Empirical Software Engineering (2021) 26: 86
https://doi.org/10.1007/510664-021-09984-2

®

Check for
updates

Weighted software metrics aggregation
and its application to defect prediction

Maria Ulan © . Welf Léwe - Morgan Ericsson’ - Anna Wingkvist’

Accepted: 26 May 2021 / Published online: 23 June 2021
© The Author(s) 2021

Abstract

It is a well-known practice in software engineering to aggregate software metrics to assess
software artifacts for various purposes, such as their maintainability or their proneness to
contain bugs. For different purposes, different metrics might be relevant. However, weight-
ing these software metrics according to their contribution to the respective purpose is a
challenging task. Manual approaches based on experts do not scale with the number of
metrics. Also, experts get confused if the metrics are not independent, which is rarely the
case. Automated approaches based on supervised learning require reliable and general-
izable training data, a ground truth, which is rarely available. We propose an automated
approach to weighted metrics aggregation that is based on unsupervised learning. It sets
metrics scores and their weights based on probability theory and aggregates them. To
evaluate the effectiveness, we conducted two empirical studies on defect prediction, one
on ca. 200000 code changes, and another ca. 5000 software classes. The results show
that our approach can be used as an agnostic unsupervised predictor in the absence of a
ground truth.

Keywords Software assessment - Quantitative methods - Defect prediction -
Software metrics - Aggregation - Weighting

Communicated by: Burak Turhan

< Maria Ulan
maria.ulan@Inu.se

Welf Lowe
welf.lowe @Inu.se

Morgan Ericsson
morgan.ericsson@Inu.se

Anna Wingkvist
anna.wingkvist@Inu.se

Data-driven Software and Information Quality Group, Centre for Data Intensive Sciences
and Applications, Linnaeus University, 351 95 Vixjo, Sweden

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-09984-2&domain=pdf
http://orcid.org/0000-0002-3906-7611
mailto: maria.ulan@lnu.se
mailto: welf.lowe@lnu.se
mailto: morgan.ericsson@lnu.se
mailto: anna.wingkvist@lnu.se

86 Page2of34 Empir Software Eng (2021) 26: 86

1 Introduction

Quality assurance is usually done with a limited budget. Hence, its activities must be per-
formed as efficiently as possible. Understanding which software artifacts are likely to be
problematic helps to prioritize activities and to allocate resources accordingly. To gain
this knowledge, software quality assessment employs weighted software metrics. So-called
quality models define the aggregation of (weighted) metrics values for an artifact to a single
score value for this artifact. Suitable quality models, their metrics, and their weights differ
for different quality assessment goals.

A software metric weight can be interpreted as an indicator of the relative importance
of this metric with respect to the quality assessment goal. Unfortunately, there is no formal
definition of the notion of the “relative importance” of a metric. It is not obvious, e.g., what
to expect for an aggregated score of two metrics if one metric is twice as important as the
other. And what does “twice as important” exactly mean then?

Moreover, the relative importance of a single metric depends on its (possibly nonlinear)
relation with other metrics. Relations include, but are not limited to, correlations between
metrics. Adding a metric to a quality model that contains already a highly correlated metric,
reduces their importance relative to a third uncorrelated one. As correlation is not transitive,
it is hard to account for the correlation between metrics when defining metrics weights, let
away to account for all possible non-linear or even non-functional relations between the
metrics of a quality model.

That said, setting and interpreting weights properly is hard even for experts. This results
in subjective quality models that are difficult to interpret. Still, weights are sometimes
suggested to be determined manually by experts, e.g., based on the Analytic Hierarchy
Process (Saaty 2008), the Delphi method (Linstone et al. 1975), or expert surveys.

However, weights can also be determined using (linear) regression or other supervised
machine learning approaches (Wang and Stanley 1970). These approaches require training
instances, i.e., known metric and defect values (the so-called ground truth) for a set of
software artifacts, which is hard to obtain. Moreover, some regression approaches make
strong assumptions about the metrics’ independence, which is not realistic, as discussed
before. Finally, some approaches, such as weighted linear regression, do not make any sense,
don’t have a meaningful interpretation, if metrics do not have the same scale, which is
usually the case.

We suggest defining weights automatically in an unsupervised learning approach con-
sidering observed metrics values, but without requiring ground truth knowledge on training
instances. Weights are automatically set regarding their usage in aggregation and the inter-
pretation of the aggregated scores. More specifically, we take the metrics’ joint distributions
and transform metrics values into aggregated scores that can be expressed and interpreted
as probabilities. We consider weights to represent the relative importance of metrics in the
aggregated score.

While there are different quality assessment goals, the present paper focuses on “error-
proneness” as it gives an objective ground truth that is relatively easy to measure, at least
retrospectively, by looking at the actual bugs found later. As our focus is on weighted
aggregation, we try to avoid discussions on what quality means in other contexts.

In the context of defect prediction, quality models are also referred to as defect predic-
tion models. They are functions mapping metric values of a software artifact to a measure of
its likelihood to be defective. These models can also be seen as aggregation models implement-
ing, e.g., weighted sum aggregation operators where weights are defined by regression.

@ Springer

Empir Software Eng (2021) 26: 86 Page3of34 86

We compare our aggregation models to the related quality models in two different sce-
narios, i.e., change-level and class-level defect prediction. They complement each other to
improve the quality of the upcoming release of the software. The difference between them
is the development phase they are employed in. Class-level defect prediction is usually
conducted before a release; change-level defect prediction is a continuous activity that is
conducted when each change is submitted.

It is impractical to inspect all software artifacts that are predicted as buggy, since in gen-
eral, resources for quality assurance activities are limited. Hence, especially in practical
settings, it is important to obey the effort of applying quality assurance activities guided
by defect prediction. For example, the effort needed to inspect the large file having lots
of bugs could be smaller than the effort needed to inspect several smaller files, each hav-
ing a small number of bugs, but statistically a higher bug density. Hence, these smaller
files could be prioritized for review. We therefore focus on defect prediction models that
also regard the effort to react—referred to as effort-aware evaluation (Kamei et al. 2013;
Mende and Koschke 2010). We define the performance of approaches as a percentage of all
defect-including software artifacts they can identify spending a fixed percentage of the total
available time budget.

However, we do not argue in favor or against this or any other prioritization, and we do
not even aim to build the best performing defect predictor. In contrast, to illustrate our unsu-
pervised aggregation approach, we study whether or not this quality goal agnostic approach
could compete with the performance of existing (often supervised) models tailored for
effort-aware defect prediction.

Our key contributions are the following:

1. A formal definition of weights in the context of software metrics aggregation.
An automated approach to weighted software metrics aggregation using the concepts of
a joint probability distribution, and the concepts of correlation and entropy to determine
weights. This main contribution defines a general unsupervised aggregation approach
as a suitable alternative to supervised approaches that is applicable when a ground truth
is lacking.

3. An application and effort-aware evaluation of this approach in the context of software
defect prediction.

As a result, we will conclude that our unsupervised, quality-goal-agnostic aggregation is on
par with the compared supervised defect prediction approaches in the benchmark systems.
In the future, we will also compare it to supervised predictors in other problem domains of
software engineering and beyond.

The remainder of the paper is structured as follows. We summarize the background,
related work, and the challenges in Section 2. To address these challenges, we formally
define metrics interactions and the interpretations of weights in Section 3. We introduce our
approach of weighted quality scoring in Section 4. In Section 5, we apply this approach to
defect prediction and evaluate it in two empirical studies on code-change- and software-
class-level defect prediction. Finally, Section 6 concludes the research and points out
directions of future work.

2 Background and Related Work

The problem of defect prediction is embedded in two more general areas of research: soft-
ware metrics and quality models and multi-criteria decision making. We could understand

@ Springer

86 Page4of34 Empir Software Eng (2021) 26: 86

defect prediction models as special quality models used to assess the absence of bugs in
software artifacts as a quality based on suitable software metrics. We could also under-
stand defect prediction as an instance of multi-criteria decision making where we decide,
which software artifact is prone to contain defects. In both cases, defect prediction inherits
problems connected to the dependencies between criteria or metrics and connected to the
subjective setting of weights, as detailed in Sections 2.1 and 2.2, respectively. We will also
relate our work to specific approaches of defect prediction in Section 2.3. Finally, we set
ourselves apart from related approaches of dimensionality reduction in Section 2.4.

2.1 Software Metrics and Quality Models

The notion of guality is diverse, complex, and ambiguous. There is no generally accepted
definition of quality; it depends on viewpoints and goals (Garvin 1984). The definition of
quality might differ considerably for different goals. To this end, software artifacts being
free from defects is one possible quality goal, along with others, such as, e.g., performance,
maintainability, or security. There are different general approaches to aid quality man-
agement, such as the Factor-Criteria-Metric and the Goal-Question-Metric methods. Both
define quality models that use software metrics to provide quantitative data (Fenton and
Bieman 2014) and, depending on the view and the goal, different metrics become relevant.
The software engineering community has proposed and discussed a great variety of such
software metrics (Chidamber and Kemerer 1994; Henderson-Sellers 1995; Martin 2002),
and many of them are validated (Basili et al. 1996). However, because of different views
and goals, companies quite often use their own metrics and customized quality models
(Wagner 2013).

We neither aim to define (yet another notion of) quality nor (yet another set of) software
metrics. We assume that there is a quality model defined by domain experts connecting a
general quality goal to a set of metrics. Also, we expect that the experts know at least for
some metrics whether high metrics values contribute positively or negatively to the goal.
For instance, high values of Lines of Code (LOC) are known to contribute negatively to
a quality goal like maintainability while a high degree of API documentation contributes
positively to the same goal. Note, that for the same metric the contribution direction might
be different for a different goal. Finally, our approach does not rely on the expert input of
metrics directions relative to a quality goal.

We focus on metrics value aggregation, i.e., on how one can combine different metrics
into a single score, that preserves properties of original data with a minimum of human
supervision. Such a score supports decision making, e.g., ranking different artifacts, which
is otherwise difficult based on a set of contradicting metric values.

Many studies discuss hierarchical quality models that rely on several metrics for quality
assessment (Wagner 2013). These studies mainly consider the relations between hierarchi-
cal levels, but not the relationships between metrics. They either consider metrics to be
independent or suggest ways to mitigate the impact of those that are highly correlated. For
example, Gil and Lalouche (2017) show a strong pairwise correlation of the metrics in
the (Chidamber and Kemerer 1994) metrics suite with code size. Jiarpakdee et al. (2020)
show that the interpretation of defect prediction models heavily relies on software metrics
that are used to construct them, and propose AutoSpearman to mitigate correlated metrics.

Instead of mitigation, we suggest basing prediction models on the joint distribution of
metrics values. In addition to pairwise correlation, this approach also handles non-linear and
multiple dependencies between metrics.

@ Springer

Empir Software Eng (2021) 26: 86 Page50f34 86

Aggregation, i.e., combining different metrics values to get an overall score, is an essen-
tial part of any quality measurement method. However, the choice of aggregation methods
for software quality models is rarely justified. Apart from the widely accepted standards,
e.g., ISO/IEC 25010 (2010) and IEEE 610.12 (1990), several other quality models have
been proposed (Bansiya and Davis 2002; Letouzey and Coq 2010; Baggen et al. 2012; Wag-
ner et al. 2015). These models use weights to represent the metrics’ relative importance
contributed to quality. Common ways to determine such weights are experts’ opinions or
surveys. This makes quality assessment subjective due to the possible lack of consensus
among experts, especially, if a notion of quality is multifaceted and vague and might have
different meanings for different experts (Garvin 1984).

We suggest an automated aggregation method that adopts a probabilistic weight-learning
from the joint distribution of metrics instead of the subjective weight-setting in related stud-
ies. In particular, we set two types of weights: one represents the dependency between
metrics and the other one their entropy. In contrast to relying on experts’ opinions to
define the weights, our approach is objective, since based solely on data, and it can be run
automatically. Hence, it allows us to update the models easily when more data becomes
available.

2.2 Multi-Criteria Decision Making

Multi-Criteria Decision Making (MCDM) chooses the best feasible solution from a set
of solutions by explicitly evaluating multiple, potentially interacting, and even conflicting
solution criteria.

Even in MCDM, a frequent assumption is that criteria are independent of each other.
However, it was shown in many decision problems that criteria are indeed dependent (Carls-
son and Fullér 1995; Saaty 1996). The problem has been addressed in different ways.
Carlsson and Fuller use a fuzzy set theory to handle dependency. It is known that fuzzy
logic is not always accurate. Hence, the results are interpreted based on assumptions. Saaty
proposes the analytic network process (ANP) as extension of the analytic hierarchy process
(AHP) based on the supermatrix approach. However, their complexity increases quadratic
with the number of criteria that pairwise comparisons, which makes it impractical for human
experts when facing even a moderate number of criteria.

Criteria weights reflect the importance of criteria and assume that the meaning of crite-
ria “importance” is transparent and well understood by all decision-makers. As this is not
guaranteed, criteria weights are often misunderstood and misused (Schenkerman 1991).

2.3 Defect Prediction

Some software defect prediction models aim to predict the number of defects in a software
system based on software product metrics such as, e.g., Basili et al. (1996) who used the
Chidamber and Kemerer (CK) metrics to predict buggy code components. Nikora and Mun-
son (2004) measured the evolution of structural attributes in predicting the number of bugs
introduced during software system development. Ohlsson and Alberg (1996) relied design
metrics to identify error-prone modules.

Other approaches are based on software process metrics. For instance, Nagappan and
Ball (2005) proposed a technique for early bug prediction based on relative code churn
measures. Hassan (2009) introduced the concept of entropy of changes. Kim et al. (2007)
proposed a bug cache algorithm that predicts future faults based on the location of previous
faults. Some of the approaches are a mix of the previous two, e.g., Moser et al. (2008)

@ Springer

86 Page6of34 Empir Software Eng (2021) 26: 86

highlighted the superiority of process metrics in predicting buggy code, and Graves et al.
(2000) observed that history-based metrics are more powerful than product metrics.

We utilize both product and process metrics, but we do not study the effectiveness of
different software metrics for constructing defect prediction models. In contrast, we focus
on metrics aggregation and what it could bring to defect prediction.

Module-order models predict a ranking of software artifacts ordered by the expected
number of defects instead of directly predicting the number of defects (Khoshgoftaar and
Allen 1999). Menzies et al. (2010) proposed a model that prioritized modules in ascending
order according to their code size. D’ Ambros et al. (2010) performed an extensive compari-
son of bug prediction approaches relying on process and product metrics. They showed that
no technique based on a single metric performs better than a quality model using a combi-
nation of metrics. We apply our approach for metrics aggregation to their benchmark and
compare it against their best performing approaches based on churn and entropy of source
code metrics, and aggregate the same metrics.

Arisholm et al. (2010) suggest that the time spent reviewing a potentially buggy software
artifact depends on its size and complexity. Therefore, the prediction model should result
in a list of software artifacts ranked by the ratio of effort spent on the number of bugs
found. Mende and Koschke (2009) proposed a performance evaluation strategy based on
cumulative lift charts, where the software artifacts are ordered according to the prediction
model on the x axis, and the cumulative number of actual defects on the y axis. Their effort-
aware prediction performance P,,; assesses the fraction of defects that can be encountered
when reviewing only a fraction of the software artifacts. D’ Ambros et al. (2012) used LOC
as a proxy for effort and rank the classes according to their defect density, i.e., the number
of defects divided by the number of lines of code. In the ground truth chart, all software
artifacts are ordered decreasingly by the actual bug density while in the prediction model,
all software artifacts are ordered decreasing by the predicted bug density. P, is then one
minus the normalized integral of the differences of the ground truth and the prediction model
charts. We too evaluate effort-awareness P, of our aggregation approach.

The defect prediction models discussed so far focus on identifying defect-prone code. In
practice, however, it is difficult to decide who should be assigned to review this code, since
large files often have multiple authors. To address this challenge, Mockus and Weiss (2000)
proposed a prediction model that focuses on identifying defect-prone code changes. Kamei
et al. (2013) referred to the change-level defect prediction as “Just-in-Time Defect Predic-
tion”. Their model predicts the risk value of changes. It is 1 divided by the churn, the sum of
code added and deleted in a change, if the code change includes a defect, and O, otherwise.
This way they predict defect-density instead of defect-proneness. Their supervised predic-
tion model is trained on a benchmark with the ground truth of buggy changes known. Yang
et al. (2016) used the same benchmark. They proposed 12 simple models, each using one
software metric and ranking the changes in descendant order of the reciprocal of the met-
rics’ values. The metrics “lines of code added” and “lines of code deleted” are not included
since the sum of these metrics (i.e., churn) is used to define the “ground truth”.

These 12 simple models are agnostics with respect to the actual defects, hence, we call
them unsupervised models. They outperform the model of Kamei et al. (2013) and other
supervised models. In their experiments, Yang et al. (2016) averaged the results across
different projects of the benchmark. Fu and Menzies (2017) repeated the said experiment
project-by-project. They concluded that supervised predictors sometimes perform better
when trained and validated in the same project. Also, they proposed a simple supervised
learner that selects the best-performing of the 12 predictors of Yang et al. (2016) for
each project. This simple supervised predictor performs better than most unsupervised and

@ Springer

Empir Software Eng (2021) 26: 86 Page70f34 86

supervised models. They also recommended that “future defect prediction research should
focus more on simple techniques.” In contrast to Yang et al. (2016) and Fu and Menzies
(2017) models, Liu et al. (2017) proposed an unsupervised model based on churn, i.e., to
rank changes in descendant order according to the reciprocal of churn. Several alterna-
tive supervised models were proposed since, e.g., ensemble learning-based models (Yang
et al. 2017), multi-objective models (Chen et al. 2018), and logistic regression-based
models (Huang et al. 2019).

We evaluate whether or not an aggregation of change metrics, i.e., aggregating all metrics
values, is an improvement over the existing (un-)supervised approaches based on a single
metric. We use the same benchmark as Kamei et al. (2013) and compare our approach with
the unsupervised models of Yang et al. (2016), the supervised model of Fu and Menzies
(2017), and the churn-based model of Liu et al. (2017).

2.4 Dimensionality Reduction

Aggregation is somewhat related to but still different from dimensionality reduction (van der
Maaten et al. 2009), i.e., the embedding of elements of a high-dimensional vector space in
a lower-dimensional space. Approaches to dimensionality reduction include principal com-
ponent analysis (PCA) (Pearson 1901), stochastic neighbor embedding (SNE) (Hinton and
Roweis 2003), and its ¢-distributed variant -SNE (van der Maaten and Hinton 2008). One
could think that the special case of reducing a multi-dimensional vector space (of metrics)
to just one dimension (of a quality score) is a problem equivalent to aggregation. However,
dimensionality reduction only aims at preserving the neighborhood of vectors of the origi-
nal space in the reduced space. In contrast to that, aggregation assumes a latent total order
in the measured artifacts related to the orders in each (metric) dimension that is to be aggre-
gated. The aim is to define a totally ordered score order based on the partial orders induced
by the (metric) dimensions that matches the latent order of the measured artifacts. Conse-
quently, the accuracy of dimensionality reduction can be evaluated based on the observed
data, i.e., the elements of a high-vector space, while the accuracy evaluation of aggregation
additionally needs an explicit ground truth order of the measured artifacts.

3 Metrics Dependence - Weights Interpretation

Our approach derives metrics weights automatically and regards metrics dependence. There-
fore, we first discuss different types of metrics dependence and different possible interpreta-
tions of metrics weights. Then we choose a dependence type and weight interpretation before
we introduce our actual approach to derive them in the next section. Note that the discus-
sions apply to metrics (directly measurable in the software artifacts) and criteria (indirect
metrics and the result of metrics/criteria aggregation) alike. From here on, we will use the
metrics and criteria as synonyms referring to variables whose values are to be aggregated.

3.1 Metrics Dependence

In many real-world situations, metrics have some dependence. Marichal (2000) suggests
distinguishing three types of interaction between metrics:

Definition 1 (Types of Metrics Interactions) Metrics are correlated if high partial values
along one metric imply high (low) partial values along another metric. More general, a

@ Springer

86 Page8of34 Empir Software Eng (2021) 26: 86

subset of metrics is preferential dependent on another, complementary subset if their values
are related to each other. Metrics are substitutable for/complementary to each other if the
satisfaction of only one metric produces almost the same effect as the satisfaction of both.

These types of interactions imply different possible metrics dependencies.

Correlation and preferential dependence could be obtained solely from data using sta-
tistical tests. Substitutivity/complementary can be interpreted as follows: A set of metrics
can be substituted by a subset thereof if bad (good) performance in a subset of metrics pro-
duces the same effect as bad (good) performances in all of them. This could be obtained
from expert opinions and might then be subjective. Alternatively, it requires a quantitative
(ground truth) score of the effect and supervised learning. In our aggregation approach that
is data-driven (no experts allowed) and unsupervised (no ground truth available), we focus
on correlation and preferential dependence of metrics.

3.2 Interpretation of Metrics Weights

Metrics weights play an important role in measuring the overall performance in many
MCDM models. However, there is no canonical interpretation of metrics weights. Choo
et al. (1999) identify several possible interpretations and appropriate questions that could be
posed to experts for setting appropriate weights:

A: Weights ratios as indifference trade-offs. How much improvement in one metric is
acceptable as compensation for one unit of loss in the other, with all values for other metrics
held constant?

B: Weights as the relative contribution to overall value. Which one is more important,
the average worth of values for one metric or the other, and by how much?

C: Weights as the relative contribution of swing from worse to best. What is the ratio of
the contribution to the overall quality of the swing from worst to best in one metric to the
contribution of swing from worst to best in the other?

D: Weights as the information content carried in metrics. Of the two metrics being
compared, which one is considered to have a higher contrast intensity?

E: Weights as the relative functional importance of metrics. Of the two metrics being
compared, which one is more powerful for differentiating the overall desirability of the
alternatives?

These interpretations are different possible definitions of the notion of metrics impor-
tance. There is no objectively correct way to weight metrics, i.e., any weighting approach
is based on some goals and assumptions. We aim for a general, data-driven aggregating
approach based on a set of metrics and their values. Therefore, we deliberately exclude inter-
pretations (A—C), trade-offs, contributions to the overall value, and swinging from worse to
best. These are subjective and can only be obtained from domain experts’ opinions.

Instead, we focus on the interpretations (D, E) where weights can be obtained solely
from data. Assuming that no metric is (known to be) more important than the others, metrics
that do not distinguish the artifacts are weighed down (D). Also, metrics that are highly
correlated with each other are down-weighted so that other metrics would have an equal
representation in the aggregated quality score (E). For example, suppose we have metrics
U1, L2, 13, and two of them are highly correlated and the third does not depend on the
others, say, cor(ui, n2) = 0.9, and cor(u3, (1) = cor(uz, u2) = 0, then we expect that
w13 should get almost half of the total weight while 1 and p, should each get about one
quarter of the total weight.

@ Springer

Empir Software Eng (2021) 26: 86 Page90of34 86

Moreover, it is a well-known fact in machine learning that variables with large value
ranges dominate the outcome while those with smaller value ranges get marginalized. A
metric with larger ranges could influence the aggregated score more due to its larger value,
but this does not necessarily mean it is more important than other metrics. We will not use
weights to compensate for the range of values for different metrics. Instead, all values are
normalized. As for the weights, there is no objectively correct way to normalize metrics. For
each metric u, we choose the normalization to the [0, 1] interval such that normalized met-
rics values can be interpreted as probabilities. We normalize each metric p such that higher
normalized values either positively or negatively contribute to the quality score, consistently
over all metrics, i.e., all normalized metrics will be positively or negatively correlated with
the quality score.

In the next section, we discuss in detail how we normalize, weight, and aggregate the
metrics.

4 The Weighted Quality Scoring Approach

We interpret software quality as a latent variable (Borsboom et al. 2003); it cannot be
observed directly, but is inferred from (software) metrics that measure different aspects
of quality of a software artifact, e.g., of a software product or its development process.
Formally, we use a mathematical model:

Model(Quality) := (A, M, R, >)

A is a set of software artifacts and M is a vector of software metrics. Each metric is a
function that maps A to a subset of R, e.g., a subrange of the natural numbers N (counts) or
the rational numbers Q (ratios). > is a non-strict, total order relation to compare software
artifacts with respect to their quality.

For deriving such a model and applying it to software quality assessment, we follow
four steps that are detailed in the subsections below. We refer to this aggregation method as
Weighted Quality Scoring (WQS):

1: Calculate metrics scores normalizing the metrics values so that resulting values are in
the range [0, 1] and in the same direction (Section 4.1).

2: Calculate weights (D) that represent information content and weights (E) that represent
relative contribution (Section 4.3).

3: Aggregate the metrics scores into a quality score using the joint distribution of their
values (unweighted in Section 4.2 and weighted in Section 4.4).

4: Rank software artifacts based on their aggregated quality scores (Section 4.5).

We assume that the view on quality and the goal of quality assessment are given, as well
as the relevant metrics, and the metrics values of (software) artifacts.

Given software metrics ui, ..., Lk, We represent the assessment result for software
artifacts ay, ..., a, as an n by k quality matrix [mj;] of metrics values. We denote by
mji, j e{l, n} i€ {1 k}, the quality of an artifact a; assessed with metric 1;. We use
mi = [mij, ..., mpil% € M} to denote the i-th column of the quality matrix, which rep-
resents metrics values for a11 software artifacts with respect to metric p;, where M; is the
domain of its values.

We denote by o; a metric score function. It normalizes the metrics values. As the original
metrics values m j;, their corresponding normalized values s;; = o;(m ;) still indicate the

@ Springer

86 Page100f34 Empir Software Eng (2021) 26: 86

degree to which the software artifact a; € A performs in the metric u;. The metric and
score functions have the following signatures.

wi + A= M;
oilm] : M; — [0, 1]

Since o; is calculated numerically based on metric data, it is parameterized with m;, i.e.,
with a vector of metrics values of metric u; observed for software artifacts. If the actual
metrics values are not important or obvious, we skip this parameter. We will formally define
o; when we discuss metrics normalization in Section 4.1.

A weight vector w; represents the relative importance of metrics scores function o;
compared to the others:

k
w = [wy, ..., wg], where Zwi =1
i=1
We will formally define the calculation of weights w in Section 4.3.

Based on all metrics score functions o = {07, ..., o} and the weight vector w, our goal
is to define an overall quality score function such that the relation > on software artifacts
and the > on the quality scores of these artifacts are isomorphic. Such a function takes a k-
tuple of metrics scores and returns a single overall quality score. This aggregation function
has the following signature.

Flw] : [0, 11* = [0, 1]

Note that F is parameterized with the vectors of weights corresponding to the metrics.
For unweighted aggregation, the weight vector is not important and we skip it. We formally
define possible functions F when we discuss unweighted aggregation in Section 4.2 and
weighted aggregation in Section 4.4.

Before that, we note that F is an aggregation operator (Calvo et al. 2002), i.e., it should
satisfy the following

Definition 2 Aggregation Operator Properties
Boundary condition. If software artifact a; is the best (worst) according to all metrics, the
overall quality score should be close to 1 (close to 0).

FLDI(sj1, -, sj0) = las¥e_ 55, =1

FL0I(sj1, .., sjx) =0asVE_ s;; =0
Averaging property An aggregation output should remain between the minimum and the
maximum of the inputs.

ming_y(sji) < FI@1(sj1, ... sj%) < max/_; (sji)
Commutativity The overall quality score function should be commutative. Let 7 be an
arbitrary permutation of k elements.
v FIWI(sjt, - .-, Sjk) = Flweys - -, We@)1Sz1)s - - - Sek))

Monotonicity If all metrics scores of a software artifact a; are greater than or equal to all

the corresponding metrics scores of another software artifact a;, the same should be true for
their overall quality scores.

- - k
Flwl(sj1, ..., sj6) = Flwl(si1, ..., Sik) as Vi_q 8ji > sii

@ Springer

Empir Software Eng (2021) 26: 86 Page 110f34 86

4.1 Normalization of Metrics Values to Metrics Scores

Software metrics can have different value ranges, scale types, and directions. The latter
means that large metric values indicate either poor or good overall quality. If large metric
values indicate higher satisfaction, we call the metric’s direction positive, otherwise neg-
ative. To normalize these differences, we propose to express the performance of software
artifact a; according to the metric u; using probability. For metrics with positive (negative)
direction, this normalized metrics score represents a probability of finding another soft-
ware artifact with metrics value smaller or equal (greater or equal) to the given value. We
calculate such a normalized metric score using empirical probabilities as follows.

(m jr;

IA

mj;), if direction is positive for u;

\

- BN
oilmilmi) =sij = - 1 .
imilimgi) = 8ji = - J/X::l (mj; > mj;), otherwise

&)

where 1 is the indicator function with: 1 (cond) = 1if cond and 0, otherwise.

The proposed metrics normalization is the so-called probability integral transform,
which is widely used in multivariate data analysis to transform random variables in order
to study their joint distribution (Nelsen 2007). In other words, we obtain the scores by the
cumulative distribution function (CDF) when it is assumed that low values are bad, i.e., the
metric’s direction is positive, and by the complementary cumulative distribution function
(CCDF), otherwise.

The normalized metric score interpretation is the same for all metrics: the probability
of finding another software artifact that performs worse than the given one (0 indicates the
worst, 1 the best performance).

Knowing its direction, we can normalize all observed values m € M C M from each
metric u : A — M empirically by computing the fraction of the values lesser (or greater)
than or equal to m as implemented in Algorithm 1, which approximates the metric score
function o that corresponds to (.

Algorithm 1 Normalize(M, direction).

for allm € M do
count=0
for all /i € M do
if direction is positive then
//Normalizing by CDF
if m < m then
count ++
end if
else
//Normalizing by CCDF
if ;1 > m then
count ++
end if
end if
end for
o (m)=count/| M|
end for

@ Springer

86 Pagel120f34 Empir Software Eng (2021) 26: 86

However, it is left to discuss how to derive the directions of the metrics. The knowledge
if low values for a specific metric are desirable or not can be obtained by experts’ opinions
or from the research in the application domain. In software engineering, e.g., it is known
that size and complexity (metrics) are negative for maintainability and error proneness, i.e.,
have a negative direction w.r.t. these overall qualities.

In fact, knowledge of the direction of a single metric 1t is enough to define directions
for all other metrics: metrics positively correlated with w1 have the same direction and we
normalize them in the same way as p1; negatively correlated metrics have the opposite
direction and we normalize them in an opposite way. For example, if it fair to assume that
low values of the lines of code (L OC) metric are desirable for error proneness, we set
its direction to negative and normalize it by CCDF using Algorithm 1. We also set the
direction to negative for all other metrics that are positively correlated with LOC, e.g.,
the weighted method count (W M C) metric. Therefore, we empirically calculate and test
Spearman’s coefficient of correlation p(LOC, WM C) > (. Normalizing all metrics based
on the knowledge of the direction of metric ;1 is implemented empirically in Algorithm 2.
Let M,- C M; be the measured metric values for each metric u; : A — M; and tho be
Spearman’s correlation coefficient of samples.

Algorithm 2 NormalizeAll(Ml, ol Mk, directiony).

/[For all k — 1 metrics excluding the first one.
fori €2...kdo
if p(M;, M;) > 0 then
o; = Normalize(M i, directiony)
else
o; = Normalize(Mi, opposite(directiony))
end if
end for

In the arguably unlikely case, direction knowledge is not even available for a single
metric, there is still a way how to normalize the metrics purely based on data. Then we
simply guess the direction of one metric 1 knowing that we might be wrong. As the result,
for all metrics, the normalized scores point in the same direction, which, in turn, is either
positively or negatively correlated with the overall quality score. This needs then to be tested
empirically by applying the aggregated quality score in the application domain, which is
outside the scope of this paper.

Finally, the normalization using (C)CDF deserves some explanations from an information-
theoretic point of view. Because of their symmetry, we will focus on CDF and drop CCDF
in this discussion. The cumulative distribution function C D Fx of a random variable X is
the probability that X will take a value less than or equal to x, i.e., CDFx(x) = P(X < x).
It requires that X is measured at least on an ordinal scale, i.e. “less than or equal” (<) is
defined on X. This is guaranteed by our definition of metrics. For instance, L OC (a metric
of a class) induces an order whereas the programmer (an attribute of a class, but not a metric)
does not.

CDFy is a monotonously increasing function mapping X to the interval [0, 1]. With-
out loss of generality, we can assume that each value x € X occurs with a probability
larger than 0, i.e., the probability density P D Fx(x) > 0. Hence, CD Fx is even a strictly
monotonously increasing function. As a consequence, it is invertible for any given proba-
bility distribution of X, i.e., CDFy ! exists and is a function [0,1] — X. A normalized

@ Springer

Empir Software Eng (2021) 26: 86 Page 130f34 86

metric score s = C D Fx(x) and the distribution of X, uniquely define the value x. In short,
s = CDFx(x) & x = CDFy l(s). Hence, using the normalized metric score instead of
the original metric value does not loose information.

However, the distribution of X is, in general, unknown and we do not want to make
any assumptions about possible distribution laws of X. In general, it can only be approx-
imated numerically by observing a (representative, sufficiently large) sample X of the
population X. Then the empirical (or sample) cumulative distribution function EC D Fy is
a good approximation of CD Fyx. EC D Fx(x) can be calculated as the relative frequency of
observations in the sample X that are less or equal x, i.e.,

(%1% € X, & < x}|

| X1

with | - | the size of a set, which is exactly our normalization transformation as implemented
in Algorithm 1. If the number of data points is relatively small or biased, one cannot claim
to have a representative sample X of the population X. Consequently, EC D Fx may not
be a good approximation of C D Fx. Conversely, using the normalized metrics scores is as
good as using the original values from an information-theoretic point of view if EC D Fy is
a good approximation of CD Fy,i.e., if Xisa representative, sufficiently large sample of X.

ECDFx(x) =

4.2 Unweighted Aggregation

Now we are ready to define an unweighted aggregation function F : [0, 1]¢ > [0, 1]. Let
sj; be the metric score of metrics value m j; normalized by (1). This metrics value, in turn,
is measured for a software artifact a; € A by a metrics ;. Corresponding to the quality
matrix [m ;] we define a quality score matrix [s;]. All scores are in [0, 1], have the same
interpretation and the same direction, which makes them comparable. Hence, it is possible
to aggregate them. The joint distribution defines an unweighted aggregated quality score
of an artifact a;, that is an (empirical approximation of the) joint probability of an artifact
performing worse than or equally good as a; in all metrics M!

1 n
F(sji, ..., 850 = —Zﬂ(m SSjIA Asie < Sjk)
i)

From a theoretical point of view, the proposed quality scoring is nothing but the (empir-
ical approximation of the) joint CDF of the scores, which in turn are (empirical approxima-
tions of) either CDFs or CCDFs of the metrics.

We refer to the process of obtaining unweighted aggregated scores as Quality Scoring

(0S).
4.3 Weighting

Normalization has taken the value range out of the equation. To set objective weights
according to the discussion in Section 3), we should consider both: the diversity within
a metric (D) and the possible interaction between the different metrics (E). For metrics
with a smaller variance, we should assign smaller weights. Also, knowing that a metric is

TRecall, in case we could not know the initial direction of a single metric and we guessed it wrongly, the
interpretation would be: the joint probability of an artifact performing better than or equally good as the
current one. We will not repeat this disclaimer from here on.

@ Springer

86 Page 140f34 Empir Software Eng (2021) 26: 86

correlated with many others implies that it might have very little impact on the overall
(latent, ground truth) quality because the impact of the fact that this metric assesses is
distributed over the correlated metrics that somehow assess the same fact.

We suggest to use an entropy method to set objective weights based on the diversity
within a metric (D). Entropy measures the information content carried by a metric (Zeleny
2012). It assigns a smaller weight to a metric if its scores are similar across the software
system. Such a metric does not help in differentiating software artifacts.

The amount of information provided by a score of metric ; can be measured using
Shannon’s entropy H. It is commonly used in information theory to determine the average
level of information inherent in a random variable’s possible outcomes. We interpret entropy
weights as a degree of diversity of software artifacts from .4 with respect to metric scores i;; 0
indicates no, 1 a high degree of information to distinguish software artifacts. Metrics with a
larger entropy are considered to be more important. Hence, they should have a higher weight.

Formally, we define an entropy for each metric u; as:

n
H; = — Z p(sji)log p(sji), where n = | A|
j=1
We estimate probabilities p(s;;) with empirical frequencies. To make the weights for all
metrics i, 1 <i <k sum up to 1, we define the respective entropy weight as:

w = ki,wherek = M|
> -1 Hi

Weights based on entropy do not consider possible interaction between metrics scores.
We, therefore, define another vector of weights that reflects the interaction between the
metrics (E) assessed by their scores’ relative contribution to the joint probability distribution
of the metric scores.

Let R; be the ranking of artifacts 1 < j <n,n = |A| according to their metrics scores
sji (1) for any metric u;, 1 <i <k, k = | M]. Let R be the ranking of artifacts according
to the unweighted aggregated quality score (2). We denote by p; = |p(R;, R)| the degree
of dependency of the metric scores s j; and the (unweighted) aggregation of all scores F (s,
..., 8jk). It is defined as the absolute value of Spearman’s rank order correlation p of the
rankings above. Metrics p;, p; inducing a high rank order correlation with the unweighted
ranking are not independent and their importance should be reduced by lower weights.
Metrics inducing a low rank order correlation show a higher degree of independence; they
are more important. Hence, they should have higher weights. To make the weights for all
metrics w;, 1 <i <k sum up to 1, we define the respective dependency weight as:

wier — 1 —p;

l k — 25(:1 pi
To use both entropy and dependency weights, we integrate them as a normalized product:

de
wi P x wient

- k dep ent
2= (wz X w;

Wi

4.4 Weighted Aggregation

We use Levi-frailty copula (Mai and Scherer 2009) to model an aggregation as a weighted
product function. It links marginals with their joint distribution, and marginal distributions

@ Springer

Empir Software Eng (2021) 26: 86 Page 150f34 86

are modeled separately from the dependence structure. Given metrics scores [s;1, . .., § k]
and the corresponding weights w = [wy, ..., wy], we define the weighted quality score
aggregation as follows.

k
F[ﬁ)](sﬂ,...,sjk):l_ls;{;i)
i=1

The result of this aggregation is a weighted aggregated quality score. We interpret it as a
score of relative overall quality, i.e., how good a software artifact performs in a set of inter-
acting metrics, relative to other artifacts; 0 indicates bad and 1 good quality. The proposed
aggregation satisfies the required properties of aggregation operators (boundary condition,
averaging, commutativity, and monotonicity). It was formally proved for the well-known
weighted product model for multi-criteria decision making (Triantaphyllou 2000), which
(3) actually is. Therefore, we omit the proof here. Note that the weighted product model has
the advantage compared to the (also well-known) weighted sum model that it implies that
poor metrics scores for some metrics cannot be compensated by sufficiently high quality
scores for other metrics.

We refer to the process of obtaining weighted aggregated scores as Weighted Quality
Scoring (WQS).

4.5 Ranking

Once the aggregated quality scores are computed, the software artifacts can be ranked by
simply ordering the values. We assign the same rank for artifacts in case their aggregated
scores are equal (up to margin of error ¢ = (n]~ ', n = | A|, and [n] rounds to the nearest
power of 10).

A software artifact a; to be better than or equally good as another artifact gy, if the aggre-
gated score of a; is greater than or equal to the aggregated score of a;. Software artifacts
with bad quality should be prioritized and inspected first, therefore we rank software arti-
facts based on their aggregated scores in acceding order: software artifact with the lowest
(highest) possible aggregated score will be ranked as first (last).

For better numerical stability, we calculate the ranking for WQOS, based on

k
log(FIB](sj1, .-, $;0)) = Y _ (w; log(sji).
i=1

Putting the loose strings together, let m ;; = u;(a;), sj; = o;(mj;).

F(sjt, ..., 850) = F(sir, -5 800) for QS

i log(F[W](sj1, ..., sj)) = log(F[wl(si, ... sw)) for WOS

>a &

5 Application to Software Defect Prediction

The objective of a defect prediction model is to determine risky code for further software
quality assurance activities.

There are two possible model outcomes: classification, i.e., classify each entity as defec-
tive or clean, or ranking based on defect prediction, i.e., provide a list of software artifacts
ordered by their risk to be defective. In this research, we predict a ranking of software
artifacts by the number and the density of defects they will possibly exhibit, instead of pre-
dicting the actual number of defects nor whether a software artifact is buggy or not. In short,

@ Springer

86 Page160f34 Empir Software Eng (2021) 26: 86

we provide a ranking not a classification. This allows the developers/quality assurance (QA)
engineers to focus on the most defect-prone (top-ranked) artifacts, given a limited amount
of time for reviewing/QA.

The size of software artifacts is positively coupled to the defects it contains (Koru et al.
2008). However, smaller software artifacts tend to have a higher bug density, i.e., for an
equivalent number of bugs to discover, inspecting much smaller software artifact involves
less effort than inspecting a few larger artifacts (Arisholm et al. 2010). A corresponding
prediction model for software artifacts aims at maximizing defect detection efficiency, i.e.,
the ratio of the number of bugs potentially detected per effort spent.

Such a prediction model can be utilized in two conceptually slightly different scenar-
ios. They complement each other to improve the quality of an upcoming software release:
(i) short-term quality assurance predicts the efficiency of detecting defects in software
changes and (ii) long-term quality assurance predicts the efficiency of detecting defects in
a particular software module.

In this paper, we do not aim to build the best-performing predictor. In contrast, to illus-
trate what our approach can bring to defect prediction, we study whether or not our approach
could improve the performance of existing models for defect prediction. We only consider
models suggested in the related work as they are and compare them to the approach pro-
posed in Section 4 for ranking software artifacts as they are. We do not try to fine-tune and
improve either of the models for the context of defect prediction.

The first study (i), aims at bug prediction in code changes. It ranks code changes based
on defect-proneness. We apply the change metrics from the publicly available benchmark
of Kamei et al. (2013). The ground truth is the ranking of code changes according to their
post-release effort. We compare the results of our approach with other approaches that used
the same benchmark (Yang et al. 2016; Liu et al. 2017; Fu and Menzies 2017).

The second study (ii) aims at bug prediction of software classes. It ranks software classes
according to their defect proneness. We use software metrics and prediction models from the
publicly available benchmark? by D’ Ambros et al. (2010). The ground truth is the ranking
of classes based on their observed post-release defects (D’ Ambros et al. 2012).

We implemented all algorithms and statistical analyses in R.> We provide all R scripts
that are used to conduct the experiments in a replication package downloadable from https://
doi.org/10.5281/zenodo.4603073.

The benchmarks contain several open-source software systems. We do not merge
changes/classes over all systems, since otherwise individual differences between the
projects might be blurred (Easterbrook et al. 2008). To make the comparison fair, we use the
same performance measures and prediction settings as used in related studies (D’ Ambros
etal. 2010; 2012; Yang et al. 2016; Liu et al. 2017; Fu and Menzies 2017).

5.1 Study (i) — Ranking Code Changes

We apply the QS and WQS approaches proposed in Section 4 and the approaches from the
related work (Yang et al. 2016; Liu et al. 2017; Fu and Menzies 2017) to ranking software
changes according to their expected defect detection efficiency, i.e., the number of bugs
expected to be found per unit of time spent.

Zhttp://bug.inf.usi.ch
3The R Project for Statistical Computing, https://www.r-project.org

@ Springer

https://doi.org/10.5281/zenodo.4603073
https://doi.org/10.5281/zenodo.4603073
http://bug.inf.usi.ch
https://www.r-project.org

Empir Software Eng (2021) 26: 86 Page 170f34 86

Table 1 Software systems used

in ranking code changes System #changes #defect-inducing changes
evaluation

bugzilla 4,620 1,696

columba 4,455 1,361

eclipseJDT 35386 5,089

eclipse Platform 64,250 9,452

mozilla 98,275 5,149

postgreSQL 20,431 5,119

5.1.1 The Code Changes Benchmark

The benchmark consists of a data from six open source systems: bugzilla* written in Perl;
columba®, eclipse JDT?®, and eclipse Platform7 written in Java; mozilla written in C++,
and postgreSQL9 written in C. Table 1 shows statistics for these systems. The number of
defect-inducing changes is the number of changes that induces one or more defects. The
CVS periods in the footnotes are the time periods in which commits and bug reports were
collected. Table 2 shows the change metrics that were use in the experiments.

5.1.2 Models

All unsupervised and supervised models compared in this study use the same change metrics
(see Table 2). Below we briefly explain the models suggested in the related work. They
aim at priority ranking the changes such that the expected defect detection efficiency is
maximized when revising the changes in this order.

The Simple unsupervised model built from change metrics (Yang et al. 2016) calculates,
for a single metric u, a risk score as its reciprocal R = p~!. It prioritizes changes with
smaller metric values, hence, it ranks them based on risk score in decedent order. If there
is a tie, the change with a larger code churn—the sum of lines of code added LA and
deleted LD in a change—will be ranked later. Since code churn should be a tie-breaker,
no simple unsupervised model is built for the corresponding metrics LA and LD. Yang et
al. do not expect these simple unsupervised models to have a high predictive performance.
However, the one built on the LT metric performs quite well in the benchmarks and was
even competitive with the supervised models. For this reason, we too include this LT model
in our comparison.

The Code churn-based unsupervised model (Liu et al. 2017) extends the idea of the sim-
ple unsupervised models but uses only the churn metrics to compute a risk score. For each
change, the corresponding code churn is again the sum of LA and LD. Changes are ranked
in descendant order according to this churn risk score 1/(LA + LD). In our comparison,
we refer to this model as CCUM.

“https://www.bugzilla.org, CVS period 08/1998-12/2006
Shttps://sourceforge.net/projects/columba, CVS period 11/2002-07/2006
Shttps://www.eclipse.org/jdt, CVS period 05/2001-12/2007
7https://projects.eclipse.org/projects/eclipse.platform, 05/2001-12/2007
8https://www.mozilla.org, CVS period 01/2000-12/2006
https://www.postgresql.org, CVS period 07/1996-05/2010

@ Springer

https://www.bugzilla.org
https://sourceforge.net/projects/columba
https://www.eclipse.org/jdt
https://projects.eclipse.org/projects/eclipse.platform
https://www.mozilla.org
https://www.postgresql.org

86 Page180f34 Empir Software Eng (2021) 26: 86

Table 2 Metrics used in ranking code changes evaluation

Metric Description

NS Number of modified subsystems

ND Number of modified directories

NF Number of modified files

ENT Distribution of modified code across each file

LA Lines of code added

LD Lines of code deleted

LT Lines of code in file before the change

FIX Whether or not the change is defect fix

NDEV The number of developers that changed the modified files
AGE The avg. time interval between the last and the current change
NUC The number of unique changes to modified files

EXP Developer experience

REXP Recent developer experience

SEXP Developer experience on a subsystem

The Predictor based on simple unsupervised models (Fu and Menzies 2017) is a super-
vised extension of the simple unsupervised models. Fu and Menzies argue that no simple
unsupervised model is consistently working best on all software systems and use supervised
learning to find the best simple unsupervised model specific for each software system. The
simple unsupervised model performing best in four evaluation metrics Py, Recall, Preci-
sion, and F1 score, i.e., the highest mean over these four evaluation metrics, is chosen. The
evaluation metrics are detailed in Section 5.2.1 below. Similar to Yang et al., changes are
ranked in descendant order according to their predicted risk score computed as the recipro-
cal of different metrics for different software systems. In our comparison, we refer to this
model as OneWay.

We build the unsupervised WQS model (3) aggregating the change metrics (except LA
and LD) and rank the aggregated score in ascending order. To investigate the importance of
weights, we also build the unweighted variation QS (2).

To be consistent with Yang et al., Liu et al., and Fu and Menzies, we normalize the metric
LT using CDF, since smaller files have a higher defect density. Then, directions of the other
metrics are defined using Algorithm 2. Obviously, we use expert knowledge only for one
metric LT while the other approaches use such expert knowledge for all metrics.

We compare the rankings induced by the simple unsupervised model LT, the unsuper-
vised model CCUM, the supervised model OneWay, and the rankings of our unsupervised
aggregation approaches QS and WQS to the ground truth.

Since the unsupervised approaches do not use the ground truth information to build
the prediction models, they are not expected to perform better than the supervised mod-
els trained on this information. Also, the models WQS, OS, LT, and OneWay do not use
the churn size metrics LA and LD. These predictor variables are strongly correlated with
effort (Kamei et al. 2013), which by definition is strongly (inversely) correlated with effi-
ciency, the response variable. Hence, the CCUM model that uses churn size has maybe an
(unfair) advantage over the other models.

@ Springer

Empir Software Eng (2021) 26: 86 Page 190f34 86

5.2 Experimental Design

Like Fu and Menzies (2017), we use time-wise cross-validation to avoid testing on data
used for training the models. This cross-validation technique even ensures that changes
used in testing are always created later than the changes used in training. Therefore, it sorts
all changes of each software system based on their commit date and groups all changes
submitted in the same month. A sliding window of six months is moved over all » months
with commit information for a software project and defines training and test folds. It is
moved month by month from month i = 1 to n — 5 and the months 7, i + 1 constitute the
training fold, the months i 4+ 4, i + 5 the test fold.

Because of different values of n and time-wise cross-validation, bugzilla has 101 folds,
columba 44, eclipse JDT 80, eclipse Platform 80, mozilla 84, and postgreSQL 167. All
unsupervised models only use the test folds to build the models and to evaluate their
performance.

We report the 25 percentile, the median, and the 75 percentile values of the distributions
of Py, Precision, Recall, and F1 score for each software system over the corresponding of
folds.

To be consistent with Yang et al. (2016), Liu et al. (2017), and Fu and Menzies (2017)
in statistically comparing the difference between our and other approaches, we use the
Wilcoxon single ranked test to compare the performance scores of the approaches, and the
Benjamini-Hochberg adjusted p-value to test whether observations are statistically signifi-
cant at the 0.05 level. To measure the effect size of the performance scores of the approaches,
we compute Cliff’s §, a non-parametric effect size measure. We assess the magnitude of the
effect size as trivial if |§| < 0.147.

5.2.1 Evaluation Measures

We compare the rankings of the approaches to the ranking obtained from the ground truth
that reviles the changes introducing defects and accounts for the effort required to inspect
those changes. To be consistent with the related studies (Yang et al. 2016; Fu and Menzies
2017; Liu et al. 2017), we compare the approaches using the evaluation metrics P,,;, Recall,
Precision, and F1 score suggested therein and under the same two simplifications of the
ground truth.

The first simplification assumes that the code churn of a change is a proxy of the effort
required to inspect the change, which is consistent with Kamei et al. (2013). The sec-
ond simplification assumes that 80% of the defects are contained in 20% of the changed
code (Ostrand et al. 2005). Hence, the evaluation metrics are assessed for the rankings up
to the 20% effort point, i.e., only consider the top-ranked changes whose churn sums up to
20% of the total churn.

Effort-Aware Prediction Performance, P,,; was first suggested by Mende and Koschke
(2009). The code churn (LA+LD) is a proxy of the effort to scan a change (x axis) and a
binary indicator of whether this code change is buggy or not for defectiveness (y axis: 1 if
the code change included a defect and 0, otherwise). We rank all changes descendingly by
y and break the ties by x in ascending order. The result is a list of changes starting with
the defective ones (smallest to largest) followed by the correct ones (smallest to largest). A
model performs better than a random predictor only if Py, > 0.5.

Precision, Recall, and F1 score. A model suggests a change as defective iff it is ranked
before the 20% effort point. Let ¢p be the number of defective changes that a model pre-
dicted as defective, fp be the number of not defective changes that a model predicted

@ Springer

86 Page200f34 Empir Software Eng (2021) 26: 86

as defective, and fn be the number of defective changes that are not predicted defective.
Define Precision P and Recall R as

t t
P:7p andRzip
tp+ fp tp+ fn

and the FI score as the harmonic mean of P and R. A low Precision indicates that
developers would encounter many false alarms, which may have a negative impact on the
developers’ confidence in the prediction model. A low Recall indicates a defensive predic-
tion that suggests only a few defective code changes and misses many others. A low F1
score indicates that a good Precision (Recall) is achieved at the expense of a low Recall
(Precision).

, Tesp.

5.2.2 Summary of Results

The boxplots (with 25 percentile, median, and 75 percentile values) in Fig. 1 visualize the
different models and the cross-validation distribution of their performance in the evaluation
measures P,,,, Precision, Recall, and F1 scores. Each row corresponds to the software
system: bugzilla, columba, eclipseJDT, mozilla, eclipse Platform, and postgreSQL (in this
order). Each column corresponds to the approaches LT, CCUM, OneWay, QS, and WQOS (in
this order).

A dashed line visualizes the median value of WQS and shows the differences between
our approach and the others. We use colors to indicate a significant difference between
the approaches. Blue (red) color indicates that an approach is significantly better (worse)
than WQS for a benchmark according to the Wilcoxon signed-rank test and the Benjamini-
Hochberg p-values is less than 0.05, and that the magnitude of the difference is not
trivial. Black color indicates that an approach is not significantly different from WQS for a
benchmark or the magnitude of the difference is trivial.

Figure 1 shows the performance comparisons in terms of Popt, Precision, Recall, and F1
score. Tables 3, 4, 5, and 6 show the median values and highlight the respectively best with
a dark gray background, and the second best with a light gray background. Our WQS model
often performs better than or equally good as the models build on a subset of metrics or a
single metric in isolation. Only in 16 out of 96 comparisons in total (the blue ones) another
approach is significantly better than WQS.

Effort-Aware Prediction Performance, Pyp,: Figure la shows that all approaches but
CCUM perform statistically worse than or equally good asWQS. It is no surprise that CCUM
performs statistically better since it is based on churn that is used in the predictor and the
response. Table 3 shows the median values of effort-aware evaluation results for each soft-
ware system. We observe that QS never performs best or second best. The WQS model
performs second-best in 5 out of 6 systems, and once even significantly better than all oth-
ers. WQOS performs better than LT and OneWay in 4 out of 6 systems, and equally good in
the remaining systems. We conclude that considering weights is important for quality scor-
ing in the effort-aware evaluation and that aggregating all metrics often improves the results
even of single metrics models, even when the metrics are carefully chosen or trained with
supervised learning.

Precision: Figure 1b shows that all approaches perform statistically worse or sometimes
equally good compare to WQS, except for two cases: OneWay performs better for mozilla
and eclipseJDT. It is not a surprise that OneWay could perform statistically better since it is
a supervised model. Table 4 shows the median Precision results for each software system.
OS performs second best and WQS best in half of the systems. We conclude that weights are

@ Springer

Empir Software Eng (2021) 26: 86 Page210f34 86

Popt Precision
o] e - s - © —_ _ ! —
°l - ‘ — : °l == = e ——
o N o — — . — N —
o 0 o 0
o] BEE T e e | — T — —
<) N —_ ' — o — -] § =] e o o —- -
o . e — — L L .
= + = +
e U, - -« H
o — o —— '
—— h — h
° ' § - — — i - - - -~ - - E——- -
o T T
© e R = 1
- —— —— —
g ' 8. ?-i-=-?---------?--
t =] == t
© é....é...ﬁ e E—-- g !
o ' N i ————
o T o T
— p— —
o =T ey == — A
o . —_ — ' o B e S Ay SR - - - - — - -
= ! o —— L p—— ' -
o o
o N) © © o) N o ©
2 N X3 G O % N @ [ex e
& (\"A N <« o<\°® W
(a) (b)
Recall F1
_ e _ _ J _ !
© : 1 i ! © —_ J— h —_
o e e | = o
o — L . . e — — L — . —
= + = — +
\ — | < j . . .
&l = e ——— R ———— RS - — g ey - - =
T 1 —— | — T | — 1 —
° ; —_ ! ° - T ¥ !
> . e > e e
o T o T
© — — —— . —_ < .
o —- - -l - - —] == === = = === e e e e -- © —_— — —_— —_ i —
o pur— — ' = ° — — — - - - - - - - - —
: — Ep— - |
h h
- —_— =———d—— v 3 — e - - - - - - - = -
° — j S j
© ' —— < '
o S e e i —————— P C —— e —_ ' o
o = === = | e ===
o T o T
p— — — ' — J— ' —_
j j _ < ‘ X
— T 0 L] C - 1 1 ———
2 — — — . = L —— — o '
o o
oy N) S © o} N N © °
2 O 2 G (e % N @ [eX G
© Ooe“ W © oV W
(c) (d)

Fig. 1 Ranking Code Changes. Performance comparisons in terms of P,,, Precision, Recall, and F1 score,
between the proposed WQS and models from a benchmark over 6 software systems (from top to bottom are
bugzilla, columba, eclipseJDT, mozilla, eclipse Platform, postgreSQL)

important for Precision and that aggregating all metrics often improves the Precision over
single metric models.

Generally the Precision is low between 0.395 down to 0.038. However, on average WQS
performs better than all other predictors in the contest and much better than a random predic-
tor (randomly predicting defect-inducing changes). On average, WQS improves this random
predictor by 80%. For details of the random predictor, we refer to Kamei et al. (2013).

Recall: Figure lc shows that all but CCUM perform statistically worse or sometimes
equally good as WQS. It is again no surprise that CCUM performs statistically better since
it is based on churn used in prediction and evaluation. Table 5 shows the median Recall

@ Springer

86 Page220f34 Empir Software Eng (2021) 26: 86

Table 3 Ranking code changes. Effort-aware evaluation by P,

LT CCUM OneWay wQSs [N
bugzilla 0.721 0.909 0.652 0.734 0.661
columba 0.732 0.907 0.763 0.796 0.714
eclipse]DT 0.709 0.725 0.702 0.737 0.608
mozilla 0.651 0.802 0.617 0.693 0.625
eclipse Platform 0.717 0.868 0.689 0.763 0.663
postgreSQL 0.742 0.866 0.742 0.707 0.645

results. We observe that QS performs worst and WQS second best in all systems. Both LT
and OneWay perform worse than WQS but in jdt and mozilla where they perform equally
well. We conclude that considering weights is important for Recall and that aggregating all
metrics can improve the results over single metric models.

F1 score: Figure 1d shows that WQS is almost as good as CCUM. Only in 3 out of
24 comparisons it is not the best-performing model. CCUM performs better in eclipseJDT
and eclipsePlatform, OneWay in mozilla. As discussed before, no surprise that CCUM and
OneWay might perform statistically better. Table 6 shows the median of F'/ score results for
each software system. QS performs second best in 2 of 6 and WQS best in 3 of 6 software
systems, and second best in the remaining 3 systems. We conclude that weights are impor-
tant for the FI score and that aggregating all metrics often improves the results over single
metric models.

5.3 Study (ii) — Ranking Software Classes

We apply the QS and WQS approaches proposed in Section 4 and approaches from the
related work to rank software classes according to their expected number of bugs. Similar
to the previous study (i), we also evaluate the expected defect detection efficiency, i.e., the
number of bugs expected to be found per unit of time spent.

5.3.1 The Bug Prediction Benchmark
D’ Ambros et al. (2010) published a set of metrics and defect information for several soft-

ware systems. They also studied the performance of supervised prediction models, i.e.,
generalized linear regression build on different sets of metrics. The benchmark consists of

Table 4 Ranking code changes. Evaluation by Precision

LT CCUM OneWay wQSs [N
bugzilla 0.333 0.238 0.387 0.395 0.364
columba 0.19 0.179 0.25 0.263 0.185
eclipse JDT 0.112 0.077 0.117 0.108 0.087
mozilla 0.035 0.038 0.042 0.038 0.035
eclipse Platform 0.11 0.074 0.11 0.122 0.114
postgreSQL 0.176 0.111 0.227 0.271 0.186

@ Springer

Empir Software Eng (2021) 26: 86 Page230f34 86

Table 5 Ranking Code Changes. Evaluation by Recall

LT CCUM OneWay wQos oS
bugzilla 0.449 0.697 0.359 0.527 0.384
columba 0.44 0.72 0.561 0.645 0.463
eclipse JDT 0.452 0.637 0.422 0.46 0.316
mozilla 0.363 0.582 0.327 0.413 0.326
eclipse Platform 0.432 0.704 0.406 0.476 0.434
postgreSQL 0.432 0.615 0.439 0.433 0.4

a data for five open-source software systems written in Java: eclipse'®, equinox!!, lucene'?,

mylyn'3 and pde'*. Table 7 shows statistics for these systems. The number of buggy classes
is the number of classes with defects in the prediction release, i.e., the version the of soft-
ware system for which the prediction is made. The total number of bugs is the number of
non-trivial defects reported within six months after the release.

The benchmark contains metrics values for each class of each software system for 6 Chi-
damber & Kemerer (CK) metrics and 11 Object-Oriented (OO) metrics. Table 8§ summarizes
these source code metrics that we use in the comparison.The same CK and OO metrics are
also used in the aggregation approaches; we refer to the as the source code metrics CK+0OO.

5.3.2 Models

In addition to CK+OO collected for a single version, the benchmark also contains metrics
calculated based on several versions of software systems. The Churn of source code metrics
is the change of the metrics over time. It is calculated on consecutive versions of a software
system sampled every two weeks. For each metric, a simple churn could be computed as a
sum over all classes of the deltas of source code metrics values for each consecutive pair
of versions. D’ Ambros et al. (2010) suggest several variants, e.g., a weighted churn model
that weights the frequency of change, i.e., if delta > 0, more than the actual change (delta)
value, but also others that model a decay of churn over the version history.

The Entropy of source code metrics is a measure of the distribution of the churn over the
classes of a system. For example, if the WM C churn is 100 in a system but, only one class
changed, the entropy is minimum; if 10 classes are changed each contributing witha WM C
of 10 to the churn then the entropy is higher. The entropy is calculated based on the deltas of
source code metrics values computed for the churn. Again, D’ Ambros et al. (2010) suggest
several variants, e.g., modelling a decay of entropy over the version history.

Details about the CK+OO metrics, their churn and entropy, and the variants thereof can
be found in the original paper by D’ Ambros et al. (2010). They found out that the model
variant based on weighted churn achieved the best performance among of models build
from the churn of CK+0OO, and that the model based on linearly decayed entropy achieved
the best performance among of models build from entropy of these metrics. Therefore, in

19Eclipse JDT Core, https://eclipse.org/jdt/core/, prediction release 3.4.
Equinox framework, https:/eclipse.org/equinox/, prediction release 3.4
12 Apache Lucene, https://lucene.apache.org/, prediction release 2.4.0
B3Mylyn, https://eclipse.org/mylyn/, prediction release 3.1

14Eclipse PDE UL, https://eclipse.org/pde/pde-ui/, prediction release 3.4.1

@ Springer

https://eclipse.org/jdt/core/
https://eclipse.org/equinox/
https://lucene.apache.org/
https://eclipse.org/mylyn/
https://eclipse.org/pde/pde-ui/

86 Page240f34 Empir Software Eng (2021) 26: 86

Table 6 Ranking Code Changes. Evaluation by F1I score

LT CCUM OneWay wQos JOoS
bugzilla 0.378 0.448 0.349 0.416 0.356
columba 0.265 0.362 0.315 0.373 0.276
eclipse JDT 0.181 0.186 0.183 0.177 0.135
mozilla 0.062 0.071 0.074 0.068 0.063
eclipse Platform 0.178 0.201 0.167 0.193 0.174
postgreSQL 0.246 0.144 0.292 0.321 0.252

addition to the CK+OO metrics, we use these two best performing supervised models in the
comparative study (ii). Details follow below.

To be consistent with D’ Ambros et al. (2010), we use generalized linear regression > as
a framework for the supervised models: given a set of metrics and their values, it computes
their set of principal components to avoid a possible multicollinearity among the metrics.
It builds the model only on the first k£ principle components that cumulatively account for
(at least) 95% of the variance. D’ Ambros et al. (2010) give no further details about the
prediction models themselves, except for using generalized linear models. We thus used the
first k principal components to build a generalized regression model using the R function
glm with default parameters '©

As mentioned, we include the following three supervised models in the comparison with
the (W)QS models.

The Model built from source code metrics Basili et al. (1996) uses a single version of a
software system to compute the source code metrics. This model fits the three first principal
components of CK+OO using generalized linear regression to predict the number of defects
and the efficiency of detection of post-release defects for each class, respectively. In our
comparison, we refer to this model as the CKOO model.

The Model built from churn of source code metrics D’ Ambros et al. (2010) uses sev-
eral versions of a software system to sample the history of CK+OO every two weeks to
compute the corresponding weighted churn metrics. This model fits the three first principal
components of these churn metrics using generalized linear regression to predict the num-
ber of defects and the efficiency of defect detection, resp. In our experiment, we refer to this
model as the WCHU model.

The Model built from entropy of source code metrics D’ Ambros et al. (2010) uses sev-
eral versions of a software system to sample the history of CK+OO every two weeks to
compute the corresponding linearly decayed entropy metrics. This model fits the three first
principal components of these entropy metrics using generalized linear regression to predict
the number of defects and efficiency of defect detection. In our experiment, we refer to this
model as the LDHH model.

In contrast to these supervised models, we use the CK+OO metrics to build WQS (3) and
0S (2) models in an unsupervised way, i.e., without using a training data set with a ground
truth of defects. We normalize the metric LOC by CDF. The reason is the same as before,
larger software classes contribute with more bugs (Gyimothy et al. 2005), but smaller classes

15 4.

31t is a generalization of ordinary linear regression that allows for predicted variables to have arbitrary
distributions.
16https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm.

@ Springer

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm

Empir Software Eng (2021) 26: 86 Page 250f34 86

Table 7 Software systems used

in ranking classes evaluation System #classes #buggy classes #bugs
eclipse 997 206 374
equinox 324 129 244
lucene 691 64 97
mylyn 1862 245 340
pde 1497 209 341

have a higher bug density (D’ Ambros et al. 2010; 2012). This is the only expert knowledge
we use in our model. Then directions of other metrics are defined according to Algorithm
2. Note that we use the ascending (W)QS ranking for predicting the efficiency of defect
detection and the descending (W)QS ranking for predicting the number of defects per class.

We rank software classes based on their (un-)weighed aggregated scores and compare
the ranking to the rankings of the regression approaches. There is no detailed information
in D’Ambros et al. (2010, 2012) how to handle tied ranks. Therefore, we use the same
strategy as in the first study, i.e., in case two classes have the same predicted values, the
smaller class will be ranked earlier.

Note that CKOO and our models WQS and QS only require CK+OO from one version of
the respective software system, while WCHU and LDHH require at least two versions.

Since unsupervised models QS and WQS do not use the ground truth (number of post-
release defects) to build the prediction models, they are not expected to perform better than
the supervised models CKOO, WCHU, and LDHH.

For the study (ii), we only compare with the respectively best metrics, churn, and entropy
based contenders suggested by D’ Ambros et al. (2010) who’s benchmark we adopted. It

Table 8 Source code metrics

used in ranking software classes Type Metric Description
evaluation
CK WMC Weighted Method Count
DIT Depth of Inheritance Tree
RFC Response For Class
NOC Number Of Children
CBO Coupling Between Objects
LCOM Lack of Cohesion in Methods
00 Fanln Number of other classes that reference the class
FanOut Number of other classes referenced by the class
NOA Number of attributes

NOPA Number of public attributes
NOPRA Number of private attributes

NOAI Number of attributes inherited
LOC Number of lines of code
NOM Number of methods

NOPM Number of public methods
NOPRM Number of private methods
NOMI Number of methods inherited

@ Springer

86 Page260f34 Empir Software Eng (2021) 26: 86

makes sense to compare our approaches to regression models as they too can be easily inter-
preted as aggregation operators, i.e., as a weighted sum. Yet again, we do not aim to build
the best possible (supervised) prediction model and, therefore, spare the effort of imple-
menting and comparing with other such models based on, e.g., random forests. Instead, we
aim to study the performance of unsupervised metrics aggregation that needs to be used
when a ground truth is not available.

5.3.3 Evaluation Measures

To be consistent with the related studies (D’ Ambros et al. 2010, 2012), we compare the
approaches using the evaluation metrics suggested therein:

Predictive Power, wCorr. The models predicting defects of classes output a list of classes,
ranked by their predicted number of defects. D’ Ambros et al. (2010) use correlation to eval-
uate the predictive power of these rankings. Classes with high numbers of bugs that appear
at the wrong ranks are more critical than classes with low numbers of bugs appearing at the
wrong ranks. We, therefore, measure the weighted Spearman’s rho correlation between the
predicted and the ground truth rankings to assess the ordering, relative spacing, and possible
functional dependency.

There is no general interpretation of correlation. But, the so-called Correlation Coeffi-
cient Rule of Thumb (Newbold et al. 2013) suggests a lower bound of Pearson’s r > 2n~ /2
(n the sample size) indicating a linear relationship. For the smallest system equinox with
324 classes this would lead to r > 0.11, for the others even below that. We choose to
be more conservative than this suggestion and set a lower bound of weighted Spearman’s
|p] < 0.3 indicating a negligible correlation in our experiments. We compute the weighted
Spearman’s correlation of two rankings, respectively, the classes ordered by an actual num-
ber of bugs and classes ordered by the prediction model, i.e., the aggregated quality score
or the number of predicted bugs for the supervised approaches, respectively.

Effort-Aware Prediction Performance, P,p;. As before, we order the software arti-
facts (here classes) by their bug density to find an effort-aware ranking. Consistent
with D’ Ambros et al. (2012) we use LOC as a proxy of effort involved in inspecting a class
(x axis) and the number of bugs (y axis). We rank all changes descendingly by y and break
the ties by x in ascending order. A model performs better than a random predictor only if
Pypr > 0.5. We measure P, at the 20% effort point, i.e., developers inspect the top ranked
classes until 20% of the total lines of code is inspected.

5.3.4 Experimental Design

As D’ Ambros et al. (2010) we perform 50 times 10-fold cross-validation, i.e., we split the
dataset into 10 folds, using 9 folds as a training set to build the prediction model and the
remaining fold as a validation set. In detail, we repeat each experiment 50 times within a
software system. In each cross-validation, we randomly divide data from each system into
10 sub-samples of approximately equal size, each sub-sample is used once as the testing
data and the remaining data is used for training. In this way, we obtain 500 values of wCorr
and P,,, resp., in each system for each supervised model. For our unsupervised models, we
also apply the 50 times 10-fold cross-validation setting and use the same test data (ignoring
the training data) each time to make a fair comparison.

To statistically compare the difference between ours and the other approaches in terms
of predictive power wCorr, we use Steiger’s test of significance for correlations at the 0.05

@ Springer

Empir Software Eng (2021) 26: 86 Page 27 0f34 86

level. We compute the z-score to measure the effect size of wCorr and values |z| > 1.96 are
considered significant (Steiger 1980).

To statistically compare the difference between ours and the other approaches in terms
of P,p, we use Wilcoxon’s single ranked test to compare the performance scores of the
approaches, and Benjamini-Hochberg’s adjusted p-value to test whether two distributions
are statistically significant. This is consistent with study (i) on the rankings of code changes.
To measure the effect size of P,,; among our and other approaches, we compute Cliff’s §,
we evaluate the magnitude of the effect size as before.

5.3.5 Summary of Results

Table 9 compares the predictive power in terms of weighted correlation between the super-
vised and unsupervised models, resp., and the ground truth, i.e., classes ranked by number
of bugs, on each benchmark software system. As in study (i), the gray shades represent if the
top performing approaches ignoring insignificant differences. Figure 2 and Table 10 com-
pare the model’s performance in terms of Popt. Similar to the first study, we use boxplots to
visualize how Popt is distributed, and colors to represent if the differences are statistically
significant. We observe that our approach WQS often performs better than or equally good
as the supervised approaches. Details follow below.

wCorr: Table 9 shows that WCHU and LDHH perform statistically better than CKOO
and our WQS and QS approaches. This does not come at any surprise, since the winning
models use the CK+OO metrics from several versions of the system to compute churn and
entropy of metrics. We observe that the QS model performs second-best only on 2 of 5
software systems whereas the WQS model performs second-best on 3 of 5 software systems,
and best on 1 software system. However, it performs better than the supervised CKOO
model on 3 of 5 software systems. We conclude that considering weights is important for
the predictive power and that aggregating metrics by WQS often improves the results for the
models build on metrics from a single version of the software system.

Py, : Figure 2 shows that all approaches perform statistically worse, sometimes equally
good compare to our WQS approach, with LDHH and WCHU performing better in lucene
as the only exception. No surprise that WCHU and LDHH might perform better, since they
are supervised models and use CK+OO from several versions of the system.

Table 10 confirms that our WQS model often performs better than or equally good as the
supervised models. Only in 2 of 20 comparisons in total another approach is significantly
better than WQS. We observe that the QS model never performs second best, but the WQS
model does in 1 of 5 systems. It performs significantly better than all the other models in 2
of 5 systems. The WQS model performs better than CKOO in 4 of 5 systems, and equally
good in the remaining system. WQS model performs significantly better than WCHU and

Table9 Ranking software classes. Evaluation of predictive power by wCorr

CKOO WCHU LDHH wQs 0s

eclipse 0.6279658 0.6007369 0.6976652 0.6297236 0.5297825
equinox 0.7531017 07516816 0.7415858 0.7509734 0.5532562
lucene 0.3888639 0.5465674 0.5795628 0.4342752 0.4250039
mylyn 0.4779209 0.4563062 0.4568767 0.4391833 0.2871854
pde 0.2628426 0.6381531 0.705627 0.5266991 0.5261085

@ Springer

86 Page280f34 Empir Software Eng (2021) 26: 86

e}
= —— ! —_ T
—) - - = - - Jl- —————— Al | ———]
1
g | — 1 —1
1 PR —
S & & N N
N & N N
(a)
@ b | T b
°l == R Rt CESEEEEE SEE R - -
! —_ [—— F] !]
o~ 1 | e | —
S | L — ——
2 9 o N} T
IS & S X <
N & N N
(b)
—_ | —_ ——
© | — ——
g =----- Fo---- O —
1 | se—
= — | 1 i
9 9 [e) N} T
o e O T T
N & N N
(c)
© T L —_ —_ _
S = ST ——— == I——]
— | —1 [— —] -1
N 1 =l
© 3 & S N L
N & S N
(d)
-1 | -1
—_ - -
© |
3 ----- r----- =y T —
1 I 1 1
N 1 PR —
o 2} 9 ¢ N <
o (7

(e)

Fig. 2 Ranking software classes. Comparisons by P, between the proposed WQS and models from a
benchmark over 5 software systems

LDHH models in 3 of 5 and in 2 of 5 systems, respectively. We conclude that considering
weights is important for the effort-aware evaluation and that aggregating metrics by WQS
often improves the results for the models build on metrics from a single version of the
software system.

5.4 Discussion

5.4.1 Study (i) — Defect prediction of changes

The weighted WQS aggregation applied to code changes performs better than the
unweighted QS approach in the benchmark proposed by Kamei et al. (2013) in terms of P,

and Recall; it often performs better and never worse in terms of Precision and F1 score. QS
only captures the relevant metrics, while WQS also captures dependencies, i.e., the relative

@ Springer

Empir Software Eng (2021) 26: 86 Page290f34 86

Table 10 Ranking software classes. Effort-aware evaluation by P,

CKOO WCHU LDHH wos oS
eclipse 0.436 0.506 0.57 0.562 0.337
equinox 0.377 0.469 0.475 0.611 0.396
lucene 0.416 0.773 0.798 0.588 0.335
mylyn 0.392 0.568 0.532 0.624 0.575
pde 0.566 0.561 0.604 0.585 0.474

functional importance of a metric, and degree of diversity, i.e., the information content car-
ried in a metrics. We conclude that considering both the diversity within a single metric and
possible interactions between several metrics are important for defect detection efficiency
prediction on a code change level.

We observe that WQS performs often better than the unsupervised model LT (Yang et al.
2016) and the supervised model OneWay (Fu and Menzies 2017) in terms of all four evalu-
ation measures, acknowledging that OneWay performs better in terms of Precision and F1
score on 2 of 6 software systems from the benchmark. We conclude that our unsupervised
model can improve the performance of the simple (un-)supervised models based on code
change metrics, i.e., applying our approach for aggregation of the whole set of metrics per-
forms better than models built on a single well-chosen (manually or by supervised learning)
metric.

We acknowledge that the unsupervised model CCUM performs better than our in terms
of Py, for 5 of 6 cases, and Recall in all the cases. However, we observe that our model
performs equally good as or better than CCUM in terms of Precision for all 6 cases, and
in terms of F; for 4 out of 6 cases. Note our doubts regarding the methodology applied in
CCUM using churn in prediction and response variables.

We observe quite a low precision (Table 4) and a relatively high recall (Table 5): on
average (.2 for precision and 0.49 for recall. This is acceptable for highly skewed data sets
as the change data of all software systems in the benchmark and was observed before by
other researches. For instance, Menzies et al. (2006) also observed a low precision of defect
prediction models at the file level, 0.14 on average.

Also, in the benchmark data set, the average total number of changes and the number
of defect-inducing changes per day is 9.35 and 1.87 respectively, cf. Kamei et al. (2013).
We interpret the results for precision and recall as follows. The WQS prediction model
indicates, on average 4.58 changes per day as defect inducing (tp 4+ fp). Among them,
0.92 changes are truly defect-inducing changes (¢p) and developers need to check only
3.66 changes per day without finding any defect (fp). Hence, the prediction model could
be useful in practical settings, since for the industrial needs, it is more important to avoid
critical mistakes than spending more time for revision, i.e., a high recall is more important
than high precision. It is still a statistically relevant tool, especially, when no knowledge
(random choice) is the alternative.

5.4.2 Study (ii) — Defect prediction of classes
We found that the weighted WQS applied to the ranking software classes consistently

performs better than or equally good as the unweighted QS in the benchmark proposed
by D’Ambros et al. (2010) in predictive power wCorr and always better in effort-aware

@ Springer

86 Page300f34 Empir Software Eng (2021) 26: 86

predictive power P,,;. We conclude that both the diversity within a single metric and possi-
ble interactions between several metrics are also important for defect prediction on a class
level.

The unsupervised WQS model performs better than the supervised CKOO model on 2,
equally good on 2, and worse on only 1 of 5 software systems in terms of wCorr. It performs
better than CKOO on 4 of 5 systems and equally good on the remaining system in P,,;. We
conclude that aggregation of CK+OO metrics with the unsupervised WQS approach per-
forms is (often) better than the supervised CKOO approach of generalized linear regression
(in the benchmark).

The supervised models WCHU and LDHH perform better than WQS in 2 and 3 out
of 5 cases, respectively, in wCorr but, better only in only 1 case in P,y In Py, WOS
outperforms WCHU and LDHH in 3 and 2 cases, respectively. Note that both WCHU and
LDHH are not only supervised, they also use CK+OO from several versions of the system to
compute churn and entropy of metrics. Our unsupervised model uses only a single version
to make predictions.

We conclude that our unsupervised WQS model can improve or is at least on par with
the performance of the supervised models based on generalized linear regression, but gets
along with unlabeled data and does not face a cold start problem.

5.5 Threats to Validity

Our experimental findings are generalizable, and we have high confidence that other researchers,
given the same experimental setup, would come to the same conclusions. We discuss possi-
ble threats to validity below.

5.5.1 Construct validity

The central constructs are metrics. Their interpretation in the context of and their contri-
bution direction to a quality goal do not need to be known in advance. However, for some
of the software metrics too small or too large values or even values neither large nor small
could be bad for quality. Once we know that, and often we do from the metrics design,
this is not a limitation since we could transform metrics to have the property we assume.
Otherwise, it is a threat to construct validity if these metrics dominate a quality model.

The quality goals, the contributing metrics, and the direction of one metric (if possible)
are to be defined by experts, hence, subjective. This gives space for different interpretations
which, in turn, is a threat to construct validity.

5.5.2 Internal validity

The proposed approach is mathematically specified; its implementation fully automated.
The specification allows only minor variations, e.g., using different implementation pro-
gramming languages or libraries for statistical analysis.

5.5.3 External validity

We compare our approach with defect prediction approaches used the (Kamei et al. 2013)

benchmark and approaches reported in D’ Ambros et al. (2010). This might be a treat to
external validity since we do not compare it with other approaches. In this evaluation, we

@ Springer

Empir Software Eng (2021) 26: 86 Page310f34 86

consider 14 change metrics and 6 software systems for ranking code changes and 17 source
code metrics and 5 software systems for ranking software classes. This specific sample
might be a threat to external validity, as well.

We validated our approach on only two defect prediction quality models: in study (i) on
rankings of code changes based on risk scores, and in study (ii) on rankings of classes based
on their number of bugs and bug density. Validating our general unsupervised aggregation
approach in more quality models in software engineering and other application areas would
reduce this threat to external validity, and it is a matter of future work.

6 Conclusion and Future Work

We defined a weighted (software) metrics aggregation approach for (software) quality
assessment and applied it in bug prediction scenarios. We defined probabilistic scores based
on software metrics distributions and weights as a degree of disorder and dependency. We
aggregated scores using the weighted product of normalized metrics. As such, the aggre-
gation is agnostic to the actual metrics and the quality assessment goal and could be
theoretically applied in any quality scoring and ranking context where multi-modal quality
or ranking criteria need to be condensed to a single score. Its benefit is that models can be
constructed using unsupervised learning when training data with a ground truth is lacking.

To evaluate the effectiveness of our approach and to illustrate its generalizability, we
conducted two empirical studies in bug prediction. We evaluated a benchmark for just-in-
time effort-aware bug prediction on a code change level (Kamei et al. 2013), and a publicly
available benchmark for bug prediction on a class level (D’ Ambros et al. 2010). In the first
study we compare our approach with other unsupervised models by Yang et al. (2016) and
by Liu et al. (2017), and a supervised model by Fu and Menzies (2017). In second study we
compare our approach with supervised models by D’ Ambros et al. (2010).

In the benchmark proposed by D’Ambros et al. (2010), models based on churn and
entropy of source code metrics were reported as the best performing. These approaches are
based on a system’s history, i.e. require several versions of a software system. As this his-
tory does not exist for newly developed systems, these approaches have a cold start problem.
In contrast, our approach only uses the values of the same metrics set of a single version of
the software system and still performs well enough compared to churn- and entropy-based,
supervised approaches and avoids the cold start problem.

While it turns out that our aggregation approach is quite competitive in this contest, it is
neither our claim nor our ambition to suggest the best possible bug prediction approach. It
only showed that the quality-goal-agnostic, unsupervised aggregation approach is a suitable
alternative (even in bug prediction) when ground truth data is lacking. Inference of the con-
nection between software artifact metrics and their proneness to defect (density) is outside
the scope of this paper. In general, for inference, i.e., for understanding the way a response
is affected as some predictors change, supervised models are certainly to prefer.

In the future, we want to validate the applicability to other fields inside and outside
software engineering. In a recent work, Ferenc et al. (2020) proposed a novel dataset with a
wide range of code metrics and bug information. We will use this dataset for the validation
of our models on a larger scale.

More importantly, since our approach is agnostic with respect to the application domain,
we will apply it on datasets of other application areas in the UC Irvine Machine Learning

@ Springer

86 Page320f34 Empir Software Eng (2021) 26: 86

Repository (UCI)!7. Based on this dataset, we currently design a benchmark for an objective
comparison of general aggregation approaches that will be made publicly available.

Finally, we plan to apply our approaches of weight generation and weighted aggregation
to multi-criteria optimization problems.

Acknowledgements We are grateful to the authors D’ Ambros et al. (2010) and Kamei et al. (2013), who
made their data publicly available. We are also grateful to the authors (Fu and Menzies 2017), who made
their well-packaged and well-documented software available for others'®. This work was supported by the
Linnaeus Excellence Center on Data Intensive Sciences and Applications (DISA)!®. We thank the anonymous
reviewers whose comments and suggestions helped us improve and clarify the research.

Funding Open access funding provided by Linnaeus University.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Arisholm E, Briand LC, Johannessen EB (2010) A systematic and comprehensive investigation of methods
to build and evaluate fault prediction models. J Sys Softw 83(1):2-17

Baggen R, Correia JP, Schill K, Visser J (2012) Standardized code quality benchmarking for improving
software maintainability. Software Quality Journal 20(2):287-307

Bansiya J, Davis CG (2002) A hierarchical model for object-oriented design quality assessment. IEEE
Transactions on Software Engineering 28(1):4-17

Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented design metrics as quality indicators.
IEEE Trans Softw Eng 22(10):751-761

Borsboom D, Mellenbergh GJ, Van Heerden J (2003) The theoretical status of latent variables. Psychol Rev
110(2):203

Calvo T, Kolesarova A, Komornikovd M, Mesiar R (2002) Aggregation operators: properties, classes and
construction methods. In: Aggregation operators. Springer, pp 3—104

Carlsson C, Fullér R (1995) Multiple criteria decision making: the case for interdependence. Comput Oper
Res 22(3):251-260

Chen X, Zhao Y, Wang Q, Yuan Z (2018) Multi: Multi-objective effort-aware just-in-time software defect
prediction. Inf Softw Technol 93:1-13

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng
20(6):476-493

Choo EU, Schoner B, Wedley WC (1999) Interpretation of criteria weights in multicriteria decision making.
Computers & Industrial Engineering 37(3):527-541

D’Ambros M, Lanza M, Robbes R (2010) An extensive comparison of bug prediction approaches. In: 2010
7th IEEE Working Conference on Mining Software Repositories (MSR 2010). IEEE, pp 3141

17UCI Machine Learning Repository, https:/archive.ics.uci.edu/ml/index.php
18https://github.com/WeiFoo/RevisitUnsupervised
19Linnaeus Excellence Center on Data Intensive Sciences and Applications (DISA), https:/Inu.se/disa

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://archive.ics.uci.edu/ml/index.php
https://github.com/WeiFoo/RevisitUnsupervised
https://lnu.se/disa

Empir Software Eng (2021) 26: 86 Page330f34 86

D’Ambros M, Lanza M, Robbes R (2012) Evaluating defect prediction approaches: a benchmark and an
extensive comparison. Empirical Softw Eng 17(4-5):531-577

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical methods for software engineering
research. In: Guide to Advanced Empirical Software Engineering. Springer, pp 285-311

Fenton N, Bieman J (2014) Software metrics: a rigorous and practical approach. CRC press, Boca Raton

Ferenc R, Gyimesi P, Gyimesi G, Téth Z, Gyiméthy T (2020) An automatically created novel bug dataset
and its validation in bug prediction. J Sys Softw, pp 110691

Fu W, Menzies T (2017) Revisiting unsupervised learning for defect prediction. In: Proceedings of the 2017
11th joint meeting on foundations of software engineering, pp 72—83

Garvin DA (1984) What does “product quality” really mean. Sloan management review 25

Gil Y, Lalouche G (2017) On the correlation between size and metric validity. Empir Softw Eng 22(5):2585—
2611

Graves TL, Karr AF, Marron JS, Siy H (2000) Predicting fault incidence using software change history. IEEE
Trans Softw Eng 26(7):653-661

Gyimothy T, Ferenc R, Siket I (2005) Empirical validation of object-oriented metrics on open source software
for fault prediction. IEEE Trans Softw Eng 31(10):897-910

Hassan AE (2009) Predicting faults using the complexity of code changes. In: 2009 IEEE 31st international
conference on software engineering. IEEE, pp 78-88

Henderson-Sellers B (1995) Object-oriented metrics: measures of complexity. Prentice-Hall, Inc.

Hinton GE, Roweis S (2003) Stochastic neighbor embedding. In: Becker S, Thrun S, Obermayer K (eds)
Advances in neural information processing systems, vol 15. MIT Press. https://proceedings.neurips.cc/
paper/2002/ile/6150ccc6069beabb5716254057a194ef-Paper.pdf

Huang Q, Xia X, Lo D (2019) Revisiting supervised and unsupervised models for effort-aware just-in-time
defect prediction. Empir Softw Eng 24(5):2823-2862

IEEE (1990) IEEE std 610.12-1990, standard glossary of software engineering terminology. https://doi.org/
10.1109/IEEESTD.1990.101064

ISO/IEC (2010) ISO/IEC 25010 system and software quality models. Tech. rep.

Jiarpakdee J, Tantithamthavorn C, Treude C (2020) The impact of automated feature selection techniques on
the interpretation of defect models. Empir Softw Eng, pp 1-49

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A large-scale empirical
study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757-773

Khoshgoftaar TM, Allen EB (1999) A comparative study of ordering and classification of fault-prone
software modules. Empir Softw Eng 4(2):159-186

Kim S, Zimmermann T, Whitehead Jr EJ, Zeller A (2007) Predicting faults from cached history. In: 29th
International Conference on Software Engineering (ICSE’07). IEEE, pp 489-498

Koru AG, Zhang D, El Emam K, Liu H (2008) An investigation into the functional form of the size-defect
relationship for software modules. IEEE Trans Softw Eng 35(2):293-304

Letouzey JL, Coq T (2010) The sqale analysis model: An analysis model compliant with the representation
condition for assessing the quality of software source code. In: 2010 Second International Conference
on Advances in System Testing and Validation Lifecycle (VALID). IEEE, pp 43-48

Linstone HA, Turoff M, et al. (1975) The delphi method. Addison-Wesley Reading, Boston

Liu J, Zhou Y, Yang Y, Lu H, Xu B (2017) Code churn: A neglected metric in effort-aware just-in-time
defect prediction. In: 2017 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, pp 11-19

van der Maaten L, Hinton G (2008) Visualizing data using t-sne.] Mach Learn Res 9(86):2579-2605. http://
jmlr.org/papers/v9/vandermaaten08a.html

van der Maaten L, Postma E, van den Herik J (2009) Dimensionality reduction: a comparative review.] Mach
Learn Res 10:66-71

Mai JF, Scherer M (2009) Lévy-frailty copulas. J Multivar Anal 100(7):1567—-1585

Marichal JL (2000) An axiomatic approach of the discrete choquet integral as a tool to aggregate interacting
criteria. IEEE Trans Fuzzy Syst 8(6):800-807

Martin RC (2002) Agile software development: principles, patterns, and practices. Prentice Hall

Mende T, Koschke R (2009) Revisiting the evaluation of defect prediction models. In: Proceedings of the Sth
International Conference on Predictor Models in Software Engineering, pp 1-10

Mende T, Koschke R (2010) Effort-aware defect prediction models. In: 2010 14th European conference on
software maintenance and reengineering. IEEE, pp 107-116

Menzies T, Greenwald J, Frank A (2006) Data mining static code attributes to learn defect predictors. IEEE
Trans Softw Eng 33(1):2-13

Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener A (2010) Defect prediction from static code
features: current results, limitations, new approaches. Automated Softw Eng 17(4):375-407

@ Springer

https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea 6b5716254057a194ef-Paper.pdf
https://proceedings.neurips.cc/paper/2002/file/6150ccc6069bea 6b5716254057a194ef-Paper.pdf
https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1109/IEEESTD.1990.101064
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html

86 Page34of34 Empir Software Eng (2021) 26: 86

Mockus A, Weiss DM (2000) Predicting risk of software changes. Bell Labs Technical Journal 5(2):169-180

Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and static
code attributes for defect prediction. In: Proceedings of the 30th international conference on software
engineering, pp 181-190

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In:
Proceedings of the 27th international conference on software engineering, pp 284-292

Nelsen RB (2007) An introduction to copulas. Springer Science & Business Media, Berlin

Newbold P, Carlson WL, Thorne B (2013) Statistics for business and economics. Pearson, Boston

Nikora AP, Munson JC (2004) Developing fault predictors for evolving software systems. In: Proceedings.
5Sth International workshop on enterprise networking and computing in healthcare industry (IEEE Cat.
No. 03EX717). IEEE, pp 338-350

Ohlsson N, Alberg H (1996) Predicting fault-prone software modules in telephone switches. IEEE Trans
Softw Eng 22(12):886-894

Ostrand TJ, Weyuker EJ, Bell RM (2005) Predicting the location and number of faults in large software
systems. IEEE Trans Softw Eng 31(4):340-355

Pearson K (1901) On lines and planes of closest fit to systems of points in space. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science 2(11):559-572. https://doi.org/10.1080/
14786440109462720

Saaty T (2008) Decision making with the analytic hierarchy process. International Journal of Services
Sciences 1(1):83-98

Saaty TL (1996) Decision making with dependence and feedback: The analytic network process, vol 4922.
RWS Publ

Schenkerman S (1991) Use and abuse of weights in multiple objective decision support models. Decision
Sciences 22(2):369-378

Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol Bull 87(2):245

Triantaphyllou E (2000) Multi-criteria decision making methods. In: Multi-criteria decision making methods:
A comparative study. Springer, pp 5-21

Wagner S (2013) Software product quality control. Springer, Berlin

Wagner S, Goeb A, Heinemann L, Klds M, Lampasona C, Lochmann K, Mayr A, Plosch R, Seidl A, Streit J,
et al. (2015) Operationalised product quality models and assessment: The quamoco approach. Inf Softw
Technol 62:101-123

Wang MW, Stanley JC (1970) Differential weighting: A review of methods and empirical studies. Rev Educ
Res 40(5):663-705

Yang X, Lo D, Xia X, Sun J (2017) Tlel: A two-layer ensemble learning approach for just-in-time defect
prediction. Inf Softw Technol 87:206-220

Yang Y, Zhou Y, LiuJ, Zhao Y, Lu H, Xu L, Xu B, Leung H (2016) Effort-aware just-in-time defect predic-
tion: simple unsupervised models could be better than supervised models. In: Proceedings of the 2016
24th ACM SIGSOFT International symposium on foundations of software engineering, pp 157-168

Zeleny M (2012) Multiple criteria decision making, vol 123. Springer Science & Business Media, Berlin

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720

	Weighted software metrics aggregation and its application to defect prediction
	Abstract
	Introduction
	Background and Related Work
	Software Metrics and Quality Models
	Multi-Criteria Decision Making
	Defect Prediction
	Dimensionality Reduction

	Metrics Dependence – Weights Interpretation
	Metrics Dependence
	Interpretation of Metrics Weights

	The Weighted Quality Scoring Approach
	Boundary condition.
	Averaging property
	Commutativity
	Monotonicity

	Normalization of Metrics Values to Metrics Scores
	Unweighted Aggregation
	Weighting
	Weighted Aggregation
	Ranking

	Application to Software Defect Prediction
	Study (i) — Ranking Code Changes
	The Code Changes Benchmark
	Models

	Experimental Design
	Evaluation Measures
	Summary of Results

	Study (ii) — Ranking Software Classes
	The Bug Prediction Benchmark
	Models
	Evaluation Measures
	Experimental Design
	Summary of Results

	Discussion
	Study (i) — Defect prediction of changes
	Study (ii) — Defect prediction of classes

	Threats to Validity
	Construct validity
	Internal validity
	External validity

	Conclusion and Future Work
	References

