Universidad

ucdm | CarloslIl -Archivo
de Madrid

This is a postprint version of the following published document:

Garcia, B., Munoz-Organero, M., Alario-Hoyos, C. &
Kloos, C. D. (2021). Automated driver management for
Selenium WebDriver. Empirical Software Engineering,
26(5), 107.

DOI: 10.1007/s10664-021-09975-3

© 2021, The Author(s), under exclusive licence to Springer Science
Business Media, LLC, part of Springer Nature.

https://doi.org/10.1007/s10664-021-09975-3

Automated Driver Management for Selenium

WebDriver

Boni Garcia - Mario Munoz-Organero -
Carlos Alario-Hoyos - Carlos Delgado
Kloos

Received: date / Accepted: date

Abstract Selenium WebDriver is a framework used to control web browsers au-
tomatically. It provides a cross-browser Application Programming Interface (API)
for different languages (e.g., Java, Python, or JavaScript) that allows automatic
navigation, user impersonation, and verification of web applications. Internally,
Selenium WebDriver makes use of the native automation support of each browser.
Hence, a platform-dependent binary file (the so-called driver) must be placed be-
tween the Selenium WebDriver script and the browser to support this native com-
munication. The management (i.e., download, setup, and maintenance) of these
drivers is cumbersome for practitioners. This paper provides a complete method-
ology to automate this management process. Particularly, we present WebDriver-
Manager, the reference tool implementing this methodology. WebDriverManager
provides different execution methods: as a Java dependency, as a Command-Line
Interface (CLI) tool, as a server, as a Docker container, and as a Java agent.
To provide empirical validation of the proposed approach, we surveyed the Web-
DriverManager users. The aim of this study is twofold. First, we assessed the
extent to which WebDriverManager is adopted and used. Second, we evaluated
the WebDriverManager API following Clarke’s usability dimensions. A total of
148 participants worldwide completed this survey in 2020. The results show a
remarkable assessment of the automation capabilities and API usability of Web-
DriverManager by Java users, but a scarce adoption for other languages.

Keywords Test Automation - Testing Tools - Selenium WebDriver

1 Introduction

Automated testing plays a significant role in the development of reliable software
products. In this context, developers and testers use testing tools to carry out
automated tests in an effective and reproducible manner [24]. A recent study

M B. Garcia - M. Munoz-Organero - C. Alario-Hoyos - C. Delgado Kloos
Universidad Carlos IIT de Madrid

Avenida de la Universidad 30, 28911 Leganés, Spain

E-mail: bogarcia,munozm,calario,cdk@it.uc3m.es

2 Boni Garcia et al.

identifies Selenium as the most valuable testing framework nowadays, followed
by JUnit and Cucumber [14]. Selenium® is an umbrella open-source project that
enables the automation of web browsers. The core of Selenium is called Selenium
WebDriver, a framework that allows controlling web browsers in an automated
fashion using a language-specific binding (such as Java, JavaScript, Python, among
others) [3]. Selenium WebDriver is typically used to implement end-to-end tests.
These tests verify web applications impersonating users who interact with the
web interface of the System Under Test (SUT) [57]. Another common usage of
Selenium WebDriver is web scraping, a technique to extract large amounts of data
from websites in an automated manner [15].

Selenium WebDriver employs the native support of automation that each web
browser provides. This fact is convenient to provide a full automation experience
(i.e., automated navigation and user impersonation) and avoid security issues [57].
Nevertheless, it adds extra complexity to the automation process, since an inter-
mediate proxy is required between Selenium WebDriver and each browser. This
proxy is the so-called driver, a platform-dependent binary file that translates the
commands sent by Selenium WebDriver to the native browser automation sup-
port. Browser vendors usually provide their own drivers. For example, the driver
required to control Chrome and Chromium is called chromedriver?, and the driver
needed to control Firefox is called geckodriver?, to name a few.

A recent survey about the Selenium ecosystem shows that the management
(i.e., download, setup, and maintenance) of the required driver of Selenium Web-
Driver is done manually by practitioners in most cases [29]. This manual process
brings extra complexity to the development and maintenance of Selenium Web-
Driver scripts. Furthermore, this manual process causes unreliable tests due to
version incompatibility between browsers and drivers. To solve these problems,
we propose a complete methodology to automate the management of the drivers
required by Selenium WebDriver. We introduce an open-source tool called Web-
DriverManager as the reference implementation for this methodology. WebDriver-
Manager is used by tens of thousands of projects worldwide nowadays. Its primary
usage is as a Java library. For the sake of interoperability with other language bind-
ings, WebDriverManager can also be used as a Command-Line Interface (CLI) tool,
as a server, as Docker container, and as a Java agent. We launched a survey in the
WebDriverManager community to validate it. This study is aimed to evaluate the
adoption, usage, and Application Programming Interface (API) usability.

The remainder of this paper is structured as follows. Section 2 reviews the
technological background of this work. Section 3 summarizes the related contri-
butions found in the literature in two parts: 1) Test automation and Selenium; 2)
Evaluation of API usability. Section 4 provides fined-grained details of the moti-
vation of the presented approach. Next, section 5 presents the proposed method-
ology to manage the drivers required by Selenium WebDriver in an automated
fashion. Then, section 6 introduces the tool implementing this methodology, i.e.,
WebDriverManager. Section 7 presents the survey (design, results, and validity)
carried out to assess the proposal. Then, we discuss the findings in section 8.
Finally, section 9 provides the conclusion and future work of this line of research.

1 https://www.selenium.dev/
2 https://chromedriver.chromium.org/
3 https://github.com/mozilla/geckodriver/

https://www.selenium.dev/
https://chromedriver.chromium.org/
https://github.com/mozilla/geckodriver/

Automated Driver Management for Selenium WebDriver 3

Selenium RC ’
()
«

Selenese Selenese
— ¢ R Browsers
— (with Selenium Core)
Script using the Selenium RC JS
Selenium RC API Server g

Fig. 1 Selenium RC architecture

2 Background

Jason Huggins and Paul Hammant created the first version of Selenium in 2004
while working in ThoughtWorks. That initial version of Selenium (known now
as Selenium Core) is a JavaScript library that impersonates user actions in web
applications. Selenium Core interprets the so-called Selenese commands to achieve
automation, composed of three parts: 1) Command (action to be executed in the
web browser); 2) Target (locator which identifies a web element); 3) Value (optional
data) [10].

Huggins and Hammant added a scripting layer to Selenium Core in a new
project named Selenium Remote Control (RC). As shown in Figure 1, Selenium
RC follows a client-server architecture. Clients use a binding language (such as Java
or JavaScript) to send Selenese commands over HTTP to an intermediate proxy
called the Selenium RC server. This proxy launches web browsers on demand,
injects the Selenium Core library on the SUT, and proxies requests from clients to
Selenium Core [12]. The Selenium RC Server masks the SUT to the same local URL
of the injected Selenium Core library to avoid same-origin policy concerns (e.g.,
when accessing a public website). This approach allows practitioners to create end-
to-end tests for web applications. Although RC was a game-changer from browser
automation at that time, it had significant limitations. First, since JavaScript is
the underlying technology to support automation, some actions cannot be done,
since JavaScript does not allow them, for example, upload and download files, or
handle pop-ups and dialogs, to name a few. Besides, Selenium RC introduces a
relevant overhead which impacts the performance of end-to-end tests.

To overcome these problems, Simon Stewart, also working for Thought Works,
created a new project called Selenium WebDriver in 2008. Selenium WebDriver
and RC are equivalent from a functional perspective, i.e., both projects allow to
impersonate web users using a binding language. Nevertheless, Selenium Web-
Driver provides more comprehensive automation support and better performance
than RC. For that reason, Selenium RC is discouraged in favor of WebDriver
nowadays [32]. As shown in Figure 2, the automation is possible in Selenium
WebDriver thanks to the native support of each browser. Thus, it is necessary
to include an intermediate element between the Selenium script and the browser.
This element is the so-called driver. This driver is a platform-dependent binary
file that receives commands from the Selenium scripts and translates them into

4 Boni Garcia et al.

a) Selenium WebDriver controlling Chrome

JSON Wire protocol /
W3C WebDriver :U”PIOO
— | —
—
—

DevTools Protocol

Script using the chromedriver Chrome
Selenium WebDriver API

b) Selenium WebDriver controlling Firefox

JSON Wire protocol /

W3C WebDriver Emj\; Marionette
— * » 0 1001110
1100 001 J
— 1111 00
00 0001 1
— 11 1 1001

geckodriver Firefox

Script using the
Selenium WebDriver API

Fig. 2 Selenium WebDriver architecture

some browser-specific language. Initially, the communication between the Selenium
script and the drivers was done using JSON messages over HT'TP in the so-called
JSON Wire Protocol [34]. Nowadays, this communication has been standardized
in the W3C WebDriver recommendation [53]. The W3C WebDriver recommenda-
tion is also based on JSON messages sent over HTTP. As of Selenium WebDriver
version 4, the JSON Wire Protocol is discouraged in favor of W3C WebDriver [29].

Figure 2 shows a couple of examples of Selenium WebDriver. The left side of
this figure shows some scripts that use the cross-browser Selenium WebDriver API.
The center of the figure shows the drivers, which receive JSON Write Protocol or
W3C WebDriver commands and translate these commands to the browser-specific
support. Finally, the right part of the figure shows the web browsers. In the case
of Google Chrome, the driver is named chromedriver, and the native browser
support is the DevTools Protocol?. In Firefox, the driver is called geckodriver, and
the native automation support is done using the Marionette protocol®.

3 Related work
3.1 Test Automation and Selenium

Dustin et al. define automated software testing as “the management and perfor-
mance of activities, to include the development and execution of test scripts so as
to verify test requirements, using an automated test tool” [24]. Automated testing
tools run pieces of software called test cases (or simply tests) that exercise a SUT
while comparing their actual outcomes with the expected results, giving a verdict
(pass or fail) about it [18]. Rafi et al. carried out a systematic literature review
about the benefits and limitations of automated software testing [48]. According

4 https://chromedevtools.github.io/devtools-protocol/
5 https://firefox-source-docs.mozilla.org/testing/marionette/

https://chromedevtools.github.io/devtools-protocol/
https://firefox-source-docs.mozilla.org/testing/marionette/

Automated Driver Management for Selenium WebDriver 5

to this review, the most relevant advantages of test automation are reusability, re-
peatability, and effort saved in test executions. However, implementing and main-
taining automated tests are time-consuming tasks. This view is aligned with the
results presented by Ramler et al. [49], since many automated testers invest too
much effort (and, therefore, cost) to repair decayed tests.

A key aspect to carry out automated tests efficiently in a software project
is using proper testing tools [23]. In this field, Selenium is a very relevant actor
in the browser automation space. Selenium is often recognized as the de-facto
framework for end-to-end testing of web applications [23]. Moreover, it is the
basis for a relevant number of approaches that wrap or extend the built-in ca-
pabilities of Selenium, such as the SmartDriver project [11], which is a Selenium
WebDriver extension based on the separation of test automation aspects: 1) Tech-
nical elements that are related to the user interface and test logic; 2) Business
aspects that are associated with the application under test. Another framework
that extends Selenium WebDriver is named FACTS (Framework for Automation
of Cloud-application Testing using Selenium) [38]. It is a data-driven framework
in which unit tests using Selenium WebDriver are derived from existing datasets.
Another example in this category is Selenium-Jupiter, an extension of JUnit 5 [28]
that provides integration with Selenium and Docker [31][30].

A recent study about the Selenium ecosystem reports that maintainability and
flakiness are the main problems related to Selenium test suites [29]. A test is said
to flaky when it is unreliable, i.e., it fails or passes under the same conditions
[43]. Implementing proper wait [47] and location strategies [40] for web elements
is recommended to avoid flaky tests with Selenium WebDriver. Regarding main-
tainability, and as proved in [2], the maintenance of automated tests provides a
positive return on investment compared to manual testing. Therefore, maintain-
ability costs should not be a stopper in the adoption of test automation through
Selenium. A well-known design pattern aimed to narrow the maintenance costs of
Selenium tests is the Page Object Model (POM). With this pattern, web pages
are modeled using an object-oriented class to reduce code duplication. According
to Leotta et al., the maintenance time is divided by three when using POM [41].
In this line, Stocco et al. propose Apogen, a tool aimed to automatically generate
page objects for Selenium WebDriver [54][55].

As introduced before, a fundamental aspect of Selenium WebDriver is the usage
of proper drivers to automate browsers using their native support. To the best of
our knowledge, there is no relevant literature about the management of these
drivers, which is, in many cases, done manually [29]. This can be interpreted as
an indicator of the necessity for this work. As explained in Section 4, the use of
automated management techniques for these drivers might ease the development
and maintenance of automated tests based on Selenium.

3.2 API design and evaluation

APIs play a key role in modern software development. Software developers world-
wide create applications by composing capabilities exposed by different APIs [36].
Programming is a hard mental work in which API misuse has been identified as
a prevalent cause of software defects [37]. For this reason, proper API design is
recognized as being paramount of importance nowadays [8].

6 Boni Garcia et al.

Table 1 Clarke’s dimensions definition and relationship with the CDs dimensions

Clarke’s s Related CDs
. . Definition R .
dimension dimensions
- Process of API learning and Closeness of mapping
Understandability understanding Hidden dependencies

Hard mental

Low-level details developers need to

Abstraction Abstraction
manage
; It licati Role expressiveness
Expressiveness Proc'ess o traps ating application Visibility
requirements into code Consistency
Premature commitment
Provisionality
Error proneness
Reusability Man?ten.ance and evolution of Viscosity
applications Diffuseness
Learnability Incremental and progressive API Progressive evaluation

learning process

The API design is an interdisciplinary domain that ideally should combine
cognitive psychology and software engineering [36]. However, the API design is
typically carried out by the development team, usually focused on implementation
details rather than usability aspects. In this field, several research efforts have
been made about API design and evaluation. Early attempts to investigating APIs
followed ad-hoc approaches of given technologies, such as C# [58], Java [8], or C++
[50]. Other authors concentrate on API usability independently of the underlying
technology. For instance, Ellis et al. carried out a usability evaluation of the factory
pattern [25]. During the last decades, further authors tried to systematize the
problem of API design and evaluation from a holistic perspective [1][5][21][26]. In
this context, the Cognitive Dimensions of Notations (CDs) framework has gained
popularity [33]. The CDs framework is an approach for analyzing the usability
of notational systems (such as word processors or computer-aided design tools)
and information artifacts (typically software systems) [7]. The CDs framework
provides a set of discussion notations (i.e., a vocabulary) to be used by designers
when investigating the cognitive implications of design decisions.

When coming to API evaluation, the CDs framework can be a useful approach
since it allows to compare users’ expectations to designers’ views. Nevertheless, the
CDs framework has been criticized due to its theoretical and practical limitations
[44]. For this reason, further authors propose the adaption of the CDs framework
to the so-called Clarke’s dimension [16][17], which concentrates the main aspects of
API usability in 5 high-level aspects [46]: understandability, abstraction, expres-
siveness, reusability, and learnability. These aspects and their relationship with
the original CDs framework are summarized in Table 1.

Clarke’s dimensions are more straightforward to understand than the CDs no-
tations as they are fewer and more intuitive for regular developers. In addition,
the evaluation of an API following Clarke’s dimensions can be done using a ques-
tionnaire requesting users through a Likert scale [9]. For all these reasons, Clarke’s
dimensions have been used to assess the usability API in previous research [46][42].

Automated Driver Management for Selenium WebDriver 7

Hence, and as explained in Section 7, we use Clarke’s dimensions to evaluate the
usability of the proposed WebDriverManager API.

4 Motivation

As introduced before, the use of the proper driver (e.g., chromedriver for Chrome
or geckodriver for Firefox) is a mandatory constraint when using Selenium Web-
Driver. This fact is a recurrent problem for Selenium WebDriver testers. For ex-
ample, when using Java as language binding in Selenium WebDriver, the driver’s
absolute path must be exported as a given Java property, as shown in Listing 1.
Although this example is specific to Java, other equivalent approaches are required
for other Selenium WebDriver binding languages®.

Listing 1 Standard setup for drivers path in Selenium WebDriver using Java

System.setProperty(”webdriver.chrome.driver”, ”/path/to/chromedriver”);
System.setProperty(”webdriver.gecko.driver”, ”/path/to/geckodriver”);
System.setProperty(”webdriver.edge.driver”, ”/path/to/msedgedriver”);
System.setProperty(”webdriver.opera.driver”, ”/path/to/operadriver”);
System.setProperty(”phantomjs.binary.path”, ”/path/to/phantomjs”);
System.setProperty(”webdriver.ie.driver”, ”C:/path/to/IEDriverServer.exe”);

As can be seen, the required driver needs to be downloaded and its absolute
path is hardcoded as a Java property. This fact is problematic at different levels.
First of all, it is a manual process, and therefore, it adds some extra effort to the
development process of Selenium WebDriver tests. Moreover, the resulting code is
no longer portable. In other words, it can only be executed in the machine in which
the driver is stored. This is especially cumbersome in the usual case in which tests
are executed by Continuous Integration (CI) servers, such as Jenkins or Travis, to
name a few [4].

Another major problem of manual driver management is related to the main-
tainability and flakiness of the Selenium WebDriver tests. Modern web browsers,
such as Chrome, Firefox, Edge, or Opera, are sometimes called evergreen browsers.
This term refers to the ability of these browsers to upgrade to the latest stable
version automatically. For example, and as documented in the download page
of chromedriver’, chromedriver version 83.0.4103.39 is required for controlling
Chrome 83 with Selenium WebDriver. Thus, a tester needs to download and ex-
port the path of that specific chromedriver, as shown in Listing 1. Eventually,
the evergreen Chrome will automatically upgrade to version 84. At that moment,
a Selenium script using that driver will be broken since the required driver for
Chrome 84 is chromedriver version 84.0.4147.30 and not 83.0.4103.39, which is
incompatible with Chrome 84. In practice, Selenium developers experience this
problem when a decayed test reports the following error message: “this version
of chromedriver only supports chrome version N”. The value of N is the latest
version of Chrome supported by a particular version of chromedriver (83 in the
example before).

6 https://www.selenium.dev/documentation/en/webdriver/driver_requirements/
7 https://chromedriver.chromium.org/downloads

https://www.selenium.dev/documentation/en/webdriver/driver_requirements/
https://chromedriver.chromium.org/downloads

8 Boni Garcia et al.

Google Trends of the search "this version of chromedriver only supports Chrome version”

and Chrome releases during 2019 and 2020 88.0.4324
100 B7.0.4280

8604240 ®
|]

&

]

85.0.4183
80 B4.0:4147
8304103 ®

[]

3

o

(SRR

o
=)

81.0.4044
79.0.3945

=

B0.0.3987

G M oo oo o3 o G

o
-

-

‘.4
Chrome version (major)

w
=}

76.0.3809

Interest over time (relative)
wn

10
73.0.3683

5 .0
& oS

Ll
&P

o
&
'

—GoogleTrends B Chromerelease

Fig. 3 Worldwide relative interest over time of the search term “this version of chromedriver
only supports chrome version” in Google Trends together with the release dates of Chrome
during 2019 and 2020.

Figure 3 shows the worldwide search interest of the abovementioned error mes-
sage on Google® during 2019 and 2020, together with the release date of the dif-
ferent versions of Chrome in this period. As illustrated by this chart, the interest
over time concerning this error message is directly related to the release of new
Chrome versions. The issue is recurrent in time, and the automatic update of ever-
green browsers used in conjunction with manually managed drivers (chromedriver
in this case) is the underlying cause. Another proof of this issue can be found on
the popular questions and answers site StackOverflow. At the time of this writing,
the message “this version of chromedriver only supports chrome version” appears
in 330 StackOverflow posts® involving Selenium WebDriver and different language
bindings.

In conclusion, a Selenium WebDriver test in which the driver management is
done manually requires extra maintenance effort to keep the version compatibility
of driver and browser. Therefore, we consider that the management of Selenium
drivers is a very relevant aspect that deserves a robust automated solution. The
next section provides the details of the proposed methodology to solve these prob-
lems.

5 Methodology
The final aim is to download, setup, and maintain the proper drivers for a computer

in which Selenium WebDriver scripts are executed to drive local browsers. Driver
releases are available in public repositories typically accessible through HTTP. The

8 https://trends.google.com/trends/explore?date=2019-01-01%202020-12-31&q=this}
20versiony200f%20chromedriver?’20only%20supports’%20Chrome20version

9 https://stackoverflow.com/search?q=this+version+of+chromedriver+only+supports+
Chrome+version

https://trends.google.com/trends/explore?date=2019-01-01%202020-12-31&q=this%20version%20of%20chromedriver%20only%20supports%20Chrome%20version
https://trends.google.com/trends/explore?date=2019-01-01%202020-12-31&q=this%20version%20of%20chromedriver%20only%20supports%20Chrome%20version
https://stackoverflow.com/search?q=this+version+of+chromedriver+only+supports+Chrome+version
https://stackoverflow.com/search?q=this+version+of+chromedriver+only+supports+Chrome+version

Automated Driver Management for Selenium WebDriver 9

Local host Q Knowledge
databases

Driver resolver % ——

selenium || __ J | Commands Versions
WebDriver —_— H database database
=

Drivers

2. Driver path repositories)

Versions
database

Resolution algorithm {(:Z}} database
h 1. Resolve driver

operadriver

3. Control browser edgedriver

Local storage (5 . geckodriver

Driver
cache

Fig. 4 Overview of the proposed methodology. A driver resolver is a helper tool that imple-
ments the resolution algorithm. This algorithm identifies the proper driver and downloads it
from the corresponding repository. The drivers and the resolution data are stored persistently
in the local storage.

Q) chromedriver

Resolution
cache

@
O

R

v84.0.4147.30

v83.0.4103.39
v81.0.4044.138

Browsers

names of these drivers for the main evergreen browsers nowadays are chromedriver
(Chrome and Chromium), geckodriver (Firefox), msedgedriver (Edge), and op-
eradriver (Opera). This section provides a detailed description of the proposed
approach to manage these drivers in an automated fashion.

The high-level overview of the proposed methodology is depicted in Figure 4.
The first component depicted in this diagram is the local computer in which a
Selenium WebDriver script needs to be executed. The first constraint to run this
script is the required browser (e.g., Chrome, Firefox) is installed in the machine.
Supposing this constraint is fulfilled, the next step is to obtain the proper driver
for the local browser. We want to carry out this process in an automated and
auto-updated manner to avoid the potential problems described previously. This
process is carried out by a component labeled as “driver resolver” in Figure 4.

A driver resolver is a helper tool for Selenium WebDriver. The heart of this
tool is what we call the resolution algorithm. The term “resolution” refers to the
process to identify the required driver to control a given browser with Selenium
WebDriver. Thus, the resolution algorithm (represented as a blue box in Figure
4) is in charge of identifying the proper driver, downloading it from its repository,
and making it available for the Selenium WebDriver script. The rest of this section
is divided into three parts to explain all the details of this algorithm:

1. Versions database. It is mandatory to know beforehand the relationship be-
tween the driver versions aimed to control the different flavors and versions
of web browsers. The driver resolver uses a trusted knowledge database that
supports the resolution algorithm.

2. Local storage. Another essential aspect of the proposed methodology is the
persistence layer. For the sake of performance, it is mandatory to store different
assets and data in the local storage of the computer running the resolution
algorithm. This information is saved persistently in two separate places. We
refer to these spaces as the driver and the resolution cache.

10 Boni Garcia et al.

3. Resolution algorithm. Finally, we describe the fine-grained details of the inter-
nal algorithm workflow and the relationship with the rest of the components.

5.1 Versions database

The “versions database” is a key ingredient in the proposed methodology. This
component is a knowledge base that associates the different driver versions (e.g.,
chromedriver) with their corresponding browser versions (e.g., Chrome). This
database is mandatory since it is impossible to determine the correct driver version
for all browsers in all cases. For instance, if a tester requires controlling Firefox
version 68 with Selenium WebDriver, he/she should use the correct version of
geckodriver. To find out this relationship, he/she needs to go to the geckodriver
repository and inspect the documentation. In some cases (unfortunately, not al-
ways), the maintainers document this relationship in the release notes. But in
other cases (especially in early browser versions), the relationship browser-driver
is unknown. In this case, the driver version can only be identified by trial and
error (for the example of Firefox 68, the required geckodriver version is 0.25.0).
This problem also happens with Opera (for instance, operadriver 83.0.4103.97 is
needed to control Opera 69).

The maintainers of chromedriver were pioneers to provide a solution to this
issue. Starting from Chrome 70 (released in September 2018), the chromedriver
team began to make releases following the same versioning schema as Chrome.
Moreover, they began to maintain different files in their repository to announce
the chromedriver versions. This way, the latest stable release of chromedriver can
be checked by simply inspecting the content of a file called LATEST _RELEASE' in
the chromedriver repository. Moreover, there are additional files in this repository
reporting the full version of the drivers for Chrome browser 70 and above. For in-
stance, the file LATEST_RELEASE_80'! contains the version of chromedriver required
to control Chrome 80. This mechanism proved to be effective in automating the
management of chromedriver. For this reason, the msedgedriver team adopted a
similar procedure starting from Edge 75 (released in June 2019).

Thanks to this method, automated scripts can be created to determine the
proper driver version for Chrome 70 and above and Edge 75 and above, simply
knowing the major version of the browser (e.g., 76, 77, and so for). Nevertheless,
this process cannot be automated for other browsers, such as Firefox or Opera,
neither for previous versions for Chrome nor Edge. Thus, the first element of
our methodology is a knowledge database that matches the versions or driver and
browser to carry out the resolution process in an automated manner. As illustrated
in Figure 4, there are two copies of this database. The first one is the master copy of
the database, and it is updated continuously to maintain the relationship between
browsers and drivers. This version database is publicly available, and it is labeled
as “versions repository” in Figure 4. There is also a local copy of the versions
database shipped in each release of the driver resolver. As explained in Section
5.3, this local copy is used as the last resource mechanism to discover the driver
version using the browser version in the resolution algorithm.

10 https://chromedriver.storage.googleapis.com/LATEST_RELEASE
I nttps://chromedriver.storage.googleapis.com/LATEST_RELEASE_80

https://chromedriver.storage.googleapis.com/LATEST_RELEASE
https://chromedriver.storage.googleapis.com/LATEST_RELEASE_80

Automated Driver Management for Selenium WebDriver 11

5.2 Local storage

The main objective of the resolution algorithm is to download the proper driver
to control a given web browser with Selenium WebDriver. Drivers are binary pro-
grams with a size of around 10 MB. Although they are not too heavy, it is pointless
to download the same file repeatedly when executing different Selenium WebDriver
scripts. Therefore, each time a driver is downloaded, it is stored persistently in the
local filesystem in what we call the driver cache. By default, the next time the
same driver version is required, it is used directly from that cache. The use of this
cache reduces the startup time of Selenium WebDriver tests drastically.

The second persistent data store we propose is called the resolution cache.
As explained in Section 5.3, to carry out the resolution algorithm, it is necessary
to connect to different online repositories (to check the versions database and the
driver versions) and also execute certain commands in the shell. This process takes
some time, which depends mainly on external factors (network latency, congestion,
or server response time). Nevertheless, the algorithm output (i.e., the path of the
driver to be used) is in principle the same when the algorithm is executed in a short
timelapse (e.g., when executed repeatedly in a test suite). This happens because
the browser and their corresponding drivers have a relatively low rate of change
(compared to the duration of a test suite execution). For example, the Chrome
team usually releases a major version every two months, approximately. Hence,
and to improve the performance of the resolution algorithm, the results obtained
when the resolution algorithm is executed are stored persistently in what we call
the resolution cache. In particular, two pieces of information are stored:

1. The detected major version of the browser, e.g., Chrome 83.
2. The resolved driver version for a given browser version, e.g., chromedriver
83.0.4103.39 (which is the resolved version for Chrome 83).

Inspired by the cache mechanism implemented in the DNS (Domain Name Sys-
tem) protocol, each record stored in the resolution cache is attached to a Time-To-
Live (TTL) [39]. In particular, a time-based TTL approach is followed. Following
this approach, each TTL is understood as an expiration time in which each record
is valid. This way, each entry stored in the resolution cache is considered reusable
only in the period established by a timestamp. This timestamp is calculated using
the date and time the algorithm was executed plus the TTL [52]. When further
requests to the resolution algorithm are made, the information stored in the reso-
lution cache is reused only in that validity period. After that, the record is consid-
ered stale, and the resolution process should be renewed. For better performance
tuning, we propose two different values of TTLs:

1. TTL_driver. This value is used to set the expiration of the resolved driver
version (e.g., chromedriver 83.0.4103.39). Since the driver version is calculated
based on network requests, this part of the resolution process is costly in terms
of time. Therefore, and for the sake of performance, we recommend a relatively
high value of this TTL. By default, we recommend 86400 seconds (i.e., one day)
for the TTL_driver.

2. TTL_browser. This value is used to set the expiration time for the resolved
browser major version (e.g., Chrome 83). As explained in Section 6.2, browser
version detection is a process based on the execution of shell commands. Since

12 Boni Garcia et al.

Local host Q
Driver resolver %, |
Resolution algorithm &% — ;
1. Resolve ¢ " i
driver Carer . Check browser version: -+ Commands |] ¢
-) no s browser M0 | 1. From the resolution cache - database
@ version version 2. From the shell using online i Knowledge ~y
known?, known?. commands database i i databases
3. From the shell using local ; i i
commands database - i i
ves ; Y
: i} commands | | versions
database database
yes
Check driver version using browser version: o
1. From the resolution cache
2. From the driver repository (LATEST_RELEASE x)
3. From the online versions database
4. From the local versions database 0
f Versions
database
Is driver
version .
Drivers
known? vers
repositories
operadriver
Use latest driver version: daedn
1. From the driver repository (LATEST_RELEASE) edgedriver
2. Calculate the latest version from all the releases -
T geckodriver
chromedriver
Driver in no Download driver from repository |
cache? and store in driver cache
2. Driver
path Get driver path
Fallback: get latest
from cache .
version from cache
Local storage (5
7% Resolution Driver
cache cache
TTL

Fig. 5 Resolution algorithm workflow

this process is not very expensive in terms of time, this value can be low. By
default, we recommend 3600 seconds (i.e., one hour) for the TTL_browser.

5.3 Resolution algorithm

As introduced in Figure 4, the resolution algorithm has a single input request
(step “1. Resolve driver”) and another single output point (“2. Driver path”).
The algorithm is typically triggered by a Selenium WebDriver script that needs
to access the driver path before controlling a given web browser (e.g., Chrome,
Firefox, etc.). The complete workflow of the resolution algorithm, in context with
the rest of the components, is highlighted in Figure 5.

The driver version is the first condition handled internally by the algorithm.
When the driver version is unknown, it should be discovered. The algorithm needs
to compile three parameters to that aim:

— The operating system (typically, Linux, Mac, or Windows).
— The architecture of the local host (usually 32 or 64 bits).
— The proper driver version for the requested browser.

To find out the operative system and the platform is straightforward using
regular system calls. The selection of the driver version is a more complicated

Automated Driver Management for Selenium WebDriver 13

process. A possible strategy when resolving drivers for regular web browsers is to
use the latest driver release. This policy can work in many cases, but not always
(e.g., if the browser is not exactly the latest stable version). For that reason,
the browser version should be determined dynamically by the algorithm. This
detection is done using one of the following alternatives:

1. Reading the resolution cache. As introduced before, the browser version is
stored persistently with a validity time determined by the TTL_browser.

2. Executing a command in the shell (using an online commands database).
Browsers typically provide some CLI utilities for passing arguments or ad-
vanced browser setup, to name a few. Among these CLI features, the browser
version can be requested. The driver resolver first uses a central (online) com-
mand database to carry out this process. This database contains a list of shell
commands (e.g., google-chrome --version) for the different browsers and op-
erative systems. The resolution algorithm executes these commands to find out
the browser version.

3. Executing a command in the shell (using a local commands database). The
driver resolver internally stores a local copy of the commands database. This
copy is used as a fallback of the previous step.

If the browser version is known after this step, this value is used as input of the
following stage, in which the specific driver version is determined using the browser
version. The algorithm uses a cascade process in which each step is executed if the
previous one is not effective. The driver version using the browser version is tried
to be determined:

1. From the resolution cache. Again, the resolution cache is the first element to be
requested. If the driver for the same browser was previously resolved (within
the TTL_driver time), the driver version should be contained in the driver
cache.

2. From the driver repository. As explained in Section 5.1, the maintainers of
the drivers for Chrome and Edge also keep track of the proper version for the
released drivers. In these cases, theoretically, this is the most accurate way to
find the driver version based on the major browser version.

3. From the online versions database. If the previous step is not successful (or not
possible, e.g., for Firefox or Opera drivers), the versions database is the only
mechanism to match the driver version, as explained in Section 5.1. First, the
online version of the driver database is used.

4. As the last resort, the local copy of the versions database (shipped with each
release of the driver resolver) is employed.

After this process, two alternatives can occur. First, the driver version has not
been discovered. When this happens, a second process to determine the driver
version is started. In this case, instead of using the browser version, the algorithm
calculates the latest possible driver version. To carry out this process, the pipeline
is the following:

1. To find out the latest driver version from the data stored in the driver reposi-
tory, in other words, to read the content of the LATEST _RELEASE file for chrome-
driver or the LASTEST_STABLE file for msedgedriver.

14 Boni Garcia et al.

2. When this information is not available, or in the case of other browsers, the
algorithm connects the corresponding driver repository and collects all the pos-
sible driver versions. The highest available version (i.e., the latest) is selected.

At this point, the algorithm has already determined the driver version to be
used. This version can be either the version discovered using the browser version
or the latest possible driver version. In any case, and using that driver version,
the algorithm first queries the driver cache. If the driver is already in the cache,
the algorithm ends. If not, the algorithm connects to the proper driver repository,
downloads the driver, and stores it properly in the driver cache. In any case, the
driver path from the resolution cache is used as the output.

Finally, the algorithm incorporates a fallback mechanism. If any uncontrolled
exception occurs in any step during the algorithm (e.g., a connectivity problem),
this fallback is invoked. In this case, as a last resort, the latest driver version from
the driver cache is used as the output of the resolution algorithm.

6 Implementation

WebDriverManager is the reference implementation for the methodology presented
in Section 5. WebDriverManager was first released in March 2015. It is developed
in Java and is open-source, released under the terms of Apache Licence 2.0%2.
Its source code is publicly available on GitHub'®. WebDriverManager allows the
management of the drivers for two kinds of browsers:

— Modern browsers (evergreen): Chrome, Chromium, Firefox, Edge, and Opera
Edge.
— Legacy browsers (deprecated): Internet Explorer and PhantomJS.

This section contains some of the most relevant implementation aspects of
WebDriverManager, regarding the connection with driver repositories, knowledge
databases (for versions and commands), persistence layer (driver and resolution
cache), resolution algorithm, and execution methods (as Java dependency, CLI
tool, server, Docker container, and Java agent).

6.1 Driver repositories

As explained in Section 5.3, the tool implementing the resolution algorithm should
connect and download files from different websites. This feature hides several low-
level implementation details. Table 2 summarizes these aspects. The first and
second columns of this table refer to the browser and driver name respectively.
The third column is the repository public URL. It is worth noting that the content
of this URL contains human readable content. Thus, WebDriverManager does not
use this URL to automate the download process. Instead, the URL included in
the column “Endpoint” of Table 2 is handled internally by WebDriverManager.

12 nttps://www.apache.org/licenses/LICENSE-2.0
13 nttps://github.com/bonigarcia/webdrivermanager

https://www.apache.org/licenses/LICENSE-2.0
https://github.com/bonigarcia/webdrivermanager

Automated Driver Management for Selenium WebDriver 15

Each driver vendor releases its driver using different storage technologies, such
as Google Cloud Storage, Azure Storage, or GitHub, among others. WebDriver-
Manager deals with this heterogeneity, connecting to the proper URL endpoint
depicted in Table 2. WebDriverManager exchanges the appropriate messages with
each endpoint, parsing the responses in the format (XML or JSON) managed by
each storage server (column “Message format” in Table 2). Moreover, each main-
tainer decides how to package each version of the driver. Internally, WebDriver-
Manager handles different data compression technologies (such as zip or tar.gz) to
decompress the downloaded artifact properly (as depicted in the column “Artifact
format” in Table 2). Finally, WebDriverManager filters the decompressed files, se-
lecting only the actual driver and discarding other possible contents (e.g., license,
readme).

6.2 Knowledge databases

As explained in Section 5 and illustrated in Figures 4 and 5, the driver resolver
tool (i.e., WebDriverManager) should contain two different knowledge databases,
for versions and commands.

The versions database maps the browser and driver versions. The resolution al-
gorithm implemented internally by WebDriverManager reads a central database to
get an updated snapshot of this mapping information. This database is maintained
in the master branch of WebDriverManager in GitHub'?. As shown in Listing 2,
WebDriverManager uses Java properties to handle the versions database.

Listing 2 Versions database in WebDriverManager (implemented using Java properties)

This file contains the known driver versions compatible with the corresponding browser
version

Browser: Google Chrome and Chromium — Driver: chromedriver
Source: http://chromedriver.chromium.org/downloads
chrome85=85.0.4183.38

chrome84=84.0.4147.30

chrome72=2.46
chrome71=2.46

Browser: Mozilla Firefox — Driver: geckodriver

Source: https://github.com/mozilla/geckodriver/releases
firefox78=0.26.0

firefox77=0.26.0

Browser: Opera — Driver: operadriver

Source: https://github.com/operasoftware/operachromiumdriver/releases
opera69=83.0.4103.97

opera68=81.0.4044.113

opera60=2.45

™ https://raw.githubusercontent.com/bonigarcia/webdrivermanager/master/src/main/
resources/versions.properties

https://raw.githubusercontent.com/bonigarcia/webdrivermanager/master/src/main/resources/versions.properties
https://raw.githubusercontent.com/bonigarcia/webdrivermanager/master/src/main/resources/versions.properties

16

Boni Garcia et al.

Table 2 Driver repositories connection details

Storage

Message Artifact

Browser Driver Repository type Endpoint format format
. https://
Chrome http:// . Google chromedriver.
chromedriver. .
and . . Cloud storage. XML .zip
. chromedriver chromium.)
Chromium Storage googleapis.
org/
com/
https:
https:// //api.
ocko- github.com/ github. tar.oz
Firefox griver mozilla/ GitHub com/repos/ JSON .and'gzi
geckodriver/ mozilla/ P
releases geckodriver/
releases
https://
d?veloper. https://
microsoft. Azure msedgedriver
Edge msedgedriver c?m/en-us/ §torage azureedge. XML Z1p
microsoft-edge
net/
tools/
webdriver/
https:
https:// //api.
oper- github.com/ github.
Opera agriver operasoftware/ GitHub com/repos/ JSON zip
operachromiumdriver/ operasoftware/
releases operachromiumdriver/
releases
https: https://
. /v Google selenium-release.
E;Ee{:fetr EIEIPSrelI:ver selenium. Cloud storage. XML .zip
p dev/ Storage googleapis.
downloads/ com/
https://
https: bltbucket .)
- org/api/2. .zip,
//github. .
Phan- hantomjs com/ariya/ Bit- o JSON ‘tar.gz,
tomJS p) y Bucket repositories/ and
phantomjs/ -
ariya/ .tar.bz2
releases .
phantomjs/
downloads

operab9=2.45

Browser: Microsoft Edge — Driver: msedgedriver

Source: https://developer.microsoft.com/en—us/microsoft —edge/tools/webdriver/

edge86=86.0.573.0
edge85=85.0.564.0

edged42=6.17134
edge41=5.16299

http://chromedriver.chromium.org/
http://chromedriver.chromium.org/
http://chromedriver.chromium.org/
http://chromedriver.chromium.org/
https://chromedriver.storage.googleapis.com/
https://chromedriver.storage.googleapis.com/
https://chromedriver.storage.googleapis.com/
https://chromedriver.storage.googleapis.com/
https://chromedriver.storage.googleapis.com/
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://github.com/mozilla/geckodriver/releases
https://api.github.com/repos/mozilla/geckodriver/releases
https://api.github.com/repos/mozilla/geckodriver/releases
https://api.github.com/repos/mozilla/geckodriver/releases
https://api.github.com/repos/mozilla/geckodriver/releases
https://api.github.com/repos/mozilla/geckodriver/releases
https://api.github.com/repos/mozilla/geckodriver/releases
https://api.github.com/repos/mozilla/geckodriver/releases
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/
https://msedgedriver.azureedge.net/
https://msedgedriver.azureedge.net/
https://msedgedriver.azureedge.net/
https://msedgedriver.azureedge.net/
https://github.com/operasoftware/operachromiumdriver/releases
https://github.com/operasoftware/operachromiumdriver/releases
https://github.com/operasoftware/operachromiumdriver/releases
https://github.com/operasoftware/operachromiumdriver/releases
https://github.com/operasoftware/operachromiumdriver/releases
https://api.github.com/repos/operasoftware/operachromiumdriver/releases
https://api.github.com/repos/operasoftware/operachromiumdriver/releases
https://api.github.com/repos/operasoftware/operachromiumdriver/releases
https://api.github.com/repos/operasoftware/operachromiumdriver/releases
https://api.github.com/repos/operasoftware/operachromiumdriver/releases
https://api.github.com/repos/operasoftware/operachromiumdriver/releases
https://api.github.com/repos/operasoftware/operachromiumdriver/releases
https://www.selenium.dev/downloads/
https://www.selenium.dev/downloads/
https://www.selenium.dev/downloads/
https://www.selenium.dev/downloads/
https://www.selenium.dev/downloads/
https://selenium-release.storage.googleapis.com/
https://selenium-release.storage.googleapis.com/
https://selenium-release.storage.googleapis.com/
https://selenium-release.storage.googleapis.com/
https://selenium-release.storage.googleapis.com/
https://github.com/ariya/phantomjs/releases
https://github.com/ariya/phantomjs/releases
https://github.com/ariya/phantomjs/releases
https://github.com/ariya/phantomjs/releases
https://github.com/ariya/phantomjs/releases
https://bitbucket.org/api/2.0/repositories/ariya/phantomjs/downloads
https://bitbucket.org/api/2.0/repositories/ariya/phantomjs/downloads
https://bitbucket.org/api/2.0/repositories/ariya/phantomjs/downloads
https://bitbucket.org/api/2.0/repositories/ariya/phantomjs/downloads
https://bitbucket.org/api/2.0/repositories/ariya/phantomjs/downloads
https://bitbucket.org/api/2.0/repositories/ariya/phantomjs/downloads
https://bitbucket.org/api/2.0/repositories/ariya/phantomjs/downloads
https://bitbucket.org/api/2.0/repositories/ariya/phantomjs/downloads

Automated Driver Management for Selenium WebDriver 17

The second knowledge database proposed in the methodology is called the
commands database. This component stores a list of commands executed by the
driver resolver in the shell to find out the version of the different browsers installed
in the local machine. This database is also maintained in the master branch of
WebDriverManager as a Java properties file!®.

The commands to be executed in the shell to find out the browser version are
summarized in Table 3. These commands are browser and platform-dependent. For
this reason, this table includes three columns: the browser whose version needs to
be detected, the operating system, and the command. The first important aspect
of the data presented in Table 3 is that browsers behave differently depending
on the operating system. For example, to find out the Chrome version in Linux,
WebDriverManager executes the command google-chrome --version and parses
the output to get the version. Nevertheless, this command is not available on other
operating systems. When the operating system is Windows, WebDriverManager
uses a command-line utility called WMIC (Windows Management Instrumenta-
tion Command-Line). WMIC is a tool that allows to access and manage Windows
resources [45]. As shown in Table 3, WebDriverManager uses the same WMIC com-
mand to obtain the versions of different browsers (Chrome, Chromium, Firefox,
Edge, and Opera) in Windows. The main difficulty in executing this command is
that the absolute path of the browser should be known. To find out this path, Web-
DriverManager manages different candidate paths by reading different environ-
ment variables available in Windows hosts (PROGRAMFILES, PROGRAMFILES (X86),
and LOCALAPPDATA) to find out the path of the program files. Furthermore, in
the case of Windows, the Windows registry can be used to detect the versions of
Chrome, Firefox, Edge, and Chromium.

6.3 Persistence layer

Two groups of data are stored persistently in the machine running the driver
resolver tool: the driver and the resolution cache. The driver cache is a folder in the
local machine in which the downloaded drivers are stored. By default, this folder
is located in the path ~/.cache/selenium by WebDriverManager. This cache
allows reusing the drivers from different Selenium WebDriver executions, reducing
the script startup drastically. The drivers are stored in a folder hierarchy with
the following structure: driverName/os+arch/driverVersion, where driverName
is the name of the driver (e.g., chromedriver, geckodriver), os is the operating
system (win, linux, or mac), arch is the architecture (32 or 64), and driverVersion
is the version of the driver (e.g., 84.0.4147.30, 0.26.0). Figure 6 shows an example
of the driver cache tree structure in a Linux machine.

When coming to the resolution cache, WebDriverManager uses Java properties
to store the resolved browser and driver versions and the TTL. This properties
file is called resolution.properties and it is stored by default in the root of the
driver cache by WebDriverManager (see Figure 6). Listing 3 shows an example of
the content of this file. These lines show that the latest detected browser major
versions are Chrome 84, Edge 84, and Firefox 78. For each of these browsers, the

15 https://raw.githubusercontent.com/bonigarcia/webdrivermanager/master/src/main/
resources/commands.properties

https://raw.githubusercontent.com/bonigarcia/webdrivermanager/master/src/main/resources/commands.properties
https://raw.githubusercontent.com/bonigarcia/webdrivermanager/master/src/main/resources/commands.properties

18

Boni Garcia et al.

Table 3 Commands database

Operating

Browser system

Command

cmd.exe /C wmic datafile where name="%PROGRAMFILES(X86) :

Ch Windows \=\\%\\Google\\Chrome\\Application\\chrome.exe" get
rome ;
Version /value
cmd.exe /C wmic datafile where name="%LOCALAPPDATA:\=\\Y%
\\Google\\Chrome\\Application\\chrome.exe" get Version
/value
cmd.exe /C wmic datafile where name="%PROGRAMFILES:\=\\Y%
\\Google\\Chrome\\Application\\chrome.exe" get Version
/value
REG QUERY HKCU\Software\Google\Chrome\BLBeacon \v
version
Linux google-chrome --version
Mac OS /Applications/Google Chrome.app/Contents/Mac0S/Google
Chrome --version
Windows cmd.exe /C wmic datafile where name="%LOCALAPPDATA:\=\\Y%
Chromium \\Chromium\\Application\\chrome.exe" get Version /value
cmd.exe /C wmic datafile where name="%PROGRAMFILES(X86) :
\=\\%\\Chromium\\Application\\chrome.exe" get Version
/value
cmd.exe /C wmic datafile where name="},PROGRAMFILES:\=\\
%\\Chromium\\Application\\chrome.exe" get Version /value
Linux chromium-browser --version
chromium --version
Mac OS /Appli?ations/Chromium.app/Contents/MacDS/Chromium
--version
Fi . cmd.exe /C wmic datafile where name="%PROGRAMFILES:\=\\Y%
irefox ~ Windows
\\Mozilla Firefox\\firefox.exe" get Version /value
cmd.exe /C wmic datafile where name="%PROGRAMFILES(X86):
\=\\%\\Mozilla Firefox\\firefox.exe" get Version /value
Linux firefox -v
Mac OS /Applications/Firefox.app/Contents/Mac0S/firefox -v
cmd.exe /C wmic datafile where name="},PROGRAMFILES (X86) :
Edge Windows \=\\%\\Microsoft\\Edge\\Application\\msedge.exe" get
Version /value
cmd.exe /C wmic datafile where name="%PROGRAMFILES:\=\\%
\\Microsoft\\Edge\\Application\\msedge.exe" get Version
/value
Linux microsoft-edge --version
Mac OS /Applications/Microsoft
Edge.app/Contents/Mac0S/Microsoft Edge -version
cmd.exe /C wmic datafile where name="%LOCALAPPDATA:\=\\%
Opera Windows \\Programs\\Opera\\Application\\launcher.exe" get
Version /value
cmd.exe /C wmic datafile where name="%PROGRAMFILES:\=\\Y%
\\Programs\\Opera\\Application\\launcher.exe" get
Version /value
cmd.exe /C wmic datafile where name="%LOCALAPPDATA:\=\\Y%
\\Opera\Application\\launcher.exe" get Version /value
cmd.exe /C wmic datafile where name="%PROGRAMFILES:\=\\Y%
\\Opera\\Application\\launcher.exe" get Version /value
Linux opera --version
Mac OS /Applications/Opera.app/Contents/Mac0S/Opera --version

Automated Driver Management for Selenium WebDriver 19

boni@ubuntu: ~/.cache/selenium 60x29

Fig. 6 Example of a driver cache content

proper driver versions are also stored (chromedriver 84.0.4147.30, msedgedriver
84.0.522.44, and geckodriver 0.26.0, respectively). These values are attached to a
validity date, calculated with the TTL for browsers (1 hour by default) and the
TTL for drivers (1 day by default).

Listing 3 Resolution cache in WebDriverManager (implemented using Java properties)

#WebDriverManager Resolution Cache (relationship between browsers and drivers versions
previously resolved)

#Mon Jul 27 16:34:33 CEST 2020

chrome=84

chrome—tt1=17\:33\:04 27/07/2020 CEST

chrome84=84.0.4147.30

chrome84—ttl=16\:33\:04 28/07/2020 CEST

edge=84

edge—ttl=17\:34\:03 27/07/2020 CEST

edge84=84.0.522.44

edge84—tt1=16\:34\:03 28/07/2020 CEST

firefox=78

firefox—ttl=17\:33\:33 27/07/2020 CEST

firefox78=0.26.0

firefox78—ttl=16\:33\:33 28/07/2020 CEST

20 Boni Garcia et al.

6.4 Resolution algorithm

The only particularity of the resolution algorithm described in Section 5.3 specific
to Java is related to the required properties by Selenium WebDriver. As shown in
Listing 1 of Section 4, the driver path should be exported as a Java property to
control a browser with Selenium WebDriver. This driver path is obtained as the
output of the resolution algorithm and exported properly by WebDriverManager.

6.5 Execution methods

As introduced before, WebDriverManager is a tool developed in Java. For this rea-
son, the first versions of WebDriverManager were used only as a Java dependency.
As long as the tool evolves, different usages were included: as a CLI tool, as a
server, as a Docker container, and as a Java agent.

6.5.1 Java dependency

Starting with version 1.0.0, each Java release of WebDriverManager is available on
the public repository Maven Central*®. A build tool (such as Maven or Gradle) is
typically used to declare and resolve the dependencies of a Java project. For that,
the dependency coordinates (groupId, artifactId, and version) are specified
[35]. Listing 4 shows the required configuration to use WebDriverManager by test
classes in a Maven and Gradle project. In these snippets, the variable wdm.version
should be substituted for a given WebDriverManager version (the latest available
in Maven central is recommended by default).

Listing 4 WebDriverManager setup in Maven and Gradle

<dependency>
<groupld>io.github.bonigarcia< /groupld>
<artifactld >webdrivermanager< /artifactId>
<version>${wdm.version}</version>
<scope>test</scope>

</dependency>

dependencies {
testImplementation(”io.github.bonigarcia:webdrivermanager:${wdm.version}”)

WebDriverManager provides a fluent API with a single entry point in a Java
class called WebDriverManager. This class allows the use of a family of singleton
objects called managers. Each manager is in charge of the resolution algorithm
for a given driver, required to control a given browser with Selenium WebDriver.
Each manager includes a method called .setup(), which allows executing the
resolution algorithm (i.e., triggers the step “1. Resolve driver” depicted in Figure
5) for a given manager. Listing 5 shows the regular call for each of the provided
managers (for Chrome, Chromium, Firefox, Edge, Opera, Internet Explorer, and
PhantomJS):

16 nttps://search.maven.org/artifact/io.github.bonigarcia/webdrivermanager

https://search.maven.org/artifact/io.github.bonigarcia/webdrivermanager

Automated Driver Management for Selenium WebDriver 21

Listing 5 WebDriverManager regular call for each of the available managers

WebDriverManager.chromedriver().setupQ);
WebDriverManager.chromiumdriver().setupQ);
WebDriverManager.firefoxdriver().setup();
WebDriverManager.edgedriver().setup();
WebDriverManager.operadriver().setupQ);
WebDriverManager.iedriver().setup();
WebDriverManager.phantomjs().setupQ);

Listing 6 shows the recommended skeleton for a JUnit 4 test case using Sele-
nium WebDriver and WebDriverManager. It is worth noting that before the execu-
tion of all tests in this class (method annotated with @BeforeClass), WebDriver-
Manager is used to resolve the required driver to control Chrome with Selenium
WebDriver.

Listing 6 JUnit 4 test skeleton using WebDriverManager and Selenium WebDriver

import org.junit. After;

import org.junit.Before;

import org.junit.BeforeClass;

import org.junit.Test;

import org.openqga.selenium.WebDriver;

import org.openqa.selenium.chrome.ChromeDriver;

import io.github.bonigarcia.wdm.WebDriverManager;
public class ChromeTest {
private WebDriver driver;

©BeforeClass

public static void setupClass() {
WebDriverManager.chromedriver().setupQ);

}

©@Before
public void setupTest() {

driver = new ChromeDriver();
}

QAfter
public void teardown() {
if (driver != null) {
driver.quit();
}

}

QTest
public void test() {

// Exercise and verify SUT
}

The WebDriverManager API allows specifying a wide variety of configuration
parameters. This API is based on the builder pattern [27], and so, different calls can
be concatenated using the same manager before triggering the driver resolution
(method .setup()). Appendix A shows the complete WebDriverManager API.

22 Boni Garcia et al.

Listing 7 shows a couple of examples of WebDriverManager calls using various
configuration methods. In the first line, WebDriverManager is used to resolve
chromedriver. The method clearResolutionCache () forces to clear the resolution
cache (i.e., reset the file resolution.properties) before the resolution. Then, the
method forceDownload () avoids the usage of the driver cache. In other words, even
when the driver is in the cache, it is compulsorily downloaded from the repository.
In the second line, WebDriverManager is used to resolve geckodriver for a fixed
major version of Firefox (i.e., 75) and using a proxy for the network connection.

Listing 7 Examples of WebDriverManager calls with custom configuration

WebDriverManager.chromedriver().clearResolutionCache().forceDownload().setup();
WebDriverManager.firefoxdriver().browserVersion(”75”).proxy(”http://myproxy.com:8080”).
setup();

In addition to the Java API, WebDriverManager allows providing custom con-
figuration using two more alternatives. As shown in Appendix A, for each of the
methods available in the WebDriverManager API, there are one or more config-
uration keys. The format of these keys is always the word wdm. followed by a
camel-case string (e.g., wdm.cachePath). These keys can be passed to WebDriver-
Manager using Java Virtual Machine (JVM) properties using the flag -Dkey=value
when a JVM process is launched. Listing 8 shows an example in which the default
path for driver cache is changed to a custom folder when executing the tests of a
Maven project.

Listing 8 Test execution using Maven and WebDriverManager configuration keys

mvn test —Dwdm.cachePath=/my/custom/path/to/driver/binaries

Last but not least, environment variables can also be used to specify cus-
tom configuration parameters in WebDriverManager. To implement this feature,
WebDriverManager uses a convention for the environment variables names based
on the abovementioned configuration keys. This convention consists in convert-
ing to uppercase each WebDriverManager configuration key name, changing the
dot symbol by an underscore. For example, to configure the driver cache path,
WebDriverManager honors the value of environment variables WDM_CACHEPATH, if
declared in the operating system.

6.5.2 CLI tool

As of version 2.2.0, WebDriverManager can also be used to resolve drivers exe-
cuted from the shell as a regular CLI tool. Thus, every time a new version of
WebDriverManager is released, a JAR (Java ARchive) file containing the compiled
code together with all the dependencies is created. This JAR file, often known as
fat-JAR, is published on GitHub'".

The use of WebDriverManager as a CLI tool is straightforward. The Web-
DriverManager fat-JAR should be invoked using Java from the shell. This com-
mand should specify the driver to be resolved (chrome, firefox, opera, edge,
phantomjs, or iexplorer). Listing 9 shows an example of the command required
to resolve chromedriver from the shell using WebDriverManager.

17 nttps://github.com/bonigarcia/webdrivermanager/releases

https://github.com/bonigarcia/webdrivermanager/releases

Automated Driver Management for Selenium WebDriver 23

Listing 9 Execution example of WebDriverManager from a Windows shell

C:\Users\boni>java —jar webdrivermanager—4.4.0—fat.jar chrome

[INFO] Using WebDriverManager to resolve chrome

[DEBUGI Detecting chrome version using online commands.properties

[DEBUG] Running command on the shell: [cmnd.exe, /C, wmic, datafile, where, name="%
PROGRAMFILES(X86):\=\\%\Google\\Chrome\ \ Application\ \chrome.exe”, get,
Version, /value]

[DEBUG] Result: Version=89.0.4389.114

[DEBUGI Latest version of chromedriver according to https://chromedriver.storage.googleapis
.com/LATEST_RELEASE_89 is 89.0.4389.23

[INFO] Using chromedriver 89.0.4389.23 (resolved driver for Chrome 89)

[INFO] Reading https://chromedriver.storage.googleapis.com/ to seek chromedriver

[DEBUG] Driver to be downloaded chromedriver 89.0.4389.23

[INFO] Downloading https://chromedriver.storage.googleapis.com/89.0.4389.23/
chromedriver_win32.zip

[INFOI] Extracting driver from compressed file chromedriver_win32.zip

[INFO] Driver location: C:\Users\boni\Downloads\chromedriver.exe

All the configuration keys defined in Appendix A can be used to customize
the behavior of WebDriverManager also from the shell. As introduced in Sec-
tion 6.5.1, this is done by passing JVM properties using the flag -Dkey=value
from the shell. For instance, the command java -Dwdm.chromeVersion=89 -jar
webdrivermanager-4.4.0-fat.jar chrome is used to resolve the proper driver for
a given version of Chrome.

6.5.3 Server

As of version 3.0.0, the third way to execute WebDriverManager is as a server.
In this execution model, WebDriverManager offers a REST-like API to resolve
drivers. There are six different endpoints in this API to resolve the supported
drivers in WebDriverManager: /chromedriver, /firefoxdriver, /operadriver,
/edgedriver, /phantomjs, and /iedriver. Each time a GET request is made to
a WebDriverManager server, the resolution algorithm described is executed, and
the resulting driver is sent as an attachment in the HT'TP response.

Listing 10 shows an example of WebDriverManager executed as a server. The
fat-JAR is used to launch the WebDriverManager server, which by default, lis-
tens to incoming requests using port 4041. When the server is up and running, a
client can create a request using GET. For instance, the URL http://wdm-server: -
4041/chromedriver?chromeVersion=84 uses the endpoint /chromedriver to re-
solve the driver for Chrome. In addition, this example URL contains a configura-
tion parameter. Again, all the configuration keys defined in Appendix A can be
reused to customize the request query. For the sake of simplicity, the prefix wdm. is
not be included in the URL query, but only the configuration key name in camel
case. In the example contained in Listing 10, the configuration key chromeVersion
is used to specify a given version of Chrome.

Listing 10 Execution example of WebDriverManager as a server

C:\Users\boni>java —jar webdrivermanager—4.4.0—fat.jar server
[INFO] WebDriverManager server listening on port 4041

[INFO] Server request: GET /chromedriver

[INFO] Server query string for configuration {chromeVersion=[89]}

24 Boni Garcia et al.

[DEBUGI Resolution chrome89=89.0.4389.23 in cache (valid until 17:01:40 07/04/2021CEST)

[INFO] Using chromedriver 89.0.4389.23 (resolved driver for Chrome 89)

[DEBUG] Driver chromedriver 89.0.4389.23 found in cache

[INFO] Driver location: C:\Users\boni\.cache\selenium\chromedriver\win32\89.0.4389.23\
chromedriver.exe

[INFO] Server response: chromedriver.exe 89.0.4389.23 (10695680 bytes)

6.5.4 Docker container

Starting with version 4.0.0, each time a WebDriverManager new version is released,
the corresponding Docker container is published in Docker Hub'®. Internally, these
containers are based on a slim version of Debian shipped together with OpenJDK
and the WebDriverManager fat-JAR. This way, both WebDriverManager CLI and
server can be executed seamlessly as a portable container through a Docker engine.

Listing 11 and Listing 12 show a couple of execution examples of WebDriver-
Manager as a Docker container. First, Listing 11 shows an example of the Web-
DriverManager server running inside a Docker container. The traces report how the
server resolves a given version of chromedriver. Second, Listing 12 how to execute
the WebDriverManager CLI with Docker. In this example, a custom configuration
setup is specified defining environmental variables (flag -e) in the Docker con-
tainer. Moreover, thanks to the use of volumes, the resulting driver file is stored
in the local storage of the Docker host.

Listing 11 Execution example of WebDriverManager server as in a Docker container

boni@ubuntu:~$ docker run —p 4041:4041 bonigarcia/webdrivermanager:4.4.0

[INFO] WebDriverManager server listening on port 4041

[INFO] Server request: GET /chromedriver

[INFO] Server query string for configuration {chromeDriverVersion=[81.0.4044.138]}

[DEBUGI Created new resolution cache file at /root/resolution.properties

[INFO] Reading https://chromedriver.storage.googleapis.com/ to seek chromedriver

[DEBUG] Driver to be downloaded chromedriver 81.0.4044.138

[INFO] Downloading https://chromedriver.storage.googleapis.com/81.0.4044.138/
chromedriver_linux64.zip

[INFOI] Extracting binary from compressed file chromedriver_linux64.zip

[INFO] Driver location: /wdm/chromedriver/linux64/81.0.4044.138/chromedriver

[INFO] Server response: chromedriver 81.0.4044.138 (10317568 bytes)

Listing 12 Execution example of WebDriverManager CLI as in a Docker container

boni@ubuntu:~$ docker run —e BROWSER=chrome —e WDM_CHROMEVERSION=84 —e
WDM_OS=LINUX —v ${PWD}:/wdm bonigarcia/webdrivermanager:4.4.0

[INFO] Using WebDriverManager to resolve chrome

[DEBUG] Created new resolution cache file at /root/resolution.properties

[DEBUG] Latest version of chromedriver according to https://chromedriver.storage.googleapis
.com/LATEST _RELEASE_84 is 84.0.4147.30

[INFO] Using chromedriver 84.0.4147.30 (resolved driver for Chrome 84)

[INFO] Reading https://chromedriver.storage.googleapis.com/ to seek chromedriver

[DEBUGI Driver to be downloaded chromedriver 84.0.4147.30

[INFO] Downloading https://chromedriver.storage.googleapis.com/84.0.4147.30/
chromedriver_linux64.zip

[INFO] Extracting binary from compressed file chromedriver_linux64.zip

[INFO] Driver location: /wdm/chromedriver

18 nttps://hub.docker.com/repository/docker/bonigarcia/webdrivermanager

https://hub.docker.com/repository/docker/bonigarcia/webdrivermanager

Automated Driver Management for Selenium WebDriver 25

6.5.5 Java agent

As of version 4.0.0, WebDriverManager can be used as a Java agent. A Java agent
uses the JVM instrumentation capabilities to add bytecodes to existing compiled
Java classes [6]. Concretely, the WebDriverManager agent checks the objects cre-
ated in a JVM. Just before Selenium WebDriver objects are instantiated (i.e.,
org.openqa.selenium.chrome.ChromeDriver, org.openqa.selenium.firefox.-
FirefoxDriver, org.openqga.selenium.opera.OperaDriver, org.openqga.seleni-
um.edge.EdgeDriver, org.openga.selenium.ie.InternetExplorerDriver), and
org.openga.selenium.phantomjs.PhantomJSDriver, the corresponding setup call
in WebDriverManager is executed to resolve the required driver (chromedriver,
geckodriver, msedgedriver, and so for). This way, Selenium WebDriver can be used
from scripts with total independence of the driver management. Listing 13 shows
an example of a JUnit 4 test using Selenium WebDriver and WebDriverManager
agent. As can be seen, there is no need for explicit driver resolution, since it is
done automatically by the WebDriverManager agent when the test is executed.

Listing 13 JUnit 4 test skeleton using WebDriverManager agent and Selenium WebDriver

import org.junit.After;

import org.junit.Before;

import org.junit.Test;

import org.openqga.selenium.WebDriver;

import org.openqa.selenium.chrome.ChromeDriver;

public class ChromeTest {
private WebDriver driver;

@Before
public void setupTest() {

driver = new ChromeDriver();
}

QAfter
public void teardown() {
if (driver != null) {
driver.quit();
}

}

QTest
public void test() {

// Exercise and verify SUT
}

The JVM flag -javaagent can be used to specify the path of the WebDriver-
Manager fat-JAR when configuring WebDriverManager as an agent. Alternatively,
a build tool like Maven can be used'?.

19 https://github.com/bonigarcia/wdm-agent-example

https://github.com/bonigarcia/wdm-agent-example

26 Boni Garcia et al.

Table 4 Comparison of the different execution methods of WebDriverManager

Execution mode Usage Pros Cons

It allows custom

setup (through the It requires some
WebDriverManager coding effort
API)

Java dependency Driver management
when using Java as

language binding for

Selenium WebDriver . .
It is only valid for

common use cases
Java agent Zero coding effort (e.g., when using

evergreen browsers

without extra setup)

Interoperable with

CLI tool Agnostic driver .
. shell scripting .
management (i.e., It requires
not linked to a additional effort to
Server particular language Cross-platform handle the
binding for Selenium downloaded drivers
Docker container WebDriver) Portable

6.5.6 Recap and other usages

As explained in the previous subsections, WebDriverManager can be executed in
different manners. Table 4 can be used as a reference to select one or another alter-
native. This table describes the typical usage together with the main advantages
and inconveniences of each execution method.

To conclude this section, it is worth mentioning that WebDriverManager can
also be used in different scopes than Selenium WebDriver. The first one is to ease
the driver management of Appium?°, which is a testing framework that extends
Selenium WebDriver to carry out automated testing of mobile applications. In
the same way that Selenium WebDriver, Appium needs to use drivers to control
browsers in mobile devices (e.g., Android). Listing 14 shows an example of how
the WebDriverManager API can be used in conjunction with Appium.

Listing 14 Example of WebDriverManager usage to resolve drivers for Appium

public WebDriver createAndroidChromeDriver(String chromeVersion,
String deviceName, URL appiumServerUrl) {
// Resolve chromedriver and its driver path using WebDriverManager
WebDriverManager.chromedriver().browser Version(chromeVersion).setup();
String chromedriverPath = WebDriverManager.chromedriver()
.getDownloadedDriverPath();

DesiredCapabilities capabilities = new DesiredCapabilities();
capabilities.setCapability("browserName”, ”chrome”);
capabilities.setCapability(”deviceName”, deviceName);
capabilities.setCapability("platformName”, “android”);
capabilities.setCapability(”chromedriverExecutable”, chromedriverPath);

return new AndroidDriver<WebElement>(appiumServerUrl, capabilities);

20 https://appium.io/

https://appium.io/

Automated Driver Management for Selenium WebDriver 27

Another tool that can be supported by WebDriverManager is Selenium Grid.
Selenium Grid?! is an extension of Selenium WebDriver that provides web browsers
hosted on remote machines. In Selenium Grid, a central node (called the Selenium
Hub or Server) keeps track of different nodes and proxies requests from Selenium
scripts. To registers nodes in the Selenium Hub, the use of drivers is mandatory.
To manage these drivers automatically, WebDriverManager can be used. As an
example, Listing 15 shows how to invoke WebDriverManager CLI to register a
node in Selenium Grid.

Listing 15 Example of WebDriverManager usage to register a node in Selenium Grid

C:\Users\boni>java —jar webdrivermanager—4.4.0—fat.jar chrome

[INFOI] Using WebDriverManager to resolve chrome

[DEBUG] Detecting chrome version using online commands.properties

[DEBUGI Running command on the shell: [cmd.exe, /C, wmic, datafile, where, name="%
PROGRAMFILES(X86):\=\\%\Google\\Chrome\\ Application\ \chrome.exe”, get,
Version, /value]

[DEBUGI Result: Version=89.0.4389.114

[DEBUG] Latest version of chromedriver according to https://chromedriver.storage.googleapis
.com/LATEST_RELEASE_89 is 89.0.4389.23

[INFO] Using chromedriver 89.0.4389.23 (resolved driver for Chrome 89)

[INFO] Reading https://chromedriver.storage.googleapis.com/ to seek chromedriver

[DEBUGI Driver to be downloaded chromedriver 89.0.4389.23

[INFO] Downloading https://chromedriver.storage.googleapis.com/89.0.4389.23/
chromedriver_win32.zip

[INFO] Extracting driver from compressed file chromedriver_win32.zip

[INFO] Driver location: C:\Users\boni\Downloads\chromedriver.exe

C:\Users\boni>java —Dwebdriver.chrome.driver="chromedriver.exe” —jar selenium—server—
standalone—3.14.0.jar —role node —hub http://localhost:4444/grid/register —browser
browserName=chrome —port 5555

17:13:55.680 INFO [GridLauncherV3.launch] — Selenium build info: version: ’3.14.0’, revision:
’aaccccel’

17:13:55.684 INFO [GridLauncherV3$3.launch] — Launching a Selenium Grid node on port
5555

2021—-01—-17 17:13:56.637:INFO::main: Logging initialized @1238ms to org.seleniumhq.jetty9.
util.log.StdErrLog

17:13:56.766 INFO [SeleniumServer.boot] — Selenium Server is up and running on port 5555

17:13:56.766 INFO [GridLauncherV3$3.launch] — Selenium Grid node is up and ready to
register to the hub

17:13:57.079 INFO [SelfRegisteringRemote$1l.run] — Starting auto registration thread. Will
try to register every 5000 ms.

17:13:57.080 INFO [SelfRegisteringRemote.registerToHub] — Registering the node to the hub:

http://localhost:4444/grid/register

17:13:57.883 INFO [SelfRegisteringRemote.registerToHub] — The node is registered to the
hub and ready to use

7 Validation

We carried out a survey to provide an empirical evaluation of the proposed ap-
proach. This survey was launched to the WebDriverManager community in 2020.
The objective of this study is to validate the central hypothesis of this piece of
research, i.e.:

21 https://www.selenium.dev/documentation/en/grid/

https://www.selenium.dev/documentation/en/grid/

28 Boni Garcia et al.

H1: WebDriverManager is a tool that facilitates the development process with
Selenium WebDriver.

We designed a questionnaire divided into two parts to validate this hypothe-
sis. First, we studied relevant aspects related to the motivation and adoption of
WebDriverManager by its users. Second, we assessed the usability of the Web-
DriverManager API using Clarke’s dimensions (as introduced in Section 3.2).

7.1 Study design
7.1.1 Questionnaire

The first part of the survey aims to discover how WebDriverManager is perceived
and used by its users. Hence, the questionnaire includes six questions, namely:

What is your motivation to use WebDriverManager?

How did you discover WebDriverManager?

What is the primary programming language you use with WebDriverManager?
Which driver/browser do you resolve with WebDriverManager?

How do you execute WebDriverManager?

How do you use the WebDriverManager API?

A e

All these six questions provide a list of possible answers which can be selected
by respondents. Furthermore, all questions include an open-ended field for further
options (the “other” field), aimed to complement the answers with custom options.
All questions (except number 3) have been designed as multiple-choice closed-
ended items [51]. This way, respondents can choose one or more answers to the
given questions. In contrast, question 3 is designed to be a single-choice closed-
ended. We restricted this answer to be unique to determine the preferred language
used in conjunction with WebDrivermanager.

The second part of the survey analyzes the WebDriverManager API usability
using Clark’s dimensions (understandability, abstraction, expressiveness, reusabil-
ity, and learnability). For this, as shown in Table 5, the questionnaire has 20
assertions to characterize these dimensions. We asked respondents to provide their
degree of agreement or disagreement using a 5-point Likert scale (1=fully disagree,
2=disagree, 3=neutral, 4=agree, 5=fully agree) for each assertion. Following stan-
dard practices in social research, some of the assertions are stated in negative terms
to ensure the internal consistency on the instrument [20]. We refer to these state-
ments as “N-assertions.” In the data analysis, the N-assertions value is inverted
(1 becomes 5, 2 becomes 4, 4 becomes 2, and 5 becomes 1).

In addition to these two main sections, we included an additional part in the
questionnaire to gather demographics data: nationality, age, and gender. Finally,
we included an optional open-ended question to write further feedback or com-
ments about WebDriverManager.

7.1.2 Participants recruitment
We implemented the questionnaire using Google Forms. To maximize the num-

ber of participants, and because the target of our survey is the WebDriverMan-
ager users, we asked for participation by including the questionnaire URL in the

Automated Driver Management for Selenium WebDriver 29

Table 5 Research questionnaire used to assess the participants’ perception of the WebDriver-
Manager API usability following the Clarke’s dimensions

Dimension

1d

Assertion

Understandability

U.1

U.2

U.3

U4

The WebDriverManager API is, in general, easy to
understand

In WebDriverManager API methods are descriptive and
unambiguous

(N) I need to keep track of hidden information not
represented by the WebDriverManager API to create my
Selenium tests

(N) The WebDriverManager API is obscure, and it takes a
huge effort to use it

Abstraction

A2

A3

A4

The WebDriverManager API makes it simple to create
Selenium tests without needing to worry about the low-level
details

(N) I needed to adapt the WebDriverManager API (e.g.,
inheriting, overriding, etc.) for having it meet my needs

(N) It’s necessary to understand how driver binaries work for
being able to use WebDriverManager

I feel appealing and attractive the general approach of the
WebDriverManager API

Expressiveness

E.1

E.2

E.3

E4

Developing with WebDriverManager fully matches the
expectations I had

Reading an application code, I can understand what the
application is doing in a simple way

(N) There are missing features in WebDriverManager API
that make not possible to implement interesting Selenium
tests

(N) Programming with WebDriverManager is error-prone.
You need to take into consideration a lot of details for having
an application working

Reusability

R.2
R.3

R.4

(N) Creating Selenium tests with WebDriverManager
requires too long and verbose code specifying too many
things

My code using WebDriverManager can be maintained and
evolved easily

I can reuse WebDriverManager related code in a simple way
(N) When using WebDriverManager, there are many
different ways of doing the same thing, and I need to take
too many decisions in the process

Learnability

L.1

L.2

L.3

L.4

I learned how to use WebDriverManager incrementally,
starting with simple concepts and progressing towards
complex Selenium tests

(N) Programming with WebDriverManager requires learning
a lot of concepts, even for simple Selenium tests

(N) I needed to read all the documentation be able to create
my first application

Reading simple examples made me possible to understand
the tool and to create later Selenium tests complying with
my requirements

30 Boni Garcia et al.

Age Gender

w
a

6.76% 6.08%

o o~
s 8 8

Mooow
S &

Number of participants
=
&

77
50 | u Female
37 = Male
s Other/prefer not say
) . I .
| |

Prefer not say 20-29 30-39 4049 50-59

o o

Fig. 7 Charts showing the total number of participants including age (left) and gender (right)

WebDriverManager logs. Listing 16 shows these traces. WebDriverManager 4.0.0,
released on 12th May 2020, published these traces, which were removed in Web-
DriverManager 4.1.0, released on 14th July 2020.

Listing 16 Request for participation to the survey in WebDriverManager 4.0.0 log traces

[INFO] Please answer the following questionnaire based on your experience with
WebDriverManager. Thanks a lot!
[INFO] ====> http://tiny.cc/wdm—survey <====

7.2 Results

This section provides a comprehensive summary of the obtained survey results.
The findings and implications of these data and are later discussed in Section 8.

7.2.1 Participants analysis

As introduced before, the survey was active for two months in 2020. In this period,
we collected a total of 148 answers worldwide. From a demographic perspective,
ages were distributed between 20 and 59 years. As depicted in the left chart of
Figure 7, the group with more respondents was the thirties, with a total of 52.03%
of participants. A total of 5 respondents (3.28%) preferred not to reveal their ages.
Regarding gender, as depicted in the right chart of Figure 7, the questionnaire was
completed by 129 men (87.16%), 9 women (6.08%), and 10 people (6.76%) that
preferred not to specify any gender option.

When coming to nationality, as shown in Figure 8, the poll was completed
from 43 different countries from the 5 continents. The countries with more respon-
dents were the United States (16.22%), India (9.46%), Germany (8.78%), Poland
(8.11%), and Spain (6.76%).

7.2.2 WebDriverManager motivation and adoption

This section summarizes the results for each of the six questions designed in Sec-
tion 7.1.1, aimed to discover how WebDriverManager is perceived and used by
its users. Pareto charts [59] are used to visualize the results. These diagrams are
derived from the Pareto principle, which states that about 80% of the effects of

Automated Driver Management for Selenium WebDriver 31

Nationality
30
25 24
o
£ 20
=
=1
i=)
g
o 15 14
5 13
z 12
3
£ 10
310
77
5 4 4
3333333
22222
IIIIIII 1111111111111111111111
0 IIIIIIIIIIIIIIIIIIIIIIIIIII
- =T a = MmMmmww m T mm Y QY mmom m m T g m m -
e F B EERBECEEL s 2SS g2 8T8 8L 2 s cRERE=S82E
moc BomgloeEtiago=al = EOiEccE G208 85540 @E =
G- Eomc o 2 3 g PRl es S5 2alcon B Cauwe B 2855 edaggsSy
= e 3 c E:-imgﬂ,ﬂjo%Bmwazmm 2 S 8= SEmEovwmbIZE
T o = e < e = = o T = 5EZc o WS =
z = < = 5§ & 8 3 £ & e
H g 2 7 2 & a
3 = = a 7]
5 = z

Fig. 8 Total number of respondents organized by country

a given phenomenon come from 20% of the causes [13]. In the resulting charts,
each bar corresponds to the number of times the participants select a given re-
sponse. Also, these charts include the Pareto line, which represents the cumulative
total percentage for these responses. Using 80% as the standard cut-off line, the
relevant answers (the “vital few”) can be distinguished simply by checking when
the cumulative total percentage is below 80%. The rest of the items (the “trivial
many”) correspond to the answers with a cumulative total of over 80%.

The first question in our questionnaire is related to the motivation to use
WebDriverManger. Figure 9 shows the obtained results. Following the 80/20 rule
described before, it can be checked that the most important factors to use Web-
DriverManager are related to the automation download of drivers (selected 113
times, i.e., by the 34.66% of the participants) and the automated update of these
drivers (selected 103 times, i.e., 31.6% of the participants).

The second question tries to figure out how the respondents discovered Web-
DriverManager. Using the 80/20 rule again, it can be seen that the preferred
answer is “Seeking the Web by myself,” selected by 58 out of the 148 total par-
ticipants (i.e., a quota of 39.19%) and “referred by a colleague,” chosen by 42
participants (28.38%).

Questions 3 of the survey is concerned with the preferred programming lan-
guage used in conjunction with WebDriverManager. As depicted in Figure 11, the
80/20 cannot be applied in these results since there is only one answer majority se-
lected in the poll: the Java language. 93.92% chose this language, while the resting
6.08% quota is made up of other languages (namely, Groovy, Kotlin, Python, PHP,
Ruby, and Scala), which can be seen as a residual usage of WebDriverManager.

When coming to question 4, we wanted to discover the driver and the corre-
sponding browser resolved with WebDriverManager by the respondents. Figure 12
shows the results for this question. Applying the Pareto principle again, it can be

32 Boni Garcia et al.

1. What is your motivation to use WebDriverl\.g?Qﬁéger?
96.63% }

100
120

100

30
100
80
70
80
60

Count

60 50

Percentage

40
40
30
20
20

10

13 11 10
H B = :
0

Automated driver Automated driver Automated Used as transitive Use alternative Use acustom Cross-browser
downlead update browser detection dependencyby mirror for drivers repository for support
third-party drivers

Fig. 9 Pareto chart illustrating the motivation to use WebDriverManager by the survey par-
ticipants

2. How did you discover WebDriverManager?

98.65%
97.3%
o 93.24%

99.32 100

30
50 83.11%

80
70
60
40
50

Count
Percentage

40

23
30
13
20
B
10
H . : :
- — f— 0

Seeking the Web Referred by a Checking Reading blogs Using athrid- Taking online Reading Gradle Attending
by myself colleague StackOverflow (e.g. Medium) party library automation tutorials and SeleniumConf
courses guides 2019

35.15%

Fig. 10 Pareto chart illustrating how the survey participants discovered WebDriverManager

discovered the few vital answers, which in this case correspond to chomedriver for
Chrome (38.64%), geckodriver for Firefox (25.85%), and msedgedriver for Edge
(11.65%). These results are aligned with a recent analysis of the Selenium ecosys-
tem, in which the top evergreen browser used with Selenium WebDriver were
precisely Chrome, Firefox, and Edge [29].

The fifth question of the questionnaire is related to the execution mode of
WebDriverManager used by the participants. Figure 13 shows the results of this
question. The 80/20 rule allows identifying a single response, which is the most

Automated Driver Management for Selenium WebDriver 33

3. What is the primary programming language you use with WebDriverManager?
100

97.97% 98.65% 99.32%
160 96.62% o
93.92% 95.27%
139 "
140
20
120
70
100
60
@
: ¢
=
§ 80 - g
53
&
40
60
30
40
20
20
10
2 2 2 . . X
0 — — — .
lava Groovy Kotlin Python PHP Ruby Scala

Fig. 11 Pareto chart illustrating the preferred programming language of the survey partici-
pants

4. Which driver/browser do you resolve with WebDriverManag%gDr?

98.58
160 96.88% 100
93.18%
90
140 85.23%
76.14% 80
120
64.49% 70
100 50
91 o
&b
2 =
=
§ 80 50 3
[
o
40
&0 38.64%
41 30
40 EY)
28 20
20
13 10
H = =
o | | o
Chrome Firefox Edge Chromium IExplorer Opera Phatomls safari

chromedriver geckodriver msedgedriver chromedriver IEDriverServer operadriver phantomjs

Fig. 12 Pareto chart illustrating how the driver and browser resolved with WebDriverManager
by participants

relevant to the participants: as a direct Java dependency, selected by 119 out of
148 participants (i.e., a quota of 67.61%).

The final question of this part of the poll surveys the participants about how
they use the WebDriverManager API. In this case, there are two answers with a
cumulate percentage below 80%. First, using the regular API call in Java (e.g.,
WebDriverManager.chromedriver.setup();), selected by the 62.79% of respon-

34 Boni Garcia et al.

5. How do you execute WebDriverManager?

140 97.73% o 100
54.32%
89.2%
84.09% 30
120
80
100 70
67.61%
60
LY #
= =
5 =
2 50 g
60 &
40
40 50
29
20
20
) El 10
L L : .
0 | [0
Directlava Transitive lava CLI tool Agent Server Docker container
dependency dependency

Fig. 13 Pareto chart illustrating the WebDriverManager execution type used by participants

6. How do you use the WebDriverManager API?
98.24 100

120 54.19% 96.51 100
91.28%
87.79%

83.14% o

100
76.74% 50

70
80

62.79% 60

Count

60 50

Percentage

40

40
30

20

24
20
11 s
.) . . . :)
[| [| [- - -_—

Regular call in Configuration Java Agent Configuration Fromthe Configuration Asaserver Through thrid- Custom
Jlava in Java using command line using env (REST-LIKE party library configuration
properties variables AP1)

Fig. 14 Pareto chart illustrating the WebDriverManager API usage by participants

dents. And second, using some custom configuration method available in the Java
API (e.g., .browserVersion(), .proxy(), or others), selected by the 13.95% of
the respondents (see Figure 14).

7.2.8 WebDriverManager API usability

The results of the usability analysis are shown in Table 6. We dropped the monotonous
set of answers from the data analysis to improve reliability. In other words, we did

Automated Driver Management for Selenium WebDriver 35

Table 6 Main statistics results of the usability analysis of the WebDriverManager using
Clarke’s dimensions

Dimension Id Mean Median Min Max StdDev
Understandability 4.13 4.25 1.5 5 0.91
U.l1 438 4 2 5 0.7
U.2 4.15 4 2 5 0.81
U3 37 4 1 5 1.14
U4 429 5 1 5 0.98
Abstraction 4.16 4.25 2.25 5 0.86
Al 4.29 4 2 5 0.8
A2 423 5 2 5 0.96
A3 3.89 4 2 5 0.94
A4 4.22 4 3 5 0.73
Expressiveness 4.03 4.25 1.75 5 0.94
E.1 4.3 5 3 5 0.79
E.2 417 4 2 5 0.78
E3 386 4 1 5 1.11
E4 3.79 4 1 5 1.08
Reusability 4.13 4.5 1.5 5 0.9
R.1 4.23 5 1 5 1.05
R.2 437 5 2 5 0.75
R.3 4.21 4 2 5 0.8
R.4 3.71 4 1 5 0.98
Learnability 4.08 4 2 5 0.88
L.1 3.89 4 2 5 0.81
L.2 4.16 4 2 5 0.92
L.3 4.06 4 2 5 1.01
L4 4.22 4 2 5 0.78

not include those answers in which each assertion is rated in the same way. We
considered this fact is an indicator of deceptive responses (e.g., each statement
rated with 5 by the same respondent). Following this strategy, we reduced the
valid responses to 112 (out of the 148 total). Using this group of answers, and as
explained before, we inverted the value of the N-assertions. This way, the values
represented in Table 6 are interpreted positively (i.e., the higher the value, the
better usability). As depicted in the left part of Figure 15, on average, respon-
dents feel the WebDriverManager API usability is adequate since every dimension
(understandability, abstraction, expressiveness, reusability, and learnability) has a
mean value close to 4, which is the ranking for agreement using the 5-point Likert
scale.

For completeness, we evaluated the relationship between the usability dimen-
sions results with the nationality of the respondents, grouped in a per-continent
way. As can be seen, there are no significant changes in the API usability percep-
tion among different respondents of different continents.

7.2.4 Open comments

Last but not least, we analyzed the additional comments provided by the survey
participants. Although the open-ended field for this purpose was optional in the
questionnaire, it was reported by 60 out of the 148 participants (i.e., 40.54%). We

36 Boni Garcia et al.

Usability dimmensions average

Understandability
4.2

4,175

4.15

Learnability Abstraction

Reusability Expressiveness

Fig. 15 Radar chart showing the average values of the usability dimensions results

Usability dimmensions average (per continent)

Understandability
5

4.5

Learnability Abstraction

——Europe
America
-Asia

=——QOceania

—Africa

Reusability Expressiveness

Fig. 16 Radar chart showing the average values of the usability dimensions results grouped
per respondent’s continent

analyzed each of these comments, and then, we categorized them in one or several
of the following categories:

Positive/gratitude: Acknowledge or recognition for creating and maintaining

WebDriverManager.

— Negative/complaint: Criticisms or objections about some specific aspect of
WebDriverManager.

— Feature request: Proposition for a new characteristic to be incorporated in
WebDriverManager.

— Issue report: Description of a particular problem.

As shown in Figure 17, 48 respondents (i.e., 80% of the participant who replied
something in the open comments field) showed gratitude or positive comments

Automated Driver Management for Selenium WebDriver 37

Open comments
60 100

90

50 48
80
40 =
60 @
z k-4
§30 50 g
2 &
20
30
20
10 7

6
0 | 0

Positive/gratitude Negative/complaint Feature request Issue report

Fig. 17 Bar chart showing the open comments categories

about WebDriverManager. Then, 7 participants (i.e., 11.67%) wrote some critic
or negative feedback. Some of these criticisms were related to the documentation
(e.g., lack of details in some aspects, such as the browser version detection) and the
publication of the survey (i.e., the poll URL attached in the WebDriverManager
traces). Next, 6 users (i.e., 10%) considered this field an opportunity to ask for
a new feature, for instance, adding more descriptive traces in case of errors (e.g.,
lack of connectivity). Finally, 2 users (i.e., 3.33%) reported some issues.

7.3 Threats to validity

Following the commonly accepted methods for evaluating assessment data, we
discuss the main threats to validity in three categories: construct, internal, and
external validity [22].

7.8.1 Construct validity

Construct validity refers to the degree to which an instrument measures what it
claims. As explained before, our survey has two main sections. First, we wanted to
evaluate the extent to which their users adopt WebDriverManager. Second, we as-
sessed the usability of the WebDriverManager API following Clarke’s dimensions.
Regarding the former, we designed our questionnaire to cover the essential aspects
of a helper tool like WebDriverManager. Thus, we asked about the motivation,
usage, and discovery of this tool. To try to get a broader response spectrum, we
included a field “other” in all of these questions to allow custom answers by the
respondents. When coming to the usability analysis, we used a well-established
methodology based on Clarke’s dimensions. Furthermore, and to try to guarantee
the consistency of the answers, this part of the questionnaire contains complemen-
tary questions, combining positively and negatively assessments.

38 Boni Garcia et al.

Table 7 Rule of thumb to interpret Cronbach’s alpha and McDonald’s omega

Cronbach’s alpha or

McDonald’s omega Internal consistency

value > 0.9 Excellent

0.9 > value > 0.8 Good

0.8 > value > 0.7 Acceptable
0.7 > value > 0.6 Questionable
0.6 > value > 0.5 Poor

0.5 > value Unacceptable

Table 8 Cronbach’s alpha and McDonald’s omega computed for all the dimensions of the
WebDriverManager API usability survey

Dimension Cronbach’s alpha McDonald’s omega
Understandability 0.676 0.703
Abstraction 0.697 0.711
Expressiveness 0.679 0.702
Reusability 0.707 0.730
Learnability 0.703 0.712

7.3.2 Internal validity

Internal validity is the extent to which the results of a piece of research depends
only on the cause under study and not on other factors (systematic errors or bias).
In this arena, Cronbach’s alpha is one of the most used techniques to assess the
internal consistency of a questionnaire rated using a Likert scale [9]. Nevertheless,
several limitations have been documented, including the assumptions of uncorre-
lated errors, tau-equivalence, and normality [19][60]. An alternative to Cronbach’s
alpha aimed to measure the internal consistency in realistic conditions is the Mc-
Donald’s omega [56]. Both Cronbach’s alpha and McDonald’s omega are reliability
coefficients calculated in a range between 0 and 1. The commonly accepted rule
of thumb to interpret these values is depicted in Table 7.

For the sake of completeness, we computed both Cronbach’s alpha and Mc-
Donald’s omega with the results of the WebDriverManager usability survey. We
needed to perform the calculations for each dimension separately since Cronbach’s
alpha and McDonald’s omega assume that the Likert items measure the same con-
struct and are highly correlated. To carry out the calculation, we used an open
statistical software tool called Jamov®?. As explained in Section 7.2.3, we used
112 valid answers (after removing the monotonous responses). The results of this
analysis are shown in Table 8. As can be observed, each dimension’s internal con-
sistency remains in numbers very close to 0.7, which is the limit for acceptable
margins.

22 https://www.jamovi.org/

https://www.jamovi.org/

Automated Driver Management for Selenium WebDriver 39

7.3.3 External validity

External validity is the extent to which results can be generalized. In this re-
gard, we enabled the WebDriverManager to answer the questionnaire freely. As
explained before, the URL for the survey was included in the WebDriverManager
log traces. Although some of the respondents complained about this method, the
strategy was quite successful. The questionnaire was completed by 148 participants
(reduced to 112 valid responses in the usability analysis) in two months, which is
a significant number for this kind of survey. This number guarantees a low risk of
statistical effects in the results and suggests that our findings can be generalized
to a broader population.

8 Discussion

In this section, we come back to the hypothesis H1, stated in Section 7. We use
the data gathered in the survey and presented in Section 7.2 to analyze its degree
of fulfillment.

One of the most relevant findings is revealed in question 2 (“How did you
discover WebDriverManager?”). Interestingly, the most popular answer to this
question in the poll is “Seeking the Web by myself.“ This evidence confirms the
driver management is a real issue Selenium WebDriver developers face, and they
actively look for a solution to the problem. Furthermore, it shows that the approach
implemented by WebDriverManager is satisfactory for the participants since they
are adopting and using this tool in their Selenium WebDriver projects.

Another crucial perspective is exposed in the answers to question 1 (“What
is your motivation to use WebDriverManager?”). The most popular answers to
this question are concerned with the automation capabilities of WebDriverMan-
ager: automated download and update of drivers. These answers suggest that
WebDriverManager provides a comprehensive solution to the common problem of
maintainability and flakiness of Selenium tests, introduced in Section 3.1. First,
the maintainability of a Selenium WebDriver improves when using WebDriver-
Manager, since drivers are automatically downloaded. In addition, the flakiness
due to obsolete drivers is reduced, since these drivers are automatically updated.
The third most popular answer to question 1 is “Automated browser detection.”
This finding reveals that the automatic browser version detection is one of the
most appealing features of WebDriverManager for its users. Again, this feature al-
lows reducing the maintainability and flakiness of Selenium tests, since it provides
an automated solution to the problem of driver maintenance. This fact mainly
affects evergreen browsers (such as Chrome, Firefox, and Edge, as shown in the
results of question 4, “Which driver/browser do you resolve with WebDriverMan-
ager?”). In this kind of browsers, its auto-upgraded capability might break a test
suite in which the driver was manually resolved, leading to flakiness. This prob-
lem is avoided thanks to the automatic browser version implemented in the driver
resolution algorithm.

Next, our interpretation of the answer to question 3 (“What is the primary
programming language you use with WebDriverManager?”) is twofold. The re-
sults of this question show that the preferred programming language used with
WebDriverManager is undoubtedly Java. This fact can be seen as a strong point

40 Boni Garcia et al.

of WebDriverManager, since it is well-positioned in the Java community. Neverthe-
less, it can also be interpreted as a significant limitation. As explained in Section 2,
Selenium WebDriver scripts can be implemented using different language bindings.
Although we made additional efforts to expose the WebDriverManager capabilities
in a language-agnostic manner (such as the CLI and server execution modes), the
results suggest that the WebDriverManager adoption out of the Java community
is very scarce. This view is reinforced with question 5 (“How do you execute Web-
DriverManager?”). The answers show that the preferred execution mode is Java,
first as a direct or transitive dependency.

When it comes to the usability analysis, the second part of the survey suggests
that the WebDriverManager API provides a comprehensive solution for their users.
The results show that the normalized average for each Clark’s dimension (under-
standability, abstraction, expressiveness, reusability, and learnability) is around
4. This value determines the level of agreement on the 5-point Likert scale we
used in this part of the survey. In light of these results, we can conclude that the
WebDriverManager API is perceived as usable by its users. This fact seems to be
confirmed with the results of question 6 made the first part of the survey (“How do
you use the WebDriverManager API?”). In this question, the most popular answer
is the use of the regular WebDriverManager setup call in Java. As explained in
the body of the paper, this call is a single Java line in which the driver resolution
algorithm is triggered. As shown in Section 5 and 6, this approach hides a rele-
vant complexity (driver resolution algorithm, knowledge database, or persistence
layer). This complexity is hidden to final users in a single Java command. More-
over, and thanks to its fluent API, custom configuration options can be specified
by calling further methods before triggering the resolution algorithm. This feature
appears in the second position in the answers to question 5 about the use of the
WebDriverManager API.

Finally, we analyzed the open comments provided by the survey participants.
Among the negative feedback received, some of the respondents complained about
the questionnaire itself (too long for some users), or inconvenient the way it was
published (i.e., the log trace by WebDriverManager 4.0.0). Several users report the
lack of documentation for some specific aspects of the tools (e.g., browser version
detection). Nevertheless, it is exciting to discover that WebDriverManager is, in
general, very well-valued by its community. Two positive testimonials which rein-
force the vision implemented by WebDriverManager are the following:

“While using binaries on their own isn’t difficult, wdm manages to make it
trivial. Simply works.”

“The most surprising thing about it is that, no matter the platform, browser or

operating system, it always just... worked. I could not imagine going back to test
automation without using this beautiful library.”

8.1 Usage statistics of WebDriverManager

Once the survey data is analyzed, we consider it is worth report the actual usage
of WebDriverManager. For this, first, we gathered the Maven Central usage statis-

Automated Driver Management for Selenium WebDriver 41

Downloads Over the Last 12 Months For io.github.bonigarcia:webdrivermanager

100,000

Apr2020 May2020 Jun2020 Jul2020 Aug2020 Sep2020 Oct2020 Nov2020 Dec2020 Jan2021 Feb2021 Mar2021
Unigue IPs Over the Last 12 Months For io.github.bonigarcia:webdrivermanager
140.000
120,000
100.000
80,000
60,000
40,000

20,000

Apr2020 May2020 Jun2020 Jul2020 Aug2020 Sep2020 Oct2020 Nov2020 Dec2020 Jan2021 Feb2021 Mar2021

Fig. 18 WebDriverManager Java artifact statistics in Maven Central: downloads (top) and
unique IPs (down) over the period from April 2020 to March 2021

1600
1400
1200
1000

300

sizzebiels

T T T T T o
2015-07-07 2016-03-25 2016-12-13 2017-09-01 2018-05-22 2019-02-08 2019-10-29 2020-07-17 2021-04-06

Time

Fig. 19 Evolution of the number of WebDriverManager stargazers in GitHub

tics?® at the time of this writing. Figure 18 shows the evolution of the WebDriver-
Manager monthly downloads and unique IPs from April 2020 to March 2021. For

example, WebDriverManager was downloaded 715,650 times from 147,288 unique
IPs in March 2021.

Another source of further statistics is GitHub, where the source code of Web-
DriverManager is hosted. For instance, Figure 19 shows the evolution of the
stargazers in GitHub (more than 1.5k at the time of this writing). Besides, we

can check that WebDriverManager is used by more than 47k GitHub reposito-

ries?4.

23 https://oss.sonatype.org/
24 nttps://github.com/bonigarcia/webdrivermanager/network/dependents

https://oss.sonatype.org/
https://github.com/bonigarcia/webdrivermanager/network/dependents

42 Boni Garcia et al.

Also, and according to MvnRepository?®, WebDriverManager is a transitive
dependency in 178 artifacts publicly available in Maven Central, for example:

Selenide?®: Testing framework providing a rich fluent API for Selenium Web-
Driver.

Serenity BDD?": Automated acceptance tests reporting library.

Javalin®®: Lightweight web framework for Java and Kotlin.

— Appium Java client: Java language binding for Appium tests (automation
framework for mobile devices).

8.2 Final remarks and lessons learned

After analyzing the survey results and the objective usage statistics of WebDriver-
Manager, we conclude that H1, the central hypothesis of this research is validated
for the Java community. We first rely on the survey results to support this claim.
These results show that participants valued very positively the automation capa-
bilities provided by WebDriverManager. Second, the usability of the WebDriver-
Manager API is also confirmed by the survey results. Finally, the actual usage
statistics (Maven central, GitHub) show a significant adoption for a tool like Web-
DriverManager.

We consider H1 is not entirely fulfilled since WebDriverManager is a tool
only adopted by Java users. This evidence is an explicit limitation of the pre-
sented approach. Despite our effort to spread WebDriverManager with the CLI
and server execution mode, the results show that its usage out of the Java com-
munity is infrequent. This fact is reinforced based on the existence of similar
helper tools (the so-called “managers” for Selenium WebDriver) for other Sele-
nium WebDriver language bindings, namely webdriver-manager?® (for JavaScript),
webdriver-manager®® (for Python), webdrivers®' (for Ruby), or WebDriverMan-
ager.Net®? (for .Net). Table 9 shows a comparison of these managers, together
with WebDriverManager. In particular, the features concerning browser version
detection (to resolve the correct driver version) and versions knowledge database
(to match driver and browser versions) are evaluated. As can be seen in these
data, WebDriverManager offers a more complete set of capabilities than the other
managers.

The abovementioned features (browser version detection and versions database)
are critical for providing full cross-browser automated driver management. Browser
version detection is required to determine the correct driver version. For this rea-
son, several managers (e.g., webdriver-manager for Python or webdrivers) already
implement this characteristic. Nevertheless, browser version detection is usually
limited to Chrome/Chromium and Edge. The reason for this limitation is that, as

25 nttps://mvnrepository.com/artifact/io.github.bonigarcia/webdrivermanager
26 https://selenide.org/

27 https://serenity-bdd.info/

28 nttps://javalin.io/

29 nttps://www.npmjs.com/package/webdriver-manager

30 https://pypi.org/project/webdriver-manager/

31 https://github.com/titusfortner/webdrivers

32 https://github.com/rosolko/WebDriverManager.Net

https://mvnrepository.com/artifact/io.github.bonigarcia/webdrivermanager
https://selenide.org/
https://serenity-bdd.info/
https://javalin.io/
https://www.npmjs.com/package/webdriver-manager
https://pypi.org/project/webdriver-manager/
https://github.com/titusfortner/webdrivers
https://github.com/rosolko/WebDriverManager.Net

Automated Driver Management for Selenium WebDriver 43

«

Table 9 Comparison of the “managers” ecosystem

Manager Lansuage Usage Browsers Version Versions
g guag g supported detection database
Chrome
. Yes (evergreen
Chromium
API . browsers:
Server Firefox Chrome
WebDriverManager Java CLI gdge Chromium, Yes
Docker pera Firefox, Edge,
IExplorer d0)
PhantomJS " pera
ebdriver-manager Server Chrome
w anag JavaScript Firefox No No
(for JavaScript) CLI
IExplorer
Chrome
Chromium Partially
webdriver-manager Firefox (Chrome,
(for Python) Python APT Edge Chromium, No
Opera and Edge)
IExplorer
gﬁz‘;gl(e Partially Partially
webdrivers Ruby API (Chrome and (Chrome
Edge Edge) and Edge)
IExplorer
Chrome
Chromium
. Firefox
WebDriverMan- Net API Edge No No
ager.Net
Opera
IExplorer
PhantomJS

explained in Section 5.1, the mapping between browser and driver can be auto-
mated only as of Chrome 70 and Edge 75. Nevertheless, this mapping cannot be
automated for lower versions of Chrome or Edge, neither for other browsers (e.g.,
Firefox and Opera), without the versions database. Overall, these features can be
seen as the main lessons learned from WebDriverManager to achieve fully auto-
mated driver management in all the evergreen browsers (Chrome, Edge, Firefox,
and Opera).

9 Conclusions

Selenium is the leading framework in the browser automation space nowadays. The
core project of Selenium is called WebDriver. Selenium WebDriver allows driving
web browsers (such as Chrome, Firefox, or Edge, among others) automatically
using different language bindings (such as Java, JavaScript, or Python, among
others). To support this process, Selenium WebDriver relays on the native au-
tomation capabilities for each browser. For this reason, a binary file called driver
(e.g., chromedriver for Chrome/Chromium, or geckodriver for Firefox) acts as a
proxy between a Selenium WebDriver script and the browser. The management of
these drivers is cumbersome for Selenium WebDriver practitioners and negatively

44 Boni Garcia et al.

affects the maintainability of Selenium WebDriver scripts. Moreover, the rapid
rate of change of modern evergreen browsers (such as Chrome, Firefox, Edge, or
Opera) led to flaky tests when the driver management is done manually, due to
version incompatibility between browsers and drivers.

To solve these problems, we propose a comprehensive methodology to auto-
mate the driver management for Selenium WebDriver. This methodology is based
on a resolution algorithm that checks the browser version dynamically and then
downloads the proper driver, making it available for Selenium WebDriver scripts.
This methodology has been implemented in a tool called WebDriverManager that
can be used as a Java dependency, CLI tool, server (using a REST-like API),
Docker container, or Java agent (i.e., instrumentation at JVM level).

To validate the presented approach, we surveyed WebDriverManager users from
May to July 2020. The objective of this survey was twofold: 1) To understand and
evaluate the degree of adoption and usage of WebDriverManager; 2) To assess
the WebDriverManager API usability using Clarke’s dimension (understandabil-
ity, abstraction, expressiveness, reusability, and learnability). The results of this
analysis show a remarkable valuation of WebDriverManager by Java users but
scare adoption for other language bindings.

The approach implemented in WebDriverManager (first released in 2015) was
a pioneer in the domain of driver management. Nowadays, it is used by tens of
thousands of projects worldwide. Although, as shown in the survey, WebDriver-
Manager is not spread out of the Java community, its concept has inspired other
similar implementations, the so-called “managers” for Selenium WebDriver.

WebDriverManager is a living project in constant maintenance. The roadmap
for the next major version of WebDriverManager includes the ability not only to
resolve drivers but also to instantiate WebDriver objects. Besides, and using the
next version of the WebDriverManager API, the browsers controlled with these
WebDriver objects may be executed in Docker containers out of the box. In another
future evolution, the cache could be reused with other “managers” for Selenium
WebDriver. Implementing this feature would require collaboration between the
managers’ maintainers, establishing a standard cache path and folder structure to
store the downloaded drivers. This cache could be reused by different managers
executed in the same machine (e.g., in a CI server like Jenkins).

Acknowledgements This work has been supported in part by the project Massive Geospatial
Data Storage and Processing for Intelligent and Sustainable Urban Transportation (MaGIST),
funded by the Spanish Agencia Estatal de Investigacién (AEI, doi 10.13039/501100011033) un-
der grant PID2019-105221RB-C44. This work also received partial support from FEDER/Min-
isterio de Ciencia, Innovacién y Universidades — Agencia Estatal de Investigacién through
project Smartlet (TIN2017-85179-C3-1-R), and from the eMadrid Network, which is funded
by the Madrid Regional Government (Comunidad de Madrid) with grant No. S2018/TCS-4307.

References

1. Afonso, L.M., Cerqueira, R.F.d.G., de Souza, C.S.: Evaluating application programming
interfaces as communication artefacts. System 100, 8-31 (2012)

2. Alégroth, E., Feldt, R., Kolstrom, P.: Maintenance of automated test suites in industry:
An empirical study on visual gui testing. Information and Software Technology 73, 66-80
(2016)

3. Avasarala, S.: Selenium WebDriver practical guide. Packt Publishing Ltd (2014)

Automated Driver Management for Selenium WebDriver 45

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Belmont, J.M.: Hands-On Continuous Integration and Delivery: Build and release quality
software at scale with Jenkins, Travis CI, and CircleCI. Packt Publishing Ltd (2018)
Bertoa, M.F., Troya, J.M., Vallecillo, A.: Measuring the usability of software components.
Journal of Systems and Software 79(3), 427-439 (2006)

Binder, W., Hulaas, J., Moret, P.: Advanced java bytecode instrumentation. In: Proceed-
ings of the 5th international symposium on Principles and practice of programming in
Java, pp. 135-144 (2007)

Blackwell, A.F., Britton, C., Cox, A., Green, T.R., Gurr, C., Kadoda, G., Kutar, M.,
Loomes, M., Nehaniv, C.L., Petre, M., et al.: Cognitive dimensions of notations: Design
tools for cognitive technology. In: Cognitive Technology: Instruments of Mind, pp. 325-341.
Springer (2001)

Bloch, J.: How to design a good api and why it matters. In: Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming systems, languages, and
applications, pp. 506-507. ACM (2006)

Bonett, D.G., Wright, T.A.: Cronbach’s alpha reliability: Interval estimation, hypothesis
testing, and sample size planning. Journal of Organizational Behavior 36(1), 3-15 (2015)
Bruns, A., Kornstadt, A., Wichmann, D.: Web application tests with selenium. IEEE
software 26(5), 88-91 (2009)

Bures, M., Filipsky, M.: Smartdriver: Extension of selenium webdriver to create more
efficient automated tests. In: 2016 6th International Conference on IT Convergence and
Security (ICITCS), pp. 1-4. IEEE (2016)

Burns, D.: Selenium 1.0 Testing Tools Beginner’s Guide. Packt Publishing Ltd (2010)
Cato, S.: Pareto principles, positive responsiveness, and majority decisions. Theory and
decision 71(4), 503-518 (2011)

Cerioli, M., Leotta, M., Ricca, F.: What 5 million job advertisements tell us about testing: a
preliminary empirical investigation. In: Proceedings of the 35th Annual ACM Symposium
on Applied Computing, pp. 1586-1594 (2020)

Chaulagain, R.S., Pandey, S., Basnet, S.R., Shakya, S.: Cloud based web scraping for big
data applications. In: 2017 IEEE International Conference on Smart Cloud (SmartCloud),
pp. 138-143. IEEE (2017)

Clarke, S.: Measuring api usability. Dr. Dobb’s Journal Windows pp. S6—S9 (2004)
Clarke, S.: Describing and measuring api usability with the cognitive dimensions. In:
Cognitive Dimensions of Notations 10th Anniversary Workshop, p. 131. Citeseer (2005)
Cleve, H., Zeller, A.: Locating causes of program failures. In: Proceedings. 27th Interna-
tional Conference on Software Engineering, 2005. ICSE 2005., pp. 342-351. IEEE (2005)
Cortina, J.M.: What is coefficient alpha? an examination of theory and applications. Jour-
nal of applied psychology 78(1), 98 (1993)

Croasmun, J.T., Ostrom, L.: Using likert-type scales in the social sciences. Journal of
Adult Education 40(1), 19-22 (2011)

Daughtry III, J.M., Carroll, J.M.: Perceived self-efficacy and apis. Programming Interest
Group p. 42 (2012)

Downing, S.M.: Validity: on the meaningful interpretation of assessment data. Medical
education 37(9), 830-837 (2003)

Dustin, E., Garrett, T., Gauf, B.: Implementing automated software testing: How to save
time and lower costs while raising quality. Pearson Education (2009)

Dustin, E., Rashka, J., Paul, J.: Automated Software Testing: Introduction, Management,
and Performance: Introduction, Management, and Performance. Addison-Wesley Profes-
sional (1999)

Ellis, B., Stylos, J., Myers, B.: The factory pattern in api design: A usability evaluation.
In: Proceedings of the 29th international conference on Software Engineering, pp. 302-312.
IEEE Computer Society (2007)

Farooq, U., Zirkler, D.: Api peer reviews: a method for evaluating usability of applica-
tion programming interfaces. In: Proceedings of the 2010 ACM conference on Computer
supported cooperative work, pp. 207-210. ACM (2010)

Freeman, E., Robson, E., Bates, B., Sierra, K.: Head first design patterns. ” O’Reilly
Media, Inc.” (2008)

Garcia, B.: Mastering Software Testing with JUnit 5: Comprehensive guide to develop
high quality Java applications. Packt Publishing Ltd (2017)

Garcia, B., Gallego, M., Gortizar, F., Munoz-Organero, M.: A survey of the selenium
ecosystem. Electronics 9(7), 1067 (2020)

46

Boni Garcia et al.

30.
31.
32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

. Reja, U., Manfreda, K.L., Hlebec, V., Vehovar, V.: Open-ended vs. close-ended questions

52.

Garcia, B., Gortazar, F., Gallego, M., Hines, A.: Assessment of qoe for video and audio
in webrtc applications using full-reference models. Electronics 9(3), 462 (2020)

Garcia, B., Lépez-Fernandez, L., Gortazar, F., Gallego, M.: Practical evaluation of vmaf
perceptual video quality for webrtc applications. Electronics 8(8), 854 (2019)

Gojare, S., Joshi, R., Gaigaware, D.: Analysis and design of selenium webdriver automation
testing framework. Procedia Computer Science 50, 341-346 (2015)

Green, T.R.: Cognitive dimensions of notations. People and computers V pp. 443-460
(1989)

Gundecha, U., Avasarala, S.: Selenium WebDriver 3 Practical Guide: End-to-end automa-
tion testing for web and mobile browsers with Selenium WebDriver. Packt Publishing Ltd
(2018)

Hassan, F., Mostafa, S., Lam, E.S., Wang, X.: Automatic building of java projects in
software repositories: A study on feasibility and challenges. In: 2017 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement (ESEM), pp.
38-47. IEEE (2017)

Henning, M.: Api design matters. Queue 5(4), 24-36 (2007)

Hovemeyer, D.: Simple and effective static analysis to find bugs. Ph.D. thesis, University
of Maryland (2005)

Islam, M.N., Quadri, S.M.K.: Framework for automation of cloud-application testing using
selenium (facts). Advances in Science, Technology and Engineering Systems Journal 5(1),
226-232 (2020)

Kurose, J., Ross, K.: Computer networks: A top down approach featuring the internet.
Peorsoim Addison Wesley (2010)

Leotta, M., Clerissi, D., Ricca, F., Spadaro, C.: Comparing the maintainability of selenium
webdriver test suites employing different locators: A case study. In: Proceedings of the
2013 international workshop on joining academia and industry contributions to testing
automation, pp. 53-58 (2013)

Leotta, M., Clerissi, D., Ricca, F., Spadaro, C.: Improving test suites maintainability with
the page object pattern: An industrial case study. In: 2013 IEEE Sixth International Con-
ference on Software Testing, Verification and Validation Workshops, pp. 108-113. IEEE
(2013)

Lépez-Fernandez, L., Garcia, B., Gallego, M., Gortazar, F.: Designing and evaluating the
usability of an api for real-time multimedia services in the internet. Multimedia Tools and
Applications 76(12), 14247-14304 (2017)

Memon, A.M., Cohen, M.B.: Automated testing of gui applications: models, tools, and
controlling flakiness. In: 2013 35th International Conference on Software Engineering
(ICSE), pp. 1479-1480. IEEE (2013)

Moody, D.L.: The physics of notations: toward a scientific basis for constructing visual
notations in software engineering. Software Engineering, IEEE Transactions on 35(6),
756779 (2009)

Peng, H., Wang, Y.: Wmic-based technology server network management software design.
In: 2010 Second Pacific-Asia Conference on Circuits, Communications and System, vol. 1,
pp. 253-256. IEEE (2010)

Piccioni, M., Furia, C.A., Meyer, B.: An empirical study of api usability. In: 2013
ACM/IEEE International Symposium on Empirical Software Engineering and Measure-
ment, pp. 5-14. IEEE (2013)

Presler-Marshall, K., Horton, E., Heckman, S., Stolee, K.: Wait, wait. no, tell me. analyzing
selenium configuration effects on test flakiness. In: 2019 IEEE/ACM 14th International
Workshop on Automation of Software Test (AST), pp. 7-13. IEEE (2019)

Rafi, D.M., Moses, K.R.K., Petersen, K., Méntyl&d, M.V.: Benefits and limitations of auto-
mated software testing: Systematic literature review and practitioner survey. In: 2012 7th
International Workshop on Automation of Software Test (AST), pp. 36-42. IEEE (2012)
Ramler, R., Wolfmaier, K.: Economic perspectives in test automation: balancing auto-
mated and manual testing with opportunity cost. In: Proceedings of the 2006 international
workshop on Automation of software test, pp. 85-91 (2006)

Reddy, M.: API Design for C++. Elsevier (2011)

in web questionnaires. Developments in applied statistics 19(1), 159-177 (2003)

Sazoglu, F.B., Cambazoglu, B.B., Ozcan, R., Altingovde, 1.S., Ulusoy, O.: Strategies for
setting time-to-live values in result caches. In: Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, pp. 1881-1884 (2013)

Automated Driver Management for Selenium WebDriver 47

53.
54.

55.

56.

57.

58.

59.
. Yang, Y., Green, S.B.: Coeflicient alpha: A reliability coefficient for the 21st century?

Stewart, S., Burns, D.: WebDriver, W3C Working Draft (2020)

Stocco, A., Leotta, M., Ricca, F., Tonella, P.. Why creating web page objects manually
if it can be done automatically? In: 2015 IEEE/ACM 10th International Workshop on
Automation of Software Test, pp. 70-74. IEEE (2015)

Stocco, A., Leotta, M., Ricca, F., Tonella, P.: Apogen: automatic page object generator
for web testing. Software Quality Journal 25(3), 1007-1039 (2017)

Trizano-Hermosilla, I., Alvarado, J.M.: Best alternatives to cronbach’s alpha reliability in
realistic conditions: congeneric and asymmetrical measurements. Frontiers in psychology
7, 769 (2016)

Vila, E., Novakova, G., Todorova, D.: Automation testing framework for web applications
with selenium webdriver: Opportunities and threats. In: Proceedings of the International
Conference on Advances in Image Processing, pp. 144-150 (2017)

Wagner, B.: Effective C# (Covers C# 4.0): 50 Specific Ways to Improve Your C. pearson
education (2010)

Wilkinson, L.: Revising the pareto chart. The American Statistician 60(4), 332-334 (2006)

Journal of Psychoeducational Assessment 29(4), 377-392 (2011)

48

Boni Garcia et al.

Appendix A WebDriverManager API

The following table summarizes the complete WebDriverManager Java API together with the

equivalent configuration key.

Method Description Configuration key
wdm.chromeDriverVersion,
wdm.operaDriverVersion,
wdm.edgeDriverVersion,

driverVersion(String) Particular driver version wdm.phantomq sDrlverYer51on,
wdm. geckoDriverVersion,
wdm.chromiumDriverVersion,
wdm. internetExplorerDriver-
Version
wdm.chromeVersion,

. wdm.operaVersion,
browserVersion(String) Part'lcular browser wdm.edgeVersion,
version . .
wdm.firefoxVersion,
wdm. chromiumVersion
cachePath(String) Driver cache path wdm. cachePath
resolutionCachePath(Str- Resolution cache path wdm.resolutionCachePath
ing)
Force downloading the
forceDownload () driver (ever% if it s wdm. forceDownload
already available in the
driver cache)
useBetaVersions () Dow.nload also beta wdm.useBetaVersions
versions
. . Force using a given
architecture (Architec architecture (i.e., 32-bit wdm.architecture
ture) .
or 64-bit)
F i 2-bi
arch32() oree using 32-bit wdm.architecture=32
architecture
F i 4-bi
arch64() orce using 64-bit wdm.architecture=64
architecture
Force using a given
operatingSystem(0S) operating system (WIN, wdm.os
MAC, or LINUX)

winO Force using Windows as wdm. 0s=WIN

operating system

linux() Force using Linux as wdm. 0s=LINUX

operating system
F ing M

mac () orce using vac OS as wdm. os=MAC

operating system

T -
. . . gno.re some driver wdm.ignoreVersions
ignoreVersions (String. ..)versions

Use driver repository

mirror33. Available for

useMirror () Chromecllrlver, wdm.useMirror

geckodriver,

operadriver, and
phantomjs

Regex (String)

version

Automated Driver Management for Selenium WebDriver 49
wdm.chromeDriverUrl,
wdm.operaDriverUrl,

URL of the driver wd.m.edgeDrix{'erUl.rl,
driverRepositoryUrl(URL) repositories vdn.phantonjsDriverUrl,
wdm. geckoDriverUrl,
wdm.internetExplorerDriver-
Url,
Use an HTTP proxy for
the Internet connection
proxy (String) rgr;?;i:gl.lproxy: 1934 or wdm. proxy
username:passwordGmy.
http.proxy:1234)
proxyUser (String) Username for the HTTP wdm.proxyUser
proxy
. Password for HTTP
proxyPass(String) proxy wdm. proxyPass
localRepositoryUser(Str- Usern.ame for a local wdm.proxyUser
. repository
ing)
localRepositoryPassword- Passvx./ord for a local wdm.proxyPass
. repository
(String)
Token name for
. . authenticated requests wdm. gitHubTokenName
gitHubTokenName (String) in GitHub
Secret for authenticated .
gitHubTokenSecret (String)requests in GitHub vdn.githubTokenSecret
Timeout (in seconds) to
timeout (int) connect and download wdm. timeout
drivers from repositories
Properties file for
properties(String) internal configuration wdm.properties
values
Avoid exporting JVM
avoidExport () gi?\f;irgae:hw(lilsletlhiy wdm. avoidExport
default in CLI)
Avoid creating tree
avoidOutputTree () structure in driver cache wdm.avoidOutputTree
(used by default in CLI)
Disable the fallback
avoidFallback() mechanism in the wdm.avoidFallback
resolution algorithm
Disable the dynamic
. . browser version wdm.avoidBrowserDetection
avoidBrowserDetection() X .
detection mechanism
Disable checking
av01d1.2.eadRe1easeFrom— LATEST,REL.EAS.E info wdm. avoidReadReleaseFromRe—
Repository() from repositories (for :
Chrome and Edge) pository
Custom command for
browserVersionDetection- browser version wdm.browserVersionDetection-
Command (String) detection Command
Regular expression used
browserVersionDetection- to extract browser wdm.browserVersionDetection—

Regex

50

Boni Garcia et al.

ttl(int)

TTL (in seconds) for
driver versions in the
resolution cache

wdm.

ttl

ttlBrowsers(int)

TTL (in seconds) for
browser versions in the
resolution cache

wdm.

ttlForBrowsers

useLocalVersionsProper-

Disable the usage of the
online versions database
(use the local copy

wdm.

versionsPropertiesOnli-

tiesFirst() instead) neFirst
Disable the usage of the
useLocalCommandsProper- online commands wdm. commandsPropertiesOnli-

database (use the local

tiesFirst() . neFirst
copy instead)
versionsProperties- URL of the the online
P versions database wdm.versionsPropertiesUrl

Url (URL)

version.properties
prop

commandsProperties—
Url (URL)

URL of the the online
commands database
(commands.properties)

wdm.

commandsPropertiesUrl

clearResolutionCache ()

Remove resolution cache
(browser and driver
versions previously

wdm.

clearResolutionCache

resolved)
Remove driver cache
clearDriverCache () (drivers previously wdm. clearDriverCache
resolved)
Java property name wdm. chromeDriverExport,
used to export the wdm. geckoDriverExport,
driver path (e.g., wdm. edgeDriverExport,
exportParameter (String) webdriver.chrome.driver wdm.operaDriverExport,
for Chrome or wdm.phantomjsDriverExport,

webdriver.gecko.driver
for Firefox)

wdm.

internetExplorerDriver-

Export

33 https://npm.taobao.org/mirrors/

https://npm.taobao.org/mirrors/

	Introduction
	Background
	Related work
	Motivation
	Methodology
	Implementation
	Validation
	Discussion
	Conclusions
	Appendix WebDriverManager API

