

Y1-Y2

Tr = {∅,B1}
Test = {B3,

…Bn}

Y3-Y4

K=3

Tr = {B1,B2,B3}
Test = {B5,

…Bn}

Y1-Y2

Tr = {∅,∅,B1}
Test = {B3,

…Bn} Y2-Y3

Tr = {∅, B1,B2}
Test = {B4,

…Bn}

Year-n (Yn)

.. Bn B1 B2 B3 B4 .. Bn B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn B1 B2 B3 B4 .. Bn B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn B1 B2 B3 B4 .. Bn B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn B1 B2 B3 B4 .. Bn B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn B1 B2 B3 B4 .. Bn B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn B1 B2 B3 B4 .. Bn B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn

B1 B2 B3 B4 .. Bn

Fig. 1 Generating Training (Tr) and Test (Test) pairs using four time-aware configurations:
Constant-Constant (CC), Increasing-Constant (IC), Constant-Increasing (CI), Increasing-
Increasing (II). Pn refers to Project number, Vn refers to Version number, Yn refers to (Year
number), and K is Window size and decides the number of time buckets that are used in
training and testing. φ in II means that Window size does not matter in that configuration.
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reference point in time that partitions the defect data into time-buckets, and it
is chosen such that the data is partitioned into a day, month, or year granularity.
Consequently, each time-bucket spans days, months, or years of releases.

Figure 1 illustrates how an example N-year long data set is divided into N
buckets using split point at one year granularity. Bucket-1 is formed starting from
the oldest project version until the first split, so it contains project versions span-
ning a year. Bucket-2 contains one year data between first and second split, and so
on. In this way, all versions of all projects released within one specific year fall into
the bucket representing that year. The choice of window size, and hence the bucket
granularity, may vary depending on the available data and time information. If
there were no project versions in, for example, Year-2 in Figure 1, then Bucket-
2(B2) would also remain empty. On the other hand, in the current example, one
version (V2) of a project (P1) was released in Year-2, and, therefore, it is included
in B2. Therefore, one may observe that the number of projects and versions in
each bucket are unequal.

These split points allow the software versions before a certain split to be used
for training set while any versions after that split form the test set. Unlike cross-
validation there is no time-travelling in such evaluation because the buckets are
ordered by time. Notice that a lower granularity spreads the data set well across
the timeline and a great number of data points are available for constructing and
evaluating the defect prediction models. For the rest of this paper, we will refer to
these time ordered buckets as a time-series data set.

3.4 Generate Training-Test pairs from time buckets

In this step, we use the time-series data set to generate multiple Training-Test
(Tr-Test) pairs following four time-aware configurations. Figure 1 provides a high-
level overview of these configurations where the time granularity of buckets is one
year, and each bucket contains multiple project versions. In each configuration, the
split point divides the data into two parts: past and future. The red dot represents
a split point in Figure 1. The buckets containing project versions before the split
point form the past of a data set and will be considered for training (Tr) while
those after the split point (after skipping one bucket) form the future and are used
for testing (Test). The reason for skipping one bucket is to reduce the possible
chances of time-travel within the instances of training and test data and to allow
some time for buggy changes in the training set to be discovered and fixed. This
gap can vary and should ideally be equal to the time that it takes for a bug to
be reported and fixed. We further employ window size to select the number of
time-buckets to be used for generating Tr-Test pairs. The window size also has
a granularity in terms of the number of time buckets, e.g., a window size of one
corresponds to one year of data in our example. Consequently, the Tr-Test set size,
i.e., the number of project versions in training and test set, varies as window size
changes: number of project versions is not constant in every bucket.

To explain the four configurations, we use the example of Table 1 introduced
earlier in Section 1 and present Tr-Test pairs corresponding to the four time-aware
configurations in Table 2. φ in the table represents an empty set for the cases when
window size exceeds the number of buckets available in the data set for Tr or Test
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Table 2 An example illustrating four time-aware settings (a=CC, b=IC, c=CI, d=II) of three
releases of three different projects over a period of three years (i-2008, j-2009, k-2010). φ =
empty set representing no release available at that time. ∞ = max window size possible.

Tr set Test set Split point Window size

{i-2008} {j-2009} 2008-2009 1
{j-2009} {k-2010} 2009-2010 1

{φ, i-2008} {j-2009, k-2010} 2008-2009 2
{i-2008, j-2009} {k-2010, φ} 2009-2010 2

(a) Configuration Constant-Increasing (CC)

Tr set Test set Split point Window size

{i-2008} {j-2009} 2008-2009 1
{i-2008, j-2009} {k-2010} 2009-2010 1

{i-2008} {j-2009, k-2010} 2008-2009 2
{i-2008, j-2009} {k-2010, φ} 2009-2010 2

(b) Configuration Increasing-Constant (IC)

Tr set Test set Split point Window size

{i-2008} {j-2009, k-2010} 2008-2009 1
{j-2009} {k-2010} 2009-2010 1

{φ, i-2008} {j-2009, k-2010} 2008-2009 2
{i-2008, j-2009} {k-2010, φ} 2009-2010 2

(c) Configuration Constant-Increasing (CI)

Tr set Test set Split point Window size

{i-2008} {j-2009, k-2010} 2008-2009 ∞
{i-2008, j-2009} {k-2010} 2009-2010 ∞

(d) Configuration Constant-Increasing (II)

set. Unlike Figure 1, for the sake of brevity, the gap between Tr-Test pairs in
Table 2 is not shown.

Configuration 1 — Constant-Constant (CC): In this configuration, the
Tr and Test set are populated according to the window size. At each split point
with a constant window size K, we take K time-buckets before the split point for
Tr set and an equal number of buckets after one bucket gap of the split point for
Test set, as shown in Figure 1. This Tr set and Test set forms a Tr-Test pair. The
window size is increased once the Tr-Test pairs over all split points are generated.
As a result, we get one Tr-Test pair corresponding to each value of window size
and split point.

The process of generating Tr-Test pairs is repeated until all possible pairs
corresponding to each split point and window size are generated. There can be
cases where an equal number of buckets before and after the split point are not
available, for example, if we consider CC configuration’s K=3 at split Y1-Y2 in
Figure 1 there is only one bucket available for training. To ensure consistency in
generating configurations, we consider as many buckets as available at such split
points, hence our Tr set = {φ,B1}. This configuration is similar to the evaluation
of Rakha et al. (2018) except that they employed tuning.
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Configuration 2 — Increasing-Constant (IC): At each split point in this
configuration, the Test set is populated with K time buckets after skipping one
bucket after the split point, where K is the window size. While the Tr set is pop-
ulated with all the time-buckets available before the split point. Same as CC, the
window size is increased once the Tr-Test pairs over all split-points are generated.
Considering each split point and current window size value referred to as K in
Figure 1; we take all time-buckets before the split point for Tr and K number
of buckets after skipping one bucket after the split point for Test. The example
Tr-Test pairs corresponding to each value of window size and split point are shown
in Figure 1.

Configuration 3 — Constant-Increasing (CI): Contrary to IC, at each
split point in this configuration, the Tr set instead of Test set is populated with
K time buckets before the split point, where K is the window size. Whereas same
as CC and IC, the window size is increased once the Tr-Test pairs over all split-
points are generated. Considering each split point and current window size value
referred K; we take K number of buckets before the split point for Tr while all
time-buckets after skipping one bucket after the split point for Test. The example
Tr-Test pairs corresponding to each value of window size and split point are shown
in Figure 1.

Configuration 4 — Increasing-Increasing (II): In II, the window size does
not matter because at each split point, the Tr-Test pairs are generated by taking
all the buckets before split point for training and all those after skipping one bucket
after the split point for testing. We set window size or K in this configuration to
infinity as that is theoretically the maximum possible window size.

Each configuration serves a different purpose, and depending on the context
one configuration is a more appropriate choice than the other. For example, the
quality assurance team wanting to test the next due release of a project against the
entire past may use IC or II configurations. The CI configuration is more useful in
cases where a major release in the past has entirely changed the system, and the
developers want to test their system since then. CC and II configurations might
benefit researchers who are trying to evaluate the defect prediction methodologies,
so they can evaluate and compare the performance of defect prediction approaches.
It is still a matter of research to find out which configuration is a better choice
for what kind of environment. However, we employ all four configurations in our
experiments.

3.5 Build prediction models and evaluate performance

Each technique applies certain treatment on the instances in the training and test
set before building the model. For example, one technique may apply log transfor-
mation on the training set, while another may use K-Nearest Neighbours (KNN)
relevancy filtering. Therefore, we apply the treatment proposed by a defect pre-
diction technique to all the Tr and/or Test sets generated in the previous step and
then build a prediction model from each Tr set. We then evaluate that model on
each project version in the Test set and calculate the mean performance. For ex-
ample, in Figure 1, consider IC configuration’s second setting, where K=1 at split
point Y2–Y3, the training set Tr is B1,B2 and Test set is B4. Given that B4 consists
of three projects P1V3, P2V3, P3V2. For this setting, we will train one prediction
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model and evaluate it on three separate test sets: trained on Tr=B1,B2 and tested
on Test=P1V3, then on Test=P2V3, and finally on Test=P3V2. Similarly, if there
are multiple versions of a same project in the test bucket, we evaluate each version
separately. If there was a P3V4 in B4, then we would test that separately as well.

4 Experimental Setup

In this section, we employ the proposed time-aware configuration settings to in-
vestigate the conclusion stability of cross-project defect prediction approaches.

4.1 Select techniques to evaluate

In this work, we do not propose a new defect prediction approach. Instead, we
re-evaluate existing cross-project defect prediction techniques from the literature.
Specifically, we evaluate the conclusion stability of five defect prediction techniques
that Herbold et al. (2018) recently evaluated in a defect prediction benchmarking
study. We choose this study as a reference, because it is the most comprehen-
sive evaluation of CPDP approaches, and evaluating techniques from their study
allows us to compare our results with them. The results and replication kit of
benchmarking study are also publicly available (Herbold, 2017a).

The five replicated techniques include the one proposed by Amasaki et al.
(2015) (Amasaki15), Watanabe et al. (2008) (Watanabe08), Cruz and Ochimizu
(2009) (CamargoCruz09), Nam and Kim (2015) (Nam15), and Ma et al. (2012)
(Ma12). The selection is guided by original rankings reported in the benchmark-
ing study done by Herbold et al. (2018). CamargoCruz09 and Watanabe08 are the
top-ranked techniques according to the rankings reported in Herbold et al. (2018).
The other two techniques, Amasaki15 and Ma12 are among the middle ranked
approaches whereas Nam15 performs worst. Hence, to ensure diversity, we choose
two top ranked, two middle ranked, and one lowest rank approach for evaluation.2

We take a limited number of techniques, because of the large number of models
that we already have to train at each point in time with varying window sizes. Our
problem has a huge dimensionality and it could grow significantly by adding more
techniques, because, for each new technique multiple Tr-Test pairs i.e. models need
to be evaluated.

4.2 Extract software defect prediction data set with dated releases

To choose our data set, we explored the well-known PROMISE repository that
is used in many defect-prediction studies (Fenton et al., 2007; Menzies and Di
Stefano, 2004; Menzies et al., 2004; Koru and Liu, 2005; Morasca and Ruhe, 2000).
Unfortunately, we could not find time-relevant features within that data set, which
suggests the lack of concern about the time-order of defect data in the community.
We also explored the five data sets used in the benchmarking study of Herbold

2 In the rest of the paper, we do not use the rankings reported in original study of Herbold
et al. (2018), but instead use our re-implementation results of his methodology on open-source
projects in Jureczko data set.
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Fig. 2 Project versions in our dataset spread across 19 time buckets. Number of projects
represented by dot size corresponds to number of versions of a project in any time bucket
shown on y-axis.

et al. (2018), but all except the Jureczko (Jureczko and Madeyski, 2010) lack time-
relevant information that can be used to retrieve time of occurrence of defects.
Since we need release-time information, we only use a subset of Jureczko data set
consisting of only open-source projects, and we refer to it as FilterJureczko.
We use open-source projects because their version numbers were specified, and
hence release dates of only these versions could be retrieved from the project’s
version control repositories. As a result, we got 33 versions of 14 open-source
projects for our experiment containing 20 static product metrics for Java classes
and the number of defects found at class-level. Therefore our CPDP experiment
is on class-level.

4.3 Sort and Split project versions into time buckets

The project versions in the FilterJureczko data set are spread across 8.5 years
starting from November 1999 and ending at February 2009. We sort the entire
data set using the version release dates and then divide it using split points hav-
ing 6 month granularity. These points equally split the data set into a number of
6 month time-buckets; each containing project versions that are at most 6 months
apart. We did not keep a finer granularity than 6 months, because of the limited
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data at hand and also because project releases are usually several months apart.
In total, we have 18 buckets. Each bucket consists of multiple versions of differ-
ent projects that lie within the 6-month time period. Out of 18 buckets, some
buckets have multiple versions of the same project, because multiple versions were
released within the 6-month time period whereas some buckets are completely
empty because no project version was released during six months. In the end, we
partitioned the entire data set into 18 sorted time-buckets and we refer to it as
a “time-series data set”. Figure 2 is a graphical illustration of different project
versions spread across 18 time buckets. For example, the first bucket has only one
version of Xerces, and the last bucket has four versions of Camel and one version
of Ivy. Table 3 represents the release date and defective instances for each version
of the projects in our data set.

4.4 Generate Train-Test pairs from time buckets

We generate multiple Tr-Test pairs from the time-series data set using four generic
configurations; CC, IC, CI, and II. The Tr and Test sets are formed by varying the
window size from 1 to 19 for CC and 1 to 18 for IC at all possible split points and
then unioning the training project data. However, following strict CPDP, we do
not allow the test set to include any version from a project that was already part
of the training set. At the same time, to ensure that the data from which defect
labels are computed does not intersect with test data from the next time bin, we
leave a gap of one bucket between each Tr-Test pair, similar to the work by Tan
et al. (2015).

We generated approximately 18,000 Tr-Test pairs for each technique and trained
a total of 18, 000 × 5 = 90, 000 models for evaluation of the five techniques that
we studied. The different number of Tr-Test pairs (and models) in CC, CI, and
IC is due to the strict CPDP settings of our experiment, which does not allow
the same project to be used for both training and testing. Consequently, at some
split points, there is no data left for testing and hence we eliminate that pair.
Figure 3 shows the size of training and test data for each of the pairs in the four
configurations. We also show the percentage of defective instances in our training
and test data set at each split point and window size in Figure 4.

4.5 Build prediction models and evaluate performance

The defect prediction techniques apply certain treatments on the data before train-
ing the actual model. The treatments are applied as suggested by the benchmark-
ing study of Herbold et al. (2018). Suppose the training data is referred as S and
the test data is S∗.

For Amasaki15 (Amasaki et al., 2015), we perform attribute selection over
log transformed data by discarding attributes whose value is not close to any
metric value in the data. We then apply relevancy filtering similarly by discarding
instances whose value is not close to any instance values.

For Watanabe08 (Watanabe et al., 2008), we standardize the training data
for all Tr-Test pairs as:
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Fig. 3 Representation of Training (tr) and Test (test) Data Set Size i.e. Number of instances
with varying window size and split points in time for each configuration. Instances show the
number of instances available in Train and Test set for n-th Window Size or n-th Split point
in time.
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Fig. 4 Representation of Defective Instances (%) in Training (tr) and Test (test) Data Sets
with varying window size and split points in time for each configuration.
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Table 3 the details of the FilterJureczko dataset, showing the version of each project with
its release date and defective instances.

Version Release Date Cases #Defects Defective Instances(%)

xerces-init 1999-Nov-08 162 77 48%
xerces-1.2 2000-Jun-23 440 71 16%
xerces-1.3 2000-Sep-29 453 69 15%
log4j-1.0 2001-Jan-08 135 34 25%
xerces-1.4 2001-Jan-26 588 437 74%
log4j-1.1 2001-May-20 109 37 34%
log4j-1.2 2002-May-10 205 189 92%
xalan-2.4 2002-Aug-28 723 110 15%
xalan-2.5 2003-Apr-10 803 387 48%
ant-1.3 2003-Aug-12 125 20 16%
ant-1.4 2003-Aug-12 178 40 22%
ant-1.5 2003-Aug-12 258 28 11%
ant-1.6 2003-Dec-18 351 92 26%
xalan-2.6 2004-Feb-27 885 411 46%
pbeans1.0 2004-Mar-21 26 20 77%
forrest-0.6 2004-Oct-14 6 1 17%
ivy-1.1 2005-Jun-13 111 63 57%
forrest-0.7 2005-Jun-22 29 5 17%
xalan-2.7 2005-Aug-06 909 898 99%
lucene-2.0 2006-May-26 195 91 47%
tomcat 2006-Oct-21 858 77 9%
ivy-1.4 2006-Nov-09 241 16 7%
velocity-1.4 2006-Dec-01 196 147 75%
ant-1.7 2006-Dec-13 745 166 22%
velocity-1.5 2007-Mar-06 214 142 66%
pbeans2.0 2007-Mar-26 51 10 19%
forrest-0.8 2007-Apr-17 32 2 6%
synapse-1.0 2007-Jun-13 157 16 10%
lucene-2.2 2007-Jun-17 247 144 58%
poi-2.0 2007-Jun-24 314 37 12%
poi-1.5 2007-Jun-24 237 141 59%
poi-2.5 2007-Jun-24 385 248 64%
poi-3.0 2007-Jun-24 442 281 64%
synapse-1.1 2007-Nov-13 222 60 27%
synapse-1.2 2008-Jun-09 256 86 34%
ckjm1.8 2008-Jun-17 10 5 50%
lucene-2.4 2008-Oct-08 340 203 60%
velocity-1.6 2008-Dec-01 229 78 34%
ivy-2.0 2009-Jan-18 352 40 11%
camel-1.0 2009-Jan-19 339 13 4%
camel-1.2 2009-Jan-19 608 216 36%
camel-1.4 2009-Jan-19 872 145 17%
camel-1.6 2009-Feb-17 965 188 19%

m̂i(s
∗) = (mi(s

∗) ·mean(mi(S)))/(mean(mi(S
∗)))

For CamargoCruz09 (Cruz and Ochimizu, 2009), we use Test data as refer-
ence point and apply logarithmic transformation as:

m̂i(s) = log(1 +mi(s)) +median(log(1 +mi(S)))−median(log(1 +mi(S
∗)))
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For Nam15 (Nam and Kim, 2015), clustering and labelling of instances is
performed based on the metric data by counting the number of attribute values
that are above the median for that attribute. Afterwards all instances that do
not violate a metric value based on a threshold called metric violation score are
selected.

For Ma12 (Ma et al., 2012), weighting is applied on data on the basis of
similarity. The weights are calculated as:

ws = simattss/(p− simmatss + 1)2

where p is the number of attributes and simatts are those attributes of an
instance whose value is within the range of test data.

More details about these techniques are available in their original publications.
The source code for applying these treatments is provided by Herbold (2015, 2017a)
as a replication package.3

For each technique, we built 976 separate defect prediction models utilizing
all the Tr-Test pairs. We trained these models on Decision Trees (DT) using C4.5
algorithm in Weka (Witten et al., 2016). We chose DT, because all the studied
techniques performed best on Decision Trees classifier in the benchmarking study
(Herbold et al., 2018). To compare our results with the benchmarking study, we
also trained our models on DT using a confidence interval of between 0.1 and
0.30 with pruning. We did not tune our classifier to keep the experimental settings
consistent with Herbold et al. (2018), because changing them could bias our re-
sults and the observed difference in performance could entirely be due to tuning.
Moreover, our small data set limits us from giving up a whole window for tuning.
Rakha et al. (2018) had an ample amount of data, hence they tuned their models
in the duplicate issue reports study.

While evaluating our models, we calculated their performance in terms of pre-
cision, recall, F-Score, G-measure, MCC, and AUC. Recall is the ratio of true
positives to true positives and false negatives, and it measures the number of ac-
tual defects that are found. Precision is the ratio of true positives to true positives
and false positives, and it measures how many of the found defects are actually
defects. F-Score is a combination of precision and recall, and is calculated using
the harmonic mean of the two. G-measure is the harmonic mean of recall and the
probability of false prediction, pf. Matthews Correlation Coefficient (MCC) mea-
sures the correlation between the actual and the predicted classifications, ranging
between -1 and +1, where -1 indicates total disagreement, +1 indicates perfect
agreement, and 0 indicates no correlation at all. AUC or the Area under the Re-
ceiver Operating Characteristic Curve is a plot of the true positive rate vs the true
negative rate. These performance metrics are defined as follows,

recall =
tp

tp+ fn

precision =
tp

tp+ fp

F − score = 2 · precision · recall
recall + precision

3 Herbold’s replication kit (https://crosspare.informatik.uni-goettingen.de/)
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Table 4 Comparison of our methodology and experimental setup with the original study of
Herbold et al. (2018) and HerboldMethod which is our re-implementation of their study

Evaluation Parameter Original Study
(Herbold et al.,
2018)

HerboldMethod Time-aware
Evaluation

CPDP Type Strict Strict Strict

Approaches Evaluated 24 5 5

Datasets Jureczko and
three others

FilterJureczko FilterJureczko

Data time considered No No Yes

Classifiers Decision tree and
five more

Decision tree Decision tree

Data balancing No No No

Classifier Tuning No No No

Classifier Training Cross-validation Cross-validation Four time-aware
configurations

Performance Metrics F-measure, MCC,
AUC, G-measure,
Mean-rank score

F-measure, MCC,
AUC, G-measure,
Mean-rank score

F-measure, MCC,
AUC, G-measure,
Mean-rank score

G−measure = 2 · recall · (1− pf)

recall + (1− pf)

where, pf =
fp

tn+ fp

MCC =
tp · tn− fp · fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)

where tp and fp are the numbers of the true and false positives respectively,
whereas, tn and fn are the numbers of the true and false negatives.

5 Results

As a result of running our time-aware experiment we gather models for each Tr-
Test pair representing one split point in time and each window size of a given
configuration. All the models are built using Decision Tree classifier and the re-
sults constitute a range of performance estimates that we use to examine con-
clusion stability of cross-project defect prediction models. We also compare the
results of our time-aware experiment with results obtained by re-conducting the
experiment of Herbold et al. (2018) on the FilterJureczko data set. Instead
of reporting the result of Herbold’s original study, we use our re-implementation
results of his methodology referred subsequently as HerboldMethod. Table 4
highlights some of the commonalities and differences between our evaluation and
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Table 5 Arithmetic Mean and Standard Deviation(SD) of the F-Scores of five evaluated
approaches using four time-aware configurations. Bold values indicate SD larger than our 0.05
threshold

Amasaki15 Watanabe08 CamargoCruz09 Nam15 Ma12
Configuration Mean SD Mean SD Mean SD Mean SD Mean SD

CC 0.373 0.085 0.379 0.089 0.355 0.091 0.491 0.070 0.376 0.085
IC 0.373 0.078 0.373 0.084 0.345 0.079 0.496 0.072 0.376 0.081
CI 0.365 0.077 0.371 0.083 0.346 0.084 0.478 0.055 0.366 0.082
II 0.363 0.071 0.367 0.077 0.335 0.073 0.483 0.054 0.363 0.078

Table 6 Arithmetic Mean and Standard Deviation(SD) of the AUCs of five evaluated ap-
proaches using four time-aware configurations.

Amasaki15 Watanabe08 CamargoCruz09 Nam15 Ma12
Configuration Mean SD Mean SD Mean SD Mean SD Mean SD

CC 0.571 0.045 0.562 0.046 0.556 0.042 0.638 0.021 0.577 0.036
IC 0.573 0.038 0.555 0.044 0.548 0.039 0.638 0.021 0.579 0.029
CI 0.572 0.036 0.562 0.040 0.559 0.038 0.636 0.015 0.578 0.028
II 0.571 0.034 0.557 0.038 0.549 0.034 0.636 0.014 0.577 0.024

Table 7 Arithmetic Mean and Standard Deviation(SD) of the MCCs of five evaluated ap-
proaches using four time-aware configurations. Bold values indicate SD is larger than our 0.05
threshold

Amasaki15 Watanabe08 CamargoCruz09 Nam15 Ma12
Configuration Mean SD Mean SD Mean SD Mean SD Mean SD

CC 0.143 0.055 0.124 0.061 0.117 0.064 0.232 0.037 0.135 0.051
IC 0.156 0.053 0.127 0.063 0.118 0.060 0.231 0.040 0.142 0.046
CI 0.141 0.045 0.125 0.054 0.116 0.055 0.228 0.026 0.134 0.043
II 0.152 0.045 0.131 0.050 0.114 0.055 0.229 0.027 0.140 0.044

HerboldMethod. However, different research questions can also be answered us-
ing our methodology. To facilitate further investigations, we provide a replication
kit (Bangash, 2020) which includes:

1. FilteredJureczko data set with Tr-Test pairs of all four configurations.
2. a source code for generating four configurations Tr-Test pairs from any data

set.
3. an updated version of Herbold’s source code for time-aware experiment.
4. a .csv dump file for all the results calculated from our experiment.
5. R-scripts to generate graphs for visual inspection of results.

Replication kit: https://doi.org/10.5281/zenodo.3715485

5.1 RQ1: Are the cross-project defect prediction approaches stable in
terms of their conclusions when evaluated over time?

Motivation. Prior research evaluates defect prediction approaches in a time-agnostic
manner. The results obtained from one specific evaluation at a particular point in
time are generalized to all available time-periods. This assumption is unrealistic as
defect prediction approaches might not have stable conclusions and hence results
cannot be generalized across the entire data set irrespective of time. The goal of
this research question is to study the conclusion stability of defect prediction ap-
proaches. We hypothesize that “a defect prediction technique has stable conclusion
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Table 8 Arithmetic Mean and Standard Deviation(SD) of the G-measures of five evaluated
approaches using four time-aware configurations. Bold values indicate SD is larger than our
0.05 threshold

Amasaki15 Watanabe08 CamargoCruz09 Nam15 Ma12
Configuration Mean SD Mean SD Mean SD Mean SD Mean SD

CC 0.483 0.113 0.497 0.121 0.464 0.121 0.582 0.058 0.491 0.111
IC 0.498 0.092 0.510 0.103 0.471 0.103 0.581 0.054 0.506 0.093
CI 0.482 0.112 0.497 0.123 0.464 0.119 0.586 0.048 0.485 0.116
II 0.494 0.093 0.513 0.104 0.470 0.102 0.585 0.041 0.501 0.099

if for a given performance metric, the standard deviation produced by all Tr-Test
pairs in a specific configuration is less than absolute 0.05”. Prior works such as
Zhang et al. (2014) and Herbold et al. (2018) consider 2% and 5% respectively to
be a significant performance gain in terms of AUC and F-Score, therefore we also
use 0.05 absolute value of a performance metric for the threshold.

Result. We evaluate five cross-project defect prediction approaches in this paper
and according to the results of our experiment these approaches have unstable
conclusions. To investigate the conclusion stability; we analyze the F-Score, AUC,
MCC and G-measure values obtained from different evaluations of five approaches
using Tr-Test pairs generated according to the four configurations introduced ear-
lier. Table 5 through Table 8 shows the mean and the standard deviation of F-
Score, AUC, MCC, and G-measure for the five evaluated approaches. The mean
and standard deviation values were calculated across all Tr-Test pairs generated
according to CC, CI, IC and II configuration.

The bold values in Table 5 through Table 8 indicate that the overall standard
deviation of the given performance metric observed across different evaluations
in a configuration is greater than 0.05. The F-Scores and the G-measures of all
five approaches vary by more than 0.05 in almost all configurations suggesting
that instability exists. We believe that conclusions of a model’s performance may
change depending on the context, i.e., time at which model was trained and evalu-
ated which explains this instability in all performance metrics except AUC which
remains stable. This conclusion about the performance of models with respect to
time is re-assured in Section 6.2.2 by measuring the F-Score standard deviation
while keeping the window size constant.

Figure 5 further shows F-Scores plotted on y-axis over split points in time
on the x-axis. The boxplots in figure illustrate the variance in the F-Score values
of techniques evaluated according to four configurations. The length of barplots
signify the magnitude of variation in the F-Score at a particular split point. If
we observe the F-Score values along the timeline in Figure 5, there is a drastic
variation at different points in time, particularly for CC and IC and to a relatively
lesser extent in CI. In the II configuration, the F-Scores of all techniques except
Nam15 exhibit a similar variation across timeline. Overall CamargoCruz09 shows
the highest deviation by deviating more than 0.05 from it’s mean value almost 26%
of the times followed by Amasaki15, Watanabe08, Ma12 and Nam15 respectively
which deviate 25%, 24%, 24% and 11% of the times respectively.

Since the time-agnostic evaluation ignores time, therefore all prior works re-
port aggregate F-Score over the entire evaluated time-period. The green constant
horizontal line drawn over Figure 5 refers to the F-Score value obtained by Her-
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Table 9 Resulting p-values of Wilcoxon rank-sum tests for comparison between four con-
figurations and HerboldMethod for the five approaches. Bold values indicate statistically
significant differences at α = 0.01

Technique F-Score AUC MCC G-measure

Amasaki15 < 0.01 0.20 < 0.01 0.79
CamargoCruz09 < 0.01 < 0.01 < 0.01 < 0.01
Watanabe08 0.17 0.12 < 0.01 < 0.01
Nam15 < 0.01 0.07 0.16 < 0.01
Ma12 0.73 < 0.01 < 0.01 < 0.01

boldMethod and represents the mean of cross-validation F-Scores produced in
different folds. The large number of results falling on both sides of the horizontal
line indicate that conclusions drawn about the performance of an approach are not
stable over different evaluations. For example, at split point 3 in CC configuration
in Figure 5-D, F-Score is above 0.8 but it drops to around 0.35 if we move just
one split point ahead on the timeline to split 4. Such abrupt variations across the
time line show that performance claims can be highly unrealistic if the context is
ignored. Therefore reporting a single value and generalizing it over different points
in a project’s evolution can be quite misleading.

The problem is further aggravated by large number of outliers that can be
seen in Figure 5, indicating the fact that evaluation can often yield very high or
low performance estimates, which are far from the real performance that a defect
prediction technique may achieve in practice. Therefore, the conclusions drawn
from a specific period of time should not be generalized outside of it. It is rather
more appropriate for researchers to report a range of values of a performance
metric corresponding to multiple time-periods and contexts of evaluation.

The defect prediction techniques do not have stable conclusions when eval-
uated over several different points in time using four configurations. The
G-measures of all techniques except Nam15 deviate more than 0.1 from
their mean values in all configurations. Similarly F-Scores and MCCs de-
viate by 0.05 in at least one configuration. This deviation in performance
metrics signifies that the performance based on one evaluated period of
time cannot be generalized across the entire project or data set irrespective
of time. Researchers should carefully couch the results of defect prediction
studies against the time-periods of evaluation.

5.2 RQ2: How do the results of time-agnostic and time-aware
evaluations differ?

Motivation. The time-agnostic evaluation of defect prediction techniques might
lead to false estimates of performance. In this question we compare the results
of time-agnostic and time-aware evaluations to better understand the impact of
evaluation method on the results of cross-project defect prediction models.
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Table 10 Raw result values of HerboldMethod and time-aware evaluation—
HerboldMethod reports only one value of F-Score, AUC and MCC for each technique which
is duplicated across all rows.

New Values HerboldMethod Values

Technique Configuration F-Score MCC AUC G-Measure F-Score MCC AUC G-Measure

Amasaki15 CC 0.373 0.142 0.571 0.483 0.388 0.175 0.578 0.516
IC 0.373 0.155 0.573 0.498 0.388 0.175 0.578 0.516
CI 0.365 0.141 0.571 0.482 0.388 0.175 0.578 0.516
II 0.363 0.152 0.571 0.494 0.388 0.175 0.578 0.516
All Configurations 0.368 0.148 0.571 0.489 0.388 0.175 0.578 0.516

Watanabe08 CC 0.379 0.123 0.562 0.497 0.392 0.109 0.563 0.506
IC 0.373 0.127 0.555 0.510 0.392 0.109 0.563 0.506
CI 0.371 0.124 0.562 0.497 0.392 0.109 0.563 0.506
II 0.367 0.131 0.557 0.513 0.392 0.109 0.563 0.506
All Configurations 0.373 0.126 0.559 0.504 0.392 0.109 0.563 0.506

CamargoCruz09 CC 0.354 0.117 0.556 0.464 0.389 -0.086 0.468 0.523
IC 0.345 0.118 0.548 0.471 0.389 -0.086 0.468 0.523
CI 0.346 0.116 0.559 0.464 0.389 -0.086 0.468 0.523
II 0.335 0.114 0.549 0.470 0.389 -0.086 0.468 0.523
All Configurations 0.345 0.116 0.553 0.467 0.389 -0.086 0.468 0.523

Nam15 CC 0.491 0.232 0.638 0.582 0.492 0.235 0.641 0.602
IC 0.496 0.231 0.638 0.581 0.492 0.235 0.641 0.602
CI 0.478 0.228 0.636 0.585 0.492 0.235 0.641 0.602
II 0.483 0.229 0.636 0.585 0.492 0.235 0.641 0.602
All Configurations 0.487 0.230 0.637 0.583 0.492 0.235 0.641 0.602

Ma12 CC 0.376 0.134 0.577 0.491 0.392 0.160 0.581 0.521
IC 0.376 0.142 0.578 0.506 0.392 0.160 0.581 0.521
CI 0.366 0.134 0.577 0.485 0.392 0.160 0.581 0.521
II 0.363 0.140 0.577 0.501 0.392 0.160 0.581 0.521
All Configurations 0.370 0.138 0.577 0.496 0.392 0.160 0.581 0.521

Result. We use Wilcoxon rank-sum test to evaluate whether the differences be-
tween HerboldMethod and our results are statistically significant or not. Ta-
ble 9 reports the p-values of Wilcoxon test and bold values indicate a statistically
significant difference at an α value of 0.01. The comparison reveals that the results
of our time-aware evaluations differ from HerboldMethod in terms of all four
metircs for the CamargoCruz09 and in terms of at least two out of the four met-
rics for the remaining approaches. These difference are also statistically significant
(p-value < 0.01).

To quantify the differences between our configurations and HerboldMethod
we employ Cliffs Delta which is a measure of the effect size and does not assume
normality of distribution. For Cliffs Delta we use the interpretations of Romano
et al. (2006) which considers difference to be Negligible if Cliffs |d| ≤ 0.147, Small
if Cliffs |d| ≤ 0.33, Medium when Cliffs |d| ≤ 0.474, and Large otherwise. The Cliff
delta indicates that the observed differences have small to negligible effect size
for all four metrics and five approaches. Despite an overall small effect size, the
variations in performance at different split points and the combined effect of vari-
ations across different metrics cannot be ignored. Furthermore, regardless of the
effect size, it is methodologically incorrect to evaluate the defect prediction tech-
niques using time-agnostic evaluation or to generalize their performance beyond
the evaluated time periods.

The Wilcoxon rank-sum tests suggest that there is a statistically signifi-
cant difference between the time-aware experiment and HerboldMethod
on the basis of F-Score, AUC, MCC and G-measure but the Cliff’s Delta
effect sizes are small to negligible.
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5.3 RQ3: What is the ranking of evaluated techniques in time-aware
experiment?

Motivation. The recent replication done by Herbold et al. (2018) ranks 24 cross
project defect prediction approaches using common data sets and performance
metrics. The aim of their work was to benchmark the performance of CPDP ap-
proaches using multiple learners and data sets. We on the other hand claim and
show that their conclusion might not hold under different contexts of evaluation.
In this research question, we investigate if the rankings of HerboldMethod still
holds under our experimental settings or not.

Result. The performance estimates of our four configurations in comparison with
HerboldMethod are reported in Table 10. The prior analysis in RQ2 suggests
that for all approaches, the performance in terms of at least two evaluation metrics
differ significantly. We further re-rank the defect prediction techniques relative
to others on the basis of each performance metric, using the following formula
suggested by Herbold et al. (2018)

rankscore = 1− #approaches ranked higher

#approaches− 1

The rankscore lies in the range of 0 and 1 which respectively represents lowest
and highest possible ranks. The Mean Rank Score of a technique is the arithematic
mean of rankscores computed using each of the four performance metric. Ranking
a technique using all performance metrics reduces the bias arising due to a single
metric failing to estimate the model performance. As a result, two approaches
achieving same rankscore using two different metrics may have the same overall
score. The ranks of each technique per configuration and the HerboldMethod
ranks are presented in Table 11. Note that these ranks were calculated using Mean
Rank Score but, for the sake of readability, the decimal values of Mean Rank Score
were replaced with the respective ranks that those values represent.

The ranks of the evaluated tecniques vary in each configuration and four out of
five techniques have a different rank in comparison with HerboldMethod. How-
ever, Nam15 which outperformed other approaches in HerboldMethod also ob-
tained the top rank in all time-aware configurations. It is the only technique whose
rank matches with HerboldMethod in addition to being consistent across the
four configurations. Despite this one may observe an occasional decline for Nam15
at different split points in Figure 6 through Figure 9. Contrarily, the remaining
four techniques, Amasaki15, Watanabe08, CamargoCruz09, and Ma12 remain in-
conclusive not just across configurations but also at different split points.

To quantify the variation in the ranks of techniques, we present the standard
deviation of ranks within each configuration in Table 12. The values of standard
deviation range from 0.24 (smallest) in Nam15 to 1.15 (largest) in Watanabe08
which shows that the ranks of four techniques vary by at least +/ − 1 when
evaluated at different time splits within a configuration. This variation shows that
the performance of each technique varies depending on the context of evaluation
and the ranks do not generalize over all time-periods.
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Fig. 6 Variation in ranks of techniques evaluated using CC configuration. Each sub-figure
represents a window size from (1 to 17), x-axis shows split point in time (1 to 17), y-axis shows
the ranks of technique from (1 to 5), and K represents window size. Techniques: A=Amasaki15,
W=Watanabe08, C=CamargoCruz09, N=Nam15, M=Ma12.
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Fig. 7 Variation in ranks of techniques evaluated using IC configuration. Each sub-figure
represents a window size from (1 to 17), x-axis shows split point in time (1 to 17), y-axis shows
the ranks of technique from (1 to 5), and K represents window size. Techniques: A=Amasaki15,
W=Watanabe08, C=CamargoCruz09, N=Nam15, M=Ma12.
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Fig. 8 Variation in ranks of techniques evaluated using CI configuration. Each sub-figure
represents a window size from (1 to 17), x-axis shows split point in time (1 to 17), y-axis shows
the ranks of technique from (1 to 5), and K represents window size. Techniques: A=Amasaki15,
W=Watanabe08, C=CamargoCruz09, N=Nam15, M=Ma12.
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Table 11 New ranks of techniques based on Mean Rank Score and their comparison with
HerboldMethod ranks. For ease, the decimal values were replaced by whole numbers without
affecting the ranks

Technique HerboldMethod New Ranks
Ranks CC IC CI II

Nam15 1 1 1 1 1
Ma12 2 2 3 3 4
Amasaki15 3 3 2 4 3
CarmagoCruz09 4 5 5 5 5
Watanabe08 5 4 4 2 2

Table 12 Standard deviation in ranks of techniques calculated using Mean Rank Score of
AUC, F-Score, G-measure and MCC metrics.

Technique CC IC CI II

Ma12 1.04 1.07 1.07 0.99
Nam15 0.37 0.31 0.29 0.24
Amasaki15 0.99 0.88 0.90 0.93
Watanabe08 1.08 1.15 1.11 1.10
CamargoCruz09 1.05 0.90 1.07 0.86

According to the result of HerboldMethod, Nam15 outperforms the
other techniques by achieving the first rank, whereas Watanabe08 per-
forms. However, our evaluation shows that the ranks of all approaches not
only vary at different split points within the configurations, but all except
Nam15, have inconclusive ranks across the configurations as well.

6 Discussion

6.1 Insights from Study

In this study, we show that defect prediction approaches can exhibit different
performance when evaluated under different contexts. By using a subset of the
Jureczko data used in the benchmarking study of Herbold et al. (2018), we ob-
served a disagreement with the ranks reported in Herbold’s original study and
HerboldMethod.

We also explain in this paper that cross-validation is not an appropriate way
of training cross-project defect prediction models because it randomly splits the
data irrespective of time order. This type of evaluation might lead to the training
of models on future data, which is in practice, not available for use at the time
of prediction. As a result, the performance estimates of defect prediction models
may be biased, and under realistic settings the model may perform better or worse
than the estimates produced by making unrealistic assumptions.

Studies in the past have engaged in time-travel because of a cross-validation
based evaluation, therefore to avoid it, we adopt a time-aware evaluation, and
report the standard deviation observed in the four performance metrics as well as
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the ranks of five techniques. A comparison of our resulting ranks with the ranks
reported by Herbold et al. (2018) and the ranks obtained from HerboldMethod
suggest that defect prediction models yield different conclusions when evaluated
using time-aware evaluation and data from different time periods.

In the context of time-aware evaluation, online defect prediction is the safest
approach, because it trains the model on past data and evaluates it on future
data. However, there is a difference between our proposed methodology and online
defect prediction. Online defect prediction trains the model on complete data from
the past, which is similar to our IC and II configurations. In contrast, in our CC
and CI configurations, the model is trained on partial data from the past which is
less resource intensive.

In the following sections, we consider some of the factors that may have caused
the observed instability in the performance of defect prediction approaches.

6.2 Impact of factors other than time on conclusion stability

We observed that the standard deviation (SD) of F-Scores in HerboldMethod
is high (i.e., > 0.1). Further, we compared the SD of HerboldMethod’s F-Score
with the SD of time-aware configurations’ F-Score. The technique wise F-Score
SD of HerboldMethod is 0.132 for Amasaki15, 0.152 for Watanabe08, 0.159 for
CamargoCruz09, 0.179 for Nam15, and 0.133 for Ma12. While in contrast to Her-
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Table 13 Comparison of F-Score Standard Deviation(SD) of FilterJurezcko with its two
subsets. Subset-1 represents data from 1999-07 to 2004-01 and Subset-2 represents data from
2004-07 to 2009-01. The subsets are only evaluated for Configuration CC.

Technique FilterJurezcko Subset-1 Subset-2

Ma12 0.08 0.11 0.11
Nam15 0.07 0.09 0.12
Amasaki15 0.08 0.12 0.10
Watanabe08 0.09 0.12 1.11
CamargoCruz09 0.09 0.13 0.11

boldMethod, the technique wise F-Score SD of our time-aware configurations,
as observed in Table 5, is always < 0.1. Hence, it is safe to assume that the newly
reported ranks by the time-aware configurations in Table 10 are more reliable than
HerboldMethod.

Having said that, there are several other possible factors that might have af-
fected the conclusion stability of CPDP approaches. These factors include, but
are not limited to, the following: noise in the dataset; types of the projects and
stakeholders involved; software development process; the nature of the CPDP ap-
proaches themselves; uneven release distribution of projects over timeline; size of
the dataset and imbalanced data classes etc. We investigate a few of the afore-
mentioned factors below and their effects on the observed instability.

6.2.1 Impact of projects included in Tr-Test set:

Herbold et al. (2018) explored the impact of using a small subset of data on the
model performance and found that it can lead to significantly different results.
One might think that it is the case here as well because, in our data set, not all
the projects are evenly spread across the timeline. For example, Xerces is only
in the first few buckets (Figure 2) and Camel is only in the last few buckets.
As a result some instability may be caused due to the change of projects between
different Tr-Test pairs. To counteract the effect of different projects on performance
instability we divided the data into two subsets: Subset-1 includes buckets from
1990-07 to 2004-01, and Subset-2 includes buckets from 2004-07 to 2009-01. From
the results presented in previous section, the CC configuration has shown highest
variance, therefore we evaluate each subset by running only CC configuration.
Table 13 shows that the F-Score standard deviation increased when we divided
the FilterJureczko and both the subsets have a higher standard deviation when
compared to the original evaluation on the entire data set. This confirms that the
instability does not diminish even when same projects are evaluated over time.
However, it is still hard to reason whether this difference is due to time-based
evaluation or merely because the data set size has been further reduced.

6.2.2 Impact of data size:

The Tr-Test pairs generated using different window sizes (K) vary in terms of
size i.e., the number of instances. The performance of a classifier can differ when
trained using data sets of different scales. Consequently, the variation might seem
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Table 14 Standard Deviation(SD) of performance metrics when evaluated on balanced Fil-
terJurezcko data set with CC configuration of time-aware methodology.

Technique F-Score SD MCC SD AUC SD G-measure SD

Ma12 0.13 0.24 0.12 0.12
Nam15 0.11 0.18 0.08 0.09
Amasaki15 0.12 0.19 0.10 0.09
Watanabe08 0.11 0.20 0.12 0.10
CamargoCruz09 0.11 0.21 0.11 0.10

to have been introduced due to the comparison between models trained using
variable window sizes. To counteract this we fixed the window size while training
prediction models and then compared the standard deviation for every window
size individually. The variability in F-score across different values of K is shown
in Figure 10, and it can be seen that even for a fixed value of K, F-Score varies
from 0.2 to 0.6 and occassionally 0.8. The standard deviation in F-score for a fixed
value of K is also shown in Figure 11 and it can be concluded that despite a fixed
value of K and data of similar scales, the instability is there and it remains high.

6.2.3 Impact of data imbalance:

Data imbalance refers to the unequal distribution of prediction class labels in the
training data set. This imbalance may cause a defect prediction model to incor-
rectly classify between two classes during testing, which leads to inconsistent per-
formance of the model across its different evaluations. To achieve a balanced distri-
bution, prior work (Yap et al., 2014; Zimmermann et al., 2007; Kamei et al., 2016)
has used several re-sampling techniques such over-sampling and under-sampling.
Over-sampling uses the randomly selected minority class instances and adds them
to the original data set. Under-sampling, on the other hand, removes random
instances from the majority class until both classes become equal.

To balance our data set, we used the under-sampling methodology and then
re-ran all five approaches using HerboldMethod and the CC configuration.
We compared each technique’s performance measures obtained using Herbold-
Method with time-aware CC configuration using Wilcoxon rank-sum test. For all
five evaluated approaches, the results of CC configuration still differ with Her-
boldMethod in a statistically significant way at an α = 0.01. Table 14 shows
that the standard deviation for all of the four metrics is above our threshold,
showing that the instability in results cannot be clearly attributed to different
class distributions.

6.3 Implications

Although, our study is limited to the area of cross-project defect prediction, the
time-aware methodology employed in this paper can be used to evaluate the con-
clusion stability of other software analytic approaches, such as duplicate bug report
prediction, effort estimation, and bad smell detection. To this end, our experimen-
tal results ascertain that our concern about over generalization of conclusions is
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legitimate. In our evaluation, which is based on four time-aware configurations,
the ranks of techniques vary by +1 or -1 within the configurations as well as
across them. Only Nam15 achieved the same rank in all four configurations and
in the HerboldMethod. The other techniques degrade by 2 or 3 ranks in certain
configurations, which means that there is no agreement and thus high instabil-
ity in the remaining four ranks. On a side note, these configurations allow for a
systematic way of generating training and test data and also seem promising, as
evaluations based on them exhibit diverse results which are realistically closer to
the performance that a technique will yield in practice.

Lastly, it should be noted that the computational cost of training a large num-
ber of models corresponding to all configurations can be high, especially for models
that employ sophisticated training techniques such as Neural Networks. Therefore,
only some configurations or a few windows in each configuration may only be used
to obtain realistic performance estimates. Having said that, the choice of con-
figuration entirely depends on the purpose of evaluation, as we explained in the
methodology section. In either case, however, a time-stamped data set or version
release dates are required to carry out a more detailed evaluation, and therefore
software engineering researchers who plan to collect defect prediction data in fu-
ture shall also provide time information with their data sets.

7 Threats to Validity

Construct Validity. We use the source code provided by Herbold (2017a) for the
evaluation. This poses a threat to the construct validity of our study but to counter-
act that, we also look into the original papers and make sure the implementations
were correct.

External Validity. The external validity of the study is limited by the use of Ju-
reczko data set. Our experiment relies on dates and timestamps which were not
available in any of the publicly available data sets hence we relied on only a single
data set for our study, Jureczko data set. The data set contains 20 metrics and
the results of our study might only hold for data having similar characteristics.

Additionally, Jureczko data set does not contain bug-report and bug-fix times-
tamps. The data set was collected by analyzing the commit logs using a regular
expression to decide if a commit is bug-fixing or not. Hence, we could not map
release dates to bug report/fix times and as a result we might have time-traveled
due to our ignorance of these. Although, it is out of the scope of our current study
but in future we intend to update the bug-prediction data sets to associate bug
information with commits.

The standard deviation in the performance metrics of HerboldMethod and
time-aware configurations does not necessarily suggest that it exists primarily due
to time. Rather, there may be other factors affecting this standard deviation such
as noise in the dataset, types of the projects, software development process, or the
nature of the CPDP approaches themselves.

Internal Validity. The internal validity of the study suffers to a small extent due
to reliance on the assumptions made in prior works. We have not tuned the hyper-
parameters of the decision tree but have instead relied on the evaluation settings
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similar to Herbold et al. (2018). An interesting future work is to examine the effect
of tuning model parameters on the results.

8 Conclusion

Software engineering researchers often make claims about the generalization of the
performance of their techniques outside the contexts of evaluation. In this paper
we investigate whether conclusions in the area of defect prediction—the claims of
the researchers—are stable throughout time.

We show lack of conclusion stability for multiple techniques when they are
evaluated at different points in a project’s evolution. By following a time-aware
methodology we found out that conclusions regarding ranking and performance of
techniques replicated by Herbold et al. (2018) benchmarking study are not stable
across different periods of time. With a standard deviation of 0.05 or more in F-
Score, MCC and G-measure, we find that with context (i.e., time) of evaluation,
the relative performance of defect prediction techniques changes, provided the time
frame and projects we used for evaluation.

However, it is hard to reason if time alone is the primary factor that leads
to unstable conclusions, but our empirical evaluation shows that it does seem
to be a factor. There may be other factors such as noise in the dataset, types of
the projects, software development process, or the nature of the CPDP approaches
themselves that require further investigation to determine their effect on conclusion
stability.

This case study provides evidence that in the field of defect prediction the
context of evaluation (in our case, time) plays an important role. Therefore, it is
imperative that empirical software engineering researchers do not over generalize
their results but instead couch their claims of performance within the contexts of
their evaluation—a field-wide faux pas that perhaps even this paper engages in.
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