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Abstract
Software product line (SPL) engineering allows the derivation of products tailored to stake-
holders’ needs through the setting of a large number of configuration options. Unfortunately,
options and their interactions create a huge configuration space which is either intractable
or too costly to explore exhaustively. Instead of covering all products, machine learning
(ML) approximates the set of acceptable products (e.g., successful builds, passing tests) out
of a training set (a sample of configurations). However, ML techniques can make predic-
tion errors yielding non-acceptable products wasting time, energy and other resources. We
apply adversarial machine learning techniques to the world of SPLs and craft new config-
urations faking to be acceptable configurations but that are not and vice-versa. It allows to
diagnose prediction errors and take appropriate actions. We develop two adversarial config-
uration generators on top of state-of-the-art attack algorithms and capable of synthesizing
configurations that are both adversarial and conform to logical constraints. We empirically
assess our generators within two case studies: an industrial video synthesizer (MOTIV) and
an industry-strength, open-source Web-app configurator (JHipster). For the two cases, our
attacks yield (up to) a 100% misclassification rate without sacrificing the logical validity of
adversarial configurations. This work lays the foundations of a quality assurance framework
for ML-based SPLs.

Keywords Software product line · Configurable system · Software variability · Software
testing · Machine learning · Quality assurance

1 Introduction

Testers don’t like to break things; they like to dispel the illusion that things work.
(Kaner et al. 2001)
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Software Product Line Engineering (SPLE) aims at delivering massively customized prod-
ucts within shortened development cycles (Pohl et al. 2005; Clements and Northrop 2001).
To achieve this goal, SPLE systematically reuses software assets realizing the functionality
of one or more features, which we loosely define as units of variability. Users can specify
products matching their needs by selecting/deselecting the features and provide additional
values for their attributes. Based on such configurations, the corresponding products can
be obtained as a result of the product derivation phase. A long-standing issue for develop-
ers and product managers is to gain confidence that all possible products are functionally
viable, e.g., all products compile and run. This is a hard problem since modern software
product lines (SPLs) can involve thousands of features inducing a combinatorial explosion
of the number of possible products. For example, in our first case study (the MOTIV video
generator), the estimated number of configurations is 10314 while the derivation of a single
product out of a configuration takes 30 min on average. At this scale, practitioners cannot
test all possible configurations and the corresponding products’ qualities.

Variability models (e.g., feature diagrams) and solvers (SAT, CSP, SMT) are widely used
to compactly define how features can and cannot be combined (Batory 2005; Schobbens
et al. 2007; Berger et al. 2013; Benavides et al. 2010). Together with advances in model-
checking, software testing and program analysis techniques, it is conceivable to assess the
functional validity of configurations and their associated combination of assets within a
product of the SPL (Bodden et al. 2013; Strüber et al. 2018; Boucher et al. 2010; Classen
et al. 2011; ter Beek et al. 2016a; Nadi et al. 2014). In addition to the validity of config-
urations, their acceptability with regards to users expectations must be assessed. We faced
this situation in an industrial context: despite significant engineering effort (Galindo Duarte
et al. 2014), the MOTIV SPL—used to generate videos that benchmark object recogni-
tion techniques—keeps deriving videos that are typically too noisy or dark. In that case,
both image analysis algorithms and human experts will fail to recognize anything result-
ing in a tremendous waste of resources and negative user experience. To handle this issue,
a promising approach is to sample a number of configurations and predict the quantitative
or qualitative properties of the remaining products using Machine Learning (ML) tech-
niques (Siegmund et al. 2013, 2015; Sarkar et al. 2015; Guo et al. 2013; ter Beek et al.
2016b; Oh et al. 2017a; Temple et al. 2016, 2017).

However, we need to trust the ML classifier (Barreno et al. 2006; Nelson et al. 2008)
of an SPL in avoiding misclassifications and costly derivations of non-acceptable prod-
ucts. ML researchers demonstrated that some forged data, called adversarial, can fool a
given classifier (Biggio and Roli 2018). Adversarial machine learning (advML) thus refers
to techniques designed to fool (e.g., Biggio et al. 2013a, b; Nelson et al. 2008), evaluate
the security (e.g., Biggio et al. 2014b) and even improve the quality of learned classifiers
(Goodfellow et al. 2014). Even though results are promising in different contexts, the ML
community did not apply advML techniques in the SPL domain. On the other hand, numer-
ous techniques have been developed to test or learn software configuration spaces of SPLs,
but none of them considered advML (Pereira et al. 2019). A strength of advML is that
generated adversarial configurations are crafted to force an ML classifier to make errors,
by either exploiting its intrinsic properties or its insufficient training. Furthermore, since
advML operates on the classifier, there is no need to derive and test additional products of
an SPL.

The main idea of this article is to shift ideas and techniques from advML to the engineer-
ing of SPLs or configurable systems. Specifically, the principle is to generate adversarial
configurations with the intent of fooling and improving ML classifiers of SPLs. Adver-
sarial configurations can pinpoint cases for which non-acceptable products of an SPL can
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still be derived since the ML classifier is fooled and misclassifies them. Such configura-
tions are symptomatic of issues stemming from various sources: the variability model (e.g.,
constraints are missing to avoid some combinations of features); the variability implemen-
tation (e.g., interactions between features cause bugs); the testing environment (e.g., some
products are wrongly tested and should not be considered as acceptable); or simply the fact
that, based on previous observations, configurations are predicted to meet non-functional
requirements while they actually fail to do so, asking to be fixed.

In this article, our overall goal is to assess how and to what extent advML techniques
can be used for ML-based SPLs. We demonstrate these techniques in a binary classification
setting (acceptable/non-acceptable) where acceptability is either defined as combinations of
visual properties (MOTIV SPL) or failed/successful builds. This paper makes the following
contributions:

1. the development of two adversarial generators on top of state-of-the-art attack algo-
rithms (evasion attacks) and capable of synthesizing configurations that conform to
logical constraints among options;

2. the usage and applicability of our two generators within two case studies: an industrial
video synthesizer (MOTIV) and an industry-strength, open-source Web-app configu-
rator (JHipster). The two systems come from different domains (video processing vs.
Web), variability is implemented differently (Lua code and parameters vs. conditional
compilation over different languages), and size of the configuration space differs (10314

vs. 90K configurations);
3. the assessment of the effectiveness of the use of adversarial configurations via two

research questions: i) How effective is our adversarial generator to synthesize adversar-
ial configurations? We answered this question by generating adversarial configurations
and confronting against a random strategy, up to 100% of the generated adversarial con-
figurations conforms to the variability model and are successfully misclassified; and ii)
What is the impact of adding adversarial configurations to the training set regarding
the performance of the classifier? Based on our results, twenty-five adversarial config-
urations are sufficient to affect the classifier performance. We also provide statistical
evidence supporting our results;

4. the public availability of our implementation and empirical results at https://github.com/
templep/EMSE 2020.

This article is an extension of “Towards quality assurance of software product lines with
adversarial configurations” published at SPLC 2019 (full paper, research track) (Temple
et al. 2019). In this extension, we describe the implementation of a new adversarial generator
for SPLs with a new preprocessing technique on top of SecML, a Python library that imple-
ments state-of-the-art adversarial algorithms. We broaden the applicability and assessment
of the dedicated algorithm we used in our previous work with a new case study (JHipster)
in a different software engineering context.

This new generator produces adversarial configurations up to 50% faster than our initial
algorithm (Temple et al. 2019). Overall our empirical assessment suggests that generating
adversarial configurations is effective to investigate the quality of ML-based SPLs.

The rest of this paper is organized as follows. Section 2 provides background informa-
tion about SPL, ML and advML. Section 3 describes how advML can be used in the context
of SPL engineering, including details about algorithms for generating adversarial config-
urations. Section 4 introduces our two case studies, while Section 5 describes research
questions and experimental setup. Sections 6 and 7 describe our empirical results. Sec-
tions 8 and 9 present some potential threats to validity and provide qualitative insights on
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how SPLs practitioners can leverage adversarial configurations. Finally, Section 10 covers
related work and Section 11 wraps up the paper.

2 Background

In this section, we introduce the necessary background and concepts of a machine learning-
enabled software product line framework where ML is used to classify configurations of an
SPL (Yilmaz et al. 2006; Krismayer et al. 2017; Gargantini et al. 2017; Pereira et al. 2019;
Temple et al. 2016, 2017; Acher et al. 2018; Amand et al. 2019).

2.1 SPL framework

SPL engineering aims at delivering customized products out of software features’ values
(configurations). Figure 2 illustrates the process with one of the case studies of this arti-
cle (i.e., the MOTIV video generator): Products (also called variants) are videos and have
been synthesized out of configuration files documenting values of features. There are three
important steps in the process: variability modeling, variability implementation, and variant
acceptability. We illustrate these concepts on the MOTIV case study (Galindo et al. 2014;
Temple et al. 2016; Alférez et al. 2019).

Variability Modeling A variability model defines the features and attributes (also called
configuration options) of an SPL; various formalisms (e.g., feature models Kang et al.
1990, decision models) can be employed to structure and encode information (Berger et al.
2013; Benavides et al. 2010). A variability model typically defines domain values for
each feature and attribute. Moreover, as not all combinations of values are permitted, it is
common to write additional constraints regarding features and attributes (e.g., mutual exclu-
sions between two Boolean features). For example, in the feature model depicted Fig. 1,
we can use either CountrySide, Dessert, Jungle, SemiUrban, or Moutain to synthesize the
Background but not a combination of them. The way to specify constraints and their expres-
siveness depends on the variability model’s semantics (Schobbens et al. 2006). For Boolean
feature models, constraints apply to individual features (mandatory or optional), parent-

Dessert

MOTIV Generator

Background

Country
Side

Distractor

Or

Xor

Mandatory

Optional

Jungle Semi
Urban Mountain

Occultants
Objects

Vehicle Human

 bird_level [0..1]

blinking_light [0..1]

feature
 attribute 

constraints
Dessert => Distractor.bird.level < 0.1
CountrySide => Distractor.far_moving_vegetation > 0.3

far_moving_vegetation [0..1]

Fig. 1 Simplified MOTIV feature model (Galindo et al. 2014; Alférez et al. 2019)
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child relationships (the selection of a child feature implies the selection of its parent), group
of child features within a variability operator (alternative, optional). Additionally cross-tree
constraints relate arbitrary features and attributes; there are expressed textually in the form
of logical formulae. For example, enabling Dessert requires a value of bird level less than
0.1. A configuration is an assignment of values to every individual feature and attribute.
Because of constraints and domain values, the notions of valid and invalid configurations
emerge. That is, some combinations of values are accepted while others are rejected. A con-
straint solver (e.g., SAT, CSP, or SMT solver) is usually employed to check the validity of
configurations and reason about the configuration space of a variability model. The choice
of the solver depends on the nature of the features (Boolean, numeric, etc.) and the type of
constraints (hard or soft) at hand. Our case studies illustrate this diversity, MOTIV has an
attributed feature model (depicted Fig. 1) for which we enumerate the valid configurations
via the Choco CSP solver (Galindo et al. 2014; Temple et al. 2016; Alférez et al. 2019)
while Jhipster’s configurations have been obtained via a SAT solver (Halin et al. 2019).

Variability Implementation Configurations are only abstract representations of variants in
terms of the specification of enabled and non-enabled features. There is a need to shift from
the problem space (configurations) to the solution space (variants actually realizing the
functionality of configurations). Different variant implementation techniques can be used
such as conditional compilation (#ifdefs or parameters evaluated at runtime). Additionally,
one can use parameters in function calls—related to values of configurations—in the gener-
ator code that ultimately produces a variant. In the MOTIV case (see Fig. 2), the generator
is written in Lua and uses different parameters to execute a given configuration and produce
a variant. JHipster uses a questionnaire to guide users through the choice of options values
and then derives automatically the desired variant (a Web development stack)—Section 4
gives more details about this subject system.

Variant Acceptability In some cases, configurations can lead to undesirable variants
despite being logically valid within the variability model. For instance, when considering
the MOTIV SPL (Galindo Duarte et al. 2014; Temple et al. 2019), some video variants may
contain too much noise or not enough contrast. Variants can still be generated but these
videos are not exploitable for any object recognition task, since the non-functional property
(here: the visual quality of a video) does meet expectations. The test oracle is a procedure
to determine whether a variant is acceptable or not in the solution space. In Fig. 2, the ora-
cle gives a label (green/acceptable or red/non-acceptable). Given a large number of variants,
it is unfeasible to ask a human to assess the visual properties of all videos. Instead, we
implemented a C++ procedure for computing these properties.

If a variant is considered non-acceptable by the oracle, then, there is a difference between
the decision given by the solver within the problem space and the testing oracle within the
solution space. Such a mismatch can occur because of the transformation from the prob-
lem space to the solution space: the variability implementation can be faulty; the oracle can
be hard to automate and thus introduce approximations and/or errors; the variability model
might miss some constraints. Unfortunately, the testing oracle operates over one variant at
a time and cannot compute the subset of acceptable variants. Furthermore, an exhaustive
derivation of all variants is not possible. Hence an approach followed by many works (Yil-
maz et al. 2006; Krismayer et al. 2017; Gargantini et al. 2017; Pereira et al. 2019; Temple
et al. 2016, 2017; Acher et al. 2018; Amand et al. 2019) is to use machine learning (ML) to
approximate the set of acceptable variants through the classification of configurations.
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Fig. 2 Software product line and ML classifier

2.2 Machine Learning (ML) Classifier

ML Classification Formally, a classification algorithm builds a function f : X �→ Y that
associates a label in the set of predefined classes y ∈ Y with configurations represented
in a feature space (noted x ∈ X). With the video generator, only two classes are defined:
Y = {−1,+1}, respectively acceptable and non-acceptable videos. The configuration space
X is defined by features of the underlying feature model (and their definition domain). The
classifier f is trained on a data set D constituted of a set of pairs (xt

i , yt
i ) where xt ∈ X is

a set of valid configurations from the variability model and yt ∈ Y their associated labels.
To label configurations in D, we use an oracle that decides on the acceptability of a con-
figuration depending on feature values, such as luminosity and contrast. See Section 4 for
implementation details of the oracle. Once the classifier is trained, f induces a separation
in the feature space (shown as the transition from the blue/left to the white/right area in
Fig. 3) that mimics the oracle: when an unseen configuration occurs, the classifier deter-
mines instantly in which class this configuration belongs to. Unfortunately, the separation
can yield prediction errors since the classifier is based on statistical assumptions and a
(small) training sample. We exemplify this in Fig. 3 by the separation diverging from the
solid black line representing the target oracle. As a result, two squares are misclassified as
being triangles. Classification algorithms realize trade-offs between the necessity to clas-
sify the labeled data correctly, taking into account the fact that it can be noisy or biased and
its ability to generalise to unseen data. Such trade-offs lead to approximations that make the
classifier “weak” (i.e., taking decisions with low confidence) in some areas of the config-
uration space. Comparatively to other domains such as hiring, loan decisions, healthcare,
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Fig. 3 Adversarial configurations (stars) are at the limit of the separating function learned by the ML
classifier

or security, misclassifying video sequences may not be considered as highly critical: prac-
titioners are “only” wasting computation time and resources in generating non-acceptable
videos. Yet, approximations and classification errors may have negative financial and user
experience impacts. We notice similar concerns in the case of JHipster, our second case
study (see Section 4). In both cases, the SPLs cannot be deployed and commercialized as
such and further engineering effort is needed to improve their quality.

3 Adversarial Machine Learning and Evasion attacks

In SPL engineering, ML brings the benefit of partitioning the configuration space based
on a (small) number of assessed variants, which is faster than running the oracle on every
single variant (videos in the MOTIV case, see Fig. 2). However, this gain comes at the
cost of approximations made by the statistical ML classifier. That is, the ML classifier
can still make prediction errors when classifying configurations (see Fig. 3). Our idea is
to “attack” the ML classifier through the generation of so-called adversarial configurations
able to fool the ML classifier of an SPL. The objective is to synthesize configurations for
which the ML classifier performs an inaccurate classification. For example, such adversarial
configurations can pinpoint which non-acceptable variants of an SPL can still be derived
since the ML classifier misclassifies them as acceptable.

In this section, we detail the foundations, algorithms, and processes to generate adver-
sarial configurations.

3.1 AdvML and Evasion Attacks

According to Biggio and Roli (2018), deliberately attacking an ML classifier with crafted
malicious inputs was proposed in 2004. Today, it is called adversarial machine learning and
can be seen as a sub-discipline of machine learning. Depending on the attackers’ access to
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various aspects of the ML system (e.g., access to the data sets or ability to update the training
set) and their goals, various kinds of attacks are available (Biggio et al. 2012, 2013a, b,
2014a, b). A categorization of such adversarial attacks can be found in Barreno et al. (2006)
and Biggio and Roli (2018). In this paper, we focus on evasion attacks: these attacks move
labeled data to the other side of the separation (putting it in the opposite class) via successive
modifications of features’ values. Since areas close to the separation are of low confidence,
such adversarial configurations can have a significant impact if added to the training set.
To determine in which direction to move the data such that it reaches the separation, a
gradient-based method has been proposed by Biggio et al. (2013a). This method requires
the attacked ML algorithm to be differentiable (e.g.,, algorithms building models for which
the classification decision is based on a confidence metric which is not binary; this is the
case for SVMs or Bayesian predictors which compute a likelihood to belong to a class). One
of such differentiable classifiers is the Support Vector Machine (SVM), parameterizable
with a kernel function.1 Note also that, in the context of this work, we focus on a binary
classification problem, but the framework presented by Biggio and Roli (2018) applies in a
broader case, including multi-class problems.

3.2 A Dedicated Evasion Algorithm

Algorithm 1 presents an adaptation of Biggio et al.’s evasion attack (Biggio et al. 2013a),
initially presented at the SPLC 2019 conference (Temple et al. 2019). First, we select an
initial configuration to be moved (x0); multiple strategies can be used to select x0, we will
simply use a random strategy selecting one configuration labeled with the class from which
the attack starts. Then, we set the step size (t), a parameter controlling the convergence
of the algorithm. Large steps induce difficulties to converge, while small steps may trap
the algorithm in a local optimum. While the original algorithm introduced a termination
criterion based on the impact of the attack on the classifier between each move (if this impact
was smaller than a threshold ε, the algorithm stopped; assuming an optimal attack), we
chose to set a maximal number of displacements nb disp in advance and let the technique
run until the end. This allows for a controllable computation budget, as we observed that

1Most common functions are linear, radial-based functions and polynomial
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for small step sizes the number of displacements required to meet the termination criterion
was too large. The function g is the discriminant function (i.e., the function that should be
differentiable) and is defined by the ML algorithm that is used. It is defined as g : X �→ R

that maps a configuration to a real number. Only the sign of g is used to assign a label to
a configuration x. Thus, f : X �→ Y can be decomposed in two successive functions: first
g : X �→ R that maps a configuration to a real value and then h : R �→ Y with h = sign(g).
However, |g(x)| (the absolute value of g) intuitively reflects the confidence the classifier
has in its assignment of x. |g(x)| increases when x is far from the separation and surrounded
by other configurations from the same class and is smaller when x is close to the separation.

The term discriminant function has been used by Biggio et al. (2013a) and should not be
confused with the unrelated discriminator component of generative adversarial nets (GANs)
by Goodfellow et al. (2014). In GANs, the discriminator is part of the “robustification
process”. It is an ML classifier striving to determine whether an input has been artifi-
cially produced by the other GANs’ component, called the generator. Its responses are then
exploited by the generator to produce increasingly realistic inputs. In this work, we only
generate adversarial configurations, though GANs are envisioned as follow-up work.

Concretely, the core of the algorithm consists of the while loop that iterates over the
number of displacements. Statement (4) determines the direction towards the area of max-
imum impact with respect to the classifier (explaining why only a unit vector is needed).
∇g(xm−1) is the slope of the gradient of g(xm−1). Since evasion attacks is a technique
based on gradient descent, the direction of interest towards which the adversarial configu-
ration should move is the opposite of this value. This vector is then multiplied by the step
size t and subtracted to the previous move (5). The final position is returned after the num-
ber of displacements has been reached. For statements (4) and (5) we simplified the initial
algorithm (Biggio et al. 2013a): we do not try to mimic as much as possible existing config-
urations as we look forward to some diversity. In an open-ended feature space, the gradient
can grow indefinitely possibly preventing the algorithm to terminate. Biggio et al. (2013a)
set a maximal distance representing a boundary of the feasible region to keep the exploration
under control.

In SPLs, the feasible region is given by valid configurations (defined by, among others,
allowed features’ combinations). However, being able to state all cross-tree constraints and
potential domain values remain difficult. This task is nonetheless very important for the
adversarial attack algorithm. In this work, we opted for a quite simplistic way of handling
constraints. We only took care of the type of features and attribute values (natural integers,
floats, Boolean). For example, if a constraint forbids a value to go below zero but a displace-
ment tries to do so, we reset to zero this value (since it is the lower bound that this value can
take); a similar principle is done for Boolean values (that can take only values 0 or 1).

Temple et al. (2016) studied the possibility to use ML to discover previously unstated
constraints in a VM and add them in the model. These constraints relate to the definition
of acceptable products and the idea of being able to only derive products that satisfy users’
requirements. This work results in an automated process to specialize SPLs to meet these
requirements. We used decision trees since they were very well adapted to the context of
the study as they are interpretable and constraints can be retrieved by going through the
structure of the resulting tree. However, in the context of advML, not all ML models can
be used and decision trees are not compatible (Biggio and Roli 2018; Biggio et al. 2013a,
b; 2014b). Decision trees are highly non-linear and it is not possible to compute gradient
nor confidence due to non-differentiability. To conduct our attack, we choose to use sup-
port vector machines instead. Note that this restriction only applies to conduct adversarial
attacks, when trying to specialize an SPL, any ML model can be used.
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3.3 secML

SecML2 is a Python library that has been developed by researchers from the Pattern Recog-
nition and Applications Laboratory (PRALab), in Sardinia, Italy. SecML has been publicly
released for the first time the 6th of August 2019.3 This library gathers different advML
techniques and embeds utilities to create a customized pipeline according to the data to
attack, their representations, the ML model that is used in the system to attack among other
parameters. SecML was designed as a generic advML library but was not tailored to ana-
lyze classifiers for SPLs. An interesting question was about the effort of adapting secML
algorithms in this novel application domain, in particular regarding constraints. As further
motivation, we want to compare how the original advML algorithm behaves compared to
our aforementioned dedicated algorithm (Temple et al. 2019).

SecML offers different implementations of adversarial attacks,4 either poisoning the
training set, trying to evade the classifier, or even being completely customized. For each
category, different implementations are also proposed. For instance, regarding evasion
attacks, multiple implementations are provided,5 some can hide even more implementa-
tions, such as the Cleverhans attack which is based on an external library6 providing even
more possibilities.7 Among all of them, CAttackEvasionPGD is probably the most direct
implementation of the algorithm presented in Biggio et al. (2013a), proposing the evasion
attack. Therefore, we focus our attention on this implementation for our experiments. PGD
refers to Projected Gradient Descent which allows limiting the maximum amount of per-
turbations that can be applied to a configuration. That is, if a perturbation would move the
configuration outside of the defined boundaries, it is automatically set back on these bound-
aries via projection. The maximal amount of perturbations is defined by the parameter called
d max that we will set to different values in our experiments (see Sections 6 and 7).

3.4 Adversarial Pipeline

Figure 4 presents a generic adversarial pipeline. The first step is to prepare the data that are
shared by the original classifier and by the adversarial pipeline. Data preprocessing is spe-
cific to each case and is described in Sections 6 and 7. Generally, an adversarial framework
relies on a surrogate classifier that is learned from the same data when the attacker does not
have access to the target classifier or when the attack cannot be conducted directly. Since
there is evidence that attacks conducted on a specific ML model can be transferred to oth-
ers (Demontis et al. 2018, 2019; Brown et al. 2017), using a surrogate classifier is a legit
approach in a black-box scenario.

Our experiments are conducted within a white-box scenario: we have access to all the
SPL artifacts including the ML classifier. Therefore, the surrogate and the original SPL clas-
sifiers conflate and, without loss of generality, we can use a differentiable classifier. Attacks
will be conducted and assessed on that unique classifier. Once the classifier is learned, we
can use our dedicated and SecML algorithms to generate attacks in a second step. The third

2https://secml.gitlab.io/index.html
3Therefore it was not available in our previous SPLC’19 contribution (Temple et al. 2019)
4https://secml.gitlab.io/tutorials.adv.html
5https://secml.gitlab.io/secml.adv.attacks.evasion.html
6https://secml.gitlab.io/secml.adv.attacks.evasion.html#module-secml.adv.attacks.evasion.cleverhans.
c attack evasion cleverhans
7https://secml.gitlab.io/tutorials/09-Cleverhans.html
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Fig. 4 Adversarial pipeline

step evaluates the effectiveness of generated adversarial configurations forming the test set.
In particular, we check the validity of generated adversarial configurations and their abil-
ity to be misclassfied. This constitutes our first research question. Finally, the fourth step
learns a new classifier with an augmented training set composed of the original training set
and some adversarial configurations. Our second research question assesses the positive or
negative impact on the classifier’s accuracy.

4 Case Studies

4.1 MOTIV Video Generator

MOTIV is an industrial video generator of which the purpose is to provide synthetic videos
that can be used to benchmark computer vision based systems. Video sequences are gen-
erated out of configurations specifying the content of the scenes to render (Temple et al.
2016, 2019). MOTIV relies on a variability model that documents possible values of more
than 100 configuration options, each of them affecting the perception of generated videos
and the achievement of subsequent tasks, such as recognizing moving objects. Perception’s
variability relates to changes in the background (e.g., forest or buildings), objects passing
in front of the camera (with varying distances to the camera and different trajectories), blur
and other combinations of elements such as camera movements, ambient daylight or fog.
There are 20 Boolean options, 46 categorical (encoded as enumerations) options (e.g., to use
predefined trajectories) and 42 real-value options (e.g., dealing with blur or noise). On aver-
age, enumerations contain about 7 elements each and real-value options vary between 0 and
27.64 with a precision of 10−5. Excluding (very few) constraints in the variability model, we
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over-estimate the video variants’ space size: 220 ∗ 746 ∗ ((0 − 27.64)∗ 105)42 ≈ 10314. Con-
cretely, MOTIV takes as input a text file describing the scene to be captured by a synthetic
camera as well as recording conditions. Then, we run Lua (Ierusalimschy 2006) scripts to
compose the scene and apply desired visual effects resulting in a video sequence. To real-
ize variability, the Lua code uses parameters in functions to activate or deactivate options
and to take into account values (enumerations or real values) defined into the configura-
tion file. A highly challenging problem is to identify feature values and interactions that
make the identification of moving objects extremely difficult if not impossible. Typically,
some of the generated videos contain too much noise or blur. In other words, they are not
acceptable as they cannot be used to benchmark object tracking techniques. Another class
of non-acceptable videos is composed of the ones in which the same value is given to all
pixels of every frame, resulting in a succession of still images: nothing can be perceived.

Figure 5 shows some examples of non-acceptable videos that can be generated with
MOTIV. On these images, there is noise preventing human beings to perceive the back-
ground and whether a vehicle is present and their identifications. In addition, for Fig. 5a, c
and e, contrast is poor while Fig. 5b and d present unrealistic colors.

Non-acceptable videos represent a waste of time and resources: 30 min of CPU-intensive
computations per video on average, without including the time to run benchmarks related to
object tracking (several minutes depending on the computer vision algorithm). We therefore
need to constraint our variability model to avoid such cases.

Previous Work We previously used ML classification techniques to predict the acceptabil-
ity of unseen video variants (Temple et al. 2016). We summarise this process in Fig. 6.
We first sample valid configurations using a random strategy (see Temple et al. 2016 for
details) and generate the associated video sequences. Our testing oracle labels videos as
acceptable (in green) or non-acceptable (in red). This oracle implements image quality
assessment (Dosselman and Yang 2012) defined by the authors via an analysis of frequency
distribution given by Fourier transformations. An ML classifier (in the case of Temple et al.
2016, a decision tree) can be trained on such labelled videos. “Paths” (traversals from the
root to the leaves) leading to non-acceptable videos can easily be transformed into new
constraints and injected in the variability model.

Fig. 5 Examples of non-acceptable generated videos
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Fig. 6 Refining the variability model of the MOTIV video generator via an ML classifier. In this article and
as a follow up of this engineering effort, our goal is to generate adversarial configurations capable of fooling
the ML classifier

AdvML to the Rescue An ML classifier can make errors, preventing acceptable videos
(false positives) or allowing non-acceptable videos (false negatives). Most of these errors
can be attributed to the confidence of the classifier coming from both its design (i.e., the set
of approximations used to build its decision model) and the training set (and more specif-
ically the distribution of the classes). Areas of low confidence exist if configurations are
very dissimilar to those already seen or at the frontier between two classes. In the reminder,
we investigate the use of advML to quantify these errors and their impact on MOTIV SPL
and ML classifier.

4.2 JHipster

JHipster is an open-source generator for developing Web applications (JHipsterTeam: Jhip-
ster Website 2020). Started in 2013, the JHipster project is popular with more than 15,000
stars on GitHub and gathers a strong community of more than 500 contributors in Decem-
ber 2019. JHipster is used by many companies and governmental or research organisations
worldwide, including Google, Ericsson, CERN or the Italian Research Council (CNR).

From a user-specified configuration, JHipster generates a complete technological stack
constituted of Java and Spring Boot code (on the server side) and Angular and Bootstrap (on
the front-end side). The generator supports several technologies ranging from the database
used (e.g., MySQL or MongoDB), the authentication mechanism (e.g., HTTP Session or
Oauth2), the support for social log-in (via existing social networks accounts), to the use
of microservices. Technically, JHipster uses npm and Bower to manage dependencies and
Yeoman8 (aka yo) tool to scaffold the application (Raible 2015). JHipster relies on con-
ditional compilation with EJS9 as a variability realisation mechanism. The mechanism is
similar to #ifdef with CPP preprocessor and is applied on different files written in different
languages: Java, JavaScript, CSS, Docker files, Maven or Gradle files. The build process

8http://yeoman.io/
9https://ejs.co/
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resolves variability scattered in numerous files and is quite costly (10 min on average per
configuration).

Previous Work We previously used JHipster as a case study to benchmark sampling tech-
niques and assess their bug-finding effectiveness (Halin et al. 2019; Plazar et al. 2019a).
Lessons learned from our study are that building a configuration-aware testing infrastruc-
ture for JHipster requires a substantial effort both in terms of human and computational
resources. Specifically, we relied on 8 man-months for building the infrastructure and 4376
hours of CPU time as well as 5.2 terabytes of disk space used to build and run all JHipster
configurations. Another lesson is that our exhaustive exploration of JHipster variants is not
practically viable.

AdvML to the Rescue Instead of deriving all variants, one can use ML and only a sample
of configurations to eventually prevent non-acceptable variants and avoid costly build. Such
effort can also be exploited as part of the continuous integration of JHipster. The process of
Fig. 6, illustrated for MOTIV, is conceptually similar for JHipster. We have a feature model
documenting the possible configurations and materialized as configuration files. The vari-
ants (or products) are not videos this time, but variants of source code written in different
languages. As an outcome, we can identify features of JHipster that cause non-acceptable
variants (i.e., build failures) and re-inject this knowledge into the feature model. Build fail-
ures can occur in various circumstances such as: (1) implementation bugs in the artefacts,
typically due to a dependency wrongly specified in a Maven file or due to unsafe interac-
tions between features in the Java source code; (2) un-properly building environments in
which some packages or tools are incidentally missing because some combinations of fea-
tures were not assessed before. Once the learning process of Fig. 6 is realized, the question
arises as to the quality of the ML classifier and the whole JHipster SPL. Again, we can
apply advML.

In this article, we use the version 4.8.2 whose reverse-engineered feature model is avail-
able online.10 The feature model allows one to build all JHipster configurations. Yet, in
our sampling we made a few restrictions to focus on the most relevant ones. In particular,
we selected all the testing frameworks (Gatling, Cucumber, Protractor) in each sampled
configuration and avoided configurations that required Oracle to focus on non-proprietary
variants. This feature model allows 90,210 variants in total.

4.3 Cases Synthesis

Table 1 summarises the main characteristics of the case studies analysed in this work. We
notice that the domain greatly influences constraints stated in the variability model. While
JHipster exhibits a high Cross-Tree Constraints Ratio (CTCR), proactively preventing the
majority of build failures, MOTIV allows any combination of features, sometimes leading
to unacceptable videos (soft constraints). From an adversarial machine learning perspec-
tive, MOTIV raises the challenge of navigating in a huge variability space with an imperfect
oracle implementing visual perception. JHispter is requiring to handle constraints, specif-
ically when running an evasion attack, since the risk of generating useless adversarial
configurations is very high if we ignore them.

10https://github.com/templep/EMSE 2020
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Table 1 Case studies’ characteristics

Subject Domain Nb. features Nb. variants Feature type CTCR (%) Task

MOTIV Video 108 10314 Boolean, 0% Visual Acceptability

Categorical, (0/108) classification

Real

JHipster Web 58 90210 Boolean 53% Passed/Failed

development (31/58) build classification

We report for each case the domain, number of features and variants, the type of features, the Cross-tree
constraints Ratio (CTCR) that is the number of features involved in cross-tree constraints to the total number
of features and finally the goal of the classsification task

5 Evaluation Overview

In this section, we introduce the research questions related to the use of advML attacks for
SPLs and present how we implemented them. The last part describes how we preprocessed
data and the parameterization of the techniques used to run our experiments.

5.1 Research Questions

We address the following research questions:
RQ1: How effective is our adversarial generator to synthesize adversarial configura-

tions? Effectiveness is measured through the capability of our evasion attack algorithm to
generate misclassified configurations:

– RQ1.1: Can we generate adversarial configurations that are wrongly classified?
– RQ1.2: Are all generated adversarial configurations valid w.r.t. constraints in the VM?
– RQ1.3: Is using the evasion algorithm more effective than generating adversarial

configurations with random modifications?
– RQ1.4: Are attacks effective regardless of the targeted class?

RQ2: What is the impact of adding adversarial configurations to the training set regard-
ing the performance of the classifier? The intuition is that adding adversarial configurations
to the training set could improve the performance of the classifier when evaluated on a test
set.

We answer these questions for each case study separately in Sections 6 and 7. First,
we state the evaluation protocol and then the results to these answers. We answer each
question using both techniques presented in Sections 3.2 and 3.3. We also provide statistical
evidence on the fact that our results are significantly different from results without using any
advML technique. To do so, we performed Mann-Whitney tests as detailed in the evaluation
protocol (see Section 5.4)

5.2 Implementation

We implemented the dedicated algorithm in Python 3 (scripts are available on the compan-
ion website).

MOTIV’s variability model embeds enumerations which are usually encoded via inte-
gers. The main difference between the two is the logical order that is inherent to integers
but not encoded into enumerations. As a result, some ML techniques have difficulties to
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deal with them. The solution is to “dummify” enumerations into a set of Boolean features,
without forgetting to enforce inherent exclusion constraints of literals from the original enu-
merations. Conveniently, Python provides the get dummies function from the pandas library
which takes as input a set of configurations and feature indexes to dummify.

For each feature index, the function creates and returns a set of Boolean features
representing the literals’ indexes encountered while running through the set of given con-
figurations: if the get dummies function detects values in the integer range [0, 9] for a
feature associated to an enumeration, it will return a set of 10 Boolean features represent-
ing literals’ indexes in that range. The function takes care of preserving the semantics of
enumerations. However, dummification is not without consequences for the ML classifier.
First, it increases the number of dimensions: our 46 initial enumerations would map to 145
features that may expose the ML algorithm to the curse of dimensionality (Bellman 1957);
as the number of features increases in the feature space, configurations that look alike (i.e.,
with close feature values and the same label) tend to go away from each other, making the
learning process more complex. This curse has also been recognized to have an impact on
SPL activities (Davril et al. 2015). Second, dummification implies that we will operate our
attacks in a feature space essentially different from the one induced by the real SPL. Thus,
we need to transpose the generated attacks in the dummified feature space back to the orig-
inal SPL one, raising one main issue: there is no guarantee that an attack relevant in the
dummified space is still efficient in the reduced original space (the separation may simply
not be the same). For instance, dummification will break a categorical feature into multiple
independent binary features. The attack will process each feature individually, it may result
that two binary features to be activated at the same time as they are considered indepen-
dently one from another. The original categorical feature implicitly encodes a dependency
between all the available literals not reported by the dummification procedure and thus both
feature space (i.e., before and after the transformation) are not equivalent. Further efforts
are required to ensure these implicit constraints.

Additionally, exclusion constraints stated in the FM and enumerations become non-
correlated after dummification allowing gradient methods to operate on each feature
independently. That is, when transposed back to the original configuration space, invalid
configurations would need to be “fixed”, potentially putting these adversarial configurations
away from the optimum computed by the gradient method. In the following, we will only
perform transformations on the initial feature space that can be reversed (e.g., normalize
values between 0 and 1) to conduct our evasion attacks, the transition between the two fea-
ture spaces (i.e., initial and after preprocessing) is possible, thus, we do not make any further
distinctions between the two terms since we use them without making any transformations.

As mentioned in Section 3.2, we conducted attacks on a SVM with a linear kernel which
is a simple classifier (i.e., only linear separation can be created) but that performs already
very well on the classification task for both case studies. Scripts as well as data used to
compare predictions can be found on the companion webpage.

5.3 Presentation of the Results

In Sections 6 and 7, we present the results of our experiments for each RQs stated in
Section 5.1. We try to keep the same structure for each addressed RQ, except for RQ 1.3
which is the comparison to random perturbations and does not use either of the implemen-
tations. First, we describe the preprocessing applied to the data and the parameterization
of the two different implementations of the evasion attack. Then we address each RQ by
describing the intent and details about how we conducted our experiments and discussing
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the results that come with an illustration. Finally, we provide some insights based on these
results. We repeat the same schema for the second implementation.

5.4 Evaluation Protocol

Data Collection Previous work on both case studies (Temple et al. 2016; Halin et al. 2018;
Plazar et al. 2019b) allowed one to gather a number of configurations (i.e., 90,210 config-
urations from JHipster in its version 4.8.2. and 4,500 randomly sampled and valid video
configurations for MOTIV). Configurations were sampled, derived (executed or build), and
assessed using a computing grid.

Training and Test Sets In the 4,500 MOTIV configurations, about 10% are non-acceptable
(see Section 4.1). Because of the vast majority of acceptable configurations, we are not able
to use common ML practices: usually, the training set is composed of a high percentage
(e.g., around 66%) of available data and is used to train the classifier, and, when few config-
urations are available, k-fold cross-validation is used to mitigate the risk of overfitting (in
our case, 4,500 configurations is an arguably low number to the size of the variant space).
Regarding the number of configurations to put in the training set, 66% of 4,500 configu-
rations would reduce the size of the test set in turns containing very few non-acceptable
configurations. In such a setting, because of the approximations explained in Section 3.3,
the classifier can easily learn a function that will not separate anything while keeping good
classification performances since non-acceptable configurations would be considered as
“rare events” in numbers. Because of that, we decided to mitigate this risk by training a
classifier with even fewer configurations but keeping the same ratio of non-acceptable con-
figurations (i.e., ≈ 10%) leading us to 500 configurations in the training set among which
around 50 are non-acceptable. Results from Temple et al. (2016) showed good results in
terms of classification on both training and test sets which made us keep this setting.

Now, regarding cross-validation, it is used to validate/select a classifier when several
are created (e.g., when fine-tuning hyper-parameters) but it requires separating the training
set into smaller subsets. With 10% of non-acceptable configurations some subsets will not
contain any of them which is counter-productive when assessing the ability of a trained
classifier to successfully classify new configurations.

In this setting, the key point is that only about 10% of configurations are non-acceptable.
This is a ratio that we cannot control as it depends on the targeted non-functional
property. However, to reduce imbalance, several data augmentation techniques exist like
SMOTE (Chawla et al. 2002). Usually, they create artificial configurations while maintain-
ing the configurations’ distribution in the feature space. We decided to follow a similar
process by computing the centroid between two configurations (of the same class) and use
this point as a new configuration.

Thanks to the centroid method, we can bring a perfect balance between the two classes
(i.e., 50% of acceptable configurations and non-acceptable configurations). Technically: we
compute the number of configurations needed to have perfectly balanced sets (i.e., for both
training and test sets); we select randomly two configurations from the less represented class
and compute the centroid between them, check that it is a never-seen-before configuration
and add it to the available configurations. The process is repeated until the required number
of configurations is reached. Once a centroid is added to the set of available configurations,
it is available as a configuration to create the next centroid.

In the following, we present results with both original and balanced data sets to assess
the impact of class representation on adversarial attacks.
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On the other hand, JHipster presents about 20,000 configurations in the dataset that
cannot be built. This represents about nearly 25% of our dataset, which shows an over-
representation of the building class. While other problems (described later on under the
label Feature space structure) remain, this representation is still an issue and we had to
force sets to be perfectly balanced. Thus, we chose to reduce the training set to 400 configu-
rations. In this training set, both classes are represented equally (i.e., 200 configurations for
each class). That is, we choose randomly 200 configurations from the ones that build and
200 other configurations from the ones that do not.

Preprocessing We have applied some preprocessing to both datasets and configurations’
representations to remove unnecessary features gathered from our previous study. For
instance, for JHipster, we removed logs that were kept for further studies to retrieve the root
causes of bugs. They were stored as free text which prevented us to have an homogeneous
representation of the configurations in terms of features. Furthermore, error messages from
the logs are not necessary for this study. If a feature only reports one value, it is discarded
since it will only increase the number of dimensions in the feature space without adding any
information to the classification problem.

Since we use SVMs to conduct evasion attacks, we need to make our feature space homo-
geneous in its dimension. Integer values must be scaled-down between 0 and 1. The same
applies to floating-point values. The reason behind this decision is to avoid unbounded val-
ues which in turn can result in bigger importance given to a feature because it is more
flexible and can take a broader range of values. To cope with homogeneous feature spaces,
we applied dummification (see Section 5.2) to categorical features. This way, every single
literal of the feature becomes an independent Boolean feature.

After these preprocessing steps, MOTIV configurations are represented by about 120
features while JHipster’s configurations contain 47.

Feature Space Structure Regarding JHipster, our preliminary study, to assess that at least
one ML model was able to classify configurations between building or not building, showed
that this classification problem is linearly separable. Even with as few as ≈18,000 config-
urations (about 20% of available configurations) in the training set, the classifier as able
to perform more than 99% of correct prediction in the test set. Below this number, our
tentatives to learn a classifier with a random selection of configurations have often failed
due to the absence of non-building configurations. With more than 99% accurate classifica-
tions, adversarial attacks were unable to produce any configurations that were misclassified
by the classifier. Besides, unlike the MOTIV case study, after our feature transformation,
JHipster presents numerous dependencies between the features (i.e., the choice of using a
SQL database force to deselect any other kind of database) making the adversarial attacks
unlikely to produce any valid configurations regarding the associated feature model. We
add to enforce encoded constraints (choices, dependencies stated as constraints in the FM
and upper and lower bounds values) in the FM directly into the attack procedure. That is,
after the last displacement has been performed, we check that all the constraints are fulfilled
and, if not, modify crafted configurations accordingly. This way, configurations produced
by the adversarial procedure are valid by design. This is also known as the “fix operator” in
configuration optimization (Pascual et al. 2015).

Parameterization of the Techniques We configured the dedicated attack generator with
the following settings: i) we set the number of attacks points to generate 4,000 config-
urations for RQ1 with MOTIV and 1,000 when dealing with JHipster and, for RQ2, 25
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configurations were used for both case studies; ii) considered step size (t) values are {10−6;
10−4; 10−2; 1; 102; 104; 106}; iii) the number of iterations is fixed to 20, 50 or 100. To mit-
igate randomness, we repeat ten times the experiments. All results discussed in this paper
can also be found on our companion webpage.11

When using secML, we have parameterized the attack function such that it can change
several features at one time (distance norm is set to “l2” also known as Euclidean distance),
the maximum perturbation value (called d max hereafter) is set to {0.1; 0.5; 1.0; 5.0; 10.0}
and the upper and lower bounds are set respectively to 1 and 0. Also, Gradient Descent uses
a search grid to find the best step size as well as the best direction which can be configured
by the resolution of the grid. In secML, this parameter is called η that we set to 0.01 since the
order of magnitude of the number of features is 102. To remain consistent with our dedicated
implementation, we apply the same preprocessing on the configurations (see Section 5.2)
and we generate 4000 configurations for RQ1 and 25 configurations when addressing RQ2.

Statistical Evidence To further support the statistical validity of our conclusions we applied
statistical tests for each research question. We focused on Mann-Whitney rank sum test
(Mann and Whitney 1947), which is non-parametric (i.e., it does not assume a normal dis-
tribution for the compared samples) and therefore can handle the non-normality of our
sometimes small sample sizes. This test computes a statistic U , further decomposed in U1
and U2 that intuitively correspond to the number of wins and losses respectively of all pair-
wise contests between the two compared samples. Therefore, 0 < Ui < n1 × n2, i ∈ {1, 2}
where n1, n2 are the sizes of each sample and U1 + U2 = n1 × n2. We report min(U1, U2)

referred to as “u-stat”. For this test, we formulate two different hypotheses: the null-
hypothesis (usually called H0) that supposes the two samples follow the same distributions
and the other hypothesis (H1) supposing that they do not. To reject the null-hypothesis, u-
stats are compared to a critical value reported in a table:12 if a u-stat is smaller or equal to
the one in the table for the given sample sizes and confidence levels (in our case α = 0.05),
then we can reject H0, if it is greater then we cannot reject H0. Additionally, two values of
u-stat are remarkable: u-stat = 0, meaning that the distributions are totally different, and
u-stat = n1×n2

2 meaning that the two distributions are equal. In our setting, we use a two-
tailed test and additionally report the computed p-value p for significant (we consider our
results significant if p ≤ 0.05). We computed our statistical results using the R statistical
environment (R Core Team 2020). The R script to replicate the analysis can be found on our
companion webpage.

6 MOTIV

6.1 RQ1: How Effective is Our Adversarial Generator to Synthesize Adversarial
Configurations?

To answer this question, we assess the number of wrongly classified adversarial configu-
rations over 4000 generations and compare them to a random baseline: to the best of our
knowledge, there is no other evasion attack that is based on a different algorithm than the
one presented in Biggio et al. (2013a) to compare to.

11https://github.com/templep/EMSE 2019
12Such tables can be found easily on the Internet: http://ocw.umb.edu/psychology/psych-270/other-materials/
RelativeResourceManager.pdf
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6.1.1 RQ1.1: CanWe Generate Adversarial Configurations that are Wrongly Classified?

Dedicated Implementation For each run, after nb disp displacements, the newly created
adversarial configuration is added to the set of initial configurations that can be selected to
start an evasion attack. We thus allow previous adversarial configurations to continue their
displacements towards the global optimum of the gradient.

Figure 7 shows box-plots resulting from ten runs for each attack setting. Both results,
when the training set is not balanced (i.e., using the previous training set containing 500
configurations with about 10% of non-acceptable configurations) and when it is balanced
(i.e., increasing the number of non-acceptable configurations using the data augmentation
technique described above) are reported.

Both Fig. 7a and b indicate that we can always achieve 100% of misclassified configura-
tions with our attacks. Regarding Fig. 7a, in the case of a not balanced dataset, it is easy to
attack the most represented class and the implementation can produce new configurations
that are always misclassified (regardless of the value assigned to t). The fact that even the
smallest value of t with 20 displacements can produce 4000 misclassified configurations
suggests that the separation learned by the classifier should be very close to the configura-
tions of class non-acceptable (where the attacks start). With a balanced dataset, more points
can be selected as a starting point of the attack. Chances to select a starting point that is
“far” from the separation are higher and more displacements are needed to cross the func-
tion learned by the classifier. Figure 7a shows that the displacement step size is not enough
to produce any misclassified configurations when it is set to a value lower or equal to 10−4

and the number of displacement is set to 20. When set to 0.01, some configurations start to
be misclassified but it represents less than 50% of them. With a step size set to 1.0 or above,
perturbations are large enough to produce misclassified ones.

Figure 7b shows the same tendency except that the transition from 0 misclassified gen-
erations to 4000 appears earlier (i.e., when t is set to or close to 0.01). It is not surprising
since, compared to the previous results, the number of displacements is higher (set to 100).

Fig. 7 Number of successful attacks on class acceptable; X-axis represents different step size values t while
Y-axis is the number of misclassified adversarial configurations by the classifier. For each t value, results
with balanced and not balanced training set are shown (respectively in blue and orange)
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We do not present figures with the number of displacements set to 50 but the observations
are similar to the ones we just described with Fig. 7b. However, they can be found on the
companion webpage.

Table 2 shows U (second row) from the Mann-Whitney test and associated p-values
(third row) when comparing results from both sets (balanced and unbalanced) for each dis-
placement step size shown in Fig. 7a. When the displacement step size is set to 1 or higher,
both attack set-ups achieve a 100% success rate with no dispersion (illustrated by 50 and
NaN values in the table) and therefore cannot be distinguished. With lower values of dis-
placement step sizes, the p-values are significant (p << 0.05). Based on our results from
Fig. 7a, we can conclude that attacking when classes are not balanced is easier. Conclusions
are similar when considering larger displacement step size (i.e., 50 and 100) available on
the companion page.

Insights: Increasing the number of displacements requires lower step sizes to reach the
misclassification goal but it comes at the cost of more computations. However, increas-
ing the number of displacements when the step size is already large ends up in incredibly
large displacements which may not be realistic in some applications or when trying to limit
changes applied to configurations.

SecML Similarly to the previous implementation, after the final perturbation is applied to a
configuration, it is added to the set of available configurations that may be selected for the
next run. The number of displacements is not bounded directly, thus the number of iterations
can vary from one run to another.

Figure 8 shows box-plots resulting of ten runs for each attack setting (i.e., with varying
values set to d max). We also show results for both balanced and non-balanced data sets.

When the data set is not balanced, similarly to the previous implementation, all attempts
to create a misclassified configuration succeed since the separation is in favor of the most-
represented class.

When the data set is balanced, the behavior showed in Fig. 8 is similar to the previ-
ous one. A transition from 500 misclassified generated configurations to almost 4000 can
be seen between d max set to 0.1 and 0.5. With higher d max values, all 4000 generated
configurations were misclassified.

Our statistics (available on Table 3) shows that our results are significant (p << 0.05).
Again, with this implementation, we can conclude that attacking classes is easier when they
are imbalanced.

Insights: again tuning d max increases chances to get misclassified configurations when
perturbed with evasion attacks. Since d max represents the maximum distance up to which a
feature can be perturbed, setting it a lower value decreases the potential number of iterations
to get to the final position. Therefore, to fine-tune this parameter, a good strategy would be
to start with lower values.

Table 2 u-statistics and p-values associated with measures from Fig. 7a; n1 = n2 = 10 for each column,
u-statcritical = 23

10−6 10−4 10−2 1 102 104 106

u-stat 0 0 0 50 50 50 50

p-value 6.39e − 5 6.39e − 5 6.39e − 5 NaN NaN NaN NaN
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Fig. 8 Number of successful attacks on class acceptable; X-axis represents different parameter values of
d max of the secML function while Y-axis is the number of misclassified adversarial configurations by the
classifier

6.1.2 RQ1.2: Are All Generated Adversarial Configurations Valid w.r.t. Constraints
in the VM?

As discussed in Section 5.2, we have performed some preprocessing on our data to make
the learning with an SVM possible and reliable. This ends up with features that are either
Boolean, either real but bounded between 0 and 1.

Because we check and force feature values to be inside these boundaries after the
last position of a configuration is reached, by design, all the configurations are valid
w.r.t. this aspect. The only aspect left that may make the configurations non-valid is the
mutual exclusion constraints inherited from breaking the categories with the dummification
process.

Regardless of the implementation that is used or the values given to parameters, all the
generated configurations are valid. Results and scripts of this experiment can be found on
the companion website.

Insights: We can scope parameters such that adversarial configurations are both success-
ful and valid for either implementations. The way our configurations were preprocessed
made it possible to enforce boundary constraints directly at the end of displacements. Other
ways are possible but might require other mechanisms to check that constraints are verified
while allowing configurations to move further away.

Table 3 u-statistics and p-values associated with measures from Fig. 8; n1 = n2 = 5 for each column,
u-statcritical = 2

0.1 0.5 1 5 10

u-stat 0 0 12.5 12.5 12.5

p-value 7.49e − 3 7.49e − 3 NaN NaN NaN
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6.1.3 RQ1.3: Is Using the Evasion AlgorithmMore Effective than Generating
Adversarial Configurations with RandomDisplacements?

Previous results of RQ1.1 and RQ1.2 show we can craft valid adversarial configurations that
can be misclassified by the ML classifier but is our algorithm better than a random baseline?

The baseline algorithm is based on the dedicated implementation and consists in: i) for
each feature, choose randomly whether to modify it; ii) choose randomly to follow the slope
of the gradient or go against it (the role of ‘-’ of line 5 in Algorithm 1 that can be changed
into a ‘+’); iii) choose randomly a degree of displacement (corresponding to the slope of
the gradient (∇F(xm−1)) of line 5 in Algorithm 1). Both the step size and the number of
displacements are the same as in the previous experiments.

Figure 9 shows the ability of random attacks to successfully mislead the classifier.
Random modifications are not able to produce more than 2500 configurations that are mis-
classified (regardless of the number of displacements, the step size, or whether the training
set is balanced or not) which corresponds to about 60% of the generated configurations. It is
a lower number than the two evasion implementations. The maximum number of misclassi-
fied configurations after random modifications starts from step size t = 10, 000 regardless
of the studied number of displacements.

Regarding the validity of generated configurations, here again, the random version is
worse than the other considered implementations. The problem lies in the fact that all fea-
tures are processed independently from the others resulting in high chances to set to features
which are mutually exclusive to 1; leading to non-valid configurations.

Table 4 shows the u-statistics and p-values when comparing results given from the RQ1.1
(see Fig. 7a) and random perturbations (see Fig. 9a) with balanced classes. For all reported
values, the p-values are significant (p << 0.05) and U-stats are equal to 0. We conclude that
advML techniques are more efficient in producing new configurations that will be wrongly
classified than using random perturbations. Results are similar when comparing results from
Figs. 7b and 9b.

Insights: Previous results show that the effectiveness of evasion attacks are superior
to random modifications since i) evasion attacks can craft configurations that are always
misclassified by the ML classifier while less than 2500 over 4000 generations will be mis-
classified using random modifications; ii) generated evasion attacks support a larger set of

Fig. 9 Number of successful random attacks on class acceptable; X-axis represents different step size values
t while Y-axis is the number of misclassified adversarial configurations by the classifier. In red and blue are
respective results with a not balanced and a balanced training set in terms of classes representation
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Table 4 u-statistics and p-values associated with measures from Fig. 9a compared with values given in RQ1.1
when classes are balanced; n1 = n2 = 10 for each column, u-statcritical = 23

10−6 10−4 10−2 1 102 104 106

u-stat 0 0 0 0 0 0 0

p-value 1.82e − 4 1.82e − 4 1.82e − 4 6.34e − 5 6.34e − 5 6.39e − 5 6.39e − 5

parameter values for which generated configurations are valid; iii) we were able to identify
sweet spots for which evasion attacks were able to generate 4000 configurations that were
both misclassified and valid.

6.1.4 RQ1.4: Are Attacks Effective Regardless of the Targeted Class?

Previously, we generated evasion attacks from the class non-acceptable and tried to make
them acceptable for the ML classifier but is our attack symmetric? Now, we configure both
adversarial configuration generators so that they move configurations from the acceptable
class to the class non-acceptable.

Dedicated Implementation Figure 10a shows that, in the case of balanced data sets, all
generated configurations are misclassified when step size is set to 1 or higher with 20 dis-
placements while, when this number is 100 (see Fig. 10b), the step size can be set to 0.01
or higher. With t set to 0.01, a transition occurs in Fig. 10a in the number of misclassified
configurations from 1800 to 4000. The same transition probably occurs also in Fig. 10b but
more abruptly and thus is hidden between observations made at t = 10−4 and t = 0.01.
The fact that almost or no configurations are misclassified before this threshold comes from
the over-representation of class acceptable. Since there are more configurations assigned to
this class, there are more candidates to start an attack including configurations that are far
away from the separation learned by the classifier.

Table 5 compares results when attacking class acceptable and when attacking class
non-acceptable with 20 displacements allowed and when classes are balanced. When the
displacement step size is set to 1.0 or higher, both achieve a 100% success rate showing

Fig. 10 Number of successful adversarial attacks on class non-acceptable; X-axis represents different step
size values t while Y-axis is the number of misclassified adversarial configurations by the classifier; In orange
and blue are respectively shown results when the training set is not balanced and when it is
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Table 5 u-statistics and p-values associated with measures from Fig. 10a compared with results from Fig. 7a
for displacement step size set to 20; n1 = n2 = 10 for each column, u-statcritical = 23

10−6 10−4 10−2 1 102 104 106

u-stat 0 0 0 50 50 50 50

p-value 1.83e − 4 1.83e − 4 1.82e − 4 NaN NaN NaN NaN

no difference in the results (represented by NaN in the table). When the displacement step
size is set to lower values, p-values are significant (p << 0.05). We conclude that it is
easier to fool the classifier when starting attacks from the under-represented class (here
“non-acceptable”, see RQ1.1).

SecML Figure 11 shows the number of misclassified configurations when the evasion
attacks target class non-acceptable. While in the balanced case, results are similar to the one
we described with the dedicated implementation; results for non-balanced datasets are more
interesting. When d max is set to a value that is under 10.0, no generated configurations
are misclassified.13 This is related to over-representation issues and as secML implements
some mechanisms to stop computations early, attack configurations do not move away.

From the validity point of view, the same implementations were used as well as the
checking procedure. All generated configurations are valid regardless of the parameteriza-
tions of the implementations or the choice of the implementation. Results are provided on
the companion webpage.

Table 6 reports statistical results when comparing values given in Figs. 8 and 11 with
balanced classes. Once again, p-values show that our results are significantly different (p
<< 0.05). Only the last column shows that results are the same which translate into a 12.5
u-statistics and a NaN p-value.

6.2 RQ2: What is the Impact of Adding Adversarial Configurations to the Training
Set Regarding the Performance of the Classifier?

So far, we have only evaluated the impact of generated attacks and how they are predicted by
the classifier. Yet, some ML techniques (e.g., GANs) take advantage of adversarial instances
by incorporating them in the training set to improve the classifier confidence and possibly
performance. In our context, we want to assess the impact of our attacks when they are
included in the training dataset, especially with less “aggressive” (e.g., small step sizes and
a low number of displacements) configurations of the attacks.

13Except when d max is set to 0.1 and for which we do not have any explanation.
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Fig. 11 Number of successful attacks on class non-acceptable; X-axis represents different parameter values
of d max of the secML function while Y-axis is the number of misclassified adversarial configurations by
the classifier

Dedicated Implementation To do so, we allowed 20 displacements to avoid configura-
tions moving too far from their initial positions but used the same step sizes that we have
used before. For each step size, we generate 25 adversarial configurations (targeting the
acceptable class) that are added all at once in the training set, we retrain the classifier and
evaluate it on the configurations that constitute the initial test set (without any adversarial
configurations in it). Every retraining process was repeated ten times to mitigate the effects
of the random configuration selection. We also present results when the training set is bal-
anced, in which case we have also augmented the test set to bring balance and to follow
the same data distribution. In this case, the test set does not contain 4000 configurations but
about 7000 in which 50% of the configurations are considered acceptable and the remaining
are considered non-acceptable.

Figure 12 shows the accuracy of the retrained classifiers over a test set composed of 4000
configurations for the red part and 7000 configurations for the blue one.

The initial accuracy of the classifier was 90.7661% over the same 4000 configurations
and is shown as the horizontal red line. We make the following observation: our generated
configurations did not have any impact on the retraining since our boxplots are completely
flat and superimposed with the baseline. We suppose that to have an impact, a larger number
of adversarial configurations would be needed but with the risk of making the prediction
performances of the classifier worse.

In the case of balanced training and test sets (in blue on Fig. 12), results are completely
different. Regardless of the value assigned to t , prediction performances after retraining are

Table 6 u-statistics and p-values associated with measures from Fig. 8 compared with the ones from Fig. 11;
n1 = n2 = 5 for each column, u-statcritical = 2

0.1 0.5 1 5 10

u-stat 0 0 0 0 12.5

p-value 7.49e − 3 3.98e − 3 3.98e − 3 3.98e − 3 NaN
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Fig. 12 Accuracy of the classifier after retraining with 25 adversarial configurations in the training set over a
test set of 4000 configurations (7000 configurations when the training set is balanced). In red are results when
no balance are forced in the classes, in blue, both training set and test set are balanced. The initial accuracy of
the classifier is represented by the horizontal line (90.7661% for the red line and 92.3151% for the blue one).
X-axis represents different step size values t while Y-axis is the accuracy of the classifier (zoomed between
87% and 100%)

above the baseline (i.e., 92.3151%). The gain is in between +1.5% and +2%. While this
gain seems low, we remind that initial performances were already very high (above 90%)
which makes it difficult to retrieve a huge improvement.

Statistics in Table 7 show that, probably due to the presence of outliers and large variance
in the boxplots of Fig. 19, with displacement values lower than 1, results are not necessarily
significant while, above, they are (p << 0.05).

SecML With 25 adversarial configurations added to the training set, results presented in
Fig. 13 are rather different from the other implementation. Considering the lower red part of
the Figure (i.e., without balance), when d max is set to 0.1, the predictions of the retrained
classifier can gain up to 2% but when the parameter is set to higher values, the performances
drop. It can due to adversarial configurations going deep inside the other class which might
make ultimately more harm than good.

When data sets are balanced, the prediction performances tend to drop when d max is set
to 1.0 or lower values. If d max is set to 5.0 or higher, performances tend to slightly increase.
Again, initial performances are already high (i.e., above 95%) and we have only added 25

Table 7 u-statistics and p-values associated with measures from Fig. 12 comparing results from the balanced
experiment with associated baseline; n1 = n2 = 10 for each column, u-statcritical = 23

10−6 10−4 10−2 1 102 104 106

u-stat 40 30 40 0 0 0 0

p-value 0.69 0.20 0.69 8.46e − 5 8.54e − 5 8.18e − 5 7.59e − 5
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Fig. 13 Accuracy of the classifier after retraining with 25 adversarial configurations in the training set over
a test set of 4000 configurations (7000 configurations when the training set is balanced). In red are results
when no balance are forced in the classes, in blue, both training set and test set are balanced. The initial
accuracy of the classifier is represented by the horizontal line (90.7661% for the red line and 95.1196% for
the blue one). X-axis represents different d max values while Y-axis is the accuracy of the classifier (zoomed
between 87% and 100%)

configurations to a training set containing about 1000 configurations which can limit the
impact of adversarial configurations on the potential improvement of performances.

Table 8 shows results for both retraining (in a balanced setting and imbalanced setting).
In the balanced setting, only the first column shows non-significant results (p >> 0.05),
the remaining columns show a clear confidence in our results. Our analysis of Fig. 13 still
holds, we cannot state strongly that what we observed is true but the fact that the baseline
is already high and that we are able to see variations in our measures suggest that retrain-
ing may still have an impact on the classifier. In the unbalanced setting, only d max set to
0.1 provides significant results, other results report non-significant p-values (p > 0.05).
Figure 13 shows that, except when d max is set to 0.1, the set of measures are spread
above or below the baseline. Sometimes only outliers are above the red baseline, which may
explain such statistics.

Table 8 u-statistics and p-values associated with measures from Fig. 13; n1 = n2 = 5 for each column,
u-statcritical = 2

0.1 0.5 1 5 10

Balanced classes

u-stat 10 0 0 0 0

p-value 0.66 7.29e − 3 7.49e − 3 7.29e − 3 7.49e − 3

Unbalanced classes

u-stat 0 10 5 5 5

p-value 7.49e − 3 0.66 0.11 0.12 0.12
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7 JHipster

7.1 RQ1: How Effective is Our Adversarial Generator to Synthesize Adversarial
Configurations?

7.1.1 RQ1.1: CanWe Generate Adversarial Configurations that are Wrongly Classified?

Dedicated Algorithm Similarly to MOTIV, for each of the 10 runs, after nb disp are per-
formed, the newly generated configuration is added to the set of configurations that can be
selected to start the next evasion attack giving a chance to the previously generated configu-
rations to keep being modified and further move towards the global optimum of the gradient.
Figure 14 shows box-plots summarising ten runs for the different step sizes t values we have
considered.

Figure 14a and b both show that we can always find a set of parameter values resulting
in a misclassification of all generated configurations. Regarding Fig. 14a, all generated
configurations become misclassified when step size t is set to 1.0 or higher. With nb disp
set to 100 (see Fig. 14b), all configurations are misclassified when t is set to 10−2 or higher.
Similar results can be obtained when the number of maximum displacements is set to 50
where all the configurations are misclassified with t set to 10−2 or higher.

Insights: Again, increasing the number of displacements requires lower step sizes to
reach the misclassification goal. However, increasing the number of displacements means
increasing the number of iterations and the number of computations.

SecML Similarly to the previous results, Fig. 15 shows that we can find a value of d max for
which all generated configurations are misclassified (i.e., 1.0 or above). When d max is set

Fig. 14 Number of successful attacks on class building; X-axis represents different step size values t while
Y-axis is the number of misclassified adversarial configurations by the classifier
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Fig. 15 Number of successful attacks on class building; X-axis represents different d max values while
Y-axis is the number of misclassified adversarial configurations by the classifier

to 0.1, perturbations are not sufficient for configurations to be misclassified. However, when
d max is set to 0.5, some of the runs end up with all configurations either misclassified or not
which suggests that we spotted the value making the transition between 0 misclassification
to 1000.

7.1.2 RQ1.2: Are All Generated Adversarial Configurations Valid w.r.t. Constraints
in the VM?

As we said previously, because of all the dependencies between individual features (e.g.,
choosing the database), we had to enforce these constraints directly within the attack
(i.e., after the final position of the generated configuration is reached with the dedicated
implementation; after each move of the configuration when using secML) otherwise, all
configurations are likely to be non-valid w.r.t. the underlying variability model. Regardless
of the implementations, we have enforced these constraints stated in the VM leading to valid
configurations by design.

7.1.3 RQ1.3: Is Using the Evasion AlgorithmMore Effective than Generating
Adversarial Configurations with RandomDisplacements?

We have used the same implementation of the random displacements that we used with
MOTIV since the dedicated algorithm is the same. Unsurprisingly, results with JHipster
are similar to the ones retrieved with MOTIV. Figure 16 shows the misclassification results
of the generation of randomly perturbed configurations. In Fig. 16a, the best results are
retrieved when the step size t is set to 100 or higher. About half generated configurations
are misclassified. When the number of displacement nb disp is set to 100 (Fig. 16b), the
same conclusions can be drawn.

Table 9 reports u-statistics and p-values when comparing results from Figs. 16a and 14a.
When the displacement step size is lower than 1, p-values are not significant (p > 0.05).
Thus, we cannot say that using adversarial machine learning provides better results than
random perturbations. In the meantime, no misclassifications were observed when using
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Fig. 16 Number of successful adversarial attacks on class building; X-axis represents different step size
values t while Y-axis is the number of misclassified adversarial configurations by the classifier; In orange
and blue are respectively shown results when the training set is not balanced and when it is

either technique. However, when displacements step size is set to 1.0 or higher, p-values
are significant (p << 0.05) making us conclude that advML are more effective than ran-
dom perturbations when these values are used. Statistics comparing Figs. 16b and 14b are
available on the companion webpage and lead us to similar conclusions.

Insights: Compared to results provided by both the dedicated implementation and the
secML implementation, for which we found a configuration of attacks were all generated
configurations were misclassified, we can conclude that random perturbations are not as
efficient with a maximum rate of 50% of misclassification over all the generations.

7.1.4 RQ1.4: Are Attacks Effective Regardless of the Targeted Class?

As we previously mentioned, the training set is completely balanced which should not favor
the effectiveness of the attack regarding the class that it is attacking. We change the class
from which attacks start (i.e., going from not building to building) and assess the fact that
results are similar to RQ1.1.

Dedicated Implementation Figure 17 shows the effectiveness of the attack running with
the dedicated implementation. It shows very similar results compared to Fig. 14. In Fig. 17a,
starting from a step size t set to 1 and up to 106, all generated configurations are misclas-
sified. Before that, the means of the box-plots are a bit higher, around 100 configurations
misclassified which is still very low. The same pattern can be observed in Fig. 17b compared
to Fig. 14b. A gap in the number of misclassified configurations can be observed when t is
set to 0.01 or higher compared to lower values. Despite the fact that the same threshold can
be observed in Fig. 14b, the number of generated configurations that are misclassified in

Table 9 u-statistics and p-values associated with measures from Fig. 16a compared from measures from
Fig. 14a; n1 = n2 = 10 for each column, u-statcritical = 23

10−6 10−4 10−2 1 102 104 106

u-stat 39 44 43 0 0 0 0

p-value 0.42 0.67 0.62 6.39e − 5 6.39e − 5 6.16e − 5 6.39e − 5
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Fig. 17 Number of successful attacks on class not building; X-axis represents different step size values t

while Y-axis is the number of misclassified adversarial configurations by the classifier

Fig. 17b is lower that in the previous case. With t set to lower values than 0.01, the number
of generated configurations misclassified is higher than in Fig. 14b but still low.

Table 10 compares measures when attacking the building class with attacks on the not
building class. Measures and box-plots showed in Figs. 17a and 14a follow the same ten-
dency. When the displacement set size is set to 1 or higher values, no differences can be
observe explaining the reported NaN values. When set to lower values, while both numbers
show low misclassification, p-values are significant (p << 0.05). It can be explained by
the fact that Fig. 14a show a capability of producing misclassified configurations close to
0 while Fig. 17a shows numbers closer to 100. In this case, attacks starting from the class
building may have more chances to succeed.

SecML Figure 18 shows very similar results compared to the ones described in RQ1.1. A
transition from 0 misclassified configuration to 1000 can be seen when d max is set to
1.0. However, when d max is set to 0.5 none of the configurations are misclassified. When
d max is set to 0.1, sometimes none of the configurations are misclassified, in some cases,
all of them are misclassified.

Table 11 compares results when trying to attack one class or the other with the secML
algorithm. Results do not show significant statistical differences (p > 0.05). This can be
explained by the boxplots that spread from 0 to 1000 but with averages (i.e., colored bar
which is supposed to be in the middle of the box) that are either at 0 either at 1000.

Insights: As expected, since the dataset is balanced, the behavior of both methods does
not drastically change regarding the class to attack.

Table 10 u-statistics and p-values associated with measures from Fig. 17a compared to measures from
Fig. 14a; n1 = n2 = 10 for each column, u-statcritical = 23

10−6 10−4 10−2 1 102 104 106

u-stat 0 0 0 50 50 50 50

p-value 1.79e − 4 1.81e − 4 1.79e − 4 NaN NaN NaN NaN
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Fig. 18 Number of successful attacks on class not building; X-axis represents different d max values while
Y-axis is the number of misclassified adversarial configurations by the classifier

7.2 RQ2: What is the Impact of Adding Adversarial Configurations to the Training
Set Regarding the Performance of the Classifier?

So far, only the capability of evasion attacks to generate misclassified configurations with-
out affecting the classifier model has been assessed. Now, we are wondering whether we can
include some of these generated configurations into the training set in order to improve the
classification performances of the model. As stated previously, we include 25 adversarial
configurations in the training set, retrain the classifier, and assess its classification perfor-
mances on the initial test set (i.e., without any adversarial configurations in it). Again, to
avoid attacks to be too aggressive which may result in a drop in the accuracy, we limit the
number of displacement for the dedicated implementation to 20. To mitigate randomness,
we repeated the experiment ten times.

Dedicated Implementation As reported in Section 4.2, JHipster is a relevant case to study
in this new context because it is completely unrelated to multimedia processing as opposed
to historical usage of advML. JHipster has a complex structure that includes cross-tree con-
straints making the feature space hard to define. However, we needed to reduce drastically

Table 11 u-statistics and p-values associated with measures from Fig. 18 compared from measures from
Fig. 15; n1 = n2 = 5 for each column, u-statcritical = 2

0.1 0.5 1.0 5 10

u-stat 7.5 5 12.5 12.5 12.5

p-value 0.18 0.07 NaN NaN NaN
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the number of configurations in the training set: for a large number of samples, the classifier
was too good and achieved almost perfect predictions. With about 400 configurations in the
training set, Fig. 19 shows that the generated adversarial configurations have no impact on
the accuracy of the classifier after retraining. Regardless of t , all our box-plots are superim-
posed to the baseline. Two explanations come to mind: i) 25 might not be enough to have
an impact on the function learned by the classifier, but adding more adversarial configura-
tions may degrade the performances of the classifier; ii) the accuracy is too high without
any adversarial configurations and the number of configurations in the test set is too large
to capture the impact of 25 adversarial configurations in the training set.

SecML Results showed in Fig. 20 are very similar to the one described with the other imple-
mentation. With d max set to 0.1, 0.5, or 1.0, no changes can be seen compared to the
baseline. With d max set to 5.0, the mean of the box plot stays at the same level than the
baseline but some repetitions succeeded in improving the accuracy of the classifier up to the
level of the baseline reported with the other implementation.14 When d max is set to 10.0,
most of the executions (since the mean value of the box plot is above the baseline) were
able to improve the performances of the classifier up to the same level as the baseline of the
previous experiment.

Table 12 suggests that the impact of retraining the classifier with adversarial examples is
significant (p < 0.05) when d max values is set to 5 or higher. However, the u-stat suggest
that this difference is not big enough to formally reject the null hypothesis.

8 Threats to Validity

8.1 Internal Threats

Choices of parameter values for our experiments may constitute a threat. The step size has
been set to different powers of 10, we only used 3 different number of allowed displace-
ments (i.e., 20, 50 and 100). From our perspective, using step size below 10−6 in a highly
dimensional space seems ridiculously small while, on the contrary, using step size above
106 are tremendously large which motivates our choice to not going over these boundaries.
Still, boundaries could have been extended which might have affected results regarding RQ2
but also we could have performed more observations by using intermediate values between
every power of tens. We could have provided a finer explanation of our results but at the cost
of unacceptable computation times. Regarding the number of displacements, we could have

14Note that the baselines are reported for two different models; secML provides a complete library which
comes with its own framework and pipeline, necessitating to learn a classifier with this library. The imple-
mentation can differ from the ones provided by scikit-learn which is the other library we have used before
using secML.
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Fig. 19 Accuracy of the classifier after retraining with 25 adversarial configurations in the training set over a
test set of about 89,000 configurations. The blue line reports the baseline accuracy of the classifier when no
adversarial configurations are added to the training set. X-axis represents different step size values t while
Y-axis is the number of misclassified adversarial configurations by the classifier

used finer-grained values. We sought a compromise between allowing a lot of small steps
and a few big steps. Regarding the choice of evasion attacks, as presented in Section 2, sev-
eral techniques exist. Regarding secML, we set the η parameter to only one value and used
five different values for d max. While these choices were driven by the size of the feature
space, we would need to evaluate the impact of other parameterization on the results we can
get from attacks. This is left to future works. All in all, evasion attacks showed interesting
results and open new perspectives that we discuss in the Section 9.

Fig. 20 Accuracy of the classifier after retraining with 25 adversarial configurations in the training set over
a test set of about 89,000 configurations. The blue line reports the baseline accuracy of the classifier when
no adversarial configurations are added to the training set
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Table 12 u-statistics and p-values associated with measures from Fig. 20 compared with the baseline; n1 =
n2 = 10 for each column, u-statcritical = 23

0.1 0.5 1.0 5 10

u-stat 50 45 45 25 25

p-value NaN 0.37 0.37 0.01 0.01

We rely on centroids to deal with class imbalance (see Section 5.4). The centroid method
has pros and cons: centroids are easy and quick to compute, new configurations tend to
follow the same distribution as they result in more densely populated clusters and on rare
occasions, make clusters expand a little bit. However, new configurations may not be real-
istic, since they do not provide so much diversity—centroids, by definition, lie in the
middle of the cluster of points. Since our goal is only to limit imbalance in the available
configurations, this technique is appropriate while maintaining the initial distribution of
configurations. However, we are aware that other data augmentation techniques can be used.

The number of configurations to generate is also arguable. We tried to choose numbers
for RQ1 that were large enough to be meaningful. RQ2 uses fewer adversarial configura-
tions since, by design, the goal of evasion attacks is to produce configurations that do not
follow the same distribution of data as the ones gathered by sampling configurations from a
FM. Including too many adversarial configurations would make classification performance
to drop drastically (being the goal of adversarial attacks). We chose 25 configurations for
both our case studies according to the training set sizes and yet, we can already see an
impact on the performances of the classifier.

The quality of the targeted ML classifier is a threat to our experiments. In particular, a
too weak classifier would make numerous predictions errors and thus dramatically ease the
task of putting it in default. On the other end, a too strong classifier (especially when the all
the variants can be enumerated in the case of JHipster) is very difficult to attack as exhaus-
tive classification is possible. Many factors can influence an ML classifier: the underlying
ML algorithm, the hyper-parameters or the training set used to train it. To mitigate this
threat, we took many precautions for training an accurate ML classifier (see Section 5.4).
As future work, we plan to investigate whether sampling strategies (e.g., adversarial train-
ing, see Section 9.1, or t-wise, see Section 10) used to gather the training set can have
impact on the quality of the ML classifier and in turn affect the effectiveness of adversarial
configurations.

8.2 External Threats

Compared to our previous work (Temple et al. 2019), we have added an extra case study to
our experiments, it does not seem much but it gives insights on the generalization capabil-
ity of the adaptation of adversarial attacks (and in particular evasion attacks) to the world
of SPLs. Also, we chose a configurable system that was completely uncorrelated to the
world of images and multimedia and which defines more cross-tree constraints than MOTIV,
requiring additional effort to take them into account. Calls to SAT/SMT solvers are unprac-
tical due to feature heterogeneity and the frequency of validity checks. Benchmarks of
large and real-world feature models can be considered if we are only interested in sampling
aspects (Knüppel et al. 2018; Siegmund et al. 2017).
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We considered accuracy as our main performance measure. Accuracy is the standard
measure used in the advML literature (Barreno et al. 2006; Nelson et al. 2008; Biggio et al.
2013b, 2014a, b; Goodfellow et al. 2014) to assess the impact of attacks.

SecML is a library gathering multiple implementations of adversarial attacks. In our
experiments, we only focused on a single implementation which can already be parame-
terized in various different ways; other implementations also include parameters that need
to be set. We decided to keep the implementation that seems the closest to the initial eva-
sion algorithm (i.e., CEvasionAttackPGD) but other provided implementations might be
considered and their results compared to the ones reported in this work.

9 Discussions

Adversarial configurations pinpoint areas of the configuration space where the ML classifier
fails or has low confidence in its prediction. We qualitatively discuss what the existence of
adversarial configurations suggests for an SPL and how adversarial configurations can be
practically used within the two case studies (MOTIV and JHipster).

9.1 Adversarial Training

Developers of MOTIV and JHipster may legitimately want to improve their ML classi-
fier by making it more robust to attacks (i.e., adversarial configurations). Previous work on
advML (Biggio and Roli 2018; Barreno et al. 2006; Guo et al. 2017; Dhillon et al. 2018;
Madry et al. 2017) proposed different defense strategies in presence of adversarial con-
figurations. Adversarial training is a specific category of defense: the training sample is
augmented with adversarial examples to make ML models more robust. In our case study,
it consists of applying our attack generator and re-inject adversarial configurations as part
of the original training set.

We saw in RQ2 that, when adversarial configurations are introduced in the training set,
even moderately aggressive attacks may improve the ML classifier performance but also
decrease it in some settings (notably with SecML on MOTIV). Indeed, we acknowledge that
our adversarial generators have simply not been designed for this defensive task and rather
excel in triggering misclassifications. It opens two perspectives. The first is to apply other,
more effective defense mechanisms (such as manifold projections, stochasticity, or prepos-
sessing (Biggio and Roli 2018; Barreno et al. 2006; Guo et al. 2017; Dhillon et al. 2018;
Madry et al. 2017)). The second and most promising perspective is to adapt adversarial ML
knowledge with “friendly” rather than malicious attacks. That is, instead of only fooling
the ML classifier, an additional objective would be to generate configurations as part of the
training set that can improve its learning accuracy.

9.2 Improvement of the Testing Oracle

MOTIV The labeling of videos as acceptable/non-acceptable is approximated by the ML
classifier. If the testing oracle is not precise enough, it is likely that the approximation per-
forms badly. In the MOTIV case, oracles are an approximation of the human perception
system which in turn could be seen as an approximation of the real separation between
acceptable images and non-acceptable ones regarding a specific task. Object recognition
should potentially work on an infinite number of input images which makes the construc-
tion of a “traditional” oracle (a function that is able to give the nature of every single input)
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challenging. Testing oracles for an SPL are programs that may fail on some specific config-
urations. Adversarial configurations can lead to “cases” (videos) for which the oracle has
not been designed and tested. Such configurations may thus provide insights to improve
such oracles.

Specifically, MOTIV’s developers can revise the visual assessment procedure to deter-
mine what a video of sufficient quality means (Dosselman and Yang 2012; Temple et al.
2016). Adversarial configurations can help in understanding the limits of the procedure over
specific videos. The examples presented in Fig. 5, page 14 are not resulting from attacks but
were allowed by the MOTIV generator. In these examples, we were able to see that colors
were not natural and thus need to be constrained. Another way to see it is that the testing
oracle failed to detect these colors were unnatural. The oracle that was used in Temple et al.
(2016) focused only on avoiding too much blur or noise in images. It did not care about the
realism of the colors, thus, to avoid these examples later, a new oracle could be developed
to check automatically the range of values of features defining colors and integrated into
the process. Based on the review of problematic cases, MOTIV’s developers can evolve the
oracle or its parameters’ value. The oracle relies on a Fourier transformation to assess the
visual properties of an image. In the Fourier space, frequencies are represented as circles
centered in the middle of the image. The oracle computes the distribution of frequencies
from the center of the image (in the Fourier space) to the edges. Then this distribution is
compared to a model of perfect homogeneous distribution (representing an ideal image).
The allowed deviation from the ideal distribution is controlled by a threshold. Adversar-
ial configurations exhibit important deviations from the ideal and can be exploited to set
up this threshold more finely. An open problem is to find a way to control adversarial dis-
placements such that we are able to ensure that the generated adversarial configurations are
diverse enough to cover different visual cases. This level of control is left for future work.

JHipster In a previous endeavor with JHipster, we learned that building a configuration-
aware testing infrastructure requires a substantial effort in terms of human resources (8
man-months) (Halin et al. 2019). Specifically, we spend significant time in engineering
the right testing oracle to avoid false-positive failures e.g., configurations that do not build
because the testing environment has not been properly set up. Adversarial configurations
can serve as new cases for investigating the quality of the testing environment. Overall,
we recommend using adversarial configurations early in the quality assurance process of
JHipster. It can help developers to debug and fix the testing environment by focusing on
(potentially) problematic cases. This requires to model characteristics of the environment as
part of the variability model.

9.3 Improvement of the Variability Model

While generating adversarial configurations, SPL practitioners can gain insights into
whether the feature model is under or over-constrained. Looking at modified features of
adversarial configurations (see RQ2), practitioners can observe that the same patterns arise
involving some features or combinations of features. Such behavior typically indicates that
constraints are missing—some configurations are allowed despite they should not be but
it was never specifically defined as such in the variability model. Conversely, adversarial
configurations can also help to identify which constraints can be relaxed. Some constraints
may be an over-approximation of what was really expected. In this case, some configura-
tions are wrongly forbidden as they would provide acceptable performances if they were
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tested. Evasion attacks may provide such configurations, starting from valid and accept-
able configurations and moving towards a priori non-acceptable configurations. Because of
the use of evasion attacks, resulting configurations may, in fact, be acceptable and valid
and thus should not be forbidden in the variability model. A careful analysis of resulting
configurations, by experts, is needed to ensure (or not) that they are really non-acceptable.

In the MOTIV case, one can envision to synthesize constraints and reinforce the variabil-
ity model. Two strategies are conceivable for synthesizing constraints: (1) out of adversarial
configurations by mining (combinations of) features that are frequently present; (2) out of
the new ML classifier, retrained with adversarial configurations, if the underlying ML model
is interpretable. Right now, we cannot rely on decision trees since evasion attacks are harder
to implement for such ML models (see Section 3). We leave as future work the investigation
of the two strategies and current limitations.

In the JHipster case, the reverse-engineering feature model was validating that every
allowed configuration was indeed supported by the JHipster configurator (Halin et al. 2019).
We therefore had an “exact” approach to create a correct variability model and advML
is unhelpful. It is in contrast to the MOTIV case, mainly because the configuration space
contains less valid configurations (only thousands of configurations compared to the 10314

configurations).

9.4 Improvement of the Variability Implementation

Features of MOTIV are implemented in Lua (Ierusalimschy 2006). An incorrect imple-
mentation can be the cause of non-acceptable configurations either because of bugs in
individual features or undesired feature interactions. In the case of MOTIV, even if some
variability-related bugs may exist, especially generating video sequences out of scene con-
tent descriptions (i.e., configurations), we rather considered that the cause of non-acceptable
videos was due to the variability model and that the solution was to add constraints
preventing them.

JHipster has a diverse stack of technologies and finding which of them are the source
of bugs and issues is not trivial. Previous work demonstrated that it was possible with rela-
tively few configurations (1% of the total number of configurations) to cover all interaction
bugs. The role of adversarial configurations as a bug-finding sampling technique is worthy
of future analyses. From this perspective, interesting future work is to compare adversar-
ial configurations with sampling strategies developed in the SPL testing community (see
Section 10).

9.5 AdvML and Taking Constraints of the Variability Model into Account

The most significant part of our adaptation of adversarial techniques to SPL engineering
resided in constraint handling. The lack of native support of advML algorithms may be
traced to their original application domain: images. Data is homogeneous: dimensions are
likely to be defined on the same range of values, all dimensions can be encoded similarly
with values used for upper and lower bounds equal for all dimensions. Additionally, most
constraints are “soft constraints”: a white pixel on a black image does not make it invalid.
In such a domain, the need for advanced constraint solvers does not exist.

In SPLs, constraints are key and we have to deal with heterogeneous features which in
turn induces constraints during encoding. JHipster has only Boolean features but a large
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number of dependencies expressed as cross-tree constraints while MOTIV comprises het-
erogeneous features but few constraints. We had to adopt different constraint handling
strategies for each case study.

JHipster We enforce constraints after each configuration displacement (intermediate point
in the attack), that is resetting each feature value outside allowed ranges to a default accept-
able one or letting the configuration unchanged if the configuration is valid. With a high
number of constraints, this solution seemed wiser, as the risk of having to change all the
values at the end of the attack is high, rendering the attack ineffective (since value resets to
due constraints may hamper the relevance of the attack).

MOTIV The low number of constraints in MOTIV allow for a post-attack strategy: the
chances of having an invalid configuration are lower and it is also likely that only a few fea-
tures are violating the constraints. The implications of changing these values to make them
acceptable are limited regarding attack relevance.

While we believe that the above strategies were both simple and efficient, a more general
and systematic approach relying on top of a SAT/SMT solver is to be devised. One can
consider a variety of intermediate enforcement strategies such as implementing minimal
configuration fixes (Xiong et al. 2012).

9.6 Execution Time

On one hand, our dedicated algorithm relies on a fixed number of computations. This allows
for predictable yet non-optimal execution time. On the other hand, SecML optimizes its
number of executions but may suffer from convergence issues. In the following, we discuss
the parameters affecting the performance of both algorithms.

We measured some of the execution time (i.e., when computations are minimal and when
they are maximal). The main parameter to impact computation time in the dedicated algo-
rithm is the number of displacements allowed (nb disp). Setting to larger values will require
extra computations to reach the final position, especially since we did not used any early
stopping mechanism. Reported computation times range between 10 min when nb disp is
set to 20 to about 1h15 when it is set to 100 with MOTIV. Even if nb disp is not the only
parameter impacting the effectiveness of the attacks, setting it to a larger value increases
chances to generate configurations that misclassified which has to be confronted with the
fact that computations are longer.

When using SecML, the η parameter as well as the d max value can have big impacts
on computation time. d max sets the maximum amount of perturbations that can be added
to the original configuration; therefore, in some sense, it could be seen as a combination
of the nb disp and the step size t of the dedicated implementation. If d max is set to large
values, it meets that the boundaries to displacements expand, potentially allowing for more
iterations when using the gradient descent approach. On the other hand, η is a parameter
used in the gradient descent algorithm, it can be viewed as the resolution of a search grid
on which the direction of the gradient is computed. Higher values will make the resolution
coarse while lower values make the search more fine-grained. A fine-grained search will
take more time, computing for more possibilities at the cost of potentially getting stuck in
sub-optimal spaces while a coarse resolution will be quicker to compute but might miss
the optimal solution. Therefore, there is a trade-off to find. We set the value of η to 0.01
based on the nature and number of features representing our data, it gave sufficiently good
results but it might not the best value. Anyhow, we observed that η can have a big impact

(2021) 26: 6Empir Software EngPage 40 of 496



on computation cost. With a default value of 0.001, our computations could last up to 50
min while with the chosen value of 0.01, computation times can be boiled down to about 10
min. The shortest execution time that we have observed was under a minute when η was set
to 0.01 and d max set to 0.1 with MOTIV.

Finding the optimal values to reach results of good quality at a reasonable computation
cost is a challenge: for SPL practitioners that do not know very well how advML works or
have little experience in tuning their advML technique.

Finally, reported times can be reduced by reducing the number of configurations to
generate. In our experiments, they were set to the same amount regardless of the value
assigned with these parameters, we only changed this number per case study. Computation
times were significantly lower when executing attacks on JHipster (aiming to generate 1000
configurations) w.r.t. MOTIV (needed 4000 configurations).

9.7 White-box or Black-box

While the “original” adversarial setting was designed to support malicious scenarios (e.g.,
hackers that would try to outperform the system under attack) leading to attack models,
here we proposed a defensive method that should be used along with the developer of the
SPL system in order to improve knowledge about the SPL but also to improve guidance
for users trying to find a suitable configuration for their task-at-hand. That is, the term
“adversarial” may be disturbing at first glance since our context is different from an intru-
sion detection system that would be attacked by maleficent users. Our method can leverage
some access to typical parts of a SPL such as the configurator or the underlying variability
model. This knowledge of the variability model is necessary to generate configurations that
are valid and recognized by the classifier and variant generator. In the case where a variabil-
ity model would not be available, it is still possible to reverse-engineer it (She et al. 2011,
2014; Lopez-Herrejon et al. 2012; Acher et al. 2012; Bécan et al. 2015). After that, it is all
about configurations. The system can be viewed as a distant system on which query can be
performed about the acceptability of a configuration. Once the query is launched with the
configuration, the system tries to generate it, runs some tests to decide whether it is accept-
able and/or asks the trained classifier to predict its acceptability. Adversarial attacks will
leverage information given by the answer to the query to build new configurations that try to
evade. In this sense, we do not see this method as white-box but mostly black-box, opening
a broader use.

10 RelatedWork

Our contribution is at the crossroad of (adversarial) ML, constraint mining, variability
modeling, and testing.

Testing and Learning SPLs Testing all configurations of an SPL is most of time challenging
and sometimes impossible, due to the exponential number of configurations (Thüm et al.
2014; Medeiros et al. 2016; Legay and Perrouin 2017; ter Beek and Legay 2019; Varshosaz
et al. 2018; Halin et al. 2018; Plazar et al. 2019a; Carvalho et al. 2018; Al-Hajjaji et al.
2016). ML techniques have been developed to reduce cost, time and energy of deriving and
testing new configurations using inference mechanisms. For instance, regression models can
be used to perform performance prediction of configurations that have not been generated
yet (Siegmund et al. 2013, 2015; Sarkar et al. 2015; Guo et al. 2013; ter Beek et al. 2016b;
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Oh et al. 2017a; Pereira et al. 2019). In our work, we consider qualitative properties (e.g.,
the presence of bugs in a configuration), address a statistical classification problem, and
target classifiers of an SPL.

Siegmund et al. (2017) reviewed ML approaches on variability models. They propose
THOR, a tool for synthesizing realistic attributed variability models. An important issue
in this line of research is to assess the robustness of ML on variability models. Our work
specifically aims to improve ML classifiers of SPL. None of these bodies of work use
adversarial ML neither the possible impact that adversarial configurations could have on
the predictions. Besides, there are many machine learning-based approaches that seek to
mine constraints with ML (Yilmaz et al. 2006; Krismayer et al. 2017; Gargantini et al.
2017; Pereira et al. 2019). In Temple et al. (2016, 2017), Acher et al. (2018), Amand et al.
(2019), we rely on supervised ML to discover and retrieve constraints that were not orig-
inally expressed before in a variability model. We typically used decision trees to create a
boundary between the configurations that should be discarded and the ones that are allowed.
Our work aims to improve such ML-based approaches through the generation of adversarial
configurations.

Sampling Configurations Several sampling strategies have been proposed in the litera-
ture about SPLs and configurable systems (Thüm et al. 2014; Alves Pereira et al. 2020;
Varshosaz et al. 2018). Some works consider sampling with the specific goal of testing con-
figurations of an SPL. There is no learning phase and the objective is mostly to find and
cover as many configuration faults (bugs) as possible. For instance, Medeiros et al. com-
pared 10 sampling algorithms to detect bugs in configurable systems (Medeiros et al. 2016).
Varshosaz et al. (2018) conducted a survey of sampling for testing configurable systems.
Alves Pereira et al. (2020) and Kaltenecker et al. (2019) review several sampling strategies
in the context of learning performance models of configuration spaces. Random sampling
is used to cover the configuration space uniformly. Oh et al. (2017b) rely on binary decision
diagrams to compactly represent a configuration space but satisfiability (SAT) solvers can
also be used. For instance, UniGen (Chakraborty et al. 2015) uses hashing-based functions
to synthesize configurations’ samples in a nearly uniform manner with strong theoretical
guarantees. Plazar et al. (2019b) showed that state-of-the-art algorithms are either not able
to produce any sample or unable to generate uniform samples for the SAT instances con-
sidered. When random sampling is not applicable, several alternate techniques have been
proposed typically by sacrificing some uniformity for a substantial increase in performance.
Coverage-based sampling aims to optimize the sample with regards to a coverage crite-
rion. Many criteria can be considered such as statement coverage that requires the analysis
of the source code. The t-wise sampling (Johansen et al. 2012; Cohen et al. 2008) strat-
egy selects configurations to cover all combinations of t selected options. For instance,
pair-wise (t = 2) sampling covers all pairwise combinations of options being selected.
There are different methods to compute t-wise sampling. Kaltenecker et al. (2019) propose
distance-based sampling and diversified distance-based sampling. The idea is to cover the
configuration space by selecting configurations according to a given probability distribution
(typically a uniform distribution) and a distance metric.

Generating adversarial configurations can be seen as a way to sample the configuration
space. A major difference is that adversarial techniques are specifically designed and crafted
to put in trouble an ML classifier, by exploiting its intrinsic properties and possible lacks.
We have shown that such configurations can even improve an ML classifier and thus avoid
non-acceptable products of an SPL. It is worth noticing that adversarial configurations can
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be symbolically exploited, i.e.,, without having to derive, test, or measure the additional
corresponding products of an SPL.

Adversarial ML can be seen as a set of security assessment and reinforcement tech-
niques helping to better understand flaws and weaknesses of ML algorithms. Typical
scenarios which use adversarial learning are: network traffic monitoring, spam filtering,
malware detection (Barreno et al. 2006; Biggio et al. 2012, 2013a, b, 2014a, b) and more
recently autonomous cars and object recognition (Zhang et al. 2018; Pei et al. 2017a;
Elsayed et al. 2018; Papernot et al. 2016; Sharif et al. 2016; Kurakin et al. 2016; Evtimov
et al. 2017). In such works, authors suppose that a system uses ML in order to perform a
classification task (e.g., differentiate emails as spams and non-spams) and some malicious
people try to fool such a classification system. These attackers can have knowledge on the
system such as the dataset used, the kind of ML technique that is used, or the description
of data among others. The attack then consists of crafting a data point in the description
space that the ML algorithm will misclassify. Recent works (Goodfellow et al. 2014) used
adversarial techniques to strengthen the classifier by specifically creating data that would
induce such kind of misclassification. In this article, we propose to use a similar approach
but adapted to SPL engineering: adversarial techniques can be used to strengthen the SPL
(including ML classifier, variability model, implementation, and testing oracle over prod-
ucts). In addition, to broaden the applicability of advML, we have investigated the specific
problem of generating examples (configurations) that should be both adversarial and con-
form to the logical constraints of an SPL. Some approaches such as DeepXplore (Pei et al.
2017b) or DeepTest (Tian et al. 2018) rely on generative adversarial networks (GAN) to
synthesize new test cases (images) based on the notion of neuron coverage. This line of
work does not specifically generate adversarial configurations and does not aim to support
the engineering of configurable systems or SPLs.

To summarize and to the best of our knowledge: on the one hand, numerous techniques
have been developed to test or learn software configuration spaces, but none of them con-
sider advML. On the other hand, the application and assessment of advML for engineering
SPLs and configurable software systems have not caught specific attention.

11 Conclusion

Machine learning (ML) techniques are increasingly used in software product line (SPL)
engineering, to cope with the tremendous number of possible configurations that SPL can
handle, or for their ability to predict whether a configuration (and its associated program
variant) meets quality requirements.

Yet, ML techniques can make prediction errors in areas where the confidence in the
classification is low. Adversarial techniques take advantage of this to create data points that
force classification errors.

Our goal was to investigate the relevance of adversarial techniques in an SPL context.
We conducted an empirical assessment on two very different case studies: a video generator
(MOTIV) and full-stack web application configurator and generator (JHipster).

A first lesson learned is that current adversarial techniques require adaptation to be
usable for SPLs, notably regarding constraints expressed in the feature models. Enforcing
such constraints is key to prevent the generation of invalid adversarial configurations. We
designed ad-hoc solutions to enforce SPL constraints for our case studies.
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The second lesson learned is that adversarial techniques are indeed relevant for SPLs,
hereby fulfilling our goal. We demonstrated that our adapted algorithms lead to valid and
misclassified configurations. Additionally, when included in the training set, few adver-
sarial configurations were sufficient to affect the prediction performance of the classifier,
positively in some attack settings.

This empirical study is the first step towards a quality assurance and repair framework
for ML-enabled SPLs relying on adversarial machine learning. To achieve this objective,
we envision the following research directions:

1. Investigate how constraint support can be systematized, notably by integrating con-
straint solvers in SecML;

2. Explore other kinds of adversarial attacks and design them so that they either have a
positive or negative impact on the classifier’s accuracy when included in the training
set;

3. Sampling configurations is already an important step when testing SPLs and training
a ML model, it remains equally important in our framework. The impact of different
sampling strategies should be assessed as a parameter of this method with regards to
the efficiency to produce adversarial configurations that are misclassified. A baseline
for this comparison could be the results we showed in this paper.

4. Finally, consider adversarial configuration generation as a sampling technique and
compare it to well-known sampling techniques (e.g., random, t-wise).
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Benavides D, Batory DS, Grünbacher P (eds) Fourth international workshop on variability modelling
of software-intensive systems, Linz, Austria, January 27–29, 2010. Proceedings, ICB-Research Report,
vol 37. Universität Duisburg-Essen, Essen, pp 159–162. http://www.vamos-workshop.net/proceedings/
VaMoS 2010 Proceedings.pdf

Brown T, Mane D, Roy A, Abadi M, Gilmer J (2017) Adversarial patch. https://arxiv.org/pdf/1712.09665.pdf
Carvalho L, Guimarães MA, Ribeiro M, Fernandes L, Al-Hajjaji M, Gheyi R, Thüm T (2018) Equivalent
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jezequel@irisa.fr

Fabio Roli
fabio.roli@unica.it

1 NaDI, PReCISE, Faculty of Computer Science, University of Namur, Namur, Belgium
2 University of Rennes, IRISA, Inria, CNRS, Rennes Cedex, France
3 University of Cagliari, Cagliari, Italy

(2021) 26: 6Empir Software Eng Page 49 of 49 6

mailto: gilles.perrouin@unamur.be
mailto: mathieu.acher@irisa.fr
mailto: battista.biggio@unica.it
mailto: jezequel@irisa.fr
mailto: fabio.roli@unica.it

	Empirical assessment of generating adversarial configurations for software product lines
	Abstract
	Introduction
	Background
	SPL framework
	Variability Modeling
	Variability Implementation
	Variant Acceptability


	Machine Learning (ML) Classifier
	ML Classification


	Adversarial Machine Learning and Evasion attacks
	AdvML and Evasion Attacks
	A Dedicated Evasion Algorithm
	secML
	Adversarial Pipeline

	Case Studies
	MOTIV Video Generator
	Previous Work
	AdvML to the Rescue


	JHipster
	Previous Work
	AdvML to the Rescue


	Cases Synthesis

	Evaluation Overview
	Research Questions
	Implementation
	Presentation of the Results
	Evaluation Protocol
	Data Collection
	Training and Test Sets
	Preprocessing
	Feature Space Structure
	Parameterization of the Techniques
	Statistical Evidence



	MOTIV
	RQ1: How Effective is Our Adversarial Generator to Synthesize Adversarial Configurations?
	RQ1.1: Can We Generate Adversarial Configurations that are Wrongly Classified?
	Dedicated Implementation
	SecML

	RQ1.2: Are All Generated Adversarial Configurations Valid w.r.t. Constraints in the VM?
	RQ1.3: Is Using the Evasion Algorithm More Effective than Generating Adversarial Configurations with Random Displacements?
	RQ1.4: Are Attacks Effective Regardless of the Targeted Class?
	Dedicated Implementation
	SecML


	RQ2: What is the Impact of Adding Adversarial Configurations to the Training Set Regarding the Performance of the Classifier?
	Dedicated Implementation
	SecML



	JHipster
	RQ1: How Effective is Our Adversarial Generator to Synthesize Adversarial Configurations?
	RQ1.1: Can We Generate Adversarial Configurations that are Wrongly Classified?
	Dedicated Algorithm
	SecML

	RQ1.2: Are All Generated Adversarial Configurations Valid w.r.t. Constraints in the VM?
	RQ1.3: Is Using the Evasion Algorithm More Effective than Generating Adversarial Configurations with Random Displacements?
	RQ1.4: Are Attacks Effective Regardless of the Targeted Class?
	Dedicated Implementation
	SecML


	RQ2: What is the Impact of Adding Adversarial Configurations to the Training Set Regarding the Performance of the Classifier?
	Dedicated Implementation
	SecML



	Threats to Validity
	Internal Threats
	External Threats

	Discussions
	Adversarial Training
	Improvement of the Testing Oracle
	MOTIV
	JHipster


	Improvement of the Variability Model
	Improvement of the Variability Implementation
	AdvML and Taking Constraints of the Variability Model into Account
	JHipster
	MOTIV


	Execution Time
	White-box or Black-box

	Related Work
	Testing and Learning SPLs
	Sampling Configurations


	Conclusion
	References
	Affiliations




