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Abstract Developer discussions range from in-person hallway chats to comment
chains on bug reports. Being able to identify discussions that touch on software
design would be helpful in documentation and refactoring software. Design mining
is the application of machine learning techniques to correctly label a given discus-
sion artifact, such as a pull request, as pertaining (or not) to design. In this paper
we demonstrate a simple example of how design mining works. We then show
how conclusion stability is poor on different artifact types and different projects.
We show two techniques—augmentation and context specificity—that greatly im-
prove the conclusion stability and cross-project relevance of design mining. Our
new approach achieves AUC of 0.88 on within dataset classification and 0.80 on
the cross-dataset classification task.

Keywords Mining software design · supervised learning · conclusion stability

1 Introduction

Developer discussions play a vital role in software development. The discussions so-
licit the opinions of other developers and document important decisions in today’s
pull-based software development process [1]. Discussions about software design,
in particular, are a highly interactive process and many decisions involve consid-
erable back and forth. These decisions greatly impact software architecture [2,3].
Discussions are also a rich software artifact for learning about the software itself
[4]. Recent progress in research [5,6] suggests that developer discussions often con-
tain rich information on the background of the design of the software as well as
rationale and reflections on the design changes and choices over time.

Such discussions are also one of the potential artifacts for newcomers to un-
derstand the architecture and design of the system [7]. However, these discus-
sions about design are often scattered across different places such as commit mes-
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sages, pull requests, and issue tracker comments. It is impractical for anyone to
go through all the thousands of threads of discussions and find out the discussion
about a particular design topic. Solving this problem is the challenge of what we
call design mining, which is a branch of research based on mining software repos-
itories. Being able to mine design discussions would lead to a novel approach of
improved documentation, enabling improved traceability of requirements, refac-
toring and bug fixing support, and maintainability.

The simplest formulation of the design mining problem is defined as classify-
ing developer discussion as either design or not-design1. Discussions are extracted
from software artifacts, including but not limited to pull requests, issues, code com-
ments, and Q&A interactions2. This classification process is usually supervised:
manual labelling of the data with human effort by following a coding guide, then
leveraging automatic classification using machine learning models and advances in
natural language processing to classify the discussions according to some specific
features.

Verification of the correctness of manual classification is achieved by meeting
and agreement among the participants. Validation of automatic classification is
measured by evaluating the classifiers with a manually labelled small set of data,
which is referred to as the gold set. Almost all the studies in this field have at-
tempted to produce a best-performing and validated automated classifier [8,9,5].
For example, a state of the art (SOTA) result from Viviani et al. [10] talks about
a well validated model with Area Under ROC Curve (AUC) of 0.87. However,
achieving conclusion stability [11] remains a challenge. Most studies focus on eval-
uating a classifier on data from a single dataset and discussion artifact. In this
paper we focus on conclusion stability by developing a model with wide applica-
bility to different design discussions which could be used with high accuracy across
different projects, and artifact types.

Automatic detection of design points can significantly reduce development time
for both contributing developers as well as reviewers. It can also help to use rich
design information with ease which is a struggle for newcomers to an open source
project [12]. A recommender agent built on the detected design points can assist
the core developers or maintainers to answer the question and queries from the
newcomers. Because software design can be very subjective, findings from studies
like this can potentially reveal several aspects of how and why design decisions
diverge from ideal design patterns. Moreover, these different opinions can also be
analyzed to further modernize some of the trivial design ideas. Lastly, mining and
summarizing design discussions gives us a great opportunity to keep an up to date
documentation with little to no manual effort and time.

An important aspect of our view of a useful design mining classifier is its ability
to work well across different projects and domains. We define the source of the data
as domain. For example, if we source our data from Stack Overflow or Github, the
domain of the data is Stack Overflow or Github respectively. Project is a subset of
domain that is the name of the project to which the discussion belongs (ex. node.js,
Rails, etc.). Cross-project/cross-domain transfer learning means training on one
domain/project and transferring the knowledge to another domain/project, i.e.,

1 more complex formulations might identify design topic.
2 and thus, design mining (to date) does not deal with more ephemeral design discussions,

such as whiteboards or video conferences.
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it shows good conclusion stability. Why is this important? In a general purpose
setting, such as a bot for pull requests, contexts will change constantly. Thus a
model that can perform well on (say) NodeJs pull requests and also on NASA
embedded software issues would be useful for generalizability.

The second reason is that even within a company context models change.
For example, new developers might change the way software design is discussed;
new programming frameworks or languages are introduced; or new discussion
formats—such as Github discussions—are leveraged. Finally, a research reason
is that proposing models that ignore conclusion stability suggests a research ap-
proach that may only work in a particular, narrow domain of application and lack
external validity.

One of the highlights of our study is we are not restricting ourselves to specific
rules to define design, such as a code book that defines what constitutes a design
discussion. Instead we use publicly available data from Stack Overflow, generated
by developers over time. This enables us to capture some unconventional notions
of design in bottom-up, crowd-source fashion. By the end of this paper, we explore
the following research questions:

1. How can we get more labeled data to train, validate and test models of design
mining?
Approach—We take a different approach from the previous studies to address
research question 1. While previous studies manually labeled the dataset for
training and testing purposes, the small amount of data is always considered
to be a limitation of those studies. We hypothesize that conversational data
that are similar to developer discussions might work as the training data we
need. Hence, we sourced our data from Stack Overflow conversations in the
form of questions, answers and comments which are already tagged by several
developers and moderators [13].
Although we understand that the Stack Overflow conversations are not directly
comparable with developer discussions, the words of those posts often contain
architecture-relevant knowledge [14]. Since this study is about classifying a
discussion as design or non-design, conversational texts from Stack Overflow
can provide those words that could be used to distinguish between design
and non-design classes. We use this dataset only to train and validate our
model but the actual testing of the model is conducted with the developer
discussions dataset which we obtain from the study at [8]. This allowed us to
obtain a dataset of 260,000 examples which is the largest dataset in design
mining so far (the latest study from Viviani et al. [10] introduced a dataset of
2500 examples).
We explain the validity of this data in §6.1.3 and illustrate some of the im-
provements we notice in the results section in §8.

2. How useful are software-specific word vectorizers?
Approach—Converting words of a text conversation to vectors as feature
space representation is a common practice in Natural Language Processing.
Previous studies have introduced various vectorization techniques. In response
to our previous study [15], we demonstrate how word embedding as a vector-
ization choice can improve the performance of the classifier. However, word
embedding needs a reference model. In the previous study, we used a general-
purpose reference model that is trained on texts from Wikipedia. However,
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some of the software engineering context can get lost if we use general purpose
reference model [16].
For this reason, we decide to build our own reference model that is trained
on software engineering related literature. We scrape the plain text from 300
books, conference and journal paper and develop a software-specific corpus to
be used to train our software-specific word vectorizer. We train our software-
specific word embedding reference model based on the corpus and test it’s
performance and validity with respect to the general-purpose reference model
to address research question 2. We explain the data collection method for this
model elaborately in §6.1.1 and the improvements in classification in §8.1.

3. How to provide domain context to a small sample of data?
Approach—To answer research question 3, we take every word from our
training and testing data and inject similar words using techniques from [16]
to augment the data we use for training and testing. Similar word models
are unsupervised models trained on a corpus of text. They can output similar
words of a word depending on the position and usage of that particular word
with respect to the neighboring words.
We show an example of total-domain and cross-domain augmentation using
similar word injection model. We use two word injection models: one from the
train domain and the other from the test domain. We use augmentation for
both the domain in order to transfer some of the context from each domain to
another in the form of similar words. Finally, we demonstrate a new state of
the art (SOTA) results in cross-domain design mining. We explain the design
of our study for augmentation in §6.2.1 and discuss the state-of-the-art results
in §8.2.

In this paper, we contribute the following:

– We provide a labeled data set of two hundred and sixty thousand discussions
in the form of train, test and validation data. This data set is fully processed
with state-of-the-art and modern NLP standard and convention. We make
this available in our replication packages at doi:10.5281/zenodo.4010208 and
https://doi.org/10.5281/zenodo.4885980.

– We present our software specific word vectorizer trained on hundreds of well
processed and spell corrected literature on software engineering.

– We present, integrate and discuss two similar word injector models and show
how to achieve total and cross domain context with them.

– We report on the performance of several machine learning models based on
our approach.

This work extends our previous work [15]. The major extensions in this paper
are as follows:

1. We introduce a new dataset using data from Stack Overflow tagged with spe-
cific design keywords.

2. We develop a software-specific corpus based on 300 software engineering texts.
3. We build a software-specific word vector to test the value of context and aug-

mentation in our approaches, challenges identified in the previous paper.
4. We demonstrate new state of the art (SOTA) results in cross-project design

mining.

https://doi.org/10.5281/zenodo.4010208
https://doi.org/10.5281/zenodo.4885980
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Our paper begins with a strict replication of the 2014 work of Brunet et al.
[8] as a way of explaining the design mining research problem (§3.1). We then
extend the replication by examining improved techniques for dealing with the
problem, including accounting for class imbalance, in §3.2. We briefly overview
our use of a deep learning language model, ULMFiT, and our attempt to do
cross-project/cross-domain transfer learning in §4. We then go into detail about
the challenges we faced with this transfer learning (§5) and then explain how we
dealt with the issue of insufficient labeled data, and the need for software specific
context, in §6. Our study design is explained in §7 and final results in §8. We finish
the paper by characterizing some limitations and study design issues.

2 Background and Related Work

Our paper brings together two streams of previous research. First, we highlight
work on cross-project prediction and learning in software engineering. Secondly, we
discuss previous work in mining design discussions and summarize existing results
as an informal meta-analysis. We conclude by looking at the challenges of degrees
of freedom in this type of research.

2.1 Cross-Project Classifiers in Software Engineering

A practically relevant classifier is one that can ingest a text snippet—design
discussion—from a previously unseen software design artifact, and label it Design/
Not-Design with high accuracy. Since the classifier is almost certainly trained on
a different set of data, the ability to make cross-dataset classifications is vital.
Cross-dataset classification [17] is the ability to train a model on one dataset and
have it correctly classify other, different datasets. This is most important when
we expect to see different data if the model is put into production. It might be
less important in a corporate environment where the company has a large set of
existing data (source code, for example) that can be used for training.

The challenge is that the underlying feature space and distribution of the
new datasets differ from that of the original dataset, and therefore the classifier
often performs poorly. For software data, the differences might be in the type of
software being built, the size of the project, or how developers report bugs. Herbold
[18] conducted a mapping study of cross-project defect prediction which identified
such efforts as strict (no use of other project data in training) or mixed, where
it is permissible to mix different project data. We will examine both approaches
in this paper, but in the domain of design mining, not defect prediction. Recent
work by Bangash et al. [11] has reported on the importance of time-travel in defect
prediction. Time-travel refers to the bias induced in training when using data from
the future to predict the past. We do not think temporality is an important concern
for the strict design mining problem we discuss here, but it might be relevant if
one were to examine design evolution. In the case of design mining, we are not
making predictions, and therefore the label results reflect an atemporal, holistic
view of the project’s total state of design. It is future work to capture how design
is changing over time, where temporality might play a role.
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To enable cross-domain learning without re-training the underlying models,
the field of transfer learning applies machine learning techniques to improve the
transfer between feature spaces [19]. Typically this means learning the two fea-
ture spaces and creating mapping functions to identify commonalities. There have
been several lines of research into transfer learning in software engineering. We
summarize a few here. Zimmermann et al. [17] conducted an extensive study of
conclusion stability in defect predictors. Their study sought to understand how
well a predictor trained with (for example) defect data from one brand of web
browser might work on a distinct dataset from a competing web browser. Only
3.4% of cross-project predictions achieved over 75% accuracy, suggesting transfer
of defect predictors was difficult.

Following this work, a number of other papers have looked at conclusion stabil-
ity and transfer learning within the fields of effort estimation and defect prediction.
Herbold gives a good summary [18]. Sharma et al [20] have applied transfer learn-
ing to the problem of code smell detection. They used deep learning models and
showed some success in transferring the classifier between C# and Java. However,
they focus on source code mining, and not natural language discussions. Code
smells, defect prediction, or effort estimation are quite distinct from our work in
design discussion, however, since they tend to deal with numeric data, as opposed
to natural language.

Other approaches include the use of bellwethers [21], exemplar datasets that
can be used as simple baseline dataset for generating quick predictions. The con-
cept of bellwether for design is intriguing, since elements of software design, such
as patterns and tactics, are generalizable to many different contexts.

Transfer learning in natural language processing tasks for software engineering
is in its infancy. There is a lot of work in language models for software engineering
tasks, but typically focused only on source code. Source code is highly regular
and thus one would expect transferability to be less of a problem [22]. Early
results from Robbes and Janes [23] reported on using ULMFiT [24] for sentiment
analysis with some success. We also use the transfer NLP potential of ULMFiT,
which we discuss in [15]. Robbes and Janes emphasized the importance of pre-
training the learner on (potentially small) task-specific datasets. We extensively
investigate the usefulness of this approach with respect to design mining. Novielli
et al. [25] characterize the ability of sentiment analysis tools to work without access
to extensive sets of labeled data across projects, much as we do for design mining.

2.2 Mining Design Discussions

While repository mining of software artifacts has existed for two decades or more,
mining repositories for design-related information is relatively recent. In 2011
Hindle et al. proposed labeling non-functional requirements in order to track a
project’s relative focus on particular design-related software qualities, such as
maintainability [26]. Hindle later extended that work [27] by seeking to cross-
reference commits with design documents at Microsoft. Brunet et al. [8] conducted
an empirical study of design discussions, and is the target of our strict replication
effort. They pioneered the classification approach to design mining: supervised
learning by labeling a corpus of design discussions, then training a machine learn-
ing algorithm validated using cross-validation.
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Table A1 (see Appendix) reviews the different approaches to the problem,
and characterize them along the dimensions of how the study defined “design”,
how prevalent design discussions were, what projects were studied, and overall
accuracy for the chosen approaches. We found 12 primary studies that look at
design mining, based on a non-systematic literature search. We then conducted a
rudimentary vote-counting meta-review [28] to derive some overall estimates for
the feasibility of this approach (final row in the table).
Defining Design Discussions—The typical unit of analysis in these design min-
ing studies is the “discussion”, i.e., the interactive back-and-forth between project
developers, stakeholders, and users. As Table A1 shows, this varies based on the
dataset being studied. A discussion can be code comments, commit comments,
IRC or messaging application chats, Github pull request comments, and so on.
The challenge is that the nature of the conversation changes based on the medium
used; one might reasonably expect different discussions to be conducted over IRC
vs a pull request.
Frequency of Design Discussions—Aranda and Venolia [29] pointed out in
2009 that many software artifacts do not contain the entirety of important in-
formation for a given research question (in their case, bug reports). Design is,
if anything, even less likely to appear in artifacts such as issue trackers, since it
operates at a higher level of abstraction. Therefore we report on the average preva-
lence of design-related information in the studies we consider. On average 15% of
a corpus is design-related, but this is highly dependent on the artifact source.
Validation Approaches for Supervised Learning—In Table A1 column Ef-
fectiveness reports on how each study evaluated the performance of the machine
learning choices made. These were mostly the typical machine learning measures:
accuracy (number of true positives + true negatives divided by the total size of the
labeled data), precision and recall (true positives found in all results, proportion
of results that were true positives), and F1 measure (harmonic mean of precision
and recall). Few studies use more robust analyses such as AUC (area under ROC
curve, also known as balanced accuracy, defined as the rate of change). Since we are
more interested in design discussions, which are the minority class of the dataset,
AUC or balanced accuracy gives a better understanding of the result, because of
the unbalanced nature of the dataset.
Qualitative Analysis The qualitative approach to design mining is to conduct
what amount to be targeted, qualitative assessments of projects. The datasets are
notably smaller, in order to scale to the number of analysts, but the potential
information is richer, since a trained eye is cast over the terms. The distinction
with supervised labeling is that these studies are often opportunistic, as the ana-
lyst follows potentially interesting tangents (e.g., via issue hyperlinks). Ernst and
Murphy [30] used this case study approach to analyze how requirements and de-
sign were discussed in open-source projects. One follow-up to this work is that of
Viviani, [5,10], papers which focus on rubrics for identifying design discussions.
The advantage to the qualitative approach is that it can use more nuance in la-
beling design discussions at a more specific level; the tradeoff of course is such
labeling is labour-intensive.
Summary A true meta-analysis [28,31] of the related work is not feasible in the
area of design mining. Conventional meta-analysis is applied on primary studies
that conduct experiments in order to support inference to a population, which
is not the study logic of the studies considered here. For example, there are no
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sampling frames or effect size calculations. One approach to assessing whether
design mining studies have shown the ability to detect design is with vote-counting
([28]), i.e., count the studies with positive and negative effects past some threshold.

As a form of vote-counting, the last row of Table A1 averages the study results
to derive estimates. On average, each study targets 29,298 discussions for training,
focus mostly on open-source projects, and find design discussions in 14% of the
discussions studied.

As for effectiveness of the machine learning approaches, here we need to define
what an ‘effective’ ML approach is. Since this is a two label problem a random
guessing approach on a balanced dataset would achieve accuracy of 50%. Balanced
accuracy is defined as

BA =
TNR + TPR

2

where TNR = true negative rate (specificity), and TPR = true positive rate or
sensitivity, aka recall. The balanced accuracy will always be 50% for a random
guesser in the 2 label case and is equivalent to the P/R AUC (area under the pre-
cision/recall curve) for that case. From Table A1 we see that the typical classifier
in the literature can achieve close to 86% performance, including Zanaty et al. [32],
Viviani et al. [10], and our previous paper [15]. Several other papers report higher
scores but on imbalanced data. Furthermore, the best results reported in the table
reflect algorithms largely tested on the same type of data (within dataset testing,
such as IRC logs, pull requests, or issues). In this paper we tackle the challenge of
cross-dataset accuracy.

2.3 The Role of Researcher Degrees of Freedom

A related issue to conclusion stability is the concept of researcher degrees of free-
dom (RDOF). RDOF [33,34] refers to the multiple, equally probable analysis
paths present in any research study, any of which might lead to a significant
result. Failure to account for researcher degrees of freedom directly impacts con-
clusion stability and overall practical relevance of the work, as shown in papers
such as Di Nucci et al. [35] and Hill et al. [36]. For example, for many decisions
in mining studies like this one, there are competing views on when and how they
should be used, multiple possible pre-processing choices, and several ways to inter-
pret results. Indeed, the approach we outlined here in Figure 9 is over-simplified,
given the actual number of choices we encountered. Furthermore, the existence of
some choices may not be apparent to someone not deeply skilled in these types of
studies.

A related concept is the notion of conclusion stability from Menzies and Shep-
pherd [37]. Conclusion stability is the notion that an effect X that is detected in
one situation (or dataset) will also appear in other situations. Conclusion stabil-
ity suggests that the theory that predicts an effect X holds (transfers) to other
datasets. In design mining, then, conclusion stability is closely tied to the ability
to transfer models to different datasets.
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That led to work on the problem with bias and variance in sampling for software
engineering studies [38], where Kocaguneli and Menzies concluded that perhaps
this tradeoff is not as important in software studies3.

One possible approach is to use toolkits with intelligently tuned parameter
choices. Hyper-parameter tuning is one such example of applying machine learning
to the problem of machine learning, and research is promising [39]. Clearly one
particular analysis path will not apply broadly to all software projects. What we
should aim for, however, is to outline the edges of where and more importantly,
why these differences exist.

3 Design Mining Replication

3.1 Strict Replication

We begin by showing how design mining works, by replicating the existing design
mining studies and exploring the best combination of features for state of the art
results. We conduct a strict replication (after Gómez et al. [40]), a replication with
little to no variance from the original study, apart from a change in the experi-
menters. However, given this is a computational data study, researcher bias is less
of a concern than lab or field studies (cf. [41]). The purpose of these strict repli-
cations is to explain the current approaches and examine if recent improvements
in NLP might improve the state of the art.

Raw Data

Stopwords Removal

Label data manually

Vectorization

Naive Bayes
Acc: 0.862

Decision Tree
Acc: 0.931

Fig. 1: Protocol map of Brunet [8] study

To explain the differences in studies, we use protocol maps, a graphical frame-
work for explaining an analysis protocol. This graphical representation is intended
to provide a visual device for comprehending the scope of analysis choices in a given
study. Fig. 1 shows a protocol map for the strict replication. The enumerated list
that follows matches the numbers in the protocol diagram.

1. Brunet’s study [8] selected data from 77 Github projects using their discussions
found in pull requests and issues.

3 from [37], where S is a study accuracy statistic, and Ŝ is the population (true) statistic:

“bias is S − E(Ŝ) where E is the expected value and the variance is E((S − Ŝ)2)”
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2. Brunet and his colleagues labeled 1000 of those discussions using a coding
guide.

3. Stopwords were removed. They used NLTK stopwords dictionary and self de-
fined stopsets.

4. The data were vectorized, using a combined bigram word feature and using
the NLTK BigramCollectionFinder to take top 200 ngrams.

5. Finally, Brunet applied two machine learning approaches, Naive Bayes and
Decision Trees. 10-fold cross validation produced the results shown in Fig. 1:
mean accuracy of 0.862 for NaiveBayes, and 0.931 for Decision Trees, which
is also slower.

We followed this protocol strictly. We downloaded the data that Brunet has
made available; applied his list of stop words; and then used Decision Trees and
NaiveBayes to obtain the same accuracy scores as his paper. The only difference
is the use of scikit-learn for the classifiers, instead of NLTK. Doing this allowed us
to match the results that the original paper [8] obtained.

We did notice one potential omission. 1000 sentences are manually classified
in Brunet’s dataset [8]. However, only 224 of them are design, which indicates
serious imbalance in the data. As a result, the accuracy measure, which assumes
a balanced set of classes, likely overstates the true validity of this approach.

Document
Embedding

Others

Others
CommentsQ&APull Req.

RQ: Can design discussions be
automatically detected in English text?

Brunet ShakibaViviani

No Stopwords

Count TF-IDF
Word

Embedding
No

SMOTE

Commits

Others
Others

ULMFiT Naive Bayes SVM LR

Instance Types

Stopword
Sets

Design Definition
 and Labels

Oversample Vectorize

Choice
Node

Technique

Key
ML Algs

Project SampleProprietary Github

Validation
Measures . . .

Fig. 2: Protocol map of possible research paths for design mining studies.

3.2 Extending the Replication

A strict replication is useful to confirm results, which we did, but does not offer
much in the way of new insights into the underlying research questions. In this
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case, we want to understand how to best extract these design discussions from any
corpora. This should help understand what features are important for our goal of
improving conclusion stability.

Shepperd [42] shows that focusing (only) on replication ignores the real goal,
namely, to increase confidence in the result. Shepperd’s paper focused on the case
of null-hypothesis testing, e.g., comparison of means. In the design mining problem,
our confidence is based on the validation measures, and we say (as do Brunet and
the papers we discussed in §2.2) that we have more confidence in the result of a
classifier study if the accuracy (or similar measures of classifier performance) is
higher.

However, this is a narrow definition of confidence; ultimately we have a more
stable set of conclusions (i.e. that design discussions can be extracted with super-
vised learning) if we can repeat this study with entirely different datasets. We first
discuss how to improve the protocol for replication, and then, in Section 4, discuss
how this protocol might be applied to other, different datasets.

We extend the previous replication in several directions. Fig. 2 shows the sum-
mary of the extensions, with many branches of the tree omitted for space reasons.
The complete extension can be found at https://doi.org/10.5281/zenodo.4616151.
One immediate observation is that it is unsurprising conclusion stability is chal-
lenging to achieve, given the large researcher degrees of freedom, i.e., number of
analysis choices a researcher could pursue. We found several steps where Brunet’s
original approach could be improved. These improvements could also apply to
other studies shown in Table A1.

We switched to use balanced accuracy, or area under the receiver operating
characteristic curve (AUC-ROC or AUC), since it is a better predictor of perfor-
mance in imbalanced datasets4.

Dataset: Brunet

Stratification

Stopwords Removal

Oversample

Vectorize

TF-IDF Word Embedding

Logistic Regression SVM

Accuracy = 0.9446

F-Measure = 0.6668

Recall = 0.577

Precision = 0.8466

AUC = 0.84

Accuracy = 0.9127

F-Measure = 0.7511

Recall = 0.7602

Precision = 0.7593 

AUC = 0.7679

Fig. 3: Preferred Design Mining Method NewBest. Numbers are mean of 10-fold
cross validation.

4 defined in the two-label case as the True Positive Rate + the False Positive Rate, divided
by two

https://doi.org/10.5281/zenodo.4616151
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3.2.1 Vectorization Choices

Vectorization refers to the way in which the natural language words in a de-
sign discussion are represented as numerical vectors, which is necessary for clas-
sification algorithms. We present four choices: one, a simple count; two, term-
frequency/inverse document frequency (TF-IDF), three, word embeddings, and
four, document embeddings. The first two are relatively common so we focus on
the last two.

Word embeddings are vector space representations of word similarity. Our in-
tuition is this model should capture design discussions better than other vector-
ization approaches. A word embedding is first trained on a corpus. In this study,
we consider two vectorization approaches, and one similarity embedding. “Wiki”
is a Fasttext embedding produced from training on the Wikipedia database plus
news articles [43], and GloVe, trained on web crawling [44]. The final embedding
is trained on the Stack Overflow dataset, courtesy of Efstathiou et al. [16]. While
Wikipedia considers more words in English, the Stack Overflow dataset should
be more representative of the software domain. The embedding is then used to
either a) train a classifier like Logistic Regression by passing new discussions to
the embedding, and receiving a vector of its spatial representation in return; b)
expanding the scope of small discussions by adding related words to the sentence
(Stack Overflow).

As Fig. 2 shows, there are several ways in which vectorization applies. We also
wanted to see if we could expand the size of the training set by using the in-
built capability of a word embedding to identify similar words (i.e., words that are
close in vector space). The intuition is that since the discussions from the Brunet
dataset are typically quite short, we could add similar words to extend the vocab-
ulary. However, the vocabulary expansion approach did not make any difference
to our accuracy results, likely because domain-specific terms like “library” were
overwhelmed with standard English terms like “thus—hence”.

3.2.2 Document Vectors and the Stack Overflow Design Corpus

Extending word vectors, we can also capture the spatial representation of entire
discussions. Document vectors, introduced in [45], are extensions to word embed-
dings that add an extra dimension to the vector space to capture the document
of origin (in this case, a design discussion). The approach has been shown to im-
prove the ability to capture discussion-wide meaning, where a word embedding
approach alone would be focused on a smaller window of words. We used the
Gensim Doc2Vec class to train a document embedding on 26,969 Stack Overflow
questions and answers, that were tagged with the label ‘design’ (which we ex-
tracted from the SOTorrent dataset of Baltes et al. [46]), combined with 25,000
random questions not tagged design.5

We processed the data to remove stopwords, HTML and <code> tags (includ-
ing the code snippets found within). We also removed graphical or web design
discussions, where they had tags that co-occurred with the ‘design’ tag, such as
CSS,HTML. We then trained a document vector based on the 51,969 documents in
the corpus, and used logistic regression to classify the documents as either design

5 This dataset can be found as part of our replication package
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or not. Results are good on the internal, within-sample classification, even for the
test set: accuracy of 0.934 in training, and 0.932 for test (held-out) data. This
dataset is balanced so accuracy is a reasonable validation metric.

3.2.3 Other Extensions

We used imbalance correction in order to account for the fact design discussion
make up only 15% (average) labels. We took two approaches. One, we stratified
folds to keep the ratio of positive and negative data equal. After stratifying, we
have again run the experiment described in [8] and examined that the accuracy
dropped significantly from reported 94% to around 87.6% where our experiment
achieved an accuracy of around 94%. We use SMOTE [47] to correct for imbalanced
classes in train data. Recall from Table A1 that design discussion prevalence is at
best 14%. This means that training examples are heavily weighted to non-design
instances. As in [48], we correct for this by increasing the ratio of training instances
to balance the design and non-design instances. We have oversampled the minority
class (i.e., ‘design’).

We also hypothesized that the software-specific nature of design discussions
might mean using non-software training data would not yield good results. Specif-
ically, when it comes to stopword removal, we used our own domain-specific stop-
word set along with the predefined English stopwords (of scikit-learn). We also
searched for other words that may not mean anything significant, such as ‘lgtm’
(‘looks good to me’) or ‘pinging’, which is a way to tag someone to a discussion.
These stopwords may vary depending on the project culture and interaction style,
so we removed them.

3.2.4 Best Performing Protocol

After applying these extensions, Fig. 3 shows the final approach. Ultimately, for
our best set of choices we were able to obtain an AUC measure of 0.84, comparable
to the unbalanced accuracy Brunet reported of 0.931. The Matthews correlation
coefficient (MCC), which measures correlation between true labels and actual la-
bels, was 0.63.

Logistic Regression with TF-IDF vectorization gives the best results in terms
of Precision and Accuracy. On the other hand, Word Embedding with Support
Vector Machine provides best results in terms of Recall, F-Measure and Balanced
Accuracy or AUC. Since we are interested in the ‘design’ class which is the minority
class of the dataset, highest Recall value should be more acceptable than Precision.
As a result we created a NewBest classifier based on the combination of ‘Word
Embedding’ and ‘Support Vector Machine’ (right hand of Fig. 3).

4 Testing Cross-Project Conclusion Stability

In this section we build on the replication results and enhancements of our strict
replication. We have a highly accurate classifier, NewBest, that does well within-
dataset. We now explore its validity when applied to other datasets, i.e., whether
it has conclusion stability.
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Table 1: Datasets used for within and cross-dataset classification. All datasets are
English-language

Citation Dataset Type Total
in-
stances

Design
in-
stances

Projects Mean
Dis-
cus-
sion
Length
(words)

Voca-
bulary
Size
(words)

[8] Brunet
2014

Pull
requests

1,000 224 BitCoin, Akka,
OpenFrame-
work, Mono,
Finagle

16.97 3,215

[9] Shakiba
2016

Commit
messages

2,000 279 Random
Github and
SourceForge

7.43 4,695

[5] Viviani
2018

Pull
requests

5,062 2,372 Node, Rust,
Rails

36.13 24,141

[49] SATD Code
com-
ments

62,276 2,703 10 Java incl
Ant, jEdit,
ArgoUML

59.13 49,945

[15] Stack
Over-
flow

Stack
Overflow
questions

51,989 26,989 n/a 114.79 252,565

In [37], Menzies and Shepperd discuss how to ensure conclusion stability.
They point out that predictor performance can change dramatically depending on
dataset (as it did in Zimmermann et al. [17]). Menzies and Shepperd specifically
analyze prediction studies, but we believe this can be generalized to classifica-
tion as well. Their recommendations are to a) gather more datasets and b) use
train/test sampling (that is, test the tool on different data entirely).

In this section we evaluate a classifier trained on one dataset to a different
dataset, but consisting of the same types of discussions. Before beginning to apply
learners to different datasets, it makes sense to ask if this transfer is reasonable.
For example, in Zimmermann et al. [17] the specific characteristics of each project
were presented in order to explain the intuition behind transfer. E.g., should a
discussion of design in Stack Overflow be transferable, that is, considered largely
similar to, one from Github pull requests? While the artifacts are different, and
used in different circumstances, we believe they both contain design information
(from preceding studies), and are natural language discussions.

In Table 1 we illustrate each of the datasets considered in this paper. In Table 2
we show some sample design discussions from each. Since performance of transfer
learning is largely based on similarity between projects (i.e., feature spaces), we
would expect to see better AUC results for cross-project prediction if data sources
are the same (e.g. pull requests), projects are the same, and/or the platforms are
the same (e.g. Github).
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4.1 Research Method

We test the ability to transfer classifiers to new types of discussions and datasets.
We applied the best protocol result from above. That is, the NewBest classifier,
using stopwords+oversampling+TF-IDF+Logistic Regression. We train this classifier
on the Brunet [8] data, and the other 4 datasets described in Table 1.

We then apply the trained model, as well as the ULMFiT model described be-
low, to each dataset in turn (thus, 5 comparisons, including within-project labeling
for a baseline).

Table 2: Sample (raw) design discussions, pre data cleaning.

Dataset Sample Snippet

Stack Overflow What software do you use when designing
classes and their relationship, or just pen and
paper?

Brunet 2014 Looks great Patrik Since this is general purpose
does it belong in util Or does that introduce an
unwanted dependency on dispatch

SATD // TODO: allow user to request the system or
no parent

Viviani 2018 Switching the default will make all of those tu-
torials and chunks of code fail with routing er-
rors, and “the RFC says X” doesn’t seem like
anywhere near a good enough reason to do that.

Shakiba 2016 Move saveCallback and loadCallback to Request-
Processor class

4.2 Transfer Learning with ULMFiT

Early results reported by Robbes and Janes [23] suggested recent work on ULM-
FiT (Universal Language Model Fine-Tuning, [24]) might work well for transfer
learning in NLP for the software domain. They applied it to the task of sentiment
analysis.

ULMFiT uses a three layer bi-LSTM (long short-term memory) architecture. It
supports transfer learning for NLP tasks without having to train a new model from
the beginning. ULMFiT uses novel NLP techniques like discriminative fine tuning,
gradual unfreezing and slanted triangular learning rates which makes it state-
of-the-art [24]. ULMFiT comes pre-trained using data on a Wikipedia dataset.
Wikipedia lacks software specificity. Our aim using ULMFiT was to observe the
behavior of the pre-trained ULMFiT model (AWD-LSTM) when we train its last
neural network layer with the Stack Overflow design discussion data. The Stack
Overflow data fine-tunes the contextual layers of the model. We combined the
Stack Overflow data along with the four design-specific datasets for training.

For our ULMFiT deep learning (DL) approach we used the DL practice [50]
of a 60%-20%-20% train-validate-test ratio, where the test set is held back from
training and validation. We ran this 3 times and noticed only trivial changes (less
than 0.5%) in the results for any of the runs. We report the mean.
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We had two reasons for this choice. First, the anticipated training costs and
data size are much larger in deep network models. Second, we wanted to test the
claimed capability of ULMFiT [24] to performs well on small sample sizes (60% of
our dataset). Unsurprisingly, adding more data points increases performance, at
the cost of overfitting (detailed results can be found in our replication package).

Fine-tuning ULMFiT incorporates internal error assessment using a validation
and train loss technique to determine the optimal trained model by constantly
observing the difference between train loss and validation loss. This informs model
selection, which is then tested against the held-back test set.

Training ULMFiT involves first, model pre-training using the AWD-LSTM
state of the art language modelling technique; second, fine tuning the learning
rate of the language model to get the optimal value of learning rate. This can be
done per layer of the neural network.

In the third stage, we train the language classification model on top of a
pre-trained language learner model. The training data remains Stack Overflow,
but now in the supervised, design-labeled context. Finally, we again fine-tune our
trained text classifier learner to find an optimal learning rate to gain a good balance
between overfitting and underfitting the model. For this experiment, our optimal
learning rate was 0.01.

Fig. 4: Loss plot after 3 epochs

After performing the above steps by combining the Stack Overflow dataset—
questions tagged design/non-design—and the Brunet2014 dataset, AUC was ap-
proximately 93% during the training phase (i.e., within sample performance). To
ensure the model is not overfitting or underfitting, we plot the recorded train and
validation losses. We make sure that the train and validation losses are close to
each other. Fig. 4 is the result after 3 epochs of model training with the learning
rate of 0.01, which is the optimal learning rate for our model. We see that the
training loss is close to the validation loss (0.18 vs 0.22). This suggests the trained
model is not over fitting.
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(a) NewBest results.

(b) ULMFiT results.

Fig. 5: Cross-dataset design mining. Numbers: AUC. Read these plots as “the
model trained on the Dataset on the X axis has AUC value Tested On Dataset on
the Y Axis”. Higher intensity = better score.

Our current approach is trained using a LSTM Neural Network. This indicates
there is also scope for fine-tuning several layers of the neural network in order to
gain better performance on predictions.
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4.3 Results

Results are summarized in the heat maps shown in Fig. 5. More intense color
is better. Fig. 5a shows the results for the NewBest protocol (SVM with word
embeddings). Fig 5b shows the equivalent for the ULMFiT approach. Our repli-
cation package includes complete results including confidence intervals and tests
of significance.

The main challenge for conclusion stability with design mining datasets is
that it is hard to normalize natural language text. This means while two datasets
might reasonably be said to deal with design, one might have chat-like colloquial
sentences, while the other has terse, template-driven comments. We illustrate this
difference with the example discussions shown in Table 2. In comparing to other
datasets the comparison should still be over reasonably similar ‘apples’. As Table
1 shows, there is some variance in all five datasets, with the type of discussion
artifact, source projects, and linguistic characteristics differing. However, despite
these differences Table 2 suggests there should be broad similarities: e.g., concepts
such as Class or User, or ideas like moving functionality to different locations.
Intuitively, we suggest the notion of transfer ought to work to some extent on
these datasets: they are not completely different.

For the NewBest approach, the diagonal starting bottom-left captures the
within-dataset performance, which as expected, is better than the cross-dataset
AUC scores. Secondly, all models performed best on the Brunet test dataset (bot-
tom row). This is because in building the NewBest classifier, we evaluated our
protocol choices against the Brunet dataset. This shows how tightly coupled pro-
tocol choices and conclusion stability are.

It also seems to be the case that results are poorer for datasets that are more
removed from each other: using pull requests (Viviani and Brunet) does little
better than random for Stack Overflow and code comments (SATD).

For the ULMFiT results in Fig. 5b, we can see the benefit of training with the
Stack Overflow dataset plus the fine-tuning (i.e., each tic on the x-axis reflects
the fine-tuning in addition to Stack Overflow training). This is shown by the good
results in the top row, which are essentially within-dataset results. Other results,
however, are poor, and particularly when compared to the NewBest results (which
is also much quicker to train). A Mann-Whitney test of significance (i.e., that the
accuracy measures of ULMFiT are different than those from NewBest) shows no
differences between the two learners (W = 356.5, p-value = 0.399). We therefore
do not see much benefit from the way we have applied ULMFiT for cross-dataset
classification of design.

We ran 10-fold cross-validation on ULMFiT as well, and report those results
in the replication package. For the transfer learning research objective, ten fold
validation does not make a significant difference in AUC. Transfer performance
on Brunet2014 data only changes from 0.502 to 0.588, even with the additional
data. Thus, our conclusion that ULMFiT is not a significant improvement on the
transfer learning problem remains the same.

Although the design discussions were in natural language, there were many
words that were unique to the software/open source domain. We observed that
the more vocabulary we feed to our ULMFiT model, the more it knows, the more
it gets tuned on the language modelling, the better it performed. Thus we see
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great benefit in increasing the software-specific, dataset agnostic data we train
ULMFiT.

5 Challenges with Cross-Dataset Classification in Design Mining

In Section 3.2 we introduced a design mining classifier that modified previous
efforts by adding some modifications to the algorithm, and improving the ways of
validating the classifier by implementing appropriate validation criteria to account
for the imbalanced nature of the data. We also looked at using deep language
models based on ULMFit to explore if fine-tuned deep models work well. Our
underlying goals were aimed at improving the conclusion stability of a given model,
namely, the model’s performance on out of sample data, which might be from
different projects (cross project) or across domain (different domains, such as
Github issues, pull requests, source code comments, or Stack Overflow discussions).

For cross-dataset and cross-domain classification, our efforts performed poorly.
Our classifier trained on one set of data does not perform particularly well in
classifying discussions of other domains, such as Stack Overflow questions. Even
though the preliminary results of Robbes and Janes [23] suggested fine-tuning
ULMFiT would do well out of sample, we did not see any benefit to this approach.

After our evaluation with this deep learning model, we did not observe any
significant improvement in the cross-dataset/domain learning problem. We found
many unique words closely related to software domain. As a result, even though
we were considering our problem to be related to typical NLP (Natural Language
Processing), models trained on natural literature, such as Wikipedia, often failed
to understand the context of software design. Thus our results are not surprising,
since lack of domain specificity is a well-known limitation of such language models
[16].

We observed the following challenges:

1. As with all machine learning efforts, there is a linear increment on the learning
with the amount of vocabulary. Our experiment suffered from a relative lack
of data. Thus, it is necessary to find scalable ways of obtaining labeled design
data.

2. Machine learning models trained on one domain get biased to that input for-
mat. For example, the way in which one writes an issue comment is different
than how one writes a code comment (above and beyond the syntactical is-
sues). Thus we also concluded that we need to provide the classifier with the
context of both domains (issues, code comments, etc.) in order to transfer the
learning from one domain to another.

3. NLP models perform well with general discussions, however, they fail to under-
stand the context of software specific vocabularies [51]. For example, the word
“class” has a completely different context in software engineering compared to
general purpose literature.

We therefore focus the remainder of this paper on dealing with these challenges
in the context of design mining.
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6 Solutions to the Challenges

6.1 Getting More Labeled Data

Most design mining studies e.g., [8,9,6], build a training dataset using human la-
bellers, where two or more humans first label the data and then discuss among
themselves to come to an agreement about the label (i.e., design/not-design).
While we think this is a very effective method of building the dataset, the limita-
tion on the amount of data a human can label is a problem that was repeatedly
mentioned in the studies from before. This was also one of the conclusions we
made in our previous study [15].

In this section we talk about our proposed idea about acquiring, processing and
validating data that exist in different developer communication platforms. We are
mainly building and leveraging two kinds of dataset in our study: one for our
word embedding model (i.e., to vectorize text) and the other for the classification
problem.

6.1.1 Datasets

In the following experiments, we report results using new datasets and approaches
as they perform on the Brunet2014 data, as one possible cross-domain classification
problem. We use data from the study of Brunet et at. [8] as our cross-domain
test data sample and refer to this as Brunet2014 data for the rest of this paper.
Brunet’s data was initially extracted from Github, which fulfills our criteria of
being a cross domain dataset. Note that we also have within-dataset results
which we expect to be higher than the cross-domain results. We report this at the
end of Section 8.2.

Dataset for Word Embedding We create a software-specific word embedding using
software engineering literature. The lack of semantics can harm the performance
of a word embedding model [52]. Word embeddings are distributed word represen-
tations based on neural networks. While traditional one-hot algorithm represents
a word with a large vector, word embeddings embed every word into a low dimen-
sional continuous space taking the semantic and syntactic information in account
[53].

Hence, our word embedding model will benefit most from structured sentences
with grammatical correctness providing semantic relationship information between
key terms [54]. The software engineering literature represents more structured sen-
tences in terms of semantics than comments or discussion threads. In our effort to
get structured textual data, we scrape the plain text from 300 books, conferences
and journal papers. We remove the individual title, figures, names, tables and
all the meta-data to preserve the copyright policies of the literature. Our specific
processing approach is discussed later. After all the processing, our dataset yields
1,575,439 total words with 20,607 unique words. We make this dataset and the fol-
lowing datasets available in our replication package at doi:10.5281/zenodo.4010208
and https://doi.org/10.5281/zenodo.4885980.

https://doi.org/10.5281/zenodo.4010208
https://doi.org/10.5281/zenodo.4885980
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Dataset for Classifier The word embedding can be used to vectorize an input into
a format usable by machine learning algorithms. But what types of training data
should that vectorization use?

We scrape text from Stack Overflow questions, answers and comments to use
them as our training, testing and validation data for our classifier. For labeling the
data, we use the user-assigned tags of the questions and label these tags as design
or general depending on the tags of the question. Bazelli et al. [13] showed that
a tag acts as a label that can be used to describe the contents of the questions.
Their study found that the tags can be at times “misleading”, because they can be
assigned both by the author of the questions as well as other users. However, they
mostly represent actual information about the content of the question because of
the moderation by designated moderators and removal of unused of tags after a
certain period.

If we find one of the following: “design-patterns”, “software-design”, “class-
design”, “design-principles”, “system-design”, “code-design”, “api-design”, “language-
design”, “dependency-injection”, “architecture” tags, we label the entire discussion
as “design” while labeling “general” otherwise.

Table 3 shows some output examples based on the code-book we defined, after
text processing described in subsection 6.1.2. The data distribution at Table 4
illustrates that we have achieved a large number of data for our training, valida-
tion and testing phase with equal amount of instances for each class, preventing
the problem of class imbalance for this type of data reported in [9]. This even
distribution of the dataset also removes some of the steps we took in [15] in our
attempt to remove the unbalanced nature of the data such as stratification [55]
and oversampling [47].

Table 3: Example of labeling Stack Overflow discussions based on tags

Text Tags Label
headless device local network trying headless
raspberry connect local network want auto-
mated though mobile flutter given mobile net-
work raspberry connected flutter will connected
firebase

python, flutter,
networking, dart,
raspberry-pi

general

difference interface design pattern hard time
knowing when something interface design pat-
tern example observer

design-patterns,
model-view-
controller, inter-
face, observer-
pattern

design

soap request explain doing something platform
called section called repeaters send soap request
specific address will honest idea soap something
question receive soap data want receive soap re-
quest know save works structure guys give in-
formation send soap imagine tried investigate
truth know soap works using code seem work
hope help thanks

php, xml, web-
services, soap

general

behind naming visitor pattern book design
pattern says visitor pattern visitor lets de-
fine changing classes elements read pattern
book failing understand intuition behind nam-
ing pattern visitor called visitor

design-patterns,
visitor

design
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Table 4: Data Distribution for the Classifier

Type Total # Design data # General data

Train 200,000 100,000 100,000
Validation 30,000 15,000 15,000

Test 30,000 15,000 15,000

6.1.2 Data Processing

Hemalatha et al. [56] showed that data processing helps to remove noisy and incon-
sistent data resulting in improved performance, inspiring us to take a pipeline of
different text processing techniques to process the data. Raw text from comments
and discussions from the web pages often contains unnecessary tags, punctuation,
white spaces, new lines and numeric elements. At the beginning of the processing,
we look for these and strip them from the text. We implement our spell correction
algorithm as the next step of the process. We take the Britain English dictionary
with the affix as our primary dictionary and add Australian, Canadian, American
and South African English vocabulary into it to make it more versatile. Then we
take every misspelled word and compare it with the dictionary to find out the
most relevant word. We take up to five relevant words and then analyzing them
based on the context, number of similar letters present and the structure. Then
we replace the misspelled word with the correct word or a list of possible correctly
spelled words.

Ghag et al. [57] show that stopword removal can significantly improve the per-
formance of the traditional models, however it does not do much good to the more
sophisticated deep learning based models. Since we are trying to make our dataset
general and independent of a particular classifier, we take the stopword removal
as our next step of processing the text. This step removes all the insignificant
and unwanted words from the data such as “the”, “and” etc. which in turn, can
hamper the performance by misleading the classifier. We also make sure to keep
our word length between 3 and 25 because any word less than 3 letters or more
than 25 letters is not relevant to our study. At the final step of our processing,
we implement a normalization approach to normalize the words to their root/base
form. For example, ‘running’ has a base word of run-. We choose lemmatization
over stemming because Balakrishnan et al., [58] shows some versatile experiments
where lemmatization outperforms stemming in terms of precision. A base vocab-
ulary is used to perform lemmatization which eliminates the inflectional endings
and reduces the word to its base form. We use a lexical database called Word-
Net [59] as our base vocabulary. Combining all the steps in a pipeline allow us to
achieve a state-of-the-art text processor for our study.

6.1.3 Data Validation

Section 6.1.1 discussed how we acquire the data and label them with the help of
user-created tags. However, tags can be misleading too. Often, tags are created
by the author and the concept of design being very subjective, labeling data with
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the help of tags can create doubt on the validity of the data. In this section, we
examine the validity of the data with the help of top words and top phrase analysis.

The presence of a particular word can contribute a lot in classifying the whole
text. For example, if certain text contains keywords like ‘design’ or ‘pattern’ along
with some other related words, the text can be easily classified into the design
class. However, relying on some specific words and classifying a long text based on
some discrete keywords often can be misleading. We first analyze the top 100 words
in each class (design/not-design) and analyze the overlap between the words. An
overlap means that a particular word is present in texts that relate to both of the
classes and it falls into one of their top 100 words. This overlap implies that word
would be a poor indicator of class membership.

Table 5: The percentage of overlap in top 100 words and top 100 tri-gram phrases—
words/phrases occurring in both design and general (not design) wordlists.

n-gram features % of overlap

Top 100 words 46.0
Top 100 phrases 9.3

The first data row of Table 5 shows a 46% overlap of top words in the design and
general class. This suggests that relying on a particular set of discrete keywords can
often lead to misclassification since both classes contain similar kinds of keywords.
To deal with this overlap, we instead rely on a tri-gram model. A tri-gram model
contains three words each time. This way, the middle word can have the context
of both the neighbouring words surrounding it. The second data row of Table 5)
illustrates a significant reduction in the amount of overlap between the top tri-
gram phrases. This way, the classes can have features that are very unique to that
particular class. Although it is possible to reduce the overlap by increasing the
size of the phrases, we opted for using a tri-gram model because of its proven
capability of being the best predictor for probabilistic measures [60].

6.2 Resolving Potential Transferability Issues

The previous challenge was about expanding the set of software specific data we
can use to vectorize and train our model. Our final two challenges refer to build-
ing software context into the model, both for context based on data domain (is-
sue/comment/pull request) and based on software semantics, rather than general
language models, which are typically trained on Wikipedia or other general pur-
pose sources. To resolve these problems, we introduce data augmentation and
software word vectors.

6.2.1 Data Augmentation Using Similar Word Injection

Machine learning models typically require a large amount of data to train, test
and validate. The previous studies that we explored in Section 2 either reported
manual labeling or synthetic generation of the data. We used a relatively large
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amount of data containing 260,000 rows of discussion from Stack Overflow for
this study, yet, this is only a very small subset of the total discussions in Stack
Overflow. Thus, augmenting this data might help with performance.

To augment the data we collected, we use an unsupervised word embedding
from the study of Efstathiou, Chatzilenas, and Spinellis [16] (which we call ECS)
to inject similar words into the small subset of data we can have. The ECS word
embedding was trained on 15 Gb of text obtained from Stack Overflow. This
unsupervised model, as the name suggests, only needs data but does not require
any labeling. On the other hand, the similar word injection into the small subset of
data enables the data to have all the possible vocabulary from the domain with the
surrounding context. We call this approach “providing total domain context”. Fig
6 shows an example: the word ‘design’ is augmented with, among others, ‘redesign’
and ‘architecture’.

Our injection algorithm first splits the training corpus into individual words.
Then, each word is passed through the model to obtain a set of similar words for
that specific word. The Efstathiou model outputs a similarity index from 0 to 1 of
each word in the set of similar words. We take those words which have a similarity
index more than or equal to 0.6, after experimenting with different cutoff numbers
to find an optimal AUC result. Then, we concatenate the set of similar words with
the actual word to obtain the revised (augmented) corpus.

6.2.2 Software Specific Word Vectorizer

Since we are using an embedding model to turn our text data into a numeric vec-
tor, it is important that our word embedding model has the context of software
engineering since we are dealing with texts that are mostly about software. In
our previous study, we used the GloVe word embedding [44] which is trained on
Wikipedia data. This word embedding works well for general purpose text classifi-
cation, however, it does not perform well with text from from software domain. For
example, the word ‘class’ has general contextual relation with education while in
software engineering, the word ‘class’ is an integral vocabulary of object oriented
design. To address this issue, we collect our data for training the word embedding
model from literature related to software engineering (described in §6.1.1).

Joulin et al. [61] described the use of subword information to enrich a word
vector. They also used a similar technique to implement a compression algorithm
[62] for classification models. We implement the algorithm by Bojanowski et al.,
[63] with the help of fasttext6 with the steps illustrated in Figure 7. The software
literature corpus is used to train our new word embedding model.

First, the dataset is passed through the processing steps described in section
6.1.2. Then, each word of the corpus is evaluated and injected with similar words
using the ECS similar word injector. During the training phase, we train the
classifier unsupervised since we just want to group the data according to similarity.
We have used skipgram [64] as one study [65] shows that skipgram models works
better with subword information than cbow [64]. We take words with length from
4-20. Since we are removing every word less than three characters in our text
processing step, it is not important to take the words less than 4 characters. In
addition, design words seem to be on the longer side, for example ‘reproducibility’

6 https://fasttext.cc/
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contains 16 characters. We are considering characters up to 25 characters in length.
We take 300 dimensions of each word training by looping for 10 epochs. Both of
our decisions of taking 300 dimension and looping for 10 epochs is taken because
the training corpus is relatively small.
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6.2.3 Providing and Transferring Context

In our previous study [15] we found that both the lack of domain context in a
small subset of the total data, and making the train data and test data similar in
terms of vocabulary, are a challenge. The out-of-vocabulary problem is one such
instance, since word vectors are not helpful if they do not contain a particular
word (such as a unique source code identifier) that is out of its vocabulary.

Appropriate classification of text requires the training data to have proper un-
derstanding of the whole domain, e.g., of projects and artifact types. Ideally, the
test and train data also have similar context. For example, training on sentences
from pull requests from Project A will have poor results if applied to code com-
ments from Project B. Nonetheless, we expect a design classifier to be able to
understand (as humans would) that both are valid, and frequent, ways in which
design discussions happen.

Vocabulary from one domain (ex. Stack Overflow) can differ from another
communication medium (e.g., Github, email). For example, most of the discussion
happening in Stack Overflow relates to questions and answers, while Github rep-
resents mostly statements in the form of issue tracking and pull request. Hence,
the vocabulary and the context also varies from one domain to another.

We create an unsupervised word vector trained on data with a similar context
to the test domain (in this case, data from Github) to inject similar words into
the training data (Stack Overflow data). We also repeat this step in the opposite
direction (reusing the already trained ECS similar word injector model) to inject
the training domain’s vocabulary context to the test data. We name this step
“cross domain context transfer”.

In transferring context, we are biasing the models to the software engineering
context, but we must be careful not to further bias the training data with infor-
mation from the test data set. We carefully and completely separate the test and
train data from the training of the word injector models. The Github word vector
is trained on a random selection of pull request text obtained from the Github
BigQuery data dump. However, it is possible that a few of the 1000 items (pull
request discussions) from the Brunet2014 dataset appear in our random selection
in the Github word vector, and it is possible that some words in the 260,000 sen-
tences we use from Stack Overflow also appear in the ECS word vector (trained
on a random selection of 15 Gb of Stack Overflow text). However, we judged this
risk to be minimal, given the data volumes involved, and the limited impact that
a single significant word can have on the training outcome. We outline the context
transfer approach in Fig. 8.

7 Study Design

In this section, we describe the overall design of our study along with the proposed
design of each component of our system architecture. Figure 9 illustrates an overall
and high level view of our study with all the components. We have talked about
the source of the data and how to acquire and process the data in Section 6.1.1.
After processing, the data goes through several models and is transformed into
a matrix. Similarly, the classes are also expressed as a vector. We refer to the
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Fig. 8: Proposed idea of providing total and cross domain context

train data matrix and train class vector as train vector. Similarly we name the
combination of the text matrix and its associated vector, test vector.

We use 10 classifiers: ‘Nearest Neighbors’, ‘Decision Tree’, ‘Random Forest’,
‘Logistic Regression’, ‘Gaussian Naive Bayes’, ‘Neural Net’, ‘AdaBoost’, ‘QDA’,
‘Linear SVM’, ‘RBF SVM’ and analyzed the output of the model with every
transformation of the data, using Scikit-learn [66]. We start by implementing the
similar word injector model to inject similar vocabulary into the data. Then we use
our software specific word vectorizer to turn the text into matrices and vectors.

We have used a Google Cloud Platform7 instance with processor of Intel’s
E2 platform and 16 GB memory to load four models (1 word vectorizer, 2 word
injectors, 1 classifier) at once.

We split the total dataset of 260,000 rows into three parts8. We used 200,000
rows of data for training the model while keeping 30,000 rows as validation data
and the other 30,000 rows as within-dataset test data (we still use the Brunet2014
dataset for the cross-domain problem). We use our validation data in training the
neural networks to validate the results after each iteration. Our test data set is
kept completely separate from the training phase. Hence, our test data can be
considered to be an unknown set of data from the same domain. After the
completion of the training, we evaluate our models with the test data.

7 https://cloud.google.com/
8 for access, see doi:10.5281/zenodo.4010208 and https://doi.org/10.5281/zenodo.4885980

https://doi.org/10.5281/zenodo.4010208
https://doi.org/10.5281/zenodo.4885980
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8 Experiments and Results

Our main goal of this study is not simply to show a new state of the art (SOTA)
result outperforming a previously studied classifier when classifying data from the
same domain. Rather, we want to illustrate how the data can be generalized and
fed to the model so that the model can perform better than the previous studies
in terms of detecting design discussions from an unknown domain. We used 10
modern classifiers to demonstrate the performance of each classifier individually.
We report on the AUC score of all classifiers in Figure 10. Each bar in a clas-
sifier group in that figure reflects either the baseline or one of the experiments
we describe below. Table 6 shows a summary of those same results. We conduct
our experiment in two stages. We first look at how using software word vectors
improves the results. Next, we consider data augmentation using similar words.
Results reflect the AUC score of a classifier trained on the 200,000 rows of Stack
Overflow discussions and tested on the Brunet2014 data (Github pull requests).

Table 6: Tabular form of Figure 10. Baseline is the GloVe vectorizer; Literature the
experiment using the software literature vectorizer; Domain Words the injection
of software domain words into the training data; and Cross Context the injection
of context information from Github and StackOverflow.

Experiment Baseline Literature Domain Words Cross Context

Nearest Neighbors 0.5000 0.6720 0.6833 0.7324
Decision Tree 0.5051 0.6245 0.5052 0.5633

Random Forest 0.5000 0.6867 0.6406 0.7288
Logistic Regression 0.5000 0.7364 0.7671 0.7894

Naive Bayes 0.5000 0.6424 0.5082 0.6978
Neural Net 0.5000 0.6810 0.6140 0.6963
AdaBoost 0.5000 0.6542 0.6859 0.7134

QDA 0.5000 0.6046 0.5000 0.6650
Linear SVM 0.5000 0.7648 0.7978 0.7985

RBF SVM 0.5400 0.7280 0.7144 0.7812

Mean 0.5045 0.6795 0.6417 0.7166

8.1 Experiment 1: Software Literature Word Vector

First, we want to make sure that our hypothesis of domain specific word vectorizer
performs better than the conventional word embedding model to answer RQ 2.
For this purpose, we compare the performance of our software literature word
vectorizer with a state-of-the-art word vectorizer, GloVe. Except for using two
different word vectorizers, all the other constraints were kept same during the two
test runs.

The left 2 bars in Fig. 10 illustrates the comparison of our vectorizer with
GloVe vectorizer. The horizontal axis represents the classifiers used and the ver-
tical axis shows the performance of different classifiers in terms of AUC. Using
GloVe as the vectorization model provides AUC scores in the range of 0.5 - 0.55.
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Fig. 10: Experimental results. Labels reflect AUC.

The performance is significantly improved while vectorized with our software spe-
cific word embedding model as shown with the second bar in each group. Thus we
conclude that the software specificity of our new vectorization (trained on 300 lit-
erature sources from the SE domain) greatly improves classification results. What
seems to be happening is that the vector space represented by the software specific
taxonomy is better able to distinguish design-related words from general software
words, unlike the Wikipedia-based GloVe. The best classifier in this experiment
was Linear SVM, with AUC of 0.765 (Precision: 0.695, Recall: 0.672, MCC: 0.492).

8.2 Experiment 2 and 3: Data Augmentation Results

After success on the first stage, we augment the dataset by injecting similar words
into the data according to Figure 8. First, we explore how similar word injection
performs in providing total domain context.

The performance after augmenting (only) the training dataset with software
literature words is shown in the third bar of each classifier group (”Using Software
Literature Vectorizer”) of Figure 10 and column 3 of Table 6. As seen from the
figure, we get a mixed range of performance by this approach. The performance of
most of the classifiers decreases or show only marginal increases over the baseline
(column 2) following this method. This is because the injection of similar words
only to the training data increases the statistical weight and bias towards only one
domain (namely Stack Overflow).

On the other hand, because the test data is from another domain (Github),
the high bias in one domain prevails during the probability analysis resulting in
missed classification of the test data. The best classifier in this experiment was
Linear SVM, with AUC of 0.798 (Precision: 0.647, Recall: 0.901, MCC: 0.581).
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This problem of high bias is removed by using instead a cross domain similar
word injection, the rightmost bar in Figure 10 and the right column of Table 6.
Results shows that AUC score of all classifiers is higher after augmentation using
cross domain similar word injection. Some of the scores, namely Linear SVM at
0.80 (Precision: 0.734, Recall: 0.771, MCC: 0.592), are SOTA in cross-domain
design discussion classification studies. The use of the contextual words from both
domains, essentially transferring the characteristics of discussions in those domains
to either dataset, has improved classification performance.

Most of the related work in classifying design discussion does not report or
apply cross domain classification. Only one study by Viviani et al. [10] attempts to
show the performance of their classification while classifying an unknown dataset.
A gold standard dataset was manually created by them which was used to justify
the performance of their model with unknown data. While that classifier produced
better results than ours, the gold standard dataset was not cross domain data. It
was made from Github discussions similar to the training data. We believe that
this study is unique in using dataset, vectorizers and attempts to tackle cross
domain design discussion classification.

Precision and recall measures show the classifier is also balanced between false
positives (low precision) and false negatives (low recall). For the context of using
design classification to augment developer activity, these values are reasonable for
indicating whether a pull request (for example) is design-related or not (roughly
27% of the time it will be mischaracterized), or in retrieving all the design-related
discussions in a search (which will miss 23% of the discussions). More investigation
with human stakeholders is necessary to explore how these values—and also which
discussions are missing—impact development activities.

Within Dataset Results We use the software specific word vectorizer along with
similar word augmentation for train and test data and a simple neural network
(Multi-layer Perceptron classifier) illustrated in Figure 11 yielding 0.88 AUC (MCC:
0.76), which is a state-of-the-art score for classifying unknown data within the
same domain (in this case, Stack Overflow design discussions). This compares di-
rectly with the approach NewBest we described in §3.2 which obtained AUC of
0.84 (MCC 0.63). Note that this is expected, since there is no cross-domain data
differences (as there was with the Brunet2014 data).

In summary, we have demonstrated how we might overcome three challenges
in design mining studies. We show substantial improvements in classification ac-
curacy across domains and projects by using more labeled data, software specific
context, and cross-domain context. We also present a state-of-the-art approach for
classifying unknown discussion within the domain.

9 Discussion

We discuss the implications of our results for future design mining studies, how
dataset size matters, discuss the ways to improve future studies and account for
researcher degrees of freedom. We begin with threats to validity for this work.
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Fig. 11: Protocol map of the test data validation

9.1 Limitations: Bad Analytics Smells

We use the concept of bad analytics smells from Menzies and Sheppherd [67]. In
that paper, the authors introduce a succinct list of twelve potential study design
flaws in analytics research, and suggest some mitigations. Here, we list the smells
this paper might emit, and ignore the ones we believe we have dealt with or do
not apply.

(a) Using suspect data: we rely extensively on the tags that the author and mod-
erators of Stack Overflow created. However, we conduct some statistical test
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to validate the data labels. We also re-use previous datasets, but several dif-
ferent ones, and contribute a new dataset to the literature. As we mentioned,
it is possible the context transfer approach tainted the test data with training
context (and vice versa), since we rely on word vectors from the same domains
as a fine-tuning approach. However, the specificity of the data involved and
the overall large volumes of data used to train the vectors makes us think this
risk is minimal.

(b) Low power : ultimately, the design mining data relies on a limited set of la-
beled data (or makes the possibly invalid assumption that the tagging in Stack
Overflow reflects real design). Below, we show some results that suggest we do
indeed have sufficient training data, or rather, that bigger increases in perfor-
mance will need to come from somewhere other than more data.

(c) No data visualizations: we present a limited set of visualizations because text
data is always difficult to visualize. However, we provided some statistical anal-
ysis in the data validation in Section 6.1.3.

(d) Lack of manual validation: in this study, we mainly wanted to explore the
improvements of having a large and related data on the classification results.
We present very little manual validation of the data we chose to have during
our data collection phrase. We decided to go for the tags we felt to be closer
to design topics. However, there was not any manual validation done on the
data we get from the tags. The classification result should be improved with a
careful choice of tags and data that is clearly related to the design topics.

(e) Not tuning : Because of our focus on making the vectorizer and data generalized
for models, we did not emphasize optimization for any specific model. In the
case of neural network, we use the most simple one with default optimization.
Thus, it is possible our results are an under-estimate of a properly tuned model.
We use a cutoff point of 0.6 for word similarity index in data augmentation.
We experimented with several similarity index and 0.6 seem to work the best
in terms of AUC and the size of vocabulary. However, we do not validate this
choice during our experiments of this paper. One other limitation is that we
used 300 different literature sources to extract text to train our word vectorizer.
The basis for selecting these 300 was a random one, based on common SE
literature. We took this approach to remove bias towards a specific kind of data.
However, this was a missed opportunity for us to direct our model in a very
specific way (e.g., by only mining design related papers or texts). Furthermore,
the disadvantage of using a limited number of literature sources is reflected in
the total number of vocabulary in the training corpus of the vectorizer.

(f) Not justifying choice of learner : we report on the standard machine learning
approaches including some deeper network models. It is possible that some
other learner could improve results, particularly a tuned deep model.

(g) Not exploring simplicity : this smell argues that we should ensure we do not
overfit our results with complex models. We explicitly test our models on non-
similar (cross-project/domain) datasets.

9.2 Choice of Training Size

The violin plot at Figure 12 represents the distribution of the AUC of the 10
classifiers with different size of chunks of the training data. We ran all of the
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Fig. 12: Performance of the 10 classifiers after training with different size of train
data. Dot represents an outlier, solid bar is the median.

preceding experiments using a chunksize of 200,000 data points, a figure selected
based on the data availability. However, we were curious if less data might return a
reasonable performance as well. We experimented with four chunks: 10,000, 50,000,
100,000, 150,000, 200,000. The x-axis represents the chunk size. From the plot, we
can see that chunk of 10,000 train data has the highest median (dark black line
inside the boxes) with relatively high range for minimum and maximum.

This implies this chunksize may well outperform datasets 10x larger. While
this seems counter-intuitive, the issue of dataset size in machine learning is still an
active area of research [68]. For example, in deep learning models larger datasets
seem to make a bigger difference. We use less complex models such as SVM, and
thus our data—for example, from Stack Overflow—may be saturated for that
algorithm more quickly. More research into the learning curve (error vs accuracy)
for design mining is necessary. This choice is another example of researcher degrees
of freedom that should be answered early in the study. It also seems to contradict
the first challenge we noted in §5, that dataset size was important. Our belief is
that this is still true, but that we are seeing diminishing returns after we increase
by an order of magnitude more data (e.g., Brunet2014 was 1000 records, roughly
20% of which are design, vs our small sized Stack Overflow dataset of 10,000,
where roughly 5,000 are design).

9.3 The Effectiveness of Software Specific Vocabularies

Most neural language models are intended for general-purpose language tasks, such
as translation and question answering. However, these models do not deal well with
domain-specific terminology, because such terminology is a small fraction of the
overall training data [16].

Introducing software vocabularies resulted in a big improvement in accuracy
of the design mining classifier, suggesting that even fairly simple contextual ap-
proaches, such as similar word augmentation, and software specific vectors, can be
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a big help. The importance of individual project context, as opposed to general
software context, is still unclear (and training models is less useful with less data
to work with). Novielli et al. suggest that fine-tuning for sentiment analysis, at the
project level, can be quite helpful [25]. We intend to investigate how these vector
models can help with fine-tuning general purpose models like ULMFiT or BERT,
as suggested (for source code) by recent work from Karampatsis et al. [51].

9.4 Researcher Degrees of Freedom

As our protocol maps have shown (cf. Fig. 1, Fig. 8), these studies have many pos-
sible analysis paths: datasets, training algorithms, test/train data, vectorization,
stop words, etc. These researcher degrees of freedom mean there are many ways
to achieve results in these studies, and picking a single point result as the SOTA
may be misleading. At the extreme researcher bias [69] may be involved, typically
implicitly.

We think there are three major steps to take to help solve the RDOF question,
and improve conclusion stability.

1. Use protocol maps or other graphical models to clearly outline the degrees
of freedom, and chosen paths. Improve study reporting in general. There are
lessons to be learned from scientific workflow software already well-developed
in, for example, high-energy physics. This makes replication of results simpler
and direct comparison possible.

2. For confirmatory studies, pre-registered hypotheses and protocols, like in medicine,
make it clear what conclusions are valid, and which might be conditioned on
the observed results.

3. Improve understanding of the concept of RDOF. Develop tools that can auto-
matically generate protocol maps based on common data science pathways. For
example, we could apply our existing strengths in software slicing to analyze
available parameter choices and dependencies in machine learning frameworks.

10 Conclusion

Like Shakiba et al. [9] and Viviani [6,10], we envision a design tagging tool that
can be applied broadly to all design discussions. This would be a necessary first
step in automatically analyzing design decisions and recommending alternatives or
improvements. To get to that point, the community needs to increase the amount
of data available for these sorts of mining tasks. Stack Overflow, as we demon-
strate, is one potentially rich source for labeled data. More importantly, a better
understanding of the nature of design discussions is needed. Expanding on quali-
tative studies such as Viviani et al. [6] or those surveyed in van Vliet and Tang [70]
are the likely way forward, now that others, such as Brunet et al. [8] have shown
the nature of specific design mining challenges within a constrained context.

The importance of design mining to practitioners is largely speculative at this
point, as researchers try to improve state of the art (SOTA) to the point it can be
useful in practice. More effort in bringing even preliminary design mining results
into prototype tools is important to understand how (and why) practitioners might
use design mining.
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This study represents a continuation of our previous work [15] by introducing
a concept of building software specific word vectorizer to improve word embedding
for software engineering related discussions backed by results on applying it on a
wide variety of classifiers. We showed state of the art results on the cross project
classification problem using this approach. This paper also demonstrates the appli-
cation of augmentation (similar word injection) to transfer context between cross-
domain with experimented results and discussions. We also restrict ourselves from
going further with the classifiers by tuning the hyper parameters and exploring
plausible explanation on the difference in performance for the different classifiers.
However, we believe that our idea of software specific word embedding and context
transfer, along with efficient choice of classifier and parameter optimization, can
improve the study of design discussion mining even further.

Acknowledgements Thanks to the authors who have so graciously made their data available
for study in true open fashion. Thanks also to the reviewers who have greatly improved this
manuscript over its several iterations.
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