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Abstract

Variability models are used to build configurators, for guiding users through the configura-
tion process to reach the desired setting that fulfils user requirements. The same variability 
model can be used to design different configurators employing different techniques. One 
of the design options that can change in a configurator is the configuration workflow, 
i.e., the order and sequence in which the different configuration elements are presented to 
the configuration stakeholders. When developing a configurator, a challenge is to decide 
the configuration workflow that better suits stakeholders according to previous configura-
tions. For example, when configuring a Linux distribution the configuration process starts 
by choosing the network or the graphic card and then, other packages concerning a given 
sequence. In this paper, we present COnfiguration workfLOw proceSS mIning (COLOSSI), 
a framework that can automatically assist determining the configuration workflow that bet-
ter fits the configuration logs generated by user activities given a set of logs of previous 
configurations and a variability model. COLOSSI is based on process discovery, commonly 
used in the process mining area, with an adaptation to configuration contexts. Derived from 
the possible complexity of both logs and the discovered processes, often, it is necessary 
to divide the traces into small ones. This provides an easier configuration workflow to be 
understood and followed by the user during the configuration process. In this paper, we 
apply and compare four different techniques for the traces clustering: greedy, backtracking, 
genetic and hierarchical algorithms. Our proposal is validated in three different scenarios, to 
show its feasibility, an ERP configuration, a Smart Farming, and a Computer Configuration. 
Furthermore, we open the door to new applications of process mining techniques in differ-
ent areas of software product line engineering along with the necessity to apply clustering 
techniques for the trace preparation in the context of configuration workflows.

Keywords Variability · Configuration workflow · Process mining · Process discovery · 
Clustering



1 Introduction

Variability models, such as Feature Models (FMs) (Galindo et al. 2018), describe common-
alities and variabilities in Software Product Lines (SPLs) and are used along all the SPL 
development process. After an FM is defined, products can be configured and derived. We 
can find FM depicting a diverse set of domains such as Wordpress (Rodas-Silva et al. 2019), 
surveillance videos (Galindo et al. 2014b; Alférez et al. 2019) or Android systems (Galindo 
et al. 2014a) among others. In the configuration and derivation process, users select and des-
elect features using a configurator. A configurator (Galindo et al. 2015) is a software tool 
that presents configuration options to the users in different stages. An example of a config-
urator tool is KConfig (She et al. 2010) where developers can configure the Linux kernel 
with more than 12.000 configuration options.

An important aspect of a configurator is to determine the configuration workflow 
(Hubaux et al. 2013), i.e., the order in which features and options are presented to config-
uration stakeholders. For instance, when configuring the Linux kernel using KConfig (She 
et al. 2010), there can be different user configuration profiles depending on interests or 
skills. The configuration workflow used by a configurator can impact the user experience 
in the configuration process. Therefore, selecting a well-suited configuration workflow is 
a challenge. Up to now –to the best of our knowledge– the selection of a configuration 
workflow is made either intuitively or following the structure and properties of a variability 
model (Galindo et al. 2015; Varela-Vaca and Gasca 2013; Varela-Vaca et al. 2019b).

In this paper, we present COLOSSI, a framework that takes a feature model and a set 
of existing configuration logs and automatically retrieves configuration workflows. A con-
figuration log is a set of configurations performed in the past in a given domain taking 
into account a configuration order. Our solution relies on process mining (Augusto et al. 
2019) techniques. Process mining is a well-established area of business process manage-
ment that uses different techniques to extract business processes from traces of execution. 
In our approach, we conceptually map a business process model to a configuration work-
flow and traces to configuration logs making it possible to reuse process mining techniques 
to infer configuration workflows.

Although using process mining can automatically retrieve configuration workflows, the 
results can be difficult to interpret to domain engineers to build a configurator. This is 
mainly because, very often, mined processes are “spaghetti-like” models in which the same 
activity needs to be duplicated (van der Aalst 2011). To illustrate the difficulty, Fig. 1 shows 
the result of directly applying process mining techniques to the ERP system presented in 
Pereira et al. (2018b) and detailed in Section 3.

The simplification of spaghetti processes is an open challenge and active research area 
in process mining (Augusto et al. 2019). The application of clustering techniques is used to 
retrieve a set of simple workflows instead of a single–complicated one. These techniques 
are used to divide the configuration log according to different aspects. There are different 
techniques to create clusters that facilitate the understanding of the discovered processes. 
The clustering can be expressed as an optimisation problem. Thus, exhaustive techniques 
have been proposed for finding the best possible clustering (Hompes et al. 2015), although 
with potential high time- and resource-consuming. This is the reason why other algorithms 
have been applied, such as hierarchical algorithm (Ferreira and Alves 2011; Makanju et al. 
2008 2009), k-means algorithm (Song et al. 2008) or greedy algorithm (Greco et al. 20
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Fig. 1 Spaghetti process of the ERP presented in Pereira et al. (2018b)

De Weerdt et al. 2013). The wide types of possible algorithms to apply are caused by the
most proper in each case will depend on the data log. To overcome this difficulty, COLOSSI
provides the infrastructure to integrate various algorithms for clustering the traces involved
in the configuration workflow, being possible the selection of the used algorithm according
to the case and the necessities. Our solution takes information from the variability model as
input and retrieves less complex configuration workflows that can assist the development
of better configurators. Due to the size and complexity of the logs, the creation of clusters
that facilitate the understanding of the discovered processes is not an easy task. Thereby,
we propose four approximations based on different techniques to facilitate the creation of
clusters trying to improve the distribution of the logs later used as input of the process
discovery.

COLOSSI is validated using three different case studies: an ERP system, a smart farm
and computer configurations taken from Pereira et al. (2016a, 2018a, b). Moreover, differ-
ent clustering algorithms are applied to determine when each is more appropriate (greedy,
backtracking, genetic and hierarchical algorithms). Results show that the metrics of the
retrieved configuration workflows are improved depending on the clustering and the distri-
bution algorithm of traces applied. Besides, the metrics help to support the hypotheses of
reducing the complexity and enhancing the understandability of the retrieved configuration
workflows. Moreover, an statistical analysis of metrics related to the distribution of traces
is done to attempt to prove that the hypotheses that the selected techniques do not influence
the obtained results (i.e., the algorithm has no impact on the distribution of traces).

This paper is an evolution of Varela-Vaca et al. (2019a) where the main contribution was
the definition of COLOSSI as a framework to support the clustering of configuration logs
to discover configuration workflows. In this paper, the previous proposal is enhanced by:

– The extension of COLOSSI to support different sort of clustering algorithms to apply.
– We extended the validation of COLOSSI with three additional case studies.



– The measurement of a set of metrics to compare the suitability of each algorithm of
clustering to discover the configuration workflows that better fits the configuration
traces generated by the users.

The remainder of this paper is organised as follows: Section 2 details the solution and
concepts that grounds our proposal; Section 3 presents empirical results from analysing
COLOSSI in different scenarios; Section 4 presents the related work and Section 5 presents
concluding remarks and lessons learned.

2 COLOSSI: configration workflow process mining solution

COLOSSI combines a feature model and a configuration log to create a configuration work-
flow. Figure 2 shows an overview of the framework, in which, using a configuration log,
it is possible to apply process mining techniques to derive a valid configuration work-
flow representing all the possible paths defined in the configuration logs. Very often, the
resulting workflow follows the so-called spaghetti-style (van der Aalst 2011), being diffi-
cult to understand and manipulate. Nevertheless, it is important to remark that by applying
some simplification techniques and extracting some metrics, these workflows could be
exploited using automated process mining tools, to carry out many more additional analy-
ses. Also, any generated configuration workflow can be already used to automatically build
a configurator.

In an ideal process mining approach, as shown in path 1© of Fig. 2, an event log is used
to directly execute a process discovery task. However, in general, if no data preparation
task is carried out in between, the results are usually unmanageable, and even more, when
we are dealing with a context of high variability. That is why the data preparation phase in
our proposal must necessarily include simplification mechanisms. To this end, also, to the
usage of process mining techniques, we propose diverse handling and clustering methods to
reduce and group similar configuration traces according to some properties. Those clusters
can then be used again as an input of process mining techniques to obtaining a set of con-
figuration workflows depending on the observed behaviour of the configuration logs. Those
workflows could obtain better metrics concerning the original complex workflows of step
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1©. We conjecture that the resulting configuration workflows of step 2© will better guide
the domain engineers in the construction of a configurator as well as the analysis mentioned
previously.

In the following, we describe the overall process of COLOSSI, detail its different phases
and explain its implementation in general.

2.1 COLOSSI process

As previously mentioned COLOSSI combines a feature model and a configuration log to
create configuration workflows. Consequently, it needs both as input.

A feature model is an arranged set of features that describes variability and commonal-
ity using features and relationships among them (Durán et al. 2017; Schobbens et al. 2007).
FMs describe all the potential combinations of features. Figure 3 shows an excerpt of a fea-
ture model from the ERP domain where features are arranged in a tree–like structure and
different relationships are established among them. FMs can be used to build configurators
that are pieces of software that guide the configuration process while selecting and dese-
lecting features. An example of a configurator is KConfig, a tool that helps to configure the
Linux kernel. As an FM can define a configuration space defined by all the possible fea-
ture combinations, it can also define different possible configuration workflows that can be
derived using the same FM.

To define a configuration log, we use some concepts that are used in the process mining
area to describe events and traces, and we map those concepts to define a configuration log.

An event log is a multiset of traces:

Feature model

ERP

requires

CRM
Project

Managment
Accountancy

TaskListCalendar CostSpend

Check
Credit
Card

1st configuration:  {crm, tasklist, cost, accountancy}

2nd configuration: {project management, accountancy, credit card, calendar}

3rd configuration:  {project management, check, crm, task list}
4th configuration:  {crm, task list, calendar, credit card}

Configuration log

Fig. 3 ERP domain based example



Definition 1 (Event Log). Let L be an event log L = {τ1, · · · , τm} as a multiset of traces τi .

A trace is a tuple with an identifier and a sequence of events that occurred at some point
in time:

Definition 2 (Trace). Let τ be a trace τ = 〈case id , E〉 which consists of a case id which
identifies the case, and a sequence of events E = {ε1, · · · , εn}, εi occurring at a time index
i relative to the other events in E .

An event occurrence is a 3–tuple with an identifier of an activity that occurred at some
timestamp and that can have additional information:

Definition 3 (Event occurrence). Let ε be an event occurrence ε = 〈activity id ,
t imestamps, others〉 which is specified by the identity of an activity which produces it and
the timestamps. It can store more information (i.e., states, labels, resources, etc.) which fall
into the category of others and which are not used in this approach.

In COLOSSI, we conceptually map elements from the feature modelling domain to the
process mining domain as shown in Table 1. Concretely, an event log is conceptually a
configuration log. A trace is an ordered configuration, i.e., a configuration trace, thus, it is
a set of selected features that follow a given order. Finally, an event occurrence is a feature.
Additionally, a feature can have more information like attributes associated with this feature,
such as preferences, metrics or the like, which are not used in our proposal.

Thanks to this mapping, COLOSSI can be used in different scenarios to leverage process
mining in variability management, like the one presented in this paper, which is the building
of configurators, if the order of previous configurations are known and can be extracted.
However, we envision other areas where process mining can be used to automate different
tasks. Next, we describe those scenarios, also related to software product lines, from our
experience and perspective:

– Configurator building. Up to now, configurators building is performed using manual
mechanisms or, at most, using the information present in the variability model (e.g.,
tree traversal in feature models) (Lettner et al. 2019). With COLOSSI, we open the
door to use existing configuration logs to build configurators. This novel approach can
open the door to new ways of assisting configurators builders by using the generated
configuration workflow to optimise configurators.

– Data analysis. From the generated configuration workflow it is possible to perform
such analysis in terms of graph metrics. Deadlocks identifications, misalignment anal-
ysis, metrics extraction –to just mention a few– are areas where process mining
techniques can be useful.

Table 1 Mapping concepts
Process mining Product Line

Event log Configuration log

Trace Configuration trace

Event occurrence Feature



– Testing. From the data extracted in the former item, it could be possible to define new
sampling techniques (Thüm et al. 2014) that can improve the identification of bugs or
feature interactions in existing product lines.

– Variability reduction. One of the challenges for companies that develop software prod-
uct lines is variability reduction (Bosch 2018). While variability is a must in a software
product line approach, it is always difficult to find a trade-off between a high degree of
variability and systematic management of such variability. In this context, experts claim
for techniques and tools to reduce variability while preserving configurability. Process
mining techniques presented in this paper can be a first step towards defining tools to
assist in the decision of variability reduction.

– Reverse engineering. One of the inputs used when reverse engineering feature models
are configurations (a.k.a. product matrix). We envision that the techniques described in
this paper can be used in reverse engineering of variability models. For instance, the
generated configuration workflow can be analysed to better guide reverse-engineering
algorithms.

2.2 Detailing COLOSSI steps

Once the overall process of COLOSSI has been described. We proceed to deepen the
operation of each of its parts, following the structure described in Fig. 2.

2.2.1 Configuration logs extractor

A configuration log is composed of a set of configuration traces where each configuration
trace encodes not only the features of a configuration but the timestamps indicating when
each feature was selected. In a raw configuration log, we can find a diversity of meta-
information among the selected or deselected features. Moreover, this meta-information can
be presented in an unstructured or structured fashion that must be properly extracted and
transformed (Valencia-Parra et al. 2019a, b) to obtain the traces in the correct format.

In this first step, we take as input a raw configuration log and output a set of con-
figuration traces. Therefore, we need to i) search for the meta-information encoding the
timestamps for each feature. Note that this might not be explicit and can be provided using
other mechanisms (e.g., line numbers in a plain text format); ii) use this meta-information
to represent the feature selection order, and; iii) store the set of configuration traces in a
format that can be used throughout the configuration workflow retrieval process (e.g., XES
serialization 2016). After this, we end up with a set of configuration traces that represent
the selection order used by the users to configure the systems. However, there might be
non-valid configurations and other erroneous configurations with respect to domain infor-
mation. Practitioners have to make decisions to this regard depending on the kind of input
logs that want to be considered in the next steps of the discovering process.

2.2.2 Configuration logs handler

At this step, the configuration log might contain non-valid configurations, erroneous partial
selection of features among other domain-related errors such as those depicted in Felfernig
et al. (2018). To remove clutter and noise out of the workflows, users might prefer to remove
such information from the configuration log. This cleaning step consists of removing the



wrong selection of features (a.k.a non-valid partial configurations) as well as generate met-
rics that can be later exploited to optimise the workflow retrieval process. For example, the
use of atomic-sets to complete partial configurations.

Depending on the expected workflow usage, domain engineers have to define the mean-
ing of a valid configuration and the metrics to rely on. For example, an SPL engineer might
consider only configurations with complete assignments of features to develop a configura-
tion while other might find interesting to consider the partial assignments (i.e., to configure
only the variability part of the product line, keeping aside the common parts).

COLOSSI (Fig. 2), Process mining - process discovery module enables to read an event
log and generates a process model that fits these traces as shown in Fig. 4. In the case of
the variability context, a configuration log is read and a configuration workflow is obtained
using the same techniques used for classical process mining. As depicted in Fig. 2, the
process discovery can be applied to a single configuration log or a set of them.

2.2.3 Configuration logs cluster generator

Configuration processes can have a high degree of variability, especially when the config-
uration order is defined by human decisions. The application of process discovery in this
type of scenarios tends to produce spaghetti-like processes, making it necessary to apply
pre-processing techniques. Configurability contexts are especially variable in relation to the
executed activities derived from high human intervention. Thereby, we propose to divide the
traces into subsets, to model different profiles of users, thus avoiding the discovery of non-
user understandable processes. In these contexts where process discovery is used to infer
spaghetti-like processes, clustering techniques such as a pre-processing step are frequently
applied (Hompes et al. 2017). We propose the definition of the suitable number of clusters
and the division of the configuration traces into multiple clusters before the application of a
process discovery method to adapt the solution to configuration tasks. This division leads to
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discover configuration workflows with more quality. This section describes what a cluster
is and the metrics (e.g., entropy) used to divide the traces among a number of clusters.

Definition 4 (Number of Clusters). Let k-cluster be the optimal number of clusters in
which the traces must be grouped.

Like in any other clustering problem, the selection of the most optimal value of k-cluster

is one of the first issues to deal with, since, before being able to execute any grouping algo-
rithm, it is necessary to previously know in how many groups the data must be distributed,
in such a way that the distribution is optimal based on an established criterion.

This is a widely researched topic in which many solutions have been proposed and
applied to other scenarios. In our proposal, 17 different indicators are used as reference
to choose the best number of clusters: kl (Krzanowski and Lai 1988), ch (Caliński and
Harabasz 1974), hartigan (Hartigan 1975), cindex (Hubert and Levin 1976), db (Davies and
Bouldin 1979), duda and pseudot2 (Duda et al. 1973), ratkowsky (Ratkowsky and Lance
1978), ball (Ball and Hall 1965), ptbiserial (Milligan 1980, 1981), frey (Frey and Van Groe-
newoud 1972), mcclain (McClain and Rao 1975), gamma (Baker and Hubert 1975), tau
(Rohlf 1974), dunn (Dunn 1974), sdindex (Halkidi et al. 2000), sdbw (Lebart et al. 2000).

Being L a configuration log composed of a set of configuration traces (i.e., [τ1, · · · , τm]),
a cluster is a subset of configuration traces from L that complies certain properties.

Definition 5 (Cluster of Configuration Traces). A partition of a set of configuration traces
is a set of non empty and disjoint subsets C={c1, . . . , cn} of configuration traces, where⋃

c∈C c = L and ∀ci, cj → ci ∩ cj = ∅.

The distribution of configuration traces between various clusters depends on the purpose
of the practitioners. In our case, the goal is to group the more similar configuration traces.
COLOSSI understanding of ‘similar’ is related to both features and transitions involved in
the logs. Understanding as transition any edge present in the workflow that comes out of an
activity.

For this reason, we adapted the classical information entropy metric (MacKay 2002) by
introducing two different custom entropy metrics for clustering in the configuration context:

– Entropy-features (Sf eatures) of a cluster: a metric which measures the similarity
between traces according to the features that belong to the same cluster. Thus, it is
the ratio between the number of features that do not appear in all configuration traces
(f eaturesnat ) and the number of different features in all the configuration traces
(f eaturesdiff ):

Sf eatures = |f eaturesnat |
|f eaturesdiff | (1)

– Entropy-transitions (Stransitions ) of a cluster: a metric which measures the similar-
ity between traces according to the transitions that belong to the same cluster. Thus,
it is the ratio between the transitions that do not appear in all configuration traces
(transitionsnat ) and the number of different transitions in all the configuration traces
(transitionsdiff ):

Stransitions = |transitionsnat |
|transitionsdiff | (2)

In order to illustrate the calculation of entropies per cluster, the Sf eatures and Stransitions

for the Cluster 1 and Cluster 2 of Fig. 5 are determined in Table 2. Reminding that we
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consider as transition any edge present in the workflow out of an activity. In the case of
Entropy-features, in the first cluster, the result is 0, since there is only one trace and there
is no possibility of comparing the features. In the second cluster, we found six features that
only occur in one of the two traces (Project Management, Check, Calendar, Cost, Accoun-
tancy and Credit Card), out of the eight that are totalled. Similarly, the presence of a single
trace makes Entropy-transitions 0 in the first cluster, while in the second cluster we count
nine transitions that only occur in one of the two traces (Project Management - Check, Check
- CRM, Task List - End, Task List - Calendar, Task List - Cost, Calendar - Credit Card, Cost
- Accountancy, Credit Card - End, Accountancy - End), among the ten possible ones.

Note that the range of the entropy is [0..1]. The values of entropy that are close to
zero represent more similar traces, whilst when they are close to one represent that there
are different features involved in the traces of the cluster. The best configuration of clus-
ters obtained from a set of configurations traces is the one that has been partitioned into
as many clusters as indicated by the optimal value of k-cluster , and which, in turn, min-
imises the summation of the entropy of all clusters. The challenge is how to obtain the best
configuration of clusters as a pre-processing of process discovery.

To find out the best configuration traces divided into clusters, minimising the entropy of
the resulting clusters, different algorithms can be used. In accordance with Jain et al. (1999)
clustering provides an unsupervised classification of patterns (observations, data items, or
feature vectors) into groups (clusters). Clustering (Kobren et al. 2017) brings together a
large set of algorithms that can be classified in different ways according to the point of view
necessary in the case of study.

Table 2 Entropies for the
clusters of the Fig. 5 Entropy-features Entropy- transitions

Cluster 1 0
4 = 0 0

4 = 0

Cluster 2 6
8 = 0, 75 9

10 = 0, 9



Ideally, all clustering algorithms seek to group the information into clusters as homo-
geneous as possible. This implies that the distances between elements in the same cluster
must be minimal and that, in turn, the distances between elements in a different cluster must
be maximum. In order to carry out this operation, clustering algorithms usually generate,
during their execution, what is known as distance matrices. These distance matrices are cal-
culated according to different criteria which elements should be grouped and which should
not. In this area, we find widely used methodologies to create a distance matrix, such as
euclidean, manhattan, etc. (Grabusts et al. 2011). But, because our approach is based on
minimising the sum of entropies, we need the clustering algorithm to be aware of this when
grouping information. For this purpose, the entropy matrix is constructed previously and
not during the execution of the algorithm, being just a square matrix containing the entropy
value between each trace pair following the definition of entropy above. It is equivalent
to the distance between each pair of traces according to our criteria. For this reason, our
entropy matrix will be used as a distance matrix in our clustering process when necessary.

However, as previously mentioned, before the application of the clustering algorithms,
it is necessary to determine the optimal number of clusters. Classically, the algorithms to
determine the number of clusters (optimal k-cluster) also build distance matrices. For this
reason, our approach will also use the entropy matrix as the distance matrix to calculate
the optimal k-cluster . To find it, we obtain the optimal value of k-cluster for each of the
17 indicators. Nevertheless, the values of k-cluster derived from the different indicators
obtained could be very dissimilar in some cases, therefore, frequently the optimal k-cluster

is selected from the most frequent value, in other words, the most voted k-cluster is the
number of optimal clusters by the indicators. This is the reason why we use a dendrogram
to help approximate the optimal k-cluster , since if after the votes made by the indicators,
a clear consensus is not reached, the user can use the dendrogram to be able to visually
interpret how the groups would turn out. So, if for example, the indicators propose to divide
the information into 2 or 3 clusters, without consensus, the user can decide, based on what
is observed in the dendrogram, to work with a k-cluster value of 2. Figure 9 shows an
example of dendrogram.

In our proposal, we compute the different values of k-cluster in a range between [0-10]
for each indicator using the hierarchical algorithm explained in Section 2.2.3 and when the
most voted, for a specific case study and entropy, is selected, that k-cluster value is used by
all the clustering algorithms in our proposal. For the example presented in Fig. 3, we have
obtained an optimal k-cluster value of 2.

Obviously, the entropy matrix and the k-cluster determinations represent two of the
weak points of our proposal, since, without an entropy matrix, it is not possible to determine
the k-cluster and without it, it is not possible to execute any clustering algorithm. In fact,
as it will be seen in Section 3, some results have not been possible to obtain due to the
impossibility of computing the entropy matrix, as is the case of Smart Farm with entropy
by transitions.

The selection of the most suitable distribution of traces among clusters to discover the
later process, and therefore, the value of k-cluster , is crucial since an incorrect distribu-
tion of the traces will produce non-understandable processes. In addition, there exists a
high computational complexity to find out the optimal distribution. As a first approach,
we propose to use a trivial algorithm (greedy), a complete algorithm (backtracking), and
two approximation algorithms (genetic and hierarchical). For this reason, the comparison
of the application of four algorithms greedy, backtracking, hierarchical, and genetic algo-
rithm is proposed to ascertain the most suitable distribution. In general, to find a solution



to a described problem, each algorithm must define how solutions are created. This implies
the definition of the following five components:

– A candidate set used to create a solution, this is the list of disordered traces that confirm
the problem that will be assigned to a cluster.

– A selection function, which chooses the best candidate among the candidate set to be
added to the solution. It chooses the cluster to be assigned for a trace.

– An objective function, which assigns a value to a solution, or a partial solution used to
compare the adjustment of the solutions. The objective function aims to minimise the
entropy of the traces assignment among the cluster.

– A solution function, which indicates when a complete and most appropriate solution
is discovered. It implies the assignment of every trace to a cluster.

Greedy algorithm Greedy algorithms are frequently applied in the case which the com-
putational complexity of the problem is very high, as is in the distribution of thousands of
traces in various clusters. A greedy algorithm is a strategy that evaluates each decision to
reach the optimal solution only taking into account the current state, with the goal of this
eventually leading to a globally optimum solution. This implies that the greedy algorithm
selects the best solution in each moment without regard for consequences in a far future,
only regarding the next candidate. The use of a greedy algorithm cannot assure to achieve
the best solution, however, the solution can be found in a short time.

We propose the ordered assignation of each trace to a cluster that minimises the global
defined entropy.

Let be {t1, . . ., ti , . . ., tn} the set of traces and {c1, . . ., ce, . . ., ck } the set of clusters
that represent the candidate set for each trace. The selection function choose the best cluster
ce, that minimises the entropy after the assignment (objective function). At the start, the
entropy is zero, when a new trace, ti , is assigned to a cluster, for instance ce, a new entropy
ei is obtained. In each step of the algorithm a trace is assigned to a cluster, if the set of traces
{t1, . . ., ti−1} have been already assigned to any clusters and being the current entropy ei−1,
when a new trace (ti) is assigned to any cluster (ce) a new entropy ei(ti , ce) will be obtained.

The trace ti is assigned to ce iff ∀cd | cd ∈ {c1, . . ., ce, . . ., ck} ei(ti , cd) ≥ ei(ti , ce)

Firstly, applying the proposed greedy algorithm to the ERP domain example with two
clusters, the traces distribution obtained the processes as shown in Fig. 6. Two of the four
traces have been grouped in each cluster according to Sf eatures . Secondly, three traces have
been grouped in one cluster and one trace in another concerning the Stransitions . The second
distribution is similar to the one shown in Fig. 5. The process models depicted in the figure
are in BPMN1 format.

Table 3 shows the resulting entropies for each algorithm, entropy type and distribution.
The entropy value present in the table for each pair of entropy type and algorithm is calcu-
lated as the mean of the partial entropies obtained by each cluster. As previously mentioned,
the entropies help to understand how similar are the configuration traces grouped into the
clusters concerning features and transitions. The values close to zero are the most desirable.
In this case, the backtracking and hierarchical with the entropy of features returned the best
results of distributions. Note that, the drawback of backtracking is affordable due to the
small size of the problem.

1BPMN: Business Process Model and Notation



Table 3 Entropy per algorithm and entropy for the ERP domain example of Fig. 5

Greedy Backtracking Genetic Hierarchical

Algorithm Algorithm Algorithm Algorithm

Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy

features trans. features trans. features trans. features trans.

0.625 0.9166 0.4375 0.9166 0.5 1 0.15 0.83

Backtracking algorithm A technique to analyse every possible solution is backtracking
algorithms, they solve problems recursively to building a solution incrementally, one deci-
sion at a time, such as the greedy algorithm but selection every assignment and removing
those solutions that fail to optimise the function.

The complete analysis of every solution implies an exponential computation time, mak-
ing backtracking algorithms a high time-consuming technique. For this reason, we applied
several improvements to reduce the possibilities:

• Apply a branch and bound mechanism to avoid the exploration of some branches, where
several solutions from the greedy algorithm are used to bound.

• Avoid symmetric solutions, to analyse equivalent solutions (assignments) with the same
number of traces together but in different clusters.

Let be {t1, . . ., ti , . . ., tn} the set of traces and {c1, . . ., ce, . . ., ck } the set of clusters that
represent the candidate set for each trace. The selection function chooses every cluster ce

(if more than one has no traces assigned yet, only one of them will be analysed to avoid the
creation of equivalent solutions), avoiding those that generate a higher entropy that the best
solution found until the moment. At the beginning, the entropy is the one obtained from
the greedy algorithm, when a new trace ti is assigned to a cluster ce, a new entropy ei is

Fig. 6 Processes obtained per clusters and entropies using a greedy algorithm



obtained. In each step of the backtracking algorithm, a trace is assigned to a cluster, then
if {t1, . . ., ti−1} have been already assigned to the clusters and being the current entropy,
ei−1, when a new trace (ti) is assigned to a cluster (ce), a new entropy ei(ti , ce) will be
obtained. If the new entropy (ei(ti , ce)) is a worse entropy than the best found until the
moment (ebestSol), the candidate will be skipped, a new trace will be assigned otherwise.

For all cluster cd a solution is created where a trace ti is assigned to cd iff ebestSol >

ei(ti , ce). Each new created solution will be used recursively in the backtracking algorithm.
Applying the proposed backtracking algorithm to the ERP domain example, with two

clusters, the traces distribution obtained is shown in Fig. 7. In this case, the models obtained
for both entropy are the same, for this reason, only the models for Sf eatures are shown.
The Cluster 0 grouped one trace and the Cluster 1 grouped the rest. Regarding the entropy
of features, this is the one of best distribution (i.e., assignment of traces to clusters). This
distribution is not obtained by the greedy solution, but the backtracking ensures that it is the
optimum solution in terms of the objective function.

However, even applying the aforementioned improvements, it has not been possible to
obtain results in our study cases with this algorithm, since, due to their size, the search could
not finish in an acceptable time as we will show in Section 3.

Genetic algorithm Genetic algorithms provide a trade-off between high computational
requirements and the necessity to find the best solution. Genetic algorithms are commonly
used to generate high-quality solutions that optimise the problems by relying on bio-inspired
operators such as mutation, crossover and selection by using a population of candidate
solutions, where it is necessary to define:

– A genetic representation of the solution domain is a list of assignments, li . Starting
from a set of traces {t1, . . ., ti , . . ., tn} and from a set of clusters {c1, . . ., ci , . . ., cn},
it is possible to build another list whose size is equal to the number of traces, in which
each li value will imply that the ti trace has been assigned to the ci cluster. For instance,
let be {t1, t2, t3, t4, t5} a set of traces and 2 the number of clusters to distribute them.
A possible assignment would be [0, 1, 0, 1, 1], which means that the traces t1 and t3
belong to cluster 0 and traces {t2, t4, t5} to cluster 1.

– A fitness function to evaluate the solution domain seeks to group the maximum number
of traces according to their entropy and is a maximisation function based on the entropy
value of the assignment. It is calculated as the inverse of entropy (Entropy-features or
Entropy-transitions) plus one to which we add three weights according to the advan-
tages of the assignment. Each of the weights refers to one goodness of allocation: (g1)

Fig. 7 Processes obtained per clusters and entropies using a backtracking algorithm



there are not empty clusters; (g2) the number of traces assigned to each cluster is bal-
anced, and; (g3) the similarity between the traces within each group is also balanced.
With this fitness function the individual will be better, the higher fitness value it gets.
We preserve the same objective function for all algorithms, which is the entropy, but in
the case of the genetic, just the entropy as the objective function is insufficient, because
there are situations in which clusters can be empty or unbalanced. To adjust better the
solution, we included some weights. These weights are discrete values and allow us to
penalise or favour a certain individual regarding its characteristics. These weights are
not necessary for the rest of the algorithms applied, because, by their construction, they
take care that the events considered in functions g1, g2, g3 do not occur. For instance,
the backtracking algorithm includes mechanisms to avoid those solutions that include
empty clusters or in which the clusters are unbalanced. However, the genetic algorithm
we apply does not possess these abilities and requires the objective function to explic-
itly penalise candidates that would not be acceptable solutions. As these weights are
discrete values, they are customisable and adaptable to the context of each problem
and user, so that the user can decide which properties want to enhance or soften in the
allocations.

f itness = 1

1 + entropy
+ g1 + g2 + g3 (3)

– Different rates will determine the evolution of successive populations during the exe-
cution of the algorithm, and therefore, of the final solution. the maximum population
growth has been limited to 600,000 generations, each one with a size of 80 individ-
uals. We have used an elitism rate of 30%, a crossover rate of 80% and a mutation
rate of 70%. This selection of the parameters is due to different trial and error tests, in
which this parameterization has yielded the best results. The trial and error tests were
performed with all the cases to find the best general parameterization. Once the best
combination of parameters was determined, the same one was used for all the experi-
mentation. The designed test consists of the execution of each case several times with
different parameters configuration and the calculation of the average execution time (in
seconds) spent in each.

– Crossover policy: one-point crossover, where a random crossover point is selected and
the first part from each parent is copied to the corresponding child, and the second parts
are copied crosswise.

– Mutation policy: binary mutation, in which randomly one gene is changed.

Applying the proposed genetic algorithm to the ERP domain example with two clusters,
the traces distribution obtained the next processes as shown in Fig. 8. In this case, the genetic
algorithm seems to balance quite well each cluster considering both entropy distributions.
In both cases, each cluster groups two traces. However, as will be seen later in Section 3, it
is not the one that offers the best results in terms of entropy.

Hierarchical algorithm The well-known hierarchical agglomerative clustering algorithm
is based on the work by Ward (1963) as the combination of hierarchical and agglomerative
clustering.

As it was previously stated, we use this algorithm with our entropy matrix as the distance
matrix. From here, it is possible to decide which grouping criteria the algorithm must fol-
low when creating clusters. Examples of this methods are single-linkage, complete-linkage
(Hubert 1974), average-linkage (Murtagh 1983), and Ward (Ward 1963). Being the last one,
the one used in our solution, since it is one of the most used in practice and it has proven



Fig. 8 Processes obtained per clusters and entropies using a genetic algorithm

to be more accurate obtaining the optimal distribution, than the previous ones and avoiding
that the partition in groups distorts the original information (Kuiper and Fisher 1975).

On the first hand, hierarchical clustering is defined as a procedure to form hierarchical
groups of mutually exclusive subsets, each of which has members that are maximally similar
concerning the specified characteristics. In the same study, authors define the process as
“assuming we start from n sets, it permits their reduction to n−1 mutually exclusive sets by
considering the union of all possible n(n−1)

2 pairs and selecting a union having a maximal
value for the objective function”.

On the other hand, agglomerative clustering is an algorithm that starts from the assump-
tion that each element constitutes a cluster by itself (singleton) and it successively merges
these singletons forming clusters until a stopping criterion is satisfied which is also
determined by the objective function.

The elements used in our solution are based on both entropies presented (features and
transitions), combined with the objective function Ward’s minimum variance method (Ward
1963). This function aims to minimise the sum of the squared differences within all clusters,
which means, a variance-minimising approach. Figure 9 shows the obtained dendrogram2

for the example in Fig. 3 by using Entropy-features. In the mentioned dendrogram, a hori-
zontal line that intersects perpendicularly with two lines, appears, symbolising partitioning
into two groups: the first one, corresponding to the first cluster, which contains only one
trace, and the second, corresponding to the second cluster, which contains the three remain-
ing traces. The positioning of the horizontal line is determined by the optimal k-cluster

value since this line must be placed at a height where it intersects with as many vertical lines
like the k-cluster value is.

Once the clusters have been generated, it is possible to create a new log for each one of
the clusters and to discover the workflows corresponding to them. In the same figure, the

2Dendrogram that is a branching diagram which represents the arrangement of the clusters produced by the
corresponding analyses



Fig. 9 Clustering for the ERP excerpt using the Entropy-features in an agglomerative clustering algorithm

process models obtained according to the clustering division based on entropy-feature and
transition have been included, since the same models are obtained using both entropies.

2.2.4 Configuration workflow discovery with process mining

As it could be seen in Fig. 2, once the clusters have been obtained, the next step is to generate
the logs for each cluster and execute the process mining on each one of them.

Process mining is a family of techniques based on event logs that can be categorised as
process discovery, conformance checking and enhancement (van der Aalst 2016). In this
paper, we are focused on the use of process mining to analyse the configuration logs for
the discovering of configuration workflows based on user experiences. Process discovery
in process mining brings together a set of algorithms to generate a workflow process model
that covers the traces of activities observed in an organisation (Maruster et al. 2002). The
evolution of algorithms during last decades has allowed the discovery of complex models
that are able to involve not only the activities executed in the daily work of companies but
also the persons who execute them and the used resources.

Process mining is an important topic that has been well received by the enterprises, bring-
ing about the evolution of the research solution tools (e.g., ProM (van Dongen et al. 2005))
to commercial solutions (e.g., Disco3 and Celonis4). This facilitates its applicability to sev-
eral contexts and areas, although variability has been out of the scope of these techniques
before our proposal.

3https://fluxicon.com/disco/
4https://www.celonis.com/



The purpose of obtaining these configuration workflows is to assist the user who per-
forms the configuration. So that, thanks to this help, it is possible to know what actions must
be taken before others, which of them can be carried out in parallel, with which activity
should start the configuration, what task should be performed after the current one in order
to do it optimally, etc. In this way, following our example, a user who is facing the configu-
ration of an ERP system could know that he could start by configuring the CRM, after that,
the task list, followed by the calendar, ending with the credit card.

Process discovery in process mining uses a set of traces similar to the configuration log
shown in Fig. 3, to obtain a model that covers the possible traces. Figure 4 shows the process
discovered by Disco tool-suite of the example, which covers every possibility configura-
tion trace. The relational patterns among the definition of the features become part of the
model. For example, two features can be the first in the traces (CRM or Project manage-
ment) or after CRM always Task List is selected. Figure 4 also shows the number of traces
that are represented by each transition as labels of the edges, giving information about the
importance of each part of the traces in the obtained model.

2.3 COLOSSI implementation

COLOSSI is supported by the implementation of a framework which is made up of one
module for each activity of the process shown in Fig. 2.

1. Configuration log extractor is a piece of a software module which takes a set of raw
configuration log (including timestamps) in a semi-structured format and returns an
XES file. It corresponds to the activity with the same name in Fig. 2.

2. Configuration log handler is another piece of software which takes a FM and an XES
log as input. First, apply a set of operations over the FM as described in Section 2.2.2.
Then, a data cleaning is carried out over the XES log to get a filtered configuration log.
The output of this connector is a new XES log with the filtered configuration log. It
corresponds to the activity with the same name in Fig. 2.

3. Cluster generator is a Python/R module which takes an XES log file which is translated
into a matrix. This matrix enables the entropy calculation and the optimal k-cluster

that will be used when some of the clustering algorithms are applied to determine the
clusters. A new XES log file is generated for each cluster that composed the final output
of this component. This module is represented in Fig. 2 by the activity called Configu-
ration log cluster generator, the different clustering algorithms that can be applied and
the generation of new the logs.

4. Discovery connector is a piece of software which gets the XES file logs of each cluster
and automatically feed the ProM to discover the process models utilizing the Inductive
Miner. The output of this component is a process model in Petri-net or BPMN format.
This module is depicted in Fig. 2 by the Process Discovery activity.

The reason for using ProM in our proposal is because it is the free framework most used 
by the academy. In it, the Process Mining community adds its contributions as plug-ins, and 
therefore, it is always up-to-date with new solutions to problems that are under research. On 
the other hand, it is a very powerful tool that contains all the Process Discovery algorithms, 
and its construction allows it to be used inside of another software. The selection of the 
Inductive Miner algorithm is reasoned by the great capacity of this algorithm to fully adjust 
to the behaviour observed in the log. As explained in Section 3.4, it is one of the most 
robust algorithms, which produces better results when facing non-synthetic logs, ensuring 
the correctness of the models obtained. Its parameterization has been adjusted to 100% of



fitness, in such a way that all the configuration workflows obtained will completely cover
all the traces contained in the log, representing all the possible behaviours that have been
collected.

All the resources, thus, configuration logs, the XES files, the workflows discovered, the
source code of the COLOSSI framework (i.e., git repository), and a Jupyter notebook that
are employed in this work are freely available at5 http://www.idea.us.es/empiricalsoftware/.
The notebook is self-explanatory and allows users to work interactively by executing step-
by-step instructions to get the clusters.

3 Evaluation

In this section, we present the evaluation of COLOSSI. Concretely, the evaluation of the
algorithms of clustering detailed in Section 2 to different configuration logs obtained from
three real scenarios. Moreover, the suitability of each algorithm according to a set of metrics
are analysed.

3.1 Experimentation data

In order to analyse the applicability of our example in a configuration real scenario, we
propose three different scenarios where the creation of the configuration workflow can
be obtained from a set traces: a real ERP (enterprise resource planning) configuration,
smart farming, and a computer configurator. Please note that the number of possible prod-
ucts depicted by the models is an interesting metric to understand the usefulness of this
approach when performing variability reduction. However, our approach relays on the num-
ber of real configurations to obtain the configuration workflows. This is further explained
in Section 3.5.

3.1.1 Enterprise resource planning

This dataset (Pereira et al. 2016b) reflects the information of a real ERP variability among
a set of configuration logs. The ERP feature model has 1920 features and 59044 cross-tree
constraints. Also, the configuration log consists of 35193 event occurrences that represent a
total of 170 different configuration traces with an average of 207 features per configuration
trace.

3.1.2 Smart farming

This dataset represents several e-commerce transactions from the agribusiness
domain (Pereira et al. 2016a). Concretely this model consists of 2008 features. It contains
features targeting final customers (around 10%) and business to business (around 90%).
Each log consists of a real configuration developed for a concrete user or business hav-
ing a total of 5749 logs and up to 109 possible configuration due to the lack of cross-tree
constraints.

5https://doi.org/10.5281/zenodo.3574053



3.1.3 Computer configuration

This dataset represents the variability existing in a Dell laptop (Pereira et al. 2018a). It
reflects features such a processor or display, among others. Concretely this feature model
represents 68 features with seven cross-tree constraints that encode up to 109 configurations
according to their creators.6 The configuration log is composed of 42 configurations of such
a model.

3.1.4 COLOSSI setup

In this section, we detail each task of the framework presented in Fig. 2.

Configuration log extractor The input data of the configuration examples (i.e., ERP,
farming and computers) are represented in CSV files with two elements (columns), the con-
figuration id and the f eature that is configured. Note that a feature can appear in one or
more traces, but no more than once in the same trace. Then, the timestamp required to extract
the traces was taken by the line number in which the features were appearing throughout
the file in sequential order. This is, we assume that the timestamps were implicit based on
the order of appearance (i.e., line numbers). In all cases, we iterated over all configura-
tions extracting the orders. Finally, we transformed them into a more standard format for
traces. Concretely we use in our solution the IEEE Standard for eXtensible Event Stream
(XES) 2016. This is a standard to serialise, store and exchange events data, that is commonly
used in process mining tools.

Configuration log handler To clean up the set of configurations retrieved by the extractor
we decided to consider only valid partial and full configurations. This filtering operation
is performed by using the FaMa framework (Felfernig et al. 2018), with the intention of
keeping only valid configurations in the log, to avoid introducing noise into the results as a
consequence of the use of invalid traces.

After filtering, the valid partial configurations using automated analysis (Galindo et al.
2018), for each case are: for ERP ended up considering 61 configuration traces from the
initial set of 170, Farming example initially has 5749 traces and 919 after the filtering, and
dell configuration contained the full 42 of the initial set (i.e. all traces were valid).

Determining the number of clusters As commented previously, before applying any
grouping algorithm, the optimal number of clusters (i.e., optimal k-cluster) must be
determined for each use case and entropy by applying the indicators established in
Section 2.2.3.

For the three examples, as it was previously stated, we propose to analyse a range
between [0-10] for k-cluster since the obtained clusters will be used to create configura-
tion workflows later used by humans. In this context of the application and the number of
traces of the examples, we consider this range proper on the bases of the results shown in
Table 4, that summarises the number of clusters calculated by using each case and entropy.It
is important to note that due to the impossibility of computing the entropy matrix for the
Smart Farm case with entropy transitions, results for this case will not appear in that table.

As described previously, the distribution of the traces among the cluster is a complex
activity, and the best assignment is not a trivial task. For this reason, COLOSSI framework

6https://wwwiti.cs.uni-magdeburg.de/∼jualves/PROFilE/datasets-download/Dell-Laptop readme.txt



Table 4 Number of clusters per
use case and entropy Config. Workflow Entropy N. of Clusters (k-cluster)

ERP Sf eatures 5

Stransitions 3

Smart Farming Sf eatures 6

Stransitions -

Config. Computer Sf eatures 2

Stransitions 8

provides a set of techniques to be applied once the traces have been generated from the raw
data. The objective of each algorithm is the same to distribute the traces among a determined
number of clusters to minimise the summing of the entropy of every cluster for a later
application of discovery process algorithms for each cluster.

Nevertheless, there are no approach helping to determine the optimal k-cluster in algo-
rithms such as backtracking or genetic, which is why, in our proposal, the optimal number
of clusters is always determined using the hierarchical with the entropy matrix. Once an
optimal k-cluster value has been found for a case study and an entropy type, this value is
used in all grouping algorithms for that case study and that entropy.

3.2 Analysis of clustering

As introduced in previous sections, two different entropies are applied to infer the cluster-
ing (i.e., Entropy-features and Entropy-transitions). The two entropy formulas can help to
understand the quality of the future workflow. Thus, a lower value of entropy more quality
of the cluster, hence, the workflow has more quality.

Table 5 shows the results obtained for each case and each algorithm taking into account
the two entropies defined (feature and transitions). For a better comparison, the metrics
associated with the clusters are aggregated as arithmetic means. For the sake of the results,
the entropy of features are the best distributions in all the cases except for Computer Con-
figuration in the hierarchical algorithm. These results will be confirmed with complexity
results obtained with the metrics in Section 3.4.

It is important to emphasise that no results have been obtained for the backtracking algo-
rithm and some of the cases for the entropy of transitions, caused by the huge exponential
complexity that the examples imply. Because of this, two drawbacks of our approach have
been identified in the application of algorithms and the determination of entropy. Regarding
the backtracking algorithm, the use of a complete algorithm requires to explore all the space
of solutions hence in most of the cases it requires exponential time depending on the size of
the problem in terms of features, traces, and the number of configurations. The high number
of features, traces, and configurations in the data used for experimentation made impossi-
ble the application of backtracking algorithm in an acceptable time since its executions in
the simplest cases took more than 24 hours without results. Also, it is necessary to build an
entropy matrix that acts as a distance matrix to determine the number of clusters. Due to
the complexity of some scenarios, the creation of the entropy matrix was computationally
impossible, disabling the calculation of the k-cluster and consequently, the execution of
the clustering algorithms. This is the case of Smart Farming where the entropy matrix with
entropy-transitions was unapproachable in linear time, taking more than 10 hours.



Table 5 Entropy per algorithm and example

Greedy Genetic Hierarchical

Algorithm Algorithm Algorithm

Entropy Entropy Entropy Entropy Entropy Entropy

features transitions features transitions features transitions

ERP 0.2170 0.802 0.4609 0.793 0.1759 0.8585

Smart Farm 0.5137 – – – 0.5990 –

Computer Configuration 0.7830 0.9313 0.7264 0.9492 0.2566 0.2352

As previously highlighted, the characteristics and size of the configurations data will
condition the achievement of results with clear limitations of resources and time. There-
fore, it is necessary to compare the execution times of each algorithm for each example.
Table 6 shows the duration in minutes of executions from when the clustering algorithm
starts until it reaches a solution. Something important to highlight in these execution times
is the evidence that the hierarchical algorithm is much faster than the rest, mostly, because
the task that requires the longest computation time is the construction of the distance matrix
(in COLOSSI, entropy matrix) and this had previously been done to calculate the optimal
k-cluster . In the rest of the algorithms, the entropy matrix does not apply and they build the
distances during their executions, this is the reason why their computation time is longer.

3.3 Statistical analysis of results

To check if the running algorithms have an actual impact on the Entropy performance indi-
cators we used the Null Hypothesis Statistical Test in which two contrary hypotheses are
formulated. On the first hand, the null hypothesis (H0) states that the selected techniques
do not influence the obtained results (i.e., the algorithm has no impact on the entropy of
the retrieved models). On the other hand, the alternative hypothesis states that the selected
algorithm impacts the obtained results significantly (i.e., selecting a greedy or a hierarchical
algorithm impacts the entropy obtained).

We decided to fix such hypothesis to understand if our techniques to improve the entropy
of the resulting clusters were affected by the technique, and thus, can be useful in variability-
aware scenarios. This is, testing this hypothesis intend to check whether the application of
techniques coming from other contexts (e.g. process mining) provide meaningful results on
variability-intensive systems.

Table 6 Execution times in minutes per algorithm and example

Greedy Genetic Hierarchical

Algorithm Algorithm Algorithm

Entropy Entropy Entropy Entropy Entropy Entropy

features transitions features transitions features transitions

ERP 1.76 0.75 105 12 0.016 0.016

Smart Farm 152 – – – 0.016 –

Computer Configuration 0.026 0.041 15 15 0.016 0.016



Such executed tests provide a probability value (called p-value) which ranges from 0 to
1. The lower the p-value of a test, the more likely that the null hypothesis is false, and the
alternative hypothesis is correct. It is established that p-values under 0.05 or 0.01 are so-
called statistically significant, which let us assume that the alternative hypothesis is likely
true.

In this analysis, we only checked instances of the greedy and the hierarchical algorithm.
This is motivated by the lack of results for all models of the genetic and backtracking
algorithms for each case study. Note that this unavailability points out that the results are
dependent on the techniques.

The test we relied on for performing the statistical analysis and obtain the p-values
depends on the properties of the data (Derrac et al. 2011). Concretely, we executed the
Wilcoxon test (Wilcoxon 1946) and were not able to prove that our data follow normal dis-
tribution so, we had to rely on non-parametric techniques. We executed Friedman’s tests for
both entropy metrics, obtaining a p-value of 0.0455, and a statistics of four in the case of
the feature-based entropy. Thus, we have to reject the null hypothesis and then, accept the
alternative one. Therefore, for the case of feature-based entropy, the selection of the appro-
priated algorithm impacts the quality of results. Secondly, we obtained a p-value of 0.5637,
with a statistic of 0.333 for the case of transition-based entropy’s which prevents us from
rejecting the null hypothesis.

These results provide two main insights. First, we observe that for the feature-based
entropy is heavily dependent on the method used. Second, we can not determine if the
transition-based entropy is being affected by the method.

3.4 Analysis of discovered configuration workflows

To evaluate how the application of different clustering algorithms can improve the configu-
ration workflows obtained by COLOSSI, in this section, for each case study and algorithm,
we compare the models discovered by using a set of metrics. For each algorithm, entropy
and case study, the workflows corresponding to (1) the filtered version of the same log
including only valid configurations (i.e., after applying configuration log handler) and; (2)
the set of clusters obtained after applying cluster generator explained in Section 2.2.3. The
mentioned metrics helps to compare with each other, in terms of complexity and under-
standability, the configuration workflow of the filtered log and those extracted after the
clustering. This means that we measure the quality of the resulting configuration workflow,
without taking into account the input data of the feature model.

The analysis is carried out following two different perspectives: (1) the analysis of the
discovered configuration workflows and (2) the analysis of the set of configuration traces
involved in each cluster used in the process discovery.

First, we highlight that inductive process discovery techniques used by COLOSSI ensure
the soundness and correctness of the process models obtained (Leemans et al. 2015). Thus,
an analysis of the soundness and correctness of the configuration workflows are unnecessary
since processes discovered is always complete, have a proper completion, and have no dead
transitions.

However, the complexity of the configuration models are affected by the number of fea-
tures, the number of configuration traces and the number of transitions. The filtering of
the configuration traces or the division of the logs will bring about simpler configuration
workflows. Table 7 depicts comparatively the number of features, configuration traces and
transitions of the set of configuration logs using in each case study. The data of features,



Table 7 Characteristics of the configuration logs

Greedy Genetic Hierarchical

Algorithm Algorithm Algorithm

Original Reduction Entropy Entropy Entropy Entropy Entropy Entropy

Ratio Feat- Transi- Feat- Transi- Feat- Transi-

ures tions ures tions ures tions

ERP Features 425 48.66 129.40 253.67 211.40 333.67 146 229.67

Transitions 2,028 64.20 260.40 863.67 806.40 1,521.33 296.40 462.33

Traces 61 72.77 12.20 20.33 12.40 20.33 12.40 20.33

Smart Features 1,420 60.01 723.33 – – – 712 –

Farm Transitions 2,844 8.95 3,394.33 – – – 1,794.17 –

Traces 919 83.33 153.17 – – – 153.17 –

Computer Features 53 39.68 41.40 22.38 39 30 35 24

Configur- Transitions 205 43.15 174 65.38 151 102.25 106.50 59

ation Traces 42 66.86 21 5.25 21 5.25 21 10

transitions, and configuration traces of the clusters have been aggregated per use case, clus-
tering algorithm and type of entropy to show the average for every cluster obtained as a
solution after the application of the algorithms of clustering. In addition, the reduction ratio
column contains the average rate by which each characteristic has been reduced with respect
to the value presented by the original log.

The number of features and configuration traces grouped in the different clusters are
decreased in comparison with the original case since they are distributed among the clusters.
Regarding the transitions, these values are affected by the entropy and the algorithm used. In
general, the number of transitions is reduced, but it could happen, that because the grouped
traces are formed by non-common features, the number of transitions can increase, as is the
case of smart farming in the greedy algorithm.

In conclusion, clusters reduce the complexity of configuration workflow discovered by
reducing the configuration traces involved in the same configuration workflow. However,
the question is in what level the quality of the obtained workflow is improved, and which
distribution of cluster-entropy works better.

In the literature, several metrics are used to measure how “good” is a design of a business
process model (Mendling 2008; Pérez-Castillo et al. 2019; Cardoso 2005). Discovered con-
figuration workflows are also processes with features instead of activities, therefore, these
metrics can be adapted to measure the quality of our obtained configuration workflows. The
next set of metrics is adapted to measure the understandability and the complexity of the
configuration workflows to compare the discovered configuration workflows:

– Density: the ratio of transitions divided by the maximum number of possible transitions.
The lower the value of density, the higher the understandability.

– Cyclomatic number (CC): the number of paths needed to visit all features. The cyclo-
matic can be seen as a complexity metric, thus, the lower the value of CC, the lower
the level of complexity.

– Coefficient of connectivity (CNC): the ratio of transitions to features. The greater the
value of CNC, the greater the complexity of configuration workflows. Although, the



authors in Mendling (2008) remark that models with the same CNC value might differ
in complexity regarding this parameter.

– Control Flow Complexity (CFC) enables to measure the complexity in terms of the
potential transitions after a split depending on its type. The greater the value of the
CFC, the greater the overall structural complexity of a workflow.

These four metrics help us to know the complexity and understandability of the configu-
ration workflows from the design perspective and the elements in the model. Nevertheless,
these metrics used to measure the quality of the workflow are inconclusive to measure
the real usefulness and quality of the discovered workflows applied to the context of the
variability management.

As previously mentioned, the uselessness of the quality metrics related to the work-
flows leads us to define a new custom metric which enables to establish the quality level
of the workflow by relating the number of features and their occurrence within the discov-
ered workflow of a cluster. Thus, a metric that enables us to measure how spaghetti is the
workflow obtained. Our custom-quality metric is defined as follows:

– Quality (Δ≡) measures the difference between the total number of features and the ratio
of the sum of the number of times that a feature is selected for each configuration trace
and the number of configuration traces.

Formally, given a workflow based on a set of configuration traces (CT ) and a set of
features (Features), the quality can be determined as the following formula:

Δ≡ = |Features| −
∑

f ∈Workf low

occurrences(f )

|CT | (4)

The range of the quality is [0..|Features|], the lower value of quality a better configu-
ration workflow is indicated. The number of features and configuration traces are grouped
into the most similar workflow, therefore, it brings about that the quality is near to 0.

To make the application of metric more understandable, we use the first example of Fig. 3
and the Cluster 2 in Fig. 5. The number included in the rectangle, next to the name of the
feature, corresponds to the number of traces within the cluster where the feature appears.
Hence, the quality for the Cluster 2 can be determined by applying the formula as follows:

Δ≡ = 8 −
(

3

3
+ 3

3
+ 1

3
+ 1

3
+ 1

3
+ 1

3
+ 1

3
+ 1

3

)

≈ 4 (5)

The results obtained for these five metrics are shown using box-plot charts represented
for each scenario in (Figs. 10, 11 and 12) to compare distribution by metric, algorithm and
the type of entropy for each case study. The y axis represents, on a logarithmic scale, the
results of each metric for the configuration workflows obtained using a specific algorithm.
Detailed values for each case and metrics can be consulted in the Appendix section.

In the case of ERP scenario, Fig. 10 shows that the values for CC and CFC metrics are
equal and significantly higher, which implies that the connectivity of the workflow is higher,
increasing its complexity. In addition, in the case of the genetic algorithm, it is important to
highlight the importance of the type of entropy, which will determine whether the clusters
generated after the assignment have similar levels of connectivity or not. For Density and
CNC metrics, all algorithms have similar behaviour regardless of the entropy used. In terms
of Quality, it is clearly observed how the use of entropy by transitions produces considerably
more complex workflows.

In the Smart Farm example, the greedy algorithm produces slightly more complex work-
flows but also more balanced clusters as shown in Fig. 11. Also, the hierarchical clustering
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Fig. 10 Metrics distribution of ERP case study

generates less similar clusters, which reduces the complexity and the connectivity, as it is 
clearly observable for the case of Quality metric.

Finally, there are no remarkable differences between the three algorithms for the case of 
Computer Configuration, since they all produce very similar results as shown in Fig. 12. 
Exclusively, the use of the hierarchical algorithm with transitions entropy could be distin-
guished as the solutions with less complex configuration workflows. Nevertheless and in
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Fig. 11 Metrics distribution of Smart Farm case study

contrary to the other cases, in this particular scenario better general results of Quality are
obtained using the entropy of transitions.

To compare all the cases with each other, we propose Fig. 13. This figure represents the
average values of each metric for each case study in aggregate. In this way, we intend to
compare the three examples in terms of complexity, taking a holistic view of the average
values obtained by each for each metric. Thus, it is noteworthy that the mean values for three
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Fig. 12 Metrics distribution of Computer Configuration case study

of the metrics for the Computer Configuration case are significantly smaller than in the other 
cases, which can mean that the workflows obtained from this example are less complex. 
On the other hand, in light of the results shown in the chart, we can realise that, for these 
cases, the Density and CNC metrics do not help to discriminate the real level of complexity 
of the workflows produced with COLOSSI, since they present the same average value for 
the three cases. Nevertheless, the Quality, CC and CFC metrics present the highest values 
for the Smart Farm case, which could lead to higher levels of complexity and connectivity. 
It can also be inferred that Computer Configuration may be the most balanced case since 
all its edges have approximately the same length. In the case of ERP, it is remarkable how 
all its complexity can be focused on its high degree of connectivity, reaching the maximum 
of our evaluation. The fact that the Smart Farm example occupies a larger area between the 
Quality and CFC metrics denotes that, probably, this case contains a much greater number 
of features, transitions and splits than the other cases.

3.5 Threats to validity

Although the experiments presented in this paper provide evidence that demonstrates the 
validity of the proposed solution, in this section, we discuss the different threats to validity 
that affect the evaluation, derived from the assumptions that we made.

External validity The inputs used for the experiments presented in this paper were either 
realistic or designed to mimic realistic feature models. However, we do not control the 
development process and it may have errors and not encode every configuration for all case 
studies.



Fig. 13 Average of metrics of the configuration workflows

The major threats to external validity are:

– Population validity: the three examples that we used do not represent all configuration
traces. Note that all of the models were provided after an anonymisation process. More-
over, the timestamps used to derive the traces were relying on the appearance within the
input file without an explicit enumeration. To reduce these threats to validity, we chose
some large models that were used in different studies in the literature. Also, we were
not directly involved in the development of such models which

– Ecological validity: while external validity, in general, is focused on the generalisation
of the results to other contexts (e.g., using other models), the ecological validity if
focused on possible errors in the experiment materials and tools used. To avoid as much
as possible such threats, we relied on previously existing algorithms to perform the
process discovery.

– Limitations depending on the input data: another external validity problem lies with the
shape and size of the input data. As previously stated, one of the important bottlenecks
of this solution is the construction of the entropy matrix, since, without the matrix, it
will not be possible to determine the optimal k-cluster , and therefore, to apply our
solution.

– Limitations on the use of feature attributes: as mentioned in Section 2.1, features may
contain attributes with more information, which has not been taken into account in
our solution. Ignoring this data means that the selection of the same feature with dif-
ferent values in its attributes cannot be differentiated in the resulting workflows. This
represents an important weakness of the approach since the use of this information
would mean that different paths would be generated in the workflow for the same fea-
ture with different values in its attributes. While in our solution, it is considered as the
same one.



Internal validity We developed several algorithms and metrics that reveal different proper-
ties of the workflows. To mitigate this threat, we have relied on a diversity of approaches.
However, there might be characteristics of such workflows that are not revealed and further
research should be developed. Also, another major threat to internal validity was the short
number of models and configuration available in which we were able to test our techniques.
In this case, we tried to cover all the models we found in the literature.

3.6 Examples of discovered configuration workflows

Derived from the high number of implementations and test cases tackled in this paper, every
configuration workflow cannot be included in the document. However, for the sake of illus-
tration, two configuration workflows of the ERP are shown in Figs. 14 and 15. Both figures
represent the obtained clusters according to the dendrogram built by means of the entropy of
features and transitions analysis respectively. In the case of entropy of features (cf., Fig. 14),
five clusters are obtained. On the other hand, when the entropy of transition is used, three
clusters are derived to split the configuration logs into simpler configuration workflows.
In the following subsections, the details about the obtained configuration workflows and
clusters are analysed. Moreover, every obtained cluster distribution for each algorithm, case
study and type of entropy are available at http://www.idea.us.es/empiricalsoftware/.

4 Related work

This paper combines different research areas, for this reason, this section is structured
to cover the main ones: configuration workflows, application for process mining and the
variability in process mining.
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Fig. 14 Clustering for the ERP example using the Entropy-features
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Fig. 15 Clustering for the ERP example using the Entropy-transitions

4.1 Configuration workflows

A formal description of configuration workflows is given in Hubaux et al. (2009). However,
a configuration workflow is a bit different from our definition. The activity of the config-
uration workflow can be mapped to more than just a feature as in our case. However, our
approach is complementary because in the handling process we can group different features
as well. Furthermore, although formal semantics and automated support for configuration
workflows are presented, no automated mechanism is developed to automatically gener-
ate configuration workflows from existing configuration logs. In that sense, our approach
complements theirs.

Different possible feature orders are defined in Galindo et al. (2015). Those orders are
used to build web–based configurators hiding the details of the concrete variability model
flavours (e.g., OVM, FMs, CVL, etc.). The orders are built from the structure of the vari-
ability model. For instance, in the case of FMs, pre-order, post-order or in-order can be
used to determine the feature order in which features are presented to the user. COLOSSI
differs from this approach because we use as input configuration logs to automatically
derive and cluster configuration workflows. Our approach can be complementary to Galindo
et al. (2015) because different existing workflows could be also measured using process
alignment metrics to determine what is the best feature order to be used.

There exist other approaches (Wang and Tseng 2011, 2014) focused on the field of
product configurator design in which configuration workflows has been tackled from the
perspective of machine learning. Neither of these two approaches uses clustering or process
mining. Both are based on probabilistic estimations aided by a recommendation system that
recalculates and guides the user through each step. This means that the user can lose the
holistic view of the entire configuration process since from the step n he/she can only know
the different possibilities that he/she can do in the step n + 1. With our proposal, the user
has, from the beginning, an overall perspective of the entire configuration process from start
to finish.



4.2 Application of process mining in different contexts

In order to discover the processes followed by users or systems analysing event logs, pro-
cess mining has been applied in several scenarios. Depending on the scenario, different are 
the points of view that could be used to discover a process, such as the activities executed, 
persons involved, the resources used, the location where the actions occur, etc. The versa-
tility of process mining techniques has brought about its application to several scenarios 
(Dakic et al. 2018), healthcare (Mans et al. 2009; Rozinat et al. 2009; Perimal-Lewis et al. 
2016) and IT (Sahlabadi et al. 2014; Măruşter and van Beest 2009; Pérez- ́Alvarez et al. 
2018; Fernández-Cerero et al. 2019) being the most active areas.

The case studies where event logs are produced by human behaviour interactions are 
especially complex, derived from the free-will capacity of the persons that is not always 
possible to be modelled. This is the context of this paper, where configuration tasks describe 
the interaction of users with systems. Previous examples in previous scenarios have been 
developed, such as Astromskis et al. (2015), to analyse how the users interact with an enter-
prise resource planning software, or the applicability of software scenarios analysing how 
the users interact with software to promote improvements about functional specifications 
or usability aspects (Rubin et al. 2014). Software development has also provided a com-
plex scenario where process mining can provide a mechanism to improve and optimise the 
known as software process mining (Rubin et al. 2007). However, configurability issue has 
not been analysed before with process mining.

4.3 High variability in process mining

When there is a high human interaction, as in configuration processes, spaghetti and 
lasagne processes tend to be obtained. The occurrence of infrequent activities or non-
repeated sequence of activities in the analysed log events brings about the necessity to apply 
frequency-based filtering solutions (Conforti et al. 2017) and other based on the discovery 
of a chaotic set of activities that can be frequent (Tax et al. 2019).

The infrequence patterns in process discovery are frequently treated as noise (Ly et al. 
2012), being removed from the log traces to discover a process that represents the most 
frequent behaviour (Sani et al. 2017). Different types of filtering can be performed: (i) 
filtering the events that are not belong to the mainstream behaviour (Conforti et al. 2017; 
Sani et al. 2017); (ii) integrating the filtering as a part of the discovery (Leemans et al. 2014; 
Maruster et al. 2006; Weijters and Ribeiro 2011; vanden Broucke and Weerdt 2017); (iii) 
filtering traces, in an unsupervised (Ghionna et al. 2008) or supervised way (Cheng and 
Kumar 2015), and; (iv) including a previous steps for clustering the problem, facilitating 
the discrimination of traces according to different points of view or dividing different types 
of behaviour (de Leoni et al. 2016; Song et al. 2009; de Medeiros et al. 2007). In Sani et al.
(2019) clustering techniques have been used to improve the quality of process models, but 
not to distribute the traces in different clusters.

To our knowledge, this paper, which is as an extension of Varela-Vaca et al. (2019a), is 
the first solution for workflow retrieval in SPL-related contexts. It is also an achievement 
the application of process mining techniques in new fields. This paper aims at promoting 
synergies between these two areas of study, consider different types of algorithms, metrics 
or entropies, and they are not oriented towards the consideration of the characteristics of 
configuration workflows.



Our contribution described in this paper intends to promote synergies between process
mining and variability management and software product lines. We consider different types
of algorithms, metrics and entropies.

5 Concluding remarks & future work

In this paper, we have coped with the problem of extracting the actual workflows used by
SPL configurators by analysing configuration logs. To discover configuration workflows,
we decided to rely on process mining techniques. Moreover, we proposed to apply clustering
to improve the resulting configuration workflows reducing the complexity and improv-
ing their understandability. From our research on configuration workflows, we learned the
following important lessons:

1. Reduce the complexity of the configuration workflows. We have defined a mech-
anism based on clustering to divide the configuration logs into smaller configuration
groups to facilitate the understanding of the configuration workflows inferred from
configuration logs.

2. Quality measurement. We have defined a set of metrics adapted from business process
literature, to measure the quality of the obtained clusters and configuration workflows.

3. Improving decisions about configurators. The clustering creation and the analysis
of the obtained configuration workflows provide information to expert users about the
features that used to be configured together or sequential lists of features that could be
integrated into a single feature. In this way, thanks to the structure of the workflow,
the user will know that everything that appears in a parallel can be done simultane-
ously, while those that appear sequentially will indicate precedence relationships and
restrictions.

4. The selection of the clustering method depends mostly on the input data. Gener-
ally, hierarchical clustering provides good solutions, in terms of quality, velocity and
efficiency. However, it has an important bottleneck: the construction of the entropy
matrix, which will determine the time and resources necessary to achieve the results.
For the cases in which the construction of the entropy matrix becomes very hard,
less accurate algorithms, such as greedy or genetic algorithms may be more suit-
able. The greedy algorithm provides very acceptable results consuming less time,
and the genetic algorithm is positioned at an intermediate level for those cases in
which results very close to the optimum, are needed. Finally, backtracking ensures
optimal entropy minimisation and traces distribution. Unfortunately, the time and
resources needed will increase exponentially with the size of the data of the case
study. Lamentably, the use of these algorithms without the previous computation of
the entropy matrix and the optimal k-cluster , will imply that the number of clus-
ters chosen and the distribution of the traces, probably, will lead to a non-optimal
assignment.

5. The impact of the size and the morphology of the case study data on time and
metrics. Based on the results of the metrics in different examples, and the time and
resources that are necessary to get the solutions of each one, there seems to exists
a direct relationship among (i) features and the way in which these are related, (ii)
the time and resources that are necessary to compute the entropy matrix and the



optimal k − cluster , (iii) the time consumed for each algorithm until the clusters
are achieved, (iv) and the range of values in which the results of the metrics will
be.

In future work, we plan to develop new variability-oriented metrics that can show the
impact of the numbers of features within the workflows, trying to incorporate characteristics
of the feature models into the clustering and process discovery. Additionally, we would like
to incorporate the information present in the attributes of the features in the feature model
to achieve more realistic workflows. Moreover, we would like to apply this technique to
more scenarios and datasets to complement the validation of our proposal, including in the
analysis of other methods to tackle spaghetti processes. Further, we consider interesting to
investigate a proper way to obtain the best distribution clusters automatically for a defined
number of clusters. In addition, the search of optimum k − cluster is a very difficult task
such as shown in our work, therefore it is necessary to find out a way to discover an approxi-
mate k−cluster that ensures the achieved assignments not only are correct but they also are
potential solutions. We propose to study new formulas of seeking k − cluster based on the
structure (i.e., number of task and/or gateways) of initial workflows before clustering. From
our point of view, it is also relevant to propose multiple uses of the resulting workflows to
help in different areas such as reverse engineering or SPL testing. Another proposal is to
incorporate incorrect configuration to analyse the misalignment with the expected feature
model.
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Appendix : Quality metrics results

This appendix contains in the Tables 9, 10, 11, 12, and 13, the metric data represented
in Figs. 10, 11, 12. To facilitate the interpretation of the data, the values of the metrics
have been normalised in each metric, so that, all the results are between 0 and 1, allowing
comparisons to be made. In addition, Table 8 is included to show the metric values for the
original logs. With this, it can be seen how, in most cases, their values are closer to 0 after
clustering, meaning that the resulting configuration workflows are also less complex. Still,
it is important to note that it is very difficult to determine a generalisation regarding this
data, since they are too domain-specific.

Table 8 Metrics for the initial logs of each case study

Case Study Density CC CNC CFC Quality

ERP 0.05 0.49 0.96 0.49 0.26

Smart Farm 0 0.43 0.24 0.43 1

Computer Configuration 0.39 0.04 0.73 0.04 0.03



Table 9 Metrics for ERP case with entropy-features

Algorithm Density CC CNC CFC Quality

Cluster 1 Greedy 0.05 0.05 0.26 0.05 0.09

Hierarchical 0.16 0.02 0.24 0.02 0.05

Genetic 0.05 0.43 0.95 0.43 0.36

Cluster 2 Greedy 0.11 0.01 0.16 0.01 0.08

Hierarchical 0.05 0.04 0.20 0.04 0.16

Genetic 0.05 0.01 0.10 0.01 0.07

Cluster 3 Greedy 0.11 0.02 0.24 0.02 0.07

Hierarchical 0.05 0.05 0.26 0.05 0.09

Genetic 0.11 0.01 0.13 0.01 0.06

Cluster 4 Greedy 0.11 0.02 0.20 0.02 0.08

Hierarchical 0.05 0.05 0.25 0.05 0.002

Genetic 0.05 0.01 0.08 0.01 0.05

Cluster 5 Greedy 0.05 0.06 0.28 0.06 0.06

Hierarchical 0.05 0.04 0.25 0.04 0.02

Genetic 0.05 0.43 1 0.45 0.31

Table 10 Metrics for ERP case with entropy-transitions

Algorithm Density CC CNC CFC Quality

Cluster 1 Greedy 0.11 0.03 0.24 0.03 0.08

Hierarchical 0.05 0.10 0.24 0.10 0.24

Genetic 0.05 0.33 0.91 0.33 0.27

Cluster 2 Greedy 0.05 0.09 0.26 0.09 0.26

Hierarchical 0.05 0.05 0.22 0.05 0.19

Genetic 0.05 0.31 0.88 0.31 0.26

Cluster 3 Greedy 0.05 0.43 0.99 0.43 0.33

Hierarchical 0.05 0.05 0.25 0.05 0.002

Genetic 0.05 0.44 0.93 0.44 0.37

Table 11 Metrics for Smart Farm case with entropy-features

Algorithm Density CC CNC CFC Quality

Cluster 1 Greedy 0.05 0.80 0.92 0.80 0.82

Hierarchical 0 0.33 0.23 0.33 0.12

Genetic – – – – –

Cluster 2 Greedy 0.05 0.84 0.96 0.84 0.83

Hierarchical 0 0.25 0.25 0.25 0.90

Genetic – – – – –



Table 11 (continued)

Algorithm Density CC CNC CFC Quality

Cluster 3 Greedy 0.05 0.82 0.93 0.82 0.82

Hierarchical 0 0.14 0.24 0.14 0.46

Genetic – – – – –

Cluster 4 Greedy 0.05 0.81 0.94 0.81 0.82

Hierarchical 0 0.25 0.24 0.25 0.92

Genetic – – – – –

Cluster 5 Greedy 0.05 0.80 0.94 0.80 0.82

Hierarchical 0.05 1 0.94 1 1

Genetic – – – – –

Cluster 6 Greedy 0.05 0.83 0.96 0.83 0.82

Hierarchical 0.05 0.01 0.02 0.01 0.09

Genetic – – – – –

Table 12 Metrics for Computer Configuration case with entropy-features

Algorithm Density CC CNC CFC Quality

Cluster 1 Greedy 0.55 0.03 0.77 0.03 0.03

Hierarchical 0.72 0.02 0.73 0.02 0.02

Genetic 0.88 0.02 0.71 0.02 0.01

Cluster 2 Greedy 0.61 0.04 0.85 0.04 0.03

Hierarchical 0.33 0.01 0.33 0.01 0.03

Genetic 0.44 0.04 0.74 0.04 0.04

Table 13 Metrics for Computer Configuration case with entropy-transitions

Algorithm Density CC CNC CFC Quality

Cluster 1 Greedy 0.77 0.01 0.46 0.01 0.01

Hierarchical 0.33 0.02 0.47 0.02 0.02

Genetic 0.77 0.01 0.43 0.009 0.01

Cluster 2 Greedy 0.77 0.01 0.46 0.01 0.01

Hierarchical 0.27 0.02 0.36 0.02 0.01

Genetic 0.66 0.03 0.89 0.03 0.03

Cluster 3 Greedy 0.66 0.005 0.25 0.005 0.007

Hierarchical 0.72 0.01 0.54 0.01 0.01

Genetic 0.61 0.02 0.70 0.02 0.02

Cluster 4 Greedy 0.72 0.01 0.59 0.01 0.01

Hierarchical 0.61 0.002 0.11 0.002 0.005

Genetic 0.44 0.01 0.34 0.01 0.02



Table 13 (continued)

Algorithm Density CC CNC CFC Quality

Cluster 5 Greedy 0.66 0.01 0.42 0.01 0.01

Hierarchical 0.5 0 0 0 0

Genetic 0.77 0.02 0.79 0.02 0.02

Cluster 6 Greedy 1 0.02 0.73 0.02 0.01

Hierarchical 0.55 0.001 0.07 0.001 0.002

Genetic 0.72 0.02 0.73 0.02 0.02

Cluster 7 Greedy 0.66 0.01 0.44 0.01 0.01

Hierarchical 0.66 0.08 0.34 0.008 0.01

Genetic 0.5 0.02 0.5 0.02 0.02

Cluster 8 Greedy 0.77 0.009 0.39 0.009 0.01

Hierarchical 0.72 0.004 0.22 0.004 0.006

Genetic 0.72 0.01 0.41 0.01 0.01
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