
Discovering configuration workflows from existing logs using
process mining

Bel ́en Ramos-Guti ́errez1 · Ángel Jes ́us Varela-Vaca1 · José A. Galindo1 ·
Marı́a Teresa G ómez-L ópez1 · David Benavides1

Abstract

Variability models are used to build configurators, for guiding users through the configura-
tion process to reach the desired setting that fulfils user requirements. The same variability
model can be used to design different configurators employing different techniques. One
of the design options that can change in a configurator is the configuration workflow,
i.e., the order and sequence in which the different configuration elements are presented to
the configuration stakeholders. When developing a configurator, a challenge is to decide
the configuration workflow that better suits stakeholders according to previous configura-
tions. For example, when configuring a Linux distribution the configuration process starts
by choosing the network or the graphic card and then, other packages concerning a given
sequence. In this paper, we present COnfiguration workfLOw proceSS mIning (COLOSSI),
a framework that can automatically assist determining the configuration workflow that bet-
ter fits the configuration logs generated by user activities given a set of logs of previous
configurations and a variability model. COLOSSI is based on process discovery, commonly
used in the process mining area, with an adaptation to configuration contexts. Derived from
the possible complexity of both logs and the discovered processes, often, it is necessary
to divide the traces into small ones. This provides an easier configuration workflow to be
understood and followed by the user during the configuration process. In this paper, we
apply and compare four different techniques for the traces clustering: greedy, backtracking,
genetic and hierarchical algorithms. Our proposal is validated in three different scenarios, to
show its feasibility, an ERP configuration, a Smart Farming, and a Computer Configuration.
Furthermore, we open the door to new applications of process mining techniques in differ-
ent areas of software product line engineering along with the necessity to apply clustering
techniques for the trace preparation in the context of configuration workflows.

Keywords Variability · Configuration workflow · Process mining · Process discovery ·
Clustering

1 Introduction

Variability models, such as Feature Models (FMs) (Galindo et al. 2018), describe common-
alities and variabilities in Software Product Lines (SPLs) and are used along all the SPL
development process. After an FM is defined, products can be configured and derived. We
can find FM depicting a diverse set of domains such as Wordpress (Rodas-Silva et al. 2019),
surveillance videos (Galindo et al. 2014b; Alférez et al. 2019) or Android systems (Galindo
et al. 2014a) among others. In the configuration and derivation process, users select and des-
elect features using a configurator. A configurator (Galindo et al. 2015) is a software tool
that presents configuration options to the users in different stages. An example of a config-
urator tool is KConfig (She et al. 2010) where developers can configure the Linux kernel
with more than 12.000 configuration options.

An important aspect of a configurator is to determine the configuration workflow
(Hubaux et al. 2013), i.e., the order in which features and options are presented to config-
uration stakeholders. For instance, when configuring the Linux kernel using KConfig (She
et al. 2010), there can be different user configuration profiles depending on interests or
skills. The configuration workflow used by a configurator can impact the user experience
in the configuration process. Therefore, selecting a well-suited configuration workflow is
a challenge. Up to now –to the best of our knowledge– the selection of a configuration
workflow is made either intuitively or following the structure and properties of a variability
model (Galindo et al. 2015; Varela-Vaca and Gasca 2013; Varela-Vaca et al. 2019b).

In this paper, we present COLOSSI, a framework that takes a feature model and a set
of existing configuration logs and automatically retrieves configuration workflows. A con-
figuration log is a set of configurations performed in the past in a given domain taking
into account a configuration order. Our solution relies on process mining (Augusto et al.
2019) techniques. Process mining is a well-established area of business process manage-
ment that uses different techniques to extract business processes from traces of execution.
In our approach, we conceptually map a business process model to a configuration work-
flow and traces to configuration logs making it possible to reuse process mining techniques
to infer configuration workflows.

Although using process mining can automatically retrieve configuration workflows, the
results can be difficult to interpret to domain engineers to build a configurator. This is
mainly because, very often, mined processes are “spaghetti-like” models in which the same
activity needs to be duplicated (van der Aalst 2011). To illustrate the difficulty, Fig. 1 shows
the result of directly applying process mining techniques to the ERP system presented in
Pereira et al. (2018b) and detailed in Section 3.

The simplification of spaghetti processes is an open challenge and active research area
in process mining (Augusto et al. 2019). The application of clustering techniques is used to
retrieve a set of simple workflows instead of a single–complicated one. These techniques
are used to divide the configuration log according to different aspects. There are different
techniques to create clusters that facilitate the understanding of the discovered processes.
The clustering can be expressed as an optimisation problem. Thus, exhaustive techniques
have been proposed for finding the best possible clustering (Hompes et al. 2015), although
with potential high time- and resource-consuming. This is the reason why other algorithms
have been applied, such as hierarchical algorithm (Ferreira and Alves 2011; Makanju et al.
2008 2009), k-means algorithm (Song et al. 2008) or greedy algorithm (Greco et al. 20

1

2

3

1

3

1

1

1

1

1

1

1

2

1

1

2

1

1

1

1

1

1

1

1

1

1

3

1

1

2

1

1

1

1

1

1

1

1

1

1

1 2

1

2

1

2

1

1

1

1

1

1

3

3

1

3

2

1

2

1

1

1

1

2

1

1

1

2

1

1

1

1

1

1

2

1

4

1

3

1

2

1

1

2

2

1

2

2

2

1

2

3

1

2

1

1

2

2

2

1

2

1

1

1

1

1

1

2

1

1

1

1

2

2

1

1

2

4

2

2

1

2

1

2

1

1

1

2

1

1

1

1

2

2

1

1

1

2

1

1

3

2

4

1

1

1

2

2

2

1

2

3

1

2

1

1

2

1

1

1

2

2

3

1

2

1

2

2

1

2

2

2

2

2

1

1

1

1

2

1

1

1

12

1

1

2

2

4

1

1

1

1

2

4

3

1

2

1

1

1

1

1

1

1

1

1

1

4

2

2

1

2

1

1

1

1

2

1

1

2

3

1

1

1

1

1

1

3

1

2

1

1

1

2

3

2

1

2

1

1

4

1

2

1

2

1

2

1

3

2

1

2

1

2

1

1

2

2

2

2

2

1

1

1

2

1

2

2

1

2

1

1

1

1

2

1

1

3

3

2

1

1

2

2

1

1

2

1

2

1

1

1

2

1

1

1

1

1

1

2

1

2

1

2

1

1

1

1

1

1

3

1

1

1

1

1

1

2

2

1

1

1

3

1

1

1

1

1

2

3

2

4

2

1

1

1

1

3

1

1

1

1

1 1

2

1

1

1

2

3

1

1

2

1

1

2

1

3

1

11

1

1

1

1

1

2

3

1

1

3

1

4

2

1

1

2

1

2

1

2

1

1

1

1

1

1

1

1

2

1

1

2

3

1

1

1

1

2

2

1

1

2

2

1

2

1

3

1

1

1

2

1

1

1

1

1

2

1

1

3

3

1

1

3

1

2

2

1

2

1

1

1

1

1

3

3

1

1

2

2

1

3

1

3

3

1

4

1

2

3

3

1

1

4

2

1

1

2

1

1

1

1

2

1

1

2

2

4

1

3

1

2

1

1

1

3

1

1

1

3

1

1

1

1

2

1

3

3

1

1

1

1

1

1

2

1

1

2

1

1

1

1

1

1

1

1

1

1

1

2

1

3

1

1

1

1

4

2

1

1

1

1

1

2

2

1

2

1

2

2

1

1

2

1

1

2

1

2

1

1

1

1

3

2

1

1

1

1

1

2

1

1

1

1

3

1

1

1

1

2

1

1

1

2

1

1

1

2

1

1

1

2

1

1

2

3

1

3

1

2

2

1

1

1

3

2

1

1

1

2

1

1

1

1

1

10

3

2

3

4

3

2

1

1

1

2

2

1

1

1

1

1

1

2

1

2

1

1

1

3

2

1

1

2

3

1

1

1

2

2

4

2

2

1

3

1

3

2

1

1

1

2

2

1

2

2

1

2

1

1

2

2

1

1

2

1

1

1

1

2

1

2

1

3

1

1

3

2

1

1

2

1

1

1

2

1

2

3

1

1

1

2

1

1

1

1

3

1

1

1

2

1

1

2

1

2

1

1

2

1

1

1

1

1

3

1

1

1

2

3

2

2

1

3

2

1

1

1

1

2

3

1

1

1

1

1

2

1

1

2

3

1

1

1

2

2

1

2

1

1

3

1

1

1

1

1

1

1

1

2

1

1

1

1

2

2

1

2

2

3

1

1

3

1

1

2

2

1

1

2

1

1

1

2

2

1

2

1

2

1

1

1

1

3

3

1

3

1

1

3

2

1

1

1

2

2

1

1

2

2

1

3

1

1

3

1

1

3

1

2

1

1

4

1

1

2

1

3

1

1

1

1

4

2

3

2

1

1

1

1

1

1

2

5

3

2

1

1

2

2

3

2

5

1

4

2

2

1

1

1

1

1

1

2

1

1

1

2

3

1

1

2

2

1

1

2

1

4

1

2

4

1

1

2

2

3

2

1

1

2

1

1

1

1

2

1

2

2

1

1

1

1

3

4

1

1

1

1

1

1

1

1

2

1

2

2

2

1

1

1

1

2

2

1

1

2

1

2

1

1

1

1

1

42

1

2

1

2

1

2

1

1

1

1

1

2

2

1

1

2

3

3

1

2

1

1

2

2

2

1

1

3

1

3

1

2

1

1

1

1

3

1

1

2

2

3

2

1

1

1

1

2

1

2

3

1

1

3

1

2

4

1

3

1

1

1

1

1

2

1

2

1

2

1

2 1

2

1

1

3

3

2

1

1

2

3

3

1

1

1

4

1

1

2

1

1

4

2

3

3

1

3

1

1

2

3

1

1

1

1

1

1

1

1

2

2

1

1

1

2

2

3

2

1

1

1

1

2

1

1

1

3

1

2

1

2

2

1

1

2

1

1

1

3

1

2

1

1

4

1

1

2

2

1

1

2

1

1

1

1

1

3

2

1

1

1

1

2

3

1

2

1

1

1

2

2

1

1

1

2

1

3

1

1

3

3

3

1

2

5

2

1

2

1

1

1

1

1

3

1

1

1

1

1

1

1

1

2

2

1

3

1

1

3

2

1

2

3

1

1

1

1

2

2

1

3

2

3

1

1

1

1

2

3

1

1

2

1

1

1

2

1

1

1

1

1

2

1

1

1

3

3

1

1

1

4

2

1

1

1

1

3

1

1

3

1

1

2

1

2

1

2

1

1

1

1

1

2

2

3

1

1

1

1

2

2

3

1

3

1

1

3

2

2

1

2

1

1

2

1

1

4

1

1

1

1

1

1

3

2

3

1

2

2

1

1

1

1

1

3

2

1

1

1

1

1

2

1

2

2

3

1

1

1

1

1

1

2

2

2

1

2

1

1

2

1

1

1

1

1

1

1

2

1

1

1

1

1

4

1

4

1

2

1

1

1

1

1

1

2

1

1

3

2

1

4

4

1

1

1

1

1

1

1

1

2

1

1

3

1

1

1

2

1

1

2

1

2

3

2

1

1

2

2

1

1

1

2

2

1

1

1

3

1

1

2

1

1

1

1

2

2

1

1

2

2

1

1

3

1

1

1

1

1

2

1

3

1

2

1

4

1

1

1

1

1

1

1

1

1

1

1

1

1

3

1

1

1

1

1

1

2

2

3

1

1

2

1

1

1

3

1

1

1

1

1

1

2

1

1

1

11

1

3

1

2

3

1

1

2

1

1

1

1

1

3

1

1

2

1

2

2

1

2

1

2

1

1

1

1

1

2

1

1

2

1

1

2

1

1

1

1

1

1

2

1

1

2

1

2

1

1

1

1

2

3

2

1

2

1

4

1

4

3

2

1

1

1

2

2

1

1

1

1

1

2

3

2

1

1

3

1

1

3

1

1

1

1

1

4

1

2

4

1

1

1

1

1

3

2

3

1

1

1

2

1

2

1

1

1

2

2

1

1

1

1

1

1

1

1

1

2

1

1

2

1

3

1

1

1

1

1

3

1

2

1

1

2

2

1

2

2

1

1

1

2

2

1

1

1

2

1

1

1

1

2

1

1

1

1

1

2

1

1

1

1

2

1

1

1

1

1

3

1

1

1

1

1

3

1

1

2

1

1

1

3

1

1

1

3

1

1

3

1

1

1

2

3

1

1

1

1

1

1

2

2

1

1

1

2

1

1

3

1

1

4

2

2

1

1

1

1

3

1

1

2

3

2

1

1

4

1

2

1

2

2

2

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

1

1

2

2

3

1

1

1

1

1

1

2

2

2

3

2

2

1

1

2

2

3

1

1

1

1

4

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

2

1

1

2

1

2

1

1

1

2

1

1

1

4

1

1

2

1

2

1

1

2

1

2

1

1

1

2

1

2

1

1

1

1

1

1

3

1

2

1

1

1

1

1

1

3

2

1

1

2

1

1

2

1

2

1

3

1

1

1

1

1

1

3

1

1

1

1

1

3

1

1

2

1

5

2

1

1

3

2

2

1

2

1

1

1

3

1

1

3

3

2

1

2

1

1

1

1

1

1

1

1

1

3

1

1

1

2

1

1

2

1

1

1

3

1

2

1

1

1

1

2

1

1

2

5

4

1

1

1

1

2

1

3

1

1

1

1

1

1

1

2

3

1

2

3

1

2

1

8

4

1755
41

8271
14

1702
27

3702
20

8179
47

1740
36

1762
31

1118
152

1707
92

1701
51

1754
33

1782
14

1709
29

1759
25

1706
36

8166
50

1757
39

8209
11

8205
11

3701
25

8045
99

1752
20

1751
12

8049
64

8154
58

307
50

955
43

1432
44

3714
19

235
38

1768
15

8172
54

8170
30

3705
28

335
146

1764
22

1721
26

1106
35

8026
55

8204
23

8167
50

8206
24

967
96

3706
21

1708
28

8014
64

936
44

1457
138

932
111

336
103

1704
28

8047
64

949
64

8160
30

8165
50

8072
127

946
64

1322
95

1452
135

1728
33

8207
25

3709
21

3715
25

8247
9

8202
18

1756
21

3810
54

317
121

8153
48

1727
15

1723
28

111
62

1725
16

279
49

1775
17

282
68

8201
11

1722
31

1726
32

1781
23

1401
63

203
48

3722
15

8073
62

8042
64

8048
64

3721
22

9801
23

1402
38

1504
108

1406
41

3735
20

8003
99

904
34

8257
17

322
103

1303
37

8137
90

8050
84

372
92

350
100

1463
44

8131
88

1319
33

8016
51

1788
24

8169
66

8004
76

969
77

8171
75

8067
86

283
82

348
94

8077
84

8069
31

8099
87

8173
24

1455
20

8260
20

521
35

8002
99

1312
20

8129
79

8052
44

1278
51

8157
45

980
30

361
94

325
92

8178
57

342
92

1732
59

313
94

8113
90

8130
88

8059
31

365
38

349
61

311
63

332
92

334
94

8128
90

1451
36

399
92

905
33

302
115

1409
38

520
32

1008
44

1710
30

8136
90

367
92

8041
94

8058
93

3315
85

8081
91

308
37

908
34

8023
34

8085
91

1912
92

1926
104

364
92

388
92

8138
90

8019
34

396
92

8028
33

8133
90

8044
34

8143
90

8145
45

8057
93

8061
94

329
89

8080
31

8229
49

1306
43

8075
31

356
64

146
98

8181
69

8095
87

8013
96

1913
93

340
92

8142
90

8134
90

503
94

286
94

8123
90

8110
87

8177
36

338
92

1214
52

371
92

1347
40

8031
39

1067
47

1477
35

1441
33

1474
49

305
92

1203
120

421
31

8124
90

316
82

1763
26

8146
67

285
46

8098
87

326
100

8140
90

257
77

1346
35

8127
90

929
101

8216
35

572
45

8008
100

8158
44

1905
107

310
94

915
24

315
96

8289
11

1450
36

1445
46

8161
56

518
35

8215
40

8071
31

1711
27

8097
87

8086
91

1418
43

8139
90

321
101

8141
90

312
94

931
73

331
92

323
101

8020
34

296
60

8109
87

320
58

8038
46

8092
87

360
94

1902
105

333
92

1326
36

8005
91

8147
41

8135
90

1301
59

1316
35

309
92

1453
47

901
38

8001
99

750
93

1906
95

114
95

1442
10

8017
26

369
95

8217
55

8195
38

8155
30

8126
87

347
95

344
92

337
93

314
94

1311
106

749
54

318
107

909
34

8084
91

351
100

3313
85

3312
85

8115
87

8163
59

303
94

8114
90

1181
57

8091
31

1195
103

324
89

800
10

966
10

8183
17

8101
9

8235
20

8065
20

8277
19

8333
17

963
10

8060
15

8340
17

8236
26

1177
10

8256
24

1045
24

1466
10

8111
18

8039
12

125
11

8255
22

8261
16

1714
11

224
14

244
14

8021
12

8105
28

8116
15

8078
15

975
10

8009
12

148
12

8264
16

8120
15

728
28

8088
11

8117
16

8070
11

605
33

150
51

921
10

8151
14

8083
28

8186
14

1028
24

8214
16

8227
13

8213
16

1245
35

106
11

221
14

8240
20

1243
34

1060
24

8238
20

280
16

1424
10

1820
16

8079
15

1814
15

117
16

1082
24

1055
24

281
14

8094
14

157
19

8121
16

8055
30

104
25

8106
27

8051
15

118
35

8224
19

8188
29

8037
17

8022
11

1462
10

139
15

8335
17

8152
17

8144
15

8339
17

8102
37

8030
31

8027
41

717
45

8066
18

8334
17

8191
28

124
16

8259
11

8148
10

8192
9

1223
39

1061
24

918
10

8046
14

1828
16

645
17

1240
39

217
15

8150
16

8176
14

8184
16

1033
24

8011
15

771
25

8344
17

1092
24

107
11

8108
11

101
26

8015
11

292
11

1797
11

1047
24

1808
16

8040
17

615
12

123
13

156
25

1773
17

8190
28

8346
18

8164
12

229
17

8118
18

8104
11

1410
10

641
12

8063
17

8100
9

151
32

147
25

8210
14

143
16

8103
35

739
25

277
11

920
12

911
12

8043
16

725
26

1826
16

8062
20

8006
11

8087
11

8263
20

8230
9

1221
39

1767
16

8318
10

8286
13

8007
28

961
12

1772
11

105
46

8234
20

8208
14

8243
22

953
10

1273
31

1071
24

152
18

1261
35

1016
24

1819
15

8282
23

968
10

1275
12

8174
9

616
12

8180
19

8343
17

997
10

719
45

8168
13

1029
24

8332
17

8189
37

913
12

274
14

606
18

319
33

8233
10

1783
11

8262
15

1057
24

154
11

288
11

8132
9

1464
10

768
25

1284
32

8222
9

8032
20

8228
15

145
26

1078
24

1037
24

8221
9

1253
35

8012
10

8074
16

8185
25

236
14

8162
17

8203
10

8010
15

8268
24

8241
13

8024
21

8107
11

8054
34

8218
11

8056
13

1813
14

8331
17

1220
39

1075
24

8090
30

1232
39

8239
13

239
14

8033
11

8182
24

8245
15

103
25

956
12

149
31

276
11

8089
23

1018
24

228
20

8093
18

119
17

1244
14

8254
9

8237
22

8187
10

8053
36

273
28

923
10

964
10

1817
15

8064
19

1428
11

102
26

1233
42

1417
10

1014
24

1040
24

8122
9

1811
14

120
26

1031
24

763
24

8025
12

8199
11

1431
11

8285
13

8125
9

8018
31

627
12

1222
39

219
33

1825
16

8246
46

8119
15

8076
20

8200
10

1087
24

1219
44

8035
14

1465
10

914
12

509
57

8280
10

110
26

158
15

637
12

8096
21

218
38

948
12

718
45

742
25

8295
18

8251
9

8212
12

8336
17

8149
15

1810
14

298
14

934
11

290
17

246
24

8068
12

1809
38

8196
20

8338
17

8225
32

766
25

1079
24

8345
17

8269
22

720
26

8034
14

1050
24

912
10

8029
19

634
12

910
12

942
10

8082
20

8220
11

8337
17

8112
18

1454
12

202
42

1007
36

737
31

748
11

744
14

747
11

517
22

220
17

1737
13

1000
15

387
13

533
9

775
12

3913
9

562
9

2510
9

1345
9

1264
9

1786
11

393
9

1184
9

253
9

234
31

1511
10

1201
10

712
11

2810
9

903
9

1801
14

1012
9

3011
9

1109
10

1903
14

2129
23

1730
11

1117
10

703
17

944
9

511
9

807
11

1174
9

3321
9

1327
22

2901
9

743
11

1512
13

1914
17

2513
9

1259
9

1186
9

3703
10

976
9

2905
9

2803
9

536
14

1247
9

1456
12

2804
9

1351
10

1515
9

1291
29

1238
9

2119
23

385
9

1936
17

1217
14

1205
31

1743
13

412
9

1024
24

1062
23

2127
23

1411
10

935
9

965
9

516
10

1305
11

1134
9

765
9

3912
9

1314
31

1034
9

3713
11

2114
23

1806
12

2100
23

3911
9

2811
9

2103
23

1053
18

1281
9

1127
9

1447
9

204
9

1069
9

1277
9

237
12

528
15

530
15

131
10

275
35

266
23

3712
13

522
12

366
9

1437
9

1194
9

1795
11

1140
9

1133
9

3012
9

1076
23

414
9

1121
9

1469
9

1066
9

1267
9

1832
12

2807
9

1152
9

1433
9

850
9

3907
9

2123
23

724
9

1821
9

1901
14

734
11

1193
19

3502
9

1030
9

1329
9

2112
23

1909
11

1143
9

210
37

1188
10

1269
30

1750
11

3407
9

957
9

1250
10

2122
23

916
9

635
10

2518
9

330
9

727
9

2707
9

1187
9

566
9

2046
9

2505
9

556
9

1802
15

1120
9

623
9

906
9

1506
10

3014
9

376
9

1340
9

419
9

1739
10

586
9

1093
9

1286
16

2130
23

2534
9

353
56

1027
23

343
9

510
9

2101
23

1173
9

527
10

2117
23

1508
10

1771
11

2560
9

1509
13

559
12

1470
9

1439
9

1130
21

2503
9

287
9

1784
10

3409
9

3419
9

1753
10

2806
9

1317
10

1265
9

1824
12

3723
10

1048
9

640
10

642
9

1017
23

523
10

3302
9

618
20

505
12

271
16

3734
9

880
9

632
20

1307
40

502
9

529
9

1207
31

1236
9

542
9

3904
9

1304
9

998
9

1422
9

553
9

2511
9

1235
9

2554
9

769
9

2530
9

1956
17

1135
12

2106
23

922
9

2701
9

1325
12

1146
9

1052
23

1013
23

406
21

1206
43

588
9

2110
23

2805
9

1423
9

2132
23

1179
9

1141
15

1287
9

1026
23

981
9

2602
9

999
9

1829
9

2705
9

525
10

1309
14

1145
10

2504
9

1320
10

583
9

1084
23

1425
9

1237
9

1443
9

938
9

9901
10

1285
9

251
15

1911
11

289
9

3919
9

383
9

1790
10

227
32

506
9

1330
9

1041
23

2557
9

3410
9

952
9

3415
9

555
10

2709
9

565
23

1712
10

3404
9

3311
9

403
10

1818
11

1011
9

3909
9

2808
9

974
9

3411
9

1085
9

3314
14

561
12

1400
9

132
10

507
9

514
20

3306
9

300
9

535
10

543
17

223
9

391
11

603
10

726
9

596
22

3406
9

245
31

1823
18

1162
9

1360
9

339
9

249
32

1049
9

1446
9

1032
9

1332
9

1310
23

1946
17

1803
23

2704
9

3413
9

416
9

2501
9

363
9

2115
23

2104
23

1407
11

1302
22

927
9

3501
9

937
9

214
9

3401
9

589
15

1478
9

1288
9

1197
9

1807
13

2128
23

598
10

1283
9

1724
11

1165
9

1917
17

2800
9

3906
9

1056
9

1461
9

3905
9

3707
10

3412
9

1089
23

548
9

563
9

1459
9

397
9

732
9

1904
11

568
9

994
9

772
9

564
31

3725
11

2133
23

745
20

767
10

2118
23

1252
9

1248
28

3717
13

1404
29

1338
9

3920
9

1185
9

2097
9

643
9

1523
10

639
10

231
9

706
9

1171
9

401
9

1705
14

238
18

1460
9

215
31

1501
16

8325
14

415
10

1230
30

958
9

972
9

Fig. 1 Spaghetti process of the ERP presented in Pereira et al. (2018b)

De Weerdt et al. 2013). The wide types of possible algorithms to apply are caused by the
most proper in each case will depend on the data log. To overcome this difficulty, COLOSSI
provides the infrastructure to integrate various algorithms for clustering the traces involved
in the configuration workflow, being possible the selection of the used algorithm according
to the case and the necessities. Our solution takes information from the variability model as
input and retrieves less complex configuration workflows that can assist the development
of better configurators. Due to the size and complexity of the logs, the creation of clusters
that facilitate the understanding of the discovered processes is not an easy task. Thereby,
we propose four approximations based on different techniques to facilitate the creation of
clusters trying to improve the distribution of the logs later used as input of the process
discovery.

COLOSSI is validated using three different case studies: an ERP system, a smart farm
and computer configurations taken from Pereira et al. (2016a, 2018a, b). Moreover, differ-
ent clustering algorithms are applied to determine when each is more appropriate (greedy,
backtracking, genetic and hierarchical algorithms). Results show that the metrics of the
retrieved configuration workflows are improved depending on the clustering and the distri-
bution algorithm of traces applied. Besides, the metrics help to support the hypotheses of
reducing the complexity and enhancing the understandability of the retrieved configuration
workflows. Moreover, an statistical analysis of metrics related to the distribution of traces
is done to attempt to prove that the hypotheses that the selected techniques do not influence
the obtained results (i.e., the algorithm has no impact on the distribution of traces).

This paper is an evolution of Varela-Vaca et al. (2019a) where the main contribution was
the definition of COLOSSI as a framework to support the clustering of configuration logs
to discover configuration workflows. In this paper, the previous proposal is enhanced by:

– The extension of COLOSSI to support different sort of clustering algorithms to apply.
– We extended the validation of COLOSSI with three additional case studies.

– The measurement of a set of metrics to compare the suitability of each algorithm of
clustering to discover the configuration workflows that better fits the configuration
traces generated by the users.

The remainder of this paper is organised as follows: Section 2 details the solution and
concepts that grounds our proposal; Section 3 presents empirical results from analysing
COLOSSI in different scenarios; Section 4 presents the related work and Section 5 presents
concluding remarks and lessons learned.

2 COLOSSI: configration workflow process mining solution

COLOSSI combines a feature model and a configuration log to create a configuration work-
flow. Figure 2 shows an overview of the framework, in which, using a configuration log,
it is possible to apply process mining techniques to derive a valid configuration work-
flow representing all the possible paths defined in the configuration logs. Very often, the
resulting workflow follows the so-called spaghetti-style (van der Aalst 2011), being diffi-
cult to understand and manipulate. Nevertheless, it is important to remark that by applying
some simplification techniques and extracting some metrics, these workflows could be
exploited using automated process mining tools, to carry out many more additional analy-
ses. Also, any generated configuration workflow can be already used to automatically build
a configurator.

In an ideal process mining approach, as shown in path 1© of Fig. 2, an event log is used
to directly execute a process discovery task. However, in general, if no data preparation
task is carried out in between, the results are usually unmanageable, and even more, when
we are dealing with a context of high variability. That is why the data preparation phase in
our proposal must necessarily include simplification mechanisms. To this end, also, to the
usage of process mining techniques, we propose diverse handling and clustering methods to
reduce and group similar configuration traces according to some properties. Those clusters
can then be used again as an input of process mining techniques to obtaining a set of con-
figuration workflows depending on the observed behaviour of the configuration logs. Those
workflows could obtain better metrics concerning the original complex workflows of step

Raw
Configuration

Log

conf 1
conf 2
conf 3
...
conf n

Config.
log

handler

Config.
log cluster
generator

Process
discovery

Feature model

Clustered�
Cofiguration

Logs

Config.
Log

Extractor Process
discovery

Process
Mining

Clustered
Configuration

workflows

Configuration
workflow

XES

Configuration�
Log

1

2

XES

Configuration�
Log'

Greedy
Algorithm

Bactracking
Algorithm

Hierarchical
Algorithm

Genetic
Algorithm

XES

conf 1
conf 3

XES
XES

Fig. 2 COLOSSI solution overview

1©. We conjecture that the resulting configuration workflows of step 2© will better guide
the domain engineers in the construction of a configurator as well as the analysis mentioned
previously.

In the following, we describe the overall process of COLOSSI, detail its different phases
and explain its implementation in general.

2.1 COLOSSI process

As previously mentioned COLOSSI combines a feature model and a configuration log to
create configuration workflows. Consequently, it needs both as input.

A feature model is an arranged set of features that describes variability and commonal-
ity using features and relationships among them (Durán et al. 2017; Schobbens et al. 2007).
FMs describe all the potential combinations of features. Figure 3 shows an excerpt of a fea-
ture model from the ERP domain where features are arranged in a tree–like structure and
different relationships are established among them. FMs can be used to build configurators
that are pieces of software that guide the configuration process while selecting and dese-
lecting features. An example of a configurator is KConfig, a tool that helps to configure the
Linux kernel. As an FM can define a configuration space defined by all the possible fea-
ture combinations, it can also define different possible configuration workflows that can be
derived using the same FM.

To define a configuration log, we use some concepts that are used in the process mining
area to describe events and traces, and we map those concepts to define a configuration log.

An event log is a multiset of traces:

Feature model

ERP

requires

CRM
Project

Managment
Accountancy

TaskListCalendar CostSpend

Check
Credit
Card

1st configuration: {crm, tasklist, cost, accountancy}

2nd configuration: {project management, accountancy, credit card, calendar}

3rd configuration: {project management, check, crm, task list}
4th configuration: {crm, task list, calendar, credit card}

Configuration log

Fig. 3 ERP domain based example

Definition 1 (Event Log). Let L be an event log L = {τ1, · · · , τm} as a multiset of traces τi .

A trace is a tuple with an identifier and a sequence of events that occurred at some point
in time:

Definition 2 (Trace). Let τ be a trace τ = 〈case id , E〉 which consists of a case id which
identifies the case, and a sequence of events E = {ε1, · · · , εn}, εi occurring at a time index
i relative to the other events in E .

An event occurrence is a 3–tuple with an identifier of an activity that occurred at some
timestamp and that can have additional information:

Definition 3 (Event occurrence). Let ε be an event occurrence ε = 〈activity id ,
t imestamps, others〉 which is specified by the identity of an activity which produces it and
the timestamps. It can store more information (i.e., states, labels, resources, etc.) which fall
into the category of others and which are not used in this approach.

In COLOSSI, we conceptually map elements from the feature modelling domain to the
process mining domain as shown in Table 1. Concretely, an event log is conceptually a
configuration log. A trace is an ordered configuration, i.e., a configuration trace, thus, it is
a set of selected features that follow a given order. Finally, an event occurrence is a feature.
Additionally, a feature can have more information like attributes associated with this feature,
such as preferences, metrics or the like, which are not used in our proposal.

Thanks to this mapping, COLOSSI can be used in different scenarios to leverage process
mining in variability management, like the one presented in this paper, which is the building
of configurators, if the order of previous configurations are known and can be extracted.
However, we envision other areas where process mining can be used to automate different
tasks. Next, we describe those scenarios, also related to software product lines, from our
experience and perspective:

– Configurator building. Up to now, configurators building is performed using manual
mechanisms or, at most, using the information present in the variability model (e.g.,
tree traversal in feature models) (Lettner et al. 2019). With COLOSSI, we open the
door to use existing configuration logs to build configurators. This novel approach can
open the door to new ways of assisting configurators builders by using the generated
configuration workflow to optimise configurators.

– Data analysis. From the generated configuration workflow it is possible to perform
such analysis in terms of graph metrics. Deadlocks identifications, misalignment anal-
ysis, metrics extraction –to just mention a few– are areas where process mining
techniques can be useful.

Table 1 Mapping concepts
Process mining Product Line

Event log Configuration log

Trace Configuration trace

Event occurrence Feature

– Testing. From the data extracted in the former item, it could be possible to define new
sampling techniques (Thüm et al. 2014) that can improve the identification of bugs or
feature interactions in existing product lines.

– Variability reduction. One of the challenges for companies that develop software prod-
uct lines is variability reduction (Bosch 2018). While variability is a must in a software
product line approach, it is always difficult to find a trade-off between a high degree of
variability and systematic management of such variability. In this context, experts claim
for techniques and tools to reduce variability while preserving configurability. Process
mining techniques presented in this paper can be a first step towards defining tools to
assist in the decision of variability reduction.

– Reverse engineering. One of the inputs used when reverse engineering feature models
are configurations (a.k.a. product matrix). We envision that the techniques described in
this paper can be used in reverse engineering of variability models. For instance, the
generated configuration workflow can be analysed to better guide reverse-engineering
algorithms.

2.2 Detailing COLOSSI steps

Once the overall process of COLOSSI has been described. We proceed to deepen the
operation of each of its parts, following the structure described in Fig. 2.

2.2.1 Configuration logs extractor

A configuration log is composed of a set of configuration traces where each configuration
trace encodes not only the features of a configuration but the timestamps indicating when
each feature was selected. In a raw configuration log, we can find a diversity of meta-
information among the selected or deselected features. Moreover, this meta-information can
be presented in an unstructured or structured fashion that must be properly extracted and
transformed (Valencia-Parra et al. 2019a, b) to obtain the traces in the correct format.

In this first step, we take as input a raw configuration log and output a set of con-
figuration traces. Therefore, we need to i) search for the meta-information encoding the
timestamps for each feature. Note that this might not be explicit and can be provided using
other mechanisms (e.g., line numbers in a plain text format); ii) use this meta-information
to represent the feature selection order, and; iii) store the set of configuration traces in a
format that can be used throughout the configuration workflow retrieval process (e.g., XES
serialization 2016). After this, we end up with a set of configuration traces that represent
the selection order used by the users to configure the systems. However, there might be
non-valid configurations and other erroneous configurations with respect to domain infor-
mation. Practitioners have to make decisions to this regard depending on the kind of input
logs that want to be considered in the next steps of the discovering process.

2.2.2 Configuration logs handler

At this step, the configuration log might contain non-valid configurations, erroneous partial
selection of features among other domain-related errors such as those depicted in Felfernig
et al. (2018). To remove clutter and noise out of the workflows, users might prefer to remove
such information from the configuration log. This cleaning step consists of removing the

wrong selection of features (a.k.a non-valid partial configurations) as well as generate met-
rics that can be later exploited to optimise the workflow retrieval process. For example, the
use of atomic-sets to complete partial configurations.

Depending on the expected workflow usage, domain engineers have to define the mean-
ing of a valid configuration and the metrics to rely on. For example, an SPL engineer might
consider only configurations with complete assignments of features to develop a configura-
tion while other might find interesting to consider the partial assignments (i.e., to configure
only the variability part of the product line, keeping aside the common parts).

COLOSSI (Fig. 2), Process mining - process discovery module enables to read an event
log and generates a process model that fits these traces as shown in Fig. 4. In the case of
the variability context, a configuration log is read and a configuration workflow is obtained
using the same techniques used for classical process mining. As depicted in Fig. 2, the
process discovery can be applied to a single configuration log or a set of them.

2.2.3 Configuration logs cluster generator

Configuration processes can have a high degree of variability, especially when the config-
uration order is defined by human decisions. The application of process discovery in this
type of scenarios tends to produce spaghetti-like processes, making it necessary to apply
pre-processing techniques. Configurability contexts are especially variable in relation to the
executed activities derived from high human intervention. Thereby, we propose to divide the
traces into subsets, to model different profiles of users, thus avoiding the discovery of non-
user understandable processes. In these contexts where process discovery is used to infer
spaghetti-like processes, clustering techniques such as a pre-processing step are frequently
applied (Hompes et al. 2017). We propose the definition of the suitable number of clusters
and the division of the configuration traces into multiple clusters before the application of a
process discovery method to adapt the solution to configuration tasks. This division leads to

1

1

1

Project
managment (2)

1
Check (1)

3

CRM (3)

1

1

1
Task List (3) 1Cost (1)

1

1

Accountancy (2)

1

1

Credit
card (2)

1
Calendar

(2)

2

2

1

___ (x)

xx

x

Start Event

End Event

Feature
____ Feature name

(x) Feature frequency

Transition
x Transition frequency

Start/End Transition
x Transition frequency

Fig. 4 Process discovered for configuration log of ERP domain based example

discover configuration workflows with more quality. This section describes what a cluster
is and the metrics (e.g., entropy) used to divide the traces among a number of clusters.

Definition 4 (Number of Clusters). Let k-cluster be the optimal number of clusters in
which the traces must be grouped.

Like in any other clustering problem, the selection of the most optimal value of k-cluster

is one of the first issues to deal with, since, before being able to execute any grouping algo-
rithm, it is necessary to previously know in how many groups the data must be distributed,
in such a way that the distribution is optimal based on an established criterion.

This is a widely researched topic in which many solutions have been proposed and
applied to other scenarios. In our proposal, 17 different indicators are used as reference
to choose the best number of clusters: kl (Krzanowski and Lai 1988), ch (Caliński and
Harabasz 1974), hartigan (Hartigan 1975), cindex (Hubert and Levin 1976), db (Davies and
Bouldin 1979), duda and pseudot2 (Duda et al. 1973), ratkowsky (Ratkowsky and Lance
1978), ball (Ball and Hall 1965), ptbiserial (Milligan 1980, 1981), frey (Frey and Van Groe-
newoud 1972), mcclain (McClain and Rao 1975), gamma (Baker and Hubert 1975), tau
(Rohlf 1974), dunn (Dunn 1974), sdindex (Halkidi et al. 2000), sdbw (Lebart et al. 2000).

Being L a configuration log composed of a set of configuration traces (i.e., [τ1, · · · , τm]),
a cluster is a subset of configuration traces from L that complies certain properties.

Definition 5 (Cluster of Configuration Traces). A partition of a set of configuration traces
is a set of non empty and disjoint subsets C={c1, . . . , cn} of configuration traces, where⋃

c∈C c = L and ∀ci, cj → ci ∩ cj = ∅.

The distribution of configuration traces between various clusters depends on the purpose
of the practitioners. In our case, the goal is to group the more similar configuration traces.
COLOSSI understanding of ‘similar’ is related to both features and transitions involved in
the logs. Understanding as transition any edge present in the workflow that comes out of an
activity.

For this reason, we adapted the classical information entropy metric (MacKay 2002) by
introducing two different custom entropy metrics for clustering in the configuration context:

– Entropy-features (Sf eatures) of a cluster: a metric which measures the similarity
between traces according to the features that belong to the same cluster. Thus, it is
the ratio between the number of features that do not appear in all configuration traces
(f eaturesnat) and the number of different features in all the configuration traces
(f eaturesdiff):

Sf eatures = |f eaturesnat |
|f eaturesdiff | (1)

– Entropy-transitions (Stransitions) of a cluster: a metric which measures the similar-
ity between traces according to the transitions that belong to the same cluster. Thus,
it is the ratio between the transitions that do not appear in all configuration traces
(transitionsnat) and the number of different transitions in all the configuration traces
(transitionsdiff):

Stransitions = |transitionsnat |
|transitionsdiff | (2)

In order to illustrate the calculation of entropies per cluster, the Sf eatures and Stransitions

for the Cluster 1 and Cluster 2 of Fig. 5 are determined in Table 2. Reminding that we

Project
managment (1)

Accountancy (1)

1

Credit
card (1)

1

Calendar
(1)

1

1

Cluster 1

Project
managment (1)

Check (1)

1
CRM (3) 1

Task List (3)

3

Cost (1)

1

Accountancy (1)

1

Credit
card (1)

1

Calendar
(1)

1

1

1

1

1

2

Cluster 2

___ (x)

xx

x

Start Event

End Event

Feature
____ Feature name

(x) Feature frequency

Transition
x Transition frequency

Start/End Transition
x Transition frequency

Fig. 5 Clustering for the ERP excerpt using the Entropy-features

consider as transition any edge present in the workflow out of an activity. In the case of
Entropy-features, in the first cluster, the result is 0, since there is only one trace and there
is no possibility of comparing the features. In the second cluster, we found six features that
only occur in one of the two traces (Project Management, Check, Calendar, Cost, Accoun-
tancy and Credit Card), out of the eight that are totalled. Similarly, the presence of a single
trace makes Entropy-transitions 0 in the first cluster, while in the second cluster we count
nine transitions that only occur in one of the two traces (Project Management - Check, Check
- CRM, Task List - End, Task List - Calendar, Task List - Cost, Calendar - Credit Card, Cost
- Accountancy, Credit Card - End, Accountancy - End), among the ten possible ones.

Note that the range of the entropy is [0..1]. The values of entropy that are close to
zero represent more similar traces, whilst when they are close to one represent that there
are different features involved in the traces of the cluster. The best configuration of clus-
ters obtained from a set of configurations traces is the one that has been partitioned into
as many clusters as indicated by the optimal value of k-cluster , and which, in turn, min-
imises the summation of the entropy of all clusters. The challenge is how to obtain the best
configuration of clusters as a pre-processing of process discovery.

To find out the best configuration traces divided into clusters, minimising the entropy of
the resulting clusters, different algorithms can be used. In accordance with Jain et al. (1999)
clustering provides an unsupervised classification of patterns (observations, data items, or
feature vectors) into groups (clusters). Clustering (Kobren et al. 2017) brings together a
large set of algorithms that can be classified in different ways according to the point of view
necessary in the case of study.

Table 2 Entropies for the
clusters of the Fig. 5 Entropy-features Entropy- transitions

Cluster 1 0
4 = 0 0

4 = 0

Cluster 2 6
8 = 0, 75 9

10 = 0, 9

Ideally, all clustering algorithms seek to group the information into clusters as homo-
geneous as possible. This implies that the distances between elements in the same cluster
must be minimal and that, in turn, the distances between elements in a different cluster must
be maximum. In order to carry out this operation, clustering algorithms usually generate,
during their execution, what is known as distance matrices. These distance matrices are cal-
culated according to different criteria which elements should be grouped and which should
not. In this area, we find widely used methodologies to create a distance matrix, such as
euclidean, manhattan, etc. (Grabusts et al. 2011). But, because our approach is based on
minimising the sum of entropies, we need the clustering algorithm to be aware of this when
grouping information. For this purpose, the entropy matrix is constructed previously and
not during the execution of the algorithm, being just a square matrix containing the entropy
value between each trace pair following the definition of entropy above. It is equivalent
to the distance between each pair of traces according to our criteria. For this reason, our
entropy matrix will be used as a distance matrix in our clustering process when necessary.

However, as previously mentioned, before the application of the clustering algorithms,
it is necessary to determine the optimal number of clusters. Classically, the algorithms to
determine the number of clusters (optimal k-cluster) also build distance matrices. For this
reason, our approach will also use the entropy matrix as the distance matrix to calculate
the optimal k-cluster . To find it, we obtain the optimal value of k-cluster for each of the
17 indicators. Nevertheless, the values of k-cluster derived from the different indicators
obtained could be very dissimilar in some cases, therefore, frequently the optimal k-cluster

is selected from the most frequent value, in other words, the most voted k-cluster is the
number of optimal clusters by the indicators. This is the reason why we use a dendrogram
to help approximate the optimal k-cluster , since if after the votes made by the indicators,
a clear consensus is not reached, the user can use the dendrogram to be able to visually
interpret how the groups would turn out. So, if for example, the indicators propose to divide
the information into 2 or 3 clusters, without consensus, the user can decide, based on what
is observed in the dendrogram, to work with a k-cluster value of 2. Figure 9 shows an
example of dendrogram.

In our proposal, we compute the different values of k-cluster in a range between [0-10]
for each indicator using the hierarchical algorithm explained in Section 2.2.3 and when the
most voted, for a specific case study and entropy, is selected, that k-cluster value is used by
all the clustering algorithms in our proposal. For the example presented in Fig. 3, we have
obtained an optimal k-cluster value of 2.

Obviously, the entropy matrix and the k-cluster determinations represent two of the
weak points of our proposal, since, without an entropy matrix, it is not possible to determine
the k-cluster and without it, it is not possible to execute any clustering algorithm. In fact,
as it will be seen in Section 3, some results have not been possible to obtain due to the
impossibility of computing the entropy matrix, as is the case of Smart Farm with entropy
by transitions.

The selection of the most suitable distribution of traces among clusters to discover the
later process, and therefore, the value of k-cluster , is crucial since an incorrect distribu-
tion of the traces will produce non-understandable processes. In addition, there exists a
high computational complexity to find out the optimal distribution. As a first approach,
we propose to use a trivial algorithm (greedy), a complete algorithm (backtracking), and
two approximation algorithms (genetic and hierarchical). For this reason, the comparison
of the application of four algorithms greedy, backtracking, hierarchical, and genetic algo-
rithm is proposed to ascertain the most suitable distribution. In general, to find a solution

to a described problem, each algorithm must define how solutions are created. This implies
the definition of the following five components:

– A candidate set used to create a solution, this is the list of disordered traces that confirm
the problem that will be assigned to a cluster.

– A selection function, which chooses the best candidate among the candidate set to be
added to the solution. It chooses the cluster to be assigned for a trace.

– An objective function, which assigns a value to a solution, or a partial solution used to
compare the adjustment of the solutions. The objective function aims to minimise the
entropy of the traces assignment among the cluster.

– A solution function, which indicates when a complete and most appropriate solution
is discovered. It implies the assignment of every trace to a cluster.

Greedy algorithm Greedy algorithms are frequently applied in the case which the com-
putational complexity of the problem is very high, as is in the distribution of thousands of
traces in various clusters. A greedy algorithm is a strategy that evaluates each decision to
reach the optimal solution only taking into account the current state, with the goal of this
eventually leading to a globally optimum solution. This implies that the greedy algorithm
selects the best solution in each moment without regard for consequences in a far future,
only regarding the next candidate. The use of a greedy algorithm cannot assure to achieve
the best solution, however, the solution can be found in a short time.

We propose the ordered assignation of each trace to a cluster that minimises the global
defined entropy.

Let be {t1, . . ., ti , . . ., tn} the set of traces and {c1, . . ., ce, . . ., ck } the set of clusters
that represent the candidate set for each trace. The selection function choose the best cluster
ce, that minimises the entropy after the assignment (objective function). At the start, the
entropy is zero, when a new trace, ti , is assigned to a cluster, for instance ce, a new entropy
ei is obtained. In each step of the algorithm a trace is assigned to a cluster, if the set of traces
{t1, . . ., ti−1} have been already assigned to any clusters and being the current entropy ei−1,
when a new trace (ti) is assigned to any cluster (ce) a new entropy ei(ti , ce) will be obtained.

The trace ti is assigned to ce iff ∀cd | cd ∈ {c1, . . ., ce, . . ., ck} ei(ti , cd) ≥ ei(ti , ce)

Firstly, applying the proposed greedy algorithm to the ERP domain example with two
clusters, the traces distribution obtained the processes as shown in Fig. 6. Two of the four
traces have been grouped in each cluster according to Sf eatures . Secondly, three traces have
been grouped in one cluster and one trace in another concerning the Stransitions . The second
distribution is similar to the one shown in Fig. 5. The process models depicted in the figure
are in BPMN1 format.

Table 3 shows the resulting entropies for each algorithm, entropy type and distribution.
The entropy value present in the table for each pair of entropy type and algorithm is calcu-
lated as the mean of the partial entropies obtained by each cluster. As previously mentioned,
the entropies help to understand how similar are the configuration traces grouped into the
clusters concerning features and transitions. The values close to zero are the most desirable.
In this case, the backtracking and hierarchical with the entropy of features returned the best
results of distributions. Note that, the drawback of backtracking is affordable due to the
small size of the problem.

1BPMN: Business Process Model and Notation

Table 3 Entropy per algorithm and entropy for the ERP domain example of Fig. 5

Greedy Backtracking Genetic Hierarchical

Algorithm Algorithm Algorithm Algorithm

Entropy Entropy Entropy Entropy Entropy Entropy Entropy Entropy

features trans. features trans. features trans. features trans.

0.625 0.9166 0.4375 0.9166 0.5 1 0.15 0.83

Backtracking algorithm A technique to analyse every possible solution is backtracking
algorithms, they solve problems recursively to building a solution incrementally, one deci-
sion at a time, such as the greedy algorithm but selection every assignment and removing
those solutions that fail to optimise the function.

The complete analysis of every solution implies an exponential computation time, mak-
ing backtracking algorithms a high time-consuming technique. For this reason, we applied
several improvements to reduce the possibilities:

• Apply a branch and bound mechanism to avoid the exploration of some branches, where
several solutions from the greedy algorithm are used to bound.

• Avoid symmetric solutions, to analyse equivalent solutions (assignments) with the same
number of traces together but in different clusters.

Let be {t1, . . ., ti , . . ., tn} the set of traces and {c1, . . ., ce, . . ., ck } the set of clusters that
represent the candidate set for each trace. The selection function chooses every cluster ce

(if more than one has no traces assigned yet, only one of them will be analysed to avoid the
creation of equivalent solutions), avoiding those that generate a higher entropy that the best
solution found until the moment. At the beginning, the entropy is the one obtained from
the greedy algorithm, when a new trace ti is assigned to a cluster ce, a new entropy ei is

Fig. 6 Processes obtained per clusters and entropies using a greedy algorithm

obtained. In each step of the backtracking algorithm, a trace is assigned to a cluster, then
if {t1, . . ., ti−1} have been already assigned to the clusters and being the current entropy,
ei−1, when a new trace (ti) is assigned to a cluster (ce), a new entropy ei(ti , ce) will be
obtained. If the new entropy (ei(ti , ce)) is a worse entropy than the best found until the
moment (ebestSol), the candidate will be skipped, a new trace will be assigned otherwise.

For all cluster cd a solution is created where a trace ti is assigned to cd iff ebestSol >

ei(ti , ce). Each new created solution will be used recursively in the backtracking algorithm.
Applying the proposed backtracking algorithm to the ERP domain example, with two

clusters, the traces distribution obtained is shown in Fig. 7. In this case, the models obtained
for both entropy are the same, for this reason, only the models for Sf eatures are shown.
The Cluster 0 grouped one trace and the Cluster 1 grouped the rest. Regarding the entropy
of features, this is the one of best distribution (i.e., assignment of traces to clusters). This
distribution is not obtained by the greedy solution, but the backtracking ensures that it is the
optimum solution in terms of the objective function.

However, even applying the aforementioned improvements, it has not been possible to
obtain results in our study cases with this algorithm, since, due to their size, the search could
not finish in an acceptable time as we will show in Section 3.

Genetic algorithm Genetic algorithms provide a trade-off between high computational
requirements and the necessity to find the best solution. Genetic algorithms are commonly
used to generate high-quality solutions that optimise the problems by relying on bio-inspired
operators such as mutation, crossover and selection by using a population of candidate
solutions, where it is necessary to define:

– A genetic representation of the solution domain is a list of assignments, li . Starting
from a set of traces {t1, . . ., ti , . . ., tn} and from a set of clusters {c1, . . ., ci , . . ., cn},
it is possible to build another list whose size is equal to the number of traces, in which
each li value will imply that the ti trace has been assigned to the ci cluster. For instance,
let be {t1, t2, t3, t4, t5} a set of traces and 2 the number of clusters to distribute them.
A possible assignment would be [0, 1, 0, 1, 1], which means that the traces t1 and t3
belong to cluster 0 and traces {t2, t4, t5} to cluster 1.

– A fitness function to evaluate the solution domain seeks to group the maximum number
of traces according to their entropy and is a maximisation function based on the entropy
value of the assignment. It is calculated as the inverse of entropy (Entropy-features or
Entropy-transitions) plus one to which we add three weights according to the advan-
tages of the assignment. Each of the weights refers to one goodness of allocation: (g1)

Fig. 7 Processes obtained per clusters and entropies using a backtracking algorithm

there are not empty clusters; (g2) the number of traces assigned to each cluster is bal-
anced, and; (g3) the similarity between the traces within each group is also balanced.
With this fitness function the individual will be better, the higher fitness value it gets.
We preserve the same objective function for all algorithms, which is the entropy, but in
the case of the genetic, just the entropy as the objective function is insufficient, because
there are situations in which clusters can be empty or unbalanced. To adjust better the
solution, we included some weights. These weights are discrete values and allow us to
penalise or favour a certain individual regarding its characteristics. These weights are
not necessary for the rest of the algorithms applied, because, by their construction, they
take care that the events considered in functions g1, g2, g3 do not occur. For instance,
the backtracking algorithm includes mechanisms to avoid those solutions that include
empty clusters or in which the clusters are unbalanced. However, the genetic algorithm
we apply does not possess these abilities and requires the objective function to explic-
itly penalise candidates that would not be acceptable solutions. As these weights are
discrete values, they are customisable and adaptable to the context of each problem
and user, so that the user can decide which properties want to enhance or soften in the
allocations.

f itness = 1

1 + entropy
+ g1 + g2 + g3 (3)

– Different rates will determine the evolution of successive populations during the exe-
cution of the algorithm, and therefore, of the final solution. the maximum population
growth has been limited to 600,000 generations, each one with a size of 80 individ-
uals. We have used an elitism rate of 30%, a crossover rate of 80% and a mutation
rate of 70%. This selection of the parameters is due to different trial and error tests, in
which this parameterization has yielded the best results. The trial and error tests were
performed with all the cases to find the best general parameterization. Once the best
combination of parameters was determined, the same one was used for all the experi-
mentation. The designed test consists of the execution of each case several times with
different parameters configuration and the calculation of the average execution time (in
seconds) spent in each.

– Crossover policy: one-point crossover, where a random crossover point is selected and
the first part from each parent is copied to the corresponding child, and the second parts
are copied crosswise.

– Mutation policy: binary mutation, in which randomly one gene is changed.

Applying the proposed genetic algorithm to the ERP domain example with two clusters,
the traces distribution obtained the next processes as shown in Fig. 8. In this case, the genetic
algorithm seems to balance quite well each cluster considering both entropy distributions.
In both cases, each cluster groups two traces. However, as will be seen later in Section 3, it
is not the one that offers the best results in terms of entropy.

Hierarchical algorithm The well-known hierarchical agglomerative clustering algorithm
is based on the work by Ward (1963) as the combination of hierarchical and agglomerative
clustering.

As it was previously stated, we use this algorithm with our entropy matrix as the distance
matrix. From here, it is possible to decide which grouping criteria the algorithm must fol-
low when creating clusters. Examples of this methods are single-linkage, complete-linkage
(Hubert 1974), average-linkage (Murtagh 1983), and Ward (Ward 1963). Being the last one,
the one used in our solution, since it is one of the most used in practice and it has proven

Fig. 8 Processes obtained per clusters and entropies using a genetic algorithm

to be more accurate obtaining the optimal distribution, than the previous ones and avoiding
that the partition in groups distorts the original information (Kuiper and Fisher 1975).

On the first hand, hierarchical clustering is defined as a procedure to form hierarchical
groups of mutually exclusive subsets, each of which has members that are maximally similar
concerning the specified characteristics. In the same study, authors define the process as
“assuming we start from n sets, it permits their reduction to n−1 mutually exclusive sets by
considering the union of all possible n(n−1)

2 pairs and selecting a union having a maximal
value for the objective function”.

On the other hand, agglomerative clustering is an algorithm that starts from the assump-
tion that each element constitutes a cluster by itself (singleton) and it successively merges
these singletons forming clusters until a stopping criterion is satisfied which is also
determined by the objective function.

The elements used in our solution are based on both entropies presented (features and
transitions), combined with the objective function Ward’s minimum variance method (Ward
1963). This function aims to minimise the sum of the squared differences within all clusters,
which means, a variance-minimising approach. Figure 9 shows the obtained dendrogram2

for the example in Fig. 3 by using Entropy-features. In the mentioned dendrogram, a hori-
zontal line that intersects perpendicularly with two lines, appears, symbolising partitioning
into two groups: the first one, corresponding to the first cluster, which contains only one
trace, and the second, corresponding to the second cluster, which contains the three remain-
ing traces. The positioning of the horizontal line is determined by the optimal k-cluster

value since this line must be placed at a height where it intersects with as many vertical lines
like the k-cluster value is.

Once the clusters have been generated, it is possible to create a new log for each one of
the clusters and to discover the workflows corresponding to them. In the same figure, the

2Dendrogram that is a branching diagram which represents the arrangement of the clusters produced by the
corresponding analyses

Fig. 9 Clustering for the ERP excerpt using the Entropy-features in an agglomerative clustering algorithm

process models obtained according to the clustering division based on entropy-feature and
transition have been included, since the same models are obtained using both entropies.

2.2.4 Configuration workflow discovery with process mining

As it could be seen in Fig. 2, once the clusters have been obtained, the next step is to generate
the logs for each cluster and execute the process mining on each one of them.

Process mining is a family of techniques based on event logs that can be categorised as
process discovery, conformance checking and enhancement (van der Aalst 2016). In this
paper, we are focused on the use of process mining to analyse the configuration logs for
the discovering of configuration workflows based on user experiences. Process discovery
in process mining brings together a set of algorithms to generate a workflow process model
that covers the traces of activities observed in an organisation (Maruster et al. 2002). The
evolution of algorithms during last decades has allowed the discovery of complex models
that are able to involve not only the activities executed in the daily work of companies but
also the persons who execute them and the used resources.

Process mining is an important topic that has been well received by the enterprises, bring-
ing about the evolution of the research solution tools (e.g., ProM (van Dongen et al. 2005))
to commercial solutions (e.g., Disco3 and Celonis4). This facilitates its applicability to sev-
eral contexts and areas, although variability has been out of the scope of these techniques
before our proposal.

3https://fluxicon.com/disco/
4https://www.celonis.com/

The purpose of obtaining these configuration workflows is to assist the user who per-
forms the configuration. So that, thanks to this help, it is possible to know what actions must
be taken before others, which of them can be carried out in parallel, with which activity
should start the configuration, what task should be performed after the current one in order
to do it optimally, etc. In this way, following our example, a user who is facing the configu-
ration of an ERP system could know that he could start by configuring the CRM, after that,
the task list, followed by the calendar, ending with the credit card.

Process discovery in process mining uses a set of traces similar to the configuration log
shown in Fig. 3, to obtain a model that covers the possible traces. Figure 4 shows the process
discovered by Disco tool-suite of the example, which covers every possibility configura-
tion trace. The relational patterns among the definition of the features become part of the
model. For example, two features can be the first in the traces (CRM or Project manage-
ment) or after CRM always Task List is selected. Figure 4 also shows the number of traces
that are represented by each transition as labels of the edges, giving information about the
importance of each part of the traces in the obtained model.

2.3 COLOSSI implementation

COLOSSI is supported by the implementation of a framework which is made up of one
module for each activity of the process shown in Fig. 2.

1. Configuration log extractor is a piece of a software module which takes a set of raw
configuration log (including timestamps) in a semi-structured format and returns an
XES file. It corresponds to the activity with the same name in Fig. 2.

2. Configuration log handler is another piece of software which takes a FM and an XES
log as input. First, apply a set of operations over the FM as described in Section 2.2.2.
Then, a data cleaning is carried out over the XES log to get a filtered configuration log.
The output of this connector is a new XES log with the filtered configuration log. It
corresponds to the activity with the same name in Fig. 2.

3. Cluster generator is a Python/R module which takes an XES log file which is translated
into a matrix. This matrix enables the entropy calculation and the optimal k-cluster

that will be used when some of the clustering algorithms are applied to determine the
clusters. A new XES log file is generated for each cluster that composed the final output
of this component. This module is represented in Fig. 2 by the activity called Configu-
ration log cluster generator, the different clustering algorithms that can be applied and
the generation of new the logs.

4. Discovery connector is a piece of software which gets the XES file logs of each cluster
and automatically feed the ProM to discover the process models utilizing the Inductive
Miner. The output of this component is a process model in Petri-net or BPMN format.
This module is depicted in Fig. 2 by the Process Discovery activity.

The reason for using ProM in our proposal is because it is the free framework most used
by the academy. In it, the Process Mining community adds its contributions as plug-ins, and
therefore, it is always up-to-date with new solutions to problems that are under research. On
the other hand, it is a very powerful tool that contains all the Process Discovery algorithms,
and its construction allows it to be used inside of another software. The selection of the
Inductive Miner algorithm is reasoned by the great capacity of this algorithm to fully adjust
to the behaviour observed in the log. As explained in Section 3.4, it is one of the most
robust algorithms, which produces better results when facing non-synthetic logs, ensuring
the correctness of the models obtained. Its parameterization has been adjusted to 100% of

fitness, in such a way that all the configuration workflows obtained will completely cover
all the traces contained in the log, representing all the possible behaviours that have been
collected.

All the resources, thus, configuration logs, the XES files, the workflows discovered, the
source code of the COLOSSI framework (i.e., git repository), and a Jupyter notebook that
are employed in this work are freely available at5 http://www.idea.us.es/empiricalsoftware/.
The notebook is self-explanatory and allows users to work interactively by executing step-
by-step instructions to get the clusters.

3 Evaluation

In this section, we present the evaluation of COLOSSI. Concretely, the evaluation of the
algorithms of clustering detailed in Section 2 to different configuration logs obtained from
three real scenarios. Moreover, the suitability of each algorithm according to a set of metrics
are analysed.

3.1 Experimentation data

In order to analyse the applicability of our example in a configuration real scenario, we
propose three different scenarios where the creation of the configuration workflow can
be obtained from a set traces: a real ERP (enterprise resource planning) configuration,
smart farming, and a computer configurator. Please note that the number of possible prod-
ucts depicted by the models is an interesting metric to understand the usefulness of this
approach when performing variability reduction. However, our approach relays on the num-
ber of real configurations to obtain the configuration workflows. This is further explained
in Section 3.5.

3.1.1 Enterprise resource planning

This dataset (Pereira et al. 2016b) reflects the information of a real ERP variability among
a set of configuration logs. The ERP feature model has 1920 features and 59044 cross-tree
constraints. Also, the configuration log consists of 35193 event occurrences that represent a
total of 170 different configuration traces with an average of 207 features per configuration
trace.

3.1.2 Smart farming

This dataset represents several e-commerce transactions from the agribusiness
domain (Pereira et al. 2016a). Concretely this model consists of 2008 features. It contains
features targeting final customers (around 10%) and business to business (around 90%).
Each log consists of a real configuration developed for a concrete user or business hav-
ing a total of 5749 logs and up to 109 possible configuration due to the lack of cross-tree
constraints.

5https://doi.org/10.5281/zenodo.3574053

3.1.3 Computer configuration

This dataset represents the variability existing in a Dell laptop (Pereira et al. 2018a). It
reflects features such a processor or display, among others. Concretely this feature model
represents 68 features with seven cross-tree constraints that encode up to 109 configurations
according to their creators.6 The configuration log is composed of 42 configurations of such
a model.

3.1.4 COLOSSI setup

In this section, we detail each task of the framework presented in Fig. 2.

Configuration log extractor The input data of the configuration examples (i.e., ERP,
farming and computers) are represented in CSV files with two elements (columns), the con-
figuration id and the f eature that is configured. Note that a feature can appear in one or
more traces, but no more than once in the same trace. Then, the timestamp required to extract
the traces was taken by the line number in which the features were appearing throughout
the file in sequential order. This is, we assume that the timestamps were implicit based on
the order of appearance (i.e., line numbers). In all cases, we iterated over all configura-
tions extracting the orders. Finally, we transformed them into a more standard format for
traces. Concretely we use in our solution the IEEE Standard for eXtensible Event Stream
(XES) 2016. This is a standard to serialise, store and exchange events data, that is commonly
used in process mining tools.

Configuration log handler To clean up the set of configurations retrieved by the extractor
we decided to consider only valid partial and full configurations. This filtering operation
is performed by using the FaMa framework (Felfernig et al. 2018), with the intention of
keeping only valid configurations in the log, to avoid introducing noise into the results as a
consequence of the use of invalid traces.

After filtering, the valid partial configurations using automated analysis (Galindo et al.
2018), for each case are: for ERP ended up considering 61 configuration traces from the
initial set of 170, Farming example initially has 5749 traces and 919 after the filtering, and
dell configuration contained the full 42 of the initial set (i.e. all traces were valid).

Determining the number of clusters As commented previously, before applying any
grouping algorithm, the optimal number of clusters (i.e., optimal k-cluster) must be
determined for each use case and entropy by applying the indicators established in
Section 2.2.3.

For the three examples, as it was previously stated, we propose to analyse a range
between [0-10] for k-cluster since the obtained clusters will be used to create configura-
tion workflows later used by humans. In this context of the application and the number of
traces of the examples, we consider this range proper on the bases of the results shown in
Table 4, that summarises the number of clusters calculated by using each case and entropy.It
is important to note that due to the impossibility of computing the entropy matrix for the
Smart Farm case with entropy transitions, results for this case will not appear in that table.

As described previously, the distribution of the traces among the cluster is a complex
activity, and the best assignment is not a trivial task. For this reason, COLOSSI framework

6https://wwwiti.cs.uni-magdeburg.de/∼jualves/PROFilE/datasets-download/Dell-Laptop readme.txt

Table 4 Number of clusters per
use case and entropy Config. Workflow Entropy N. of Clusters (k-cluster)

ERP Sf eatures 5

Stransitions 3

Smart Farming Sf eatures 6

Stransitions -

Config. Computer Sf eatures 2

Stransitions 8

provides a set of techniques to be applied once the traces have been generated from the raw
data. The objective of each algorithm is the same to distribute the traces among a determined
number of clusters to minimise the summing of the entropy of every cluster for a later
application of discovery process algorithms for each cluster.

Nevertheless, there are no approach helping to determine the optimal k-cluster in algo-
rithms such as backtracking or genetic, which is why, in our proposal, the optimal number
of clusters is always determined using the hierarchical with the entropy matrix. Once an
optimal k-cluster value has been found for a case study and an entropy type, this value is
used in all grouping algorithms for that case study and that entropy.

3.2 Analysis of clustering

As introduced in previous sections, two different entropies are applied to infer the cluster-
ing (i.e., Entropy-features and Entropy-transitions). The two entropy formulas can help to
understand the quality of the future workflow. Thus, a lower value of entropy more quality
of the cluster, hence, the workflow has more quality.

Table 5 shows the results obtained for each case and each algorithm taking into account
the two entropies defined (feature and transitions). For a better comparison, the metrics
associated with the clusters are aggregated as arithmetic means. For the sake of the results,
the entropy of features are the best distributions in all the cases except for Computer Con-
figuration in the hierarchical algorithm. These results will be confirmed with complexity
results obtained with the metrics in Section 3.4.

It is important to emphasise that no results have been obtained for the backtracking algo-
rithm and some of the cases for the entropy of transitions, caused by the huge exponential
complexity that the examples imply. Because of this, two drawbacks of our approach have
been identified in the application of algorithms and the determination of entropy. Regarding
the backtracking algorithm, the use of a complete algorithm requires to explore all the space
of solutions hence in most of the cases it requires exponential time depending on the size of
the problem in terms of features, traces, and the number of configurations. The high number
of features, traces, and configurations in the data used for experimentation made impossi-
ble the application of backtracking algorithm in an acceptable time since its executions in
the simplest cases took more than 24 hours without results. Also, it is necessary to build an
entropy matrix that acts as a distance matrix to determine the number of clusters. Due to
the complexity of some scenarios, the creation of the entropy matrix was computationally
impossible, disabling the calculation of the k-cluster and consequently, the execution of
the clustering algorithms. This is the case of Smart Farming where the entropy matrix with
entropy-transitions was unapproachable in linear time, taking more than 10 hours.

Table 5 Entropy per algorithm and example

Greedy Genetic Hierarchical

Algorithm Algorithm Algorithm

Entropy Entropy Entropy Entropy Entropy Entropy

features transitions features transitions features transitions

ERP 0.2170 0.802 0.4609 0.793 0.1759 0.8585

Smart Farm 0.5137 – – – 0.5990 –

Computer Configuration 0.7830 0.9313 0.7264 0.9492 0.2566 0.2352

As previously highlighted, the characteristics and size of the configurations data will
condition the achievement of results with clear limitations of resources and time. There-
fore, it is necessary to compare the execution times of each algorithm for each example.
Table 6 shows the duration in minutes of executions from when the clustering algorithm
starts until it reaches a solution. Something important to highlight in these execution times
is the evidence that the hierarchical algorithm is much faster than the rest, mostly, because
the task that requires the longest computation time is the construction of the distance matrix
(in COLOSSI, entropy matrix) and this had previously been done to calculate the optimal
k-cluster . In the rest of the algorithms, the entropy matrix does not apply and they build the
distances during their executions, this is the reason why their computation time is longer.

3.3 Statistical analysis of results

To check if the running algorithms have an actual impact on the Entropy performance indi-
cators we used the Null Hypothesis Statistical Test in which two contrary hypotheses are
formulated. On the first hand, the null hypothesis (H0) states that the selected techniques
do not influence the obtained results (i.e., the algorithm has no impact on the entropy of
the retrieved models). On the other hand, the alternative hypothesis states that the selected
algorithm impacts the obtained results significantly (i.e., selecting a greedy or a hierarchical
algorithm impacts the entropy obtained).

We decided to fix such hypothesis to understand if our techniques to improve the entropy
of the resulting clusters were affected by the technique, and thus, can be useful in variability-
aware scenarios. This is, testing this hypothesis intend to check whether the application of
techniques coming from other contexts (e.g. process mining) provide meaningful results on
variability-intensive systems.

Table 6 Execution times in minutes per algorithm and example

Greedy Genetic Hierarchical

Algorithm Algorithm Algorithm

Entropy Entropy Entropy Entropy Entropy Entropy

features transitions features transitions features transitions

ERP 1.76 0.75 105 12 0.016 0.016

Smart Farm 152 – – – 0.016 –

Computer Configuration 0.026 0.041 15 15 0.016 0.016

Such executed tests provide a probability value (called p-value) which ranges from 0 to
1. The lower the p-value of a test, the more likely that the null hypothesis is false, and the
alternative hypothesis is correct. It is established that p-values under 0.05 or 0.01 are so-
called statistically significant, which let us assume that the alternative hypothesis is likely
true.

In this analysis, we only checked instances of the greedy and the hierarchical algorithm.
This is motivated by the lack of results for all models of the genetic and backtracking
algorithms for each case study. Note that this unavailability points out that the results are
dependent on the techniques.

The test we relied on for performing the statistical analysis and obtain the p-values
depends on the properties of the data (Derrac et al. 2011). Concretely, we executed the
Wilcoxon test (Wilcoxon 1946) and were not able to prove that our data follow normal dis-
tribution so, we had to rely on non-parametric techniques. We executed Friedman’s tests for
both entropy metrics, obtaining a p-value of 0.0455, and a statistics of four in the case of
the feature-based entropy. Thus, we have to reject the null hypothesis and then, accept the
alternative one. Therefore, for the case of feature-based entropy, the selection of the appro-
priated algorithm impacts the quality of results. Secondly, we obtained a p-value of 0.5637,
with a statistic of 0.333 for the case of transition-based entropy’s which prevents us from
rejecting the null hypothesis.

These results provide two main insights. First, we observe that for the feature-based
entropy is heavily dependent on the method used. Second, we can not determine if the
transition-based entropy is being affected by the method.

3.4 Analysis of discovered configuration workflows

To evaluate how the application of different clustering algorithms can improve the configu-
ration workflows obtained by COLOSSI, in this section, for each case study and algorithm,
we compare the models discovered by using a set of metrics. For each algorithm, entropy
and case study, the workflows corresponding to (1) the filtered version of the same log
including only valid configurations (i.e., after applying configuration log handler) and; (2)
the set of clusters obtained after applying cluster generator explained in Section 2.2.3. The
mentioned metrics helps to compare with each other, in terms of complexity and under-
standability, the configuration workflow of the filtered log and those extracted after the
clustering. This means that we measure the quality of the resulting configuration workflow,
without taking into account the input data of the feature model.

The analysis is carried out following two different perspectives: (1) the analysis of the
discovered configuration workflows and (2) the analysis of the set of configuration traces
involved in each cluster used in the process discovery.

First, we highlight that inductive process discovery techniques used by COLOSSI ensure
the soundness and correctness of the process models obtained (Leemans et al. 2015). Thus,
an analysis of the soundness and correctness of the configuration workflows are unnecessary
since processes discovered is always complete, have a proper completion, and have no dead
transitions.

However, the complexity of the configuration models are affected by the number of fea-
tures, the number of configuration traces and the number of transitions. The filtering of
the configuration traces or the division of the logs will bring about simpler configuration
workflows. Table 7 depicts comparatively the number of features, configuration traces and
transitions of the set of configuration logs using in each case study. The data of features,

Table 7 Characteristics of the configuration logs

Greedy Genetic Hierarchical

Algorithm Algorithm Algorithm

Original Reduction Entropy Entropy Entropy Entropy Entropy Entropy

Ratio Feat- Transi- Feat- Transi- Feat- Transi-

ures tions ures tions ures tions

ERP Features 425 48.66 129.40 253.67 211.40 333.67 146 229.67

Transitions 2,028 64.20 260.40 863.67 806.40 1,521.33 296.40 462.33

Traces 61 72.77 12.20 20.33 12.40 20.33 12.40 20.33

Smart Features 1,420 60.01 723.33 – – – 712 –

Farm Transitions 2,844 8.95 3,394.33 – – – 1,794.17 –

Traces 919 83.33 153.17 – – – 153.17 –

Computer Features 53 39.68 41.40 22.38 39 30 35 24

Configur- Transitions 205 43.15 174 65.38 151 102.25 106.50 59

ation Traces 42 66.86 21 5.25 21 5.25 21 10

transitions, and configuration traces of the clusters have been aggregated per use case, clus-
tering algorithm and type of entropy to show the average for every cluster obtained as a
solution after the application of the algorithms of clustering. In addition, the reduction ratio
column contains the average rate by which each characteristic has been reduced with respect
to the value presented by the original log.

The number of features and configuration traces grouped in the different clusters are
decreased in comparison with the original case since they are distributed among the clusters.
Regarding the transitions, these values are affected by the entropy and the algorithm used. In
general, the number of transitions is reduced, but it could happen, that because the grouped
traces are formed by non-common features, the number of transitions can increase, as is the
case of smart farming in the greedy algorithm.

In conclusion, clusters reduce the complexity of configuration workflow discovered by
reducing the configuration traces involved in the same configuration workflow. However,
the question is in what level the quality of the obtained workflow is improved, and which
distribution of cluster-entropy works better.

In the literature, several metrics are used to measure how “good” is a design of a business
process model (Mendling 2008; Pérez-Castillo et al. 2019; Cardoso 2005). Discovered con-
figuration workflows are also processes with features instead of activities, therefore, these
metrics can be adapted to measure the quality of our obtained configuration workflows. The
next set of metrics is adapted to measure the understandability and the complexity of the
configuration workflows to compare the discovered configuration workflows:

– Density: the ratio of transitions divided by the maximum number of possible transitions.
The lower the value of density, the higher the understandability.

– Cyclomatic number (CC): the number of paths needed to visit all features. The cyclo-
matic can be seen as a complexity metric, thus, the lower the value of CC, the lower
the level of complexity.

– Coefficient of connectivity (CNC): the ratio of transitions to features. The greater the
value of CNC, the greater the complexity of configuration workflows. Although, the

authors in Mendling (2008) remark that models with the same CNC value might differ
in complexity regarding this parameter.

– Control Flow Complexity (CFC) enables to measure the complexity in terms of the
potential transitions after a split depending on its type. The greater the value of the
CFC, the greater the overall structural complexity of a workflow.

These four metrics help us to know the complexity and understandability of the configu-
ration workflows from the design perspective and the elements in the model. Nevertheless,
these metrics used to measure the quality of the workflow are inconclusive to measure
the real usefulness and quality of the discovered workflows applied to the context of the
variability management.

As previously mentioned, the uselessness of the quality metrics related to the work-
flows leads us to define a new custom metric which enables to establish the quality level
of the workflow by relating the number of features and their occurrence within the discov-
ered workflow of a cluster. Thus, a metric that enables us to measure how spaghetti is the
workflow obtained. Our custom-quality metric is defined as follows:

– Quality (Δ≡) measures the difference between the total number of features and the ratio
of the sum of the number of times that a feature is selected for each configuration trace
and the number of configuration traces.

Formally, given a workflow based on a set of configuration traces (CT) and a set of
features (Features), the quality can be determined as the following formula:

Δ≡ = |Features| −
∑

f ∈Workf low

occurrences(f)

|CT | (4)

The range of the quality is [0..|Features|], the lower value of quality a better configu-
ration workflow is indicated. The number of features and configuration traces are grouped
into the most similar workflow, therefore, it brings about that the quality is near to 0.

To make the application of metric more understandable, we use the first example of Fig. 3
and the Cluster 2 in Fig. 5. The number included in the rectangle, next to the name of the
feature, corresponds to the number of traces within the cluster where the feature appears.
Hence, the quality for the Cluster 2 can be determined by applying the formula as follows:

Δ≡ = 8 −
(

3

3
+ 3

3
+ 1

3
+ 1

3
+ 1

3
+ 1

3
+ 1

3
+ 1

3

)

≈ 4 (5)

The results obtained for these five metrics are shown using box-plot charts represented
for each scenario in (Figs. 10, 11 and 12) to compare distribution by metric, algorithm and
the type of entropy for each case study. The y axis represents, on a logarithmic scale, the
results of each metric for the configuration workflows obtained using a specific algorithm.
Detailed values for each case and metrics can be consulted in the Appendix section.

In the case of ERP scenario, Fig. 10 shows that the values for CC and CFC metrics are
equal and significantly higher, which implies that the connectivity of the workflow is higher,
increasing its complexity. In addition, in the case of the genetic algorithm, it is important to
highlight the importance of the type of entropy, which will determine whether the clusters
generated after the assignment have similar levels of connectivity or not. For Density and
CNC metrics, all algorithms have similar behaviour regardless of the entropy used. In terms
of Quality, it is clearly observed how the use of entropy by transitions produces considerably
more complex workflows.

In the Smart Farm example, the greedy algorithm produces slightly more complex work-
flows but also more balanced clusters as shown in Fig. 11. Also, the hierarchical clustering

Density Quality

CC CFC CNC

Genetic Greedy Hierarchical Genetic Greedy Hierarchical

Genetic Greedy Hierarchical

0.125

4.000

128.000

4096.000

0.125

4.000

128.000

4096.000

Algorithm

va
lu
e

Entropy

Features

Transitions

Fig. 10 Metrics distribution of ERP case study

generates less similar clusters, which reduces the complexity and the connectivity, as it is
clearly observable for the case of Quality metric.

Finally, there are no remarkable differences between the three algorithms for the case of
Computer Configuration, since they all produce very similar results as shown in Fig. 12.
Exclusively, the use of the hierarchical algorithm with transitions entropy could be distin-
guished as the solutions with less complex configuration workflows. Nevertheless and in

Density Quality

CC CFC CNC

Greedy Hierarchical Greedy Hierarchical

Greedy Hierarchical

0.125

4.000

128.000

4096.000

0.125

4.000

128.000

4096.000

Algorithm

va
lu
e

Fig. 11 Metrics distribution of Smart Farm case study

contrary to the other cases, in this particular scenario better general results of Quality are
obtained using the entropy of transitions.

To compare all the cases with each other, we propose Fig. 13. This figure represents the
average values of each metric for each case study in aggregate. In this way, we intend to
compare the three examples in terms of complexity, taking a holistic view of the average
values obtained by each for each metric. Thus, it is noteworthy that the mean values for three

Density Quality

CC CFC CNC

Genetic Greedy Hierarchical Genetic Greedy Hierarchical

Genetic Greedy Hierarchical

0.0625

1.0000

16.0000

0.0625

1.0000

16.0000

Algorithm

va
lu
e

Entropy

Features

Transitions

Fig. 12 Metrics distribution of Computer Configuration case study

of the metrics for the Computer Configuration case are significantly smaller than in the other
cases, which can mean that the workflows obtained from this example are less complex.
On the other hand, in light of the results shown in the chart, we can realise that, for these
cases, the Density and CNC metrics do not help to discriminate the real level of complexity
of the workflows produced with COLOSSI, since they present the same average value for
the three cases. Nevertheless, the Quality, CC and CFC metrics present the highest values
for the Smart Farm case, which could lead to higher levels of complexity and connectivity.
It can also be inferred that Computer Configuration may be the most balanced case since
all its edges have approximately the same length. In the case of ERP, it is remarkable how
all its complexity can be focused on its high degree of connectivity, reaching the maximum
of our evaluation. The fact that the Smart Farm example occupies a larger area between the
Quality and CFC metrics denotes that, probably, this case contains a much greater number
of features, transitions and splits than the other cases.

3.5 Threats to validity

Although the experiments presented in this paper provide evidence that demonstrates the
validity of the proposed solution, in this section, we discuss the different threats to validity
that affect the evaluation, derived from the assumptions that we made.

External validity The inputs used for the experiments presented in this paper were either
realistic or designed to mimic realistic feature models. However, we do not control the
development process and it may have errors and not encode every configuration for all case
studies.

Fig. 13 Average of metrics of the configuration workflows

The major threats to external validity are:

– Population validity: the three examples that we used do not represent all configuration
traces. Note that all of the models were provided after an anonymisation process. More-
over, the timestamps used to derive the traces were relying on the appearance within the
input file without an explicit enumeration. To reduce these threats to validity, we chose
some large models that were used in different studies in the literature. Also, we were
not directly involved in the development of such models which

– Ecological validity: while external validity, in general, is focused on the generalisation
of the results to other contexts (e.g., using other models), the ecological validity if
focused on possible errors in the experiment materials and tools used. To avoid as much
as possible such threats, we relied on previously existing algorithms to perform the
process discovery.

– Limitations depending on the input data: another external validity problem lies with the
shape and size of the input data. As previously stated, one of the important bottlenecks
of this solution is the construction of the entropy matrix, since, without the matrix, it
will not be possible to determine the optimal k-cluster , and therefore, to apply our
solution.

– Limitations on the use of feature attributes: as mentioned in Section 2.1, features may
contain attributes with more information, which has not been taken into account in
our solution. Ignoring this data means that the selection of the same feature with dif-
ferent values in its attributes cannot be differentiated in the resulting workflows. This
represents an important weakness of the approach since the use of this information
would mean that different paths would be generated in the workflow for the same fea-
ture with different values in its attributes. While in our solution, it is considered as the
same one.

Internal validity We developed several algorithms and metrics that reveal different proper-
ties of the workflows. To mitigate this threat, we have relied on a diversity of approaches.
However, there might be characteristics of such workflows that are not revealed and further
research should be developed. Also, another major threat to internal validity was the short
number of models and configuration available in which we were able to test our techniques.
In this case, we tried to cover all the models we found in the literature.

3.6 Examples of discovered configuration workflows

Derived from the high number of implementations and test cases tackled in this paper, every
configuration workflow cannot be included in the document. However, for the sake of illus-
tration, two configuration workflows of the ERP are shown in Figs. 14 and 15. Both figures
represent the obtained clusters according to the dendrogram built by means of the entropy of
features and transitions analysis respectively. In the case of entropy of features (cf., Fig. 14),
five clusters are obtained. On the other hand, when the entropy of transition is used, three
clusters are derived to split the configuration logs into simpler configuration workflows.
In the following subsections, the details about the obtained configuration workflows and
clusters are analysed. Moreover, every obtained cluster distribution for each algorithm, case
study and type of entropy are available at http://www.idea.us.es/empiricalsoftware/.

4 Related work

This paper combines different research areas, for this reason, this section is structured
to cover the main ones: configuration workflows, application for process mining and the
variability in process mining.

Traces

E
n

tr
o

p
ie

s

Fig. 14 Clustering for the ERP example using the Entropy-features

Traces

E
n

tr
o

p
ie

s

Fig. 15 Clustering for the ERP example using the Entropy-transitions

4.1 Configuration workflows

A formal description of configuration workflows is given in Hubaux et al. (2009). However,
a configuration workflow is a bit different from our definition. The activity of the config-
uration workflow can be mapped to more than just a feature as in our case. However, our
approach is complementary because in the handling process we can group different features
as well. Furthermore, although formal semantics and automated support for configuration
workflows are presented, no automated mechanism is developed to automatically gener-
ate configuration workflows from existing configuration logs. In that sense, our approach
complements theirs.

Different possible feature orders are defined in Galindo et al. (2015). Those orders are
used to build web–based configurators hiding the details of the concrete variability model
flavours (e.g., OVM, FMs, CVL, etc.). The orders are built from the structure of the vari-
ability model. For instance, in the case of FMs, pre-order, post-order or in-order can be
used to determine the feature order in which features are presented to the user. COLOSSI
differs from this approach because we use as input configuration logs to automatically
derive and cluster configuration workflows. Our approach can be complementary to Galindo
et al. (2015) because different existing workflows could be also measured using process
alignment metrics to determine what is the best feature order to be used.

There exist other approaches (Wang and Tseng 2011, 2014) focused on the field of
product configurator design in which configuration workflows has been tackled from the
perspective of machine learning. Neither of these two approaches uses clustering or process
mining. Both are based on probabilistic estimations aided by a recommendation system that
recalculates and guides the user through each step. This means that the user can lose the
holistic view of the entire configuration process since from the step n he/she can only know
the different possibilities that he/she can do in the step n + 1. With our proposal, the user
has, from the beginning, an overall perspective of the entire configuration process from start
to finish.

4.2 Application of process mining in different contexts

In order to discover the processes followed by users or systems analysing event logs, pro-
cess mining has been applied in several scenarios. Depending on the scenario, different are
the points of view that could be used to discover a process, such as the activities executed,
persons involved, the resources used, the location where the actions occur, etc. The versa-
tility of process mining techniques has brought about its application to several scenarios
(Dakic et al. 2018), healthcare (Mans et al. 2009; Rozinat et al. 2009; Perimal-Lewis et al.
2016) and IT (Sahlabadi et al. 2014; Măruşter and van Beest 2009; Pérez- ́Alvarez et al.
2018; Fernández-Cerero et al. 2019) being the most active areas.

The case studies where event logs are produced by human behaviour interactions are
especially complex, derived from the free-will capacity of the persons that is not always
possible to be modelled. This is the context of this paper, where configuration tasks describe
the interaction of users with systems. Previous examples in previous scenarios have been
developed, such as Astromskis et al. (2015), to analyse how the users interact with an enter-
prise resource planning software, or the applicability of software scenarios analysing how
the users interact with software to promote improvements about functional specifications
or usability aspects (Rubin et al. 2014). Software development has also provided a com-
plex scenario where process mining can provide a mechanism to improve and optimise the
known as software process mining (Rubin et al. 2007). However, configurability issue has
not been analysed before with process mining.

4.3 High variability in process mining

When there is a high human interaction, as in configuration processes, spaghetti and
lasagne processes tend to be obtained. The occurrence of infrequent activities or non-
repeated sequence of activities in the analysed log events brings about the necessity to apply
frequency-based filtering solutions (Conforti et al. 2017) and other based on the discovery
of a chaotic set of activities that can be frequent (Tax et al. 2019).

The infrequence patterns in process discovery are frequently treated as noise (Ly et al.
2012), being removed from the log traces to discover a process that represents the most
frequent behaviour (Sani et al. 2017). Different types of filtering can be performed: (i)
filtering the events that are not belong to the mainstream behaviour (Conforti et al. 2017;
Sani et al. 2017); (ii) integrating the filtering as a part of the discovery (Leemans et al. 2014;
Maruster et al. 2006; Weijters and Ribeiro 2011; vanden Broucke and Weerdt 2017); (iii)
filtering traces, in an unsupervised (Ghionna et al. 2008) or supervised way (Cheng and
Kumar 2015), and; (iv) including a previous steps for clustering the problem, facilitating
the discrimination of traces according to different points of view or dividing different types
of behaviour (de Leoni et al. 2016; Song et al. 2009; de Medeiros et al. 2007). In Sani et al.
(2019) clustering techniques have been used to improve the quality of process models, but
not to distribute the traces in different clusters.

To our knowledge, this paper, which is as an extension of Varela-Vaca et al. (2019a), is
the first solution for workflow retrieval in SPL-related contexts. It is also an achievement
the application of process mining techniques in new fields. This paper aims at promoting
synergies between these two areas of study, consider different types of algorithms, metrics
or entropies, and they are not oriented towards the consideration of the characteristics of
configuration workflows.

Our contribution described in this paper intends to promote synergies between process
mining and variability management and software product lines. We consider different types
of algorithms, metrics and entropies.

5 Concluding remarks & future work

In this paper, we have coped with the problem of extracting the actual workflows used by
SPL configurators by analysing configuration logs. To discover configuration workflows,
we decided to rely on process mining techniques. Moreover, we proposed to apply clustering
to improve the resulting configuration workflows reducing the complexity and improv-
ing their understandability. From our research on configuration workflows, we learned the
following important lessons:

1. Reduce the complexity of the configuration workflows. We have defined a mech-
anism based on clustering to divide the configuration logs into smaller configuration
groups to facilitate the understanding of the configuration workflows inferred from
configuration logs.

2. Quality measurement. We have defined a set of metrics adapted from business process
literature, to measure the quality of the obtained clusters and configuration workflows.

3. Improving decisions about configurators. The clustering creation and the analysis
of the obtained configuration workflows provide information to expert users about the
features that used to be configured together or sequential lists of features that could be
integrated into a single feature. In this way, thanks to the structure of the workflow,
the user will know that everything that appears in a parallel can be done simultane-
ously, while those that appear sequentially will indicate precedence relationships and
restrictions.

4. The selection of the clustering method depends mostly on the input data. Gener-
ally, hierarchical clustering provides good solutions, in terms of quality, velocity and
efficiency. However, it has an important bottleneck: the construction of the entropy
matrix, which will determine the time and resources necessary to achieve the results.
For the cases in which the construction of the entropy matrix becomes very hard,
less accurate algorithms, such as greedy or genetic algorithms may be more suit-
able. The greedy algorithm provides very acceptable results consuming less time,
and the genetic algorithm is positioned at an intermediate level for those cases in
which results very close to the optimum, are needed. Finally, backtracking ensures
optimal entropy minimisation and traces distribution. Unfortunately, the time and
resources needed will increase exponentially with the size of the data of the case
study. Lamentably, the use of these algorithms without the previous computation of
the entropy matrix and the optimal k-cluster , will imply that the number of clus-
ters chosen and the distribution of the traces, probably, will lead to a non-optimal
assignment.

5. The impact of the size and the morphology of the case study data on time and
metrics. Based on the results of the metrics in different examples, and the time and
resources that are necessary to get the solutions of each one, there seems to exists
a direct relationship among (i) features and the way in which these are related, (ii)
the time and resources that are necessary to compute the entropy matrix and the

optimal k − cluster , (iii) the time consumed for each algorithm until the clusters
are achieved, (iv) and the range of values in which the results of the metrics will
be.

In future work, we plan to develop new variability-oriented metrics that can show the
impact of the numbers of features within the workflows, trying to incorporate characteristics
of the feature models into the clustering and process discovery. Additionally, we would like
to incorporate the information present in the attributes of the features in the feature model
to achieve more realistic workflows. Moreover, we would like to apply this technique to
more scenarios and datasets to complement the validation of our proposal, including in the
analysis of other methods to tackle spaghetti processes. Further, we consider interesting to
investigate a proper way to obtain the best distribution clusters automatically for a defined
number of clusters. In addition, the search of optimum k − cluster is a very difficult task
such as shown in our work, therefore it is necessary to find out a way to discover an approxi-
mate k−cluster that ensures the achieved assignments not only are correct but they also are
potential solutions. We propose to study new formulas of seeking k − cluster based on the
structure (i.e., number of task and/or gateways) of initial workflows before clustering. From
our point of view, it is also relevant to propose multiple uses of the resulting workflows to
help in different areas such as reverse engineering or SPL testing. Another proposal is to
incorporate incorrect configuration to analyse the misalignment with the expected feature
model.

Acknowledgements This work has been partially by the Ministry of Science and Technology of
Spain through ECLIPSE (RTI2018-094283-B-C33) and OPHELIA (RTI2018-101204-B-C22) projects; the
TASOVA network (MCIU-AEI TIN2017-90644-REDT); and the Junta de Andalucı́a via METAMORFOSIS
projects, the European Regional Development Fund (ERDF/FEDER), and the MINECO Juan de la Cierva
postdoctoral program.

Appendix : Quality metrics results

This appendix contains in the Tables 9, 10, 11, 12, and 13, the metric data represented
in Figs. 10, 11, 12. To facilitate the interpretation of the data, the values of the metrics
have been normalised in each metric, so that, all the results are between 0 and 1, allowing
comparisons to be made. In addition, Table 8 is included to show the metric values for the
original logs. With this, it can be seen how, in most cases, their values are closer to 0 after
clustering, meaning that the resulting configuration workflows are also less complex. Still,
it is important to note that it is very difficult to determine a generalisation regarding this
data, since they are too domain-specific.

Table 8 Metrics for the initial logs of each case study

Case Study Density CC CNC CFC Quality

ERP 0.05 0.49 0.96 0.49 0.26

Smart Farm 0 0.43 0.24 0.43 1

Computer Configuration 0.39 0.04 0.73 0.04 0.03

Table 9 Metrics for ERP case with entropy-features

Algorithm Density CC CNC CFC Quality

Cluster 1 Greedy 0.05 0.05 0.26 0.05 0.09

Hierarchical 0.16 0.02 0.24 0.02 0.05

Genetic 0.05 0.43 0.95 0.43 0.36

Cluster 2 Greedy 0.11 0.01 0.16 0.01 0.08

Hierarchical 0.05 0.04 0.20 0.04 0.16

Genetic 0.05 0.01 0.10 0.01 0.07

Cluster 3 Greedy 0.11 0.02 0.24 0.02 0.07

Hierarchical 0.05 0.05 0.26 0.05 0.09

Genetic 0.11 0.01 0.13 0.01 0.06

Cluster 4 Greedy 0.11 0.02 0.20 0.02 0.08

Hierarchical 0.05 0.05 0.25 0.05 0.002

Genetic 0.05 0.01 0.08 0.01 0.05

Cluster 5 Greedy 0.05 0.06 0.28 0.06 0.06

Hierarchical 0.05 0.04 0.25 0.04 0.02

Genetic 0.05 0.43 1 0.45 0.31

Table 10 Metrics for ERP case with entropy-transitions

Algorithm Density CC CNC CFC Quality

Cluster 1 Greedy 0.11 0.03 0.24 0.03 0.08

Hierarchical 0.05 0.10 0.24 0.10 0.24

Genetic 0.05 0.33 0.91 0.33 0.27

Cluster 2 Greedy 0.05 0.09 0.26 0.09 0.26

Hierarchical 0.05 0.05 0.22 0.05 0.19

Genetic 0.05 0.31 0.88 0.31 0.26

Cluster 3 Greedy 0.05 0.43 0.99 0.43 0.33

Hierarchical 0.05 0.05 0.25 0.05 0.002

Genetic 0.05 0.44 0.93 0.44 0.37

Table 11 Metrics for Smart Farm case with entropy-features

Algorithm Density CC CNC CFC Quality

Cluster 1 Greedy 0.05 0.80 0.92 0.80 0.82

Hierarchical 0 0.33 0.23 0.33 0.12

Genetic – – – – –

Cluster 2 Greedy 0.05 0.84 0.96 0.84 0.83

Hierarchical 0 0.25 0.25 0.25 0.90

Genetic – – – – –

Table 11 (continued)

Algorithm Density CC CNC CFC Quality

Cluster 3 Greedy 0.05 0.82 0.93 0.82 0.82

Hierarchical 0 0.14 0.24 0.14 0.46

Genetic – – – – –

Cluster 4 Greedy 0.05 0.81 0.94 0.81 0.82

Hierarchical 0 0.25 0.24 0.25 0.92

Genetic – – – – –

Cluster 5 Greedy 0.05 0.80 0.94 0.80 0.82

Hierarchical 0.05 1 0.94 1 1

Genetic – – – – –

Cluster 6 Greedy 0.05 0.83 0.96 0.83 0.82

Hierarchical 0.05 0.01 0.02 0.01 0.09

Genetic – – – – –

Table 12 Metrics for Computer Configuration case with entropy-features

Algorithm Density CC CNC CFC Quality

Cluster 1 Greedy 0.55 0.03 0.77 0.03 0.03

Hierarchical 0.72 0.02 0.73 0.02 0.02

Genetic 0.88 0.02 0.71 0.02 0.01

Cluster 2 Greedy 0.61 0.04 0.85 0.04 0.03

Hierarchical 0.33 0.01 0.33 0.01 0.03

Genetic 0.44 0.04 0.74 0.04 0.04

Table 13 Metrics for Computer Configuration case with entropy-transitions

Algorithm Density CC CNC CFC Quality

Cluster 1 Greedy 0.77 0.01 0.46 0.01 0.01

Hierarchical 0.33 0.02 0.47 0.02 0.02

Genetic 0.77 0.01 0.43 0.009 0.01

Cluster 2 Greedy 0.77 0.01 0.46 0.01 0.01

Hierarchical 0.27 0.02 0.36 0.02 0.01

Genetic 0.66 0.03 0.89 0.03 0.03

Cluster 3 Greedy 0.66 0.005 0.25 0.005 0.007

Hierarchical 0.72 0.01 0.54 0.01 0.01

Genetic 0.61 0.02 0.70 0.02 0.02

Cluster 4 Greedy 0.72 0.01 0.59 0.01 0.01

Hierarchical 0.61 0.002 0.11 0.002 0.005

Genetic 0.44 0.01 0.34 0.01 0.02

Table 13 (continued)

Algorithm Density CC CNC CFC Quality

Cluster 5 Greedy 0.66 0.01 0.42 0.01 0.01

Hierarchical 0.5 0 0 0 0

Genetic 0.77 0.02 0.79 0.02 0.02

Cluster 6 Greedy 1 0.02 0.73 0.02 0.01

Hierarchical 0.55 0.001 0.07 0.001 0.002

Genetic 0.72 0.02 0.73 0.02 0.02

Cluster 7 Greedy 0.66 0.01 0.44 0.01 0.01

Hierarchical 0.66 0.08 0.34 0.008 0.01

Genetic 0.5 0.02 0.5 0.02 0.02

Cluster 8 Greedy 0.77 0.009 0.39 0.009 0.01

Hierarchical 0.72 0.004 0.22 0.004 0.006

Genetic 0.72 0.01 0.41 0.01 0.01

References

Alférez M, Acher M, Galindo JA, Baudry B, Benavides D (2019) Modeling variability in the video domain:
language and experience report. Softw Qual J 27(1):307–347

Astromskis S, Janes A, Mairegger M (2015) A process mining approach to measure how users interact with
software: an industrial case study. In: Proceedings of the 2015 international conference on software and
system process. ICSSP 2015. ACM, New York, pp 137–141

Augusto A, Conforti R, Dumas M, Rosa ML, Maggi FM, Marrella A, Mecella M, Soo A (2019) Automated
discovery of process models from event logs: review and benchmark. IEEE Trans Knowl Data Eng
31(4):686–705. https://doi.org/10.1109/TKDE.2018.2841877

Baker FB, Hubert LJ (1975) Measuring the power of hierarchical cluster analysis. J Am Stat Assoc
70(349):31–38

Ball GH, Hall DJ (1965) Isodata a novel method of data analysis and pattern classification. Tech. rep.
Stanford Research Inst, Menlo Park

Bosch J (2018) The three layer product model: an alternative view on spls and variability. In: Proceedings of
the 12th international workshop on variability modelling of software-intensive systems, VAMOS 2018,
Madrid, Spain, February 7–9, 2018, p 1. https://doi.org/10.1145/3168365.3168366

Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat-Theory Methods 3(1):1–
27

Cardoso J (2005) Control-flow complexity measurement of processes and weyuker’s properties. In: 6th
International enformatika conference, vol 8, pp 213–218

Cheng H, Kumar A (2015) Process mining on noisy logs—can log sanitization help to improve performance?
Decis Support Syst 79:138–149. https://doi.org/10.1016/j.dss.2015.08.003

Conforti R, Rosa ML, ter Hofstede AHM (2017) Filtering out infrequent behavior from business process
event logs. IEEE Trans Knowl Data Eng 29(2):300–314. https://doi.org/10.1109/TKDE.2016.2614680

Dakic D, Stefanovic D, Cosic I, Lolic T, Medojevic M (2018) Business application: a literature
review. In: 29th DAAAM international symposium on intelligent manufacturing and automation.
https://doi.org/10.2507/29th.daaam.proceedings.125

Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell (2):224–
227

de Leoni M, van der Aalst WMP, Dees M (2016) A general framework for correlating, predicting and cluster-
ing dynamic behavior based on event logs. Inf Syst 56:235–257. https://doi.org/10.1016/j.is.2015.07.003

de Medeiros AKA, Guzzo A, Greco G, van der Aalst WMP, Weijters AJMM, van Dongen BF,
Saccà D (2007) Process mining based on clustering: a quest for precision. In: Business process
management workshops, BPM 2007 international workshops, BPI, BPD, CBP, ProHealth, Ref-
Mod, semantics4ws, Brisbane, Australia, September 24, 2007, Revised Selected Papers, pp 17–29.
https://doi.org/10.1007/978-3-540-78238-4 4

De Weerdt J, vanden Broucke S, Vanthienen J, Baesens B (2013) Active trace clustering for improved process
discovery. IEEE Trans Knowl Data Eng 25(12):2708–2720

Derrac J, Garcı́a S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput
1(1):3–18

Duda RO, Hart PE et al (1973) Pattern classification and scene analysis, vol 3. Wiley, New York
Dunn JC (1974) Well-separated clusters and optimal fuzzy partitions. J Cybern 4(1):95–104
Durán A, Benavides D, Segura S, Trinidad P, Ruiz-Cortés A (2017) Flame: a formal framework for the

automated analysis of software product lines validated by automated specification testing. SOSYM
16(4):1049–1082. https://doi.org/10.1007/s10270-015-0503-z

Felfernig A, Walter R, Galindo JA, Benavides D, Erdeniz SP, Atas M, Reiterer S (2018) Anytime diagnosis
for reconfiguration. J Intell Inf Syst 51(1):161–182. https://doi.org/10.1007/s10844-017-0492-1

Fernández-Cerero D, Varela-Vaca ÁJ, Fernández-Montes A, Gómez-López MT, Alvárez-Bermejo JA (2019)
Measuring data-centre workflows complexity through process mining: the google cluster case. J
Supercomput. https://doi.org/10.1007/s11227-019-02996-2

Ferreira DR, Alves C (2011) Discovering user communities in large event logs. In: Daniel F, Barkaoui
K, Dustdar S (eds) Business process management workshops—BPM 2011 international workshops,
Clermont-Ferrand, France, August 29, 2011, Revised Selected Papers, Part I, Springer, Lecture Notes in
Business Information Processing, vol 99, pp 123–134. https://doi.org/10.1007/978-3-642-28108-2 11

Frey T, Van Groenewoud H (1972) A cluster analysis of the d2 matrix of white spruce stands in saskatchewan
based on the maximum-minimum principle. J Ecol 60(3):873–886

Galindo J, Turner H, Benavides D, White J (2014a) Testing variability-intensive systems using automated
analysis: an application to android. Softw Qual J 1–41. https://doi.org/10.1007/s11219-014-9258-y

Galindo JA, Alférez M, Acher M, Baudry B, Benavides D (2014b) A variability-based testing approach for
synthesizing video sequences. In: International symposium on software testing and analysis, ISSTA ’14,
San Jose, CA, USA—July 21–26, 2014, pp 293–303

Galindo J, Dhungana D, Rabiser R, Benavides D, Botterweck G, Grünbacher P (2015) Supporting distributed
product configuration by integrating heterogeneous variability modeling approaches. Inf Softw Technol
62(1):78–100

Galindo JA, Benavides D, Trinidad P, Gutiérrez-Fernández AM, Ruiz-Cortés A (2018) Automated analysis
of feature models: Quo vadis? Computing 101:387–433

Ghionna L, Greco G, Guzzo A, Pontieri L (2008) Outlier detection techniques for applications. In:
Foundations of intelligent systems. Springer, Berlin, pp 150–159

Grabusts P et al (2011) The choice of metrics for clustering algorithms. In: Proceedings of the 8th
international scientific and practical conference, vol 2, pp 70–76

Greco G, Guzzo A, Pontieri L, Sacca D (2006) Discovering expressive process models by clustering log
traces. IEEE Trans Knowl Data Eng 18(8):1010–1027

Halkidi M, Vazirgiannis M, Batistakis Y (2000) Quality scheme assessment in the clustering process. In:
European conference on principles of data mining and knowledge discovery. Springer, pp 265–276

Hartigan JA (1975) Clustering algorithms, 99th, John Wiley & Sons, Inc., USA
Hompes BFA, Verbeek HMW, van der Aalst WMP (2015) Finding suitable activity clusters for decomposed

process discovery. In: Ceravolo P, Russo B, Accorsi R (eds) Data-driven process discovery and analysis.
Springer International Publishing, Cham, pp 32–57

Hompes BFA, Buijs JCAM, van der Aalst WMP, Dixit PM, Buurman J (2017) Detecting changes in process
behavior using comparative case clustering. In: Ceravolo P, Rinderle-Ma S (eds) Data-driven process
discovery and analysis. Springer International Publishing, pp 54–75

Hubaux A, Classen A, Heymans P (2009) Formal modelling of feature configuration workflows. In: Proceed-
ings of the 13th international software product line conference, Carnegie Mellon University, Pittsburgh,
PA, USA, SPLC ’09, pp 221–230. http://dl.acm.org/citation.cfm?id=1753235.1753266

Hubaux A, Heymans P, Schobbens PY, Deridder D, Abbasi E (2013) Supporting multiple perspectives
in feature-based configuration. SOSYM 12(3):641–663. https://doi.org/10.1007/s10270-011-0220-1.
http://www.scopus.com/inward/record.url?eid=2-s2.0-84879788174&partnerID=40&
md5=dee1ff6a27f859c32d424a1528d81ada

Hubert L (1974) Approximate evaluation techniques for the single-link and complete-link hierarchical
clustering procedures. J Am Stat Assoc 69(347):698–704

Hubert LJ, Levin JR (1976) A general statistical framework for assessing categorical clustering in free recall.
Psychol Bull 83(6):1072

Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

Kobren A, Monath N, Krishnamurthy A, McCallum A (2017) A hierarchical algorithm for extreme cluster-
ing. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and
data mining. KDD ’17. ACM, New York, pp 255–264

Krzanowski WJ, Lai Y (1988) A criterion for determining the number of groups in a data set using sum-of-
squares clustering. Biometrics 44(1):23–34

Kuiper FK, Fisher L (1975) 391: a Monte Carlo comparison of six clustering procedures 777–783. Biometrics
31(3):777–783

Lebart L, Morineau A, Piron M (2000) Statistique exploratoire multidimensionnelle, Dunod, Paris, France
Leemans SJJ, Fahland D, van der Aalst WMP (2014) Discovering block-structured process models from

incomplete event logs. In: Petri Nets, Springer, Lecture Notes in Computer Science, vol 8489, pp 91–110
Leemans SJJ, Fahland D, van der Aalst WMP (2015) Scalable process discovery with guarantees. In: Gaaloul

K, Schmidt R, Nurcan S, Guerreiro S, Ma Q (eds) Enterprise, business-process and information systems
modeling. Springer International Publishing, Cham, pp 85–101

Lettner M, Rodas-Silva J, Galindo JA, Benavides D (2019) Automated analysis of two-layered feature models
with feature attributes. J Comput Lang 51:154–172

Ly LT, Indiono C, Mangler J, Rinderle-Ma S (2012) Data transformation and semantic log purging for process
mining. In: CAiSE, Springer, Lecture notes in computer science, vol 7328, pp 238–253

MacKay DJC (2002) Information theory inference & learning algorithms. Cambridge University Press, New
York

Makanju A, Brooks S, Zincir-Heywood AN, Milios EE, Safavi-Naini R (2008) Logview: visualizing event
log clusters. In: Korba L, Marsh S (eds) Sixth annual conference on privacy, security and trust, PST
2008, October 1–3, 2008. IEEE Computer Society, Fredericton, pp 99–108. https://doi.org/10.1109/
PST.2008.17

Makanju A, AN Zincir-Heywood, Milios EE (2009) Clustering event logs using iterative partitioning. In:
IV JFE, Fogelman-Soulié F, Flach PA, Zaki MJ (eds) Proceedings of the 15th ACM SIGKDD interna-
tional conference on knowledge discovery and data mining, Paris, France, June 28–July 1, 2009. ACM,
pp 1255-1264. https://doi.org/10.1145/1557019.1557154

Mans RS, Schonenberg MH, Song M, van der Aalst WMP, Bakker PJM (2009) Application of process
mining in healthcare—a case study in a dutch hospital. In: Fred A, Filipe J, Gamboa H (eds) Biomedical
engineering systems and technologies. Springer, Berlin, pp 425–438

Măruşter L, van Beest NRTP (2009) Redesigning business processes: a methodology based on simulation
and techniques. Knowl Inf Syst 21(3):267. https://doi.org/10.1007/s10115-009-0224-0

Maruster L, Weijters AJMM, van der Aalst WMP, van den Bosch A (2002) Process mingin: discovering
direct successors in process logs. In: Discovery Science, 5th international conference, DS 2002, Lübeck,
Germany, November 24–26, 2002, Proceedings, pp 364–373. https://doi.org/10.1007/3-540-36182-0 37

Maruster L, Weijters AJMM, van der Aalst WMP, van den Bosch A (2006) A rule-based approach for process
discovery: dealing with noise and imbalance in process logs. Data Min Knowl Discov 13(1):67–87

McClain JO, Rao VR (1975) Clustisz: a program to test for the quality of clustering of a set of objects. JMR.
J Market Res (pre-1986) 12(000004):456

Mendling J (2008) Metrics for business process models. Springer, Berlin, pp 103–133
Milligan GW (1980) An examination of the effect of six types of error perturbation on fifteen clustering

algorithms. Psychometrika 45(3):325–342
Milligan GW (1981) A monte carlo study of thirty internal criterion measures for cluster analysis.

Psychometrika 46(2):187–199
Murtagh F (1983) A survey of recent advances in hierarchical clustering algorithms. Comput J

26(4):354–359. https://doi.org/10.1093/comjnl/26.4.354. http://oup.prod.sis.lan/comjnl/article-pdf/26/4/
354/1072603/26-4-354.pdf

Pereira JA, Matuszyk P, Krieter S, Spiliopoulou M, Saake G (2016a) A feature-based personalized rec-
ommender system for product-line configuration. In: Proceedings of the international conference on
generative programming: concepts and experiences. ACM, pp 120–131

Pereira JA, Matuszyk P, Krieter S, Spiliopoulou M, Saake G (2016b) A feature-based personalized rec-
ommender system for product-line configuration. In: Proceedings of the international conference on
generative programming: concepts and experiences. ACM, pp 120–131

Pereira JA, Schulze S, Figueiredo E, Saake G (2018a) N-dimensional tensor factorization for self-
configuration of software product lines at runtime. In Proceedings of the 22nd International Systems and
Software Product Line Conference - Volume 1 (SPLC ’18). Association for Computing Machinery, New
York, NY, USA, 87–97. https://doi.org/10.1145/3233027.3233039

Pereira JA, Matuszyk P, Krieter S, Spiliopoulou M, Saake G (2018b) Personalized recommender systems for
product-line configuration processes. Comput Lang Syst Struct 54:451–471

Pérez-Álvarez JM, Maté A, López MTG, Trujillo J (2018) Tactical business-process-decision support based
on kpis monitoring and validation. Comput Ind 102:23–39

Pérez-Castillo R, Fernéndez-Ropero M, Piattini M (2019) Business process model refactoring applying
ibuprofen. An industrial evaluation. J Syst Softw 147:86–103

Perimal-Lewis L, Teubner D, Hakendorf P, Horwood C (2016) Application of process mining to assess the
data quality of routinely collected time-based performance data sourced from electronic health records
by validating process conformance. Health Inform J 22(4):1017–1029

Ratkowsky D, Lance G (1978) Criterion for determining the number of groups in a classification Vol. 44,
No. 1, pages 23-34

Rodas-Silva J, Galindo JA, Garcı́a-Gutiérrez J, Benavides D (2019) Selection of software product line imple-
mentation components using recommender systems: an application to wordpress. IEEE Access 7:69226–
69245

Rohlf FJ (1974) Methods of comparing classifications. Annu Rev Ecol System 5(1):101–113
Rozinat A, de Jong ISM, Günther CW, van der Aalst WMP (2009) Process mining applied to the test process

of wafer scanners in ASML. IEEE Trans Syst Man Cybern Part C 39(4):474–479
Rubin V, Günther CW, van der Aalst WMP, Kindler E, van Dongen BF, Schäfer W (2007) Process mining

framework for software processes. In: Wang Q, Pfahl D, Raffo DM (eds) Software process dynamics
and agility. Springer, Berlin, pp 169–181

Rubin VA, Mitsyuk AA, Lomazova IA, van der Aalst WMP (2014) Process mining can be applied to software
too! In: Proceedings of the 8th ACM/IEEE international symposium on empirical software engineering
and measurement. ESEM ’14. ACM, New York, pp 57:1–57:8

Sahlabadi M, Muniyandi R, Shukur Z (2014) Detecting abnormal behavior in social network websites by
using a process mining technique. J Comput Sci 10(3):393–402. https://doi.org/10.3844/jcssp.2014.
393.402

Sani MF, van Zelst SJ, van der Aalst WMP (2017) Improving process discovery results by filtering out-
liers using conditional behavioural probabilities. In: Business process management workshops—BPM
2017 international workshops, Barcelona, Spain, September 10–11, 2017, Revised Papers, pp 216–229.
https://doi.org/10.1007/978-3-319-74030-0 16

Sani MF, Boltenhagen M, van der Aalst W (2019) Prototype selection based on clustering and conformance
metrics for model discovery. https://arxiv.org/pdf/1912.00736.pdf

Schobbens P, Heymans P, Trigaux J, Bontemps Y (2007) Generic semantics of feature diagrams. Comput
Netw 51(2):456–479. https://doi.org/10.1016/j.comnet.2006.08.008

She S, Lotufo R, Berger T, Wasowski A, Czarnecki K (2010) The variability model of the linux kernel. In:
VAMOS, vol 10, pp 45–51

Song M, Günther CW, van der Aalst WMP (2008) Trace clustering in process mining. In: Ardagna D, Mecella
M, Yang J (eds) Business process management workshops, BPM 2008 international workshops, Milano,
Italy, September 1–4, 2008. Revised Papers, Springer, Lecture Notes in Business Information Processing,
vol 17, pp 109–120. https://doi.org/10.1007/978-3-642-00328-8 11

Song M, Günther CW, van der Aalst WMP (2009) Trace clustering in. In: Ardagna D, Mecella M, Yang
J (eds) Business Process Management Workshops. Springer, Berlin, pp 109–120

Tax N, Sidorova N, van der Aalst WMP (2019) Discovering more precise process models from event
logs by filtering out chaotic activities. J Intell Inf Syst 52(1):107–139. https://doi.org/10.1007/s10844-
018-0507-6

Thüm T, Apel S, Kästner C, Schaefer I, Saake G (2014) A classification and survey of analysis strategies for
software product lines. ACMCS 47(1). https://doi.org/10.1145/2580950

Valencia-Parra A, Ramos-Gutiérrez B, Varela-Vaca AJ, López MTG, Bernal AG (2019a) Enabling process
mining in aircraf manufactures: extracting event logs and discovering processes from complex data.
In: Proceedings of the industry forum at BPM 2019 co-located with 17th international conference on
business process management (BPM 2019), Vienna, Austria, September 1–6, 2019, pp 166–177

Valencia-Parra Á, Varela-Vaca ÁJ, Gómez-López MT, Ceravolo P (2019b) CHAMALEON: framework to
improve data wrangling with complex data. In: Proceedings of the 40th international conference on
information systems, ICIS 2019, Munich, Germany, December 15–18, 2019

van der Aalst WMP (2011) Analyzing “spaghetti processes”. Springer, Berlin
van der Aalst WMP (2016) Process mining–data science in action, 2nd edn. Springer, Berlin
van Dongen BF, de Medeiros AKA, Verbeek HMW, Weijters AJMM, van der Aalst WMP (2005) The prom

framework: a new era in process mining tool support. In: Applications and theory of Petri nets 2005, 26th
international conference, ICATPN 2005, Miami, USA, June 20–25, 2005, Proceedings, pp 444–454.
https://doi.org/10.1007/11494744 25

vanden Broucke SKLM, Weerdt JD (2017) Fodina: a robust and flexible heuristic process discovery
technique. Decis Support Syst 100:109–118. https://doi.org/10.1016/j.dss.2017.04.005

Varela-Vaca AJ, Gasca RM (2013) Towards the automatic and optimal selection of risk treatments for
business processes using a constraint programming approach. Inf Softw Technol 55(11):1948–1973

Varela-Vaca ÁJ, Galindo JA, Ramos-Gutiérrez B, Gómez-López MT, Benavides D (2019a) Process mining
to unleash variability management: discovering configuration workflows using logs. In: Proceedings of
the 23rd International Systems and Software Product Line conference, SPLC 2019, Volume A, Paris,
France, September 9–13, 2019, pp 37:1–37:12

Varela-Vaca ÁJ, Gasca RM, Ceballos R, Gómez-López MT, Torres PB (2019b) Cyberspl: a framework for
the verification of cybersecurity policy compliance of system configurations using software product
lines. Applied Sciences 9(24). https://doi.org/10.3390/app9245364. https://www.mdpi.com/2076-3417/
9/24/5364

Wang Y, Tseng MM (2011) Adaptive attribute selection for configurator design via shapley value. Artif Intell
Eng Des Anal Manuf 25(2):185–195. https://doi.org/10.1017/S0890060410000624

Wang Y, Tseng M (2014) Attribute selection for product configurator design based on gini index. Int J Prod
Res 52(20):6136–6145. https://doi.org/10.1080/00207543.2014.917216

Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–
244

Weijters AJMM, Ribeiro JTS (2011) Flexible heuristics miner (FHM). In: CIDM. IEEE, pp 310–317
Wilcoxon F (1946) Individual comparisons of grouped data by ranking methods. J Econ Entomol 39(2):269–

270
XES (2016) IEEE Standard for eXtensible Event Stream (XES) for achieving interoperability in event logs

and event streams. IEEE Std 1849-2016 pp 1–50. https://doi.org/10.1109/IEEESTD.2016.7740858

Affiliations

Bel ́en Ramos-Guti ́errez1 · Ángel Jes ́us Varela-Vaca1 · José A. Galindo1 ·
Marı́a Teresa G ómez-L ópez1 · David Benavides1

Ángel Jesús Varela-Vaca
ajvarela@us.es

José A. Galindo
jagalindo@us.es

Marı́a Teresa Gómez-López
maytegomez@us.es

David Benavides
benavides@us.es

1 Data-Centric Computing Research Hub (IDEA), Universidad de Sevilla, Seville, Spain

