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Abstract Code maintenance data sets typically consist of a before version
of the code and an after version that contains the improvement or fix. Such
data sets are important for various software engineering support tools related
to code maintenance, such as program repair, code recommender systems,
or Application Programming Interface (API) misuse detection. Most of the
current data sets are typically constructed from mining commit history in
version-control systems or issues in issue-tracking systems.

In this paper, we investigate whether Stack Overflow can be used as an ad-
ditional source for building code maintenance data sets. Comments on Stack
Overflow provide an effective way for developers to point out problems with
existing answers, alternative solutions, or pitfalls. Given its crowd-sourced na-
ture, answers are then updated to incorporate these suggestions. In this paper,
we mine comment-edit pairs from Stack Overflow and investigate their poten-
tial usefulness for constructing the above data sets. These comment-edit pairs
have the added benefit of having concrete descriptions/explanations of why
the change is needed as well as potentially having less tangled changes to deal
with. We first design a technique to extract related comment-edit pairs and
then qualitatively and quantitatively investigate the nature of these pairs. We
find that the majority of comment-edit pairs are not tangled, but find that
only 27% of the studied pairs are potentially useful for the above applications.
We categorize the types of mined pairs and find that the highest ratio of useful
pairs come from those categorized as Correction, Obsolete, Flaw, and Exten-
sion. These categories can provide data for both corrective and preventative
maintenance activities. To demonstrate the effectiveness of our extracted pairs,
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we submitted 15 pull requests to popular GitHub repositories, 10 of which have
been accepted to widely used repositories such as Apache Beam1 and NLTK2.
Our work is the first to investigate Stack Overflow comment-edit pairs and
opens the door for future work in this direction. Based on our findings and
observations, we provide concrete suggestions on how to potentially identify
a larger set of useful comment-edit pairs, which can also be facilitated by our
shared data.

Keywords Stack Overflow, comment-edit pairs, bug-fix data sets

1 Introduction

Software maintenance is an essential activity in the software development life-
cycle. In his seminal article, Swanson differentiated between three types of
maintenance activities [1]. Corrective maintenance involves fixing faults in
response to observed failures of the program (e.g., the shopping cart of a cus-
tomer gets suddenly deleted during checkout). Adaptive maintenance involves
changes needed to adapt the software to new data or processing environments,
while preventative maintenance is performed to improve the code such as elim-
inating processing inefficiencies, enhancing performance, or improving main-
tainability. All three types of code maintenance activities are necessary for
projects to keep their code base up-to-date and ensure the system’s quality on
the long run. We refer to any code changes that address the above maintenance
categories as code maintenance changes.

To support the above maintenance activities, many software engineering
support tools such as defect prediction [2], Application Programming Interface
(API) misuse detection [3,4], or program repair [5] were developed with the
goal of automatically detecting, recommending, or applying code maintenance
changes. To build or evaluate such tools, data sets of real code maintenance
changes are needed. The most common type of available data sets are bug-fix
data sets that are typically used for corrective maintenance, especially bug
fixes (e.g., [6,7,8,4]). While less common, there are also data sets that record
code improvement changes related to perfective maintenance, such as using
faster or more secure API calls [9].

All the above code-maintenance change data sets (code maintenance data
sets for short) usually contain pairs of faulty/incorrect/low-quality code and
the corresponding fixed/improved code, and are typically constructed from
linking commits from version-control systems to reports in issue-tracking sys-
tems [10]. The commonly used linking approach relies on searching for commit
messages that have specific keywords (e.g., fix, crash, hang, slow) and/or ex-
plicit links to issue IDs in issue-tracking systems [11,12]. While many widely
used maintenance data sets have been constructed with this approach, rely-
ing on this linkage has several limitations: not all problems are documented

1 https://beam.apache.org/
2 https://www.nltk.org/

https://beam.apache.org/
https://www.nltk.org/
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in issue-tracking systems [13], not all developers are systematic about their
linkage [14,15], and even worse, not every issue labeled as a bug is actually
a bug [16]. Additionally, since the amount of code in a version control sys-
tem is typically large and grouping separate code changes in a single commit
(a.k.a tangled changes [17]) is common [18], more advanced techniques that
precisely identify the changes related to the maintenance activity of interest
are required [6]. Finally, finding good explanations (i.e., a “a reason or justifi-
cation given for an action or belief” based on the Oxford English dictionary)
to attach to the identified maintenance activity, be it a bug fix or an improve-
ment, such that they can be used in detection or recommender systems is
difficult. On one hand, commit messages are often short, meaningless, or non-
descriptive [19,20] and on the other hand, issue reports are often long with
too many discussions [21]. Thus, the question is: are there complementary or
additional sources of information that can be used to curate additional code
maintenance data sets? In this work, we investigate if Stack Overflow may be
such a source.

Stack Overflow has become an essential resource for software developers.
It contains a wealth of information such as code solutions, best practices, and
documentation of common pitfalls in response to the asked questions. Given
its crowd-sourced nature and high visibility as the go-to-place for information,
Stack Overflow has the added advantage of community engagement where dif-
ferent developers point out various issues with the posted code snippets in the
form of comments. Comments may, for example, include pointing out faster
APIs, missing version information, or simply wrong answers. For example,
Answer3 50383046 has a comment to include the rsplit method as it is more
efficient, a comment on Answer4 19694159 mentions the version differences of
the answer between PHP pre 5.3 and after 5.3, and Answer5 24261462 has
comments mentioning that the answer and even subsequent edit are incorrect.
The answerer, or other community members, then have a chance to edit the an-
swer. Stack Overflow records such changes in the answer edit history, including
the code snippets contained in these answers. Thus, if we can link comments to
code-snippet edits, we can provide a new data source for building code main-
tenance data sets, which in turn can be used for the applications mentioned
above, such as program repair or code improvement recommendations.

Extracting comment-edit pairs from Stack Overflow can potentially ad-
dress some of the problems discussed above: Stack Overflow code snippets are
typically short and targeted, which overcomes the issue of tangled changes
and removing unrelated code. Additionally, comments that result in an edit
likely have the description of the issue that was addressed, which means
that these comments can provide meaningful explanations that can accom-
pany any code-change recommender tools. For example, Answer6 52517618

3 http://stackoverflow.com/questions/50383046
4 http://stackoverflow.com/questions/19694159
5 http://stackoverflow.com/questions/24261462
6 http://stackoverflow.com/questions/52517618

http://stackoverflow.com/questions/50383046
http://stackoverflow.com/questions/19694159
http://stackoverflow.com/questions/24261462
http://stackoverflow.com/questions/52517618
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contains code that converts a byte array to a string as follows String s

= new String(bytes, ‘‘UTF-8’’);. This code snippet then gets updated
to String s = new String (bytes, StandardCharsets.UTF 8);. If a code
improvement/recommendation tool suggests this change to a developer, the
developer may be unsure as to why this change is necessary and may end up
ignoring the suggestion. If, however, the following comment “On Java 7 you
can also use new String(bytes, StandardCharsets.UTF 8); which avoids
having to catch the UnsupportedEncodingException” is provided to the de-
veloper along with this change, they will understand the reasoning behind the
suggestion and make an informative decision on accepting the suggestion. In
short, a tool that detects the former (pre-edit) piece of code could suggest
the latter (post-edit) piece of code and accompany that suggestion with the
related comment to explain why the suggestion was made.

To explore the feasibility of using Stack Overflow as a source for code
maintenance data, we first need to design a technique that maps comments
to their corresponding edits. In other words, we need to extract comment-edit
pairs, i.e., a comment and the resulting edit that addressed this comment.
To do so, we leverage the SOTorrent [22] data set and adapt and improve a
previous matching approach we designed to identify ignored comments [23].
At a high level, our automated approach matches a comment to an edit if the
comment occurred before the edit, the comment mentions a code term that
gets added to or removed from a code snippet in the edit, and the commenter
and editor are different users. To support our investigation of using these
comment-edit pairs for creating code maintenance data sets, this paper then
answers the following research questions:

RQ1 What is the precision of an automated technique for extracting comment-
edit pairs from Stack Overflow? There is currently no way on Stack
Overflow to relate a comment to an edit, so the first step of this research
is to establish an automated technique for doing this pairing, and to
evaluate its precision.

RQ2 How tangled are the changes in Stack Overflow comment-edit pairs? To
investigate if the identified comment-edit pairs do indeed overcome the
challenge of tangled changes, we investigate how often do the changes
in mined pairs address issues other than that pointed out in the related
comment.

RQ3 What type of changes occur in Stack Overflow comment-edit pairs? To
understand what potential types of data sets and related software engi-
neering applications can these comment-edit pairs be used for, we need
to understand the types of changes that occur in them (e.g., syntax error
fixes vs. catering the solution to the original poster’s question).

RQ4 What is the potential usefulness of the extracted comment-edit pairs for
curating code maintenance data sets? Not all the mined comment-edit
pairs are necessarily useful for code maintenance data sets. Thus, it is
important to understand how many of the comment-edit pairs are useful
for the intended applications. We consider a comment-edit pair as useful
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for code recommender systems7 if (1) the edit addressing the comment
happens to an existing code snippet in the answer such that there is
code to be matched in a target system and (2) if the comment describes
this change in a way that is understandable in isolation of the posted
Stack Overflow question. We also investigate how tangled these useful
pairs are, and which categories they fall under. To further demonstrate
usefulness, we also submit 15 pull requests based on our mined pairs to
15 different open-source repositories.

To answer the above research questions, we run our automated match-
ing technique on five popular Stack Overflow tags (Java, JavaScript, Android,
PHP, and Python). We then manually analyze a statistically representative
sample of 1,910 detected comment-edit pairs to confirm true matches. We
record the type of suggestion and change(s) being made, the presence of tan-
gled changes in the edit, and the usefulness of the pair for the 1,482 confirmed
pairs we find.

Our results show that the precision of our automated approach is 74%-80%
across the five tags and that only 11% of the 1,482 confirmed pairs are tan-
gled, while 27% are useful. To categorize the confirmed pairs, we use a coding
guideline from previous work [24] that analyzed the types of comments on
Stack Overflow but did not looking at corresponding edits. We find that 34%,
16%, and 13% of the confirmed pairs are of types Error, Request, and Cor-
rection respectively, collectively consisting over 50% of the confirmed pairs.
However, when looking specifically at useful pairs, we find that types Cor-
rection, Obsolete, Flaw, and Extension are the most useful. This is promising
for future maintenance applications as these types of comments are relatively
more general and the corresponding edits will be applicable in a general set-
ting. Additionally, 10 out of the 15 pull requests we submitted based on our
collected data have already been accepted. These repos include popular and
influential projects, such as Apache Beam8 and NLTK9, which demonstrates
the potential impact of our comment-edit pairs. To the best of our knowledge,
this is the first work that maps Stack Overflow comments to edits and studies
the potential of using these comment-edit pairs for constructing code mainte-
nance data sets that also provide explanations for the provided changes. The
summary of our contributions in this paper are as follows.

– We implement an automated approach for matching comments to edits.
We apply the approach to Stack Overflow posts covering five popular
tags (Java, JavaScript, Android, Python, and Php) and extract a total
of 248,399 comment-edit pairs.

– We manually analyze 799 comments from 100 answers (20 from each of the
five tags) to create a ground truth of 194 comment-edit pairs, and use it
to evaluate our matching approach and compare it to a naive baseline.

7 Note that we use the term code recommender system as a general umbrella for any
support tool that suggests fixes, code changes, or related code snippets.

8 https://beam.apache.org/
9 https://www.nltk.org/

https://beam.apache.org/
https://www.nltk.org/
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– We manually analyze a statistically representative random sample of 1,910
comment-edit pairs and confirm true matches for 1,482 pairs. We record
the category the comment belongs to, the presence of tangled changes, as
well its usefulness for code maintenance data sets.

– Based on the above collected data, we answer four research questions to
determine if comment-edit pairs can be used in future maintenance-related
software engineering applications. We also discuss challenges and opportu-
nities for future work in this direction.

– For additional external validation, we use the confirmed comment-edit pairs
to submit 15 pull requests to different open-source GitHub repositories. To
date, 10 of these pull requests have been accepted.

All our code and data are publicly shared on our artifact page [25].

2 Related Work

We discuss two categories of related work. The first is existing code mainte-
nance data sets and the second is previous work that leverages data from Stack
Overflow.

2.1 Existing Code Maintenance Data Sets

Over the last two decades, there has been a tremendous effort and movement
towards curating useful data sets that can assist in maintenance tasks [26],
especially those related to corrective maintenance. We discuss a subset of the
most relevant ones here.

iBugs [7] was early work that uses the technique of identifying bug-fixing
commits through keywords in commit messages. It collected pairs of before
(buggy) and after versions (fixed) of the code along with the associated test
suite. Defects4J [6] is a well-known data set of Java bugs that was built by
mining version-control systems containing commit messages that explicitly
reference a bug ID in the issue tracking system, or if a bug issue references a
commit in the version-control system. The data set contains two versions of
the code, one before and one after the fix. Different from iBugs, Defects4J does
some filtering of the test suite to keep only tests that fail on the buggy version
and pass on the fixed version. To overcome the problem of tangled changes [17],
the authors manually reviewed the source code diffs of the before and after
versions of the code and, if necessary, removed any irrelevant changes.

Dit et al. [27] again mined change history, linking commits to issue IDs
to curate a data set that can be useful for software maintenance tasks. Their
goal was for this data set to be useful for various maintenance tasks such as
feature location, impact analysis, developer recommendations, and traceability
recovery; however, they did not provide a categorization of the entries in their
data set, so we are not aware of the exact maintenance tasks supported and
their distribution. Additionally, while both our work and theirs target software
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maintenance, our extracted data is focused on code maintenance activities,
rather than more general tasks such as developer recommendation.

Ohira et al. [28] manually categorized issue reports to identify high-impact
bugs. While they considered issues labeled as both BUG and IMPROVE-
MENT, they mentioned that most of the improvements are actually considered
as bugs. None the less, we assume that their data set may also be applicable
to perfective maintenance activities, and not only corrective maintenance. The
recent BugHunter data set [29] again relied on issue trackers and commit his-
tory. Different from other data sets, it tried to reduce the code changes in the
before/after versions of the code in order to identify the minimal set of affected
code elements.

While following similar methods of relying on commit messages and man-
ually reviewing the changes, Radu and Nadi [9] specifically focused on non-
functional bugs that are related to aspects such security, performance, memory
management, etc.

BugSwarm [30] is a recent effort that attempts to remove some of the
manual effort involved in curating bug-fix data sets. While it also relies on
version-control history, it leverages the continuous integration (CI) service in
the target repositories to identify bug-fixing commits through their CI build
status. Additionally, BugSwarm containerizes the before and after versions of
the code and build scripts to ensure fully reproducible problems.

Summary To summarize, most existing code maintenance data sets seem to
focus on corrective maintenance tasks, specifically bug fixes. Additionally,
most of these data sets are constructed by mining version-control history or
issue-tracking systems. As mentioned in the introduction, this construction
technique has been criticized because of missing problems in issue-tracking
sytems [13], lack of systematic linking between commits and bug reports [14,
15], misclassification in issue-tracking systems [16], and tangled changes not
related to the fix [17,18]. Our work is an attempt to find another data source
for code maintenance data sets other than version-control or issue-tracking sys-
tems. Additionally, since we do not limit ourselves to keywords such as “fix”
or links to bug issues, using Stack Overflow may potentially provide changes
related to additional code maintenance activities. In general, our goal is not to
replace or compete with current data sets, but instead to explore the potential
of using Stack Overflow for curating additional relevant data sets.

2.2 Stack Overflow Studies

Data from Stack Overflow has been used extensively in previous work with
varying purposes. While some papers focus specifically on studying various
characteristics of Stack Overflow and how information evolves on it [31,32,
33], others use information from Stack Overflow for specific purposes such as
augmenting documentation, code search, or improving code analysis tools [34,
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35,36,37,38,39]. Given the nature of our work, which establishes a relation-
ship between comments and code edits on Stack Overflow and investigates
the nature of these pairs, in this section, we focus only on related work that
studied/used comments or edits on Stack Overflow (SO).

Related work we rely on. Our previous MSR challenge paper [23] quantified
how often comments cause answer updates, and how often comments are ig-
nored even when they should have resulted in an answer update. We used
three heuristics for matching comments to edits and categorizing them: (1)
code checks where a comment caused an update if a code element in the com-
ment is added or removed in the edit, (2) keyword phrase checks that suggest
that the comment is explicitly asking for an edit but no edit occurred, and (3)
question checks where a comment explicitly asks a question about the posted
code. Our results showed that code checks resulted in the most matches be-
tween comments and edits and that most of the wrongly labeled pairs occurred
when we tried to deduce that a comment should warrant an update and was
ignored, or that a comment does not warrant an update. Based on these find-
ings, in this paper, we only use the code check heuristic and focus on finding
comment-edit pairs where an update actually occurred. This current paper
differs from our previous work in terms of goals: we do not try to automati-
cally categorize all comments and do not look for ignored comments. Our goal
is to find comments that actually caused an edit, and to study the comment-
edit pairs in terms of their suitability for creating code maintenance data sets.
Additionally, we improve the matching algorithm and evaluate it against a
manually constructed ground truth. We also manually validate a statistically
representative sample of the pairs our tooling detects, measure the precision,
and publicly share a validated data set containing the confirmed pairs.

Another recent work we rely on is that by Zhang et al. [24]. In that work,
the authors analyzed comments on Stack Overflow. They investigated the in-
formation discussed in comments and performed open coding to categorize
the analyzed comments. They defined seven broad categories and 17 sub-
categories of comments. They did not, however, attempt to match comments
to edits or analyze the code changes in edits. Given that the comments we
find in comment-edit pairs are a subset of all comments on Stack Overflow,
we use the categories they create as our coding guideline for categorizing com-
ments in our pairs. In other words, given Zhang et al.’s categories, we perform
closed-coding (i.e., when codes/labels are predetermined) to categorize our
comment-edit pairs. Some of the categories of comments they found, such as
pointing out errors or weaknesses in answers or providing alternative solutions,
give us assurance that finding the edits corresponding to these comments can
potentially be useful for code maintenance data sets.

SO for Error Fixing. Wong et al. [40] studied edits to Python code snippets
on Stack Overflow in order to produce a syntax error data set. Their goal
was to make a free, open, and public data set that would be representative
of the kinds of syntax errors general developers would have. At a high level,
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they parse the before and after versions of the most recent edit in an answer.
If the prior version included a parse error and the most recent did not, then
they store the two versions as a syntax error and fix respectively. Our work
differs as we focus on linking comments and edits to attach a reason for an
edit. We also do not focus solely on syntax errors and find changes related to
more code maintenance activities, including various types of fixes and code
improvements.

Thiselton et al. [41] used Stack Overflow answers in order to provide better
compiler error messages for active development. Their work takes a Python
compiler error message and constructs a Stack Overflow query. They take the
first question on the first page that is returned by the query that contains at
least one answer. They then take the accepted answer (or highest voted answer
if there is no accepted answer) and modify the compiler error to incorporate
a summary of the answer they found. They do not use comments or edits
on a Stack Overflow answer at all. However, their work highlights that novel
applications using information from Stack Overflow can be useful in helping
developers during active development.

Gao et al. proposed an automated bug-fixing approach that relies on mining
information from Stack Overflow [42], but they rely neither on answer edits or
comments. Instead, they find answers that contain two code snippets and rely
on heuristics to identify the buggy and correct version (e.g., Instead of code

snippet X, use code snippet Y). Alternatively, they try to match the buggy
code snippet in the question to a modified, and presumably correct, code snip-
pet in the answer. After matching these two versions, they use GumTree [43]
to generate edit scripts for automated bug fixing. While our sources of data
are different, we foresee that future work can apply their automated edit script
generation technique to the pre/post pairs we extract.

Collaboration Characteristics on SO. Adaji et al. [44] also studied edits and
comments on Stack Overflow. Unlike our work that analyzes the contents of
comments and edits to link them together, their work used comments and
edits to study collaboration characteristics on Stack Overflow with the goal
of finding the types of users that contribute to high quality answers. Specifi-
cally, they investigated whether the number of comments on an answer or the
reputation of the editor are correlated with the answer quality. Their results
showed that most of the edits made were by users with no badges and that
most high quality answers had more comments rather than less. Based on
these findings, we study all comments and edits, regardless of the reputation
of the user or the score of the answer.

Wang et al. [45] studied Stack Overflow badges that are related to revisions
of answers. They found that most revisions were made in spikes (i.e., many
revisions made on the same day) rather than spread out over different days.
These spikes coincided with the days Stack Overflow were awarding badges
to members, and the corresponding revisions during these spikes were mostly
simple revisions (i.e., typo correction and formatting). They also noted that
most of the revisions made on these days needed to be rolled back due to the
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revision being incorrect or undesired. They concluded that the current system
of using badges was insufficient in enforcing answer quality and that there
needed to be a change in how Stack Overflow encourages revisions without
lowering the quality of answers. Our work focuses on the contents of the re-
visions and relating them to comments, as opposed to motivation schemes for
performing the edits.

Answer Quality. Dalip et al. [46] created a learning to rank approach with
the goal of automatically estimating the feedback a user would give regarding
the quality of an answer. To do so, they extracted features related to both
comments and edits. All their features are quantitative (e.g., number of edits,
number of comments, or number of users who commented on answer), and
they did not analyze the content of the comments or map comments to edits.

Diamantopoulos et al. [47] analyzed answer edits to determine what makes
an optimal answer. With that information, they discuss future Stack Overflow
tools that could suggest edits on an answer to improve its quality. While our
work can help with similar future goals, the methodology and the focus of both
studies differ substantially. Diamantopoulos et al. [47] used a neural network to
study the edits made on Java answers and applied clustering to extract related
edits. They then used the “commit” message associated with an edit10 to come
up with representative descriptions for each cluster; however, as they also point
out, having a message associated with the edit is rare. Since comments on an
answer are much more common and are also more descriptive, we believe that
studying answer comments to understand the types of edits that occur may
provide more explanations and intuitions for answer edits, which would make
any follow up recommender system more useful to users. Additionally, we pair
comments with the corresponding edits while they do not.

Ragkhitwetsagul et al. [48] studied the quality of Stack Overflow answers
and found that many answers were outdated, buggy, incorrect, etc. They also
raise the issue that many answers also violate licensing as most answers are
copy-pasted from users’ own work. While general Stack Overflow answer qual-
ity is a concern, our work looks specifically at the answers for which such
problems have already been pointed out in the form of comments, and based
on which, the answer has been updated to fix the problem.

Zhang et al. [31] studied obsolete answers on Stack Overflow by analyz-
ing answer comments. They found that most obsolete answers were already
obsolete when they were first posted, and that most reactions to an obsolete
answer happened an average of 118 days after the obsoleteness was even ob-
served. They also found that most answers are not updated when observed
to be obsolete and that there are certain languages that are more prone to
obsolete answers than others, particularly the languages that are related to
mobile application development. While they focused specifically on answers
that were deemed obsolete, our study considers all forms of improvements and

10 note that they refer to this message as comment in their paper, but it is not a comment
on the answer, but rather the message the editor provides with their edit
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code edits, including errors in the code, non-functional improvements, and
extensions.

Clarification Comments. Rao et al. [49] used a neural network to learn differ-
ent kinds of clarification questions that were asked in the question comments
to improve the question, e.g., What version of X are you using? While they do
perform some matching of the comments posted on a question to the question
edits, they focus only on explicit question statements found in comments (i.e.,
a sentence that ends with a question mark). They also did not compare the
content of the comment to that of the edit, and assume that the first edit after
a question is posted in a comment is the response to that question. Along
similar lines, Jin et al. [50] studied how edits to a question affect the answers
the question receives. They focused on the edits made to a question before
and after it received an accepted answer and how these edits affect the quality
of received answers. In contrast to both efforts, we try to match code terms
in a comment and an edit, and we focus on answer edits rather than question
edits.

Summary Apart from various technical/methodological differences noted above,
the most important differences to prior work on Stack Overflow data are (1)
the motivation of our work for constructing data sets that have before/after
code versions with associated explanations, (2) we analyze the contents of both
comments and edits in order to match them, (3) we extract pairs of comments
and their corresponding edits, (4) we consider all types of changes and do not
pre-limit ourselves to one type of edit, and (5) we study various characteristics,
such as tangledness and usefulness, of these comment-edit pairs.

3 Mapping Comments to Edits

In this section, we describe our method for matching comments to edits. Our
goal is to extract comment-edit pairs (ci, ej), where comment ci caused edit
ej to occur.

As our main data source, we use the SOTorrent data set [22] which captures
the edit history of all Stack Overflow posts (we use version 2019-09-23). In
SOTorrent, a Stack Overflow post is split into text and code blocks, based on
the html formatting used in the post. Text blocks mark any text in the post,
including inline code, while code blocks mark explicit code blocks formatted
using the <code> html tag or the markdown back-tick symbol. An edit to
a given post is thus any change to one or more of its text or code blocks.
Given the goal of our work, we focus on edits to code blocks in Stack Overflow
answers. We analyze all answer edits from five popular tags on Stack Overflow:
Java, JavaScript, PHP, Python, and Android. We choose these tags because, at
the time of writing, they had the highest number of answers on Stack Overflow.
The five tags contain a total of 11,119,517 answers, 12,130,068 comments, and
4,322,506 edits.
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3.1 Ground Truth Creation

As a first step, we create a ground truth that can help us evaluate and refine
any automated matching technique we develop. To select the answers that
we will include in our ground truth, we use stratified sampling to select 20
answers from each tag. Our stratification strategy selects two answers in each
of the following categories: high (above 1000) score, low (below zero) score,
recent creation date (after Jan 01, 2018), and old creation date (before Jan 01,
2009). Our intuition behind this stratified sampling is to ensure the diversity of
answers we examine. Since answer score is a commonly used metric for answer
quality, we want to select answers with extreme scores. Similarly, we want to
select answers from the beginning of Stack Overflow (2008) and recent answers
from Stack Overflow (2018) to ensure that we see answers with diverse history.
This resulted in eight selected answers. We then consider two factors to sample
additional answers: (1) the number of comments and (2) the number of edits;
these two factors may have direct impact on an automated matching technique
so we again want to ensure diversity in our selection. For each of these factors,
we consider two levels: (a) large (more than 10) and (b) small (less than 10).
We sample two answers from each of the four combinations of these factors
and levels (i.e., two answers with more than 10 comments and more than 10
edits, two answers with more than 10 comments and less than 10 edits, etc).
This results in eight more answers. The intention of using 10 as the threshold
for a “large” and “small” is because we find that the majority of answers have
less than 10 edits and less than 10 comments. For the goal of diversifying the
sample, we also select answers that have more than 10 edits and/or comments.
Finally, we select four additional random answers with at least one edit and
one comment to create our 20 answers for each tag. In total, our ground truth
contains 100 answers with a total of 521 edits and 799 comments.

The two authors then independently evaluated all 100 answers. For each
comment on an answer, they separately analyze the edits for each answer to
determine if the comment caused an edit using the following criteria:

1. The edit occurred after the comment.
2. The topic of the comment is related to the update in the edit.

We use only the above criteria to mark a comment as having caused an
edit; it did not matter if the edit affected a text block or a code block or if the
comment contained any code. This was intentional to avoid any bias towards
our heuristics of using code terms for matching comments to edits, which we
describe later in Section 3.2. For example, in Answer11 281433, we manually
match the comment “But he is not calculating a simple mean. Remember there
were only three votes given in his example.” to Edit12 3 that removed the SQL
query that implemented a simple mean, even though there are no explicit
code terms used in the comment. The two authors then discussed and resolved
any disagreements. For any labelling/coding exercise throughout this paper,

11 http://stackoverflow.com/questions/281433
12 https://stackoverflow.com/revisions/281433/3

http://stackoverflow.com/questions/281433
https://stackoverflow.com/revisions/281433/3
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Table 1: Ground Truth Statistics

Tag Answers Edits Comments
Median
comments

Median
edits

Comment-
edit pairs

Java 20 95 148 5.5 2.0 38

JavaScript 20 105 158 6.0 3.0 33

Android 20 101 202 8.5 3.0 40

Python 20 103 136 5.5 3.0 38

Php 20 117 155 6.0 3.0 45

Total 100 521 799 - - 194

we resolved disagreements as follows: together, the two authors discuss each
disagreement and justify their label for the comment-edit pair in question. The
authors continue discussing the pair until an agreement is reached. Creating
this ground truth set took around 26 hours, as both authors need to analyze
all comments and edits for each selected answer. Overall, our Cohen’s Kappa
score [51] for matching comment-edit pairs is 0.71.

Table 1 shows the descriptive statistics per tag in our ground truth. In
total, we analyzed 100 answers with 799 comments and 521 edits to construct
a ground truth of 194 comment-edit pairs.

3.2 Automatically Matching Comments and Edits

Algorithm Overview. Given our motivation that mined comment-edit pairs
can be later used for creating code maintenance data sets for use in various
recommender systems, we only consider edits to code snippets. Based on that,
the high-level idea of the algorithm is that if a comment mentions a code term
that then gets removed or added in a later code edit, we can reasonably as-
sume that the comment caused that edit. Following the analysis of the 100
ground truth answers, we also add the criterion that the comment-edit pairs
are considered only if the users are different. This is because during the manual
analysis, we noticed that when the users are the same, it was difficult to be
certain that their own comment caused the edit. It could be the case the user
was originally intending on making an edit and first commented an explana-
tion. Thus, for the sake of precision, we add this criterion to our automated
analysis.

Data Preparation. As a first step, we create two tables that are necessary to
store the post-processed SOTorrent data that is relevant for our analysis. The
first table we construct is adapted from the EditHistory table based on a
blog post from Baltes [52], one of the authors of the SOTorrent data set. This
table keeps track of questions, answers, comments, and edits to both the ques-
tions and answers. This table also provides the creation date for each of these
events and allows us to order the edits and comments in chronological order.
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1 matched pairs = ∅
2 for ai in a l l a n s w e r s :
3 for cj in comments (ai ) :
4 comment code terms = extractCodeTerms (cj )
5 p r e v e d i t = e1
6 for ek in e d i t s (ai ) :
7 i f date (ek ) > date (cj ) and cj author != ek author :
8 e d i t c o de t e rms = extractCodeTerms (ek )
9 p r e v e d i t c o d e t e r m s = extractCodeTerms ( p r e v e d i t )

10 e d i t c o d e d i f f = ed i t c o de t e rms 4 p r e v e d i t c o d e t e r m s

11 code matches = e d i t c o d e d i f f ∩ comment code terms
12 i f code matches :
13 matched pairs = matched pairs ∪ (cj , ek )
14 break
15 p r e v e d i t = ek

Listing 1: Algorithm for matching comments to edits

We include the parent post ID in this table to allow us to find all the answers,
edits, and comments related to a specific question. The second table we create
is called EditHistory Code, which is built from the EditHistory table and
is similar except that instead of containing all changes in the edits, it contains
only answers with code blocks and the corresponding edited text from only
code edits. We obtain the actual code edits from the PostBlockVersion ta-
ble provided in the SOTorrent data set [22]. The EditHistory Code table we
construct contains all the initial body of an answer, its subsequent edits, and
comments to the answer in chronological order, while removing all unecessary
data such as the title version history and textual answers and edits. Our pro-
gram needs only the EditHistory Code table to analyze whether comments
cause edits to answers.

Algorithm Details. Listing 1 shows the algorithm we use to match comments
to edits. We use the example in Figure 1 as a running example to explain
the algorithm. For each answer in the data set (Line 2), the program iterates
through all the comments in chronological order (Line 3). It then extracts all
code terms found in a comment, storing them in comment code terms (Line 4).
Figure 1 shows the extracted comment code terms on the left side of the figure.
To extract code terms, we first look for explicit markdown or html tags (i.e.,
<code>). However, not all users strictly follow the formatting guidelines, and
comments on Stack Overflow are diverse in the ways they contain code. For
example, some comments paste code from the answer that did not work for
them, while others post comments on the exception that occurred for them.
Some users use the markdown code symbol while others do not and instead
paste the code as plaintext. To simplify the task of extracting code terms, we
use regular expression patterns that identify code terms and do not rely solely
on markers or formatting guidelines. Our regular expressions therefore catch
code terms by, for example, matching camel case or snake case identifiers,
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or matching method calls. We start with the list of regular expressions used
by Treude et al. [?]. We modify some of the expressions based on testing on
the ground truth set and also remove unnecessary or problematic expressions.
Since the original set of expressions was developed mainly for Java, we also
add additional regular expressions catered to the other languages in our data
set.

To illustrate our use of regular expressions, we use the following two exam-
ples of Stack Overflow comments that contain different formats/styles of code
terms: (1) “The question doesn’t mention the user entering *EXIT*. Also,
System.exit(0) will terminate the whole JVM, which means that all process-
ing done by the code till that statement will be lost.” on Answer13 52347606
and (2) “Sorry, I’m coming to this late, but shouldn’t `vars(a)` do this? For
me it’s preferable to invoking the ` dict ` directly.” on Answer14 62680. No-
tice that the first example comment does not have code formatted with any
explicit code formatting tags, while the second one does. Our corresponding
regular expressions that identified the code terms in these two comments, in
respective order, are [a-zA-Z0-9. ()’#$\”]+\(.*\)+, which matches method
calls with dot accesses, and [ˆ ]* , which matches everything between two
underscores on either side. The full list of regular expressions we use can be
found in our artifact page [25].

The algorithm then iterates over all edits for this answer, in chronologi-
cal order, to try to match them to the current comment (Line 6). When the
program finds an edit that was made after the comment (Line 7), it extracts
the code terms found in the current edit (which has the snapshot of the code
after the change) and the previous edit (which has the snapshot of the code
before the change), using the same code identification technique used for com-
ments (Lines 8-9). The program then takes the symmetric difference between
these two lists of code terms to determine any added or removed code terms
(Line 10). In Figure 1, the symmetric difference of the edits is displayed on
the right side of the figure. The common code terms between between the cur-
rent edit and the previous edit are shown in the same color. The symmetric
difference contains all the remaining terms, which appear only in one of the
edits. Finally, our algorithm compares the code terms found in the comment
to the code terms found in the symmetric difference between the two edits
(Line 11). Since the code term used in the comment may not be exactly the
same as that used in the code due to typos or placeholder text in the code
snippet, we calculate the Levenshtein distance [53], using the fuzzywuzzy li-
brary in Python [54], between the code terms in the comments and those in
symmetric difference to determine a match. We consider two code terms as a
match if their similarity ratio is above 90%.

We choose the 90% threshold based on examining the results of varying
thresholds. According to Figure 2, we can see that at an 80% threshold results
in the highest precision. However, what is not conveyed through this graph are

13 http://stackoverflow.com/questions/52347606
14 http://stackoverflow.com/questions/62680

http://stackoverflow.com/questions/52347606
http://stackoverflow.com/questions/62680
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In your example you have "yourClientObject" and 
then two lines down you have "yourClient" is there a 
difference? I wanted to make sure I wasn't missing 
something there. -user1161447Jan 23 '12 at 20:35

…

…

Comments

{yourClientObject.getNetworkUpdates(…), 
yourClientObject, yourClient, 

yourClient.getNetworkUpdates(…,…), 
result = yourClient}

{yourClientObject.getNetworkUpdates(…), 
yourClientObject , yourClientObject, 

yourClientObject.getNetworkUpdates(…,…), 
result = yourClientObject}

extract code 
terms 

{yourClientObject, 
yourClient}

calculate symmetric difference

{yourClient, yourClientObject,
yourClient.getNetworkUpdates(…,…),

yourClientObject.getNetworkUpdates(…,…),
result = yourClient,

result = yourClientObject}

match 
code terms

{yourClientObject, 
yourClient}

Edits

yourClientObject.getNetworkUpdates(…);
…
result = yourClient.getNetworkUpdates(…, …);
…

yourClientObject.getNetworkUpdates(…);
…
result = 
yourClientObject.getNetworkUpdates(…, …);
…

…

…

e4

e5

edited Jan 23 '12 at 20:28

edited Jan 23 '12 at 20:37

extract code 
terms 

extract code 
terms 

pair extracted

Fig. 1: Example from the SO answer 8949391 showing the matching process
between comments and edits, based on code terms. The comment shown is
matched to edit e5. Example has been reproduced and edited for better visu-
alization. Note that we record a list of code terms, which takes into account
how many times a code term appears. In this example, yourClientObject
appears twice in the e5 code terms.

the number of terms that are caught by the program at the various thresholds.
With the original goal of having comments as explanations for edits, we want to
as accurately as possible select the code terms in the comment that get edited
in the answer. Since precision reflects the percentage of matched comment-edit
pairs and not which code terms get matched, the precision between the differ-
ent thresholds does not change significantly. In other words, matching one code
term is the same as matching five code terms; in both cases, the comment and
edit will be matched. When we manually analyzed the matched code terms
made by the program at the 80% and 90% thresholds, we found that using the
90% threshold removes some code terms that are caught at the 80% threshold
but do not contribute to the edit. For example, in Answer15 34459380, the com-

15 http://stackoverflow.com/questions/34459380

http://stackoverflow.com/questions/34459380
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Fig. 2: Comparison of similarity threshold used to identify matching code terms

ment that causes Edit16 3 is: “So in this example is theArray also the key in the
local storage. so for me if I had the key as keyword and the array as myArray
would it then be, localStorage.setItem(‘keyword’, JSON.stringify(myArray));
?” The matched edit contains the addition of example functions. One change
adds “function setArrayInLocalStorage(key, array) { localStorage.setItem(key,
JSON.stringify(array));}”. In this example, our program at an 80% threshold
matches the following terms between the comment and the edit “[‘setItem’,
‘localStorage’, “localStorage.setItem(’keyword’, JSON.stringify(myArray))”,
“setItem(’keyword’, JSON.stringify(myArray))”, ‘theArray’]”, while at the 90%
threshold, it returns “[‘localStorage’, ‘setItem’, ‘theArray’].” From this exam-
ple, with the original goal in mind, it is preferable to have the returned matches
of the 90% threshold rather than the 80% threshold as it provides a more ac-
curate depiction of which code terms in the comment truly attributed to the
changes in the edit. While the difference in precision and recall is insignificant
between the 80% and 90% thresholds, the previous preference of accuracy of
the related code terms explains why we chose the 90% threshold. More details
on the difference between the thresholds can be found on our artifact [25] page.

If the program finds a match between a code term in the comment and a
code term in the edit, it labels the comment as having resulted in the edit,
and adds this comment-edit pair to the set of matched pairs (Lines 12- 14).
In Figure 1, the matched code terms (yourClient and yourClientObject)
are shown at the bottom of the figure. Since there are matched code terms
between the comment and the edit, in this example, we would say that the
given comment is matched with e5. Note that the break on Line 14 indicates
that a comment is matched to the first edit it is related to.

16 https://stackoverflow.com/revisions/34459380/3

https://stackoverflow.com/revisions/34459380/3


18 Henry Tang, Sarah Nadi

Table 2: Matching Evaluation on Ground Truth Data Set

Tag
Existing

Pairs

Our Matching Program Proximity Based Baseline

Detected Recall Precision Detected Recall Precision

Java 38 20 47% 85% 81 64% 28%

JavaScript 33 14 30% 71% 65 70% 35%

Android 40 25 36% 56% 96 69% 28%

Python 38 13 23% 69% 59 53% 34%

Php 45 16 24% 69% 63 51% 37%

Overall 194 88 32% 70% 364 60% 32%

3.3 Comparison with Ground Truth

Before running our automated matching strategy on all the data we have
for all tags, we want to evaluate its effectiveness and fix any issues. Thus,
we run the above matching algorithm on the manually created ground truth
set of 100 answers from Section 3.1 and calculate recall and precision. Recall
is the percentage of comment-edit pairs the program could detect from the
manually confirmed pairs in the ground truth, while precision is the percentage
of comment-edit pairs identified by the program that are correct. Additionally,
to understand if the code matching algorithm we use brings in any value, we
compare our results to those of a simple baseline. This baseline simply matches
a comment to the chronologically nearest edit that comes after it, regardless of
the content of the comment or edit. We show the results in Table 2. As shown,
the recall of our matching technique is low (ranging from 24% - 47% and 32%
overall), but the precision is relatively good (ranging from 56% - 85% and 70%
overall. To understand when our matching fails, we manually analyze the false
positives and false negatives.

One of the main reasons for the low recall (i.e., false negatives) is that there
are comments in the ground truth that caused an edit but did not contain any
code suggestions. Our program is only able to pair comments and edits that
share a code pattern; as such it is not able to find these comment-edit pairs.
An example of this is Answer17 44765572. Here, both authors agreed that
the comment on Jun 26 ’17 at 18:13: “I think it would be a lot cleaner to
have the constructor accept the three parameters, instead of always creating it
with the defaults and then overwriting them.” caused Edit18 9, that adds the
parameters to the constructor instead of overwriting the default values. This
comment does not use explicit code terms to detail inefficiencies or problems
but rather explains how the code can be improved. Other comments that cause
edits without having explicit code could be questions clarifying the logic of the
answer, or comments mentioning the answer does not fully answer the original

17 http://stackoverflow.com/questions/44765572
18 https://stackoverflow.com/revisions/44765572/9

http://stackoverflow.com/questions/44765572
https://stackoverflow.com/revisions/44765572/9
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question, etc. All of these comments would cause edits but would not have any
code for the program to match the comment and edit together.

While our program, by construction, is not able to capture such pairs and it
might have been more “fair” to evaluate our program only on the comment-edit
pairs it could potentially capture (i.e., those with code), we chose to conduct
a strict evaluation to understand the worst case performance of the algorithm
in terms of how many pairs it could potentially capture. However, for further
investigation into recall, we also check what our program would have done
only on pairs it could potentially match. While annotating the ground truth
set of 799 comments, the two authors agreed on 194 comments that caused
an answer edit (See Table 1). Out of these 194 comments, 135 comments
had code terms that the program could potentially match. This means that
59 (30%) of the pairs can not, by construction, be found by the program as
there is no code for it to match. If we evaluate the matching algorithm on
only the 135 comments that it could potentially match, we find that we still
maintain a 69% overall precision, but now achieve a 46% overall recall instead
of 32%. This confirms our intuition that many of the false negatives are due to
the comments not having any code to match. Other reasons for the remaining
false negatives include potentially missed regular expressions for detecting code
terms, matching the wrong edit if it contains the right code term and happens
earlier than the ground truth edit, or that the answer edit itself is an added
textual explanation rather than an edit to a code snippet.

On the other hand, the majority of false positives occur, because of coinci-
dental matches between a comment and an edit, i.e., the program finds a code
suggestion both in a comment and an edit, but the edit was not caused by
that comment. An example for this is Answer19 6872517. Our program detects
that comment “thanks , as i see on findViewById(R.id.mainframe) , i need to
add a id ? and a layout file ?” caused Edit20 2. However, this edit simply
properly formats the whole code snippet without addressing this comment in
any way. The program catches this edit and matches the code in the com-
ment (findViewById(R.id.mainframe)) to the code in the edit and assumes
a relationship when there is none.

While in an ideal world, an automated technique would have both high
recall and precision, in practice, there is often a tradeoff between both metrics.
For the purposes of using the extracted pairs to build data sets, we believe
it is more important to have high precision than high recall. Given the vast
amount of data available on Stack Overflow, extracting even a tiny fraction
of available comment-edit pairs will provide a large amount of data. However,
if this data contains a large number of false positives, then its users will lose
their trust in the data. Thus, it is important for the matching technique to
have high precision, even if this is at the cost of missing out on other potential
pairs. We, do, however, discuss opportunities for improving recall in Section 8.
When compared to the proximity based baseline, our program achieves a much

19 https://stackoverflow.com/questions/6872517
20 https://stackoverflow.com/revisions/6872517/2

https://stackoverflow.com/questions/6872517
https://stackoverflow.com/revisions/6872517/2
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Table 3: Number of answers, edits, and comments in each of the five Stack
Overflow tags, as well as the number of comment-edit pairs we detect for each
tag

Language Answers Edits Comments
Detected
comment-
edit pairs

Java 2,586,447 895,737 2,321,296 51,358

JavaScript 2,924,662 1,281,433 3,571,622 65,373

Android 1,722,580 490,565 1,668,634 34,596

Python 1,785,914 903,159 2,060,513 44,551

Php 2,099,914 751,612 2,508,003 52,521

higher overall precision (70% vs. 32%), which gives us confidence in using our
matching algorithm to answer our five research questions.

4 RQ1: Precision of Comment-Edit Pairs

We now discuss RQ1, which focuses on the precision of our automated mapping
strategy. While the ground truth evaluation gave us confidence to proceed, our
ground truth is still limited in size. Thus, for RQ1, we run our matching pro-
gram on the data from all five tags. We first describe our evaluation methods
and then report the results.

Methods. We first run our matching program on the data from all five tags we
focus on. Table 3 shows the descriptive statistics for this data, as well as the
number of comment-edit pairs detected by our tool.

Calculating precision requires manually analyzing the detected pairs. Since
it is not feasible to manually validate close to 250,000 pairs, we take a statisti-
cally representative sample for each tag. For a confidence level of 95% with a
5% confidence interval, we need a sample size of 382 pairs for each tag. There-
fore, we randomly select 382 pairs from each tag for our manual validation,
resulting in a total of 1,910 comment-edit pairs to be validated.

The two authors of the paper then separately analyze all 1,910 comment-
edit pairs, with the goal of confirming whether the identified comment is re-
lated to the corresponding edit in the pair. Determining if a comment-edit
pair is correct and gathering additional data about its usefulness, category,
and tangled changes takes on average 1.5 minutes. Thus, the two authors
spent close to 95 hours to manually analyze the 1,910 pairs. An additional
8hrs (approximately 1.5 hours per tag) were taken to resolve conflicts since
conflict resolution involved more discussion.

After the resolutions, each comment-edit pair was labelled with either zero
(comment is not related to the edit) or one (comment is related to the edit).
We use Cohen’s Kappa score [55] to calculate the inter-rater agreement rate.
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Table 4: Precision of Detected Comment-edit Pairs Across the Full Data Set

Tag Pairs Analyzed Pairs Confirmed Cohen’s Kappa Precision

Java 382 305 0.67 80%

JavaScript 382 307 0.77 80%

Android 382 284 0.86 74%

Python 382 292 0.75 76%

Php 382 294 0.77 77%

Total 1,910 1,482 0.77 78%

Results. Table 4 shows the precision of our matching strategy, as well as Co-
hen’s Kappa, for each analyzed Stack Overflow tag. The last row of the table
shows the overall aggregate results over all analyzed data.

As shown, our Kappa score ranged 0.67-0.86 across the five tags. Out of the
1,910 pairs we analyze, we confirm 1,482 pairs. The precision per tag ranges
from 74-80%. When considering all 1,910 pairs, the overall precision of our
algorithm is 78%. We also note that the precision across the five tags is fairly
similar, which suggests that our matching heuristics are not biased toward a
particular programming language or lexicographical pattern.

RQ1: Across the five tags, the precision of our automated comment-edit
mapping algorithm is 78%.

5 RQ2: Tangled Changes

Recall that the term tangled change refers to grouping separate code changes
in a single commit or edit [17]. In the introduction, we speculated that one
of the attractive qualities of using Stack Overflow edits is that changes on
Stack Overflow are likely to be less tangled than those found in commits in
version-control systems. In this research question, we investigate if this is true
in practice.

Methods. For each of the 1,482 confirmed comment-edit pairs found in RQ1, we
also record whether the edit contains tangled changes or not. The two authors
again independently labeled tangled changes and discussed disagreements.

In the context of comment-edit pairs, tangled changes occur if the edited
answer contains additional changes that are not related to the matched com-
ment. An example of a tangled change would be an edit that addresses multiple
comments at a time. For example, in Answer21 5616616, the original ques-
tioner puts the following comment “Can I add a variable to the id like < id =
$count.frDocV iewer > and then it would access #$count.frDocV iewer? ...”.
The answerer posts a comment in response to this explaining how they can
use the suggested variable. The questioner then posts another comment on a

21 https://stackoverflow.com/questions/5616616

https://stackoverflow.com/questions/5616616
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Table 5: Number of useful pairs and tangled edits in the confirmed comment-
edit pairs

Tag Confirmed
Pairs

Tangled Useful

Kappa Score Count (%) Kappa Score Count (%)

Java 305 0.79 41 (13%) 0.79 67 (22%)

JavaScript 307 0.65 41 (13%) 0.70 91 (30%)

Android 284 0.59 23 (8%) 0.81 71 (25%)

Python 292 0.61 29 (10%) 0.78 107 (37%)

Php 294 0.64 27 (9%) 0.62 60 (20%)

Overall 1,482 0.67 161 (11%) 0.74 396 (27%)

different part of the code “Should there be an else statement after if(fr! =
old element){fr.style.display =”block” old element.style.display = ”hide”;
old element = fr; } ? Why does there have to be ”echo” in ′HideFrame(echo
$count)′ ? At this point, the answerer edits the code snippet22 to fix both the
redundant echo and the if statement in question. However, they also address
the initial comment to show how to correctly use the count variable. Pairing
either of these comments with the edit is an example of a comment-edit pair
with a tangled change since the edit addresses changes beyond those related to
the matched comment. Tangled changes also occur when the answerer does not
look at their answer for a period of time while other users view the answer and
make comments on what, if any, changes they recommend. The answerer then
returns and decides to create one edit to address all the comments received.
Similarly, a tangled edit includes addressing a single comment but also making
cosmetic changes, such as variable renames in the code snippet or text refor-
mulation in the answer. For example, Edit23 6 of Answer24 5169321 addresses
multiple issues that were brought up in the comments such as answering clar-
ification questions, or that the answer still does not solve the question, while
at the same time formatting the answer for visual clarity.

Results. Table 5 shows the number of tangled pairs, both per tag and overall.
As shown, only 11% of the total confirmed pairs are tangled. These results
coincide with our intuition that since Stack Overflow snippets and answers
are typically short, their edits would mostly focus on one issue at a time.
From our general observations, the main reason for tangled changes are when
the answerer includes additional refactorings to make the answer more concise
or readable while addressing the feedback in the comment.

RQ2: Our results confirm our intuition that the code changes in Stack
Overflow comment-edit pairs are rarely tangled. Specifically, only 11% of the
1,482 confirmed comment-edit pairs we analyzed contain tangled changes.

22 https://stackoverflow.com/revisions/5616616/5
23 https://stackoverflow.com/revisions/5169321/6
24 https://stackoverflow.com/questions/5169321
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6 RQ3: Types of Changes in Comment-Edit Pairs

In RQ3, we look at the types of changes that occur in comment-edit pairs.
Understanding the types of changes helps determine what code maintenance
changes, if any, the extracted comment-edit pairs can be useful in. For exam-
ple, let us assume that we find that the majority of comment-edit pairs are
simply questions where a commenter asks for a clarification and the editor
adds a comment in the code snippet or changes a variable name for clarity. In
this case, such pairs are very specific to the context of the question and cannot
be used in recommender systems. On the other hand, if we find that most of
the comments point out errors that the edits fix, then this data is specific
to corrective maintenance/bug-fix data sets, as opposed to perfective mainte-
nance for example. Thus, by understanding the nature of the comments, and
accordingly the corresponding edits, we gain a deeper understanding of the
potential applications and implications of the extracted pairs.

Methods. As mentioned in Section 2, Zhang et al. [24] previously catego-
rized the types of comments that exist on Stack Overflow. Through open-
coding, they derived seven high-level comment types (e.g., improvement, in-
quiry, praise) and 17 subtypes (e.g., support, flaw, reference). Thus, for con-
sistency, we opt for not re-inventing the wheel by performing open coding and
developing new categories ourselves; instead, we reuse their fine-grained sub-
types to label our data. Given that their types cover all comments on Stack
Overflow, the pairs we extract naturally fall under a subset of these types.
This also means that some of the types they have do not make sense in our
context. For example, a comment praising or supporting the answer will not
likely end up causing an edit. In Table 6, we show the subset of nine sub-
types (referred to as category) that are applicable to our context. For clarity,
we also add an example of a real comment from a comment-edit pair that
matches this category, as well as any additional assumptions we made about
the category in our coding guidelines which may have not have been clear
in the original publication. Given these categories, we perform closed coding
where the two authors independently label each confirmed comment-edit pair
and then discuss disagreements.

Results Our inter-rater agreement for the closed coding task, measured using
Cohen’s Kappa, ranges from 0.82 - 0.95 and is 0.88 overall. Table 7 shows the
number of comment-edit pairs in each category, per tag. For now, we focus
on the All column which shows the categories across all confirmed pairs in
each tag (and overall in the last column). From the overall numbers (which
are also consistent with the individual tag numbers), the most frequent type of
comment-edit pairs is the Error category, followed by Request, and Correction.
This is good news since the pairs of type Error and Correction could poten-
tially be used for automated bug-fix recommendations or other applications
related to corrective maintenance. We further examine the usefulness of these
pairs in RQ4.
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Table 6: Categories used from Zhang et al. [24] to label confirmed comment-
edit pairs. Note that the listed Stack Overflow IDs are linkable to the answer
the comment was addressed to.

Category Description Example comment

Correction Provides code correc-
tion to the answer

10994146 : This gives an undefined variable er-
ror. To fix it, change `var dump($thing);`to
`var dump(\$thing);`

Extension Extends the answer to
other cases by making
the code more generic,
catching corner cases,
etc.

514517 : One more thing: if you want the range
to be inclusive, do >>>for code in range(ord(‘a’),
ord(‘z’)+1): print unichr(code)

Flaw Points out flaws or
limitations. Com-
ments that make small
changes but do not
change the logic also
fall here. e.g., replac-
ing a for loop with a
forEach loop

2061144 : Don’t use query.getSingleResult()
as an exception could be thrown if there
is not exactly one row returned - see
http://java.sun.com/javaee/5/docs/api/javax/ per-
sistence/Query.html#getSingleResult()

Error Points out errors in
the code. i.e., incorrect
logic resulting in an er-
ror or exception

39037928 : I tried but it gives error
‘java.lang.IllegalStateException: You need to
use a Theme.AppCompat theme’ on setCon-
tentView(R.layout.activity home screen);

Obsolete Points out obsolete
APIs, libraries etc.

24964658 : While this answer works and seems cor-
rect, it was written in 2014 and is now outdated. From
Angular 1.4 there is a built in way to do it by using
$httpParamSerializer. Check the answers below for an
explanation and an example.

Disagree Disagrees with the an-
swer by clarifying the
needed requirements.
i.e., the answer does
not actually answer
the question

40813524 : But I really need to set the variable at com-
ponentDidMount() because it’s an object that depends
on DOM elements

Question Asks clarification ques-
tion about the answer

15976303 : So then knownWordsArrayList = new Ar-
rayList<String>(h); leaves me with all the new words?

Request Requests information
that is outside the
initial question. e.g.,
follow up questions or
asking for an example

40611808 : path image is a string value.How to set that
string value to setBackgroundResourse()

Solution Provides alternative
solutions to the answer

55069962 : You could even do something like
`td:is([data-test=“specific-location”], [data-
test=“specific-location1”]) span`to get something a
little more compact.

It is interesting to see that pairs of type Question (143 total pairs) are also
frequent. As shown in the example in Table 6, a comment of category Question

http://stackoverflow.com/questions/10994146
http://stackoverflow.com/questions/514517
http://stackoverflow.com/questions/2061144
http://stackoverflow.com/questions/39037928
http://stackoverflow.com/questions/24964658
http://stackoverflow.com/questions/40813524
http://stackoverflow.com/questions/15976303
http://stackoverflow.com/questions/40611808
http://stackoverflow.com/questions/55069962
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Table 7: Number of total and useful pairs per category

Category
Java JavaScript Android Python Php Overall

All Useful All Useful All Useful All Useful All Useful All Useful

Error 98 22 (22%) 91 21 (23%) 126 42 (33%) 88 35 (40%) 108 17 (16%) 511 137 (27%)

Request 60 1 (2%) 53 1 (2%) 44 1 (2%) 34 0 (0%) 45 0 (0%) 236 3 (1%)

Correction 23 9 (39%) 47 34 (72%) 26 17 (65%) 52 43 (83%) 51 30 (58%) 199 133 (67%)

Disagree 39 2 (5%) 31 1 (3%) 35 0 (0%) 42 0 (0%) 37 0 (0%) 184 3 (2%)

Question 35 4 (11%) 35 5 (14%) 28 3 (11%) 21 3 (14%) 24 1 (4%) 143 16 (11%)

Flaw 22 12 (55%) 21 11 (52%) 5 3 (60%) 20 13 (65%) 11 8 (73%) 79 47 (59%)

Solution 22 13 (59%) 11 8 (73%) 8 2 (25%) 22 8 (36%) 8 3 (38%) 71 34 (48%)

Extension 3 3 (100%) 13 10 (77%) 2 2 (100%) 9 2 (22%) 2 0 (0%) 29 17 (59%)

Obsolete 1 1 (100%) 2 0 (0%) 2 1 (50%) 3 3 (100%) 1 1 (100%) 9 6 (67%)

Other 2 0 (0%) 3 0 (0%) 8 0 (0%) 1 0 (0%) 7 0 (0%) 21 0 (0%)

Total 305 67 (22%) 307 91 (30%) 284 71 (25%) 292 107 (37%) 294 60 (20%) 1,482 396 (27%)

asks clarifications about the already posted solution, such as asking what a
specific statement is doing, or why is there a need to call a specified method
call. The edit usually improves the code snippet to answer that question and/or
provides additional textual explanation. This is interesting, because it conveys
that users on Stack Overflow want more information regarding the answer in
order to have a deeper understanding of how the answer addresses the question.
While these comments are not useful by the definitions we use in this paper,
since they are not self explanatory, their relatively high edit response rate
suggest that they result in a quality enhancement of the answer and associated
code snippet, in order to make the code more self-explanatory or properly
documented.

The number of pairs of type Extension and Obsolete are low. This is con-
sistent with Zhang et al. [24] findings where they find that only 0.8% of the
comments they analyze are of type extension and 1.0% are of type obsolete.
However, it is interesting to note that these types of pairs are related to per-
fective maintenance, which opens the door for new types of code recommender
systems.

RQ3: The most common categories for the extracted comment-edit pairs
are Error, followed by Request, and Correction.

7 RQ4: Usefulness of Comment-Edit Pairs

So far, we have shown that the precision of the extracted pairs is high (i.e., the
comment is really related to the edit), the majority of the edits are not tangled,
and that the types of comments and changes are promising for various software
engineering applications related to code maintenance activities. However, it is
still not clear if these pairs are actually useful in the end. This is what we
investigate in this last research question.
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Methods. As part of our labeling, we also record the usefulness of the 1,482
confirmed pairs. As mentioned in the introduction, we consider a pair as useful
if (1) the edit happens to an existing code snippet in the answer and (2) if
the comment describes this change in a way that is understandable outside of
the posted Stack Overflow question. The first criterion stems from how code
maintenance data sets are typically used. For example, the before version of a
bug-fix can be matched to existing code in a repository and the after version is
then recommended or automatically applied. Thus, the first criterion ensures
that there is a before version of a code snippet such that it can potentially be
compared to existing code. The second criterion focuses on the comment and
ties to our motivation of providing an explanation along with the recommended
change. Instead of just notifying a developer of a potential change to their
code, it would be more useful to tell them why this change is needed. This
means that the comment must be understandable on its own without relying
on the original thread context. Again, the two authors independently label the
usefulness of the 1,482 confirmed pairs and discuss any disagreements.

Finally, to provide external validation for the pairs we mark as useful,
we select a total of 15 comment-edit pairs and submit corresponding pull
requests. For the selection of these 15 pairs, our goal was to include pairs
from each analyzed SO tag and each pair category. At the same time, we look
for pairs that are simple enough for us to manually implement and create
a pull request. For example, some pairs identified detailed fixes that would
require in depth refactoring and design deliberations by the target repository
maintainers. As such, we selected simple comment-edit pairs, as we want to
use these pull requests for additional external validation and confidence, rather
than a comprehensive proof of usability. Table 8 provides descriptive statistics
of these 15 comment-edit pairs. We wrote a script25 that uses the GitHub
search API to find repositories that match the following criteria:

1. The repository’s main programming language matches that of the tag
2. The repository was active in the last 90 days (i.e., a pushed commit)
3. The repository has at least five stars
4. The repository has at least one closed pull request

These criteria help find active repositories with a higher likelihood of hav-
ing our pull requests reviewed. After finding these potential repositories, the
script then searches each file in these repositories to find exact code matches
of the “before” version of the target comment-edit pair. We manually check
any identified files to make sure that we can propose a change that is sim-
ilar to the edit of the comment-edit pair. After finding a promising file, we
make a pull request that performs a similar change to that in the edit with
the description of the pull request being the exact comment, if possible, or
a slightly paraphrased version in order to make it more grammatically cor-
rect or understandable in a pull request context. For example, on Answer26

52517618, we paraphrased the comment “On Java 7 you can also use new

25 https://github.com/ualberta-smr/QueryGitHub
26 https://stackoverflow.com/questions/52517618

https://github.com/ualberta-smr/QueryGitHub
https://stackoverflow.com/questions/52517618
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Table 8: Categories and tags of the 15 comment-edit pairs used to make pull
requests

Category
Tag

Total

Java JavaScript Android Python Php

Solution 2 1 0 0 1 4

Question 0 1 0 0 0 1

Extension 0 1 0 0 0 1

Flaw 1 1 0 1 2 5

Correction 0 0 2 1 0 3

Obsolete 0 0 0 1 0 1

Total 3 4 2 3 3 15

String(bytes, StandardCharsets.UTF 8); which avoids having to catch the Un-
supportedEncodingException” that caused Edit 27 4 on the answer, to “Using
new String(bytes, StandardCharsets.UTF 8) avoids the possibility of throw-
ing an UnsupportedEncodingException.” on the description of the pull request
made to Apache Beam28. We show the details of all the pull requests, includ-
ing their categories, in Table 9. Our artifact page [25] also contains the details
and links of all our submitted pull requests.

Results. Table 5 shows the descriptive statistics of our useful labeling. Our
Cohen’s kappa ranged from 0.62 - 0.81 across the tags, and is 0.74 across
all pairs. Out of the 1,482 confirmed pairs, we find only 396 (27%) useful
ones. We identify two main reasons for this low percentage. The first is that
in many cases, the edit adds a new code snippet. For example, a comment
points out an alternative way of accomplishing the task or an alternative API
to use. Instead of updating the existing snippet, the edit adds an extra code
snippet stating that this is another option to use. In this case, there is no
“before” version of this code snippet and thus, it will not satisfy our first
criterion. The second common reason was that the comment is too specific to
the commenter’s context. For example, in Answer29 4605982, this comment
caused an edit: “layout height=“fill parent” in combination with layout below
on ListView and layout alignParentBottom on LinearLayout is correct and
should work.” However, the comment is too specific to what the original poster
is asking for. Not every developer will necessarily want to have that same
layout. Thus, we mark that pair as not useful since it does not make sense
outside of the question context.

To better understand the characteristics of the useful pairs, we look deeper
into the category information in Table 7. The second column under every tag
shows the number and percentage of the confirmed pairs in the corresponding

27 https://stackoverflow.com/revisions/52517618/4
28 https://github.com/apache/beam/pull/11017
29 https://stackoverflow.com/questions/4605982

https://stackoverflow.com/revisions/52517618/4
https://github.com/apache/beam/pull/11017
https://stackoverflow.com/questions/4605982
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Table 9: Details of submitted pull requests (PR). For each PR, we show the an-
swer and comment it is based on, the category this comment-edit pair belongs
to, the repo the PR was submitted to, as well as the actual PR link. Green
rows indicate accepted/merged PRs, red rows indicate rejected PRs, and non-
highlighted rows are PRs with no response. Comments shown in bold are those
that required paraphrasing. The PR link, Answer Id, and Repo columns have
links to their respective web page.

Category PR link Answer Id Comment Repo (Stars, Forks)

Java

Solution 11017 52517618 On Java 7 you can also use
‘new String(bytes, Standard-
Charsets.UTF 8);‘ which avoids having
to catch the ‘UnsupportedEncodingEx-
ception‘

Apache Beam (4.2k, 2.7k)

Flaw 11941 32749983 You should (probably, almost) always use a
‘StringBuilder‘ to accumulate strings in a loop,
to avoid the performance cost of repeatedly
constructing strings.

Vaadin Framework (1.6k, 733)

Solution 5945 5553947 Possibly compare
‘”true”.equalsCaseIgnore(person array[7])‘
is case it could be ‘null‘, of use
‘Boolean.parseBoolean(person array[7])‘

Openhab1-addons (3.5k, 1.8k)

JavaScript

Question 500 3180655 The jQuery doc for ‘jQuery.data()‘
(http://api.jquery.com/jQuery.data/) says
this is a ”low-level method” and that you
should use ‘.data()‘ instead. Do you know
what that means and why?

Jeesite (7.5k, 5.9k)

Solution 18314 29842091 Why not using preg replace directly?
(http://php.net/preg replace)

PrestaShop (5.1k, 3.8k)

Extension 27175 16578216 Don’t forget to include support for
browsers that use ‘.contentDocument‘
instead of ‘.contentWindow.document‘

AMP (13.8k, 3.6k)

Flaw 617 41481803 ‘object.hasOwnProperty()‘ is almost never
needed in current JS code. A ‘key in object‘
test suffices just as well

KairosDB (1.6k, 329)

Android

Correction 8464 26933338 If you have the
WRITE EXTERNAL STORAGE
permission you don’t need
READ EXTERNAL STORAGE, but yes, he
does need WRITE EXTERNAL STORAGE

NativeScript (19k, 1.4k)

Correction 1354 33366449 ‘TextUtils.isEmpty()‘ is better than us-
ing a normal ‘equals()‘ since it will also
perform a ‘null‘ check. This will prevent
any error in the future and is a good
practice.

Tinker (15.3k, 3.1k)

Python

Obsolete 15 12509737 ‘ getslice ‘ is [deprecated since 2.0]([link]) in
favour of ‘ getitem ‘ with a ‘slice()‘ argu-
ment.

Learn Python3 Spider (4.6k, 1.4k)

Correction 2515 35560225 It is not necessary to call keys() in
the argument to choice. Iterating over
a dict will give you the keys. ‘a = ran-
dom.choice(A)‘ is sufficient (and I think
nicer-looking).

nltk (9.4k, 2.4k)

Flaw 525 40372658 Some suggestions. Load ‘kernel32‘ only
once as a module global. In ‘set‘, replace
‘attrib ˆ4294967295‘ with ‘∼attrib‘. In
‘get‘, replace ‘not not (attrs & what)‘
with ‘bool(attrs & what)‘.

Anki (7.1k, 1.1k)

Php

Flaw 40 10341595 +1 would do the same. but ‘$word[0]‘
would make it even more concise..

ShopXO (1.3k, 490)

Solution 3063 33191679 Side Node: IMHO using
‘PREG SET ORDER‘ (rather than the
default ‘PREG PATTERN ORDER‘)
delivers an easier to process re-
sult, cause you simple can ‘fore-
ach’‘ the result Array and use single
dimensional Access (‘[1], [2], [3]‘)
to Access the match Groups. Also
with named matchgroups having
‘match[”link”]‘iseasiertoreadthan‘matches[”link”][1]‘
etc.

Fork CMS (1.1k, 282)

Flaw 2425 5013708 you should check for ‘$ SERVER[’HTTPS’]‘ to
be set before accessing it.

Web-frameworks (4.5k, 399)

https://github.com/apache/beam/pull/11017
http://stackoverflow.com/a/52517618
https://github.com/apache/beam
https://github.com/vaadin/framework/pull/11941
http://stackoverflow.com/a/32749983
https://github.com/vaadin/framework
https://github.com/openhab/openhab1-addons/pull/5945
http://stackoverflow.com/a/5553947
https://github.com/openhab/openhab1-addons
https://github.com/thinkgem/jeesite/pull/500
http://stackoverflow.com/a/3180655
https://github.com/thinkgem/jeesite
https://github.com/PrestaShop/PrestaShop/pull/18314
http://stackoverflow.com/a/29842091
https://github.com/PrestaShop/PrestaShop
https://github.com/ampproject/amphtml/pull/27175
http://stackoverflow.com/a/16578216
https://github.com/ampproject/amphtml
https://github.com/kairosdb/kairosdb/pull/617
http://stackoverflow.com/a/41481803
https://github.com/kairosdb/kairosdb
https://github.com/NativeScript/NativeScript/pull/8464
http://stackoverflow.com/a/26933338
https://github.com/NativeScript/NativeScript
https://github.com/Tencent/tinker/pull/1354
http://stackoverflow.com/a/33366449
https://github.com/Tencent/tinker
https://github.com/wistbean/learn_python3_spider/pull/15
http://stackoverflow.com/a/12509737
https://github.com/wistbean/learn_python3_spider
https://github.com/nltk/nltk/pull/2515
http://stackoverflow.com/a/35560225
https://github.com/nltk/nltk
https://github.com/ankitects/anki/pull/525
http://stackoverflow.com/a/40372658
https://github.com/ankitects/anki
https://github.com/gongfuxiang/shopxo/pull/40
http://stackoverflow.com/a/10341595
https://github.com/gongfuxiang/shopxo
https://github.com/forkcms/forkcms/pull/3063
http://stackoverflow.com/a/33191679
https://github.com/forkcms/forkcms
https://github.com/the-benchmarker/web-frameworks/pull/2425
http://stackoverflow.com/a/5013708
https://github.com/the-benchmarker/web-frameworks
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category that are marked as useful. The results show that while pairs of type
Error are the most frequent, only 27% of them are useful. This is mostly due
to the error being specific to the context of the post; for example, reporting
that the desired behaviour/functionality is not working correctly.

On the other hand, the Correction category shows both a high frequency
and a high percentage of usefulness (67%). While pairs of type Solution, Ob-
solete, Extension and Flaw were not frequent, their usefulness was high at
48 - 67%. Their high usefulness suggest that if these pairs are presented to a
developer, it is likely the recommendation will be taken.

Not surprisingly, the usefulness of pairs of type Request, Disagree, and
Question is quite low (1 - 11%). Given that the nature of these types of pairs
is inherently specific to the post context, it is not surprising that they would
not be useful in wider applications. These results suggest that to increase the
potential usefulness of comment-edit pairs, we may need to devise additional
techniques that can specifically identify comment-edit pairs in the promising
categories. We discuss this further in Section 8.

Table 9 shows that out of the 15 pull requests made to unique open source
repositories on GitHub, 10 requests have been accepted and merged into their
respective repository, two requests are still awaiting responses, and three re-
quests were rejected. Of the 10 requests that were accepted, five of the com-
ments taken from Stack Overflow needed to be paraphrased. As the table
shows, we were able to merge contributions into popular repositories with
thousands of stars and forks, such as Apache Beam30 and NLTK31.

The categories of the accepted PRs were diverse including Flaw, Solution,
Correction, and Extension. Pairs of type Solution and Extension tend to fall
under the category of preventative maintenance and these pull requests may
serve as an indication of how developers view preventative maintenance code
improvements. Of the four pull requests that were of type Solution, two of
the pull requests were accepted and the other two were rejected. One of these
requests was rejected because a developer replied that the repository was no
longer maintained, while the other request was rejected because they thought
that the the alternate solution brought no significant difference to the code.
The pull request related to Extension was accepted. The pair categories Cor-
rection and Flaw belong to corrective maintenance and have a total of seven
out of eight pull requests accepted. This indicates that the pairs retrieved from
Stack Overflow have the same value as traditional bug-fix data sets in terms
of corrective maintenance. Although our PRs are clearly not a representative
sample, they provide some intuition regarding the potential usefulness and
applications of our comment-edit pairs.

We note that the pull request of type Question does not have an obvi-
ous relationship to maintenance and is possibly information that is unique to
Stack Overflow (repository code is not typically updated because of an asked

30 https://beam.apache.org/
31 https://www.nltk.org/
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question). Unfortunately the pull request has not been responded to yet and
is neither accepted or rejected.

Finally, as a note in terms of tangledness of the identified 396 useful pairs,
only 39 (10%) of these were tangled. This is aligned with the overall low
tangledness of edits on Stack Overflow.

RQ4: Out of 1,482 confirmed comment-edit pairs across the five tags, 396
(27%) were potentially useful. The usefulness of comment-edit pairs varies
by category and devising automated techniques to find pairs in promising
categories may increase the chances of finding useful pairs. Additionally, to
date, 10 out of the 15 pull requests we submitted to further demonstrate
usefulness were accepted.

8 Discussion

In this paper, we built tooling to identify comment-edit pairs on Stack Over-
flow. Our goal was to investigate if these comment-edit pairs could potentially
be used as an additional source of data for code maintenance activities. One
advantage of using Stack Overflow comments is that they may provide a con-
cise explanation for the observed change in the edit. However, the results from
RQ4 show that while we do find useful pairs, the percentage of these pairs is
low at 27%. We conclude that while Stack Overflow comment-edit pairs look
promising, further improvements to our automated extraction techniques are
needed to identify a larger number of useful comment-edit pairs for automated
applications. Since our work is the first to investigate this research direction,
our tooling and empirical results provide valuable insights for better leveraging
Stack Overflow knowledge to build new data sets. Moving forward, the goal
would be to find more pairs that are useful in automated applications related
to code maintenance activities. In this section, we discuss our findings and the
opportunities and challenges for further extending this line of work.

8.1 Applications

Software Engineering Applications. Recent work [40] already leverages answer
edits for creating data sets of code errors and corrections, but focuses only on
syntax errors that are found through compiling various versions of a snippet,
and thus does not try to associate reasons for the changes. As our results in
RQ3 show, there are many categories of changes that occur in the comment-
edit pairs we analyzed, ranging from bug fixes to code style and generalizability
improvements in the flaw and extensibility categories.

Our results in Table 7 show that the Error and Correction categories are
amongst categories with the highest number of pairs. Both of these categories
fall under corrective maintenance. Automated techniques for bug detection,
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bug localization, and program repair provide important corrective mainte-
nance support for developers. Bug-fix data sets are often used to build [56] or
evaluate [57] these techniques. Thus, the Error and Correction comment-edit
pairs can be used to add more data to these data sets.

Table 7 also shows that there are several pairs in the Flaw, Obsolete, So-
lution, and Extension categories, which fall under corrective or preventative
maintenance respectively. In total, from the 1,482 confirmed pairs, there are
188 (∼ 13%) pairs across these four categories. Interestingly, despite not being
a high absolute number, these four categories were amongst the highest per-
centage of Useful pairs (59%, 48%, 59%, and 67% respectively). This opens the
door for automated applications that recommend improvements to the code,
rather than only bug fixes.

Regardless of the specific type of application and code maintenance ac-
tivity, the fact that a Stack Overflow edit in our data set is accompanied
by a corresponding comment means that an explanation can be provided
to the developer about why a specific code snippet is problematic or why
an alternative method of solving something is recommended. For example,
in Answer32 26933338 from Android, the initial provided answer includes a
snippet of the manifest file that includes both WRITE EXTERNAL STORAGE and
READ EXTERNAL STORAGE. The snippet is then edited to remove the latter per-
mission. If such a removal is suggested to a developer, it will likely not make
sense without a concrete reason. The mined comment that is associated with
the edit to this answer is “If you have the WRITE EXTERNAL STORAGE
permission you don’t need READ EXTERNAL STORAGE [..]”. When sug-
gesting a fix to this piece of code, providing this comment can help the de-
veloper understand why the fix or suggestion is being made. We used this
comment to make one of the accepted pull requests to NativeScript in Ta-
ble 9. Finally, our results show that the mined comment-edit pairs rarely have
multiple unrelated changes (i.e., tangled changes). Thus, our work opens the
door for more focused code maintenance data sets, which may potentially work
better for generating automated fix scripts [42].

Linked Stack Overflow Edit History Recently, Stack Overflow introduced a
new feature that shows a history symbol beside each question and answer.
Clicking on this history symbol shows the activity history of the post. Relating
the comments on the post to the edits in the history could be useful to help
users understand why an edit was made. Thus, our matching algorithm can
also be applied in that context as future work.

8.2 Challenges and Opportunities

In the above, we discussed the potential applications of using the mined
comment-edit pairs. However, these do not come without challenges since the

32 https://stackoverflow.com/questions/26933338

https://stackoverflow.com/questions/26933338
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nature of Stack Overflow data is different than what we traditionally see in
version-control systems. In order to leverage this data source, the ultimate goal
is to (automatically) differentiate useful and unuseful pairs. Such differentia-
tion is difficult for multiple reasons. We discuss these reasons and potential
solutions and/or future work opportunities we perceive.

Non-code comments. Our extraction technique favors precision over recall.
Given the amount of answers, edits, and comments on Stack Overflow, we
wanted to ensure that we reduce false positives as much as possible. To do so,
we relied on the simple heuristic of focusing on comments that contain code,
which allows more precise matching of comments and edits. This came at the
cost of a low recall, as shown in Section 3.3. Based on our manual investiga-
tions on our ground truth data, we find that non-code comments, which are
comments that contain no code but contain textual descriptions that prompt
the answer edit, are one of the main reasons for our low recall (of which an
example is also described in Section 3.3). When considering only comments
that contain code, we see that the overall recall of the program rises to 46%,
from the original 32%. One path that could incorporate these non-code com-
ments may be the addition of natural language processing (NLP) techniques
that are able to match terminology in the comment and the edit and pair them
together. For example, one could generate a textual change summary [58] to
describe the edit and then match that summary to the comment, while taking
into account potential vocabulary mismatch [59]. This could potentially enable
pairing the explanation in the comment with the changes introduced in the
edit even though the comment does not include a code term.

Conversations. One challenge we came across during our manual validation
is that there is often a conversation occurring in the comments section. Thus,
while many of the comments we have analyzed are stand-alone (recall our sec-
ond criterion for usefulness), many comments would be difficult to understand
without the context of the rest of the conversation. Such comments would not
be useful as explanations provided to users. The challenge here is to automati-
cally differentiate these two types of comments while extracting comment-edit
pairs. While this is a difficult problem, some ideas from the NLP domain may
be potentially useful. For example, some work looks at automatically inferring
context in a sentence [60]. Such techniques can be used to check if the current
comment refers to something from the previous comment. Another simpler
technique is to not report comments that were posted within a specific time
window (e.g., 30 seconds) from the previous comment. This is based on our
observation that often, a user posts a single big comment split across multiple
consecutive ones due to space limitation.

Filler text. Another challenge related to the mined comments is that some
comments are useful and provide a good explanation of the edit, but they con-
tain “filler” text. This includes tagging another participant in the conversation
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(e.g., a comment from Answer33 53216022: “@Lothar For case-insensitive com-
parison, use comparing(Contact::getLastName, String.CASE INSENSITIVE
ORDER). For language-sensitive comparison, use e.g. comparing(Contact::
getLastName, Collator.getInstance(Locale.US))”) or thanking someone for their
help (e.g., a comment from Answer34 44470955,“@binariedM thank but i cant
make it work. The console says: “Uncaught ReferenceError: Invalid left-hand
side in assignment” in the line of “this = x.concat...””). In our pull requests,
we manually paraphrased comments as needed. However, ideally, such filler
text could be somehow automatically removed. Techniques for doing so can
be investigated as future work.

Added code. Many of the comment-edit pairs we found have helpful suggestions
and edits, but unfortunately, the edit is made as an added code snippet. This
happens especially in the context of the Solution category where the answerer
typically adds the suggested alternative solution as another code snippet. An
example of this is found in Answer35 20051167, which adds the alternative
solution provided by the comment: “If you use substring, then use it till the
end: “0123456789 ”.indexOf(check) != -1 No need for matches :)”. These pairs
are valuable but the main challenge is that there is no “before” version, which
is why we mark them as not useful.

Answers may also contain multiple code snippets, for example, to separate
steps to be taken or to separate code that should go into multiple files or
classes. In these cases, it is not clear which code snippet is being addressed
by the added code snippet. However, added code snippets are typically ac-
companied by descriptive text, and utilizing these descriptions may provide
opportunity to solve this issue (e.g., looking for keywords like “an alternative
is”). Accounting for added code may be another opportunity to improve recall
of existing comment-edit pairs.

Incomplete code. Many code snippets on Stack Overflow do not include import
statements that are necessary to make them compilable or to help in resolving
types. Resolving types is necessary for many recommender systems to make
use of the comment-edit pairs. This problem has been discussed before in other
contexts and there is existing work that tries to infer types for Stack Overflow
snippets (e.g., [61,62]). That said, one advantage of relying on version-control
history, instead of Stack Overflow, is the ability to find tests or containers
to reproduce the problem [30,7,6]. While specific to Python, there have been
recent efforts that attempt to “dockerize” a given piece of code found on
Stack Overflow or in a GitHub gist [63]. It would be interesting to see if such
efforts can be generalized to allow producing reproducible problems using our
extracted comment-edit pairs.

33 https://stackoverflow.com/questions/53216022
34 https://stackoverflow.com/questions/44470955
35 https://stackoverflow.com/questions/20051167
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Pair categories. We manually categorized our mined pairs. Our results show
that some categories have more potential for usefulness than others. Thus, a
future opportunity could be automatically categorizing pairs and only report-
ing pairs that fall in the promising categories. Since we share all our data,
we foresee future research on designing machine learning classifiers that can
automatically assign a category based on specific features of the comment and
edit. While determining these features is not something we explicitly worked
on in the context of this work, potential features we foresee from our observa-
tions include the size of the edit, the presence of certain keywords (e.g., does
not work, error, exception etc), and how many regions/blocks (i.e., text vs.
code) have been changed in the edit.

9 Threats to Validity

As expected with any empirical study, there are several limitations and threats
to the validity of our results. We discuss them below.

Construct Validity. Since we relied on manual validation to confirm the iden-
tified comment-edit pairs, there is a risk that the comments and edits in the
pairs we analyze are not actually related. We mitigate this by defining what a
positive label means and by having two authors review the pairs and discuss
disagreements. We also erred on the side of precision and confirmed matches
only when we were sure. We share our exact labeling on our artifact page to
facilitate replication and further analysis.

Whether something is useful or not is mostly subjective. In addition to
defining an explicit coding guide and having the two authors independently
decide on usefulness and discuss disagreements, we also use external validation
of usefulness by submitting pull requests to open-source systems based on our
data.

Internal Validity The regular expressions we used to identify code terms are
taken from Treude et al. [?]. We modified this list to account for the other
languages we analyze and based on experimenting with our ground truth.
However, we cannot claim that the set of regex patterns are complete. While
our precision was high, additional regular expressions may potentially catch
more comment-edit pairs and improve recall.

External Validity A potential threat to the generalizability of our results is
that we manually analyze only 1,910 pairs. Even though the sample of 1,910
pairs is statistically representative of all detected pairs, the decision to limit
the number of pairs to manually analyze was based solely on the amount of
labour involved. The total manual labour involved with the current data is
already around 129 hours (103 hours for the 1,910 comment-edit pairs and 26
hours to create the ground truth data set), or the equivalent of 16 working
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days. Although the authors spent time resolving conflicts and reviewing the
analysis, there will always be an element of human bias.

We also analyze only five Stack Overflow tags. While these are popular
tags on Stack Overflow and span four different programming languages, our
results may not necessarily generalize beyond that.

Another limitation relates to the pull requests made on open source GitHub
repositories. We make a small number of pull requests (15) which do not
establish comprehensive usability of these pairs. However, the goal of these pull
requests was not to be comprehensive but to provide some external validation
and confidence in the application of the extracted pairs. Although these pull
requests provide this confidence, there is inherent bias due to the methods we
use to select pairs and find the potential repositories. Since we used exact code
matching in order to find potential repositories instead of a more thorough
and precise code parsing approach, we were limited to searching for simple
and easily fixable code patterns. Thus, we do not know how pull requests for
more complicated changes might be received by developers.

10 Conclusion

In this paper, we study comment-edit pairs extracted from Stack Overflow
answers. We implement a technique for identifying comments that resulted in
edits to code blocks in the answers. We run this technique on five popular
Stack Overflow tags and share 248,399 resulting comment-edit pairs on our
artifact page [25]. We then manually validate a statistically representative
sample of 1,910 randomly selected comment-edit pairs and confirm 1,482 of
them. We then categorize these 1,482 pairs and also determine their usefulness
and whether the edits are tangled.

We find that the edits are rarely tangled (only 11%) and that 27% of the
confirmed pairs are useful. Our results show that categories such as Correction,
Extension, and Flaw are particularly useful. Since we share our data set, future
work may explore automatically classifying comment-edit pairs such that only
those from promising categories are reported.

We conclude that Stack Overflow is a promising additional source of in-
formation for mining code maintenance data sets that can be used in various
types of code recommenders and software engineering applications. However,
further work needs to be done to increase the number of extracted useful
pairs. We presented the current open challenges, such as accounting for non-
code comments and added code, as well as some ideas on how future work
may address these problems. We also showed that the type of comments and
edits we already find have been useful for getting pull requests merged in pop-
ular open-source repositories. All our data and code are available online [25].
We hope that this data along with the discussion we provide about future
extensions and opportunities encourages further research in this area.



36 Henry Tang, Sarah Nadi

Acknowledgments

This research was undertaken thanks to funding from the Canada Research
Chair program and from the Natural Sciences and Engineering Research Coun-
cil. We would also like to thank Sebastian Baltes and Christoph Treude for
their feedback regarding the ideas in this work.

References

[1] E. B. Swanson, “The dimensions of maintenance,” in Proceedings of the 2nd interna-
tional conference on Software engineering, 1976, pp. 492–497.

[2] N. E. Fenton and M. Neil, “A critique of software defect prediction models,” IEEE
Transactions on software engineering, vol. 25, no. 5, pp. 675–689, 1999.

[3] S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini, “A systematic eval-
uation of static API-misuse detectors,” IEEE Transactions on Software Engineering,
2018.

[4] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini, “MUBench: A
benchmark for API-misuse detectors,” in 2016 IEEE/ACM 13th Working Conference
on Mining Software Repositories. IEEE, 2016, pp. 464–467.

[5] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A survey,” IEEE
Transactions on Software Engineering, vol. 45, no. 1, pp. 34–67, 2019.

[6] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for Java programs,” in Proceedings
of the 2014 International Symposium on Software Testing and Analysis, ser.
ISSTA ’14. New York, NY, USA: ACM, 2014, pp. 437–440. [Online]. Available:
http://doi.acm.org/10.1145/2610384.2628055

[7] V. Dallmeier and T. Zimmermann, “Extraction of bug localization benchmarks from
history,” in Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering, 2007, pp. 433–436.

[8] C. Cifuentes, C. Hoermann, N. Keynes, L. Li, S. Long, E. Mealy, M. Mounteney, and
B. Scholz, “BegBunch: Benchmarking for C bug detection tools,” in Proceedings of
the 2nd International Workshop on Defects in Large Software Systems: Held in con-
junction with the ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2009, pp. 16–20.

[9] A. Radu and S. Nadi, “A dataset of non-functional bugs,” in Proceedings of
the 16th International Conference on Mining Software Repositories, ser. MSR
’19. Piscataway, NJ, USA: IEEE Press, 2019, pp. 399–403. [Online]. Available:
https://doi.org/10.1109/MSR.2019.00066
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