
https://doi.org/10.1007/s10664-021-10002-8

Evaluating refactorings for disciplining #ifdef
annotations: An eye tracking study with novices

José Aldo Silva da Costa1 ·Rohit Gheyi1 ·Márcio Ribeiro2 · Sven Apel3 ·
Vander Alves4 ·Baldoino Fonseca2 · Flávio Medeiros5 ·Alessandro Garcia6

Accepted: 11 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The C preprocessor is widely used in practice. Conditional compilation with #ifdef anno-
tations allows developers to flexibly introduce variability in their programs. Developers can
use disciplined annotations, entirely enclosing full statements with preprocessor directives,
or undisciplined ones, enclosing only parts of the statements. Despite some debate, there
is no consensus on whether a developer should use exclusively disciplined annotations.
While one prior study found undisciplined annotations more time-consuming and error-
prone, another study found no difference between disciplined and undisciplined annotations
regarding task completion time and accuracy. In this article, we evaluate whether three fine-
grained refactorings to discipline #ifdef annotations correlate with improvements in code
comprehension and visual effort with an eye tracker. We conduct a controlled experiment
with 64 human subjects who were majoritarily novices in the C programming language. We
observed statistically significant differences for two refactorings to discipline annotations
with respect to the analyzed metrics (time, fixation duration, fixation count, and regressions
count) in the code regions changed by each refactoring.

Keywords Refactoring · #ifdefs · Eye tracking · Code comprehension · Disciplined
annotations · Undisciplined annotations

1 Introduction

The C preprocessor is widely used in practice, such as in Linux (Ernst et al. 2002). It pro-
vides mechanisms to implement variability through conditional compilation (Ernst et al.
2002). Conditional compilation allows developers to conditionally include selected blocks
of source code by annotating the code using directives, such as #ifdefs. There are two
types of annotations, undisciplined (or incomplete), and disciplined (or complete) (Liebig
et al. 2011). Although both achieve the same purpose, they differ in terms of whether they

Communicated by: Sarah Nadi

� José Aldo Silva da Costa
josealdo@copin.ufcg.edu.br

Extended author information available on the last page of the article.

/ Published online: 7 July 2021

Empirical Software Engineering (2021) 26: 92

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10002-8&domain=pdf
mailto: josealdo@copin.ufcg.edu.br

align with the syntactic structure of the code. Disciplined annotations enclose only whole
syntactical units while undisciplined annotations do not, for example, wrapping only an
opening bracket of a statement but not the closing one (Garrido and Johnson 2013). Even
though no study has formally specified undisciplined annotations, we aligned our definition
with previous studies (Liebig et al. 2011; Ernst et al. 2002; Schulze et al. 2013). Relying
on this definition, Liebig et al. (2011) analyzed 40 software projects with over 30 million
lines of C code regarding the discipline of their annotations. They found that 84% of all
annotations are disciplined.

Despite the relevance and prevalence of conditional compilation in practice, existing
evidence confirms that comprehending code with #ifdef directives is far from triv-
ial (Spencer and Geoff 1992; Malaquias et al. 2017; Medeiros et al. 2018; Medeiros et al.
2015). Code with either disciplined or undisciplined annotations may affect program com-
prehension. However, empirical knowledge on the influence of annotation discipline is still
scarce. Medeiros et al. (2018) proposed a catalogue of refactorings to convert undisciplined
annotations to disciplined ones. The refactorings were evaluated with respect to the prefer-
ence of 246 developers regarding disciplined or undisciplined annotated code. For certain
refactorings, developers showed preference for the disciplined version, while for others,
both disciplined and undisciplined versions had similar rates of preference. Although there
are a few other studies in the literature, there is no consensus yet on whether undisciplined
annotations should be refactored to become disciplined in practice (Malaquias et al. 2017;
Schulze et al. 2013). For instance, Malaquias et al. (2017) conducted an experiment compar-
ing undisciplined annotations and their refactored version to make them disciplined. They
found that undisciplined annotations are more time-consuming and error-prone. In contrast,
Schulze et al. (2013) found no differences between using disciplined and undisciplined
annotations regarding task completion time and accuracy. Fenske et al. (2020) conducted a
survey study with 521 developers regarding annotations in the C language and found that
their perception and their performance are different.

Overall, in the research community there is no consensus on whether developers should
use disciplined annotations. Previous studies are either strictly based on developers’ opin-
ions or on a limited set of conventional metrics related to code comprehension, such as time
and accuracy. There are not always observable differences in applying fine-grained refac-
torings using conventional metrics, and the use of #ifdef directives is often employed
in a fine-grained program context (i.e., it is attached to one or a few statements). Opin-
ions and conventional measures may not reveal important nuances on the comprehension
of disciplined versus undisciplined annotated code, which may also help to better explain
the benefits and drawbacks of annotation discipline. As a consequence, there is a need to
perform additional controlled experiments that also enable the analysis of complementary
indicators about what the developer is doing while trying to comprehend annotated code.

This article reports an eye tracking study that evaluates whether and how three fine-
grained refactorings to discipline #ifdef annotations affect code comprehension. We
conduct a controlled experiment with 64 human subjects majoritarily novices. We consider
all the participants who know how to program but have little experience in C program-
ming language “novices”. The aim is to observe how disciplined annotations influence
their performance on six tasks involving code comprehension in terms of time, accuracy,
fixation duration, fixation count, and regressions count. Effects on code comprehension
have been previously studied based on time and accuracy (Malaquias et al. 2017; Schulze
et al. 2013). Fixation duration, fixation count, and regressions count have been associ-
ated before with visual attention and effort in code comprehension scenario (Busjahn et al.

Empir Software Eng (2021) 26: 9292 Page 2 of 35

2011; Binkley et al. 2013; Sharafi et al. 2015). We measure these metrics in the code
region in which both code versions differ after applying the refactorings, referred to as main
Area of Interest (AOI). For this study, we selected the three refactorings most preferred by
developers to discipline annotations according to Medeiros et al. (2018). The three refac-
torings differ in various ways: Refactoring 1 〈wrapping function call〉 (R1) duplicates a
token in a function call to wrap only entire statements with preprocessor directives. Refac-
toring 2 〈undisciplined if conditions〉 (R2) resolves undisciplined directives surrounding
boolean expressions by defining a fresh variable to maintain the statement’s conditions.
Refactoring 3 〈alternative if statements〉 (R3) uses an alternative if statement also defin-
ing a fresh variable to keep the statement’s condition. We explain these differences with
examples in Section 4.5.

In our study, we found that after applying R1 or R3, the total time spent in the AOI, fixa-
tion duration, fixation count, and regressions count were statistically significantly reduced.
After applying R3, also the number of answers submitted to solve the tasks statistically sig-
nificantly reduced. Even though for R2 we observed a statically significant increase in time
in the AOI, it did not result in statically significant differences in fixation duration, fixation
count, and regressions count, therefore, the same amount of visual effort has been observed
for this refactoring. Notably, our study setup reveals some nuances otherwise undetected by
conventional code metrics. For instance, one of the refactorings adds one extra variable and
two extra lines of code, which is only a small impact on the metric Lines of Code (LOC),
but it correlated with reductions in AOI of 46.9% in the time, 44.7% in the fixation duration,
48.4% in the fixation count, and 60.5% in the regressions count. Overall, our results indicate
that, when a novice applies R1 or R3, she solves the task faster and with less visual effort.
In addition, applying R3 correlated with improvements in the accuracy of her answers.

In summary, this study makes the following key contributions:

– We present a controlled experiment using eye tracking with 64 human subjects majori-
tarily novices in the C programming language to evaluate three refactorings that
discipline #ifdef annotations in C programs;

– Moreover, we discuss methodological perspectives and findings not observed in
previous studies.

This article is organized as follows: Section 2 provides a motivating example. Section 3
presents the study definition, then Section 4 presents the study methodology. Section 5
presents the obtained results, and Section 6 discusses a qualitative interview with the
novices. Section 7 discusses the threats to validity, Section 8 relates our work to others, and
finally, Section 9 concludes the study.

2 Motivating Example

The C preprocessor is often used by developers to deal with code portability and vari-
ability. Preprocessor directives such as #ifdef and #endif annotations are used as a
mechanism for conditional compilation so that a piece of software can operate in different
application scenarios (Medeiros et al. 2015). Annotations with preprocessor directives can
be disciplined or undisciplined.

For instance, Fig. 1(a) shows a code snippet containing an undisciplined annotation.
The annotation starts at Line 1 and wraps only the if statement in Lines 2 and 4 without
their opening and closing brackets. Figure 1(b) presents the same code snippet but using a

Empir Software Eng (2021) 26: 92 Page 3 of 35 92

Fig. 1 Code snippets adapted from OpenSSL with undisciplined and disciplined annotations

disciplined annotation. Liebig et al. (2011) have shown that both kinds of annotations are
present in a number of configurable systems. A number of refactorings has been proposed
to change disciplined and undisciplined annotations (Medeiros et al. 2018; Garrido and
Johnson 2013). For instance, there is a refactoring (Medeiros et al. 2018) that allows us to
convert the code snippet presented in Fig. 1(a) to (b).

Despite studies and discussions, it is difficult to reliably tell whether disciplined or
undisciplined annotations improve code comprehension. For instance, both code snip-
pets presented in Fig. 1 have almost the same values for code metrics such as LOCs.
Malaquias et al. (2017) recommend avoiding undisciplined annotations because they are
more time-consuming and error-prone. Schulze et al. (2013) conclude that there is no dif-
ference between disciplined and undisciplined annotations regarding time and accuracy.
Fenske et al. (2020) conclude that there is a difference between developers’ perception and
performance regarding annotations in C language.

To shed light on this issue, we aim to use an eye tracking camera to analyze how disciplin-
ing annotations impacts code comprehension using a different perspective not considered in
other studies (Malaquias et al. 2017; Schulze et al. 2013; Garrido and Johnson 2013). An eye
tracking camera consists of equipment tracking participants’ eyes movements while they
are performing a task (Hansen and Ji 2009). It has been used in a variety of fields including
source code reading and comprehension (Crosby and Stelovsky 1990; Busjahn et al. 2015;
Uwano et al. 2006). The data captured by the camera allow researchers to access where,
when, and for how long a subject is looking at a screen, thus, the most common metrics
evaluate how much subjects fixate and how they switch between distinct areas (Obaidellah
et al. 2018; Busjahn et al. 2015; Sharafi et al. 2015). Researchers can then infer how much
visual attention is given to specific elements on a screen and thus study the visual effort
in code comprehension (Crosby and Stelovsky 1990; Crosby et al. 2002; Binkley et al.
2013). This way, in addition to time and accuracy, in our study, we investigate the impact
of these annotations on the visual effort by measuring the fixation duration, fixation count,
and regressions count.

3 Study Definition

In this section, we present the study definition following the Goal-Question-Metrics
approach (Basili et al. 1994). We analyze three refactorings for C programs that disci-
pline #ifdef annotations for the purpose of understanding whether disciplined annotations

Empir Software Eng (2021) 26: 9292 Page 4 of 35

correlate with improvements with respect to code comprehension from the point of view of
novices in the C programming language in the context of tasks extracted from real projects.

With this goal in mind, we address the following research questions:

• RQ1: To what extent do disciplined annotations affect task completion time? To
answer this question, we measure total time duration novices need to solve a “specify
the correct output” task with three evaluated refactorings. In addition, we measure the
time the participants spend in specific regions in the task. Our null hypothesis (H1) is
that there is no difference between disciplined and undisciplined annotations regarding
time.

• RQ2: To what extent do disciplined annotations affect task accuracy? To answer
this question, we measure the number of answers novices submit until solving the task
with three evaluated refactorings. Our null hypothesis (H2) is that there is no differ-
ence between disciplined and undisciplined annotations regarding number of answer
submissions.

• RQ3: To what extent do disciplined annotations affect visual effort? In the code
domain, longer fixations have been associated with substantial increase in demands of
attentiveness (Busjahn et al. 2011). Crosby et al. (2002) have shown that there is a cor-
respondence between fixations and attention focus, suggesting validity of immediacy
and eye mind theory, also in code domain. The results of those studies imply that longer
fixations indicate more attention and consequently more visual effort. Another fixation-
based metric, the fixation count ignores the fixation duration and considers only the
total number of fixations in a particular area. This metric associates with cognitive and
visual effort. For instance, higher number of fixation indicates longer processing time to
understand code phrases (Binkley et al. 2013), more attention to complex code (Crosby
et al. 2002), and more visual effort to recall the name of identifiers (Sharafi et al.
2012). Moreover, regarding eye tracking metrics, we may have backward eye move-
ments of any length over the stimuli called regressions (Busjahn et al. 2015). According
to Sharafi et al. (2015), regressions can be used to measure visual effort. The linearity
of natural language and code reading have been measured before using the regression
rate in code domain (Busjahn et al. 2015).

– RQ3.1: To what extent do disciplined annotations affect fixation duration?
To answer this question, we measure the fixation duration of the novices while
solving the task with three evaluated refactorings. Our null hypothesis (H3.1) is
that there is no difference between disciplined and undisciplined annotations
regarding fixation duration.

– RQ3.2: To what extent do disciplined annotations affect fixations count?
To answer this question, we measure the fixation count of the novices while
solving the task with three evaluated refactorings. Our null hypothesis (H3.2) is
that there is no difference between disciplined and undisciplined annotations
regarding fixation count.

– RQ3.3: To what extent do disciplined annotations affect regressions
count? To answer this question, we measure the total number of regressions.
Considering that the code writing follows a writing system represented by a
left-to-right and top-to-bottom pattern, to measure regressions, we compute
the number of gaze transitions with direction opposed to the writing system,
from right to left and bottom to top. Our null hypothesis (H3.3) is that there

Empir Software Eng (2021) 26: 92 Page 5 of 35 92

is no difference between disciplined and undisciplined annotations regarding
regressions count.

4 Methodology

In this section, we present the methodology of our study. We present the pilot study
(Section 4.1), experiment phases (Section 4.2), participants (Section 4.3), treatments
(Section 4.4), evaluated refactorings (Section 4.5), tasks (Section 4.6), eye tracking instru-
mentation (Section 4.7), and finally the analysis (Section 4.8).

4.1 Pilot Study

Before conducting the actual experiment (see Section 4.2), we conducted a pilot study with
four participants aiming at evaluating the experiment design, tasks to be used, and setup
of the eye tracker. In the pilot study, we could test, adjust, and validate the material used,
such as background form, code font size, font style, spaces between the lines of code, and
indentation. We also adjusted environment settings, lights, and chair. For instance, fixing
the chair allowed to improve data capturing, eliminate noise, and improve data quality. We
do not take the results of the pilot study into account in the analysis.

The pilot study allowed us to refine our experiment design, which consists of five phases:
(1) Questionnaire, (2) Tutorial, (3) Warm-up, (4) Tasks, and (5) Interview. We then esti-
mated an average of around 50 minutes for each participant to complete all phases. Next,
we describe these phases in detail.

4.2 Experiment Phases

First, we chose a quiet room to minimize distractions and with typical indoor fluorescent
bulbs for the experiment. As the participants entered the room, we explained what data
are captured by the camera. We then asked him/her to fill out a consent form and another
form with questions related to programming background experience, experience with C
language and implementing variability with #ifdef annotations. We provided the partici-
pants with chairs without wheels, leaning or swivel capability positioned 45–60 cm distant
from the screen. In the experiment environment, we stayed close to the participant, but we
did not encourage conversation while the participant was performing a task. Second, we
presented a tutorial on variability implementation explaining how #ifdefs work and on
basic concepts of conditional compilation. In addition, we explained basic concepts of the
C programming language. We did not mention the words “disciplined” or “undisciplined”
to the participants.

Third, we illustrated the nature of the experiment through a simple warm-up task in
which we asked the participants to specify the output given the input. This task was not con-
sidered in the analysis of the experiment. We used the eye-tracking camera in the warm-up
task so that the participants got comfortable with the equipment and the study setup. We
asked the participant to close eyes for two seconds before and after solving the task. This
allowed us to know exactly when the task started and ended by observing the timestamp.
We asked the participants to verbally provide the output of the code, which is an approach
adopted by other studies as well (Sharif et al. 2012; Sharif and Maletic 2010; Hermens
and Zdravković 2015). We provided real-time feedback by emitting a distinct sound corre-
sponding to whether the answer was correct. If the answer was incorrect, participants could

Empir Software Eng (2021) 26: 9292 Page 6 of 35

choose to keep trying submitting more answers until getting the correct one, if they felt free
to do so. They also had the option of quitting at any time without having to provide any
reasons for that.

Fourth, we ran the actual experiment with six tasks. We used the Latin Square approach
(Box et al. 2005) to ensure that every participant was exposed to each treatment only once
and to ensure that the same participant answered the same task only once, avoiding learning
effect. Thus, we randomly assigned participants to treatments in the cells of each square as
depicted in Fig. 2. The comparison in further analysis occurs across the squares by gathering
all participants who answered the same task.

Fifth, once a participant finished all the tasks, we conducted a semi-structured interview
to obtain qualitative feedback on how they approached the tasks. We asked the participants
three questions:

– How did you find the output? What strategy did you use?
– How difficult was it to find the output: very easy, easy, neuter, difficult, or very difficult?
– What were the difficulties, if any?

When answering the third question, we asked the participants to point out in the task
the code locations where they had difficulties. This strategy helped us to collect qualitative
feedback, and we could observe whether their difficulties matched the fixation duration, the
fixation count, and the regressions count.

In some cases, we had to calibrate the camera twice or thrice until we gained confidence
that the data captured by the camera could be reliable/useful or that we were capable of
getting the data corrected. Camera calibration consists of an automatic procedure in which
the participant is asked to look at specific locations on the screen and, during that, the
camera’s integrated system customizes captured data according to each participant’s eye
characteristics. The camera indicates when calibration is successfully done.

In addition, we were careful with environment aspects and the swivel function of the
chair, so that participants’ eyes could remain calibrated and the data could not suffer from
external noise. Despite these measures, it was still difficult to obtain perfect data given
camera limitations and some participants’ aspects. Thus, we had to perform data correction
by slightly shifting chunks of fixations up or down. We discuss this strategy and their effects
in the threat to validity section (see Section 7.1). We provide a replication package with the
data collected, tasks, and other materials (Aldo et al. 2021).

Fig. 2 Design of experiment with Latin Squares for first phase with 32 participants with projects P1 and P2.
U and D refer to undisciplined and disciplined annotation tasks, respectively. The second phase follows the
same design with other 32 participants and projects P3 and P4

Empir Software Eng (2021) 26: 92 Page 7 of 35 92

4.3 Participants

We performed the study with 64 participants divided in two phases of 32 participants each.
In total, we had 42 undergraduates, 11 MSc. students, 8 PhD. students, and 3 postdocs.
Regarding experience with programming languages, 40 participants reported having expe-
rience with C for less than six months. In addition, 14 reported one year or less, 9 from
one year to three years, and 1 with more than three years. Regarding their experience, we
consider “novices” all the participants who know how to program but have little experi-
ence specifically with C programming language, which corresponds to all participants in the
study except for 10. All participants reported having experience with another programming
language, such as Java. On a scale from very inexperienced (1) to very experienced (5), the
median answer was experienced (4). We asked about Java because it is a common practice
to teach Java in computer science courses where the study was conducted, however, it could
be any other procedural language. Participants were invited mainly through e-mails and text
messages that suggested them to respond by communicating their availability. In addition,
we also met some participants in person and invited them.

4.4 Treatments

We expose each participant to three disciplined (D) and three undisciplined (U) annotated
tasks as seen in Fig. 3, which results in six tasks (T1-T6) for each participant. The same
participant does not solve the same disciplined and undisciplined annotated task to avoid
learning effect. For that, we have two projects (P1 and P2) which comprehend similar but
distinct tasks with the same refactorings instantiated or, in other words, a distinct version of
the same task with similar structure but involving distinct variables, arithmetic operations,
and outputs. Figure 3 depicts the first phase. The second phase is similar with the same
refactorings but two other projects. We consider this study as between-subjects in the sense
that the same participant does not solve the same task in both disciplined and undisciplined
annotations (Charness et al. 2012). In Fig. 4, we present an example of the distribution of
the participants, tasks, and refactorings according to the projects.

In the first phase, 32 participants solve three tasks with disciplined annotations from three
distinct refactorings of P1, and three tasks with undisciplined annotations from P2. Thus,
each participant solves two distinct tasks, one without applying the refactoring (undisci-
plined version), and another with the refactoring applied (disciplined version). In the second

Fig. 3 Structure of the experiment in terms of experimental units for the first phase of the study. There
are six tasks (T1–T6) distributed in two sets of tasks (ST1 and ST2), with R1 〈wrapping function call〉,
R2 〈undisciplined if conditions〉, and R3 〈alternative if statements〉, and two projects (P1 and P2)

Empir Software Eng (2021) 26: 9292 Page 8 of 35

Fig. 4 Distribution of participants, tasks, and refactorings in two projects in the first phase of the study. The
structure of the tasks in projects P1 and P2, before and after applying the refactoring, is similar but involves
distinct elements

phase, other 32 participants solve six tasks with three refactorings, three with undisciplined
and three with disciplined annotations, but from P3 and P4. In all them, the participants
had the task of specifying the correct output. We present an open-ended question so that the
participant could read the entire code and find the output for themselves. The undisciplined
versions are our baseline group, and the disciplined ones are the treatment group.

4.5 Evaluated Refactorings

In Fig. 5, we present three refactorings to discipline annotations proposed by Medeiros et al.
(2018) and evaluated in our study. Each refactoring is a unidirectional transformation that
consists of two templates of C code snippets: the left-hand side and the right-hand side.
The left-hand side defines a template of C code that contains undisciplined preprocessor
usage. The right-hand side is a corresponding template for the refactored code removing
undisciplined preprocessor usage. We can apply a refactoring whenever the left-hand side
template is matched by a piece of C code and when it satisfies the preconditions (→). A
matching is an assignment of all meta-variables in the left-hand side and right-hand side
templates to concrete values from the source code. We highlight meta-variables using capital
letters, and we use the symbol ⊕ to represent arbitrary binary operators. Any element not
mentioned in both C code snippets remains unchanged, so the refactoring templates only
show the differences among pieces of code.

Medeiros et al. (2018) surveyed 246 developers to access their preference regarding
disciplined or undisciplined annotated code. We selected the top three refactorings which
developers most preferred to discipline annotations. Moreover, Medeiros et al. (2018)
showed that there are more than 2,200 opportunities to apply the three refactorings in
57 out of 63 code repositories and 27 out of 63 projects contain possibilities of applying
all three refactorings, reaching up to 2,101 opportunities. Furthermore, the three selected

Empir Software Eng (2021) 26: 92 Page 9 of 35 92

Fig. 5 Refactorings R1, R2, and R3 to discipline #ifdef annotations evaluated in this study

refactorings show a relevant acceptance in practice. For instance, Medeiros et al. (2018)
submitted six patches using R1 and all patches were accepted; five patches were submitted
using R2 and 80% of them were accepted; five patches were submitted using R3 and 80%
of them were accepted. In addition, Malaquias et al. (2017) submitted 31 patches using R2
and 61.2% were accepted; 63 patches using R3 and 63.4% were accepted. We preferred
to focus on evaluating a limited, well-studied set of three refactoring types to gain more
confidence about the results instead of evaluating more refactoring types.

4.6 Tasks

The code snippets were selected as a result of mining code repositories for commits that
showed an opportunity to apply the refactorings evaluated (Medeiros et al. 2018). Thus, all
tasks have a template associated with real projects. For instance, R1 was applied to a task
with template associated with Vim’s source code, R2 was applied to a task with template
associated with Libpng’s source code, and R3 was applied to a task with template associ-
ated with OpenSSL. Malaquias et al. (2017) have also used similar tasks in their study. We
decided to use simple constructions commonly occurring in many programming languages.
The difference in lines of code between both disciplined and undisciplined versions is two
lines for R1 and R3. R2 remains with same number of lines of code. Even though R1 in
Fig. 5(a) involves undisciplined returns, according to Medeiros et al. (2018), the return state-
ment is only an example. They handle other statements with subexpressions in the same
way, such as a function call as we have used.

There are several types of maintenance tasks, such as applying refactorings, fixing bugs,
and adding functionality. Our study focused on a type of task that focuses on code com-
prehension. We assume that, to add functionality, refactor code, and fix bugs, developers

Empir Software Eng (2021) 26: 9292 Page 10 of 35

will need to at least understand the code. For this reason and for time constraints, we only
focused on this type of task. The tasks also involved answering open-ended questions, which
participants could answer by saying out loud the resulting output without any multiple
choices.

Moreover, a systematic literature review on code comprehension conducted by Oliveira
et al. (2020) revealed that the majority of the studies (70%) involve asking subjects to pro-
vide information about a program, such as to specify the output. In addition, 83% of the
retrieved studies use correctness as a response variable and 50% use time and correctness
together. We then followed a commonly adopted approach, being aligned with the literature.
Following Bloom’s taxonomy described in their work (Oliveira et al. 2020), “understand-
ing” consists of one level of the dimension of interpretation. Most activities such as code
trace and inspections performed by subjects occur in “understanding” level followed by
“analysis” level. Therefore, we align with them in the sense that, to evaluate code com-
prehension, we elaborated code tasks to be inspected and traced for providing the correct
output.

In general, we used tasks with less than 20 lines to fit size of the screen. All the prod-
ucts of the configurable system could be compiled with no syntactic errors. We had tasks
with macro enabled and disabled, and they presented distinct outputs depending on whether
macro was enabled or disabled. However, we made sure that each task of the same refac-
toring and same project, whether disciplined or undisciplined version, presented the same
output. Program style followed Consolas font style, font size 18, no spaces between lines,
and eight white spaces of indentation with four white spaces from y-axis.

In Fig. 6, we present three undisciplined annotated tasks and their refactored versions.
For instance, in Fig. 6(a), AOI defines the area in which both code versions differ. It encom-
passes two sub-areas, namely, AOI Activated and AOI Deactivated. The main distinction
between these two sub-areas relies on the fact that, when macro is enabled, only one sub-
area of the AOI gets exercised, which is the AOI Activated, because it contains a statement
that is activated only when macro is enabled. When macro is disabled, only one sub-area
gets activated, which is the AOI Activated. This approach allows us to measure time and
fixations inside those areas. For instance, we can observe how much time participants spend
looking at the activated area when macro is enabled, how many times they fixate on it and
for how long. Accordingly, we can do that for the deactivated area when participants are
looking at the opposite statement when macro is enabled.

4.7 Fixation Instrumentation

Fixations can be defined as the stabilization of the eye on part of a stimulus for a period of
time (Salvucci and Goldberg 2000; Holmqvist et al. 2011). The duration threshold typically
depends on the tasks processing demands. According to Salvucci and Goldberg (2000), the
duration threshold can be between 100 and 200 ms, while according to Rayner (1998), our
eyes remain relatively still during fixations for about 200–300 ms. Commonly applied in
practice, we applied a Dispersion-Based algorithm to generate the fixations. Particularly,
we used the Dispersion-Threshold Identification (I-DT) to classify gaze samples into fix-
ations (Salvucci and Goldberg 2000). It classifies gaze samples as belonging to a fixation
if the samples are located within a spatially region of approximately 0.5 degrees (Nyström
and Holmqvist 2010). The I-DT algorithm requires two parameters: the dispersion threshold
and the duration threshold (Nyström and Holmqvist 2010). We used a dispersion thresh-
old of approximately 0.5 degrees, which corresponded to 25 pixels in our screen. For the

Empir Software Eng (2021) 26: 92 Page 11 of 35 92

Fig. 6 Examples of six tasks from projects P1, P2, and P4, before and after applying R1, R2, and R3

Empir Software Eng (2021) 26: 9292 Page 12 of 35

duration threshold, we used 200 ms based on the study of Salvucci and Goldberg (2000).
The classification of data points into relevant eye movements reduces the amount of eye
tracking data to process and allows the researcher to focus on the measures relevant to the
research question.

4.8 Analysis

Of all 64 participants, resulting in 384 tasks, one participant opted for not completing two
out of six tasks and another opted for not completing one out of six tasks, resulting in three
tasks not completed, which corresponds to less than 1% of the total of tasks. We included
those two participants and we used Multivariate Imputation by Chained Equations (MICE)
implemented as a mice package in R for a multiple imputation method namely Predictive
Mean Matching (PMM) for the three tasks. The PMM method imputes univariate missing
data using predictive mean matching (Jadhav et al. 2019). This approach performs better
when the sample size is sufficiently large (Kleinke 2017), which was our case.

After data collection, we performed a statistical analysis to test our null hypotheses. In
our analysis, when the p-value was inferior to 0.05, we rejected the null hypothesis that there
was no difference between the median of the treatments and conclude that a significant dif-
ference did exist. We tested data distribution for normality with Shapiro and Wilk (1965).
Whenever the data were normally distributed or we could normalize it, we performed the
parametric t test for two independent samples. The t test consists of an analysis method to
test two groups to see if there is a statistically significant difference between them (She-
skin 2020; Sharafi et al. 2020). Before performing the t test, we tested whether the data
satisfied another condition besides normality of distribution of the data, which is whether
the variances of the two groups were equal (Sheskin 2020). For the data that could not be
normalized, we used the non-parametric test Mann-Whitney, also known as Wilcoxon test,
which compares two independent groups of samples that do not follow a normal distribu-
tion (Sheskin 2020; Sharafi et al. 2020). In addition, since the mean value might not be
appropriate to characterize values of fixation duration or count, because the description of
the central tendency might be dependent on some very high values (Galley et al. 2015), we
computed and based our analysis on the median. Both the analysis of the individual and
combined refactorings were analyzed using the median as a measure of central tendency.

We also used Cliff’s Delta (Cliff 1993) to yield the effect size. Since in most cases our
data do not follow a normal distribution, Cohen’s effect size would not be appropriate. So,
we use Cliff’s Delta. Cohen has made widely accepted suggestions on what constitutes small
and large effects (Cohen 2013). For instance, according to Cohen’s description, the effect
size of 0.2 suggests a small effect, 0.5 a medium effect, and 0.8 a large effect. The negative
sign of the effects implies that the values on the treatment group (disciplined annotations)
are greater than the control group (undisciplined annotations).

5 Results

In Sections 5.1–5.6, we present the results for our research questions. In each of these sec-
tions, when we mention statistically significant differences, we mean that we can reject the
null hypothesis for the research question being analyzed. In Section 5.7, we summarize the
results for all research questions.

Empir Software Eng (2021) 26: 92 Page 13 of 35 92

5.1 RQ1: To what extent do disciplined annotations affect task completion time?

After applying R1 〈wrapping function call〉 or R3 〈alternative if statements〉, novices
exhibited faster task completion (see Table 1). We observed statistically significantly reduc-
tions by 23.8% and 46.9% in the time they spent in AOI, respectively. Thus, they spend less
time in AOI in Fig. 6(a) and (c) after applying R1 or R3. After applying R3, we observed a
statistically significant reduction by 42.4% in the time they spent in whole code. Applying
R3 correlated with a reduction in the time novices spent in both activated and in deactivated
areas by 51.1% and 59.4%, respectively. They spend less time in AOI Activated and AOI
Deactivated areas in Fig. 6(b), both right and left-hand sides. We observed a statistically
significant increase by 47.6% in time novices spent in AOI after applying R2 〈undisciplined
if conditions〉, which means that they spent more time in AOI in Fig. 6(b), right-hand
side. It also correlated with a slowdown in their task completion by increasing the time they
spent on whole code by 24.6% with R2 applied. Thus, applying R1 or R3 correlated with
improvements in task completion time for novices. However, after applying R2, we cannot
observe the same effect.

Combined, after applying R1, R2, and R3, novices exhibited faster task completion (see
Table 1). We observed a statistically significant reduction by 20% in the time they spent in
AOI after applying R1, R2, and R3 combined. Combined, the application of refactorings
also correlated with a reduction in the time they spent in the whole code by 12.5%. Thus,
applying R1, R2, and R3 combined correlated with improvements in task completion time
for novices.

We also analyzed the time outside AOI and we found a statistically significant differ-
ence only after applying R3. Since R3 showed differences in time both inside and outside
AOI, we analyzed the whole code. After applying R3, we observed a statistically signifi-
cant reduction in time spent in the whole code. Therefore, we focus on presenting first the
analysis of the AOI followed by the analysis of the whole code.

Table 1 Summarizing the results for time completion (RQ1)

Task In Code In AOI

U D PD PV ES U D PD PV ES

(sec) (sec) % (sec) (sec) %

R1 34.1 32.5 ↓5.2 0.14 n/a 12.7 9.7 ↓23.8 0.004 −0.29

R2 41.3 51.4 ↑24.6 0.01 0.23 25.2 36.9 ↑47.6 0.01 0.24

R3 39.4 22.5 ↓42.4 10-5 −0.44 29.1 15.4 ↓46.9 10-5 −0.44

All 38.1 33.7 ↓12.5 0.01 −0.14 20.6 16.9 ↓20.0 0.02 −0.13

Task In Activated Areas In Deactivated Areas

U D PD PV ES U D PD PV ES

(sec) (sec) % (sec) (sec) %

R1 1.9 2.7 ↑42.0 0.08 0.29 1.7 2.0 ↑11.8 0.24 n/a

R2 3.4 3.1 ↓8.4 0.65 n/a 1.7 1.4 ↓16.5 0.41 n/a

R3 6.3 3.1 ↓51.1 7x10-7 −0.49 3.1 1.2 ↓59.4 2x10-9 −0.60

All 3.4 3.0 ↓13.7 0.18 n/a 2.2 1.6 ↓23.4 0.001 −0.18

Bold font represents statistically significant differences. U = undisciplined annotations; D = disciplined anno-
tations; PD = percentage difference; PV = p-value; ES = effect size. Columns U and D are based on the
median as a measure of central tendency

Empir Software Eng (2021) 26: 9292 Page 14 of 35

Finding 1: In our study, after applying R1 or R3 in isolation, the novices exhibit
faster task completion. Faster task completion is also exhibited by the novices
after applying R1, R2, and R3 in combination.

5.2 RQ2: To what extent do disciplined annotations affect task accuracy?

After applying R3, novices provide more correct answers. Although the median number of
submissions remained the same, we realize that, by observing the box-plot in Fig. 7(c), the
data is less spread when R3 was applied, which can explain the observed differences. While
they both present the same median number of submissions, after applying R3 (see Table 2),
the mean number of submissions decreased from 1.25 to 1.20. Thus, applying R3 correlated
with improvements in the accuracy of the answers submitted by the novices. Combined, we
did not find differences in accuracy after applying R1, R2, and R3.

Finding 2: In our study, after applying R3 in isolation, the novices provide more

correct answers. No differences were observed after applying R1, R2, and R3 in

combination.

5.3 RQ3.1: To what extent do disciplined annotations affect fixation duration?

After applying R1 or R3, novices exhibit a reduction in the fixation duration in AOI (see
Table 3). We observed statistically significant reductions by 25% and 44.7% in the duration
of the fixations in AOI after applying R1 and R3, respectively. This correlation implies
that novices make shorter fixations in AOI in Fig. 6(a) and (c) after applying R1 or R3. In
the whole code, novices also exhibit a reduction in the fixation duration after applying R3.
We observed a statistically significant reduction by 37.2% in the duration of the fixations.
Thus, applying R1 or R3 correlated with a reduction in the fixation duration in the AOI for
novices.

After applying R1, R2, and R3, novices also exhibit a reduction in the fixation duration
in AOI. We observed a statistically significant reduction by 28.5% in the duration of the
fixations in AOI after applying R1, R2, and R3. Combined, the application of refactorings
also correlated with a reduction in the duration of the fixations in the whole code by 20.8%.
Thus, applying them combined correlated with a reduction in the fixation duration both in
the AOI and in the whole code for novices.

Finding 3: In our study, after applying R1 or R3 in isolation, the novices ex-

hibit a reduction in the fixation duration in the AOI. A reduction in the fixation

duration in the AOI is also exhibited by the novices after applying R1, R2, and

R3 in combination.

5.4 RQ3.2: To what extent do disciplined annotations affect fixation count?

After applying R1 or R3, novices exhibit a reduction in the fixation count in AOI (see
Table 4). We observed statistically significant reductions by 17.5% and 48.4% in the number
of the fixations in AOI after applying R1 and R3, respectively. This correlation implies that
novices make fewer fixations in AOI in Fig. 6(a) and (c) after applying R1 or R3. In the

Empir Software Eng (2021) 26: 92 Page 15 of 35 92

Fig. 7 Comparison between: Disciplined (D) and Undisciplined (U) annotations for R1, R2, and R3 from an
isolated and combined perspective involving P1–P4 together

Empir Software Eng (2021) 26: 9292 Page 16 of 35

Table 2 Summarizing the results
for accuracy (RQ2) Task Submissions

U D PD PV ES

%

R1 1.0 1.0 n/a 0.37 n/a

R2 1.0 1.0 n/a 0.18 n/a

R3 1.0 1.0 n/a 0.03 -0.15

All 1.0 1.0 n/a 0.43 n/a

Bold font represents statistically
significant differences. U =
undisciplined annotations; D =
disciplined annotations; PD =
percentage difference; PV = p-
value; ES = effect size. Columns
U and D are based on the median
as a measure of central tendency

whole code, novices also exhibit a reduction in the fixation count after applying R3. We
observed a statistically significant reduction by 39.1% in the number of the fixations. Thus,
applying R1 or R3 correlated with a reduction in the fixation count in the AOI for novices.

After applying R1, R2, and R3, novices also exhibit a reduction in the fixation count
in AOI. We observed a statistically significant reduction by 26.7% in the number of fixa-
tions in AOI after applying R1, R2, and R3. Combined, the application of refactorings also
correlated with a reduction in the number of fixations in the whole code by 22.4%. Thus,
applying them combined correlated with a reduction in the fixation count both in the AOI
and in the whole code for novices.

Finding 4: In our study, after applying R1 or R3 in isolation, the novices exhibit
a reduction in the fixation count in the AOI. A reduction in the fixation count

in the AOI is also exhibited by the novices after applying R1, R2, and R3 in

combination.

Table 3 Summarizing the results for duration of fixations (RQ3.1)

Task In Code In AOI

U D PD PV ES U D PD PV ES

(sec) (sec) % (sec) (sec) %

R1 15.8 14.8 ↓11.2 0.15 n/a 6.3 4.7 ↓25.0 4x10-3 −0.27

R2 23.6 28.6 ↑22.6 0.20 n/a 16.0 20.6 ↑28.2 0.20 n/a

R3 19.6 12.3 ↓37.2 10-4 −0.41 15.4 8.5 ↓44.7 6x10-5 −0.42

All 20.2 16.1 ↓20.8 0.01 −0.15 12.2 8.6 ↓28.5 10-3 −0.16

Task In Activated Areas In Deactivated Areas

U D PD PV ES U D PD PV ES

(sec) (sec) % (sec) (sec) %

R1 1.0 1.4 ↑39.8 0.17 n/a 0.8 0.9 ↑17.4 0.70 n/a

R2 1.9 1.7 ↓7.2 0.75 n/a 0.9 1.0 ↑8.4 0.29 n/a

R3 3.7 1.7 ↓53.2 6x10-6 −0.46 1.9 0.6 ↓65.6 10-8 −0.57

All 1.8 1.5 ↓16.4 0.02 −0.13 1.1 0.7 ↓31.5 10-3 −0.18

Bold font represents statistically significant differences. U = undisciplined annotations; D = disciplined anno-
tations; PD = percentage difference; PV = p-value; ES = effect size. Columns U and D are based on the
median as a measure of central tendency

Empir Software Eng (2021) 26: 92 Page 17 of 35 92

Table 4 Summarizing the results for fixation count (RQ3.2)

Task In Code In AOI

U D PD PV ES U D PD PV ES

(sec) (sec) % (sec) (sec) %

R1 49.0 45.0 ↓11.2 0.12 n/a 20.0 16.5 ↓25.0 0.004 −0.28

R2 68.5 85.0 ↑24.0 0.15 n/a 46.0 59.0 ↑28.2 0.12 n/a

R3 60.0 36.5 ↓37.2 5x10-5 −0.42 47.5 24.5 ↓44.7 10-5 −0.43

All 61.5 48.0 ↓20.8 9x10-3 −0.15 34.5 25.5 ↓28.5 4x10-3 −0.16

Task In Activated Areas In Deactivated Areas

U D PD PV ES U D PD PV ES

(sec) (sec) % (sec) (sec) %

R1 3.0 4.0 ↑39.8 0.03 −0.14 3.0 3.5 ↑17.4 0.48 n/a

R2 5.5 4.5 ↓7.2 0.14 n/a 3.0 2.5 ↑8.42 0.83 n/a

R3 11.0 5.0 ↓53.2 6x10-7 0.24 6.0 2.0 ↓65.6 5x10-9 −0.09

All 6.0 5.0 ↓16.4 0.03 0.05 4.0 2.5 ↓31.5 10-3 −0.05

Bold font represents statistically significant differences. U = undisciplined annotations; D = disciplined anno-
tations; PD = percentage difference; PV = p-value; ES = effect size. Columns U and D are based on the
median as a measure of central tendency

5.5 RQ3.3: To what extent do disciplined annotations affect regressions count?

Since we are interested in transitions, we focused this analysis on the AOI, which comprises
a few lines of code together, and on the whole, comprising all lines of code together, leaving
out activated and deactivated areas. Notice that our tasks follow the left-to-right and top-to-
bottom writing system and have no loops. Thus, a regression is a transition with an opposed
direction in this writing system. After applying R1 or R3, novices exhibit a reduction in
the regressions count in AOI (see Table 5). We observed statistically significant reductions
by 33.3% and 60.5% in the number of the regressions in AOI after applying R1 and R3,
respectively. It correlates with improvements in the number of regressions in the AOI in
Fig. 6(a) after applying R1, and in Fig. 6(c) after applying R3. In other words, the novices
read the code 33.3% and 60.5% more often against the writing system before R1 and R3
were applied, respectively. In the whole code, novices also exhibit a reduction in the regres-
sions count after applying R3. We observed a statistically significant reduction by 50% in
the number of regressions. Thus, applying R3 correlated with alleviating the need of going
back to the same or to previous lines of the code in AOI for novices from the regressions
count perspective.

After applying R1, R2, and R3, novices exhibit a reduction in the regressions count in the
AOI. We observed a statistically significant reduction by 36% in the number the regressions
in the AOI after applying R1, R2, and R3. Combined, the application of the refactorings also
correlated with a reduction in the number of regressions in the whole code by 24%. Thus,
applying them combined correlated with alleviating the need of going back to the same or
to previous lines of code in the whole code.

Empir Software Eng (2021) 26: 9292 Page 18 of 35

Table 5 Summarizing the results for regressions count (RQ3.3)

Task In Code In AOI

U D PD PV ES U D PD PV ES

(sec) (sec) % (sec) (sec) %

R1 21.0 18.0 ↓14.2 0.09 n/a 6.0 4.0 ↓33.3 6x10-4 −0.34

R2 30.0 36.0 ↑20.0 0.25 n/a 18.0 20.0 ↑11.1 0.20 n/a

R3 26.0 13.0 ↓50.0 9x10-6 −0.46 19.0 7.5 ↓60.5 10-6 −0.49

All 25.0 19.0 ↓24.0 10-3 −0.18 12.5 8.0 ↓36.0 4x10-4 −0.20

Bold font represents statistically significant differences. U = undisciplined annotations; D = disciplined anno-
tations; PD = percentage difference; PV = p-value; ES = effect size. Columns U and D are based on the
median as a measure of central tendency

Finding 5: In our study, after applying R1 or R3 in isolation, the novices exhibit
a reduction in the regressions count in the AOI. A reduction in the regressions

count in the AOI is also exhibited by the novices after applying R1, R2, and R3

in combination.

5.6 RQ3: To what extent do disciplined annotations affect visual effort?

In our study, the visual effort has been measured by three eye tracking based metrics,
namely, fixation duration, fixation count, and regressions count. Considering the results
of the three research questions addressing each of them, we conclude that after applying
R1 or R3, the novices exhibit less visual effort in AOI. Less visual effort in AOI is also

Table 6 Summary of the null-hypotheses’ statuses in isolated refactorings in the AOIs

RQ Refact. Null-Hypothesis p-value Status Effect size

RQ1 R1 No difference in time between treatments < 0.05 Rejected Small

RQ2 R1 No difference in accuracy between treatments > 0.05 Not Rejected —

RQ3.1 R1 No difference in fixation duration between treatments < 0.05 Rejected Small

RQ3.2 R1 No difference in fixation count between treatments < 0.05 Rejected Small

RQ3.3 R1 No difference in regressions count between treatments < 0.05 Rejected Small

RQ1 R2 No difference in time between treatments < 0.05 Rejected Small

RQ2 R2 No difference in accuracy between treatments > 0.05 Not Rejected —

RQ3.1 R2 No difference in fixation duration between treatments > 0.05 Not Rejected —

RQ3.2 R2 No difference in fixation count between treatments > 0.05 Not Rejected —

RQ3.3 R2 No difference in regressions count between treatments > 0.05 Not Rejected —

RQ1 R3 No difference in time between treatments < 0.05 Rejected Medium

RQ2 R3 No difference in accuracy between treatments < 0.05 Rejected Small

RQ3.1 R3 No difference in fixation duration between treatments < 0.05 Rejected Medium

RQ3.2 R3 No difference in fixation count between treatments < 0.05 Rejected Medium

RQ3.3 R3 No difference in regressions count between treatments < 0.05 Rejected Medium

The effect sizes are an approximation based on Cohen’s description (Cohen 2013)

Empir Software Eng (2021) 26: 92 Page 19 of 35 92

exhibited by novices after applying R1, R2, and R3 in combination. Thus, applying R1 or
R3 correlated with alleviating the visual effort in the AOI for novices.

Finding 6: In our study, after applying R1 or R3 in isolation, the novices exhibit
less visual effort in the AOI. Less visual effort in the AOI is also exhibited by
the novices after applying R1, R2, and R3 in combination.

5.7 Summary

In Table 6, we present the confirmation/rejection of the original null-hypotheses. Figure 7(a)–
(c) summarize total time in the AOI, number of answer submissions, fixation duration in the
AOI, fixation count in the AOI, and regressions count in the AOI for R1, R2, and R3, respec-
tively, for P1–P4 combined. Figure 7(d) summarizes the results for the mentioned metrics,
however, from a combined perspective, instead of analyzing each refactoring individually.

The greatest effects were observed after applying R3. For instance, the effect size for R3
in RQ1, RQ3.1, RQ3.2, RQ3.3 is close to medium in AOI (Cliff’s delta ranges from -0.42 to
-0.49). In other words, the effects of applying R3 are noticeable. The effects after applying
R1 were also noticeable, but to a smaller degree.

After applying the refactorings R1, R2, and R3, we have an addition of 40.6%, 57.3%,
and 37.7% in the median number of characters in AOI, respectively. After applying the
refactorings, all tasks from all projects had more characters. Even with more characters,
we observed that applying R1 or R3 statistically significantly reduced the time, fixations
duration, and fixations count in AOI. In addition, after applying R3, there is a statistically
significant increase in number of correct answers submitted. We did not observe differences
in these metrics after R2 applied.

6 Discussion of the Interview

In this section, we discuss the qualitative interview with the novices. Besides analyzing their
performance in solving code comprehension tasks, we analyze how the answers provided in
the interview can help us to validate, understand quantitative results, and complement our
discussion on the research questions. In the interview, we asked the participants to describe
1) their approach used to solve the tasks, 2) their perception on how difficult were the tasks,
and 3) what difficulties they had, if any. The participants provided a general approach used
in all solved tasks and they were free to share any particular approach used in any specific
situation. The same applied to the difficulties, where they were encouraged to point out in
the code any area where they had difficulties with the task. With this qualitative feedback,
we aimed to better understand how time, accuracy, fixation duration, fixation count and
regressions count could be better explained through a triangulation of the data.

Based on Strauss and Corbin (1998), we adopted the following approach to qualitatively
code the interview: In Step 1, the first author played the interviewer role analyzing each
whole sentence spoken by the participant during the interview and taking note of the major
idea conveyed by this sentence, giving a name to it. In Step 2, we read these names searching
for opportunities to group them in distinct categories. In Step 3, we categorized the names
by discussing how similar they were according to their properties, for instance, “#ifdef”
and “directive” could be in the same category, since both refer to “#ifdef.” In Step 4,
we searched for opportunities to link the categories. Given the lack of clear connections

Empir Software Eng (2021) 26: 9292 Page 20 of 35

between the categories in Step 4, we did not delve deep into them on how they could be
used to interpret our results. Thus, we based our results and interpretation on the resulting
categories.

Regarding our first question of the interview, we observed that the most common
approach adopted consisted of first checking whether the macro was defined (37 partici-
pants). In addition, 13 participants mentioned looking at #ifdefs directives, and, by doing
so, 6 participants mentioned that they could ignore unnecessary parts of the code. This
relates to what we call activated and deactivated areas, where, given a macro declared, only
one part of the AOI (activated area) gets exercised. Moreover, 16 participants mentioned also
first looking at the function that was on the top of the code, 8 participants mentioned starting
to read the code from the beginning, and 9 participants mentioning reading the code in a top-
down fashion. Furthermore, 9 participants mentioned a sequential reading pattern, whereas
7 participants mentioned looking at the end of the code, specifically to the output, and 2
participants mentioned a bottom-up fashion. Regardless of the order in which they were
mentioned, participants mentioned looking at key parts such as variables (14 participants)
and their assigned values (7 participants). To summarize, the most frequent terms such as
macro, function, variables, and #ifdef worked as key elements that guided them in the
execution flow of the code. Their influence on time, fixation duration, fixation count, and
regressions count should be taken in consideration when investigating code comprehension
in the presence of disciplined and undisciplined annotations.

Regarding the second question of the interview, 78% of the participants found the tasks
very easy or easy to solve on a scale of five options, namely, very easy, easy, neuter, difficult,
and very difficult. Since the tasks were somewhat simple, these results were not surprising
and confirmed the results we had in our RQ2, regarding number of submissions, which did
not present much variation. Even though the majority mentioned that the tasks were easy,
they also mentioned having difficulties with some specific tasks.

Regarding our third question of the interview related to their possible difficulties, the
most frequent ones related to specific code elements were the following: if inside #ifdef
(18 participants), boolean expressions (11 participants), broken lines (9 participants), confu-
sion regarding the interaction between commands from directives and language constructs
(7 participants), and confusion with #ifdefs specifically (5 participants). These terms
were mentioned when referring to R1 〈wrapping function call〉, R2 〈undisciplined if
conditions〉, and R3 〈alternative if statements〉 in all projects. Other more general terms
were frequently evoked. For instance, 11 participants mentioned that they had difficulties
resulting from the fact that they did not pay as much attention as they should, skipping
important details, and 9 participants mentioned confusion disregarding a certain pattern
specifically.

According to RQ1, after applying R1 or R3, novices were able to complete tasks faster.
Approaches used to solve the tasks and difficulties reported in the interview may shed light
on some of the reasons underlying these results. For instance, “broken lines” was reported
by the novices as a factor that caused them to face difficulties in completing the tasks.
However, by applying R1, the method’s parameters that were separated or broken became
wrapped as depicted in Fig. 6(a), which may have helped them to solve tasks faster. Simi-
larly, the participants reported difficulties in reasoning about if inside #ifdef and about
the interaction between commands from directives and language constructs such as if and
#ifdef, #endif and else. However, by applying R3, the if statement is moved from
the #ifdef body as in Fig. 6(c), which may have contributed to a faster task completion.

Empir Software Eng (2021) 26: 92 Page 21 of 35 92

According to RQ2, after applying R3, novices provided more correct answers. Even
though after applying R3 we have the same median number of submitted answers, we
observe that the data seem more scattered in the box-plot regarding number of submis-
sions in Fig. 7(c). Separating an if statement with #ifdef annotations and placing else
close to the #else seemed to confuse the participants. Separating these terms by adding
an alternative if statement, participants seemed less confused about the correct output.

According to RQ3.1 and RQ3.2, after applying R1 or R3, novices exhibited less attention
in AOI and in the whole code by reducing both the number of fixations and their duration.
These reductions imply less effort of jumping from one place to another in the code, which
translates to less visual effort. For instance, participants mentioned difficulties in dealing
with if statement inside #ifdef, from which we may infer an effort jumping back and
forth between those code elements, which translates to higher number of fixations. They also
mentioned confusion with else and #else, which may have contributed with more fixa-
tions, but also longer ones focusing on those elements specifically to make sense of them.
Applying R3 separates the if body from the #ifdef body, which may have impacted the
way they concentrated their attention on the AOI. Similarly, after applying R1, the parame-
ters of the function that were separate become wrapped, which impacts the number of jumps
from distinct parts of the same statement distributed over distinct lines.

7 Threats to Validity

We discuss potential threats to validity: internal validity (Section 7.1), external validity
(Section 7.2), and construct validity (Section 7.3).

7.1 Internal Validity

The environment location may have influenced the participants’ attention. Given difficulties
in getting more people, we performed the experiment in seven different rooms. However,
these environments were similar in terms of being quiet places with minimum distraction
and similar lighting and temperatures.

The first author’s presence may have unintentionally influenced the data because partic-
ipants may have felt being observed. The author may also have influenced the participants
to achieve certain outcomes. To mitigate these threats, the author minimized the interaction
with the participants to let them feel free to act and be concentrated on the tasks.

Our camera has limitations. Even carefully calibrating and re-calibrating it, we observed
that the fixation data needed some adjustments, which is a threat resulting from the equip-
ment. For instance, in some cases, we saw parts of the heatmaps with red color over a blank
area not touching the code but a small adjustment was sufficient to correct these cases. In
those specific cases, these small errors were systematic meaning that all the fixations for the
task needed the same adjustment. Right after solving the tasks, we plotted a heatmap of one
task, and only when necessary, we shifted the sample points and showed it to the participants
in order to verify whether it best matched their visual intent. In addition, two of the authors
later on discussed this strategy. To minimize the threat of the equipment, we performed a
correction of the eye tracking data in the aforementioned cases, which generated another
threat. The correction may influence the position of the gaze points, which may influence
our interpretations. We chose to correct the data of some participants because data pointing

Empir Software Eng (2021) 26: 9292 Page 22 of 35

to a blank area of the code would influence our interpretations leading to misunderstand-
ings. It is worth mentioning that the median number of pixels that we have used to correct
the fixations in y-coordinate was 10 pixels and the maximum value was 70 pixels. We did
not correct x-coordinate. In addition, the generated fixations are available in our replication
package (Aldo et al. 2021).

A chair with swiveling capabilities can impair the camera of collecting data, or even
prejudicing the camera accuracy. To reduce this threat, we used chairs without swiveling
capability. Given the difficulties in arranging the setup in some locations, seven participants
used still chair with swiveling capabilities.

The duration of the experiment may have influenced the visual effort of the participants.
The six tasks for each participant plus one for warming up have to be taken in consideration.
To minimize this threat, we have designed simple tasks so that they could also be solved
faster. The maximum amount of time a participant spent on a task was 5 min and 2 seconds,
and the median time for all the tasks of all participants was 36 seconds.

We gave the option to the participants to keep trying until they answered correctly, but
they had the option of quitting at any time without having to provide any reasons for that.
We thus compared the number of trials until they answered correctly. However, using this
approach, if a participant answers incorrectly in the first tentative, she can make more
fixations or even longer ones, with more regressions. An alternative approach would be con-
ducting the study such that these metrics were analyzed before they kept trying over and
over. However, in our study, this threat is minimized by the fact that 77.6% of the 384 tasks
were answered correctly in the first try.

From the total of 384 tasks, three of them were not answered, which corresponds to less
than 1%. We used PMM method that imputes missing data using predictive mean match-
ing (Jadhav et al. 2019). Regarding the reliability of this method, PMM generally performed
better when sample size was sufficiently large (Kleinke 2017), which we have confidence
in our sample with more than 99% of the data.

Following the Latin Square experiment design, we have blocked the set of tasks to control
noise. In addition to performing an analysis under a combined perspective of the tasks in
all evaluated refactorings, we analyzed the refactorings under an individual perspective.
The extent of the impact of such violation of the Latin Square design is not estimated.
However, analyzing the data from both perspectives, combined and individual, provides a
more nuanced and complete approach to understand the effects of the evaluated refactorings.

7.2 External Validity

We had to resort to small tasks for the purpose of fitting the code snippet of each task onto
the screen without compromising the accuracy of the data. This may restrict the capacity of
generalizing to more complex or larger tasks. However, even in more simple code snippets,
we have shown several opportunities to apply the evaluated refactorings. In addition, all our
tasks have a template associated with real projects. Medeiros et al. (2018) found that 27
out of 63 C real projects contain possibilities of applying the three evaluated refactorings
together. However, we need to conduct more studies with more complex tasks to provide
evidence regarding those tasks.

Since the majority of participants in our study were novices in the C programming lan-
guage, we cannot generalize our results to more experienced developers in C. Other studies
have also investigated code comprehension from the perspective of novices as well, reveal-
ing an interesting field to be explored (Busjahn et al. 2015). We had a total of 64 participants
in our study, out of which only 10 were experienced participants. For our analysis and

Empir Software Eng (2021) 26: 92 Page 23 of 35 92

reported results, we did not filter out these 10 experienced participants. To ensure that this
does not affect the validity of our results, we did a separate analysis where we compared
the results of considering all 64 participants to the results of considering only the 54 novice
participants. We found that the results from both groups of 64 (all participants) and 54 (only
novices) participants are the same. In the future, we need to conduct further studies with
more experienced participants to better understand if there are any differences compared to
novices.

We have used code snippets written in the C language, which may restrict the gener-
alization capacity to other languages. To limit this threat, we have used constructions that
commonly occur in other languages, and all the participants reported some experience with
other languages, which minimized the effect of syntax constructions.

We have performed a “specify the correct output” type of task, in which the participant
reads the code and says out loud the correct answer. Thus, it may not generalize to other
types of tasks, such as finding bugs or adding new features. The font size or font style may
have influenced the participant’s attention. To reduce this threat, we chose a common font
style as well as a size that fitted the screen. All snippets were displayed in the same font size,
black colored, and no bold font. The number of macros may also have influenced the visual
effort of the participants, in which they had to reason about enabled and disabled macros to
understand which conditions were valid. To minimize this threat, we used only one macro
in all the tasks.

7.3 Construct Validity

Eye tracking metrics similar to the ones employed in our study have been used in other stud-
ies for both similar and distinct purposes (Melo et al. 2017; Busjahn et al. 2015; Sharif and
Maletic 2010; Bednarik and Tukiainen 2006). For the purpose of investigating code com-
prehension, time and accuracy have been used in isolation (Schulze et al. 2013; Malaquias
et al. 2017) and in combination with visual effort (Sharif et al. 2012). The visual effort
has been measured before by separate eye-tracking based metrics such as fixation duration
and fixation count (Sharif et al. 2012; Binkley et al. 2013). In addition to fixations-based
metrics, regressions have been associated with visual effort (Sharafi et al. 2015).

We tried to not influence our subjects’ decisions on where to look or for how long, but we
may have done so nevertheless, which is a side effect of inviting people to participate in an
eye tracking study. We did not inform the participants about the precise goals of the study to
avoid hypothesis guessing, but we informed that their eyes were being tracked, which may
have influenced where or how much they have looked at some regions of the code.

8 RelatedWork

In this section, we provide an overview of the related work. In Section 8.1, we discuss in
detail the related work that is closest to ours, and, in Section 8.2, we discuss in detail the
related work that is second closest to ours and, in Section 8.3, we discuss the other relevant
work.

8.1 Comparison with Medeiros et al. (2018)

Medeiros et al. (2018) conducted a survey with 246 experienced developers to access their
perception on the proposed refactorings. The majority of the developers reported having at

Empir Software Eng (2021) 26: 9292 Page 24 of 35

least five years of experience with C preprocessors. They sent a questionnaire to the par-
ticipants with six templates presented as pairs: on the left-hand side, they presented the
original code from a real C project and, on the right-hand side, the refactored version of the
original code. They asked the participants which version they preferred, whether the orig-
inal or the refactored one. Among the refactorings, they evaluated R1 〈wrapping function
call〉, R2 〈undisciplined if conditions〉, and R3 〈alternative if statements〉 of our study.
In their study, the rate of preferences for R1, R2 and R3 were 90.3%, 70.4%, and 64.8%,
respectively.

In contrast, in our work, we have focused on novices rather than on experienced devel-
opers. The majority of the participants reported having one year or less of experience with
C programming language. In addition, we have conducted a controlled experiment in which
the novices had to solve a set of proposed tasks. We investigated eye tracking metrics to
evaluate R1, R2, and R3 with respect to time, accuracy, fixation duration, fixation count,
and regressions count.

Thus, our study and the one conducted by Medeiros et al. (2018) are distinct in the
following characteristics: research questions, experience of the developers, tasks used,
empirical method, metrics, and threats to validity. These differences are summarized in
Table 7. The differences shown in Table 7 may explain the differences in the conclusions.
However, we need to conduct further studies to better understand the reasons for some
differences.

Besides the survey, Medeiros et al. (2018), submitted patches with the evaluated refactor-
ings. Six patches using R1 were submitted and all patches were accepted. Five patches were
submitted using R2 and 80% of them were accepted, and five patches were submitted using
R3 and 80% of them were accepted. These results indicate a higher rate of acceptance of
R1. Applying R1 or R3 in isolation correlated with improvements in time and visual effort
in our study.

8.2 Comparison with Fenske et al. (2020)

Fenske et al. (2020) have conducted a controlled study involving both an experiment and
questionnaires with 521 experienced developers to understand the impact of refactoring C
preprocessor directives. The evaluated refactorings were called discipline directive, extract
alternative function, and unify compile-time and runtime-time variability. They evaluate
coarse-grained transformations converting from undisciplined to disciplined annotations
instead of evaluating a single fine-grained transformation, such as the ones we evaluated in
our work (see Fig. 6). Their comprehension tasks are distinct from ours comprising larger
snippets with more directives. In addition, multiple choices are presented to the participants.
For instance, among multiple statements about the code, the participants had to select the
correct one. Moreover, the participants had to configure their selection so that a certain line
would be executed. They mainly investigated how the perception of the developers aligned
with their objective of comprehension performance. According to their results, comprehen-
sion performance worsened in terms of correctness when the participants worked on code
with refactored directives. However, on their perception, the refactored code was more com-
prehensible and easier to work. In contrast, we have presented smaller snippets with one
directive to the participants. We have configured the directive by enabling or disabling the
macro. Then, we asked the participants an open-ended question regarding the correct output
of the snippet. In addition, we have performed a controlled experiment using eye tracking
with novices.

Empir Software Eng (2021) 26: 92 Page 25 of 35 92

Table 7 Summarizing the comparison between the study conducted by Medeiros et al. (2018) and our study

Medeiros et al. (2018) Our study

Common
RQs

— —

Distinct
RQs

What is the number of possibilities to apply
the refactorings in practice?

To what extent do disciplined annotations
affect task completion time?

What opinion do developers have on the
catalog of refactorings in practice?

To what extent do disciplined annotations
affect task accuracy?

Do the refactorings of the catalog preserve
program behavior?

To what extent do disciplined annotations
affect visual effort?

Common
Findings

Developers prefer applying R1 Applying R1 correlated with improvements
in time and visual effort

Developers prefer applying R3 Applying R3 correlated with improvements
in time, accuracy, and visual effort

Distinct
Findings

Developers prefer applying R2 Applying R2 did not correlate with
improvements in time, accuracy, or visual
effort

Experience Experienced developers in C programming
language

Novices in C programming language

Tasks Non-executable code templates Executable code snippets

Empirical
Method

Online survey with participants not being
observed

Controlled experiment with participants
being observed

Metrics Subjective opinions and preferences Objective metrics: time, accuracy, fixation
duration, fixation count, and regressions
count

Threats
to
Validity

Simple code snippets, incompleteness of
catalog, programming language, some
undisciplined directives different from the
practice

Environment location, camera limitations,
chair setup, time for the experiment,
answers’ submission, simple tasks, devel-
opers’ experience, programming language,
type of task, eye tracking metrics’ represen-
tativeness

Thus, our study and the one conducted by Medeiros et al. (2018) are distinct in the
following characteristics: experience of the developers, tasks used, answer submissions
method, empirical method, and metrics. These differences are summarized in Table 8 and
may explain the differences in the conclusions. However, we need to conduct further studies
to better understand the reasons for some differences.

8.3 Comparison with other RelatedWork

Medeiros et al. (2015) interviewed 40 developers with at least five years of experience,
and conducted a survey with 202 developers with different levels of experience regard-
ing conditional directives usage, to understand common problems with the C preprocessor
such as code understanding, maintainability, and error proneness. Developers affirmed that
they checked only a few configurations of the source code when they were testing their
implementations. The study showed that C preprocessor had problems, such as faults, incon-
sistencies, code quality, and incomplete testing, making it a “hell.” The survey and interview
focused on the perception of the developers, which included experienced subjects. Differ-
ently, we conducted an eye tracking study and focused on analyzing the performance, code

Empir Software Eng (2021) 26: 9292 Page 26 of 35

Table 8 Summarizing the comparison between the study conducted by Fenske et al. (2020) and our study

Fenske et al. (2020) Our study

Experience Experienced developers in C pro-
gramming language

Novices in C programming language

Tasks Larger snippets with more directives Short snippets with one #ifdef

Answer
submission

Multiple options Open-ended without multiple options

Empirical
method

Online survey and experiment Controlled experiment

Metrics Subjective preferences, time, and
accuracy

Objective metrics: time, accuracy,
fixation duration, fixation count,
and regressions count

comprehension, and visual attention of novices. From this perspective, even in simple tasks,
we observed that novices had difficulties to comprehend code with undisciplined annota-
tions, mentioning terms such as broken lines, statements, and syntax. We observed that
tasks were easier to comprehend using the disciplined version by the correlation with the
improvements on the accuracy after applying R3.

Schulze et al. (2013) conducted a controlled experiment to analyze the effect of dis-
ciplined and undisciplined annotations on program comprehension. The participants were
undergraduates with less programming experience than experienced developers. The study
addressed this topic by measuring correctness and response time for solving a set of tasks.
The results of the study did not reveal any statistically significant differences between
disciplined and undisciplined annotations from a program comprehension perspective. In
addition to time and accuracy, but distinctly from their study, we have measured the fixation
duration, fixation count, and regressions count, which allowed us to access the participant’s
visual effort in solving tasks. The eye tracker allowed us to understand code comprehen-
sion from the analysis of these additional dimensions. Furthermore, similar to their study,
the majority of the subjects of our study consisted of undergraduates. Differently from
their results, we have shown statistically significant differences for the evaluated refactor-
ings with disciplined annotations, indicating that the composition of refactorings evaluated
correlated with improvements in time, fixation duration, fixation count, and regressions
count.

Malaquias et al. (2017) compared undisciplined and disciplined annotations by investi-
gating the influence of disciplined annotations on maintenance tasks. They performed the
study with undergraduates with three to five semesters of experience with programming.
Their results showed that undisciplined annotations are more time-consuming and error
prone, disagreeing with Schulze et al. (2013). For R1 or R3, the results of Malaquias et al.
(2017) align with ours in the sense that disciplined annotations correlate with improvements
in task completion time. In addition, disciplined annotations correlate with improvements in
accuracy after applying R3 in the context of novices. For the composition of three evaluated
refactorings, their results also align with ours for the time, fixation duration, fixation count
and regressions count perspective. Regarding accuracy, we did not reject the null hypoth-
esis for the number of submissions. Notice that our tasks are simple. In our study with an
eye tracker camera, we are able to explore other dimensions besides time and accuracy, and
quantify developer’s difficulties by measuring time in specific areas, as well as effort with
visual attention.

Empir Software Eng (2021) 26: 92 Page 27 of 35 92

Aiming to understand how developers debug code in the presence of code variability,
Melo et al. (2017) carried out an experiment by using an eye tracker predominantly with
graduate students. All participants had Java programming experience, and several of them
had industrial experience. Main results indicate that variability increases debugging time for
code fragments with variability. Besides performing a distinct type of task, so called “find
the bug,” they have focused only on disciplined annotations. They observed that variability
prolongs the initial scan in the task of finding defects. We have focused on refactorings to
discipline annotations to understand how novices specify the correct output. We put extra
effort in minimizing potential threats regarding eye tracker camera usage. For instance, we
systematized program style with fewer number of lines and larger size, to easy reproducibil-
ity, as well as avoided chairs with swiveling capability, which showed potential to impact
data quality.

Melo et al. (2016) presented a controlled experiment predominantly with graduate stu-
dents. All participants had Java programming experience, and several of them had industrial
experience. They aimed to quantify the impact of variability on the time and accuracy
in finding bug in configurable systems. They only considered disciplined annotations. By
exploring these dimensions, they found that the time of bug finding decreases linearly with
the degree of variability. In addition, it is harder to identify the exact set of affected con-
figurations than finding the bug in the first place. They mentioned difficulties in reasoning
about several configurations. In our study, we explore time, accuracy, and other additional
dimensions, but in another type of task. We did not present many configuration options,
only one macro enabled and disabled, and simple tasks. Even in simple tasks, we observed
that it became easier to find the correct output after applying R3, removing undisciplined
annotations. In the qualitative feedback, novices mentioned difficulties in reasoning about
broken statements, which were removed by applying refactorings.

The use of an eye tracker camera has been traditionally applied in the context of cognitive
psychology for the purpose of studying the reading and information processing at the cog-
nitive level (Rayner 1978). For instance, using an eye tracker, Crosby and Stelovsky (1990)
observed that there are differences in reading source code and reading prose. However, they
did not investigate refactorings. We analyzed how the disciplined annotations affect the way
novices read and comprehend code.

In the programming language context, eye tracking allowed researchers to understand a
variety of tasks, such as code comprehension and code debugging (Obaidellah et al. 2018).
For instance, Sharif and Maletic (2010) investigated the influence of identifier styles (camel
case and underscore) on the speed and accuracy of comprehending source code. No dif-
ferences regarding accuracy were observed in this context. Nevertheless, results indicate
a significant improvement in time and lower visual effort with the underscore style. In
our study, we considered similar metrics—time, accuracy, fixation duration and fixation
count—but in another context. Binkley et al. (2013) also studied the influence of identifier
styles on code reading and comprehension. With an eye tracker, they found that camel case
shows to be more advantageous. Likewise, we perform a comparison between two types of
code styles, namely disciplined and undisciplined annotations, aiming to find which one is
more advantageous. However, to analyze visual effort, in addition to regressions count, we
explored fixation duration and fixation count inside AOI, in the whole code, and in specific
areas such as activated and deactivated ones.

Turner et al. (2014) presented a study to analyze the effect of the choice of the program-
ming language, namely C++ and Python, on code comprehension. The metrics they used
consisted of accuracy, time, and visual effort. The former metric concerns to the rate one

Empir Software Eng (2021) 26: 9292 Page 28 of 35

Table 9 Other related works

Study Eye Ann. Exp. Metrics Goal Finding

Medeiros et al.
(2015)

No — Yes — Access developers’
perception on C
preprocessor usage
(∗)

Despite the criticism
of C preprocessor,
they use it nonetheless

Schulze et al.
(2013)

No U, D No Time and accu-
racy

Analyze the effect of
annotations on pro-
gram comprehension
(†)

No differences
between disciplined
and undisciplined
annotations

Malaquias et al.
(2017)

No U, D No Time and accu-
racy

Analyze whether
annotation influences
maintenance tasks (†)

Undisciplined annota-
tions are more time-
consuming and error
prone

Melo et al. (2017) Yes D Yes Time, accuracy,
fixations and
saccades

Study how developers
debug with variability
(†)

Debugging time
increases with
variability

Melo et al. (2016) No D Yes Time and accu-
racy

Analyze the impact of
variability on metrics
(†)

Time of bug find-
ing decreases with the
degree of variability

Ours Yes U, D No Time, accuracy,
fixation duration,
fixation count,
and regressions
count

Evaluate whether R1,
R2, and R3 affect
comprehension and
visual attention (†)

Applying R1 or R3
correlates with reduc-
tion in time, fixa-
tion duration, fixation
count, and regressions
count.

In column “Eye,” we refer whether eye tracking was used or not. In column “Ann.” we specify the annotations
in which U refers to Undisciplined and D refers to Disciplined. In column “Exp.” we specify whether the
participants were experienced or not, in which “Yes” refers to experienced and “No” refers to not experienced.
In column Goal, the symbol (∗) refers to a survey while (†) refers to a controlled experiment

looks at buggy lines. In our work, we also cover accuracy, time, and visual effort, which
we relate to fixation duration, fixation count, and regressions count. Binkley et al. (2009)
studied the effect of identifier length on the ability of programmers to recall. Their experi-
ment’s results suggested that longer names reduce correctness and take more time to recall
from memory. In our domain, the eye tracking metrics gave us additional insights. Table 9
summarizes these works.

9 Conclusions

In this article, we reported on a controlled experiment using an eye tracker camera with
64 subjects who were novices in C language to evaluate the influence of three refactorings
that discipline #ifdef annotations. In our results, applying R1 〈wrapping function call〉 or
R3 〈alternative if statements〉 correlated with improvements in the time and visual effort.
In addition, applying R3, specifically, correlated with improvements in the accuracy. We
do not observe statistically significant improvements in time, accuracy, and visual effort in
our code comprehension tasks after applying R2 〈undisciplined if conditions〉, in isolation.
Instead, we observed an increase in time for R2 in both AOIs and the whole code. We also
found that applying R1, R2, and R3 in a composite perspective correlated with reductions

Empir Software Eng (2021) 26: 92 Page 29 of 35 92

in the total time and visual effort. There are a number of opportunities to apply them in a
composite manner in real projects (Medeiros et al. 2018).

As future work, we intend to evaluate other refactorings proposed by Medeiros et al.
(2018). We aim at performing experiments considering more participants, experienced
developers, as well as exploring different settings, other types of tasks that add functionali-
ties to the code and fix bugs, higher number of macros, and other types of annotations. We
also intend to explore larger source code files, which can also be studied with eye tracking
with the addition of a proper tool such as iTrace (Guarnera et al. 2018). This tool allows
scrolling or navigation of the content overcoming the limitation of short code snippets for
the tasks. Finally, we will consider other eye tracking metrics, such number of blinks, scans,
and other metrics based on gaze transitions.

Acknowledgments We would like to thank the anonymous reviewers, Rafael Mello, and Rodrigo
Bonifácio for their insightful comments. This work was partially supported by CAPES (117875 and
175956), FAPEAL (60030.0000000462/2020), CNPq (426005/2018-0, 421306/2018-1, 309844/2018-5,
311442/2019-6, 310757/2018-5, 427787/2018-1), and FAPDF (00193-00000926/2019-67).

References

Aldo J, Gheyi R, Ribeiro M, Apel S, Fonseca B, Alves V, Medeiros F, Garcia A (2021) Evaluating refac-
torings for disciplining #ifdef annotations using eye tracking with novices (artifacts). At https://github.
com/josealdo/EMSE21-ifdefs-with-eye-tracking

Basili V, Caldiera G, Rombach H (1994) The goal question metric approach. In: Encyclopedia of software
engineering, pp 528–532

Bednarik R, Tukiainen M (2006) An eye-tracking methodology for characterizing program comprehen-
sion processes. In: Proceedings of the symposium on eye tracking research & applications, ETRA’06.
pp 125–132

Binkley D, Davis M, Lawrie D, Maletic J, Morrell C, Sharif B (2013) The impact of identifier style on effort
and comprehension. Empir Softw Eng 18(2):219–276

Binkley D, Lawrie D, Maex S, Morrell C (2009) Identifier length and limited programmer memory. Sci
Comput Program 74(7):430–445

Box G, Stuart Hunter J, Hunter WG (2005) Statistics for experimenters. Hoboken, Wiley-Interscience
Busjahn T, Bednarik R, Begel A, Crosby M, Paterson JH, Schulte C, Sharif B, Tamm S (2015) Eye move-

ments in code reading: Relaxing the linear order. In: Proceedings of the international conference on
program comprehension, ICPC’15. IEEE, pp 255–265

Busjahn T, Schulte C, Busjahn A (2011) Analysis of code reading to gain more insight in program compre-
hension. In: Proceedings of the Koli Calling international conference on computing education research.
pp 1–9

Busjahn T, Schulte C, Tamm S, Bednarik R (2015) Eye movements in programming education II. Analyzing
the novice’s gaze

Charness G, Gneezy U, Kuhn MA (2012) Experimental methods: Between-subject and within-subject design.
J Econ Behav Organ 81(1):1–8

Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal questions. Psychol Bull 114(3):494
Cohen J (2013) Statistical power analysis for the behavioral sciences. Academic press, Cambridge
Crosby M, Scholtz J, Wiedenbeck S (2002) The roles beacons play in comprehension for novice and expert

programmers. In: Workshop of the psychology of programming interest group, PPIG’02. pp 5
Crosby M, Stelovsky J (1990) How do we read algorithms? A case study. Computer 23(1):25–35
Ernst M, Badros G, Notkin D (2002) An empirical analysis of C preprocessor use. IEEE Trans Softw Eng

28(12):1146–1170
Fenske W, Krüger J, Kanyshkova M, Schulze S (2020) #ifdef directives and program comprehension:

The dilemma between correctness and preference. In: Proceedings of the International Conference on
Software Maintenance and Evolution, ICSME’20

Galley N, Betz sDirk, Biniossek C (2015) Fixation durations: Why are they so highly variable. Adv Vis
perception Res: 83–106

Empir Software Eng (2021) 26: 9292 Page 30 of 35

https://github.com/josealdo/EMSE21-ifdefs-with-eye-tracking
https://github.com/josealdo/EMSE21-ifdefs-with-eye-tracking

Garrido A, Johnson RE (2013) Embracing the C preprocessor during refactoring. J Softw Evol Process
25(12):1285–1304

Guarnera D, Bryant C, Mishra A, Maletic J, Sharif B (2018) iTrace: Eye tracking infrastructure for devel-
opment environments. In: Proceedings of the symposium on eye tracking research & applications,
ETRA’18. ACM

Hansen D, Ji Q (2009) In the eye of the beholder A survey of models for eyes and gaze. IEEE Trans Pattern
Anal Mach Intell 32(3):478–500

Hermens F, Zdravković S (2015) Information extraction from shadowed regions in images An eye movement
study. Vis Res 113:87–96

Holmqvist K, Nyström M, Andersson R, Dewhurst R, Jarodzka H, Van de Weijer J (2011) Eye tracking: A
comprehensive guide to methods and measures. OUP, Oxford

Jadhav A, Pramod D, Ramanathan K (2019) Comparison of performance of data imputation methods for
numeric dataset. Appl Artif Intell 33(10):913–933

Kleinke K (2017) Multiple imputation under violated distributional assumptions: A systematic evaluation of
the assumed robustness of predictive mean matching. J Educ Behav Stat 42(4):371–404

Liebig J, Kȧstner C, Apel S (2011) Analyzing the discipline of preprocessor annotations in 30 million lines
of C code. In: Proceedings of the international conference on aspect-oriented software development,
AOSD’11. pp 191–202

Malaquias R, Ribeiro M, Bonifácio R, Monteiro E, Medeiros F, Garcia A, Gheyi R (2017) The discipline of
preprocessor-based annotations – Does #ifdef tag n’t #endif matter. In: Proceedings of the international
conference on program comprehension, ICPC’17. IEEE, pp 297–307

Medeiros F, Kästner C, Ribeiro M, Nadi S, Gheyi R (2015) The love/hate relationship with the C preproces-
sor: An interview study. In: Proceedings of the European conference on object-oriented programming,
ECOOP’15. ACM, pp 999–1022

Medeiros F, Ribeiro M, Gheyi R, Apel S, Kästner C, Ferreira B, Carvalho L, Fonseca B (2018) Discipline
matters: Refactoring of preprocessor directives in the #ifdef hell. IEEE Trans Softw Eng 44(5):453–469

Melo J, Brabrand C, Waşowski A. (2016) How does the degree of variability affect bug finding?
Melo J, Narcizo FB, Hansen DW, Brabrand C, Waşowski A (2017) Variability through the eyes of the pro-

grammer. In: Proceedings of the 25th International Conference on Program Comprehension, ICPC’17.
IEEE Press, Piscataway, pp 34–44

Nyström M, Holmqvist K (2010) An adaptive algorithm for fixation, saccade, and glissade detection in
eyetracking data. Behavior Res Methods 42(1):188–204

Obaidellah U, Haek MA, Cheng PC-H (2018) A survey on the usage of eye-tracking in computer
programming. ACM Comput Surv (CSUR) 51(1):5

Oliveira D, Bruno R, Madeiral F, Castor F (2020) Evaluating code readability and legibility: An examination
of human-centric studies. In: Proceedings of the international conference on software maintenance and
evolution, ICSME’20

Rayner K (1978) Eye movements in reading and information processing. Psychol Bull 85(3):618
Rayner K (1998) Eye movements in reading and information processing: 20 years of research. Psychol Bull

124(3):372
Salvucci D, Goldberg J (2000) Identifying fixations and saccades in eye-tracking protocols. In: Proceedings

of the symposium on eye tracking research & applications, ETRA’00. pp 71–78
Schulze S, Liebig J, Siegmund J, Apel S (2013) Does the discipline of preprocessor annotations matter?: A

controlled experiment. In: Proceedings of the 12th international conference on generative programming:
concepts & experiences, GPCE ’13. ACM, pp 65–74

Shapiro SS, Wilk MartinB. (1965) An analysis of variance test for normality (complete samples). Biometrika
52(3/4):591–611

Sharafi Z, Shaffer T, Sharif B, Guéhéneuc Y-G (2015) Eye-tracking metrics in software engineering. In:
Proceedings of the asia-pacific software engineering conference, APSEC’15. IEEE, pp 96–103

Sharafi Z, Sharif B, Guéhéneuc Y-G, Begel A, Bednarik R, Crosby M (2020) A practical guide on conducting
eye tracking studies in software engineering. Empir Softw Eng 25(5):3128–3174

Sharafi Z, Soh Z, Guéhéneuc Y-G, Antoniol G (2012) Women and men—different but equal: On the impact
of identifier style on source code reading. In: Proceedings of the international conference on program
comprehension, ICPC’12. IEEE, pp 27–36

Sharif B, Falcone M, Maletic J (2012) An eye-tracking study on the role of scan time in finding source code
defects. In: Proceedings of the symposium on eye tracking research & applications, ETRA’12. ACM,
pp 381–384

Sharif B, Maletic J (2010) An eye tracking study on camelcase and under score identifier styles. In:
Proceedings of the international conference on program comprehension, ICPC’10. IEEE, pp 196–205

Sheskin DJ (2020) Handbook of parametric and nonparametric statistical procedures. CRC Press, Boca Raton

Empir Software Eng (2021) 26: 92 Page 31 of 35 92

Spencer H, Geoff C (1992) #ifdef considered harmful, or portability experience with C news. In: USENIX
Summer. USENIX Association. pp 185–197

Strauss A, Corbin J (1998) Basics of qualitative research techniques. Citeseer, Princeton
Turner R, Falcone M, Sharif B, Lazar A (2014) An eye-tracking study assessing the comprehension of C++

and Python source code. In: Proceedings of the symposium on eye tracking research and applications,
ETRA’14. ACM, pp 231–234

Uwano H, Nakamura M, Monden A, Matsumoto K (2006) Analyzing individual performance of source code
review using reviewers’ eye movement. In: Proceedings of the symposium on eye tracking research and
applications, ETRA’06. ACM, pp 133–140

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

José Aldo Silva da Costa is a PhD student at the Federal Univer-
sity of Campina Grande, Paraı́ba, Brazil. He received his master’s
degree in Computer Science in 2016 from the same university. His
research interests include program comprehension in the context of
refactorings with eye tracking.

Rohit Gheyi is a professor in the Department of Computer Science at
Federal University of Campina Grande. His research interests include
refactorings, formal methods, and software product lines. He holds a
Doctoral degree in Computer Science from the Federal University of
Pernambuco.

Empir Software Eng (2021) 26: 9292 Page 32 of 35

Márcio Ribeiro is an Associate Professor in the Computing Institute
at Federal University of Alagoas. He holds a Doctoral degree in Com-
puter Science from the Federal University of Pernambuco (2012). He
also holds the ACM SIGPLAN John Vlissides Award. His PhD the-
sis has been awarded as the Best in Computer Science of Brazil in
2012. His main research interests are Configurable Systems, Empir-
ical Software Engineering, Software Testing, and Refactoring. He
created the Aglomerações app, an app to register and track agglom-
erations. The app pioneered the idea in which the user registers
agglomerations during the COVID-19 pandemic in Brazil.

Sven Apel holds the Chair of Software Engineering at Saarland
University & Saarland Informatics Campus, Germany. Prof. Apel
received his Ph.D. in Computer Science in 2007 from the University
of Magdeburg. His research interests include software product lines,
software analysis, optimization, and evolution, as well as empirical
methods and the human factor in software engineering.

Vander Alves is Associate Professor at the Computer Science
Department of the University of Brasilia, Brazil. He conducts
research on Software Product Lines, Command and Control, and
Model-Driven Development. Previously, he was a CAPES-Humboldt
Fellow at the University of Passau, Germany, and he also held
research and development positions at Fraunhofer IESE, Germany,
Lancaster University, England, and IBM Silicon Valley Lab, USA.

Empir Software Eng (2021) 26: 92 Page 33 of 35 92

Baldoino Fonseca is an associate professor at Federal Univer-
sity of Alagoas (UFAL), heading Engineering and Systems Group
(EASY). His main research interests include software maintenance
and machine learning.

Flávio Medeiros is a professor in the Federal Institute of Alagoas,
Brazil. His research interests include configurable systems with a
high amount of variability, refactoring and software product lines. He
received his Doctoral degree in Computer Science from the Federal
University of Campina Grande, Brazil, in 2016.

Alessandro Garcia received the PhD degree in informatics from
the Pontifical Catholic University of Rio de Janeiro. He is an asso-
ciate professor with Informatics Department of Pontifical Catholic
University of Rio de Janeiro. His research focuses on software mod-
ularity, software metrics, exception handling, and empirical software
engineering. He is a member of the IEEE.

Empir Software Eng (2021) 26: 9292 Page 34 of 35

Affiliations

José Aldo Silva da Costa1 ·Rohit Gheyi1 ·Márcio Ribeiro2 · Sven Apel3 ·
Vander Alves4 ·Baldoino Fonseca2 · Flávio Medeiros5 ·Alessandro Garcia6

Rohit Gheyi
rohit@dsc.ufcg.edu.br

Márcio Ribeiro
marcio@ic.ufal.br

Sven Apel
apel@cs.uni-saarland.de

Vander Alves
valves@unb.br

Baldoino Fonseca
baldoino@ic.ufal.br

Flávio Medeiros
flavio.medeiros@ifal.edu.br

Alessandro Garcia
afgarcia@inf.puc-rio.br

1 Federal University of Campina Grande, Campina Grande, Brazil
2 Federal University of Alagoas, Maceió, Brazil
3 Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
4 University of Brası́lia, Brası́lia, Brazil
5 Federal Institute of Alagoas, Maceió, Brazil
6 Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil

Empir Software Eng (2021) 26: 92 Page 35 of 35 92

mailto: rohit@dsc.ufcg.edu.br
mailto: marcio@ic.ufal.br
mailto: apel@cs.uni-saarland.de
mailto: valves@unb.br
mailto: baldoino@ic.ufal.br
mailto: flavio.medeiros@ifal.edu.br
mailto: afgarcia@inf.puc-rio.br

	Evaluating refactorings for disciplining #ifdef annotations: An eye tracking study with novices
	Abstract
	Introduction
	Motivating Example
	Study Definition
	Methodology
	Pilot Study
	Experiment Phases
	Participants
	Treatments
	Evaluated Refactorings
	Tasks
	Fixation Instrumentation
	Analysis

	Results
	RQ1: To what extent do disciplined annotations affect task completion time?
	RQ2: To what extent do disciplined annotations affect task accuracy?
	 RQ3.1: To what extent do disciplined annotations affect fixation duration?
	 RQ3.2: To what extent do disciplined annotations affect fixation count?
	 RQ3.3: To what extent do disciplined annotations affect regressions count?
	RQ3: To what extent do disciplined annotations affect visual effort?
	Summary

	Discussion of the Interview
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Related Work
	Comparison with Medeiros et al. (ME17DI)
	Comparison with Fenske et al. (Fenske2020ifdefDA)
	Comparison with other Related Work

	Conclusions
	References
	Affiliations

