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2 Yongqiang Tian et al.

Abstract Deep Neural Network (DNN) models are widely used for image classi-8

fication. While they offer high performance in terms of accuracy, researchers are9

concerned about if these models inappropriately make inferences using features ir-10

relevant to the target object in a given image. To address this concern, we propose11

a metamorphic testing approach that assesses if a given inference is made based12

on irrelevant features. Specifically, we propose two metamorphic relations (MRs)13

to detect such unreliable inferences. These relations expect (a) the classification14

results with different labels or the same labels but less certainty from models after15

corrupting the relevant features of images, and (b) the classification results with16

the same labels after corrupting irrelevant features. The inferences that violate the17

metamorphic relations are regarded as unreliable inferences.18

Our evaluation demonstrated that our approach can effectively identify unre-19

liable inferences for single-label classification models with an average precision of20

64.1% and 96.4% for the two MRs, respectively. As for multi-label classification21

models, the corresponding precision for MR-1 and MR-2 is 78.2% and 86.5%, re-22

spectively. Further, we conducted an empirical study to understand the problem23

of unreliable inferences in practice. Specifically, we applied our approach to 1824

pre-trained single-label image classification models and 3 multi-label classification25

models, and then examined their inferences on the ImageNet and COCO datasets.26

We found that unreliable inferences are pervasive. Specifically, for each model,27

more than thousands of correct classifications are actually made using irrelevant28

features. Next, we investigated the effect of such pervasive unreliable inferences,29

and found that they can cause significant degradation of a model’s overall accuracy.30

After including these unreliable inferences from the test set, the model’s accuracy31

can be significantly changed. Therefore, we recommend that developers should pay32

more attention to these unreliable inferences during the model evaluations. We also33

explored the correlation between model accuracy and the size of unreliable infer-34

ences. We found the inferences of the input with smaller objects are easier to be35

unreliable. Lastly, we found that the current model training methodologies can36

guide the models to learn object-relevant features to certain extent, but may not37

necessarily prevent the model from making unreliable inferences. We encourage38

the community to propose more effective training methodologies to address this39

issue.40

Keywords Deep Learning · Metamorphic Testing · Software Engineering for AI41

1 Introduction42

Deep Neural Network (DNN) models have been widely deployed for image classifi-43

cation tasks (Krizhevsky et al. 2012; Simonyan and Zisserman 2015; He et al. 2016;44

Howard et al. 2017; Zoph et al. 2018). While these models outperform classic algo-45

rithms, such as SIFT+FV (Sanchez and Perronnin 2011) and Sparse Coding (Lin46

et al. 2011), in terms of classification accuracy (Krizhevsky et al. 2012), which is47

the proportion of the inputs in test set whose inference result is the same as the48

ground truth, recent studies have raised concerns about other properties of such49

models, including reliability (Ribeiro et al. 2016; Moosavi-Dezfooli et al. 2016;50

Stock and Cissé 2018), fairness (Tramèr et al. 2017; Aggarwal et al. 2019; Zhang51

et al. 2020a), robustness (Carlini and Wagner 2017). To help detecting the inap-52

propriate behaviors of DNN models, various testing techniques (Xie et al. 2011;53
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(a) (b) (c)

Fig. 1: (a): The Original Image. (b): Object (Mouse) Corrupting Mutation. (c):
Object (Mouse) Preserving Mutation.

Ding et al. 2017; Pei et al. 2017; Tian et al. 2018; Zhang et al. 2018; Dwarakanath54

et al. 2018; Ma et al. 2018b) have been proposed. For instance, Pei et al. (Pei55

et al. 2017) proposed an optimization strategy to generate adversarial test inputs56

for image classification. Dwarakanath et al. (Dwarakanath et al. 2018) leveraged57

metamorphic testing to detect bugs in model implementations.58

These techniques, however, do not consider a key property when evaluating59

a DNN-based image classification model, that is, whether the inferences made60

by the model are based on the features encoded from the target objects or the61

features encoded from these objects’ background. We refer to the former features62

as object-relevant features, the latter as object-irrelevant features, and the property63

as object-relevancy property. Intuitively, a reliable inference made by a DNN model64

should be mostly based on object-relevant features, instead of object-irrelevant65

features.66

For instance, let us assume that the mouse shown in Figure 1a is the target67

object. The features encoded from it are object-relevant features, and the features68

encoded from the rest of this image are object-irrelevant. Let us further assume69

that a model classifies the image as shown in Figure 1a as “mouse”. This inference70

is reliable on the condition that it is made mostly based on the object-relevant71

features, instead of the object-irrelevant features. If the inference is majorly based72

on the object-irrelevant features but not the object-relevant features, the model73

is likely to classify the image in Figure 1b as “mouse” again, since this image has74

the same object-irrelevant features as Figure 1a. It is obvious that the image in75

Figure 1b does not have any “mouse” and should not be classified as “mouse”.76

Further, the model is also likely to classify the image as shown in Figure 1c as77

any label other than “mouse”, since this image does not have the object-irrelevant78

features in Figure 1a. It does not make sense since the image in Figure 1c clearly79

has the target object mouse.80

Due to their stochastic nature, many DNN models do not necessarily make81

inferences based on object-relevant features, which may lead to various problems.82

For instance, a recent study showed that an animal classification model would83

classify any image with bright backgrounds as “wolf”, regardless of the objects in84

the image (Ribeiro et al. 2016). This raises the concern of reliability and overfitting85

for this model (Ribeiro et al. 2016; Ma et al. 2018c). Another work showed that86

attackers could inject a backdoor trigger, such as a yellow square in an image’s87

background, to a deep neural network (DNN) model (Gu et al. 2019). A model88

that makes inferences based on object-irrelevant features (e.g., yellow square at89
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the background), will then classify an image containing this trigger to a specific90

label, regardless of the objects in the image. Thus, such models are not robust91

and can cause catastrophic consequences when being deployed in mission-critical92

applications. Based on the above analysis, we conjecture that the violation of the93

object-relevancy property might be the root cause of many issues in DNN models,94

including but not limited to the aforementioned ones. Therefore, it is important95

to develop effective techniques to assess DNN models’ inference results from the96

perspective of object relevancy, so as to help improve the trustworthiness of the97

models.98

Validating DNN models’ inference results with respect to object relevancy is99

challenging. It is well-known that DNN models behave as black boxes (Ribeiro100

et al. 2016; Pei et al. 2017). Their logic is learned from data and represented as101

model structures and weight values. It is non-trivial for human beings to examine102

the inference process of such models and check what kind of features determines103

the inference results. Some existing techniques (Ribeiro et al. 2016; Selvaraju et al.104

2017) try to explain the inferences for individual input. However, these techniques105

still require manual efforts to make the final assessment for each input due to106

the lack of test oracles. In contrast, in our work, we first try to generate both test107

inputs and test oracles for DNN models, and then leverage them to identify unreli-108

able inferences that violate the object-relevancy property automatically. However,109

generating test oracles is a long-standing challenge for software testing (Barr et al.110

2015), especially in the testing of the deep learning systems (Pei et al. 2017; Tian111

et al. 2018; Pham et al. 2019; Nejadgholi and Yang 2019), where the expected112

probability outputted from DNN models is unknown.113

To tackle these challenges, we resort to metamorphic testing (Chen et al. 1998),114

which has been popularly leveraged to test DNN models (Xie et al. 2011; Ding115

et al. 2017; Zhang et al. 2018; Dwarakanath et al. 2018). Specifically, we propose116

two metamorphic relations (MRs) to quantitatively assess a model’s inferences117

from the perspective of object relevancy as follows:118

– MR-1 An image mutated by corrupting only the features of the target object(s)119

should lead to an inference result with different label(s), or an inference result120

with the same label(s) but less certainty.121

– MR-2 An image mutated by preserving the features of the target object(s)122

and corrupting other features should lead to an inference result with the same123

label(s).124

The two metamorphic relations will be formally defined in Section 3. For the125

purpose of metamorphic testing, we designed image mutation operations to gen-126

erate test inputs with respect to the two relations. Applying these operations to a127

given image allows us to check if the pair of the original inference and the infer-128

ence on a generated mutant satisfies the metamorphic relations. Violations of such129

relations will be deemed as the indication of unreliable inferences. We note that130

applying metamorphic testing to evaluate DNN-based image classification models131

is not new. However, existing work (Tian et al. 2018; Zhang et al. 2018) mutates132

the whole image (e.g., blurring or rotating) to test the model robustness. In com-133

parison, our MRs focus on object-relevant/irrelevant features in one input image134

and hence our image mutation is regional, semantic and more targeted. Besides,135

our goal is to assess whether an inference violates the object-relevancy property,136

which is a new property proposed by us.137
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To validate the effectiveness of our proposed approach, we applied it to three138

popular DNN models trained on the ImageNet dataset and one model trained on139

the COCO dataset (Lin et al. 2014), and then manually checked the results. The140

evaluation results show that for single-label classification models, our approach141

achieves an aggregated precision of 64.1% for MR-1 and 96.4% for MR-2. As for142

multi-label classification models, the corresponding precision for MR-1 and MR-2143

is 78.2% and 86.5%, respectively. We also investigated the reasons for the false144

positives, and we found that they are mainly due to the inappropriate annotations145

of the dataset.146

We then deployed our approach with the aim of investigating the pervasiveness147

of unreliable inferences. Specifically, we tested 18 pre-trained models for single-148

label classification from Keras (Chollet et al. 2015b) and 3 models for multi-label149

classification (He et al. 2016; Ben-Baruch et al. 2020). We found that for each of150

them, more than thousands of correct classification inferences are actually unreli-151

able, i.e., they are not made based on object-relevant features. More seriously, we152

found that the pervasive unreliable inferences can cause significant bias on model153

evaluation. Specifically, our experiments revealed that unreliable inferences can154

cause significant degradation of a model’s overall accuracy, thus preventing devel-155

opers from correctly evaluating a model and fairly comparing among models. For156

example, after removing the unreliable inferences violating MR-2 in single-label157

image classification, the model accuracy is 8.84% higher than the original one. We158

also traced the ratio of unreliable inference during the model training and found159

that the current model training methodology is ineffective in terms of reducing un-160

reliable inferences. Besides, enhancing a model with respect to its accuracy does161

not necessarily increase its probability to make reliable inferences. Therefore, de-162

velopers need to design other methodologies with the aim to enhance a model’s163

reliability, especially with respect to the object-relevancy property.164

To summarize, this paper makes the following contributions:165

1. We proposed a metamorphic testing technique to automatically assess the re-166

liability of inferences generated by DNN models for image classification using167

object-relevant metamorphic relations.168

2. We evaluated our technique and the results show that it is effective. Our ap-169

proach can find thousands of unreliable inferences with high precision for each170

evaluated model.171

3. We found that unreliable inferences are pervasive among a wide range of mod-172

els. More seriously, such pervasive unreliable inferences significantly change173

models’ performance with respect to the accuracy, thus affecting model evalu-174

ation and comparison.175

4. We explored the correlation between model accuracy and the ratio of unreliable176

inferences, and found that the current model training strategy should be further177

improved to help the model to learn the object-relevant features and avoid178

making unreliable inferences.179
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2 Preliminaries180

2.1 Metamorphic Testing181

Metamorphic testing (Chen et al. 1998, 2018) was proposed to address the test182

oracle problem. It works in two steps. First, it constructs a new set of test inputs183

(called follow-up inputs) from a given set of test inputs (called source inputs) based184

on some properties that should be satisfied by the program under test. Second, it185

checks whether the program outputs based on the source inputs and the ones based186

on the follow-up inputs satisfy certain desirable properties, known as metamorphic187

relations (MRs).188

For example, let us suppose p is a program implementing the sin () function.189

We know that the equation sin(π + x) = − sin(x) holds for any numeric value190

x. Leveraging this knowledge, we can apply metamorphic testing to p as follows.191

Given a set of source inputs Is = {i1, i2, . . . , in}, we first construct a set of follow-up192

inputs If =
{
i′1, i′2, . . . , i′n

}
, where i′j = π+ij , j ∈ [1, n]. Then, we check whether the193

metamorphic relation ∀j ∈ [1, n] , p(ij) = −p(i′j) holds. A violation of it indicates194

the presence of faults in p.195

2.2 DNN-based Image Classification196

Image classification is a key application of DNN models. Its objective is to classify197

a given image into predefined labels. Popular DNN models for image classification198

include AlexNet (Krizhevsky et al. 2012), VGG (Simonyan and Zisserman 2015),199

ResNet (He et al. 2016), DenseNet (Huang et al. 2017), MobileNets (Howard et al.200

2017) and so on. The performance of these models is mostly evaluated based on201

the top-1 accuracy, which refers to the percentage of test images whose correct202

labels are in the top-1 (sorted according to probability) inference made by mod-203

els (Krizhevsky et al. 2012; Simonyan and Zisserman 2015; He et al. 2016; Huang204

et al. 2017; Howard et al. 2017).205

There are two types of image classification tasks, single-label classification and206

multi-label classification. In single-label classification, each input is supposed to207

be classified into one label. Figure 2a from ImageNet (Deng et al. 2009) shows208

an example input that is expected to be classified into label “tiger shark”. Given209

an input i, the inference of a single-label classifier is a probability vector, vi =210

[p1, p2, . . . , pn], where n is the number of labels. Each element pj in the vi rep-211

resents the probability that the input belongs to the j-th label. The sum of the212

elements is equal to 1, i.e.,
∑n

0 pj = 1. The label with the highest probability213

is regarded as the final classification label of this classification model given this214

input. MNIST (LeCun and Cortes 2010), CIFAR-10 (Krizhevsky et al. 2009), and215

ImageNet are common datasets for single-label classification.216

In multi-label classification, the number of labels of each input is not limited217

to one. For example, Figure 2c from COCO (Lin et al. 2014) has three labels,218

{“person”, “motorcycle”, “airplane”}. In the classification, the inference result is219

regarded as correct if and only if it only contains the three labels (Tian et al.220

2020b; Wu and Zhu 2020). Similar to single-label classification models, given an221

input i, the inference of a multi-label classification model is a probability vector,222

vi = [p1, p2, . . . , pn], where n is the number of labels. Each element pj in the vi223
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(a) (b) (c) (d)

Fig. 2: Input Examples and their Annotations in Image Classifications. (a)(b):
Image from the ImageNet Dataset and its Bounding Box, Label: “tiger shark”.
(c)(d): Image from the COCO Dataset and its Object Mask, Labels: “person”,
“motorcycle”, “airplane”.

represents the probability that the input belongs to the j-th label. Unlike the224

single-label classification model, the sum of the elements is not necessarily equal225

to 1, i.e.,
∑n

0 pj �= 1. The final classification result is the set of labels whose226

probability is equal to or larger than a predefined threshold, which is usually set227

to 0.5 (He et al. 2016; Ben-Baruch et al. 2020). For example, given the input in228

Figure 2c, a multi-label classification model may output a probability vector vi =229

[0.8, 0.7, 0.2, 0.6], where each element represents the probability of label “person”,230

“airplane”, “motorcycle” and “car”, respectively. When the threshold is set to231

0.5, the final classification result is {“person”, “airplane”, “car”}, which is an232

incorrect classification result as the “car” is not in the ground truth and the233

ground truth label “motorcycle” is not in the result. If the probability vector is234

vi = [0.8, 0.7, 0.6, 0.2], the final result is {“person”, “airplane”, “motorcycle”}, and235

it is a correct classification result. Common multi-label datasets include COCO236

and Google Open Image (Krasin et al. 2017).237

3 Object-Relevant Metamorphic Relations238

With the aim to identify the unreliable inference made by the models based on the239

object-irrelevant features, we are motivated to propose two metamorphic relations240

as mentioned in Section 1. This section presents the details of these two relations,241

starting with the motivating examples. Specifically, we follow a common metamor-242

phic testing framework to define the two metamorphic relations (Chen et al. 1998,243

2018). In subsequent formulation, let M(i) and M(i′) denote the inferences made244

by a DNN model M on an input image i and its follow-up input i′, respectively.245

Let D(M(i), M(i′)) denote the distance between two inferences M(i) and M(i′).246

3.1 MR-1247

Motivating Example-1 Given a source input as shown in Figure 1a, let us assume248

a model predicts it as “mouse”. A follow-up input is constructed by corrupting249

the object mouse, as shown in Figure 1b. After feeding the follow-up input into250

the previous model, one of the following two cases could happen. First, it is pos-251

sible that the label on follow-up input is still “mouse” and its certainty increases.252
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Such a situation indicates that the inference on the source input is not based on253

the object(mouse)-relevant features. If it is based on the object(mouse)-relevant254

features, it does not make sense that the model still predicts it as “mouse” when255

there is no such object(mouse). This situation is out of human expectations on256

image classification, as humans will not classify the follow-up image that does not257

have mouse into label “mouse” with higher certainty. Second, it is possible that258

the inference on the follow-up input changes to another label, or the label remains259

the same but the certainty decreases. In other words, due to the corruption of the260

object(mouse)-relevant features, the model cannot make the inference with the261

same label and the same level of certainty as the one on source input. It implies262

that the inference on the source input is based on the object(mouse)-relevant fea-263

tures. This situation is in line with human expectations. Since the objects have264

been removed or corrupted, humans are likely to classify this image to a different265

label, or the same label but with less certainty. Motivated by the above example,266

we proposed the following MR-1. In the first situation aforementioned, the MR-1267

is violated while in the second situation, MR-1 is satisfied.268

MR-1 An image mutated by corrupting only the features of the target object(s)269

should lead to an inference result with different label(s), or an inference result with270

the same label(s) but less certainty.271

Relation Formulation of MR-1 Let i′c be a follow-up input constructed from272

a source input i for a model M by corrupting the target object but preserving273

its background. We consider such a mutation as object-corrupting. An example of274

object-corrupting mutation is shown in Figure 1a (source input) and Figure 1b275

(follow-up input). MR-1 mandates that M(i) and M(i′c) should satisfy the rela-276

tion: D(M(i), M(i′c)) ≥ Δc. Here D takes two factors of M(i) and M(i′c) into277

consideration, i.e., the labels in the inferences and the certainty of the inferences.278

The detailed definition of D for MR-1 is introduced in Section 4.4.1. Δc denotes279

a threshold for the distance between two inference results made by a model under280

metamorphic testing using object-corrupting mutations.281

Explanation of MR-1 If an inference made by a specific model is based on282

object-relevant features, after object-corrupting mutations, the new inference re-283

sults should be affected since those object-relevant features have been corrupted,284

and thus those features cannot be further utilized by the model anymore. Such285

effects could cause two consequences. First, the model can still make the same286

inference as the inference of the original input while the certainty of the inference287

given by the model should be decreased since the object-relevant features have288

been corrupted. Second, the model cannot make the same inference as the infer-289

ence of the original input if the corruption is very severe. Consequently, the label290

of the new inference should be different from the original one.291

3.2 MR-2292

Motivating Example-2 Given a source input shown in Figure 1a, assume a model293

predicts it as “mouse”. A follow-up input is constructed by preserving the object,294

as shown in Figure 1c. After feeding the follow-up input into the previous model,295

one of the following two cases could happen. First, the inference on follow-up input296

is not “mouse” anymore. It indicates that the inference on the source input is not297

based on the object(mouse)-relevant features. Since the object mouse is still in the298
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input, if the inference on the source input is based on the object(mouse)-relevant299

features, the inference should still be the “mouse”. Second, the inference on follow-300

up input remains the same label. It implies that the inference on the source input301

is based on the object(mouse)-relevant features. When the object-relevant features302

are preserved, the model can leverage them to make the correct inference. Such303

a situation is in line with human expectations. Motivated by this example, we304

propose the following MR-2. In the above example, MR-2 is violated in the first305

situation and satisfied in the second situation.306

MR-2 An image mutated by preserving the features of the target object(s) and307

corrupting other features should lead to an inference result with the same label(s).308

Relation Formulation of MR-2 Let i′p be a follow-up input constructed from309

a source input i for a model M by preserving the target object(s) but mutat-310

ing the other parts. We consider such a mutation object-preserving. An example311

of object-preserving mutation is shown in Figure 1a (source input) and Figure 1c312

(follow-up input). MR-2 mandates that M(i) and M(i′p) should satisfy the re-313

lation: D(M(i), M(i′p)) ≤ Δp. Here, Δp denotes a threshold for the distance314

between two inference results made by a model under metamorphic testing using315

object-preserving mutations. The detailed definition of D for MR-2 is introduced316

in Section 4.4.2.317

Explanation of MR-2 If an inference made by a specific model is based on318

object-relevant features, after object-preserving mutations, the labels of the new319

inference result should not be changed, since the object-relevant features are pre-320

served and the model should be able to use them.321

4 Approach322

We present our approach in this section, starting from an overview of the whole323

approach, followed by the explanation of each stage.324

4.1 Overview325

Figure 3 shows the overview of our approach, including the following three stages:326

1 Object-Relevant Feature Identification Given an inference to be exam-327

ined, we regard its input image as the source input. We semantically divide the328

input into two parts, a target-object region and a background region. The target-object329

region is where the target object(s) is located and where the object-relevant fea-330

tures are encoded. The background region is where the object-irrelevant features331

are encoded.332

2 Follow-up Inputs Construction Mutation functions are leveraged to gen-333

erate follow-up inputs from the source inputs, based on the proposed metamorphic334

relations. Specifically, these mutation functions will corrupt, or preserve the object-335

relevant features in the source input. The corresponding testing oracles will also336

be generated based on the metamorphic relations.337

3 Metamorphic Relation Validation We validate if the distance between338

the inference result of a source input and the inferences of its follow-up inputs339

violates the test oracles. If so, the inference of the source input is flagged as an340
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Fig. 3: The Overview of our Metamorphic Testing Approach

unreliable inference, which means this inference is made mainly based on object-341

irrelevant features.342

Please note that our approach mainly assesses the correct inference results343

from image classification models. In single-label classification, “correct” means344

that the top-1 label in the result is the same as the source input’s ground truth.345

In multi-label classification, “correct” means that the set of labels in the results is346

the same as the set of labels in the source input’s ground truth, as we mentioned in347

Section 2.2. We focus on correct inferences since if the inference result is incorrect,348

the target object might not exist in the input, and thus it is challenging to identify349

the object-relevant features.350

4.2 Object-Relevant Feature Identification351

In single-label classification, since each image only has a single label, we regard352

the object(s) belonging to the annotated label as the target object(s). For multi-353

label classification, each image can have multiple labels. We regard the union of354

all objects belonging to the annotated labels as the target objects. For example,355

for the input as shown in Figure 2c, the target objects consist of the airplane,356

motorcycle and person. In both cases, the pixels where the target object(s) reside357

are treated as the target-object region and the others are regarded as the background358

region.359

The annotations of the target objects could be extracted from the dataset, or360

obtained using the latest object localization techniques, such as YOLO (Redmon361

et al. 2016) and Faster R-CNN (Ren et al. 2017). Currently, several datasets for362

image classification provide the annotation of objects, such as ImageNet, COCO,363

PASCAL VOC and Google Open Image. The annotations are usually in the format364

of a bounding box. For example, the bounding box of the tiger shark in Figure 2a is365
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displayed as the red rectangle in Figure 2b. Some datasets, such as COCO, anno-366

tate the object using the object mask, which draws the boundary of each object367

with a finer granularity. These annotations provide the exact target-object region368

that does not contain any pixels belonging to the background region. Figure 2d369

shows the object marks of “person”, “motorcycle” and “airplane”.370

Both annotation formats can be used in our approach. If the annotations are371

provided as bounding boxes, we regard the region of the bounding boxes as the372

target-object region. Although the target-object region could contain some pixels373

that do not belong to the target object(s), the majority of the region represents the374

target object. If the annotations are object masks, we regard the region covered375

by the object masks as the target-object region. In our experiment, we used the376

bounding box for the experiments based on the ImageNet dataset and the object377

mask on the COCO dataset, depending on the availability of the annotation format378

in these datasets.379

4.3 Follow-up Inputs Construction380

We generate the follow-up inputs by semantically corrupting or preserving the381

object-relevant features of a source image using the two aforementioned image382

mutations: object-corrupting mutation and object-preserving mutation.383

There are many possible ways to design the mutation functions to corrupt or384

preserve the object-relevant features. However, it is challenging to quantitatively385

measure the degree of corruption and preservation. Such a challenge further brings386

difficulties to define the test oracle, as different levels of corruption and preserva-387

tion should correspond to different designs of test oracle, especially the thresholds388

of test oracle (e.g., the Δc in Section 3). An inappropriate test oracle will influence389

the effectiveness of our approach.390

To alleviate this challenge, we mutate the image by filling simple colors, such391

as white, gray and black, into the target-object region (or background region).392

Correspondingly, we use whether the classification results of source input and393

follow-up input are equal as the test oracle. The objective of our mutation is to394

simulate extreme cases, without considering the realism of images. For example, if395

the target-object region in the source input is substituted by black color, i.e., the396

object-relevant features are removed, but the model can still classify it correctly,397

the model is very likely to make the inference based on the object-irrelevant fea-398

tures. In real scenarios, our mutation can be considered as the simulation of the399

blocking of cameras. An existing study (Pei et al. 2017) designed for testing DNNs400

also generates test images via randomly patching black holes to images, in order401

to simulate the blocking of cameras.402

Besides alleviating the above challenge, another advantage of using simple col-403

ors is that these colors bring little additional features to the source input. If we404

replace the object region with other objects or patterns, they may bring new fea-405

tures and further affect the model inference results. In such a situation, one cannot406

easily identify whether the change of the inference result is due to the absence of407

object-relevant features, or the appearance of these new features.408

In our experiments, we use three colors, i.e., black (R0, G0, B0), gray (R127,409

G127, B127) and white (R255, G255, B255). For each source input, three follow-410

up inputs are generated based on MR-1 and three more are generated based on411
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(a) (b) (c) (d)

Fig. 4: (a): Original Image with Bounding Box, Label: “pitcher, ewer”. (b): Image
after Object Corrupting Mutation for MR-1. (c): Image after Object Preserving
Mutation for MR-2. (d): Image Inpainting Result using DeepFill.

MR-2. For example, given the source input shown in Figure 4a, Figure 4b and412

Figure 4c are two follow-up inputs generated based MR-1 and MR-2, respectively.413

It is possible that such simple colors could also induce bias to model inference. To414

alleviate this threat, eventually, we use the majority of their validation results as415

the final result. Such a strategy is called the majority voting (Freund and Schapire416

1995) and it has been used by an existing study (Pei et al. 2017) to test DNN417

systems. One threat to validity that might be raised is whether three colors are418

sufficient for performing metamorphic testing. To alleviate this threat, we compare419

the results using more colors in Section 5.2, and demonstrate that using three colors420

is sufficient.421

Another threat that might be raised is why not using the inpainting technology422

to remove the object/background more naturally. Actually, we tried this method423

at the exploratory stage of this study. However, even the-state-of-art technology424

DeepFill (Yu et al. 2018) cannot completely remove the object features. An exam-425

ple is shown in Figure 4d. The feature of pitcher in the image cannot be removed426

completely. Moreover, such inpainting models usually need hundreds of hours for427

training and ∼15 seconds to inpaint an image, which is not efficient.428

4.4 Metamorphic Relation Validation429

In this subsection, we introduce the metamorphic relation validation process.430

Please note that in our experiments on single-label and multi-label classification431

models, for each source input i, we generate three follow-up inputs i′s. Then we432

will validate the MRs three times and use majority voting to decide whether MRs433

are violated. As we mentioned, such a method can mitigate the possible threat434

induced by a single mutation. We will regard M(i) as an unreliable inference if435

and only if MR-1 is violated at least two out of three times. The same strategy is436

applied for MR-2.437

4.4.1 Validation of MR-1438

MR-1 An image mutated by corrupting only the features of the target object(s)439

should lead to an inference result with different label(s), or an inference result440

with the same label(s) but less certainty.441
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Single-label Classification Here we use the same notation as Section 3. We
define the distance function D as follows:

D(M(i), M(i′c)) =

⎧⎪⎨
⎪⎩
1, if lM(i) �= lM(i′c)

or if lM(i) = lM(i′c) and C(lM(i)) > C(lM(i′c))

0, otherwise

Here, lM(i) is the label of the target object in M(i). C(M(i)) measures the
certainty of the M(i), according to the definition proposed by existing work in
DNN testing (Xie et al. 2019b; Zhang et al. 2020b):1

C(M(i)) = min
0<j<n,j �=l

∣∣pl − pj
∣∣

where pl is the probability of label lM(i) and pj is the probability of j-th label in the442

inference. Intuitively, the certainty measures the minimal difference between label443

lM(i) and any other labels in terms of their probabilities. The value of C(M(i))444

ranges in the region [0, 1]. The higher the value is, the more certain the model is on445

the inference. If the inference is a correct inference, the above certainty equation446

actually calculates the difference between the highest probability and the second447

highest probability.448

Correspondingly, we define Δc equals to 1. if D(M(i), M(i′c)) ≥ Δc = 1,449

i.e., the label of the inference on the source input lM(i) is different from the one450

of the inference on the follow-up input lM(i′c), or the labels are the same but451

the inference on the follow-up input become less certain, the MR-1 is satisfied.452

Otherwise, if D(M(i), M(i′c)) < Δc = 1, i.e., lM(i) and lM(i′c) are the same453

and the certainty increases, it implies that after corrupting the object-relevant454

features in the source input, the model can still correctly classify the input with455

more certainty. In other words, the examined inference M(i) is made based on456

features irrelevant to the objects. This conclusion violates our MR-1, and thus457

M(i) is labeled as an unreliable inference.458

Multi-label Classification In multi-label classification, we adapt the above
formula with slight modifications to cooperate with the multiple labels. Specifi-
cally, we use LM(i) to denote the set of labels outputted by the model M on input
i. We define the distance function D as follows:

D(M(i), M(i′c)) =

⎧⎪⎨
⎪⎩
1, if LM(i) �= LM(i′c)

or if LM(i) = LM(i′c) and C(LM(i)) > C(LM(i′c))

0, otherwise

To the best of our knowledge, the certainty in multi-label classification has459

not been defined by existing work, and the definition in single-label classification460

cannot be applied to multi-label classification directly. As we introduced in Sec-461

tion 2, in single-label classification, the sum of the probability of all labels is equal462

to 1. Labels are competing with each other and only the label with the highest463

probability is regarded as the final result. In other words, the increase of the prob-464

ability of a label means the decrease of the probability of other labels. Thus, we465

can measure the certainty based on to what extent the probability of this label is466

different from the probabilities of the remaining labels. However, as we mentioned467

1 The latter study refers this concept as “prediction confidence”
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in Section 2.2, in multi-label classification, the probabilities of labels are relatively468

independent, i.e., the sum of the probabilities of all labels are not necessarily equal469

to 1. The difference between the probabilities of the two labels does not imply the470

inference certainty.471

To address this challenge, in our approach, we regard the multi-label classi-472

fication into multiple binary-classification tasks where each binary-classification473

predicts whether the input belongs to a single label or not. This enables us to474

measure the certainty of each label individually. For example, let us assume an475

inference result given by a multi-label classification is [0.8, 0.9, 0.2], which corre-476

sponds to the probability of “airplane”, “person” and “motorcycle”. We can regard477

it as the outputs from three binary-classification models. The first model predicts478

whether the input belongs to label “airplane” and outputs the probability 0.8.479

The second and third ones predict whether the input belongs to label “person”480

and “motorcycle”, and output the probability 0.9 and 0.2, respectively. It is trivial481

to calculate the certainty of the binary classification task. Therefore, we can first482

measure the certainty of each binary classification, and then leverage the results483

to measure the certainty of multi-label classification.484

More specifically, for any label l in the inference result of M(i) and its proba-
bility p, we define the certainty Cl,M(i):

Cl,M(i) = |p− (1− p)| = |2p− 1|

The value of Cl,M(i) is within the region [0, 1]. The intuition is to measure the485

certainty based on the difference between the probability that “it belongs to label486

l” and “it does not belong to label l”. The larger the difference is, more certain the487

model is on the inference. Based on the above definition of certainty of single label488

in the multiple-classification, we define the comparison of C(LM(i)) and C(LM(i′c))489

as following: C(LM(i)) > C(LM(i′c)) ⇐⇒ Cl,M(i) > Cl,M(i′c), ∀ l ∈ LM(i). The490

above equation compares the certainty of each label in the inferences on the source491

input and the follow-up input. Please note that for the predicate of certainty492

C(LM(i)) and C(LM(i′c)), we check it only if the prior predicate LM(i) = LM(i′c) is493

true.494

For Δc, we use the same definition as single-label classification, i.e., Δc = 1. If495

D(M(i), M(i′c)) ≥ Δc, the MR-1 is satisfied. Otherwise, MR-1 is violated and the496

examined inference, i.e., M(i), is regarded as an unreliable inference.497

4.4.2 Validation of MR-2498

MR-2 An image mutated by preserving the features of the target object(s) and499

corrupting other features should lead to an inference result with the same label(s).500

Single-label Classification We define D as follows:

D(M(i), M(i′p)) =

{
0, if lM(i) = lM(i′p)

1, otherwise

Here, lM(i) is the label with the highest probability in M(i). We define the thresh-501

old Δp = 0. If D(M(i), M(i′p)) > Δp = 0, it means that the label of the inference502

on the source input lM(i) is different from the one of the inference on the follow-503

up input lM(i′p). In other words, after preserving the features of the target object504
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and corrupting the remaining features in the source input, the model classifies505

the follow-up input into a different label. This conclusion is opposite to our MR-506

2, and thus the examined inference M(i) is labeled as an unreliable inference. If507

D(M(i), M(i′p)) ≤ Δp = 0, it implies that after preserving the features of the508

target object and corrupting the others, the model still classifies the input into509

the same label as the one of the source input. This result is in line with our MR-2510

and thus the examined inference will not be labeled as an unreliable inference by511

us.512

Multi-label Classification We define D as follows:

D(M(i), M(i′p)) =

{
0, if LM(i) = LM(i′p)

1, otherwise

Here, LM(i) is the set of labels in M(i). The equality of the LM(i) and LM(i′p) is513

based on the equality of set. In other words, LM(i) = LM(i′p) if and only if for any514

element in LM(i), this element is also in LM(i′p) and for any element in LM(i′p), it515

is also in LM(i).516

Same as single-label classification, the Δp is defined as 0. If D(M(i), M(i′p)) >517

Δp = 0, it means LM(i) and LM(i′p) are different. In other words, after preserving518

the features of the target object and corrupting the remaining features in the source519

input, the model classifies the input into different labels with the inference on the520

source input. This conclusion is opposite to our MR-2, and thus the examined521

inference M(i) is labeled as an unreliable inference.522

5 Evaluation523

In this section, we evaluate our approach from the perspective of effectiveness.524

First, we investigate the effectiveness of our proposed approach to see whether525

it can successfully identify inferences that are made based on object-irrelevant526

features. Specifically, we measure the precision (true positive rate) of our approach,527

i.e., the number of real unreliable inferences in all inferences identified by our528

approach. We aim to answer the following question:529

RQ1 What is the effectiveness of our approach in terms of true positive rate?530

Further, as mentioned in Section 4, we use three colors to mutate inputs in our531

approach. One threat of our approach is that whether more colors should be used532

to identify unreliable inferences. To answer this question, we performed another533

experiment in which we use 15 distinct colors to mutate the inputs, and then534

compared it with the experiment in which only 3 colors are used. These results535

will help us to answer the following question:536

RQ2 Is it sufficient to use only 3 colors for mutations in terms of effectiveness?537

The source code and data of our experiment are available online.2 Our ex-538

periments were conducted on two datasets, the ImageNet 2012 validation set and539

COCO 2014 validation set. The ImageNet 2012 validation set is a popular single-540

label classification dataset with 50,000 images. These images evenly distribute541

across 1,000 labels. The COCO 2014 validation set is a common multi-label clas-542

sification dataset, with 40,504 images across 80 labels. On average, each image543

has 7.21 labels. We chose these datasets for three reasons. First, both are popular544

2 https://github.com/yqtianust/PaperUnreliableInference
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image classification datasets on which most state-of-the-art models are trained.545

Second, there are plenty of pre-trained models available as experiment subjects.546

Third, they provide the annotation of object boundaries.547

5.1 Effectiveness of Our Approach548

In order to evaluate whether our metamorphic testing approach can effectively549

identify unreliable inferences, we applied it to the inferences made by three pre-550

trained single-label classification models from the Keras Application (Chollet et al.551

2015a) and one multi-label classification model (Ben-Baruch et al. 2020). The552

former models are trained on the ImageNet dataset and the latter one is trained on553

the COCO dataset. Then we manually validated the testing results and measured554

the precision.555

To validate whether the unreliable inferences identified by our approach are556

indeed made based on object-irrelevant features, for each of them, we manually557

checked the quality of their follow-up inputs. If the follow-up inputs are con-558

structed as expected, i.e., the object features in the follow-up inputs are cor-559

rupted(preserved) for MR-1(MR-2), we regarded the corresponding inference as560

indeed unreliable, i.e., a true positive case. If the follow-up inputs are not con-561

structed as expected, the corresponding inference cannot be regarded as an unre-562

liable inference, thus resulting in a false positive case.563

More specifically, for the inference results that violate MR-1, we manually564

checked whether the object-relevant features were completely corrupted after the565

mutation, i.e., whether the target objects in the follow-up inputs are indeed re-566

moved. If the follow-up input does not contain the target object, the inference567

violates MR-1 since the model still predicts it as the original label. Thus, this568

test result is a true positive. If the follow-up input still contains the target object,569

predicting it as the original label does not violate MR-1, and hence the identified570

unreliable inference is a false positive.571

Similarly, for the inference that violated the relation MR-2, we manually checked572

whether the target objects were preserved and whether the other features were cor-573

rupted. Specifically, if the follow-up input contains the target object, the MR-2 is574

violated since the model does not predict the follow-up input as the original label.575

So, we labeled the test result as true positive. On the contrary, if the follow-up576

input does not contain the target object, MR-2 is not violated and the identified577

unreliable inference is a false positive.578

The manual check was conducted by two graduate students individually and in-579

dependently. Only the results agreed by consensus were considered. The disagreed580

results were labeled as “uncertain”.581

5.1.1 Pilot Study582

Before the manual check, we first conducted a pilot study to help us understand the583

possible cases (i.e., the root cause of false positive cases) that might be encountered584

in the manual check. Specifically, we randomly selected 200 unreliable inferences585

found by our approach to perform the pilot study, among which 100 violate MR-1586

and the others violate MR-2. We investigated whether each unreliable inference is587

true positive and if not, what are the major reasons for those false positive cases.588
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In the investigation, for each unreliable inference, each student was requested589

to view a pair of inputs (pictures in our scenarios). More specifically, each pair of590

the inputs consisted of two inputs: (a) the source input on which the unreliable591

inference is made, e.g., Figure 4a, and (b) the follow-up input constructed based592

on the source input, e.g., Figure 4b if MR-1 is violated, or Figure 4c if MR-2593

is violated. Besides, the label of the source input was provided to the students.594

The students were required to answer the following questions for the unreliable595

inferences violating MR-1:596

1. Do you think the object-relevant features of the source input have been com-597

pletely corrupted in the follow-up inputs, i.e., the target objects in the follow-up598

inputs have been indeed removed?599

2. If not, please briefly explain the reason.600

Similarly, for the unreliable inferences violating MR-2, the corresponding ques-601

tions were:602

1. Do you think the object-relevant features of the source input have been com-603

pletely preserved in the follow-up inputs, i.e., the target objects still remain in604

the follow-up inputs?605

2. If not, please briefly explain the reason.606

First, two graduate students investigated the selected 200 image pairs indi-607

vidually and independently. Their answers to the questions have been recorded.608

Then for the inconsistent answers, they discussed with each other to see if they609

can reach a consensus. A reason is selected as a common reason if it occurs more610

than or equal to 10 times. Eventually, we finalized three common reasons inducing611

false positives for unreliable inference violating MR-1, which are:612

(a)Existence of Multiple Target Objects. These false positives occurred because613

there are multiple target objects in the source input, but not all of them are cor-614

rupted in the follow-up inputs. Figure 5f shows an example. The original image in615

Figure 5b, whose label is “confectionery”, has multiple confectioneries. Ideally, all616

of them should be corrupted in its follow-up inputs. However, after mutation, the617

follow-up input, as shown in Figure 5f, still contains multiple confectioneries since618

the dataset only annotates one of them, which is shown as the red rectangle in619

Figure 5b. As such, the inference of the follow-up input can still be “confectionery”620

as the object-relevant features (the other confectioneries) are not completely cor-621

rupted. Therefore, MR-1 is not violated and the original inference is a false positive622

of the identified unreliable inferences.623

(b)Incomplete Removal of the Target Object. Some false positives occurred in the624

inputs that contain a single target object but only parts of it are corrupted in625

the follow-up input. An example is shown in Figure 5c, whose label is “drilling626

platform”. Ideally, the entire platform should be corrupted in the follow-up inputs.627

However, the mutated images shown in Figure 5g still contain part of the target628

object. This is because the annotation provided by the ImageNet dataset does not629

cover the upper-half of “drilling platform”, which differs from the other images in630

this label whose platforms are entirely annotated. Therefore, the follow-up input631

can lead to the same classification result as the original inference because the632

object-relevant features are not corrupted entirely. The MR-1 is not violated in633

this case.634
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(c)Others. It refers to the other reasons not belonging to the above two reasons.635

For example, the original image is not clear and hinders the students to identify636

the boundary of the target object.637

For MR-2, we do not distinguish the reason for false positives since the number638

of false positives is very limited (less than 10 in our pilot study).639

We also conducted a similar pilot study for multi-label classification. More640

specifically, we selected 50 unreliable inferences violating MR-1 and 50 ones vio-641

lating MR-2 from all the unreliable inferences in multi-label classification found by642

our approach. A reason is considered common if it occurs at least 5 times. Since643

we did not notice other reasons than the ones aforementioned, we concluded the644

same reasons for both single-label and multi-label classifications.645

5.1.2 Experiment Setup646

Model Selection For the single-label classification model, we selected NASNet-647

Large (Zoph et al. 2018), MobileNet (Howard et al. 2017) and ResNet101 (He648

et al. 2016) among the pre-trained models from the Keras Application (Chollet649

et al. 2015b) because their top-1 accuracy lies at the top, medium and bottom,650

respectively, among those of the models. For the multi-label classification model,651

we selected TResNet-XL (Ben-Baruch et al. 2020), since it achieves the highest652

accuracy on the COCO dataset to the best of our knowledge (Ben-Baruch et al.653

2020) till March 2021.654

Sampling We randomly sampled the inferences made by the four models655

for the manual check, where the sample size is determined by the Cochran for-656

mula (Cochran 1963) with 95% confidence level.657

Manual Check Two graduate students conducted the manual check similar to658

the pilot study. More specifically, each source input in the unreliable inference was659

displayed with the follow-up inputs constructed by our method. The students were660

asked the same question as the ones in the pilot study. The only difference is that661

at this time, the Q2 in unreliable inference violating MR-1 was supplied with three662

options, which are: (a)Existence of Multiple Target Objects, (b)Incomplete Removal663

of The Target Object, (c)Others. When (c) is chosen, the students were also required664

to write down detailed explanations. The students were allowed to choose multiple665

of the above options. During the manual check, we also monitored the reasons in666

(c) Others. If any reason in (c) Others occurs at least 10 times, we would extract667

a new common reason. Such a situation does not exist in our manual check.668

Each student conducted the manual check individually and independently. It669

took around 15 hours for each of them to complete the manual check. After the670

individual check, they discussed the cases where the disagreement arises, in case671

any of them miss anything during the check. If the disagreement is addressed, the672

corresponding manual check result is changed. At last, we collected and analyzed673

the results. As we mentioned previously, only the results agreed by consensus were674

considered in the analysis. The Kappa Agreement Score (Landis and Koch 1977)675

of the manual check is 0.955. Such a value indicates an almost perfect agreement676

between the two graduate students who conducted the manual check.677

Threat to validity There is a potential threat to validity in this experiment.678

Our manual check is subject to human mistakes. To address the threat, two gradu-679

ate students conducted the manual check individually and independently. A result680
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5: (a)(b)(c)(d): Images (with Bounding Boxes) as the Source Inputs.
(e)(f)(g)(h): Images as the Corresponding Follow-up Inputs. Labels: (a):
“goldfinch, Carduelis carduelis”, (b): “confectionery”, (c): “drilling platform”, (d):
“car wheel”.

Table 1: The Manual Check Results for the Effectiveness of MR-1 on Single-label
Classification Models. Column Multiple is for the Reason Existence of Multiple Tar-

get Objects and Column Incomplete is for the Reason Incomplete Removal of the

Target Object. The Number in the Parentheses under Multiple is for Cases Shared
by Both Reasons.

Model Accuracy Total
Sample True False Positive

Uncertain

Size Positive Multiple Incomplete Others

NASNetLarge 82.7% 826 311 202 (65.0%) 84 (1) 16 4 6

ResNet101 76.4% 344 194 122 (62.9%) 55 (2) 8 8 3

MobileNet 70.3% 222 149 95 (63.8%) 42 (1) 8 3 2

Total 1,392 654 419 (64.1%) 181 (27.7%) 32 (4.9%) 15 11

will be adopted only if both students made the same conclusion. The high Kappa681

Agreement Score indicates that the results is reliable.682

5.1.3 Results and Discussion683

Single-label Classification Models Table 1 and Table 2 show the manual check684

results for MR-1 and MR-2 for single-label classification models, respectively. The685

column Total refers to the number of unreliable inferences identified by our ap-686

proach for each model. Specifically, our approach identifies 1,392 inferences that687

violate MR-1 and 15,198 inferences that violate MR-2. We randomly sampled and688

manually checked 654 and 1,069 inferences from these two categories, respectively,689

as previously explained.690
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Table 2: The Manual Check Results for the Effectiveness of MR-2 on Single-label
Classification Models.

Model Accuracy Total
Sample True False

Uncertain
Size Positive Positive

NASNetLarge 82.7% 3,634 348 339 (97.4%) 1 8

ResNet101 76.4% 4,942 357 340 (95.2%) 7 10

MobileNet 70.3% 6,622 364 351 (96.4%) 0 16

Total 15,198 1,069 1,030 (96.4%) 8(0.07%) 34

Table 3: The Manual Check Results for the Effectiveness of MR-1 and MR-2 on
Multi-label Classification Model: TResNet-XL).

MR Total
Sample True False

Uncertain
Size Positive Positive

MR-1 957 275 215 (78.2%) 44 16

MR-2 4,732 356 308 (86.5%) 30 18

As for the inputs that violate MR-1, the column True Positive of Table 1 shows691

that our approach achieves an average precision of 64.1%, ranging from 62.9% to692

65.0% for different models. Out of the 654 samples, 419 samples do not contain693

the target objects in the follow-up inputs but the models keep labeling them as694

the target objects. So, they violate MR-1 and are true positive cases. Figure 5a695

shows an example, in which the original image is correctly classified by the model696

ResNet101 as “goldfinch, Carduelis carduelis”. Although the follow-up input in697

Figure 5e does not contain birds, ResNet101 gives the same classification result as698

that of the original image, thus resulting in an unreliable inference.699

We further checked the remaining 235 (=654 - 419) false positive cases, and700

found that 77.0% (=181/235) of the false positive cases are due to the Existence701

of Multiple Target Objects and 13.6%(=32/235) are because of Incomplete Removal702

of the Target Object. Moreover, there are four cases that belong to both Existence703

of Multiple Target Objects and Incomplete Removal of the Target Object. The above704

numbers (181 and 32) have included these four cases. Besides, there are 11 cases705

labeled as uncertain as the results from two students disagree with each other.706

The rest of the false positive cases (15 in total) are labeled as Others.707

As for the inputs that violate MR-2, it shows that our approach achieves an708

aggregated precision of 96.4%, ranging from 95.2% to 97.4% for different models.709

In total, 1,030 out of the 1,069 samples preserve the target objects in the follow-up710

inputs, but these follow-up inputs are not correctly classified by the models. There-711

fore, these samples indeed violate MR-2 and they are regarded as true positives of712

the unreliable inferences violating MR-2. For the remaining 39 cases, only part of713

the target objects is preserved in the follow-up inputs. They do not violate MR-2714

and are false positives. For instance, given the source input as shown in Figure 5d,715

the constructed follow-up input in Figure 5h only covers the center of wheel but not716

the entire tire. According to the definition from the WordNet (Fellbaum 2006) (the717

labels of the ImageNet dataset are defined according to WordNet), “car wheel”718
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is “a wheel that has a tire and rim and hubcap”. Since the object-relevant features719

are only partially preserved, it makes sense that the follow-up input is incorrectly720

classified. Therefore, MR-2 is not violated and this is a false positive case.721

We noticed that the precision of MR-2 is much higher than that of MR-1. We722

found the reason is that the aforementioned Existence of Multiple Target Objects will723

cause the follow-up input unqualified for the validation of MR-1, as the object-724

relevant features of the follow-up inputs will not be completely corrupted. However,725

such a situation will not affect MR-2 since as long as one of the target objects is726

preserved in the follow-up inputs, the follow-up inputs are valid to validate MR-2.727

Multi-label Classification Models Table 3 shows the manual check results for728

MR-1 and MR-2 for TResNet-XL, a multi-label classification model, respectively.729

The true positive rate for MR-1 and MR-2 is 78.2% and 86.5% respectively. This730

shows that our approach is also effective for multi-label classification models. As731

for the false positives for MR-1, the major reasons are still Existence of Multiple732

Target Objects and Incomplete Removal of The Target Object. They account for 20733

and 23 of the 44 false positive cases. The remaining one is due to the incorrect734

annotation, where a labeled broccoli is actually lettuce. For the false positives for735

MR-2, similar to single-label classification, the major reason is that their target736

objects are not completely preserved in the follow-up inputs and thus they do not737

violate MR-2.738

Answer to RQ1 Our approach is effective in identifying unreliable inferences739

that violate MR-1 and MR-2, with an aggregated precision of at least 62.9% and740

86.5%, respectively. The false positives are mainly caused by imperfect annotation741

of the target objects.742

5.2 The Impact of The Number of Colors in Our Approach743

As mentioned in Section 4, we use three colors to mutate inputs in our approach744

and use the majority of their results to identify the unreliable inference. One threat745

of our approach is that whether three colors are sufficient to identify unreliable746

inferences. To answer this question, we performed another experiment that uses 15747

distinct colors to mutate the inputs, and we then compared the results obtained748

of the new experiment with that of the original one.749

5.2.1 Experiment Design750

Specifically, besides the three colors we used previously, we select 12 more com-751

monly used colors, which are red (R255, G0, B0), maroon (R128, G0, B0), yellow752

(R255, G255, B0), olive (R128, G128, B0), lime (R0, G255, B0), green (R0, G128,753

B0), aqua (R0, G255, B255), teal (R0, G128, B128), blue (R0, G0, B255), navy754

(R0, G0, B128), fuchsia (R255, G0, B255), and purple (R128, G0, B128). We use755

the same approach as mentioned in Section 4. The only difference is that now we756

regard an inference as unreliable if and only if the MR is violated by at least 8 out757

of the 15 mutated inputs.758

After the data collection, we compared the results using 15 colors and the759

ones using 3 colors. Statistically, we use the Chi-square independence test (F.R.S.760

1900) to test the independence of the results obtained from the two approaches.761

The Chi-square independence test is commonly used to determine if there is a762
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Table 4: Contingency Tables for MR-1 and MR-2 to Compare the Experiment
Results Obtained using 3 Colors vs 15 Colors.

MR-1 MR-2

V3: Violate V3: Not Violate V3: Violate V3: Not Violate

V15: Violate 169 52 5,145 1,467

V15: Not Violate 63 35,323 249 28,773

significant relationship between two categorical variables. In our experiment, we763

use it to determine if the decision “violate MR or not” using by three colors and764

the one using fifteen colors are strongly correlated. If yes, we can use three colors765

to save computation resources. We conduct the experiment using the pre-trained766

VGG16 from Keras.767

5.2.2 Results and Discussion768

We use variable V3 to denote the decision “violate MR or not” according to the769

approach using three colors. Similarly, we use variable V15 to denote the decision770

“violate MR or not” according to the approach using 15 colors. We build the771

contingency tables for both MR-1 and MR-2 as shown in Table 4. The cell in the772

table represents the number of the inferences identified by the two approaches.773

For example, the cell “169” means there are 169 inferences that are considered as774

violating MR-1 by both the approach using three colors and the one using fifteen775

colors. The cell “1,467” means there are 1,467 inferences that are considered as776

not violating MR-2 by the approach using three colors and considered as violating777

MR-2 by the approach using the fifteen colors.778

The p-values of the Chi-square test are both < 0.001 for MR-1 and MR-2,779

which is less than the typical threshold 0.05. The corresponding effect sizes3 are780

0.743 and 0.835 for MR-1 and MR-2, respectively. It indicates that the results781

obtained by the approach using three colors and the approach using fifteen colors782

are strongly correlated. In other words, if an inference is considered unreliable (or783

reliable) by the approach using three colors, the same decision will likely be made784

by the approach using fifteen colors, and vice versa. Overall, this experiment shows785

that using more colors than three in our approach has a minor difference compared786

to three colors. Therefore, it is sufficient to use three colors for the follow-up input787

construction in our approach.788

Answer to RQ2 Using three colors in our approach is sufficient to identify789

unreliable inputs effectively.790

6 Empirical Study791

Leveraging our approach, we conduct an empirical study to understand the unre-792

liable inference problems in reality.793

First, we want to understand the pervasiveness of the problem, i.e., to what794

extent are the inference results made by the state-of-the-art DNN models based795

3 in the Chi-square test, it is usually referred to as Cramér’s V (Cramer 1946)
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on object-irrelevant features. Specifically, we measure the proportion of unreliable796

inferences identified in all correct inferences outputted by these models.797

RQ3 How pervasive is unreliable inference in DNN models?798

Second, we study the characteristics of the identified unreliable inferences.799

Specifically, we focus on the size of the target objects in unreliable inferences, a800

common attribute of objects. We studied whether there is any correlation between801

the object size and the unreliable inferences.802

RQ4 Is there a correlation between the target object size and the unreliable803

inferences?804

Next, we aim to understand the effect of such unreliable inferences. Specifically,805

we investigate whether the unreliable inferences can significantly affect a model’s806

evaluation result, thus preventing us from correctly evaluating models and com-807

paring them fairly. In the experiments, we compare the accuracy of a model before808

and after removing those unreliable inferences from the associated test.809

RQ5 To what extent will the unreliable inference affect a model’s evaluation?810

Finally, we investigate how to tame unreliable inferences. Specifically, we inves-811

tigate whether the ratio of unreliable inferences can be reduced during the training812

process and whether it is correlated with the evaluation metrics such as accuracy.813

To achieve this goal, in the experiments, we track the ratio of unreliable inferences814

and the model accuracy during the model training process .815

RQ6 Can the unreliable inference be tamed during training?816

6.1 Pervasiveness of Unreliable Inferences817

RQ3 How pervasive is unreliable inference in DNN models?818

6.1.1 Motivation819

In the previous section, we showed that thousands of inferences made by the four820

pre-trained classification models violate our MRs. In this subsection, we investigate821

the pervasiveness of the problem, i.e., whether such unreliable inferences generally822

exist in a wide variety of models with different architectures. We leveraged our823

methodology to identify the unreliable inferences made by both the single-label824

and multi-label image classification models. Then we measure the ratio of the825

unreliable inferences in all correct inferences. This research question can help us826

to understand the severity of the unreliable inferences.827

6.1.2 Experiment Setup828

We collected 21 pre-trained DNN models from public repositories. 18 out of the829

21 models are single-label image classification models, and they are collected from830

the Keras Application (Chollet et al. 2015b), a famous and popular repository for831

pretrained models. All of them are trained on the ImageNet dataset, and their832

information (name and accuracy) is shown in the first two columns of Table 5.833

Besides the single-label classification models, we also collected three multi-label834

classification models, which are ResNet-50 (He et al. 2016), TResNet-L (Ben-835

Baruch et al. 2020) and TResNet-XL (Ben-Baruch et al. 2020). ResNet-50 is chosen836

as it has been used as an experiment subject by existing papers (Zhao et al.837
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2017; Tian et al. 2020b) and the other two models are included because they838

are the state-of-the-art in terms of accuracy (till March 2021). All three multi-839

label classification models are trained on the COCO dataset. Please note that the840

number of public available multi-label classification models is much smaller than841

that of the single-label classification models, and we have tried our best efforts to842

collect these three models.843

In the experiment, we found that Keras Application only provided the trained844

model, but missed the source code to reproduce the results for image classifica-845

tion, especially the code to preprocess the input. To avoid the possible mistakes in846

reproduction, we leveraged the functionality provided by an open-source toolbox,847

EvalDNN (Tian et al. 2020a), which has successfully reproduced the reported ac-848

curacy for most of the 18 models. The maximum difference between the reported849

accuracy and the reproduced one is only 0.7%, which demonstrates that we have850

faithfully deployed the models in our experiments. For the multi-label classification851

models, we successfully reproduced the results by leveraging the detailed source852

code provided by the authors.4 For the threshold in multi-label classification mod-853

els, we use the value suggested by their documentation, i.e., 0.5 for TResNet-L and854

TResNet-XL, and 0.7 for ResNet-50. The columns Reproduced Accuracy of Table 5855

and Table 6 list the accuracy reproduced in this study for single-label classifica-856

tion and multi-label models, respectively. After the deployment, we applied our857

approach to identify unreliable inferences from all the correct inferences made by858

these models .859

Threats to validity There are two potential threats to validity in this exper-860

iment. First, the models used in this experiment may not include all the DNN-861

based image classification models and our conclusion may have bias. To mitigate862

the threat, we collected 21 representative and popular models. They covered most863

of the modern advanced architectures used in image classification. We believe that864

our conclusions can be generalized. Second, the inference results of these model865

can be affected due to the mistake in model deployments. To alleviate this threat,866

we leveraged the existing toolbox (Tian et al. 2020a) and the source code pro-867

vided by the authors. We ensured that the models deployed in our experiment868

perform closely to the accuracy reported in their original research publications869

and documentations.870

6.1.3 Results and Discussion871

Table 5 and Table 6 show the experimental results of single-label classification872

models and multi-label classification models, respectively. For each cell, the per-873

centage displayed in the parentheses is the ratio of the number of unreliable infer-874

ences found by our approach with respect to the number of the correct inferences.875

Please note that the column Inferences Violating MR-1 refers to the number of876

inferences violating MR-1, regardless of whether MR-2 is violated or not. The col-877

umn Inferences Violating MR-2 refers to the number of inferences violating MR-2,878

regardless of whether MR-1 is violated or not. The last column Inferences Violating879

MR-1&2 refers to the number of inferences violating both MR-1 and MR-2.880

4 TResNet-L: https://github.com/Alibaba-MIIL/ASL, ResNet-50: https://github.com/
ARiSE-Lab/DeepInspect
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Table 5: Single-Label Image Classification Models, their Accuracy, the Number
and Ratio of Unreliable Inferences Violating MRs on the ImageNet dataset.

Model
Reproduced

Accuracy

Inferences

Violating

MR-1

Inferences

Violating

MR-2

Inferences

Violating

MR-1&2

Xception 79.0% 374 (0.95%) 4,104 (10.39%) 229 (0.58%)

VGG16 71.3% 259 (0.73%) 5,394 (15.14%) 228 (0.64%)

VGG19 71.3% 252 (0.71%) 5,628 (15.80%) 219 (0.61%)

ResNet50 74.9% 253 (0.68%) 5,248 (14.01%) 197 (0.53%)

ResNet101 76.4% 344 (0.90%) 4,942 (12.93%) 268 (0.70%)

ResNet152 76.6% 334 (0.87%) 4,727 (12.34%) 266 (0.69%)

ResNet50V2 75.3% 247 (0.66%) 5,387 (14.30%) 213 (0.57%)

ResNet101V2 76.9% 271 (0.70%) 4,606 (11.98%) 212 (0.55%)

ResNet152V2 77.7% 319 (0.82%) 4,392 (11.30%) 252 (0.65%)

InceptionV3 77.9% 404 (1.04%) 4,663 (11.98%) 292 (0.75%)

InceptionResNetV2 80.4% 686 (1.71%) 3,998 (9.94% ) 388 (0.97%)

MobileNet 70.3% 222 (0.63%) 6,622 (18.83%) 195 (0.55%)

MobileNetV2 71.2% 281 (0.79%) 6,437 (18.08%) 225 (0.63%)

DenseNet121 75.0% 278 (0.74%) 4,349 (11.60%) 219 (0.58%)

DenseNet169 76.2% 340 (0.89%) 4,154 (10.91%) 264 (0.69%)

DenseNet201 77.3% 334 (0.86%) 4,296 (11.11%) 260 (0.67%)

NASNetMobile 73.8% 461 (1.25%) 6,505 (17.64%) 345 (0.94%)

NASNetLarge 82.7% 826 (2.00%) 3,634 (8.79%) 383 (0.93%)

Table 6: Multi-label Image Classification Models, their Accuracy, the Number and
Ratio of Unreliable Inferences Violating MRs on the COCO dataset.

Model
Reproduced

Accuracy

Inferences

Violating

MR-1

Inferences

Violating

MR-2

Inferences

Violating

MR-1&2

ResNet50 34.5% 657 (4.71%) 4,873 (34.91%) 422 (3.0%)

TResNet-L 45.5% 1,013 (5.49%) 5,028 (27.26%) 442 (2.4%)

TResNet-XL 47.9% 957 (4.93%) 4,732 (24.38%) 362 (1.9%)

The results reveal that each selected single-label and multi-label DNN classi-881

fication model makes hundreds of unreliable inferences violating MR-1 and thou-882

sands of ones violating MR-2. In terms of ratio, for single-label classification,883

our approach identifies that 0.63%∼2.00% of the correct inferences violate MR-884

1, and 9.79%∼18.83% of the correct inferences violate MR-2. As for multi-label885

classification, the ratio is much higher. Specifically, our approach identifies that886

4.71%∼5.49% of the correct inferences violate MR-1, and 24.38%∼34.91% of the887

correct inferences violate MR-2. Furthermore, there are around 2% of the infer-888

ences violating both MR-1 and MR-2. The results show that the phenomenon,889



26 Yongqiang Tian et al.

i.e., model makes inferences based on object-irrelevant features, generally exists890

across different models.891

We further investigated whether different models will make unreliable infer-892

ences towards different test inputs. If most of the models make unreliable infer-893

ences for the same set of inputs, it is more likely that these inputs are defective.894

To conduct the investigation, we studied for each input the number of different895

models whose inference for the input was unreliable. Specifically, the number of896

different models varies from 1 to N, where N is the total number of models in-897

cluded in our experiments. More specifically, N is 18 for single-label classification898

on the ImageNet dataset and 3 for multi-label classification on the COCO dataset.899

We then calculated the ratio of inputs, for which unreliable inferences were made900

by n models (n = 1, 2, ..., N), with respect to the total number of inputs for which901

unreliable inferences were made by at least one model.902

Figure 6a and Figure 6b show the results for single-label classification mod-903

els on the ImageNet dataset and multi-label classification models on the COCO904

dataset, respectively. It can be observed that, for single-label classification, 43.7%905

and 31.8% of the inputs concern unreliable inferences violating MR-1 and MR-2906

made by only one model, respectively. More than half of the inputs concern un-907

reliable inferences made by three or fewer models. Only a small portion of inputs908

(less than 2.7%) concern unreliable inferences made by all 18 models. A similar909

pattern can also be found for multi-label classification models. 74.3% and 67.4% of910

the inputs concern unreliable inferences violating MR-1 and MR-2 made by only911

one model, respectively. Less than 7.8% of the concern unreliable inferences made912

by all three models.913

Such results reveal that different models make unreliable inferences for different914

sets of inputs, which indicates that such unreliable inferences are more likely to915

be caused by the models themselves instead of the inputs.916

Answer to RQ3 The problem of making unreliable inferences is common to917

state-of-the-art models. Since these models make unreliable inferences on different918

input sets, the problem is likely to be caused by models instead of inputs.919

6.2 Characteristic of Unreliable Inferences920

RQ4 Is there a correlation between the target object size and the unreliable infer-921

ences?922

6.2.1 Motivation923

As shown in Section 6.1, unreliable inferences are pervasive, and different models924

make unreliable inferences for different inputs. We are curious about whether com-925

mon characteristics exhibit among unreliable inferences. If so, we may give some926

useful suggestions to developers.927

We manually investigated those inputs that cause unreliable inferences made928

by most models. We observed that the sizes of the target objects in these inputs929

usually occupy a tiny part of the whole image. Figure 7 shows some examples. The930

objects of these images are different types of balls whose sizes are often small in931

the images, especially compared to the sports facilities and players. It motivates932
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(a) Single-Label Classification Models on the ImageNet Dataset

(b) Muti-label Classification Models on the COCO Dataset

Fig. 6: The Percentage of Inputs for which Unreliable Inferences were Made by
Different Number of Sinlge-Label and Muti-label Classification Models

us to investigate whether the size of an input’s target object is correlated with its933

probability of being unreliably inferred by DNN models.934

6.2.2 Experiment Design935

To answer this question, for each unreliable inference, we computed the ratio936

of the target object’s size with respect to the size of the whole input image.937

Then we divided all inferences into 20 intervals based on their ratios, which are938
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Fig. 7: The Images that Have Small Objects and Are Unreliably Inferred by DNN
Models

[0.05 ∗ i, 0.05 ∗ (i+ 1)) and i ranges from 0 to 20. For each interval, we computed939

the ratio of unreliable inferences, with respect to the total number of inferences940

belonging to this interval. We selected the NASNetLarge and TResNet-XL as ex-941

periment subjects since they achieved the highest top-1 accuracy in all models used942

in our experiment for the ImageNet dataset and the COCO dataset, respectively.943

6.2.3 Results and Discussion944

Figure 8a and Figure 8b show the results for the model NASNetLarge on the Ima-945

geNet dataset and for the model TResNet-XL on the COCO dataset, respectively.946

Please note that for each interval, we use its middle point as the value in x-axis,947

except for the last interval we use the point 1.0. We observed that for these in-948

ferences whose target objects are smaller (relative to the size of the image), they949

are more likely to be unreliable. Similar results have been observed among the950

other models. We suspect that when the model handles an image whose target951

object is small, it often extracts features from the background region. Eventually,952

it leverages object-irrelevant features to make decisions.953

Answer to RQ4 In summary, we found that inputs with small target object954

sizes are more likely to be unreliably inferred by existing DNN models. We suggest955

the users of these models to pay more attention when making inferences on these956

inputs (i.e., the objects’ size are less than 30% of the whole image), especially957

when deploying these models on safety-critical applications.958

6.3 Effect of Unreliable Inferences959

RQ5 To what extent will the unreliable inference affect a model’s evaluation?960

6.3.1 Motivation961

As revealed by previous sections, a significant proportion of the correct inferences962

made by existing models are unreliable. Such pervasiveness of unreliable inferences963

might cause bias in understanding and evaluating the performance of different964

models. Specifically, if there exists a significant amount of unreliable inferences,965

it could induce non-trivial uncertainties in measuring model accuracy. Therefore,966
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(a) Single-Label Classification Model NASNetLarge on the ImageNet Dataset

(b) Multi-label Classification Model TResNet-XL on the COCO Dataset

Fig. 8: The Ratio of Unreliable Inferences Made by Single-label and Multi-label
Classification Models w.r.t the Ratio of Target Object Size

we investigated the effect of unreliable inferences on model accuracy evaluation in967

this experiment.968

6.3.2 Experiment Design969

We investigated the effects of unreliable inferences on the measurement of accuracy.970

Since both the correct and incorrect inferences can be unreliable and both of them971

are important to model evaluations, in this section, we examined both correct and972
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Table 7: The Comparison of the Top-1 Accuracy between the Unreliable Inferences
and Reliable Inferences for Single-label Image Classification Models

Model Original
MR-1 MR-2 MR-1&2

Unreliable Reliable Unreliable Reliable Unreliable Reliable

Xception 79.02% 28.22% 80.42% 45.51% 86.40% 20.00% 80.41%

VGG16 71.27% 21.73% 72.48% 41.10% 82.01% 20.07% 72.46%

VGG19 71.26% 20.62% 72.52% 42.21% 81.82% 18.83% 72.50%

ResNet50 74.93% 21.58% 76.21% 44.98% 84.05% 18.17% 76.19%

ResNet101 76.42% 26.34% 77.76% 45.48% 85.01% 22.48% 77.74%

ResNet152 76.60% 26.13% 77.94% 44.88% 85.07% 22.52% 77.91%

ResNet50V2 75.34% 19.92% 76.78% 46.19% 84.21% 17.82% 76.75%

ResNet101V2 76.89% 21.16% 78.37% 45.05% 85.08% 17.76% 78.34%

ResNet152V2 77.73% 23.19% 79.28% 45.51% 85.44% 19.73% 79.25%

InceptionV3 77.87% 30.01% 79.20% 46.05% 85.95% 24.48% 79.17%

InceptionResNetV2 80.41% 42.52% 81.68% 47.43% 87.10% 30.36% 81.73%

MobileNet 70.34% 21.50% 71.38% 42.84% 82.65% 19.52% 71.37%

MobileNetV2 71.19% 23.44% 72.37% 44.47% 82.08% 20.09% 72.36%

DenseNet121 74.97% 22.32% 76.34% 41.89% 83.64% 18.73% 76.32%

DenseNet169 76.18% 26.19% 77.51% 42.02% 84.59% 22.30% 77.48%

DenseNet201 77.32% 26.05% 78.67% 44.60% 85.13% 22.34% 78.63%

NASNetMobile 73.77% 33.12% 74.94% 46.18% 84.60% 27.38% 74.97%

NASNetLarge 82.68% 46.74% 83.99% 49.44% 88.40% 30.25% 84.04%

incorrect inferences. For the incorrect inferences, it is possible that they have the973

labels that do not exist in the ground truth and thus the object-relevant features974

cannot be directly identified. In such cases, we use the union of all the objects in the975

annotation to approximate the target object and then identify the object-relevant976

features.977

In the investigation, with respect to MR-1, we examined all (both correct and978

incorrect) inferences and separated them into two sets for each model according979

to whether they are reliable. One set contains all the inputs whose inferences are980

identified as unreliable by our approach and another set that contains the remain-981

ing test inputs. We denoted the former set as “Unreliable” and denoted the latter982

one as “Reliable”. We also compared the results such obtained with the original983

accuracy reproduced by our approach, which is denoted as “Original”. Similar pro-984

cedures were applied with respect to MR-2, and the MR-1&2. If the results before985

and after removing the unreliable inference have a significant difference, it indi-986

cates that the unreliable inferences will induce bias for model evaluation. We then987

re-computed the accuracy based on each set of test inputs and checked if the eval-988

uation results are significantly different by conducting the Wilcoxon signed-rank989

test (Wilcoxon 1945).990

6.3.3 Results and Discussion991

Table 7 shows the results aggregated over all the 18 single-label image classification992

models. In terms of the accuracy evaluated after removing the unreliable inferences993

with respect to MR-2 (column MR-2 Reliable), it is significantly higher than the994

original accuracy value obtained over all the test inputs (p-value = 3.81 ∗ e−6).995

On average, the model accuracy after removing the unreliable inferences is 8.84%996
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Table 8: The Comparison of the Top-1 Accuracy between the Unreliable Inferences
and Reliable Inferences for Multi-label Image Classification Models

Model Original
MR-1 MR-2 MR-1&2

Unreliable Reliable Unreliable Reliable Unreliable Reliable

ResNet50 34.5% 41.66% 34.17% 22.47% 48.29% 33.65% 34.49%

TResNet-L 45.5% 45.98% 45.51% 22.87% 72.45% 28.85% 46.19%

TResNet-XL 47.9% 45.31% 48.06% 23.19% 73.03% 25.84% 48.71%

(5.73%∼12.31%) higher than the original accuracy. For MR-1 and MR-1&2, a997

certain trend toward significance could also be observed, for which the model998

accuracy after removing the unreliable inferences is only 1.31% (1.04%∼1.55%)999

and 1.30% (1.04%∼1.52%) higher than the original accuracy.1000

Table 8 shows the result of three multi-label classification models. Similar to the1001

previous finding for single-label classification models, after removing the unreliable1002

inferences violating MR-2, the model accuracy is much higher (13.79%∼26.95%)1003

than the original accuracy value obtained over all the test inputs. Please note that1004

the significant test is not applicable since there are only three samples, which is1005

significantly less than 20, the typical minimum number for a significant test.1006

The above results reveal that the existence of unreliable inferences violating1007

MR-2 causes significant bias for model evaluation, while the effect of unreliable1008

inferences violating MR-1 and MR-1&2 is limited. By excluding those unreliable1009

inferences violating MR-2, the performance of existing models evaluated with re-1010

spect to accuracy is much higher than that evaluated based on inputs containing1011

unreliable inferences. We suggest developers to remove unreliable inferences for1012

fair model comparisons, especially the inferences violating MR-2.1013

Besides, in general, as shown in Table 7 and Table 8, the model accuracy1014

on the unreliable inference is significantly lower than the original accuracy of1015

model. However, there are some exceptions. In multi-label image classification1016

(Table 8), the model accuracy on the unreliable inference is higher than (ResNet501017

and TResNet-L, MR-1) or close to (ResNet50, MR-1&2 and TResNet-XL, MR-1)1018

the original accuracy of the model. We suggest that the developers should pay more1019

attention to such exceptions: even if the unreliable inferences have a comparable1020

accuracy with the reliable ones, they may raise concerns on model reliability, as1021

we mentioned in Section 1.1022

Answer to RQ5 The unreliable inferences violating MR-2 can cause significant1023

effects (8.84% for single-label classification and 21.96% for multi-label classifica-1024

tion) on the evaluation results, thus inducing bias in model comparisons. On the1025

contrary, the effect of the unreliable inferences violating MR-1 and MR-1&2 is1026

limited.1027

6.4 Taming Unreliable Inferences1028

RQ6 Can the unreliable inference be tamed during training?1029
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6.4.1 Motivation1030

Previous results have shown that unreliable inferences generally exist in widely-1031

used models built with different architectures. Besides, the inputs causing unreli-1032

able inferences vary across models. These unreliable inferences can induce signif-1033

icant bias in the evaluation of model performance. In this subsection, we studied1034

whether such unreliable inferences can be tamed. Specifically, our study has two1035

goals.1036

First, we investigated whether the ratio of unreliable inferences can be re-1037

duced during the model training process. Second, we investigated whether there1038

is any correlation between model accuracy and the ratio of unreliable inferences.1039

Understanding their correlation helps formulate a training strategy taming such1040

unreliable inferences. For instance, if the top-1 accuracy is negatively correlated1041

with the ratio of unreliable inference, the ratio of the unreliable inferences is likely1042

to be reduced by enhancing the model accuracy.1043

6.4.2 Experiment Setup1044

We conducted two experiments with the aim to achieve the above two goals. First,1045

we trained the VGG16 and Resnet50 models from scratch using the training source1046

code provided by PyTorch official example repository,5 based on the ImageNet1047

dataset. We selected these two models because they have been popularly adopted1048

by existing studies for testing DNN systems (Pei et al. 2017; Ma et al. 2018a;1049

Tian et al. 2020b; Zhao et al. 2017). The training was based on the default hyper-1050

parameters, and stopped when its accuracy and loss reach saturation. We then1051

measured the ratio of unreliable inferences in all correct inferences for every five1052

epochs during the training process to see if they are reduced. Since the training1053

process of DNN models is stochastic, we repeated the training three times for each1054

model. Please note that the training of these two models is very time-consuming.1055

Although our server has eight 2080Ti GPU cards, it still takes around 80 mins1056

and 30 mins to train one epoch for VGG16 and Resnet50. The total training time1057

spent for this experiment is more than 20 days.1058

Second, we investigated the correlation between model accuracy and the ratio1059

of unreliable inferences using the pre-trained models in Table 5. Specifically, we1060

used the Pearson Correlation (Benesty et al. 2009) to check whether the ratio of1061

unreliable inferences and the top-1 accuracy are correlated. We also plotted them1062

for visualization.1063

In this research question, we did not include the multi-label classification due1064

to the following two reasons. First, the source code to train these models is not1065

available. Second, the number of available multi-label classification models is lim-1066

ited and it is not applicable to calculate the Pearson Correlation.1067

6.4.3 Results and Discussion1068

On average, our trained VGG16 and Resnet50 models achieve the top-1 accuracy1069

of 72.1% and 76.1%, respectively. Their accuracy is close to the accuracy of the pre-1070

5 https://github.com/pytorch/examples
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trained models published by Pytorch,6 which are 71.6% and 76.2%, respectively.1071

Figure 9 shows the top-1 accuracy and the ratio of unreliable inferences during1072

the training stages. Please note the ratios of unreliable inferences violating MR-1073

1&2 are not plotted as they are highly overlapped with the ratios of unreliable1074

inferences violating MR-1.1075

It can be observed that at the beginning of training, the ratio of unreliable infer-1076

ences violating MR-2 decreases significantly and the ratio of unreliable inferences1077

violating MR-1 slightly decreases. Later on, both of them become stable with the1078

accuracy becoming saturated. Such results indicate that the current model train-1079

ing methodologies can guide the models to learn object-relevant features to certain1080

extents, as the ratio of unreliable inferences decreases at the first beginning. How-1081

ever, they become less effective with the training epochs increases, as the ratio of1082

unreliable inferences becomes stable after the beginning. In other words, they may1083

not necessarily prevent the model from making unreliable inferences.1084

We then investigated the correlation between the top-1 accuracy and the ratio1085

of unreliable inferences based on the pre-trained models. The Pearson Correla-1086

tion coefficients between the ratio of unreliable inferences violating MR-1, MR-2,1087

and MR-1&2 with top-1 accuracy are 0.702, -0.901, and 0.492, respectively. Fig-1088

ure 10 shows the relation of the ratio of unreliable inferences that violate MR and1089

the top-1 accuracy, as well as their linear regression lines. The results indicate a1090

strong negative correlation (-0.901 < -0.9) between the ratio of unreliable infer-1091

ences violating MR-2 and top-1 accuracy. In other words, higher top-1 accuracy of1092

a model couples with lower ratio of its unreliable inferences violating MR-2. The1093

ratio of unreliable inferences violating MR-1 has a relatively positive correlation1094

with top-1 accuracy. It increases very slightly with the increase in top-1 accuracy.1095

The ratio of unreliable inferences violating MR-1&2 remains about the same. This1096

may be because that the ratio of unreliable inference violating MR-1 and MR-1&21097

is relatively small and their changes are not obvious.1098

Answer to RQ6 The current training methodologies can help the models to1099

reduce the unreliable inference to certain extents, but they become less effective1100

with the training epochs increases and may not necessarily prevent the model from1101

making unreliable inferences.1102

7 Limitation and Future Work1103

Our study points out that unreliable inferences commonly exist in the DNN-based1104

image classification models. In this section, we discuss some limitations of our1105

work and the future work. In the future, we will explore the possibility to improve1106

the reliability of inferences made by DNN models and address such unreliable1107

inferences effectively and efficiently.1108

7.1 Other Possible MRs1109

We introduced our approach for the MR-1 and MR-2 in Section 4. There are al-1110

ternative approaches. For example, in the multi-label classification, we consider1111

6 https://pytorch.org/docs/stable/torchvision/models.html
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Fig. 9: The Top-1 Accuracy and the Ratio of Unreliable Inferences of
VGG16/Resnet50 during Training

Fig. 10: The Relationship between Top-1 Accuracy and the Ratio of Unreliable
Inferences Violating MRs for Single-Label Image Classification Models on the Im-
ageNet Dataset
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the union of all the objects holistically and mutate them all together. An alter-1112

native way is to consider each label one by one. For example, we only mutate all1113

objects belonging to a specific label at one time and then examine whether this1114

label violates the MR. After examining all labels, one can conclude whether the1115

inference violates the MR. Such an alternative will increase the workload and re-1116

quires a more sophisticated methodology to judge whether an inference is reliable1117

based on all its labels. We believe there are several potential ways to define such1118

methodology, thus we leave it as future work to conduct an exhausting study.1119

Further, for multi-label classification, exact match (Wu and Zhu 2020) is used1120

in the comparison of the certainty, i.e., C(LM(i)) > C(LM(i′c)) ⇐⇒ Cl,M(i) >1121

Cl,M(i′c), ∀ l ∈ LM(i). The comparison can use other metrics, such as Hamming1122

Loss and Jaccard Index. In the future, one may investigate the effect of different1123

metrics in the comparison.1124

7.2 Other Potential Application Scenarios1125

In our study, we focus on the applications of the DNN on image classification.1126

After proper adaption, our MRs can be applied to other applications used on DNN,1127

such as object detection (Liu et al. 2016; Ren et al. 2017; Redmon et al. 2016) and1128

language processing (Devlin et al. 2019). For example, in object detection, one1129

may examine the object-relevancy for each detected object. The corresponding1130

MRs can be:71131

MR-3: An image mutated by corrupting only the features of the target ob-1132

ject(s) should lead to an inference result with different label(s) and location(s), or1133

an inference result with the same label(s) and location(s) but with less certainty.1134

MR-4: An image mutated by preserving the features of the target object(s)1135

and corrupting other features should lead to an inference result with the same1136

label(s) and location(s).1137

As for language processing, the MR could be:1138

MR-5: A sentence mutated by corrupting only the content words should lead1139

to a different inference result.1140

MR-6: An sentence mutated by preserving the content words and corrupting1141

other function words should lead to a similar inference result.1142

Future work can target proposing new MRs for other DNN-based applications1143

and study their effectiveness.1144

7.3 False Positives and False Negatives1145

The mutations used in our approach can unnecessarily import/remove extra fea-1146

tures and then bring some side effects, such as false positives/negatives. Although1147

we applied three mutation operators and adopted the majority voting to alleviate1148

this threat, it still may happen. In the future work, we will explore different image1149

mutation methods and reduce such possible side effects, including false negatives1150

and false positives.1151

7 The MR-3/4/5/6 are just our initial proposals. The detailed definition should be polished
and their effectiveness should be thoroughly evaluated.
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In our evaluation, we only evaluate the effectiveness of our approach from1152

the perspective of true positives and false positives, but not the false negatives,1153

which are the inferences that are based on the object-irrelevant features but are1154

not detected by our approach. It is challenging to identify the false negatives,1155

since it is hard to know whether the inference is indeed completely based on the1156

object-irrelevant features, which is an outstanding challenge in deep learning (see1157

Section 8.3 and 8.4), and whether the changes of the certainty is caused by the1158

imported/removed features in the mutation. We believe it will be one of the future1159

work directions.1160

7.4 The Effect of Annotation Formats1161

Our metamorphic approach leverages the annotation of the object to construct the1162

follow-up inputs. The availability and the quality of the annotation could affect the1163

performance of our approach. This is the major limitation of our study. As shown1164

in the evaluation in Section 5, inappropriate annotations are the major sources of1165

false positives. In the future work, we will explore new methodologies to alleviate1166

this limitation.1167

In our study, we use bounding boxes for single-label classification and object1168

masks for multi-label classification, depending on their availability in the datasets.1169

We would like to point out that the annotation format could also affect the effec-1170

tiveness of our approach. For example, if the annotation is in the format of object1171

mask, even after the object corruption in MR-1, the object shape could still be1172

left in the follow-up inputs, which may cause false positives for MR-1 (similar to1173

the incomplete removal of the target object). According to a recent study (Geirhos1174

et al. 2019), the texture of the input image, rather than its shape, has stronger1175

impact in DNN-based image classifications. In other words, “a cat with an elephant1176

texture is an elephant to CNNs, and still a cat to humans” (Geirhos et al. 2019).1177

Thus, the influence of the shape information left in the follow-up inputs should be1178

limited. Nevertheless, we would like to point out this possible factor and interested1179

researchers may explore along this direction in the future. A possible countermea-1180

sure is to develop a novel mutation methodology such that it will further remove1181

the shape information. For example, we can add random padding to the object1182

boundary, so that the image shape information will be destroyed.1183

8 Related Work1184

8.1 Metamorphic Testing in DNN models1185

Several studies have applied metamorphic testing to validate DNN models (Xie1186

et al. 2011; Ding et al. 2017; Dwarakanath et al. 2018; Zhang et al. 2018; Tian1187

et al. 2018). Dwarakanath et al. (Dwarakanath et al. 2018) leveraged two sets of1188

metamorphic relations to identify faults in machine learning implementations. For1189

example, one metamorphic relation is that the “permutation of input channels (i.e.1190

RGB channels) for the training and test data” would not affect inference results.1191

To validate whether a specific implementation of DNN satisfies this relation, they1192

re-ordered the RGB channel of images in both the training set and test set. They1193
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examine the impact on the accuracy or precision of the DNN model after it is1194

trained using the permuted dataset. Their relations treat the pixels in an image as1195

independent units and they do not consider objects and background in the image.1196

Xie et al. (Xie et al. 2011) performed metamorphic testing on two machine1197

learning algorithms: k-Nearest Neighbors and Näıve Bayes Classifier. Their work1198

targets testing attribute-based machine learning models instead of deep learning1199

systems. Ding et al.(Ding et al. 2017) proposed metamorphic relations for DNN at1200

three different validation levels: system level, data set level and data item level. For1201

example, a metamorphic relation on system level asserts that DNNs should per-1202

form better than SVM classifiers for image classification. Their technique requires1203

retraining the systems and is inapplicable to testing pre-trained models.1204

Other studies (Zhang et al. 2018; Tian et al. 2018; Zhou and Sun 2019) lever-1205

aged metamorphic testing to validate autonomous driving systems. DeepTest (Tian1206

et al. 2018) designed a systematic testing approach to detecting the inconsistent1207

behaviors of autonomous driving systems using metamorphic relation. Their rela-1208

tions focus on general image transformation, including scale, shear, rotation and1209

so on. Further, DeepRoad (Zhang et al. 2018) leverages Generative Adversarial1210

Networks to improve the quality of the transformed images. Given an autonomous1211

driving system, DeepRoad mutates the original images to simulate weather con-1212

ditions such as adding fog to an image. An inconsistency is identified if a DNN1213

model and its mutant make an inconsistent decision on an image (e.g., the dif-1214

ference of the steering degrees exceeds a certain threshold). Differently from the1215

existing study, we design metamorphic relations to assess whether an inference is1216

based on object-relevant features for DNN-based image classification models.1217

8.2 Testing Deep Learning Systems1218

Besides metamorphic testing, studies have also been made to adapt other classical1219

testing techniques for DNN models. A recent survey (Zhang et al. 2020) sum-1220

marizes the latest work in this direction. DeepXplore (Pei et al. 2017) proposed1221

neuron coverage to quantify the adequacy of a testing dataset. DeepGauge (Ma1222

et al. 2018a) proposed a collection of testing criteria. TensorFuzz (Odena et al.1223

2019), DLFuzz (Guo et al. 2018) and DeepHunter (Xie et al. 2019a) leveraged1224

fuzz testing to facilitate the debugging process in DNN. DeepMutation (Ma et al.1225

2018b) applied mutation testing to measure the quality of test data in DNN. Our1226

study falls into the research direction of testing DNN systems. One of our major1227

contributions is that we test DNN models from a new perspective, i.e., the object1228

relevancy of inferences.1229

8.3 Background Dependence of Computer Vision Systems1230

Some existing work studied the background dependence of computer vision sys-1231

tems, even before the DNN becomes popular (Roobaert et al. 2001; Qin et al.1232

2010). Qin et al. (Qin et al. 2010) found that removing the background in street1233

scene images can improve the performance of object recognition systems. Rosen-1234

feld et al. (Rosenfeld et al. 2018) demonstrated that after transplanting an object1235
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from the training set to the background of another image, the state-of-the-art ob-1236

ject detectors could fail to identity the inserted object. Later, Wang and Su (Wang1237

and Su 2020) proposed an automated approach to test the object detectors. Their1238

approach generates test inputs by inserting objects to another image’s background.1239

Our study focuses on image classification applications, and we conduct a large-1240

scale empirical study to understand the problem.1241

8.4 Heatmap-based Testing of DNN Models1242

Researchers have proposed ideas of generating HeatMaps for DNN testing and de-1243

bugging (Ribeiro et al. 2016; Zhou et al. 2016; Selvaraju et al. 2017; Ma et al.1244

2018c; Montavon et al. 2019; Fahmy et al. 2020). These HeatMaps essentially cap-1245

ture the importance of individual neurons (Ma et al. 2018c) or layers (Montavon1246

et al. 2019; Fahmy et al. 2020) in a given DNN model. Based on different defi-1247

nitions of importance, these methods generate different types of HeatMaps. Some1248

of them directly use neuron activation values, gradient values etc. for HeatMap1249

generation (Zhou et al. 2016; Selvaraju et al. 2017). Others perform some extra1250

processing on such raw data, such as calculating the Jacobian matrix or using1251

differential analysis to extract the differences between correctly classified and mis-1252

classified samples (Ma et al. 2018c). A common drawback of such methods is that1253

there is no standard definition of neuron/layer importance and it is hard to eval-1254

uate whether the generated HeatMaps are correct. As a result, these HeatMaps1255

may or may not accurately reflect neuron/layer importance. Compared to their1256

work, the effectiveness of our approach is properly evaluated.1257

Moreover, some HeatMap generation techniques require the intermediate infor-1258

mation from the models and can only be applied for some specific types of models.1259

For example, CAM (Zhou et al. 2016) and GradCAM (Zhou et al. 2016) requires1260

access to the pooling layer of neural networks, which may not always be available.1261

Different from these methods, our method does not need extra intermediate re-1262

sults from models and thus can be applied to any DNN-based image classification1263

models.1264
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10 Conclusion1280

In this work, we proposed to leverage metamorphic testing to identify unreliable1281

image classifications made by DNN models based on object-irrelevant features.1282

We proposed two metamorphic relations, from the perspective of object relevancy.1283

We evaluated the effectiveness of our approach and showed that it achieves high1284

precision. We applied our approach to 21 popular pre-trained DNN models with1285

the ImageNet and COCO datasets, and found that the phenomenon of unreliable1286

inferences is pervasive. The pervasiveness caused significant bias in model eval-1287

uation. Our experiments revealed that the current model training methodologies1288

can guide the models to learn object-relevant features to certain extent, but may1289

not necessarily prevent the model from making unreliable inferences. Therefore,1290

further research is needed to develop a more effective approach for enhancing a1291

model’s object-relevancy property.1292
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