arXiv:1911.02476v3 [cs.SE] 18 Mar 2021

Noname manuscript No.
(will be inserted by the editor)

How to Better Distinguish Security Bug Reports (using Dual
Hyperparameter Optimization)

Rui Shu - Tianpei Xia - Jianfeng Chen -
Laurie Williams - Tim Menzies

Received: date / Accepted: date

Abstract Background: In order that the general public is not vulnerable to hackers,
security bug reports need to be handled by small groups of engineers before being
widely discussed. But learning how to distinguish the security bug reports from other
bug reports is challenging since they may occur rarely. Data mining methods that can
find such scarce targets require extensive optimization effort.

Goal: The goal of this research is to aid practitioners as they struggle to opti-
mize methods that try to distinguish between rare security bug reports and other bug
reports.

Method: Our proposed method, called SWIFT, is a dual optimizer that optimizes
both learner and pre-processor options. Since this is a large space of options, SWIFT
uses a technique called e-dominance that learns how to avoid operations that do not
significantly improve performance.

Result: When compared to recent state-of-the-art results (from FARSEC which
is published in TSE’18), we find that the SWIFT’s dual optimization of both pre-
processor and learner is more useful than optimizing each of them individually. For
example, in a study of security bug reports from the Chromium dataset, the median
recalls of FARSEC and SWIFT were 15.7% and 77.4%, respectively. For another
example, in experiments with data from the Ambari project, the median recalls im-
proved from 21.5% to 85.7% (FARSEC to SWIFT).

Conclusion: Overall, our approach can quickly optimize models that achieve bet-
ter recalls than the prior state-of-the-art. These increases in recall are associated with
moderate increases in false positive rates (from 8% to 24%, median). For future work,
these results suggest that dual optimization is both practical and useful.

Keywords Hyperparameter Optimization - Data Pre-processing - Security Bug
Report

Rui Shu, Tianpei Xia, Jianfeng Chen, Laurie Williams, Tim Menzies
Department of Computer Science, North Carolina State University, Raleigh, NC, USA
Email: rshu@ncsu.edu, txia4 @ncsu.edu, jchen37@ncsu.edu, lawilli3 @ncsu.edu, timm@ieee.org

2 Rui Shu et al.

1 Introduction

Security bug detection is a pressing current concern. A report from NIST comments
that “Current systems perform increasingly vital tasks and are widely known to pos-
sess vulnerabilities” [12] (and by “vulnerability”, they mean a weakness in the com-
putational logic (e.g., code) found in software and some hardware components (e.g.,
firmware) that, when exploited, results in a negative impact on confidentiality, in-
tegrity, or availability [48]]). Daily, news reports reveal increasingly sophisticated se-
curity breaches. As seen in those reports, a single vulnerability can have devastating
effects. For example, a data breach of Equifax caused the personal information of as
many as 143 million Americans — or nearly half the country — to be compromised [2].
The WannaCry ransomware attack [1]] crippled British medical emergency rooms, de-
laying medical procedures for many patients.

Developers capture and document software bugs and issues into bug reports which
are submitted to bug tracking systems. For example, the Mozilla bug database main-
tains more than 670,000 bug reports with 135 new bug reports added each day [14].
Submitted bug reports are explicitly labeled as a security bug report (SBR) or non-
security bug report (NSBR). Within such bug tracking systems, Peters et al. [61] warn
that it is crucial to correctly identify security bug reports and distinguish them from
other non-security bug reports. They note that software vendors ask that security bug
reports should be reported directly and privately to their own engineers. These en-
gineers then assess the bug reports and, when necessary, offer a security patch. The
security bug, and its associated patch, can then be documented and disclosed via
public bug tracking systems. This approach maximizes the probability that a patch
is widely available before hackers exploit a vulnerability. However, due to the lack
of security expertise knowledge, bug reporters sometimes mislabel security bug re-
ports as non-security bug reports [22]. There are cases when they are not sure when
their bug is a non-security bug (which can be safely disclosed) or when that bug
is a security bug (that needs to be handled more discretely). For example, Figure [I]
demonstrates a security bug report from the Apache Ambari project, which is misla-
belled as non-security bug report. It is a labor intensive process and thus impractical
for security practitioners to identify mislabelled security bug reports within a large
set of thousands of other non-security bug reports.

The problem that researchers need to address is how to distinguish security bug
reports properly. To tackle this problem, researchers have adopted various techniques.
One technique is to apply text mining to the security bug reports [22, 24,76, [77]. The
main idea here is to find some combination of relevant keywords in the bug reports
(as well as features such as word frequency) which are then combined together into
classification models. But learning such models is a challenging task since the ratio
of security bug reports to other kinds of bug reports may be very low. For exam-
ple, data sets from [61] show among the 45,940 bug reports, only 0.8% are security
bug reports. Various methods exist for mining such rarefied data — but those meth-
ods require extensive optimization effort before they work well on a particular data
set. Peters et al. proposed FARSEC [61]], a text mining method that used irrelevancy
pruning (i.e., filtering). In their approach, developers first identified security related
words. Next, they pruned away the irrelevant bug reports (where “irrelevant” means

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 3

/ / AMBARI-3153
"y

Secure cluster: Yarn service check fails after configuring yarn for
spnego authentication.

~ Details
Type: D sug
Status: [RESOLVED |
Priority: Z Major
Resolution: Fixed
Affects Version/s: 141
Fix Versions: 141
Component/s: ambari-agent
Labels: security

~ Description

Yarn smoke test uses REST api exposed by ResourceManager to get its status. After configuring web
authentication yarn client that is assigned yarn service check needs to negotiate 401 HTTP authentication
response received while using REST api.

Fig. 1 An example of security bug report from the Apache Ambari project mislabelled as non-security
bug report from [61].

“does not have those security-related keywords”). FARSEC was evaluated using bug
reports from one Chromium project and four Apache projects.

The conjecture of this paper is that this text mining-based method for security bug
reports (e.g. as done with FARSEC) can be further enhanced. For example, FARSEC
applied its data miners using their default “off-the-shelf” configurations. Recently it
has been shown that hyperparameter optimization (which automatically learns the
“magic” control parameters of an algorithm) can result in better learners that outper-
form the learners with “off-the-shelf” configurations [3} 4} 21} 2742, 65, [70]]. To the
best of our knowledge, this paper is the first attempt to apply hyperparameter opti-
mization to learn models that better distinguish security bug reports. To that end, we
separate and apply three different kinds of optimization strategies:

1. Learner hyperparameter optimization to adjust the parameters of the data miner;
e.g., how many trees to use in random forest, or what values to use in the kernel
of Support Vector Machine (SVM).

2. Pre-processor hyperparameter optimization to adjust any adjustment to the train-
ing data, prior to learning; e.g., to learn how to control outlier removal or, how to
handle the class imbalance problem.

3. Dual hyperparameter optimization that combines 1 and 2.

Standard practice in the search-based SE literature explores just learner or pre-
processor options, but seldom both. There are good reasons for this — the space of
hyperparameters is exponential on the number of optimization options. Hence opti-
mizing both the learner and pre-processor options is an exponentially slow process.
Nevertheless, this paper shows that if dual optimization can terminate, then it is a use-
ful method. For example, for distinguishing security bug reports, dual optimization
performs better than just optimizing learner or pre-processor options individually.

Rui Shu et al.

Table 1 List of pre-processors and learners explored in this study. Standard practice in previous literature is
to optimize none or just one of these two groups [3} 141711211 166]. Note that a dual optimizer simultaneously

explores both learner and pre-processing options.

Type Name Description
Normalizer Normalize samples individually to unit norm.
Standardize features by removing the mean and
StandardScalar . . ©s by &
scaling to unit variance.
. Transforms features by scaling each feature to
MinMaxScaler . y &
a given range.
MaxAbsScaler Scale each feature by its maximum absolute value.
Scale features using statistics that are robust to
RobustScalar . &
outliers.
KernelCenterer Center a kernel matrix.
QuantileTransformer Transform features using quantiles information.
Pre-processor Apply a power transform featurewise to make data
p PowerTransformer Pply ap

more Gaussian-like.

Binarizer

Binarize data (set feature values to O or 1) according
to a threshold.

PolynominalFeatures

Generate polynomial and interaction features.

SMOTE

Synthetic Minority Over-sampling Technique.

Learner

Random Forest (RF)

Generate conclusions using multiple entropy-based
decision trees.

K Nearest Neighbors (KNN)

Classify a new instance by finding “K” examples of
similar instances.

Naive Bayes (NB)

Classify a new instance by (a) collecting mean and
standard deviations of attributes in old instances of
different classes; (b) returning the class whose
attributes are statistically most similar to the new
instance.

Logistic Regression (LR)

Map the output of a regression into 0 < n < 1;
thus enabling using regression for classification.

Multilayer Perceptron (MLP)

A deep artificial neural network which is composed of
more than one perceptron.

Note: The listed pre-processors and learners are based on scikit-learn version 0.21.2. SMOTE is implemented
independently without using existing scikit-learn library.

This paper succeeds at dual optimization, despite its exponential nature, uses a tech-
nique called e-dominance to ignore operations that do not significantly improve the
performance. We call this method SWIFT in our work.

In order to demonstrate the efficiency of dual optimization (i.e., SWIFT), we
made comparison experiments with the baseline approach (i.e., FARSEC) as well
as state-of-the-art individual optimization methods (i.e., optimizing learners or op-
timizing pre-processors with the differential evolutionary algorithm). To make that
demonstration, we apply dual hyperparameter optimization to the options of Table[I}
We make no claim that this is the entire set of possible options. Rather, we just say
that (a) any reader of the recent SE data mining literature might have seen many of
these; (b) that reader might be tempted to try optimizing the Table[T|options; (c) when
we optimize these options in our method, we found that our models were better than
the prior state-of-the-art [61]].

This study is structured around the following research questions:

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 5

RQ1. Can hyperparameter optimization techniques improve the performance of
models that better distinguish security bug reports from other bug reports?

We find that the dual hyperparameter optimization approach better distinguishes
security bug reports from non-security bug reports. Specifically, our new method in-
creases the recall on the security bug reports from 21.5% to 66.7% (median values for
FARSEC and SWIFT, respectively). This recall increase is associated with moderate
false alarm rate increase from 8.0% to 24.0% (median values, FARSEC to SWIFT).

RQ2. When learning how to distinguish security bug reports, is it better to dual
optimize the learners and the data pre-processors?

We will show that dual optimization is statistically significantly better in 31/40
data sets with regard to recall results. This is more than twice as many wins as other
approaches explored in this paper. In addition, the dual optimization used here is
faster (and scales better to more complex problems) than other techniques.

RQ3. Can hyperparameter optimization further improve the performance of rank-
ing security bug reports?

From the ranking evaluation experiment results, we can observe that individ-
ual hyperparameter optimization can achieve better ranking score than the best filter
treatment from FARSEC for all five projects studied here. In addition, dual optimiza-
tion is better than individual optimization in this metric across all five projects.

In summary, the contributions of this paper are:

— An improved result on prior state-of-the-art. Specifically, to distinguish security
bug reports from non-security bug reports, our methods are better than those re-
ported in the previous FARSEC paper from TSE’18.

— A comment on the value of optimizing (a) data pre-processors or (b) data mining
learners. Specifically, to identify rare events, we show that dual optimization of
(a) and (b) does much better than optimizing either, individually.

— A demonstration of the practicality of dual optimization. As shown below, the
overall runtime for dual optimization (i.e., SWIFT) is five minutes for small
datasets and 12 minutes for larger datasets such as the Chromium project on av-
erage. This is an important result since our pre-experimental concern is that the
cross-product of the option space between the (a) data pre-processors and (b) data
mining learners would be so large as to preclude dual optimization.

The remainder of this paper is organized as follows. We introduce research back-
ground and related work in Section 2] We then describe the details of our approach in
Section[3] In Section[d] we present our experiment details, including hyperparameter
optimization ranges, datasets, experiment rig, and metrics, etc. We answer proposed
research questions in section [5] We deliver the take-away messages in Section [] and
discuss the threats to validity in Section[7/and then conclude in Section [§]

6 Rui Shu et al.

2 Background and Related Work

Various methods have been applied to address the need for more secure software.
This section first discusses how data mining has been applied to this problem, then
we introduce the state-of-the-art FARSEC technique, after which we introduce more
details of hyperparameter optimization.

2.1 Security Bug Reports and Data Mining

Data mining has recently been widely applied in bug report analysis, such as identifi-
cation of duplicated bug reports [16 28] 139, 164]], prediction of the severity or impact
of a reported bug [38, 68, [79} 180, I83]], extraction of execution commands and input
parameters from performance bug reports [26], assignment of the priority labels to
bug reports [69]], bug report field reassignment and refinement prediction [77] and
identify vulnerabilities from commit message and bug reports [84] .

In particular, a few studies of bug report classification are more relevant to our
work. Some of those approaches focus on building bug classification models based
on analyzing bug reports with text mining. For example, Zhou et al. [85] leveraged
text mining techniques, analyzed the summary parts of bug reports and fed into ma-
chine learners. Xia et al. [76] developed a framework that applied text mining tech-
nology on bug reports and trained a model on bug reports with known labels (i.e.,
configuration or non-configuration). The trained model was used to predict the new
bug reports. Popstojanova et al. [24] used different types of textual feature vectors
and focused on applying both supervised and unsupervised algorithms in classify-
ing security and non-security related bug reports. Wijayasekara et al. [[/4] extracted
textual information by utilizing the textual description of the bug reports. A feature
vector was generated through the textual information and then presented to a machine
learning classifier.

Some other approaches use a more heuristic way to identify bug reports. For ex-
ample, Zaman et al. [82]] combined keyword searching and statistical sampling to dis-
tinguish between performance bugs and security bugs in Firefox bug reports. Gegick
et al. [22] proposed a technique to identify security bug reports based on keyword
mining and performed an empirical study based on an industry bug repository.

While all the above work significantly advanced the state-of-the-art, but results
related to data mining on software security issues are often problematic:

— Neuhaus & Zimmermann [52] explored the dependency structure within RedHat
Linux to learn vulnerability predictors with precision and recall of 83% and 65%.
Neuhaus & Zimmermann [51] later applied their dependency-based methods to
the same code base, but at a much larger scale of granularity (system, not specific
applications). Their results were not impressive: precision and recall of 40% and
20%, respectively.

— Nguyen & Tran [53]], similarly, applied explored dependency structure. Though
not as impressive as Neuhaus and Zimmermann, they achieved precision and re-
call of 60% and 61%. However, their code dependency network analysis is not a
general method for building vulnerability predictors.

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 7

— Scandariato et al. [62] used a text mining approach over the source code for their
vulnerability predictors. They report prediction models with precision and re-
call over 95%. However, these results were based on a somewhat contentious
methodology. The unfiltered alerts of a static code analysis tool were used to la-
bel code components as “vulnerable” or not. Such static code analysis tools have
a notoriously large false positive rate, declaring that many code components are
“vulnerable” when the vulnerabilities are actually false positives.

2.2 FARSEC: Extending Data Mining for Bug Reports

The previous section reported certain problems with existing methods where data
mining was applied to security related tasks. In the recently proposed FARSEC [61]
research, Peters et al. reported more success after focusing on a particular problem
within the security domain.

FARSEC is a technique that adds an irrelevancy pruning step to data mining in
building security bug prediction models. Table [2]lists the filters explored in the FAR-
SEC research. The purpose of filtering in FARSEC is to remove non-security bug
reports with security related keywords. To achieve this goal, FARSEC applied an al-
gorithm that firstly calculated the probability of the keywords appearing in security
bug report and non-security bug report, and then calculated the score of the keywords.

Inspired by previous works [25]132], several tricks were also introduced in FAR-
SEC to reduce false positives. For example, FARSEC built the farsectwo filter by
multiplying the frequency of non-security bug reports by two, aiming to achieve a
good bias. The farsecsq filter was created by squaring the numerator of the support
function to improve heuristic ranking of low frequency evidence.

Table 2 Different filters used in FARSEC.

Filter Description
farsecsq Apply the Jalali et al. [32] suppO.rt function
to the frequency of words found in SBRs
farsectwo Apply the Graham version [25] of multiplying
the frequency by two.
farsec Apply no support function.
clni Apply CLNI filter to non-filtered data.
clnifarsec Apply CLNI filter to farsec filtered data.
clnifarsecsq Apply CLNI filter to farsecsq filtered data.
clnifarsectwo | Apply CLNI filter to farsectwo filtered data.

In addition, FARSEC also tested a noise detection algorithm called CLNI (Closet
List Noise Identification) [35]. Specifically, CLNI works as follows: During each
iteration, for each instance 7, a list of closest instances are calculated and sorted ac-
cording to Euclidean Distance to instance i. The percentage of top N instances with
different class values is recorded. If percentage value is larger or equal to a threshold,
then instance ¢ is highly probable to be a noisy instance and thus included to noise set
S. This process is repeated until two noise sets .S; and S;_; have the similarity over e

8 Rui Shu et al.

(e.g., €15 0.99). A threshold score (e.g., 0.75) is set to remove any non-buggy reports
above the score.

One of the common issues with imbalanced data prediction is the large number
of false positives in the prediction results. This matters because it means potentially
extra effort is required from developers to check those false positives. FARSEC tries
to address this problem by generating a list of ranked bug reports. This method takes
two steps. In the first step, for a filter f, the ranked prediction results are selected from
non-filtered data or data with filters other than f which has less number of predicted
security bug reports than filter f. If the first step does not apply, the chronological
order is used in step two. As a result, the predicted security bug reports are close to
the top of the list than non-security bug reports.

2.3 Hyperparameter Optimization for Learner and Pre-Processor Options

One data mining approach not fully explored by FARSEC (or much of other works re-
viewed above) is hyperparameter optimization, i.e. the process of searching the most
optimal hyperparameters in data mining learners [[10]. In machine learning, hyperpa-
rameters reflect policies within a model. For example:

— For random forest, a hyperparameter could be the number of trees in the forest.

— For nearest neighbor algorithm, a hyperparameter could be the number of % near-
est neighbors used for classification [34].

— For text mining, a hyperparameter might control how many words are selected
via term weighting.

In this list, the first two are examples of learner hyperparameters while the third
one is an example of pre-processor hyperparameter that is selected before the learner
executes. Table] lists the learner and pre-processor options we explore in this study.
The search space of these parameters is shown in Table|3} In those tables, we use the
same five machine learning learners as seen in the FARSEC study, i.e., Random For-
est (RF), Naive Bayes (NB), Logistic Regression (LR), Multilayer Perceptron (MLP)
and K Nearest Neighbor (KNN). They are widely used for software engineering clas-
sification problems [40]. As for the pre-processors, as mentioned in the introduction
section, we do not claim that this is the entire set of possible pre-processors. Rather,
we just say that any reader of the recent SE data mining literature might have seen
many of these. Hence, they might be tempted to try them.

Furthermore, Table] shows how often these kinds of hyperparameters have been
explored in the previous security relevant literature. As seen from the table:

— A minority of papers have explored learner hyperparameter optimization.

— Only a handful of them have tried pre-processor hyperparameter optimization.

— We have only found one prior work that tried our dual optimization approach that
explored both pre-processor and learner optimization [5]. However, note that that
paper was not in the security domain.

There are good reasons to try and avoid dual optimization — an exhaustive search
through all options is computationally intractable. Given /N choices for P learner pa-
rameters, the space of possible hyperparameter optimizations in (V). Worse still, if

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 9

Table 3 List of hyperparameters optimized in different learners and pre-processors. The brief description
of each learner and pre-processor can be found in Table [T}

Type Name Parameters Default Tuning Range
n_estimators 10 [10, 150]
min_samples_leaf 1 [1,20]
min_samples_split 2 [2, 20]
Random Forest max_leaf_nodes None [2, 50]
max_features auto [0.01, 1]
max_-depth None [1, 10]
- . C 1.0 [1.0, 10.0]
Leatner Logistic Regression max_iter 100 50, 200]
alpha 0.0001 [0.0001, 0.001]
learning_rate_init 0.001 [0.001, 0.01]
Multilayer Perceptron fr’no a‘j(i; 30% [g%,lé é(])]
momentum 0.9 [0.1, 1]
n_iter_no_change 10 [1, 100]
. leaf _size 30 [10, 100]
K Nearest Neighbor n_neighbors 5 (1. 10]
Naive Bayes var_smoothing le-9 [0.0, 1.0]
k 5 [1,20]
SMOTE m 50% [50, 400]
r 2 [1, 6]
Normalizer norm 12 [11, 12, max]
copy True [True, False]
copy True [True, False]
StandardScaler with_mean True [True, False]
with_std True [True, False]
copy True [True, False]
MinMaxScaler min 0 [-5, 0]
max 1 [1, 5]
MaxAbsScaler copy True [True, False]
with_centering True [True, False]
with_scaling True [True, False]
RobustScaler g-min 25.0 [10, 40]
g-max 75.0 [60, 90]
Pre-processor copy True [True, False]
n_quantiles 1000 [10, 2000]
output_distribution uniform [uniform, normal]
QuantileTransformer ignore_implicit_zeros False [True, False]
subsample le5 [100, 150000]
copy True [True, False]
method yeo-johnson [yi(gi??gi]o "
PowerTransformer standardize True [True, False]
copy True [True, False]
Binarization threshold 0.0 [0, 10]
copy True [True, False]
degree 2 [2, 4]
. interaction_onl False [True, False]
PolynomialFeatures include_bias Y True [True, False]
order C [C, F]

10 Rui Shu et al.

the space of options increases to include learners and N choices for M pre-processors
(such as those listed in Table , then the search space is now (N)P+M .. exponen-
tially larger.

Table 4 List of previous research studies that address security and software engineering problems. In
this list, only one prior publication optimized both the learner and pre-processor (see the last line,
highlighted in gray) and that paper did not explore the security domain. This list of papers was found
either from the above literature review or from Google Scholar using the search query, e.g., “((hyperpa-
rameter optimization) and (security)) or ((hyperparameter optimization) and (security bug reports)) or
(optimization and security) or (optimization and (pre-processors) and security), ((hyperparameter opti-
mization) and (software engineering))”. These queries returned more than 5,000 papers which were fur-
ther pruned. We only used papers in the last ten years (2010-2020) and which had appeared in (a) top
conferences or (b) venues listed by Google Scholar as “top-ranked” (e.g., see {tiny.cc/top20soft_venues).

R Learner Pre-processor | Security
U SR L (ER Optimization | Optimization | Related
1671 2013 754 v X X
[41] 2017 358 v X X
138 2010 285 X X v
[64] 2011 264 X X X
[19] 2015 193 v X X
[22]) 2010 146 X X v
78] 2017 139 v X X
68 2012 133 v X v
210 2016 100 v X X
1691 2015 64 X X v
73] 2018 60 v X X
[4] 2018 59 X 4 v
[139] 2014 54 X X X
(3] 2018 49 X 4 X
176] 2014 44 X X X
166] 2018 34 X v X
[28] 2016 29 X X X
150] 2018 29 v X X
[183] 2015 28 X X v
[74] 2014 26 X X v
[180] 2017 23 X X v
[13]) 2013 20 v X X
117] 2018 20 v X X
[16] 2017 18 v X X
771 2016 17 X X X
1571 2017 14 v X v
[47] 2018 16 v X X
1791 2016 11 X X v
[124] 2018 9 X X v
[26] 2018 6 X X X
[S] 2019 4 v v X

It is neither useful nor practical to explore such a large space of options via ex-
haustive search. For example, grid search [9} 65] is a “brute force” hyperparameter
optimizer that wraps a learner into for-loops that walk through a wide range of all
learner’s control parameters. Simple to implement, it has many drawbacks. Firstly,
even this brute force approach does not sample all the options since its for-loops jump

http://tiny.cc/top20soft_venues

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 11

over numeric ranges using some increment value. This means that grid search can ac-
tually skip over the important optimizations. Secondly, it suffers from the “curse of
dimensionality”. That is, after just a handful of options, grid search can miss im-
portant optimizations. Thirdly, and worse still, much CPU resources can be wasted
during grid search since experience has shown that only a few ranges within a few
optimization parameters really matter [S]].

An alternative to grid search is the random search [8]] that stochastically samples
the search space and evaluates sets from a specified probability distribution. Evolu-
tionary algorithms are a variant of random search that runs in “generations” where
each new generation is seeded from the best examples selected from the last genera-
tion [23]. Simulated annealing is a special form of evolutionary algorithms where the
population size is one [36} 45].

Genetic algorithms (GA) is another form of random search where the population
size is greater than one, and new mutants are created by crossing over parts of the
better members of the current population [23}58]. Note one feature of genetic algo-
rithms is that, their mutation operator never changes during the execution of the GA.
That is, GAs have no facility for using experience from the domain to define better
mutators.

Another kind of random search, that does use domain experience to define better
mutators, is differential evolution (DE) [63]. In differential evolution algorithm, the
size of a mutation is selected from a pool of previous cache of “superior” mutations;
i.e. mutants that are known to be better than other mutants. That is, as differential
evolution algorithm learns more and more about what mutants are superior, it is also
learning how better to mutate old individuals into better ones. There are four ma-
jor steps in differential evolution algorithm — initialization, mutation, crossover, and
selection:

— The initialization step creates a population of individuals, while each individual
is an instance of the parameters generated randomly within given bounds.

— In the mutation step, for each individual p; in the population, three other indi-
viduals a, b, ¢ (not the current one) are randomly selected. A mutant individual
is created by combining these three selected individuals. The difference is then
computed between two individuals and added to the rest individual after mul-
tiplying a mutation factor to the difference, i.e., yx = ar + f X (b — cx). The
mutation factor f is a positive number that controls the amplification difference
between two individuals.

— At some crossover probability cf, the mutant attribute is then added to a vector
that is the new mutant in the crossover step.

— Finally, during the selection step, differential evolution algorithm decides if the
mutant generated from a, b, c is better than p;. If so, the mutant replaces p; and
the algorithm moves on to some other member of the population p;.

— All the above steps have to be repeated again for the remaining individuals p;,
which completes the first iteration of the algorithm. After this process, some of
the original individuals of the population will be replaced by better ones. That is,
all subsequent mutants will be built from the “superior” examples cached in the
population.

12 Rui Shu et al.

As to the control parameters of the differential evolution algorithm, using ad-
vice from the differential evolution algorithm user group (see tiny.cc/how2de)), we set
{np, f,er} = {10k, 0.8,0.9}, where k is the number of parameters to optimize, and
np is the size of whole population. Note that we set the number of iteration {g} to
3, 10, which are denoted as DE3 and DE10 respectively. A small number (i.e., 3) is
used to test the effects of a CPU-light effort estimator. A larger number (i.e., 10) is
selected to check if anything is lost by restricting the inference to small iterations.

In the software engineering literature, differential evolution algorithm has been
seen to outperform other methods such as (a) particle swarm optimization [71]]; (b) the
grid search used by Tantithamthavorn et al. [65] to optimize their defect predictors;
or (c) the genetic algorithm used by Panichella et al. [S8] to optimize a text miner.
Also, the differential evolution algorithm has been proven useful in prior software
engineering optimization studies [21].

3 SWIFT: the Dual Optimization Approach

Recent studies show substantial interest in automated hyperparameter optimization
on complex and computational expensive machine learning models with many hy-
perparameters. By tailoring the models to the problems at hand, hyperparameter op-
timization improves the model performance and even leads to new state-of-the-art
results.

Apart from machine learning models, data pre-processing techniques are often
involved in practical machine learning pipeline. Real-world data is often inconsis-
tent, lacking in certain behaviors of trends, or even contains many errors. Data pre-
processing transforms the raw data into a more useful and efficient shape. Similar to
model optimization, pre-processing optimization also shows increasing interest [3]].

While each individual optimization problem already experiences computational
complexity, for example, Table|I|and Table [3| demonstrate a list of machine learning
learners and data pre-processing techniques, as well as their hyperparameter options.
Even this partial list includes thousands of configuration options. The cost of running
an optimizer through these options would be quite expensive, requiring days to weeks
of CPU resources [65] [66]. A combination of the above two optimization problems
(i.e., dual optimization) faces even more challenges.

A “simpler” optimizer is required to tackle the dual optimization challenge. This
ideal optimizer should be able to achieve better performance than each individual
optimizer and the computational complexity would not increase.

In 2005, Deb et al. [15] proposed an idea named e-dominance that partitions the
output space of an optimizer into e-sized grids. The principle of this idea is that if
there exists some € value below which it is useless or impossible to distinguish the
results, then it superfluous to explore anything less than e. Specifically, consider the
bug reports classification task discussed in this paper, if the performances of two
learners (or a learner with various hyperparameters) differ in less than some € value,
then we cannot statistically distinguish them. For the learners which do not signifi-
cantly improve the performance, we can further reduce the attention on them.

http://tiny.cc/how2de

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 13

Inspired by the idea of e-dominance, we propose a method named SWIFT to
address the dual optimization problem. From a high level, SWIFT is essentially a tabu
search; i.e., if some settings resulted in some performance within € of any older result,
then SWIFT marked that option as “to be avoided”. SWIFT applies “item ranking”
in seeking optimal learner and pre-processor, and further refines their option ranges.
SWIFT returned the best setting seen during the following three stage process:

— Initialization: all option items ¢ are assigned equal weightings.

— The item ranking stage reweights items ¢ in column 2 of Table [3} e.g. terms like
“Random Forest” or “RobustScaler”.

— The numeric refinement stage adjusts the tuning ranges of the last column in Ta-

ble[3

In summary, what is happening here is that item selection handles the “big pic-
ture” decisions about what pre-processor or learner to use while numeric refinement
focuses on smaller details about numeric ranges.

More specifically, the algorithm runs as follows:

— Initialization: Assign weights w; = 0 to all items ¢ in column 2 of Table[3]

— Item ranking: N, times, we make a random selection of a learner and pre-processor
from column 2, favoring those items with higher weights. For the selected items,
we select a value at random from the “Tuning Range”s of the last column of Ta-
ble E} Using that selection, we build a model and evaluate it on test data. If we
obtain a model whose performance is more/less than e of any prior results, then
we add/subtract (respectively) 1.0 from w;.

— Numeric refinement: N times, we refine the numeric tuning ranges (lo, hi) seen
in the last column of Table E} In this step, the item ranking continues. But now, if
ever some numeric tuning value lo < b < hi produces a better model, then we
adjust that range, as follows. Whichever of € (lo, hi) that is the furthest from b
is moved to (b + x)/2.

(Aside: It should be pointed out that SWIFT is not a multi-objective optimization
problem. We choose g-measure as our optimization goal (i.e., the aim to increase).
G-measure is the harmonic mean of recall and the complement of false alarms. More
description of this metric and the reason of the choice are further discussed in Sec-
tion[d4])

Agrawal et al. [3]] have successfully applied e-dominance to some SE tasks such
as software defect prediction and SE text mining, and they proposed the approach
named DODGE. For the cases studied by DODGE, that approach was able to explore
a large space of hyperparameter options, while at the same time generated models
that performed as well or better than the prior state-of-the-art in defect prediction and
SE text mining [5]. SWIFT is an improved version of DODGE since we found that
DODGE cannot be directly applied to our bug report data without any modification
effort. There are several reasons for this after investigation.

Firstly, DODGE guided its optimization using metrics that were alien to this
domain. For example, the “Popt20” goal used in the original DODGE studied by
Agrawal et al. [3]] optimizes for an economic concern not explored by Peters et al. in
the FARSEC study. Popt20 is relevant to general SE tasks, but not for security-related

14 Rui Shu et al.

domains. Specifically, we want to find as many of the security bug reports as possi-
ble, even if that means developers have to spend some time exploring a few more
false positives. Accordingly, we swapped out Popt20 in favor of the “g-measure” as
defined in Section

Second, once we changed evaluation goals, another concern became apparent. We
found that the distribution of the w; weights was far more skewed in the security bug
report data than in the other kinds of software engineering tasks studied by Agrawal
et al. This skewed data meant that, usually, there was only one good learner and one
good data pre-processor for the security data sets. We conjecture that this is so since
we require specific biases to find the target concept of something so particular as a
security bug report. For the original version of DODGE, such skewed w; weights
are a problem since, as mentioned above, item ranking continues during the numeric
refinement stage.

SWIFT is specifically designed for our security data. SWIFT is designed to make
better use of the w; skews. After item ranking, SWIFT only takes the best learner and
data pre-processor forward into numeric refinement. While the above two changes
were only a small coding change to the original DODGE, their effects were profound.

4 Experiment
4.1 Hyperparameter Optimization Ranges

This paper compares SWIFT against the differential evolution algorithm (described
in Section [2)) since recent papers at ICSE [3]] the IST journal [4] reported that the
differential evolution algorithm can find large improvement in learner performance
for SE data. Table [3]lists the control settings for the differential evolution algorithm
used in this paper (that table was generated by combining the advice at the end of §2.3|
with Table 3). For SWIFT, we used the settings recommended by Agrawal et al. [3].
Note that proving the optimum of our solution is not the goal of this paper. In fact,
like Wolpert [75]], we doubt if there is any “best” optimizer that works for all data
(for more on that, see the “No Free Lunch” theorem discussion [73]] in search and
optimization). Therefore, this paper is not searching for the “best” result, but rather it
is searching for “better” than the prior state-of-the-art.

Table S List of parameters in differential evolution (DE) algorithm for different learners and pre-processor.

Learner & Pre-processor DE Parameter
NP | F CR | ITER
Random Forest 60
Logistic Regression 30
Multilayer Perceptron 60 | 0.8 | 09 3,10
K Nearest Neighbor 20
Naive Bayes 10
SMOTE 30 | 0.8 | 0.9 10

* Note: NP is the size of population; F is the parameter con-
trolling the differential weight; CR is the probability threshold;
ITER is the number of iterations.

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 15

Note that SWIFT and differential evolution algorithm were applied to learners
from the scikit-learn toolkit [60]. Table |3|lists all the hyperparameters we select for
both data mining learners and data pre-processors based on scikit-learn.

We choose not to explore other hyperparameter optimizers, for pragmatic reasons.
Numerous other studies have shown that the differential evolutionary algorithm (DE)
well performed for optimization problems [47] [20] [21] [72] [81] [S6]. If our goal
was to claim that DE was somehow the optimal optimizer, we would have to perform
a wider range of study of optimizers (i.e more than just DE). However, our goal
is not that (and, in fact, there are support theoretical reasons for assuming that no
optimizer is ever “best” for all data sets [[75]). Rather, our purpose is to provide an
improvement on the prior state-of-the-art (the FARSEC paper). As shown below, that
can be achieved using DE. While in future work we aim to explore other optimizers,
for the purposes of this paper, using DE is enough.

4.2 Data

For this work, we compare the differential evolutionary algorithm (DE) and SWIFT to
FARSEC using the same data as used in the FARSEC study. The data set includes five
projects: four from Apache projects (i.e., Ambari, Camel, Derby and Wicket) [55]] and
one from the Chromium project. For the Apache projects, one thousand bug reports
are randomly selected for each project with BUG or IMPROVEMENT label from
the JIRA bug tracking system [55]. All the selected bug reports are then classified
with scripts or manually into six high impact bugs (i.e., Surprise, Dormant, Blocking,
Security, Performance, and Breakage bugs). All the target bug reports in our data
set all belong to Security bug reports (i.e., bug reports of the type Security). For the
Chromium project, security bugs are labeled as Bug-Security when submitted to bug
tracking systems. All other types of bug reports in the data set are treated as non-
security bug reports.

The datasets from FARSEC are publicly available. Our experiments reproduce
and improve the FARSEC results using the same datasets. Table [] shows the charac-
teristics of the FARSEC datasets. As we see from the table, one unique feature of the
data set is the rarity of the target class. The “SBRs%” column in both training and
testing data set indicates that security bug reports make up a very small percentage of
the total number of bug reports in projects like Chromium.

4.3 Experimental Rig

Our experiment design is mainly divided into two parts. When we optimize learners
or data pre-processors individually, we divide each training data into B = 10 bins,
and validate our models using bin B; after training them on fraining data - B;. This
10-fold cross-validation is used to pick the best candidate learner/pre-processor as
well as their hyperparameters with the highest performance for that data set. We also
need to point out that the 10-fold cross-validation does not apply to the dual optimiza-
tion, and the way we select the best candidate learner and pre-processor in SWIFT

16 Rui Shu et al.
Table 6 Imbalanced characteristic of bug report data sets from FARSEC [61]].
. . Training Testing
Project Filter #SBRs | #BRs | SBRs(%) | #SBRs | #BRs | SBRs(%)
train 20,970 0.37
farsecsq 14,219 0.54
farsectwo 20,968 0.37
. farsec 20,969 0.37
Chromium clni 77 20.154 038 115 20,970 0.55
clnifarsecsq 13,705 0.56
clnifarsectwo 20,152 0.38
clnifarsec 20,153 0.38
train 500 0.80
farsecsq 136 2.94
farsectwo 143 2.80
. farsec 302 1.32
Wicket clni 4 392 102 6 500 1.20
clnifarsecsq 46 8.70
clnifarsectwo 49 8.16
clnifarsec 196 2.04
train 500 4.40
farsecsq 149 14.77
farsectwo 260 8.46
. farsec 462 4.76
Ambari clni 22 409 533 7 500 1.40
clnifarsecsq 76 28.95
clnifarsectwo 181 12.15
clnifarsec 376 5.85
train 500 2.80
farsecsq 116 12.07
farsectwo 203 6.90
farsec 470 2.98
Camel clni 14 440 318 18 500 3.60
clnifarsecsq 71 19.72
clnifarsectwo 151 9.27
clnifarsec 410 341
train 500 9.20
farsecsq 57 80.70
farsectwo 185 24.86
farsec 489 9.41
Derby clni 46 446 1031 42 500 8.40
clnifarsecsq 48 95.83
clnifarsectwo 168 27.38
clnifarsec 435 10.57

is based on weight calculation and we further refine their hyperparameter’s numeric

ranges as we discuss in Section 3]

After finding the best learners and/or pre-processors, we then train the models
with the whole training dataset, and test on the separate testing dataset as FARSEC.

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 17

4.4 Evaluation Metrics

To understand the open issues with bug report classification, firstly we must define
how they are assessed. If (TN, FN, FP, TP) are the true negatives, false negatives,
false positives, and true positives, respectively, found by a classifier, then:

— pd = Recall = TP/(TP+FN), the percentage of the actual security bug reports that
are predicted to be security bug reports.

— pf = False Alarms = FP/(FP+TN), the percentage of the non-security bug reports
that are reported as security bug reports.

— prec = Precision = TP/(TP+FP), the percentage of the predicted security bug re-
ports that are actual security bug reports.

— f-score = F-Measure = 2*pd*prec/(pd+prec), the harmonic mean of the model’s
precision and recall.

This paper adopts the same evaluation criteria as the original FARSEC paper;
i.e. the recall (pd) and false alarm (pf) measures. Also, to control the optimization
algorithm, we are endeavoring to minimize false alarms while maximizing recall.
To achieve those goals, we maximize the g-measure which is the harmonic mean of
recall and the complement of false alarms in our algorithm.

2 x pd x (1 —pf)
pd + (1 —pf)
g is maximal when both recall (pd) is high and false alarm (pf) is low.
We choose g-measure based on the following considerations. For an imbalanced
dataset where there is a skew in the class distribution (e.g., negative samples are much
more than positive samples), we have two competing goals:

)

— On the one hand, we want to focus on minimizing false negatives (i.e., security
bug reports are not missed in prediction [62]).

— On the other hand, we prefer not to predict too many non-security bug reports as
security bug reports, which is (1 — pf) that also represents specificity.

As to why we use these measures but not some others such as precision, Menzies
et al. [44] argue that when the target class is less than 10% (as is with all our data),
the precision results become more a function of the random number generator used
to divide data (for testing purposes). Therefore, we cannot recommend precision for
this kind of data. (Aside: we are not alone in this view (that precision should not be
used). For example, the FARSEC paper (that this work builds on) did not assess its
models via precision.)

Besides the above, we also use another evaluation measure called IFA (Initial
False Alarm) to evaluate the performance. IFA is the number of initial false alarm
encountered before we make the first correct prediction [30] [31] [31]. IFA is widely
used in defect prediction, and previous works [37] [59] have shown that developers
are not willing to use a prediction model if the first few recommendations are all false
alarms.

Furthermore, metrics like recall and g-measure are set-based measures, and they
are computed using unordered sets of data. To evaluate the results of ranking bug

18 Rui Shu et al.

report, mean average precision (MAP) is commonly used to indicate the quality of
a ranking by comparing with the ground truth. A higher MAP value usually means
more actual security bug reports that predicted are close to the top of the list.

Equation[2]and Equation [3|shows how average precision (AP) and MAP are com-
puted. Specifically, AP, is the average of precision @k where P(k) is the precision
at point k in the ranked list and n is the number of predicted security bug reports.
As done in the FARSE paper, we say that M AP, is the mean of cumulative average
precision scores for each decile.

P(k)

AP, = —
=))
k=1
N
AP,;
MAP, =) —™ 3
; ~ 3)

4.5 Statistics

This study ranks treatments using the Scott-Knott procedure recommended by Mit-
tas & Angelis in their 2013 IEEE TSE paper [49]]. This method sorts results from
different treatments, then splits them in order to maximize the expected value of dif-
ferences in the observed performances before and after divisions. For lists I, m,n
of size Is, ms, ns where | = m U n, the “best” division maximizes E(A); i.e. the
difference in the expected mean value before and after the spit:

E(A) = %abs(m.u —Lp)? + %abs(n.u —Lp)?
Scott-Knott then checks if that “best” division is actually useful. To implement that
check, Scott-Knott would apply some statistical hypothesis test H to check if m,n
are significantly different (and if so, Scott-Knott then recurses on each half of the
“best” division). For this study, our hypothesis test H was a conjunction of the A12
effect size test of and non-parametric bootstrap sampling; i.e. our Scott-Knott divided
the data if both bootstrapping and an effect size test agreed that the division was
statistically significant (95% confidence) and not a “small” effect (A12 > 0.6).

For a justification of the use of non-parametric bootstrapping, see Efron & Tib-
shirani [18, p220-223]. For a justification of the use of effect size tests see Kamp-
enes [33]] who warn that even if a hypothesis test declares two populations to be “sig-
nificantly” different, then that result is misleading if the “effect size” is very small.
Hence, to assess the performance differences we first must rule out small effects.
Vargha and Delaney’s non-parametric A12 effect size test explores two lists M and
N of size m and n:

Al2 = Z {1 x>y /(mn)

seM,yeN 05 ifr==y

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 19

This expression computes the probability that the numbers in one sample are
bigger than in another. This test was endorsed by Arcuri and Briand [6]. Table [/]
Table [8]and Table 9] present the results of our Scott-Knott procedure for each project
data set. These results are discussed, extensively, in the next section.

5 Results
In this section, Table[7] Table [§|and Table O] report results with and without hyperpa-
rameter optimization of the pre-processors or learners or both. For the sake of com-

pleteness, we also add results of precision and f-measure in Table [I0] and Table [IT]
Using those results, we can now answer our proposed research questions.

5.1 RQI

RQ1. Can hyperparameter optimization techniques improve the performance of
models that better distinguish security bug reports from other bug reports?

5.1.1 Recall Results

In the recall results of Table[/| we can observe that FARSEC rarely achieves the best
results while SWIFT is much better than FARSEC. For example:

— In the Chromium project, median recall changes from 15.7% to 77.4% from FAR-
SEC to SWIFT.

— In the Ambari project, the median recall changes from 21.5% to 85.7% from
FARSEC to SWIFT.

— Opverall, as shown in the last line of Table[/| the improvement is from 21.5% to
66.7% (FARSEC to SWIFT).

In addition, in Table|/| the gray cells show the “best” results in each row (where
“best” is defined using the statistical significance tests of Section[.5)). Overall, SWIFT
is statistically significantly best in 31/40 of all the rows of Table [7} This is more
than twice as many wins as other approaches explored in this table; e.g. DE+pre-
processors scores best in only 13/40 rows. Hence, for this data set, we say that dual
optimization of both learners and pre-processors work best.

Just for completeness, we note that for all methods with any data pre-processing
procedure (i.e., in the last three columns of Table[7)) work well for the Wicket project.
Clearly, for this data set, data pre-processing such as repairing the class imbalance
issue is essential for good performance.

5.1.2 False Positive Rate Results

As to the false positive rate results, Table shows that FARSEC has the lowest false
positive rate across more than half of the datasets with filters. However, as shown

20

Rui Shu et al.

Table 7 RQ1 results: recall. In these results, higher recalls (a.k.a. pd) are better. For each row, the best

results are highlighted in gray (these are the cells that are statistically the same as the best median result

— as judged by our Scott-Knot test). Across all rows, SWIFT has the most number of best results.

Prior state | Optimize Data Data
. . Tune both
of the art learners pre-processing pre-processing (dual)
l61] (only) (no tuning) (tuned)
Project Filter FARSEC DE+ Pre-processors DE+ SWIFT
Learners Pre-processors

train 15.7 46.9 68.7 73.9 86.1

farsecsq 14.8 64.3 80.0 84.3 72.2

farsectwo 15.7 40.9 78.3 77.4 77.4

Chromium fars:ec 15.7 46.1 80.8 72.2 77.4
clni 15.7 304 74.8 72.2 80.9

clnifarsecsq 49.6 72.2 82.6 86.1 72.2
clnifarsectwo 15.7 50.4 79.1 74.8 78.3

clnifarsec 15.7 47.8 78.3 74.7 72.2

Median Recall 15.7 473 78.7 74.8 77.4

train 16.7 0.0 66.7 66.7 50.0

farsecsq 66.7 50.0 83.3 83.3 83.3

farsectwo 66.7 50.0 66.7 66.7 66.7

Wicket fars'ec 33.3 66.7 66.7 66.7 66.7
clni 0.0 16.7 50.0 50.0 50.0

clnifarsecsq 33.3 83.3 83.3 83.3 83.3
clnifarsectwo 333 50.0 66.7 66.7 66.7

clnifarsec 50.0 66.7 66.7 66.7 66.7

Median Recall 333 50.0 66.7 66.7 66.7

train 14.3 28.6 57.1 57.1 85.7

farsecsq 429 57.1 57.1 57.1 85.7

farsectwo 57.1 57.1 57.1 57.1 85.7

Ambari farsec 14.3 57.1 57.1 57.1 85.7
clni 14.3 28.6 57.1 57.1 85.7

clnifarsecsq 57.1 57.1 57.1 57.1 71.4
clnifarsectwo 28.6 57.1 57.1 57.1 85.7

clnifarsec 14.3 57.1 57.1 57.1 85.7

Median Recall 21.5 57.1 57.1 57.1 85.7

train 11.1 16.7 33.3 44 .4 55.6

farsecsq 16.7 444 444 55.6 66.7

farsectwo 50.0 44 .4 61.1 61.1 61.1

Camel farsjec 16.7 222 33.3 333 55.6
clni 16.7 16.7 33.3 38.9 50.0

clnifarsecsq 16.7 38.9 27.8 333 61.1
clnifarsectwo 11.1 61.1 72.2 61.1 61.1

clnifarsec 16.7 22.2 33.3 38.9 55.6

Median Recall 16.7 38.5 333 41.7 58.4

train 38.1 47.6 54.7 59.5 69.0

farsecsq 54.8 59.5 54.7 66.7 66.7

farsectwo 47.6 59.5 47.6 66.7 78.6

Derby farsec 38.1 47.6 57.1 59.5 64.3
clni 23.8 45.2 57.7 61.9 69.0

clnifarsecsq 54.8 59.5 76.2 69.0 66.7
clnifarsectwo 35.7 59.5 54.8 61.9 66.7

clnifarsec 38.1 47.6 61.9 57.1 66.7

Median Recall 38.1 53.6 56.0 61.9 66.7

Overall Median Recall ‘ 21.5 50.0 57.1 61.9 66.7

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization)

21

Table 8 RQ1 results: false positive rate (a.k.a., pf), the lower values are better. Same as Table i.e. the
best results are highlighted in grey cells. While FARSEC has the most best results, these low false positive
rates are only achieved by settling for low recalls (see Table[J).

Prior state | Optimize Data Data
. . Tune both
of the art learners pre-processing pre-processing (dual)
le1]] (only) (no tuning) (tuned)
Project Filter FARSEC DE+ Pre-processors DE+ SWIFT
Learners Pre-processors

train 0.2 6.8 24.1 17.8 24.0

farsecsq 0.3 103 315 25.1 14.3

farsectwo 0.2 6.5 27.6 23.1 26.1

Chromium fars:ec 0.2 6.9 36.1 14.9 14.7
clni 0.2 4.1 24.8 13.6 26.2

clnifarsecsq 3.8 14.2 30.4 25.6 14.0
clnifarsectwo 0.2 7.0 29.9 12.8 18.9

clnifarsec 0.2 10.4 29.0 17.1 20.2

Median FPR 0.2 7.0 29.5 17.5 19.5

train 7.1 5.1 32.0 12.1 27.5

farsecsq 38.3 44.5 71.3 66.8 66.7

farsectwo 36.6 423 68.2 62.9 61.5

Wicket farsec 8.1 23.1 439 26.1 23.3
clni 5.5 24 21.1 12.5 14.4

clnifarsecsq 25.5 66.8 66.8 66.8 57.5
clnifarsectwo 27.7 39.9 61.3 61.3 52.8

clnifarsec 10.5 23.1 38.9 22.9 22.1

Median FPR 18.0 31.5 52.6 437 40.2

train 1.6 0.8 20.1 10.8 17.8

farsecsq 14.4 2.8 30.4 17.2 23.7

farsectwo 3.0 2.8 22.1 17.8 19.7

Ambari farsec 4.9 2.0 19.9 7.1 20.3
clni 2.6 0.8 12.4 8.9 18.1

clnifarsecsq 7.1 24 134 7.1 29.0
clnifarsectwo 4.5 2.8 13.0 5.1 22.7

clnifarsec 0.0 24 7.9 39 18.9

Median FPR 3.8 2.4 16.7 8.0 20.0

train 35 1.5 27.4 359 15.8

farsecsq 11.4 24.7 20.5 23.4 27.8

farsectwo 41.8 17.6 71.0 53.1 45.2

Camel farsec 6.9 12.4 39.4 28.0 35.7
clni 12.3 7.9 33.6 353 24.7

clnifarsecsq 13.9 14.9 12.4 15.6 27.2
clnifarsectwo 7.7 50.0 64.9 51.9 38.8

clnifarsec 5.0 11.6 24.9 344 37.1

Median FPR 9.6 13.7 30.5 34.8 31.8

train 6.8 39.3 22.2 20.7 19.7

farsecsq 29.9 40.6 51.7 51.5 22.5

farsectwo 12.4 24.2 27.9 33.6 40.0

Derby fargec 6.3 4.1 21.0 19.0 13.8
clni 0.4 3.5 16.8 24.5 25.5

clnifarsecsq 29.9 42.4 74.7 65.1 423
clnifarsectwo 9.2 24.2 36.5 30.3 52.2

clnifarsec 6.8 39 28.8 10.9 19.6

Median FPR 8.0 24.2 28.4 27.4 24.0

Overall Median FPR \ 8.0 13.7 29.5 27.4 24.0

22 Rui Shu et al.

in Table [/} FARSEC achieves those low false positive rate by settling for some low
recalls.

As to SWIFT, we note that its improvements in recall (seen above) come at the
cost of some increments in false positive rate. As shown in the last line of Table[8] the
overall median false positive rate increases from 8% to 24% (FARSEC to SWIFT).
While, ideally, the false positive rate is zero, it is inevitable that there is some cost
in dealing with security problems. Another way to look at this is to say while our
methods help distinguishing security bug reports (from other bug reports), they also
highlight the costs involved in securing software. Our method can better distinguish
security bug reports than the prior state-of-the-art. However, to do so, there is some
increase in the workload of developers who have to read more code and suffer a
(slightly) higher false positive rate. Such is the price of software quality assurance.

Hence we say that this 16% increase in overall false positive rates is the accept-
able and inevitable “price” of increasing recall. As to acceptable, the overall false
alarms are still less than a quarter — which is in the same range as many other soft-
ware analytic applications[ﬂ

As to inevitable, consider two models:

— One just predicts “yes” all the time. This model has 100% recall (since it finds
every target class) but it suffers from large false positive rates.

— Another model just predicts “no” all the time. This second model has 0% false
positive rate (i.e., it never makes mistakes in prediction) but it also has a 0% recall
(since it never finds any target class).

In practice, all learners make trade-offs between recall and false positive rate as
they explore models somewhere on a curve between:

— Recall from 0% to 100%

— False positive rate from 0% to 100%

— In addition, unless the learner is broken, this curve bends upwards away from the
recall == false positive rate line towards the point recall=100% and false positive
rate=0% (but rarely does any learner reach this point).

This means that as a learner tries different models, increased recall comes at the cost
of also increasing false positive rates. The trick here is to increase recall more than
false positive rate, as is done by SWIFT. In this paper, we show that we can increase
median recall from 21.5% to 66.7% (while at the same time only increasing median
false positive rate by 16% from 8% to 24%).

5.1.3 Initial False Alarms Results

IFA is the number of false positives a programmer must suffer through before they
find a real security bug report. Table [9] shows our IFA results. There are three points
to note from this table:

— FARSEC has no results in this table because FARSEC does not report results for
this metric.

! e.g. Figure 12 of [46] lists nine SE data mining applications with median false positive rates of 25%).

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization)

23

Table 9 RQ1 results: initial false alarm (IFA). IFA is the number of false alarms developers must suffer
through before finding their first target. Lower values are better. Same as format as Table[7} i.e. best results
are shown in grey.

Prior state | Optimize Data Data
. . Tune both
of the art learners pre-processing pre-processing (dual)
le1]] (only) (no tuning) (tuned)
Project Filter FARSEC DE+ Pre-processors DE+ SWIFT
Learners Pre-processors
train N/A 62 75 61 58
farsecsq N/A 20 72 54 36
farsectwo N/A 37 91 78 87
Chromium fars:ec N/A 62 112 62 56
clni N/A 41 86 48 74
clnifarsecsq N/A 41 57 62 37
clnifarsectwo N/A 37 89 47 58
clnifarsec N/A 62 113 63 54
Median IFA N/A 41 88 62 57
train N/A 25 60 34 46
farsecsq N/A 29 37 33 39
farsectwo N/A 32 35 34 31
Wicket farsec N/A 23 44 30 22
clni N/A 12 44 21 27
clnifarsecsq N/A 9 8 9 6
clnifarsectwo N/A 8 11 12 8
clnifarsec N/A 17 33 15 18
Median IFA N/A 20 36 26 25
train N/A 7 8 9 4
farsecsq N/A 8 21 14 7
farsectwo N/A 1 19 12 3
Ambari farsec N/A 1 35 24 17
clni N/A 1 32 19 13
clnifarsecsq N/A 8 18 10 8
clnifarsectwo N/A 7 28 8 11
clnifarsec N/A 5 10 4 17
Median IFA N/A 6 20 11 10
train N/A 6 19 23 15
farsecsq N/A 23 29 32 14
farsectwo N/A 4 13 8 25
Camel farsjec N/A 17 21 20 8
clni N/A 16 37 33 30
clnifarsecsq N/A 5 3 3 4
clnifarsectwo N/A 19 22 15 12
clnifarsec N/A 14 23 29 22
Median IFA N/A 15 22 22 15
train N/A 4 6 3 2
farsecsq N/A 4 4 4 4
farsectwo N/A 4 3 5 3
Derby farsec N/A 1 8 7 4
clni N/A 1 8 5 3
clnifarsecsq N/A 1 2 2 1
clnifarsectwo N/A 2 9 8 4
clnifarsec N/A 1 3 3 2
Median IFA N/A 2 5 5 3
Overall median IFA ‘ N/A 15 22 22 15

24

Rui Shu et al.

— For IFA, methods that only with/tune the data pre-processors perform worse than

methods that optimize the learners (i.e., DE+Learners and SWIFT).

In terms of absolute numbers, the IFA results are low for the Derby project. From
Table [f] we can conjecture a reason for this — of the data set with a higher per-
centage of security bug reports, the data sets have the more known target class,
which is more likely to reduce the number of false positives encounter before the
first correct prediction.

At the other end of the spectrum, IFA is much larger for the Chromium project
(median values for DE+learner or SWIFT of about 40 or 60). This result high-
lights the high cost of building highly secure software. When the target class is
rare, even with our best-of-breed methods, some non-trivial amount of manual
effort may be required.

5.1.4 Precision and F-Measure Results

For the sake of completeness, we also provide the results of precision and f-measure.
Table[I0]and Table[TT|present the corresponding precision and f-measure results from
each technique besides FARSEC. We make the following remarks about these results.

— The decreasing trends are expected, as we select g-measure as our optimization

target, which increases the recall and sacrifices the precision value. But, to some
extent, these results also confirm the correctness of our choice. On the one hand,
the improvement of recall with SWIFT is significant. On the other hand, for 4 out
of 5 projects, the sacrifice of precision is moderate. For tasks such as bug report
classification with the imbalanced data characteristic, as well in the context of
security, in general, positive examples such as security bug reports are preferred
not to be missed out. Hence, we would still recommend optimizing g-measure for
future studies.

There is little information gain in exploring both precision and f-measure since
these results nearly echo each other (reason: f-measure is calculated as a combi-
nation of precision and recall).

We admit the importance of precision, however, in some special domains such
as security, there is little information gain in exploring precision results. As seen
from our results, none of the techniques (including FARSEC) performs well un-
der the precision metric. Hence, a low precision is not necessarily a reason to
“discount” an optimizer. When the target class is rare, such low precision might
actually be expected. For example, consider a query in the Google search en-
gine, where it takes three pages before the user finds the target page. With 10
results per page, this means that the Google search engine is scoring a precision
of % ~ 3%. In this case, as precision is the fraction of retrieved pages that are
relevant, such low precision is only a problem of time cost since the user wastes
much time exploring irrelevant results before finding the target they care about.
Our IFA results in Table E], from the aspect of effort, also shows that, in the case
of bug report classification, these low precision results do not lead to too much
wasted time (evidence: the last row of Table [0] shows that users need to explore
15 to 22 false positives before finding a real security bug report — which is a small
number when considering the size of total bug reports).

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization)

25

Table 10 RQ1 results: precision. Higher values are better. Same as format as Table i.e. best results are

shown in grey.

Prior state

Optimize

Data

Data

. . Tune both
of the art learners pre-processing pre-processing (dual)
le1] (only) (no tuning) (tuned)
Project Filter FARSEC L DE+ Pre-processors DE+ SWIFT
earners Pre-processors

train 31.0 3.6 1.5 2.2 1.9

farsecsq 23.9 33 1.4 1.8 2.7

farsectwo 31.0 34 1.5 1.8 1.6

Chromium farsec 31.0 3.6 1.2 2.6 2.8
clni 27.7 3.8 1.6 2.8 1.7

clnifarsecsq 6.7 2.7 1.5 1.8 2.8
clnifarsectwo 27.7 3.8 1.4 3.1 2.2

clnifarsec 27.7 2.4 1.5 2.3 1.9

Median Prec 27.7 3.5 1.5 2.3 2.1

train 2.8 0.0 2.5 6.3 2.2

farsecsq 2.1 1.4 1.4 1.5 1.5

farsectwo 2.2 1.4 1.2 1.3 1.3

. farsec 4.8 34 1.8 3.0 34
Wicket clni 0.0 8.3 2.8 47 4.1
clnifarsecsq 1.6 1.2 1.2 1.2 1.4
clnifarsectwo 1.4 1.5 1.3 1.3 1.5

clnifarsec 5.5 34 2.0 34 3.5

Median Prec 2.2 1.5 1.6 2.3 1.9

train 11.1 40.0 2.9 54 54

farsecsq 4.1 18.8 2.0 34 4.1

farsectwo 21.1 18.8 2.7 33 49

Ambari farsjec 4.0 25.0 3.0 7.9 4.8
clni 7.1 40.0 4.7 6.5 5.3

clnifarsecsq 9.5 21.4 43 79 2.7
clnifarsectwo 8.3 18.8 4.5 10.7 4.3

clnifarsec 100.0 21.4 7.3 13.6 5.1

Median Prec 8.9 21.4 3.7 7.2 4.9
train 10.5 30.0 3.6 39 11.6

farsecsq 52 5.6 6.7 8.2 8.3

farsectwo 4.3 7.7 2.8 3.8 4.4

Camel fars:‘ec 8.3 4.8 2.6 3.6 5.5
clni 4.8 7.3 3.0 4.0 7.0

clnifarsecsq 43 9.0 7.8 6.2 7.1
clnifarsectwo 5.1 4.0 3.7 3.8 5.1

clnifarsec 11.1 5.2 4.0 4.1 5.3

Median Prec 5.2 6.4 3.7 4.0 6.3
train 34.0 9.6 17.9 20.3 23.7
farsecsq 14.4 11.5 8.5 10.6 21.4
farsectwo 26.0 17.9 13.0 15.5 15.3
Derby farsec 35.6 51.4 19.3 21.6 30.0
clni 83.3 52.9 24.0 18.2 19.4
clnifarsecsq 14.4 17.9 8.6 8.6 12.7
clnifarsectwo 26.3 11.0 12.1 15.3 10.5
clnifarsec 34.0 52.8 16.0 31.9 23.9
Median Prec 30.2 17.9 14.5 16.9 20.4

Overall median Prec ‘ 8.9 6.4 3.7 4.0 49

26

Rui Shu et al.

Table 11 RQ1 results: f-measure. F-measure (or f-score) is defined as the harmonic mean of the model’s
precision and recall. Higher values are better. Same as format as Table[7} i.e. best results are shown in grey.

Prior state

Optimize

Data

Data

. . Tune both
of the art learners pre-processing pre-processing (dual)
le1] (only) (no tuning) (tuned)
Project Filter FARSEC L DE+ Pre-processors DE+ SWIFT
earners Pre-processors

train 20.8 6.7 3.0 4.3 3.8
farsecsq 18.3 6.2 2.7 3.5 52
farsectwo 20.8 6.2 3.0 35 3.2
Chromium farsec 20.8 6.6 24 5.0 54
clni 20.0 6.8 32 5.5 33
clnifarsecsq 11.9 53 2.9 3.6 53
clnifarsectwo 20.0 7.0 2.8 6.0 4.3
clnifarsec 20.0 4.6 2.9 4.5 3.8
Median f-score 20.0 6.4 2.9 4.4 4.1
train 4.8 0.0 4.8 11.6 4.2
farsecsq 4.0 2.6 2.8 29 2.9
farsectwo 4.2 2.8 2.3 2.5 2.6
. farsec 8.3 6.5 35 5.8 6.4
Wicket clni 0.0 11.1 53 8.6 75
clnifarsecsq 3.0 24 24 24 2.7
clnifarsectwo 2.8 2.9 2.6 2.6 3.0
clnifarsec 9.8 6.5 4.0 6.5 6.7
Median f-score 4.1 2.8 32 4.4 3.6

train 12.5 33.3 5.5 9.5 10.1
farsecsq 74 26.1 3.8 6.4 7.8
farsectwo 30.8 26.1 5.1 6.2 9.2
Ambari farsjec 6.3 31.6 5.6 13.3 8.9
clni 9.5 33.3 8.5 11.3 9.9
clnifarsecsq 16.3 28.6 7.9 13.3 52
clnifarsectwo 12.9 26.1 8.1 17.1 8.1
clnifarsec 25.0 28.6 12,5 20.7 9.5
Median f-score 12.7 28.6 6.8 12.3 9.1

train 10.8 21.4 6.5 7.1 19.2

farsecsq 79 9.7 11.4 14.3 14.7
farsectwo 7.9 12.8 5.4 7.1 8.2

Camel fars:‘ec 11.1 7.5 4.7 6.4 10.0
clni 7.5 10.2 54 7.2 12.3

clnifarsecsq 6.8 14.6 12.2 10.2 12.6
clnifarsectwo 7.0 7.4 7.0 7.2 9.3
clnifarsec 13.3 7.9 7.0 7.4 9.7

Median f-score 7.9 10.0 6.8 7.2 11.2

train 36.0 15.8 26.7 30.0 35.0

farsecsq 22.8 19.1 14.7 18.4 324

farsectwo 33.6 27.3 20.2 25.1 25.6

Derby fars:ec 36.8 48.1 28.6 314 40.9
clni 37.0 47.4 33.8 27.9 30.1

clnifarsecsq 22.8 27.3 15.4 15.2 21.3
clnifarsectwo 30.3 18.5 19.8 24.4 18.1

clnifarsec 36.0 48.7 25.3 40.4 35.2

Median f-score 34.8 27.3 22.8 26.5 31.3
Overall median F-score ‘ 12.7 10.0 6.8 7.2 9.1

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 27

52 RQ2

RQ2. When learning how to distinguish security bug reports, is it better to dual
optimize the learners and the data pre-processors?

Table 12 How often is each treatment seen to be best in Table Tableand TableE]

Metric | Rank Method Win Times
1 SWIFT 31/40
2 Pre-processors 14/40
Recall 3 DE-+Pre-processors 13/40
4 DE+Learners 3/40
1 DE+Learners 14/40

False

Positive 2 Pre-processors 1/40
Rato 3 SWIFT 1/40
4 DE+Pre-processors 0/40
1 DE+Learners 22/40
IFA 2 SWIFT 18/40
3 DE-+Pre-processors 4/40
4 Pre-processors 3/40

This research question explores the merits of dual optimization of learner plus
pre-processor versus just optimizing one or the other. To answer this question, we
count how often each method achieves top-rank (and has gray-colored results) across
all three metrics of the rows in Table [/} Table [§]and Table 9]

Those count results are shown in Table @ From this table, we can say, in terms
of recall:

— SWIFT’s dual optimization is clearly the best.
— Optimize just the data pre-processors comes a distant second.
— And optimize just the learners (with DE+Learners) is even worse.

Hence we say that, when distinguishing security bug reports, it is not enough to just
tune the learners.
In terms of false positive rates, we see that:

— Optimize just the learner is a comparatively better method than other methods.
— Other treatments do not do well on the false alarm scale.

That said, optimize just the learner achieves a score of 14/40 — which is not even half
the results. Hence, based on false positive rates, we cannot comment on what works
best for improving this metric.

In terms of IFA (initial false alarms), we see that:

— Methods that do not optimize a learner do not perform well.
— There is is no clear winner for the best method since DE+Learners or SWIFT
perform nearly the same as each other.

Based on the above observations, we could sum up the conclusions:

28 Rui Shu et al.

— Our experiment results show that dual optimization works well for recall.
— Also, not optimizing the learners performs badly for IFA.
— There is no clear pattern in Table [I2]regarding false positive rates.

That said, the results for false positive rates seen in Table[§]are somewhat lower than
the false positive rates seen in other software analytic papers [43]]. Hence, on a more
positive note, we can still recommend dual optimization since:

— It has many benefits (much higher recalls).
— With no excessive cost (not large increase in false alarms; IFA results are nearly
as good as other methods).

Table 13 Average runtime (in minutes) of optimizing all learner’s hyperparameters, pre-processor’s hy-
perparameters and running SWIFT. Note that DE3 terminates after 3 generations and DE10 terminates
after 10 generations.

Data
Project DE3 | DE10 | Pre-processor | SWIFT
Optimization
Chromium | 455 876 20 12

Wicket 8 11 8 5
Ambari 8 11 8 5
Camel 8 11 8 5
Derby 8 11 8 5

Further to this comment of “no excessive cost”, Table|13|shows the average run-
time for each treatment. From the table, optimization on learners with the differential
evolution algorithm consumes much more CPU time than others, while dual opti-
mization as SWIFT shows slight advantages even better than optimizing data pre-
processors. In addition, during our experiment, we also notice that, learners such
as K Nearest Neighbors and Multilayer Perceptron can be slow to optimize, espe-
cially for large datasets such as the Chromium project which has about 20,000 data
instances. However, since these learners are rarely selected as a “best” learner (see
from Table[I4), we would further recommend not using those learners for bug report
classification task.

Table 14 The time of each learner that is selected as the “best” learner.

DE+ Data o
Learner FARSEC Pre-processor | SWIFT
Learners | Pre-processor A et
Optimization

Naive Bayes g 21 23 16 17
Logistic Regression 1® 5 5 4 3
Multilayer Perceptron g 3 0 9 6
Random Forest 10 9 12 11 13

K Nearest Neighbors 2 2 0 0 1

KEY: 5 10 15 20 25 times selected.

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 29

5.3 RQ3

RQ3. Can hyperparameter optimization further improve the performance of rank-
ing security bug reports?

Chromium Wicket
—— Baseline 6 —— Baseline
8 —+— clnifarsecsq —+— clnifarsec
—e— DE+Learner 5 —e— DE+Learner
—— Pre-processor 4 —— Pre-processor
6 —=— DE+Pre-processor —=— DE+Pre-processor
& —— SWIFT %5 —— SWIFT
= =
4
2
2 1
0 o
2 4 6 8 10 2 4 6 8 10
Deciles Deciles
Amberi Camel
20
—— Baseline 20.0 —— Baseline
18 —— farsectwo —— cInifarsecsq
16 —e— DE+Learner 17.5 —s— DE+Learner
—— Pre-processor 15.0 —— Pre-processor
14 —s— DE+Pre-processor —s=— DE+Pre-processor
%12 —— SWIFT g 125 —— SWIFT
=100
10
75
8
5.0
6
T Tec—— T 25] _—
4
2 4 6 8 10 2 4 8 10
Deciles Deciles
Derby
60 —— Baseline
—+— clni
50 —e— DE+Learner
—— Pre-processor
40 —=— DE+Pre-processor
5 —— SWIFT
=
30
20
10 P—

Deciles

Fig. 2 Comparison of different treatments in ranking bug report prediction results. This plot shows its
results using the deciles of Equation El (from @ and higher y-axis is better. Different treatments are
denoted with lines of different colors. Specifically, the baseline (shown in blue color) is the method that
does not apply any ranking technique (i.e., with the original chronological order). The orange line denotes
the best ranking results from FARSEC among all filters.

As the users of the bug reports, one of the major requirements is to distinguish
as many actual security bug reports as possible. Our previous treatments are trying to
seek a balance between recall and specificity, as stated in Section .4} The result of
choosing g-measure as the optimization target is an increment of recall while at the
cost of increasing false positive rate at the same time (see Table [7]and Table [8). This
usually could indicate that developers who use such tools would need to spend more
time and effort to check those unexpected false positive predictions.

30 Rui Shu et al.

For many prominent applications such as web search engine, what is germane to
users is how many good results are on the first page or the first two or three pages.
Inspired by this, a ranking result of predicted bug reports would therefore be more
helpful and reduce the required effort for developers. As we describe in Section [2.2]
FARSEC employs a ranking method that sorts the predicted security bug reports. As
a result, the actual security bug reports are closer to the top of the rank list.

We apply the same ranking technique as FARSEC, while the learners and/or pre-
processors are optimized. The evaluation results based on the MAP metric are shown
in Figure 2] In the figure, the baseline (shown in blue color) is the method that does
not apply any ranking technique (i.e., with the original chronological order). The
orange line denotes the best ranking results from FARSEC among all filters. The
other treatments are denoted with lines of different colors.

The key observations from the figure are:

— The baseline method performs badly (the blue line) since this is with no ranking
technique, whatsoever.

— In all data sets, the ranking generated using the prior state-of-the-art (the orange
line for FARSEC filters) is below other treatments that try to rank the predicted
bug reports.

— In aresult that is consistent with the main message of this paper, in all data sets,
the rankings generated by dual optimization (the brown SWIFT line) is above
other methods.

The experiment results of ranking security bug reports, as well as results in previ-
ous research questions, could indicate that our proposed dual optimization of learners
and pre-processors are promising. This approach could be recommended to better aid
practitioners with similar domain tasks.

6 Discussion

SWIFT has demonstrated new results that improve the prior state-of-the-art. Speaking
more broadly, what are the other lessons that could be taken from this work? We make
the following comments.

Firstly, at the general application level, we have shown here it is possible to reason
about rare event data (e.g., here the target security bug reports can be as rare as only
taking up 1% of the total bug reports). Apart from the security case studied here,
another lesson we would offer is that (sometimes) practitioners do not need (much)
data to start data mining. This is an intriguing statement, since in this era of “big
data”, it is often assumed that scare of data would be a large obstacle. Here we offer
a somewhat more optimistic comment: effective models can be built even when data
is scarce.

Secondly, at the methodological level, we offer the following suggestion: avoid
using Al tools “off-the-shelf” without modifying them for the local domain. SE prac-
titioners need to develop specialized machine learning tools that are better suited
to particular SE problems. Existing machine learning algorithms that we might call
“general Al machine learning tools” maybe not “general” at all. Rather, they are tools

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 31

whose default settings were chosen according to the data used in the past to com-
mission those tools. Hyperparameter optimization tools should always be applied to
adjust Al tools to the local data.

(Aside: One objection to the above point is that such optimization process can
be unduly expensive. This objection is certainly true when we use traditional hyper-
parameter optimizers (e.g. genetic algorithms that evaluate thousands to millions of
options [29]). However, our empirical results from Table shows that effective hy-
perparameter optimization can be accomplished in minutes. We note that, aside from
data mining for security, previous researchers have achieved similar “fast optimiza-
tion” results in several other SE domains [5]].)

We are not the only researchers who make this second point. Other researchers in
the software analytics literature also advocate tuning general Al tools to SE tasks. For
example, Binkley et al. [11] note that information retrieval tools for SE often equate
word frequency with word importance, even though the number of occurrences of
a variable name such as “tmp” is not necessarily indicative of its importance. They
argue that the negative impacts of such differences manifest themselves when “off-
the-shelf” information retrieval tools are applied in the software domain. Another
example comes from sentiment analysis. Standard sentiment analysis tools are usu-
ally trained on non-SE data (e.g., the Wall Street Journal or Wikipedia). Novielli et
al. [54] recently developed their own sentiment analysis for the software engineering
domain. After re-training those tools on an SE corpus, they found not only better
performance at predicting sentiment, but also more agreement between different sen-
timent analysis tools.

Thirdly, it is natural to ask whether optimizing data pre-processors is more im-
portant than optimizing the learners (or vice versa). In reply, we say that there is no
evident hints from our empirical results show that one of them has obvious advan-
tages over the other. In fact, recalling RQ2, we say that (at least in this domain) it is
better to tune both.

Fourthly, another question we are asked is “in other domains, do our results say
that some learners/pre-processors will perform better?”. Our results do not support
such conclusion. Table |[14] shows that the “best” classifier is highly variable across
our datasets. Hence, we cannot offer one general conclusion for all projects. However,
what we do offer is a general method for finding the best local solution. Further, as
shown by the runtime in Table[T3] it may not be especially slow to apply our general
method for finding the best local solution.

7 Threats to Validity

As to any empirical study, biases can affect the final results. Therefore, conclusions
drawn from this work must be considered with threats to validity in mind.

Sampling Bias. Sampling bias threatens any classification experiment. For ex-
ample, the data sets used here come from FARSEC, i.e., one Chromium project and
four Apache projects in different application domains. In addition, the bug reports
from Apache projects are randomly selected with a BUG or IMPROVEMENT label
for each project with extra labeling effort.

32 Rui Shu et al.

Learner Bias. Research into automatic classifiers is a large and active field.
While different machine learning algorithms have been developed to solve differ-
ent classification problem tasks. Any data mining study, such as this paper, can only
use a small subset of the known classification algorithms. For this work, we selected
our learners such that we can compare our results to prior work. Accordingly, we
used the same learners as Peters et al. in their FARSEC research.

Input Bias. Our results come from the space of hyperparameter optimization
explored in this paper. In theory, other ranges might lead to other results. That said,
our goal here is not to offer the best optimization but to argue that dual optimization
of data pre-processors and learners is preferable to optimize either, just by itself. For
those purposes, we would argue that our current results suffice.

Evaluation Bias. In our work, we choose some commonly used metrics as FAR-
SEC for evaluation purpose and set g-measure as our optimization target. We do not
use some other metrics because relevant information is not available to us or we think
they are not suitable enough to this specific task (e.g., precision). In addition, we use
equal weight in recall and specificity in the definition of g-measure, which is widely
adopted in existing literature. We agree that it is important for these two elements
to be re-weighted for different tasks, and this can be further explored as one of our
future directions. Our implementation is flexible and we can adjust to proper metrics
or balances with minor code modification.

8 Conclusion

Distinguishing security bug reports from other kinds of bug reports is a pressing prob-
lem that threatens not only the viability of software services, but also consumer con-
fidence in those services. Prior results on how to distinguish security bug reports have
had issues with the scarcity of target data (specifically, such incidents occur rarely).
In a recent TSE’ 18 paper, Peters et al. proposed some novel filtering algorithms to
help improve security bug report classification. Results from FARSEC show that such
filtering techniques can improve the performance.

But more than that, our experiments show that we can further do better than
FARSEC using hyperparameter optimization of data mining learners and data pre-
processors. Our results show that it is more advantageous to apply dual optimization
of both the data-processor and the learner, which we will recommend in solving sim-
ilar problems in future work.

Acknowledgements This work was partially funded via an NSF-CISE grant #1909516.

References

1. (2017) WannaCry Ransomware Attack. https://en.wikipedia.org/
wiki/WannaCry_ransomware_attack

2. (2019) The Equifax Data Breach. https://epic.org/privacy/
data-breach/equifax/

https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://epic.org/privacy/data-breach/equifax/
https://epic.org/privacy/data-breach/equifax/

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 33

3.

13.

14.

15.

17.

18.

Agrawal A, Menzies T (2018) Is “Better Data” Better than “Better Data Miner”?
(on the benefits of tuning SMOTE for defect prediction). In: Proceedings of the
40th International Conference on Software Engineering, ACM, pp 1050-1061
Agrawal A, Fu W, Menzies T (2018) What is wrong with topic modeling? And
how to fix it using search-based software engineering. Information and Software
Technology 98:74-88

Agrawal A, Fu W, Chen D, Shen X, Menzies T (2019) How to “DODGE” com-
plex software analytics. IEEE Transactions on Software Engineering

Arcuri A, Briand L (2011) A practical guide for using statistical tests to as-
sess randomized algorithms in software engineering. In: Proceedings of the
33rd International Conference on Software Engineering, ACM, New York, NY,
USA, ICSE ’11, pp 1-10, DOI 10.1145/1985793.1985795, URL http://
doi.acm.org/10.1145/1985793.1985795

Bennin KE, Keung JW, Monden A (2019) On the relative value of data resam-
pling approaches for software defect prediction. Empirical Software Engineering
24(2):602-636

Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization.
Journal of Machine Learning Research 13(Feb):281-305

Bergstra JS, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-
parameter optimization. In: Advances in neural information processing systems,
pp 2546-2554

. Biedenkapp A, Eggensperger K, Elsken T, Falkner S, Feurer M, Gargiani M,

Hutter F, Klein A, Lindauer M, Loshchilov I, et al. (2018) Hyperparameter opti-
mization. Artificial Intelligence 1:35

. Binkley D, Lawrie D, Morrell C (2018) The need for software specific natural

language techniques. Empirical Software Engineering 23(4):2398-2425

. Black PE, Badger L, Guttman B, Fong E (2016) Dramatically reducing software

vulnerabilities. Report to the White House Office of Science and Technology
Policy, Information Technology Laboratory

Chan S, Treleaven P, Capra L (2013) Continuous hyperparameter optimization
for large-scale recommender systems. In: 2013 IEEE International Conference
on Big Data, IEEE, pp 350-358

Chen L, et al. (2013) R2fix: automatically generating bug fixes from bug reports.
Proceedings of the 2013 IEEE 6th ICST

Deb K, Mohan M, Mishra S (2005) Evaluating the e-domination based multi-
objective evolutionary algorithm for a quick computation of pareto-optimal so-
lutions. Evolutionary computation 13(4):501-525

. Deshmukh J, Podder S, Sengupta S, Dubash N, et al. (2017) Towards accurate

duplicate bug retrieval using deep learning techniques. In: 2017 IEEE Interna-
tional conference on software maintenance and evolution (ICSME), IEEE, pp
115-124

Di Francescomarino C, Dumas M, Federici M, Ghidini C, Maggi FM, Rizzi W,
Simonetto L (2018) Genetic algorithms for hyperparameter optimization in pre-
dictive business process monitoring. Information Systems 74:67-83

Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. CRC press

http://doi.acm.org/10.1145/1985793.1985795
http://doi.acm.org/10.1145/1985793.1985795

34

Rui Shu et al.

19.

20.

21.

22.

23.
24.

25.

26.

217.

28.

29.
30.

31.

32.

33.

34.

35.

Feurer M, Springenberg JT, Hutter F (2015) Initializing bayesian hyperparameter
optimization via meta-learning. In: Twenty-Ninth AAAI Conference on Artificial
Intelligence

Fu W, Menzies T (2017) Easy over hard: A case study on deep learning. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engi-
neering, ACM, pp 49-60

Fu W, Menzies T, Shen X (2016) Tuning for software analytics: Is it really nec-
essary? Information and Software Technology 76:135-146

Gegick M, Rotella P, Xie T (2010) Identifying security bug reports via text min-
ing: An industrial case study. In: Mining software repositories (MSR), 2010 7th
IEEE working conference on, IEEE, pp 11-20

Goldberg DE (2006) Genetic algorithms. Pearson Education India
Goseva-Popstojanova K, Tyo J (2018) Identification of security related bug re-
ports via text mining using supervised and unsupervised classification. In: 2018
IEEE International Conference on Software Quality, Reliability and Security
(QRS), IEEE, pp 344-355

Graham P (2004) Hackers & painters: big ideas from the computer age.
O’Reilly Media, Inc.”

Han X, Yu T, Lo D (2018) Perflearner: learning from bug reports to understand
and generate performance test frames. In: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ACM, pp 17-28
Herodotou H, Lim H, Luo G, Borisov N, Dong L, Cetin FB, Babu S (2011)
Starfish: a self-tuning system for big data analytics. In: Cidr, vol 11, pp 261-272
Hindle A, Alipour A, Stroulia E (2016) A contextual approach towards more
accurate duplicate bug report detection and ranking. Empirical Software Engi-
neering 21(2):368-410

Holland JH (1992) Genetic algorithms. Scientific american 267(1):66—73
Huang Q, Xia X, Lo D (2017) Supervised vs unsupervised models: A holistic
look at effort-aware just-in-time defect prediction. In: 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, pp 159-
170

Huang Q, Xia X, Lo D (2019) Revisiting supervised and unsupervised models
for effort-aware just-in-time defect prediction. Empirical Software Engineering
24(5):2823-2862

Jalali O, Menzies T, Feather M (2008) Optimizing requirements decisions with
keys. In: Proceedings of the 4th international workshop on Predictor models in
software engineering, ACM, pp 79-86

Kampenes VB, Dyba T, Hannay JE, Sjgberg DIK (2007) A systematic review
of effect size in software engineering experiments. Information and Software
Technology 49(11-12):1073-1086

Keller JM, Gray MR, Givens JA (1985) A fuzzy k-nearest neighbor algorithm.
IEEE transactions on systems, man, and cybernetics (4):580-585

Kim S, Zhang H, Wu R, Gong L (2011) Dealing with noise in defect prediction.
In: Software Engineering (ICSE), 2011 33rd International Conference on, IEEE,
pp 481-490

Lt}

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 35

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated anneal-
ing. Science 220(4598):671-680

Kochhar PS, Xia X, Lo D, Li S (2016) Practitioners’ expectations on automated
fault localization. In: Proceedings of the 25th International Symposium on Soft-
ware Testing and Analysis, ACM, pp 165-176

Lamkanfi A, Demeyer S, Giger E, Goethals B (2010) Predicting the severity of a
reported bug. In: Mining Software Repositories (MSR), 2010 7th IEEE Working
Conference on, IEEE, pp 1-10

Lazar A, Ritchey S, Sharif B (2014) Improving the accuracy of duplicate bug
report detection using textual similarity measures. In: Proceedings of the 11th
Working Conference on Mining Software Repositories, ACM, pp 308-311
Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classification
models for software defect prediction: A proposed framework and novel findings.
IEEE Transactions on Software Engineering 34(4):485-496

Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A (2017) Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of
Machine Learning Research 18(1):6765-6816

Menzies T, Shepperd M (2019) “Bad smells” in software analytics papers. Infor-
mation and Software Technology 112:35-47

Menzies T, Greenwald J, Frank A (2006) Data mining static code attributes to
learn defect predictors. IEEE transactions on software engineering 33(1):2-13
Menzies T, Dekhtyar A, Distefano J, Greenwald J (2007) Problems with pre-
cision: A response to” comments on’data mining static code attributes to learn
defect predictors’”. IEEE Transactions on Software Engineering 33(9):637-640
Menzies T, Elrawas O, Hihn J, Feather M, Madachy R, Boehm B (2007)
The business case for automated software engineering. In: Proceedings of
the Twenty-second IEEE/ACM International Conference on Automated Soft-
ware Engineering, ACM, New York, NY, USA, ASE ’07, pp 303-312,
DOI 10.1145/1321631.1321676, URL http://doi.acm.org/10.1145/
1321631.1321676

Menzies T, Greenwald J, Frank A (2007) Data mining static code attributes to
learn defect predictors. IEEE transactions on software engineering (1):2—13
Menzies T, Majumder S, Balaji N, Brey K, Fu W (2018) 500+ times faster than
deep learning:(a case study exploring faster methods for text mining stackover-
flow). In: 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), IEEE, pp 554-563

MITRE (2017) Common Vulnerabilities and Exposures (CVE). https://
cve.mitre.org/about/terminology.html#vulnerability
Mittas N, Angelis L (2013) Ranking and clustering software cost estimation
models through a multiple comparisons algorithm. IEEE Transactions on soft-
ware engineering 39(4):537-551

Nair V, Yu Z, Menzies T, Siegmund N, Apel S (2018) Finding faster configura-
tions using flash. IEEE Transactions on Software Engineering

Neuhaus S, Zimmermann T (2009) The beauty and the beast: Vulnerabilities in
red hat’s packages. In: USENIX Annual Technical Conference

http://doi.acm.org/10.1145/1321631.1321676
http://doi.acm.org/10.1145/1321631.1321676
https://cve.mitre.org/about/terminology.html#vulnerability
https://cve.mitre.org/about/terminology.html#vulnerability

36

Rui Shu et al.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Neuhaus S, Zimmermann T, Holler C, Zeller A (2007) Predicting vulnerable
software components. In: Proceedings of the 14th ACM conference on Computer
and communications security, ACM, pp 529-540

Nguyen VH, Tran LMS (2010) Predicting vulnerable software components with
dependency graphs. In: Proceedings of the 6th International Workshop on Secu-
rity Measurements and Metrics, ACM, p 3

Novielli N, Girardi D, Lanubile F (2018) A benchmark study on sentiment anal-
ysis for software engineering research. In: 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR), IEEE, pp 364-375

Ohira M, Kashiwa Y, Yamatani Y, Yoshiyuki H, Maeda Y, Limsettho N, Fu-
jino K, Hata H, Thara A, Matsumoto K (2015) A dataset of high impact bugs:
Manually-classified issue reports. In: Mining Software Repositories (MSR),
2015 IEEE/ACM 12th Working Conference on, IEEE, pp 518-521

Onan A, Korukoglu S, Bulut H (2016) A multiobjective weighted voting ensem-
ble classifier based on differential evolution algorithm for text sentiment classi-
fication. Expert Systems with Applications 62:1-16

Osman H, Ghafari M, Nierstrasz O (2017) Hyperparameter optimization to im-
prove bug prediction accuracy. In: Machine Learning Techniques for Software
Quality Evaluation (MaLTeSQuE), IEEE Workshop on, IEEE, pp 33-38
Panichella A, Dit B, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A (2013)
How to effectively use topic models for software engineering tasks? An approach
based on genetic algorithms. In: International Conference on Software Engineer-
ing

Parnin C, Orso A (2011) Are automated debugging techniques actually helping
programmers? In: Proceedings of the 2011 international symposium on software
testing and analysis, ACM, pp 199-209

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blon-
del M, Prettenhofer P, Weiss R, Dubourg V, et al. (2011) Scikit-learn: Machine
learning in python. Journal of machine learning research 12(Oct):2825-2830
Peters F, Tun T, Yu Y, Nuseibeh B (2018) Text filtering and ranking for security
bug report prediction. IEEE Transactions on Software Engineering pp Early—
Access

Scandariato R, Walden J, Hovsepyan A, Joosen W (2014) Predicting vulnerable
software components via text mining. IEEE Transactions on Software Engineer-
ing 40(10):993-1006

Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic
for global optimization over continuous spaces. Journal of global optimization
11(4):341-359

Sun C, Lo D, Khoo SC, Jiang J (2011) Towards more accurate retrieval of du-
plicate bug reports. In: Proceedings of the 2011 26th IEEE/ACM International
Conference on Automated Software Engineering, IEEE Computer Society, pp
253-262

Tantithamthavorn C, MclIntosh S, Hassan AE, Matsumoto K (2016) Automated
parameter optimization of classification techniques for defect prediction models.
In: Software Engineering (ICSE), 2016 IEEE/ACM 38th International Confer-
ence on, IEEE, pp 321-332

How to Better Distinguish Security Bug Reports (using Dual Hyperparameter Optimization) 37

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

Tantithamthavorn C, Hassan AE, Matsumoto K (2018) The impact of class re-
balancing techniques on the performance and interpretation of defect prediction
models. IEEE Transactions on Software Engineering

Thornton C, Hutter F, Hoos HH, Leyton-Brown K (2013) Auto-weka: Combined
selection and hyperparameter optimization of classification algorithms. In: Pro-
ceedings of the 19th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pp 847-855

Tian Y, Lo D, Sun C (2012) Information retrieval based nearest neighbor classi-
fication for fine-grained bug severity prediction. In: 2012 19th Working Confer-
ence on Reverse Engineering, IEEE, pp 215-224

Tian Y, Lo D, Xia X, Sun C (2015) Automated prediction of bug report priority
using multi-factor analysis. Empirical Software Engineering 20(5):1354—-1383
Van Aken D, Pavlo A, Gordon GJ, Zhang B (2017) Automatic database man-
agement system tuning through large-scale machine learning. In: Proceedings
of the 2017 ACM International Conference on Management of Data, ACM, pp
1009-1024

Vesterstrgm J, Thomsen R (2004) A comparative study of differential evolution,
particle swarm optimization, and evolutionary algorithms on numerical bench-
mark problems. In: Congress on Evolutionary Computation, IEEE

Wang L, Zeng Y, Chen T (2015) Back propagation neural network with adaptive
differential evolution algorithm for time series forecasting. Expert Systems with
Applications 42(2):855-863

Wang Y, Xu W (2018) Leveraging deep learning with Ida-based text analytics to
detect automobile insurance fraud. Decision Support Systems 105:87-95
Wijayasekara D, Manic M, McQueen M (2014) Vulnerability identification and
classification via text mining bug databases. In: [IECON 2014-40th Annual Con-
ference of the IEEE Industrial Electronics Society, IEEE, pp 3612-3618
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization.
IEEE transactions on evolutionary computation 1(1):67—-82

Xia X, Lo D, Qiu W, Wang X, Zhou B (2014) Automated configuration bug
report prediction using text mining. In: 2014 IEEE 38th Annual Computer Soft-
ware and Applications Conference (COMPSAC), IEEE, pp 107-116

Xia X, Lo D, Shihab E, Wang X (2016) Automated bug report field reassignment
and refinement prediction. IEEE Transactions on Reliability 65(3):1094-1113
XiaY,LiuC, LiY, Liu N (2017) A boosted decision tree approach using bayesian
hyper-parameter optimization for credit scoring. Expert Systems with Applica-
tions 78:225-241

Yang X, Lo D, Huang Q, Xia X, Sun J (2016) Automated identification of high
impact bug reports leveraging imbalanced learning strategies. In: 2016 IEEE 40th
Annual Computer Software and Applications Conference (COMPSAC), IEEE,
vol 1, pp 227-232

Yang XL, Lo D, Xia X, Huang Q, Sun JL (2017) High-impact bug report iden-
tification with imbalanced learning strategies. Journal of Computer Science and
Technology 32(1):181-198

Yildizdan G, Baykan OK (2020) A novel modified bat algorithm hybridizing by
differential evolution algorithm. Expert Systems with Applications 141:112949

38

Rui Shu et al.

82.

83.

84.

85.

Zaman S, Adams B, Hassan AE (2011) Security versus performance bugs: a
case study on firefox. In: Proceedings of the 8th working conference on mining
software repositories, ACM, pp 93-102

Zhang T, Yang G, Lee B, Chan AT (2015) Predicting severity of bug report by
mining bug repository with concept profile. In: Proceedings of the 30th Annual
ACM Symposium on Applied Computing, ACM, pp 1553-1558

Zhou Y, Sharma A (2017) Automated identification of security issues from com-
mit messages and bug reports. In: Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, pp 914-919

Zhou Y, Tong Y, Gu R, Gall H (2016) Combining text mining and data mining for
bug report classification. Journal of Software: Evolution and Process 28(3):150-
176

	1 Introduction
	2 Background and Related Work
	2.1 Security Bug Reports and Data Mining
	2.2 FARSEC: Extending Data Mining for Bug Reports
	2.3 Hyperparameter Optimization for Learner and Pre-Processor Options

	3 SWIFT: the Dual Optimization Approach
	4 Experiment
	4.1 Hyperparameter Optimization Ranges
	4.2 Data
	4.3 Experimental Rig
	4.4 Evaluation Metrics
	4.5 Statistics

	5 Results
	5.1 RQ1
	5.1.1 Recall Results
	5.1.2 False Positive Rate Results
	5.1.3 Initial False Alarms Results
	5.1.4 Precision and F-Measure Results

	5.2 RQ2
	5.3 RQ3

	6 Discussion
	7 Threats to Validity
	8 Conclusion

