
https://doi.org/10.1007/s10664-021-10058-6

GitHub Discussions: An exploratory study of early
adoption

Hideaki Hata1 ·Nicole Novielli2 · Sebastian Baltes3 ·Raula Gaikovina Kula4 ·
Christoph Treude5

Accepted: 22 September 2021
© The Author(s) 2021

Abstract
Discussions is a new feature of GitHub for asking questions or discussing topics outside of
specific Issues or Pull Requests. Before being available to all projects in December 2020,
it had been tested on selected open source software projects. To understand how devel-
opers use this novel feature, how they perceive it, and how it impacts the development
processes, we conducted a mixed-methods study based on early adopters of GitHub dis-
cussions from January until July 2020. We found that: (1) errors, unexpected behavior, and
code reviews are prevalent discussion categories; (2) there is a positive relationship between
project member involvement and discussion frequency; (3) developers consider GitHub Dis-
cussions useful but face the problem of topic duplication between Discussions and Issues;
(4) Discussions play a crucial role in advancing the development of projects; and (5) posi-
tive sentiment in Discussions is more frequent than in Stack Overflow posts. Our findings
are a first step towards data-informed guidance for using GitHub Discussions, opening up
avenues for future work on this novel communication channel.

Keywords GitHub discussions · Communications · Sentiment · Empirical study ·
Exploratory study

1 Introduction

As part of the 2020 edition of GitHub’s Satellite conference in early May, the platform
announced a number of new features, including Codespaces, GitHub Private Instances, and
GitHub Discussions. The latter were touted as an alternative to GitHub Issues and Pull
Requests, stating that “software communities don’t just write code together. They brain-
storm feature ideas, help new users get their bearings, and collaborate on best ways to use

Communicated by: Nachiappan Nagappan

� Hideaki Hata
hata@shinshu-u.ac.jp

Extended author information available on the last page of the article.

Published online: 22 October 2021

Empirical Software Engineering (2022) 27: 3

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10058-6&domain=pdf
http://orcid.org/0000-0003-0708-5222
mailto: hata@shinshu-u.ac.jp

the software”.1 In their announcement, GitHub argued that the linear format of Issues and
Pull Requests—while well suited for merging code—is not suitable for creating a commu-
nity knowledge base. With the goal of filling this gap, GitHub Discussions was released in
May 2020 in a closed beta phase for selected public repositories. In December 2020 dur-
ing the GitHub Universe conference, the platform announced that GitHub Discussions was
released as a public beta feature.2

Originally, this feature was requested by software developers back in 2016.3 As such
requests show, there are questions about the effectiveness of the communication channels
that developers currently have at their disposal, in particular for open-ended tasks such as
brainstorming. Discussions is one of the first attempts at addressing this on the GitHub
platform. As previous work reported, innovative services could attract contributors (Hata
et al. 2015).

GitHub’s announcement drew the attention of the software developer community which
questioned the role of the new feature in the existing landscape of question-and-answer
(Q&A) forums, mailing lists, issue trackers, and others. For example, in a popular Hacker
News thread4 debating the announcement, opinions ranged from “GitHub is slowly eating
the surrounding cities [...] now Discussions aims for a piece of Stack Overflow pie” to
“This should make Github much more pleasant once it spreads across most projects”. In
particular the relationship between the new Discussions feature and the Q&A forum Stack
Overflow garnered interest, with some users expecting a “reduction” in Stack Overflow
and others arguing that Stack Overflow “is literally anti-discussion, the whole point is it is
about questions and answers, not discussion [...] That isn’t to say discussion isn’t useful or
valuable, it absolutely is, it is just a completely different thing”.

The collaborative and participatory nature of software development is shaped by the com-
munication channels that are used by software developer communities of practice (Storey
et al. 2016). At the same time, these communities will design their own social protocols of
how to use tools and adapt and repurpose them over time (Giuffrida and Dittrich 2013). Our
work follows in a long line of work on how software developers use and appropriate com-
munication channels, ranging from discussions during code review (Tsay et al. 2014) and
on Stack Overflow (Beyer et al. 2020) to mailing lists (Guzzi et al. 2013). Here we aim at
understanding whether it is worth adding yet another communication channel. Our focus is
not on “the feature” but about how it is used for collaborative knowledge-building and how
its usage differs from existing channels.

As the software engineering research community is often criticized for being slow in
responding to trends, we monitored the closed beta phase to provide data-driven feedback
for early adopters who decide to use the feature now that it is publicly available. In this
paper, we report the results of the first comprehensive mixed-methods study on how soft-
ware developers utilize the GitHub Discussions feature during the closed beta period, what
they are using it for and who uses it, using qualitative and quantitative analysis, online
surveys, and sentiment analysis.

1https://github.blog/2020-05-06-new-from-satellite-2020-github-codespaces-github-discussions-securing-co
de-in-private-repositories-and-more/#discussions
2https://github.blog/2020-12-08-new-from-universe-2020-dark-mode-github-sponsors-for-companies-and-
more/#discussions
3https://github.com/dear-github/dear-github/issues/44
4https://news.ycombinator.com/item?id=22388639

3 Page 2 of 32 Empir Software Eng (2022) 27: 3

https://github.blog/2020-05-06-new-from-satellite-2020-github-codespaces-github-discussions-securing-code-in-private-repositories-and-more/#discussions
https://github.blog/2020-05-06-new-from-satellite-2020-github-codespaces-github-discussions-securing-code-in-private-repositories-and-more/#discussions
https://github.blog/2020-12-08-new-from-universe-2020-dark-mode-github-sponsors-for-companies-and-more/#discussions
https://github.blog/2020-12-08-new-from-universe-2020-dark-mode-github-sponsors-for-companies-and-more/#discussions
https://github.com/dear-github/dear-github/issues/44
https://news.ycombinator.com/item?id=22388639

We also investigate how these early adopters were initially planning to use it and how
they now perceive its usefulness and its place in the complex landscape of existing commu-
nication channels and artefacts. We further study the feature’s impact on the development
process by analysing Discussions’ interplay with GitHub Issues and Pull Requests, and we
investigate how GitHub Discussions compares to Stack Overflow threads in terms of their
sentiment and toxicity.

Based on analysing 7,116 discussions with 29,136 posts from 92 GitHub projects, we
find that software developers use the new feature to discuss errors, discrepancies and
reviews, and that most discussions were started by project users. Developers initially
envisioned using the new feature for question-answering, idea sharing, and community
engagement, and appreciate the integration of discussions into the rest of GitHub while
highlighting potential issues related to redundancy. Discussions can drive development by
triggering the creation of new Issues and Pull Requests. Compared to Stack Overflow
threads, positive sentiment is more frequent in GitHub Discussions.

As GitHub Discussions is now available to all projects hosted on the platform, our find-
ings can guide development teams in their decision on whether and how to adopt the feature
by establishing how it is being used by early adopters and reporting the experiences of those
using it. Our insights further aim to improve the practices developers follow when con-
tributing to GitHub Discussions and guide GitHub and other platforms on how the feature
can be improved, in particular in terms of reducing redundancy. Our work also introduces a
novel communication channel to the software engineering literature, opening up venues for
future work on GitHub Discussions and their interplay with other channels and artefacts in
the complex software development landscape.

The remainder of the paper is organized as follows. In the next section, we introduce
the GitHub Discussions feature in detail, before we present our research questions and
data collection approach in Sections 3 and 4. In Section 5, we describe the methodology
used to address our research questions. Then we present our results in Section 6 and dis-
cuss limitations in Section 8. Finally, we position our work in the context of related work
(Section 9) and conclude by envisioning possible challenges for future research based on
our findings (Section 10).

2 GitHub Discussions

GitHub Discussions is a new feature for GitHub specifically designed to support communi-
cation for the members of an open source project community. The forum is designed to host
conversations that, unlike issues, are not directly related to code development and, thus, are
not supposed to be included in the project boards. Nevertheless, the official GitHub guide-
lines5 recommend to clearly define a code of conduct for each project to guide contributors
towards effective communication.

The GitHub Discussion interface is structured in a Question-Answering fashion (see
Fig. 1). However, there are several differences with respect to popular QA-technical forums,
such as Stack Overflow, which we highlight in the following. Differently from Stack
Overflow, a GitHub Discussion can serve different communicative intentions, beyond
question-answering. For example a Discussion can be started to share information or make
announcements, report errors or discuss about potential evolution of a software project. For

5https://docs.github.com/en/discussions/quickstart

Page 3 of 32 3Empir Software Eng (2022) 27: 3

https://docs.github.com/en/discussions/quickstart

Fig. 1 The GitHub Discussions feature: categories, participants, relations, notifications, and events

example, Fig. 1 depicts a thread starting from a conceptual question aimed at understanding
the code behavior.

Discussion are organized according to categories (highlighted as item number 1 in the
figure), such as ‘General’, ‘Q&A’, ‘Ideas’, and so on. Differently from what happens in
Stack Overflow tags, where the information seeker can either reuse or create a new tag
at the moment of question writing, in GitHub Discussions categories are created by either
repository owners and contributors with write access. Participants (2) of discussions can use
the most relevant categories among the existing ones in order to group and organize threads.

Discussion can either starts from scratch or from a previously existing issue. The web
interface includes this information (3) together with the number of participants in the discus-
sion. Similarly to other communication in GitHub, one can subscribe to receive notifications
(4). Similarly to Stack Overflow, it is possible to flag an answer as answering the original
question. However, differently from Stack Overflow where the question author is the only
one allowed to flag an answer as accepted, in GitHub Discussion this can be done by other
people as well, as shown in Fig. 1 (5).

3 Research Questions

The main goal of the study is to gain insights into the use of GitHub Discussions. Based on
this goal, we constructed three main research questions to guide our study. We present these
main questions and sub-questions, along with their motivation.

RQ1 How have GitHub Discussions been adopted?

RQ1.1 What are GitHub Discussions about?

3 Page 4 of 32 Empir Software Eng (2022) 27: 3

RQ1.2 Who contributes to GitHub Discussions?
RQ1.3 What is the relationship between project characteristics and GitHub Discus-

sion adoption?

The motivation of our first main research question (RQ1) is to understand the kind of dis-
cussions that occur in GitHub Discussions. We use a qualitative method to categorize the
discussions by the content and the individuals that contribute to the discussions.

RQ2 What reasons do developers have to adopt GitHub Discussions?

RQ2.1 Why do projects adopt GitHub Discussions?
RQ2.2 How do developers perceive GitHub Discussions?

Our second main research question (RQ2) requires an analysis of the different perceptions
of why GitHub Discussions is being used and how developers feel about the feature.

RQ3 How do GitHub Discussions relate and compare to other communication channels?

RQ3.1 What is the impact of GitHub Discussions on other channels?
RQ3.2 How does the sentiment differ compared to Stack Overflow posts?

GitHub Discussions does not exist in isolation, but are part of a network of a myriad of
other artefacts. Our third main research question (RQ3) explores the impact of GitHub
Discussions on other artefacts and compares emotional styles with an existing communica-
tion channel. The key motivation is that we would like to understand the potential roles of
GitHub Discussions for a software project.

4 Data Collection

In this section we describe our data collection methodology, and present our replication
package. When we initiated this research project, the GitHub REST API6 did not support
the new Discussions feature yet. In addition, when we asked the GitHub support for projects
that have access to the beta feature, they replied that they could not disclose that information.
Thus, to determine which projects already use the feature and to collect metadata and posts
for analysis, we had to rely on a custom web scraper we built (available on GitHub7). In a
first step, we utilized the API to retrieve the most popular projects according to their number
of stargazers. Previous work has shown that this approach has a high precision in retrieving
engineered software projects (Munaiah et al. 2017). We assumed that more popular projects
have a larger user base and are more likely to adopt Discussions early on. Our goal was to
retrieve at least 10,000 projects. Due to API limitations, we had to execute multiple queries
and then merge the data, yielding the 10,899 most popular GitHub projects as of June 26,
2020.

Next, we used our web scraper to determine which GitHub features, including Discus-
sions, Issues, and Pull Requests, are activated in those projects. Many projects used Pull
Requests (10,896), Actions (10,744), and Issues (10,432). The Projects feature was less
common (8,997), followed by Wikis (4,071) and the new Discussions feature (99). After
manually checking the projects using Discussions, we excluded one not being used for
software development.

6https://docs.github.com/en/rest
7https://github.com/sbaltes/github-retriever/

Page 5 of 32 3Empir Software Eng (2022) 27: 3

https://docs.github.com/en/rest
https://github.com/sbaltes/github-retriever/

For the remaining 98 projects, we scraped all discussions, including metadata such as
title, state (answered or unanswered), author, timestamp, and whether the discussion thread
was converted from an existing Issue. For individual posts, we stored author, timestamp,
whether a post was part of the selected answer (posts can be nested in discussions), and the
HTML content.

We executed several data collection runs. The dataset we used to answer RQ1 and RQ2
was collected on July 22 and contains 7,116 discussions with 29,136 posts from 92 projects;
the dataset used to answer RQ3 was collected on August 1 and contains 9,234 discus-
sions with 32,714 posts from 92 projects. The earliest discussion thread in our dataset had
started in January 2020. Note that some projects had the Discussions feature activated, but
no discussion threads yet. Further, some projects converted existing Issues into Discussion
threads: In the August 1 dataset, 1,104 discussions (12%) with 5,885 posts (18%) were con-
verted from Issues, as opposed to 1,007 (14%) discussions with 5,401 posts (19%) in the
older one.

4.1 Online Appendix

Our appendix containing results of our qualitative analyses is available on GitHub8 and
Zenodo (Hata et al. 2021). The appendix includes files with links to the full Discussions on
GitHub. We further published the scripts we used to collect the data not available via the
GitHub API.9

5 Methods

This section describes our mixed-methods procedure including a qualitative analysis, a
quantitative analysis, a survey, and a semantic analysis.

5.1 Qualitative Analysis

To understand what kind of discussions occurred in GitHub Discussions (RQ1.1), inves-
tigate the relationship between project characteristics and GitHub Discussion adoption
(RQ1.3), get an initial view of developer perceptions of the GitHub Discussions feature
and to understand why projects adopt GitHub Discussions (RQ2.1), and investigate how
GitHub Discussions affects the projects that they belong to and in particular understand their
impact on other channels and artefacts (RQ3.1), we manually annotate target instances, with
multiple coders, in multiple iterations.

Discussion categories (RQ1.1) We conduct a qualitative analysis of statistically represen-
tative samples of two groups of discussions, namely, discussions converted from Issues and
not from Issues (started originally at GitHub Discussions). We have 1,007 and 6,109 discus-
sions for the two groups, respectively. We randomly sampled a statistically representative
number of discussions from each discussion group, ensuring that our findings regarding per-
centages within each sample would generalize to the entire groups with a confidence level
of 95% and a confidence interval of 5. We obtained 278 (from Issues) and 361 Discussions
(not from Issues) for our samples, for a total of 639 discussions overall.

8https://github.com/sbaltes/GHDiscussions
9https://github.com/sbaltes/github-retriever

3 Page 6 of 32 Empir Software Eng (2022) 27: 3

https://github.com/sbaltes/GHDiscussions
https://github.com/sbaltes/github-retriever

Our codes for discussion categories were informed by a taxonomy of question categories
to understand kinds of questions on Stack Overflow (Beyer et al. 2020). Since we found that
their codes did not cover all types of discussions on GitHub Discussions, we developed our
coding schema by modifying certain codes. The following list shows the 13 categories along
with their descriptions. The top seven categories are based on the existing taxonomy (Beyer
et al. 2020): some are exactly the same and the others are slightly modified. Four categories
emerged from our analysis, in addition to Other and 404. These four categories are unique
discussion categories in GitHub Discussions compared to questions on Stack Overflow.

– Errors: This is said to be equivalent to the categories Error (Treude et al. 2011) and
Exception handling (Beyer and Pinzger 2016). Discussions of this category contain
exceptions and stack traces and ask for help in fixing errors or understanding what the
exceptions mean.

– Discrepancy: This contains the categories Discrepancy (Treude et al. 2011), Do not
work (Allamanis and Sutton 2013), and What is the problem? (Beyer and Pinzger 2016).
Such discussions contain questions about problems or unexpected behavior where the
questioners have no clue how to solve them.

– Review: This category merged Decision help and Review (Treude et al. 2011), How/why
something works (Allamanis and Sutton 2013), Better solution (Beyer and Pinzger
2016), and What (Rosen and Shihab 2016). Discussions of this category contain code
snippets and ask for better solutions, help to make decisions, or to review their code
snippets.

– Conceptual: This is equivalent to the category Conceptual (Treude et al. 2011) and
related to the categories Why and Is it possible? (Beyer and Pinzger 2016), What (Rosen
and Shihab 2016), and How/why something works (Allamanis and Sutton 2013). These
discussions mainly ask high-level questions, such as the limitations of functionali-
ties, underlying concepts (design patterns, architectural styles, etc.), and background
information.

– Usage: The taxonomy contains the category API usage (Beyer et al. 2020), which
is related to the categories How to implement something and Way of using some-
thing (Allamanis and Sutton 2013) and How-to (Beyer and Pinzger 2016; Treude et al.
2011). Since we observed questions of usages not limited to APIs, we extended this
category to general usages. Discussions of this category contain questions asking for
concrete instructions of specific functionalities, which is different from questions in
Discrepancy.

– Learning: This is related to the category Learning a language/technology (Allamanis
and Sutton 2013). In these discussions, the questioners ask for documentation or tuto-
rials to learn the software of the projects. Instead of asking for solutions or instructions
on how to do something, they aim at asking for resources of documentation, tutorials,
or examples, to learn on their own.

– Versions: The taxonomy contains the category API change (Beyer et al. 2020), which
is equivalent to the category Version (Beyer and Pinzger 2016). Discussions in this cat-
egory are not limited to API changes but are related to any questions that arise because
of different versions of the software or environmental settings.

– Plans: Discussions of this category ask for future plans of software releases or
development processes.

– Announcement: These discussions are used for announcements about specific events of
the software (e.g., future updates, releases).

Page 7 of 32 3Empir Software Eng (2022) 27: 3

– Information: Discussions in this category provide general information, which is not
related to events of the software.

– Recruitment: These discussions indicate offers of job vacancies or recruiting contribu-
tors to the teams.

– Other: Discussions that do not fit the above categories.
– 404: Discussions which had been removed when we accessed them.

Our annotation guidelines do not allow for multiple categories. We annotate the cate-
gories based on the initial posts of the threads. The annotation was conducted by three of
the authors of this paper. We conducted an initial pilot annotation on two subsets of 30 dis-
cussions from the two groups (from Issues and not from Issues). The three coders read and
discussed the annotation taxonomy in order to reach a shared understanding of the codes.
The three coders labeled individually all items in the two pilot sets of 30 discussions. After
this first iteration, we computed the inter-rater agreement to assess the reliability of the
annotation approach. Specifically, we computed Fleiss’ k index, which extends Cohen’s k

for evaluating the inter-rater level of agreement between two or more raters, in presence of a
categorical variable (Fleiss and Cohen 1973). It expresses the degree to which the observed
proportion of agreement among raters exceeds what would be expected if all raters made
their ratings completely randomly. We obtained an observed agreement of 50% and k = .46,
denoting moderate agreement (Viera and Garrett 2005). In order to consolidate the anno-
tation guidelines, the three raters discussed and resolved the disagreement cases. We then
incorporated the insights derived from the discussion phase into the annotation guidelines
and repeated the pilot annotation. After this second round, we observed substantial agree-
ment, with k = .63 and observed agreement = 66%. Given the reliability of the annotation
guidelines, two of the raters individually completed the annotation for the remaining cases
in the two samples.

Project characteristics (RQ1.3) For software domains, we adopt the following five domains
presented in a previous study of GitHub repositories (Borges et al. 2016). While there were
six domains in the previous study, since this study focuses on repositories for software devel-
opment, we excluded “Documentation,” which represents repositories with documentation,
tutorials, and source code examples. In this analysis, all repositories could be classified into
the five domains.

– Web libraries and frameworks: Software for web development.
– Software tools: Systems that support software development tasks, like IDEs, package

managers, and compilers.
– Application software: Systems that provide functionalities to end-users, like browsers

and text editors.
– Non-web libraries and frameworks: Frameworks not intended for web development.
– System software: Systems that provide services and infrastructure to other systems, like

operating systems, middleware, servers, and databases.

Three authors independently coded 98 projects.
We conducted a pilot analysis in order to assess the reliability of our annotation schema.

The three raters independently labeled 28 projects from our sample, achieving a substantial
inter-rater agreement (k = .61, observed agreement = 69%). Thus, the three raters completed
the annotation of the software domains for the remaining projects, obtaining again a sub-
stantial agreement (k = .64, observed agreement = 71%). Overall, we observed a k = .63
and observed agreement = 71%. We assign the final domain label to all repositories in our

3 Page 8 of 32 Empir Software Eng (2022) 27: 3

sample based on the majority agreement among the three raters. On four projects, a major-
ity agreement was not reached. Thus, the three raters assigned the domain labels to these
cases after a discussion.

Initial discussions (RQ2.1) We conduct a qualitative analysis of the first discussion thread
of each project in our data set since we had anecdotally observed that the first thread was
often used for meta-discussions, i.e., discussions about the Discussion feature and social
negotiation of how it should be used (Giuffrida and Dittrich 2013). One author developed
a coding schema based on the inspection of 30 randomly selected first threads, and another
author annotated the same threads to establish the reliability of the coding schema via inter-
rater agreement. We allowed multiple codes per discussion thread. Both annotators achieved
perfect agreement in 23/30 cases (77%) and partial agreement in another 4/30 cases (13%),
and they disagreed in the remaining 3/30 cases (10%). Based on this satisfactory agree-
ment, one author then annotated the remaining threads. The coding schema we established
consisted of the following codes:

– Question-answering: Several projects indicated that the Discussion feature could be
used for asking and answering questions, e.g., “I’m trying out GitHub Discussions
in the hopes that folks will be encouraged to both ask questions and give answers.
Remember, there are no stupid questions!”10

– Idea sharing: Sharing of ideas was also mentioned by several projects, although few
projects provided details of how such sharing could be structured.

– Community engagement: Projects also mentioned using GitHub Discussions to engage
with their broader community, e.g., “We want to try using GitHub’s new discussion
feature to structure conversations that may not quite be an Issue, but would benefit from
community involvement and searchability.”11

– Decluttering issue tracker: A few projects explicitly mentioned the relationship
between GitHub Discussions and GitHub Issues, suggesting that Discussions could
help declutter the issue tracker, e.g., “Unsure whether what you’re experiencing is a bug
or not? Post it here first! if it is indeed a bug, moving it to Issues once it’s confirmed is
an easy task.”12

– Information resource building: Projects also mentioned using Discussions as a way of
building an information resource, which is in line with GitHub’s original intent behind
the Discussions feature.

– Feature requests: Discussing new features was also mentioned as a use case of GitHub
Discussions.

– Thank-you: In one case, the first discussion thread was used to say thank-you to
everyone involved in the project.

– Testing the feature: Several development teams used their first GitHub Discussion to
test the new functionality, in particular threaded replies.

– Not meta: We used the code “not meta” to indicate cases where the first Discussion
thread had not been used to discuss the feature itself.

10https://github.com/BurntSushi/ripgrep/discussions/1552
11https://github.com/linkerd/linkerd2/discussions/4347
12https://github.com/containrrr/watchtower/discussions/567

Page 9 of 32 3Empir Software Eng (2022) 27: 3

https://github.com/BurntSushi/ripgrep/discussions/1552
https://github.com/linkerd/linkerd2/discussions/4347
https://github.com/containrrr/watchtower/discussions/567

Impact on channels (RQ3.1) To study the impact of GitHub Discussions on other channels,
we collect all links from GitHub Discussions to Issues and Pull Requests in the same repos-
itory. To focus on those artefacts that could actually have been affected by a Discussion, we
limit our analysis to Issues and Pull Requests which had been opened or closed after the
Discussion started. We found 577 such links in our dataset.

To investigate whether these links are indicators of GitHub Discussions affecting other
artefacts, we manually analysed a statistically representative and random sample of 231
links to determine the relationship between the Discussion and the Issue or Pull Request.
Two authors annotated 20 links separately (Cohen’s k = 0.93), and based on the near perfect
agreement, one author annotated the remaining links. We used the following codes:

– Newly open: An Issue or Pull Request was opened as a result of a GitHub Dis-
cussion. For example, Pull Request #49813 was opened as a result of Discussion
#48914 in the alpinejs/alpine repository. The discussion started with a question around
potential library use, and after ten discussion messages, a contributor announced the
corresponding Pull Request which has since been merged.

– Deepen discussion: In some cases, GitHub Discussions was used to deepen the dis-
cussions related to an Issue or Pull Request, in many cases exploring the broader
implications of these artefacts.

– Reference: In other cases, the Discussion thread did not directly affect an Issue or Pull
Request, but referenced it for traceability purposes. For example, Discussion #438315 in
the linkerd/linkerd2 repository provides an update on the project roadmap, referencing
five Issues or Pull Requests as part of the update.

5.2 Quantitative Analysis (RQ1.2)

To identify the types of participants who contribute to GitHub Discussions (RQ1.2), we
investigated the roles of all discussion participants in our dataset using the GitHub REST
API. Although there are some specific roles in GitHub, such as maintainers (promoted
organization members who have a subset of privileges available to organization owners)
and collaborators (outside contributors who have Read, Write, or Admin permissions),
they are not always available via the API. To conduct a consistent analysis of all the tar-
geted projects, we distinguish all the discussion participants based on GitHub terminology,
as follows.

– Member: A participant belonging to an organization. After retrieving the list of organi-
zation members with the GitHub REST API v3, we investigate whether the participant
is a member or not. If a project is owned by a personal developer, we consider the
personal developer to be a member.

– Contributor: A participant that is listed in the repository contributors of a project.
We investigate whether the participant is not a member, but belongs to the repository
contributors, which can also be obtained with the GitHub REST API v3.

– User: Any participant who does not fit the above types.

13https://github.com/alpinejs/alpine/pull/498
14https://github.com/alpinejs/alpine/discussions/489
15https://github.com/linkerd/linkerd2/discussions/4383

3 Page 10 of 32 Empir Software Eng (2022) 27: 3

https://github.com/alpinejs/alpine/pull/498
https://github.com/alpinejs/alpine/discussions/489
https://github.com/linkerd/linkerd2/discussions/4383

5.3 Survey (RQ2.2)

To answer RQ2.2, we carry out a survey to get developer feedback on GitHub Discussions.
Following recent work (Robillard and Treude 2020), we structured our analysis of the survey
answers based on the thematic analysis framework proposed by Braun and Clarke (2006).
We process the results in two ways. For the quantitative results, we show the distribution
statistics for each answer. However, for the qualitative responses, we first identify whether
or not the response is positive or negative against GitHub Discussions. Then in the results,
we present representative quotes to support the themes that arise from the thematic analysis.
We ask developers the following three questions:

1. What is your motivation to use GitHub Discussions for your project?
2. Do you find GitHub Discussions useful or redundant?
3. How does GitHub Discussions differ from the existing communication channels such as

GitHub Issues, Pull Requests, or Stack Overflow?

As a follow-up to our early adopters survey, we sent a similar survey to the rest of GitHub
users. At this point the GitHub Discussion function was open to all hosted projects. We ask
developers the following four questions:

1. What do you think of GitHub Discussions?
2. Do you currently use an existing communication channel similar to GitHub Discussions

in your software projects?
3. Do you have plans to use GitHub Discussions? Please, kindly add some reasons to

support your decision
4. In your opinion, how does GitHub Discussions differ from submitting a GitHub Issue

or Pull Request? Also, how does it compare to using external forums such as Stack
Overflow?

Table 1 presents an overview of the demographics of our survey participants. The main sur-
vey was distributed to all 98 projects we identified as having GitHub Discussions activated.
On August 11 and 12, 2020, we posted our survey directly to the discussion channel in each
project, yielding 19 responses. Similar to the first survey, the follow-up survey was dis-
tributed to 2,000 randomly selected npm developers that hosted their projects on GitHub.
By May 2021, the survey had yielded 52 responses. More than half of respondents are core
contributors, such as maintainers or lead developers. Programming experience varies from
less than 5 years to 30 and above.

5.4 Sentiment Analysis (RQ3.2)

To answer RQ3.2, we analyse and compare the sentiment polarity of posts in GitHub
Discussions and in Stack Overflow. Our focus on sentiment is motivated by repeated
mentions to Stack Overflow being ‘anti-discussion’ on Hacker News16 and related work
which has identified unfriendly comments on Stack Overflow (Cleary et al. 2013). Being
explicitly ‘pro-discussion’, we speculate that GitHub Discussions could be a forum with
comparatively positive sentiment.

To this end, we use the collected 32,714 Discussion posts.

16https://news.ycombinator.com/item?id=22388639

Page 11 of 32 3Empir Software Eng (2022) 27: 3

https://news.ycombinator.com/item?id=22388639

Table 1 Demographics of survey participants

first survey (n=19) follow-up survey (n=52)

role core contributor 10 -

regular contributor 8 -

newcomer 1 -

gender male 16 48

prefer not to 3 4

say/non-binary

female - -

programming less than 5 2 -

years 5-9 6 10

10-19 6 14

20-29 3 13

30 and above 2 8

In parallel, we collect questions and answers from Stack Overflow threads related to
the targeted projects. We manually searched Stack Overflow tags for repository and owner
names, resulting in a set of 79 tags (82% of project coverage) as some projects did not have
specific tags on Stack Overflow. The list of tags is included in our replication package in
Zenodo.

Using the Stack Exchange Data Explorer,17 we collected 99,918 posts (questions with
the tags and their answers) created between January and July, 2020. We preprocessed all the
posts to remove HTML tags and code snippets using the Beautiful Soup library.18

To extract the sentiment conveyed by the posts in the GitHub Discussions and in Stack
Overflow questions and answers, we use two sentiment analysis tools specifically tuned
for the software engineering domain, namely SentiStrength-SE and Senti4SD, as they have
been demonstrated to be robust enough in either within- or cross-platform settings (Novielli
et al. 2018).

Senti4SD (Calefato et al. 2018a) is trained by leveraging supervised machine learning on
a manally annotated gold standard of ∼4K questions, answers, and comments from Stack
Overflow. It exploits a suite of features including bag of words, sentiment lexicons, and
semantic features based on word embedding. For this analysis, we used the Python version
of Senti4SD (Calefato et al. 2019). Since our goal is to label data from Stack Overflow and
GitHub, we use Senti4SD in two different conditions: as off-the-shelf tool, leveraging the
classification model originally trained on Stack Overflow, and by retraining it on the GitHub
gold standard dataset provided by Novielli et al. (2018), in line with their recommendations
to retrain supervised tools with data from the target platform. Senti4SD outputs a polarity
label in {positive, negative, neutral}, consistently with the gold labels in the training sets
used for training.

SentiStrength-SE (Islam and Zibran 2017) implements a set of heuristics leveraging
sentiment lexicons, that is, large collections of words annotated with their prior polarity, i.e.,
the positive or negative orientation of the word. The overall sentiment of a text is computed
based on the prior polarity of the words composing it, under the assumption that words with

17https://data.stackexchange.com/stackoverflow/query/new
18https://pypi.org/project/beautifulsoup4/

3 Page 12 of 32 Empir Software Eng (2022) 27: 3

https://data.stackexchange.com/stackoverflow/query/new
https://pypi.org/project/beautifulsoup4/

negative prior polarity convey negative sentiment, and vice versa. SentiStrength-SE is built
upon the API of the general-purpose tool SentiStrength (Thelwall et al. 2010). It leverages
a manually adjusted version of the SentiStrength lexicon and implements ad hoc heuristics
to correct the misclassifications due to domain-specific semantics of terms in the lexicon.
SentiStrength-SE assigns an integer value between 1 and 5 for the positivity of a text, p

and, analogously, between −1 and −5 for the negativity n. We map these scores to polarity
values in {positive, negative, neutral, mixed}. Specifically, a text is considered positive
when p + n > 0, negative when p + n < 0, and neutral if p = 1 and n = −1. Texts with a
score of p = −n are considered mixed.

We assign the final polarity label for each text in our datasets based on majority
agreement between the output of SentiStrength-SE and the two classification models of
Senti4SD. Specifically, positive, neutral, and negative labels are assigned based on majority
voting, that is when at least two tools agree on a given polarity class (see the first three exam-
ples in Table 2). Mixed cases are those classified as such by Sentistrength-SE, which issues
to separate predictions for positive and negative polarity (see last example in the table).

6 Results

In the following, we answer our research questions with the data collected according to
the research methodology described above. Each sub-question is presented in a dedicated
section, ending with a summary of the corresponding results.

6.1 Discussion Categories (RQ1.1)

To answer our first research question (What are GitHub Discussions about?), we manually
annotated a representative sample of discussion threads.

Table 3 shows the result of our annotation. A prevalence of Errors (37%) is observed in
the discussions originating from previous Issues (‘from issues’ in the table), which denotes
the goal of asking for support in fixing errors or understanding exceptions. As these discus-
sions had been converted from Issues, it is revealed that developers prefer to manage errors
on GitHub Discussions until the underlying bugs have been identified. Errors are reported

Table 2 Majority voting criterion for polarity label assignment using the polarity labels from SentiStrength-
SE and the two versions of Senti4SD

SentiStrength-SE Senti4SD

Input text Positive Negative Polarity Trained Trained Final

score score label on SO on GH label

“Which version of AdonisJS?” 1 −1 neutral neutral neutral neutral

“Closing discussion is low quality” 1 −1 neutral negative negative negative

“Glad, you found it :)” 2 −1 positive positive positive positive

“You can also force the <CODE>in your 2 −3 mixed negative negative mixed

configuration <CODE>. Thanks! You

shouldn’t pass an anonymous class. Yes,

this is a very bad example! Only for demo,

no one use it :D”

Page 13 of 32 3Empir Software Eng (2022) 27: 3

Table 3 Frequency of discussion
categories in our samples Category From issues Not from issues

Errors 102 (37%) 77 (21%)

Discrepancy 25 (9%) 134 (37%)

Review 40 (14%) 80 (22%)

Conceptual 45 (16%) 25 (7%)

Usage 27 (10%) 12 (3%)

Learning 12 (4%) 11 (3%)

Versions 11 (4%) 4 (1%)

Plans 8 (3%) 5 (1%)

Announcement 2 (1%) 0 (0%)

Information 1 (0%) 2 (1%)

Recruitment 0 (0%) 2 (1%)

Other 5 (2%) 5 (1%)

404 0 (0%) 4 (1%)

sum 278 (100%) 361 (100%)

only in 21% of posts originally started as discussion (‘not from issues’ in the table). Con-
ceptual and Usage questions are also more frequent in the ‘from issues’ group. Conversely,
we observe a prevalence of Discrepancy (37%) in the ‘not from issues’ sample, compared
to 9% observed for the ‘from issues’ group. This might be an indication of the more open
nature of the Discussions, with respect to Issues or other Q&A platforms, such as Stack
Overflow. In fact, Discrepancy refers to the kind of questions that are not well-suited for
Issues due to their high-level of abstraction and due to the fact that the authors of such posts
have no clue how to solve the problems they describe. Indeed, this is the kind of questions
that would not be appreciated on Stack Overflow, whose guidelines explicitly recommend
information seekers to provide evidence of previous attempts to solve the problem.19 For
example, Conceptual is considered to be a category related to such evidence, and is less
common in ‘not from issue’ (7%) than in ‘from issue’ (16%). Conversely, Review is more
frequent in ‘not from issue’ (22%) than in previous Issues (14%).

We compare the distribution of categories for GitHub Discussions with the distribution
reported by Beyer et al. (2020) for Stack Overflow. In their study, they performed auto-
mated categorization of Stack Overflow questions with the above-mentioned taxonomy and
obtained the following distribution of question categories:

Errors (19%), Discrepancy (26%), Review (7%), Conceptual (22%), API Usage (36%),
Learning (2%), and API change (2%). Compared to such distribution, there are less Con-
ceptual and Usage, and more Discrepancy and Review discussions in GitHub Discussions
‘not from issues’. We conjecture that this is because there is no strict requirement for pro-
viding evidence (leading to more Discrepancy) and because of the increased connectivity
to source code (leading to more Review) for GitHub Discussions. Although the percentages
are small, there are some discussion categories that do not appear in Stack Overflow, such

19‘Writing the perfect question’ by Jon Skeet at https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-
question/ linked in the official Stack Overflow guidelines at https://stackoverflow.com/help/how-to-ask

3 Page 14 of 32 Empir Software Eng (2022) 27: 3

https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/
https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/
https://stackoverflow.com/help/how-to-ask

Table 4 Discussion patterns by questioners

User Contributor Member

Has selected answer 2,550 (39%) 183 (44%) 33 (23%)

No selected answer 2,464 (39%) 165 (40%) 79 (55%)

No response 1,542 (24%) 68 (16%) 32 (22%)

Sum 6,556 (100%) 416 (100%) 144 (100%)

as Plans, Announcement, Information, and Recruitment in GitHub Discussions, which indi-
cate that GitHub Discussions is more open channels for communication and a community
knowledge base.

6.2 Discussion Participants (RQ1.2)

To investigate our second research question (Who contributes to GitHub Discussions?), we
distinguish between the roles of Member, Contributor, and User.

Table 4 shows the discussion patterns divided by questioners who started discussions.
From all 7,116 discussions, the majority have been started by Users, followed by Contribu-
tors and Members. For discussions started by all three types, more than three quarters have
responses. Similar to Stack Overflow, GitHub Discussions allows users to select answers in
discussions. However, as seen in Section 6.1, not all discussion categories require to select
single answers, which could be seen in the large percentages of discussions without selected
answers (39-55%).

For discussions that have selected answers, Table 5 presents the distributions of answer-
ers by questioners. For all questioners, answers by Members are most frequently selected.
Table 6 shows the participation patterns in discussions by questioners, for discussions with-
out selected answers. We divide discussions into three types, that is, discussions in which
at least one Member responded, discussions for which no Member was involved but Con-
tributors responded, or discussions in which only Users responded. Similar to Table 5,
Member-responded discussions are most frequent. These results indicate that Members
actively participated in GitHub Discussions.

In addition, we investigated the response time of each Member, Contributor, and User.
The response time was measured from the time a question was posted until a different

Table 5 Respondents of selected answers by questioners

User Contributor Member

Answered by member 1,162 (46%) 106 (58%) 19 (58%)

Answered by contributor 578 (23%) 72 (39%) 9 (27%)

Answered by user 810 (32%) 5 (1%) 5 (15%)

Sum 2,550 (100%) 183 (100%) 33 (100%)

Page 15 of 32 3Empir Software Eng (2022) 27: 3

Table 6 Respondents for discussions without answers by questioners

User Contributor Member

Member responded 1,029 (42%) 82 (50%) 69 (87%)

Contributor responded 554 (22%) 72 (44%) 4 (5%)

Only user responded 881 (36%) 11 (7%) 6 (8%)

Sum 2,464 (100%) 165 (100%) 79 (100%)

person than the one who initially asked the question commented on it. The median response
time was 4.4 hours for Members, 4.1 hours for Contributors, and 8.5 hours for Users. When
the Mann-Whitney U test was used to compare the differences in response times, there was
no statistically significant difference between Members and Contributors, but there were
statistically significant differences between Members and Users, and between Contributors
and Users. We can see that comments fromMembers and Contributors were obtained earlier
than comments from other Users.

6.3 Project Characteristics (RQ1.3)

To answer our next research question (What is the relationship between project charac-
teristics and GitHub Discussion adoption?), we employed a qualitative analysis to reveal
software domains of the targeted projects and analyzed the relationship of core developer
involvement and discussion activities.

The result of the annotation of the software domain is reported in Table 7 and indi-
cates a prevalence of Web libraries and framework, immediately followed by Software
tools and Application software. A previous study that investigated the top 2,500 reposito-
ries by number of stargazers on GitHub reported that there were many Non-web libraries
and frameworks, followed byWeb libraries and frameworks. In comparison, there were not
many Non-web libraries and frameworks in early adopters of GitHub Discussions.

Figure 2 presents the distributions of the targeted projects based on the periods using
GitHub Discussions and the total number of discussions. The periods were derived by iden-
tifying the initial discussions that were not converted from existing Issues. Seven projects

Table 7 Domains of target
projects domain # projects %

Web libraries and frameworks 37 38%

Software tools 32 33%

Application software 13 13%

Non-web libraries and frameworks 8 8%

System software 8 8%

sum 98 100%

3 Page 16 of 32 Empir Software Eng (2022) 27: 3

Fig. 2 The number of discussions (log scale) by the period of using GitHub Discussions

are not shown since they had no discussions or had only discussions converted from issues.
Programming languages of the projects retrieved using the GitHub REST API are shown
with different colors, revealing that the studied projects use various different programming
languages. As expected, there is a correlation between the number of discussions and the
period of using GitHub Discussions. However, some projects have relatively few discussions
considering their discussion periods.

To understand the characteristic of discussion participation and discussion activities,
Fig. 3 illustrates the relations of the average number of discussions per day and the ratio of
Member involvement, which is the ratio of discussions that contain at least one post added
by a Member to the total number of discussions. This is measured based on the posts that
were included in the discussion at the time of collection.

A regression line is plotted using LOESS smoothing, which fits multiple regressions in a
local neighborhood (Cleveland and Loader 1996). The shaded area indicates the confidence
intervals. We observe that the Member involvement ratio is increasing until 0.5 in the aver-
age number of discussions per day, which could be considered as less active, and decreases
and disperses for more than 0.5 average discussions per day.

This suggests that high Member involvement encouraged active use of GitHub Dis-
cussions, and, for projects with many discussions per day, Contributors and Users also
contributed to answering questions.

Page 17 of 32 3Empir Software Eng (2022) 27: 3

Fig. 3 Membership involvement ratio by average number of discussions per day (log scale). Point size
represents the number of Members in a project

6.4 Initial Discussions (RQ2.1)

To investigate why projects adopt GitHub Discussions, we qualitatively analyzed the first
discussion thread of each project in our data. This methodology was motivated by our anec-
dotal observation that the first discussion thread was often used to discuss the Discussions
feature and how to best use it, rather than project-specific issues.

Table 8 shows the distribution of the codes across the first discussion threads we anno-
tated. Note that one thread might mention multiple reasons for using GitHub Discussions.
About half of the first discussion threads were not used for meta discussions (‘not meta’
in Table 8), but were instead used to discuss project-specific issues. For example, the first

Table 8 Reasons for using
GitHub Discussions mentioned
in initial discussions. Multiple
reasons per project possible

Reason # projects

Question-answering 16

Idea sharing 12

Community engagement 12

Decluttering issue tracker 3

Information resource building 2

Feature requests 2

Thank-you 1

Testing the feature 16

Not meta 51

3 Page 18 of 32 Empir Software Eng (2022) 27: 3

discussion thread of the PrefectHQ/prefect project20 asks for help with a particular error
message. The remaining threads mentioned various reasons for using the GitHub Discus-
sions feature, in particular question-answering, idea sharing, and community engagement.
To further understand developers’ rationale, we conducted a survey, see next section.

6.5 Developer Survey (RQ2.2)

To understand how software developers perceive the GitHub Discussions feature, we con-
ducted a survey that 1) targeted the early adopters of GitHub discussions and 2) targeted the
rest of GitHub projects.

What is your motivation to use the discussion channel for your project? (19
responses): Participants provided a range of answers that revolved around being a commu-
nity medium to act as a general forum, and not necessarily about Issues. One participant
responded:

It’s the perfect place to discuss feature request and other communication forms (like
questions) that don’t really fit in Issues.

Four participants mentioned that they liked that discussions were closer to the code
(within the GitHub Platform), as generic questions:

We wanted to offload the constant stream of questions about the project to someplace
other than the issue tracker, but still linked to GitHub.

Do you find GitHub Discussions useful or redundant? (19 responses): 15 out of the 19
participants were very positive about the usefulness of GitHub Discussions. One participant
responded that it was useful to store drawn-out discussions for the community:

Useful: allows us to have long, drawn-out discussions that don’t necessarily have to
have a conclusion.

On the other hand, there were three participants that were not as positive towards GitHub
Discussions. One participant

found the discussions difficult to differentiate from Issues and Pull Requests.

Redundant: people often don’t know whether to use a discussion or an issue or a PR.
Many discussions end up being opened that are duplicates of issues (and vice versa).
In addition, speaking entirely from impressions, it seems that discussion posters do
not seem to hold themselves to the same standards as issue posters.

How does GitHub Discussions differ from the existing communication channels
such as submitting a GitHub Issue or Pull Request? Also, how does it compare to other
external forums such as Stack Overflow? (16 responses): One participant noted that:

20https://github.com/PrefectHQ/prefect/discussions/2860

Page 19 of 32 3Empir Software Eng (2022) 27: 3

https://github.com/PrefectHQ/prefect/discussions/2860

Table 9 Response if respondents
use a channel similar to GitHub
discussions

Using similar channel # Responses

Yes 19

No 26

Other 7

Total 52

Way more appropriate for questions and other topics that are not actionable for the
engineering team in any way. GitHub issues and PRs are used by our engineering
team as the foundation for their process.

Another participant pointed out the accessibility compared to Stack Overflow:

discussions offer a place where we can discuss ideas that aren’t necessarily actionable
points. Discussions is very similar to StackOverflow in it’s approach, but it’s way
more accessible as it’s scoped to the project in question and doesn’t have the barrier
of entry (due to the somewhat hostile community) that StackOverflow does.

Overall, when comparing to Stack Overflow, there was no uniform opinion as we received
both positive and negative responses. One participant noted that the usefulness of a
discussion medium also depends on the nature of the project:

For our project, the discussion is a much better forum than StackOverflow (SO)
because we are not a very well-known project and have some strange quirks in our
configuration rules. For more widespread projects, I would likely prefer SO simply
because it has more reach.

For the rest of GitHub projects that have not adopted GitHub Discussions, they provided
the following responses to our survey:

What do you think of GitHub Discussions? (52 responses): All responses were pos-
itive, stating that GitHub Discussions was different from a pull request or issue. For
instance:

I like the nested threads. Regular github issues don’t have nested threads so the
conversations get a bit shuffled.

Do you currently use an existing communication channel similar to GitHub Discus-
sions in your software projects? (52 responses): Table 9 show the results of the follow-up
survey sent to the rest of GitHub projects. The results were mixed, with 26 out of the 52
respondents claiming that they did not use such a similar channel for their communication.
On the other hand, 19 respondents claimed they had an existing communication channel
like GitHub Discussions.

Table 10 Response if
respondents consider to use
GitHub discussions

Plans to use GitHub disussions # Responses

Yes 23

No 21

Other 8

Total 52

3 Page 20 of 32 Empir Software Eng (2022) 27: 3

Do you have plans to use GitHub Discussions? (52 responses): Similar the previous
question, Table 10 shows a mixed response to whether or not the participants had plans to
adopt GitHub Discussions into their projects. Still a bit over 50% (23 participants) were
willing to use GitHub Discussions.

In your opinion, how does GitHub Discussions differ from submitting a GitHub
Issue or Pull Request? Also, how does it compare to using external forums such as
Stack Overflow? (46 responses): Different to the early adopters responses, we find that
there were more respondents that were positive in regards to the difference between GitHub
Discussions and a GitHub Issue or a Pull Request. Applying a thematic analysis approach,
we were able to extract the themes of how the respondents expressed themselves. Overall,
we found 31 responses to be more positive when explaining the differences of GitHub Dis-
cussions. Most discussed the structure and how there was a need for a discussions thread
that fell outside of the development pipelines. For instance,

Most questions and discussion should not be posted as Issues. However, an open
source project can generate a lot of valid discussion. This is where GitHub Discus-
sions will shine and for the reasons mentioned above: open-source communities are
oftentimes overwhelmed by requests that are not issues.

On the other hand, there were also responses that were not as positive. We found six
respondents who raised concerns. For instance,

GH Issues (and pulls) are still the preferred way to tell the owner/maintainer that there
is a bug/feature request/question. They are enabled on all repos by default whereas
Discussions need to be enabled. StackOverflow has a wider community would would
better be able to answer any question you throw at them, whereas GH Discussions are
better suited to questions which are very specific to the project you are asking them in.

Finally, we found 9 responses that were either unable to tell the difference, or they were
neutral with their stance for GitHub Discussions. For example,

Compared to Stack Overflow: sounds very similar - we will see which system will win
:)

6.6 Impact on Other Channels (RQ3.1)

To investigate the impact of GitHub Discussions on other channels, we conducted a qual-
itative analysis of a representative sample of links to Issues and Pull Requests from
Discussions. We only considered links to artefacts that had been opened or closed after the
corresponding Discussion started.

Page 21 of 32 3Empir Software Eng (2022) 27: 3

Table 11 Why do links to Issues
or Pull Requests exist? Result on
a sample of 231 links

link reason of link appearance

newly open 42

issue deepen discussion 11

reference 90

newly open 37

pull requests deepen discussion 5

reference 46

sum 231

Table 11 shows the distribution of reasons for links to Issues and Pull Requests from
GitHub Discussions. Out of 231 linked Issues and Pull Requests in our sample, 79 (34%)
were created as a result of a GitHub Discussion. In many other cases, links were provided
for reference.

6.7 Sentiment Characteristics (RQ3.2)

To answer our final research question (What are sentiment differences compared to Stack
Overflow posts?), we analysed and compared the sentiment polarity of posts in GitHub
Discussions and Stack Overflow. The voting label was assigned either with full agreement
(the three tools agree) in 64% (GitHub) and 61% (Stack Overflow) of cases or by majority
voting in 27% and 30% of cases (2 over 3 agree), indicating a substantial observed agree-
ment between the tools. Similarly to Stack Overflow, in GitHub Discussions, an answer can
also be flagged as accepted. As such, we complement our analysis by also investigating
whether there is any difference in the accepted answers between GitHub Discussions and
Stack Overflow. The result of the sentiment analysis is reported in Table 12.

In line with previous work (Calefato et al. 2018b; Murgia et al. 2014) we observe that
the majority of posts is neutral, i.e. they do not convey any emotions or opinions, which is
reasonable, given the technical nature of Discussions. The amount of both mixed and neg-
ative posts in the two samples is comparable. As for positive sentiment, we observe that

Table 12 Sentiment analysis of all posts and accepted answers in the GitHub Discussions and Stack
Overflow Q&A threads

GH Discussions posts Stack Overflow posts

polarity all accepted all accepted

positive 12% 13% 3% 4%

negative 6% 4% 6% 3%

neutral 73% 78% 82% 91%

mixed 9% 6% 9% 3%

Overall items 32,714 4,317 99,918 19,227

3 Page 22 of 32 Empir Software Eng (2022) 27: 3

it is present in 12% of GitHub Discussions while it appears in 3% only of Stack Over-
flow posts, for which we observe also a higher percentage of neutral cases. This might be
due to the Stack Overflow community adhering to a more neutral communication style, in
line with official recommendations. A recent empirical study demonstrated how express-
ing either positive or negative emotions is associated with a lower probability of obtaining
a useful answer (Calefato et al. 2018b), which further supports our conjecture. In both
datasets, accepted answers appear more neutral, as a consequence of the less negative and
mixed sentiment. We also observe a small increment in positive sentiment. It is the case,
for example, of sentences expressing either wish (e.g., ‘See the code below! Happy 2020!’),
politeness expressions (e.g., ‘I hope this solves your issue’) or positive sentiment in for-
mulating requests (e.g., ‘It would be nice if we can convert that issue into a discussion
’). To conclude, the differences in the sentiment observed for the two samples are mainly

due to GitHub Discussions being more positive than SO posts. The results of chi-squared
test applied to the contingency table show that the differences are statistically significant
(p < .05) but the effect size is negligible (Cramer’s V = .17) (Cohen 1988).

Previous results of qualitative analysis of emotions in Stack Overflow suggest that a
polarity-based operationalization of affect might not be adequate to capture the nuances in
the attitude conveyed by negative sentiment (Calefato et al. 2018b).

In fact, the presence of negative sentiment does not necessarily indicate the use of abu-
sive language or toxic interactions (Gachechiladze et al. 2017). Being able to identify rude,
aggressive comments among negative ones is crucial, as toxicity might impair effective col-
laboration and prevent people from contributing to software projects (Steinmacher et al.
2014).

In line with this view, we performed a follow-up analysis to investigate the toxicity of
1,962 posts from GitHub Discussions and 5,635 questions and answers from Stack Over-
flow that were classified as negative. Consistently with previous research (Raman et al.
2020), we computed the toxicity scores for both samples of negative posts, using the Google
Perspective API,21 specifically designed to identify abusive language and harassment in
online conversations. The Perspective API provides, for a given text in input, a toxicity
score in [0, 1] representing the probability that a reader would perceive the text as rude or
disrespectful, leading him/her to abandon the conversation. Results are reported in Fig. 4
and show that toxic posts are rare in line with previous evidence provided by Raman et al.
(2020), who analyzed the toxicity in open source discussions.

7 Discussion

Our findings can be summarized into the following recommendations for practitioners.

21www.perspectiveapi.com

Page 23 of 32 3Empir Software Eng (2022) 27: 3

www.perspectiveapi.com

Fig. 4 Toxicity in negative posts on GitHub Discussions and Stack Overflow

– Set guidelines for participating in discussions. As found in the response from develop-
ers in Section 6.5, users sometimes find it difficult to choose an appropriate channel
from Discussions, Issues, and Pull Requests. It should be beneficial for community
members to set a policy of using these channels depending on the project-specific
development processes.

– Encourage core developers to participate in discussions. It is evident that the involve-
ment of core developers is crucial in the successful use of GitHub Discussions as seen
in Section 6.3.

– Prepare for newcomers. GitHub Discussions can be a gateway for newcomers to partic-
ipate by creating discussions specifically for them (Steinmacher et al. 2019). Not only
does a project present tasks that are easy for newcomers to start, but it can also provide
a place for mentoring and effective communication between mentors and newcomers,
potentially solving the mentoring challenges pointed out in a recent study (Balali et al.
2020).

Besides, our analysis has shown that Stack Overflow discussions are more neutral com-
pared to GitHub Discussions and also less positive (see Section 6.7). Software projects
might use this as an opportunity to establish GitHub Discussions as a feedback chan-
nel that explicitly encourages users to utter their appreciation for a certain feature or
a response they received in a discussion. This would also help to distinguish GitHub
Discussions from discussions on Stack Overflow, where, e.g., thank you messages are
discouraged.22

From our exploratory study of early adoption of GitHub Discussions, we see the
following avenues for future research:

22https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/

3 Page 24 of 32 Empir Software Eng (2022) 27: 3

https://codeblog.jonskeet.uk/2010/08/29/writing-the-perfect-question/

– Tool support for effective discussions.As developers mentioned (Section 6.5), duplicate
posts in Discussions and Issues could be troublesome. Automated support using bots
like (Abdellatif et al. 2020) is promising.

– Further studies of error/issue handling. As we saw in Section 6.1, more than a third of
the issues converted to discussions were “errors”. This can be attributed to the fact that
some projects prefer to have discussions on how to deal with errors, unexpected behav-
ior, etc., and to determine if errors are bugs, in discussions rather than in issues. As
seen in Section 6.6, there are issues and pull requests created after discussing potential
issues and features, which indicates that the workflow of discussion before working on
issues or pull requests is used in some projects. Such a new workflow may result in new
bug lifecycles that are different from those previously considered (Aranda and Venolia
2009). However, we have also observed that some projects had stopped using GitHub
Discussions. For example, the dotnet/aspnetcore project decided to use issues for dis-
cussions and disabled GitHub Discussions because they faced difficulties in labeling
and assignment using it.23 What features are suitable for discussions may vary depend-
ing on the characteristics of projects, such as development histories, types of end users,
maturity of the communities, etc. Since GitHub Discussions is still in beta, there is still
room for improvement in terms of functionality. A better understanding of the required
features and error/issue handling process depending on the characteristics of projects
will be a challenge in the future.

– Further studies of human aspects. As recent studies have shown, communication is
an essential attribute of a great maintainer (Dias et al. 2021). A quantitative analysis
of the relationship between the type and experience of developers and the discussion
categories that require different skills such as technical, social, and managerial will be
a future research challenge.

– Relationship between GitHub Discussions and other channels. In addition to compar-
ing to Stack Overflow, future work can also consider comparing GitHub Discussions
to other communication channels used by open source projects, such as Gitter (Chat-
terjee et al. 2021; Sahar et al. 2021), for example focusing on links between Gitter
conversations and GitHub Discussions or comparing the channels in terms of their
sentiment.

8 Threats to Validity

Threats to internal validity concern the possibility of introducing a threat due to a possible
causal relationship between the treatment and the result of an analysis. As for sentiment and
toxicity in GitHub Discussions and Stack Overflow posts, we performed the analysis at the
platform level. However, we might have observed different distribution of sentiment and
toxicity at the level of individual repositories, depending on the degree of awareness of the
code of conduct of community members of a software project. Furthermore, we analysed
and compared the sentiment polarity distribution in two dataset including 32,714 posts from
GitHub Discussions and 99,918 posts from Stack Overflow, respectively. Specifically, we
collected posts from Stack Overflow based on the presence of tags and owner names from
GitHub projects in our dataset. The list of keywords (tags and name) was obtained via
manual search on Stack Overflow. We acknowledge that manual search might introduce a

23https://github.com/dotnet/aspnetcore/issues/29935

Page 25 of 32 3Empir Software Eng (2022) 27: 3

https://github.com/dotnet/aspnetcore/issues/29935

threat to validity as well as replicability issues. To mitigate this threat, we include the list
of keywords in our replication package. Furthermore, some projects did not have specific
tags on Stack Overflow. Further replications could be conducted in the future on a larger set
of data in order to include more projects, thus strengthening the representativeness of the
sentiment analysis study.

Threats to construct validity concern the degree of accuracy to which the variables
defined in a study measure the constructs of interest. As for analysis of sentiment, we
operationalized developers’ emotions

by measuring the sentiment polarity of a text, that is its positive or negative orienta-
tion. However, emotion lexicon can convey a wide range of affective states or attitudes
towards the interlocutor beyond polarity. As for participant types in Section 6.4, although
we identified three types, more fine-grained type identification including maintainers and
collaborators could reveal project-specific patterns of discussion activities and discussion
participation.

Threats to external validity concern the ability to generalize the findings in this study. As
we study the usage of a beta feature, our data is derived from a short term (seven months).
Long-term studies may yield different conclusions. In addition, since we studied the use
of GitHub Discussions in popular (based on the number of stargazers) and selected (by
GitHub for beta testing) projects, our results could be biased to those specific communities.
To address these issues, further research is needed based on various projects participating
in GitHub Discussions after the feature is officially released.

9 RelatedWork

9.1 Communication During Software Development

Discussions play a vital role in reaching a decision when doing code review. Tsay et al.
(2014) studied how developers used discussions to evaluate Pull Requests.

Hirao et al. (2020) studied the divergent nature during the code review, while Ebert et al.
(2019) present a taxonomy of confusion that a reviewer may encounter when conducting a
review. Pascarella et al. (2018) present a taxonomy of information needs that help with con-
ducting a review. Sulistyo Nugroho et al. (2020) studied the characteristics of the usage of
a project-specific forum in the Eclipse project. Other work has explored different aspects
related to the analytics of review comments (Hirao et al. 2019; Rahman et al. 2017). One
aspect that could benefit is how review comments could be used for reviewer recommen-
dation (Jiang et al. 2017), where discussion recommendations can recommend appropriate
team members to help answer generic questions from the community. This can be benefi-
cial for the community, especially for newcomers or even to help deepen the understanding
between both users and developers of the software.

Besides code review, discussions also take place on online platforms such as Stack Over-
flow. Previous work studied aspects such as who participates in such discussions (Vasilescu
et al. 2012; Morrison and Murphy-Hill 2015), how frequently users contribute (Wang et al.
2013), how frequently discussed code snippets are copied between platforms (Yang et al.
2017; Baltes and Diehl 2019), and how content evolves on Q&A websites (Baltes et al.
2018; Wang et al. 2018). From the study of discussions in issue tracking systems, Arya et al.
reported various discussion categories in issue discussions, such as observed bug behaviour,
bug reproduction, solution discussion, etc. (Arya et al. 2019). We observed some categories
overlap with categories found in GitHub Discussions, such as task progress, future plan, and

3 Page 26 of 32 Empir Software Eng (2022) 27: 3

social conversation. Since these discussions do not need to be closed with particular resolu-
tions, GitHub Discussions could be an appropriate channel as mentioned by developers in
Section 6.5.

From the point of a community knowledge base, source code comments have been found
to document information specific to the associated code, such as technical debt (Potdar and
Shihab 2014), todo tasks (Storey et al. 2008), and algorithm (Inokuchi et al. 2019). Similar
to the analysis in Section 6.6, referencing and connecting to external sources in source code
comments had been analyzed (Hata et al. 2019). A recent study identified specific cases of
issues and technical debt, called on-hold self-admitted technical debt, which needs appro-
priate management of code considering the updates of issues (Maipradit et al. 2020a, b).
Although different knowledge is communicated and discussed in different communication
channels, a new feature of GitHub Discussions could be a center of a community knowledge
base connecting with other artefacts.

9.2 Sentiment Polarity in Communication Channels

Our sentiment analysis in Section 6.7 is motivated by the interest of the research commu-
nity in sentiment analysis of developers’ communication traces (Novielli and Serebrenik
2019; Novielli et al. 2019). Specifically, researchers investigated how developers share their
emotions in the communication channels within collaborative development environments,
including issue tracking systems (e.g., Jira) (Mäntylä et al. 2016; Ortu et al. 2015), software
repository forges (e.g., GitHub) (Guzman et al. 2014; Pletea et al. 2014; Sinha et al. 2016),
and technical Q&A sites (e.g., Stack Overflow) (Uddin and Khomh 2017; Calefato et al.
2018b; Lin et al. 2019). What the above mentioned studies have in common is that they rely
on sentiment analysis, – i.e. the study of the subjectivity (neutral vs. emotionally loaded) and
polarity (positive vs. negative) of a text (Pang and Lee 2008) – to mine emotions and opin-
ions from textual developer-generated content. Beyond sentiment polarity, Gachechiladze
et al. investigated the problem of identifying the target of anger expressions in collaborative
software development (Gachechiladze et al. 2017). They distinguish between self -directed
emotions, such as sadness, which do not involve a negative attitude towards the interlocu-
tor, hostile language expressing anger towards others, and negative evaluation of objects,
such as tools or programming languages. More recently, Raman and colleagues proposed
an approach to mine the toxicity of developers’ online conversations towards identification
and mitigation of unhealthy interactions in open source software development (Raman et al.
2020). Toxicity has been also reported as a problem of Stack Overflow, which has been
recognized as a hostile place especially for newcomers, women, non-native speakers, and
others in marginalized groups by both users24 and community managers.25

10 Conclusion

We conducted the first comprehensive mixed-methods study on how and why software
developers adopt GitHub Discussions and how they perceive the new feature’s usefulness.
We further studied how Discussions compare to existing channels such as GitHub Issues,
Pull Requests, and Stack Overflow threads. Based on an analysis of Discussions in 92

24https://meta.stackoverflow.com/q/262791
25https://stackoverflow.blog/2018/04/26/stack-overflow-isnt-very-welcoming-its-time-for-that-to-change/

Page 27 of 32 3Empir Software Eng (2022) 27: 3

https://meta.stackoverflow.com/q/262791
https://stackoverflow.blog/2018/04/26/stack-overflow-isnt-very-welcoming-its-time-for-that-to-change/

GitHub projects, a survey with developers already using the feature, and a comparison with
related Stack Overflow posts, we derive the following recommendations for project man-
agers. (i) Set guidelines for participating in discussions, as users sometimes find it difficult
to choose an appropriate channel from Discussions, Issues, and Pull Requests. (ii) Encour-
age core developers to participate in discussions, as it is evident that the involvement of
core developers is crucial in the successful use of GitHub Discussions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdellatif A, Badran K, Shihab E (2020) MSRBot: Using bots to answer questions from software
repositories. Empir Softw Eng 25(3):1834–1863. https://doi.org/10.1007/s10664-019-09788-5

Allamanis M, Sutton C (2013) Why, when, and what: Analyzing stack overflow questions by topic, type, and
code. In: Proc. of the 10th working conference on mining software repositories, MSR ’13. IEEE Press,
pp 53–56

Aranda J, Venolia G (2009) The secret life of bugs: Going past the errors and omissions in software reposi-
tories. In: Proc. of the 31st international conference on software engineering, ICSE ’09. Association for
Computing Machinery, New York, pp 298–308, https://doi.org/10.1109/ICSE.2009.5070530

Arya D, Wang W, Guo JLC, Cheng J (2019) Analysis and detection of information types of open source
software issue discussions. In: Proc. of the 41st international conference on software engineering, ICSE
’19. IEEE Press, pp 454–464, https://doi.org/10.1109/ICSE.2019.00058

Balali S, Annamalai U, Padala HS, Trinkenreich B, Gerosa MA, Steinmacher I, Sarma A (2020) Recom-
mending tasks to newcomers in oss projects: How domentors handle it? In: Proc. of the 16th international
symposium on open collaboration, OpenSym ’20. Association for Computing Machinery, New York,
https://doi.org/10.1145/3412569.3412571

Baltes S, Diehl S (2019) Usage and attribution of stack overflow code snippets in github projects. Empir
Softw Eng 24(3):1259–1295. https://doi.org/10.1007/s10664-018-9650-5

Baltes S, Dumani L, Treude C, Diehl S (2018) Sotorrent: reconstructing and analyzing the evolution of stack
overflow posts. In: Proc. of the 15th international conference on mining software repositories, MSR ’18.
ACM, pp 319–330, https://doi.org/10.1145/3196398.3196430

Beyer S, Pinzger M (2016) Grouping android tag synonyms on stack overflow. In: Proc. of the 13th inter-
national conference on mining software repositories, MSR ’16. Association for Computing Machinery,
New York, pp 430–440, https://doi.org/10.1145/2901739.2901750

Beyer S, Macho C, Di Penta M, Pinzger M (2020) What kind of questions do developers ask on Stack
Overflow? A comparison of automated approaches to classify posts into question categories. Empir
Softw Eng 25(3):2258–2301. https://doi.org/10.1007/s10664-019-09758-x

Borges H, Hora A, Valente MT (2016) Understanding the factors that impact the popularity of github repos-
itories. In: Proc. of the 32nd IEEE international conference on software maintenance and evolution,
ICSME ’16, pp 334–344

Braun V, Clarke V (2006) Using thematic analysis in psychology. Qualit Res Psychol 3(2):77–101
Calefato F, Lanubile F, Maiorano F, Novielli N (2018a) Sentiment polarity detection for software develop-

ment. Empir Softw Eng 23(3):1352–1382. https://doi.org/10.1007/s10664-017-9546-9
Calefato F, Lanubile F, Novielli N (2018b) How to ask for technical help? evidence-based guidelines for

writing questions on stack overflow. Inf Softw Technol 94:186–207. https://doi.org/10.1016/j.infsof.
2017.10.009

Calefato F, Lanubile F, Novielli N, Quaranta L (2019) Emtk: The emotion mining toolkit. In: Proc. of the
4th international workshop on emotion awareness in software engineering, SEmotion ’19. IEEE Press,
pp 34–37, https://doi.org/10.1109/SEmotion.2019.00014

3 Page 28 of 32 Empir Software Eng (2022) 27: 3

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10664-019-09788-5
https://doi.org/10.1109/ICSE.2009.5070530
https://doi.org/10.1109/ICSE.2019.00058
https://doi.org/10.1145/3412569.3412571
https://doi.org/10.1007/s10664-018-9650-5
https://doi.org/10.1145/3196398.3196430
https://doi.org/10.1145/2901739.2901750
https://doi.org/10.1007/s10664-019-09758-x
https://doi.org/10.1007/s10664-017-9546-9
https://doi.org/10.1016/j.infsof.2017.10.009
https://doi.org/10.1016/j.infsof.2017.10.009
https://doi.org/10.1109/SEmotion.2019.00014

Chatterjee P, Damevski K, Pollock L (2021) Automatic extraction of opinion-based q&a from online
developer chats. In: Proc. of the 43rd international conference on software engineering, ICSE. IEEE,
pp 1260–1272

Cleary B, Gómez C, Storey MA, Singer L, Treude C (2013) Analyzing the friendliness of exchanges in an
online software developer community. In: Proc. of the 6th international workshop on cooperative and
human aspects of software engineering, CHASE. IEEE, pp 159–160

Cleveland WS, Loader C (1996) Smoothing by local regression: Principles and methods. In: Härdle W,
Schimek MG (eds) Statistical theory and computational aspects of smoothing. Physica-Verlag HD,
Heidelberg, pp 10–49

Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates
Dias E, Meirelles P, Castor F, Steinmacher I, Wiese I, Pinto G (2021) What makes a great maintainer of

open source projects? In: Proc. of the 43rd international conference on software engineering, ICSE ’21,
pp 982–994, https://doi.org/10.1109/ICSE43902.2021.00093

Ebert F, Castor F, Novielli N, Serebrenik A (2019) Confusion in code reviews: Reasons, impacts, and cop-
ing strategies. In: Proc of the IEEE 26th international conference on software analysis, evolution and
reengineering, SANER ’19, pp 49–60

Fleiss JL, Cohen J (1973) The equivalence of weighted kappa and the intraclass correlation coefficient as
measures of reliability. Educ Psychol Meas 33(3):613–619. https://doi.org/10.1177/001316447303300
309

Gachechiladze D, Lanubile F, Novielli N, Serebrenik A (2017) Anger and its direction in collaborative soft-
ware development. In: Proc. of the 39th international conference on software engineering: new ideas
and emerging results track, ICSE-NIER ’17. IEEE Press, pp 11–14, https://doi.org/10.1109/ICSE-NIER.
2017.18

Giuffrida R, Dittrich Y (2013) Empirical studies on the use of social software in global software
development–a systematic mapping study. Inf Softw Technol 55(7):1143–1164

Guzman E, Azócar D, Li Y (2014) Sentiment analysis of commit comments in github: An empirical study.
In: Proc. of the 11th working conf. on mining software repositories, MSR ’14. ACM, New York, pp 352–
355, https://doi.org/10.1145/2597073.2597118

Guzzi A, Bacchelli A, Lanza M, Pinzger M, Van Deursen A (2013) Communication in open source software
development mailing lists. In: Proc. of the 10th working conference on mining software repositories,
MSR ’13. IEEE, pp 277–286

Hata H, Todo T, Onoue S, Matsumoto K (2015) Characteristics of sustainable oss projects: A theo-
retical and empirical study. In: Proc. of the IEEE/ACM 8th international workshop on cooperative
and human aspects of software engineering, CHASE ’15. IEEE Computer Society, USA, pp 15–21,
https://doi.org/10.1109/CHASE.2015.9

Hata H, Treude C, Kula RG, Ishio T (2019) 9.6 million links in source code comments: Purpose, evolution,
and decay. In: Proc. of the 41st international conference on software engineering, ICSE ’19. IEEE Press,
pp 1211–1221, https://doi.org/10.1109/ICSE.2019.00123

Hata H, Novielli N, Baltes S, Kula RG, Treude C (2021) Research Artifact: An Exploratory Study of GitHub
Discussions Early Adoption. https://doi.org/10.5281/zenodo.5026134

Hirao T, Kula RG, Ihara A, Matsumoto K (2019) Understanding developer commenting in code reviews.
IEICE Trans Inf Sys E102.D(12):2423–2432

Hirao T, McIntosh S, Ihara A, Matsumoto K (2020) Code reviews with divergent review scores: An empirical
study of the openstack and qt communities. IEEE Trans Softw Eng

Inokuchi A, Sulistyo Nugroho Y, Wattanakriengkrai S, Konishi F, Hata H, Treude C, Monden A, Matsumoto
K (2019) From academia to software development: publication citations in source code comments.
arXiv:1910.06932

Islam MR, Zibran MF (2017) Leveraging automated sentiment analysis in software engineering. In: Proc.
of the 14th international conf. on mining software repositories, MSR ’17. IEEE Press, pp 203–214,
https://doi.org/10.1109/MSR.2017.9

Jiang J, Yang Y, He J, Blanc X, Zhang L (2017) Who should comment on this pull request? Analyz-
ing attributes for more accurate commenter recommendation in pull-based development. Inf Softw
Technol:48–62

Lin B, Zampetti F, Bavota G, Di Penta M, LanzaM (2019) Pattern-based mining of opinions in q&a websites.
In: Proc. of the 41st international conference on software engineering, ICSE ’19. IEEE Press, pp 548–
559, https://doi.org/10.1109/ICSE.2019.00066

Maipradit R, Lin B, Nagy C, Bavota G, Lanza M, Hata H, Matsumoto K (2020a) Automated identification
of on-hold self-admitted technical debt. In: Proc. of the IEEE 20th international working conference on
source code analysis and manipulation, SCAM ’20. IEEE Computer Society, Los Alamitos, pp 54–64,
https://doi.org/10.1109/SCAM51674.2020.00011

Page 29 of 32 3Empir Software Eng (2022) 27: 3

https://doi.org/10.1109/ICSE43902.2021.00093
https://doi.org/10.1177/001316447303300309
https://doi.org/10.1177/001316447303300309
https://doi.org/10.1109/ICSE-NIER.2017.18
https://doi.org/10.1109/ICSE-NIER.2017.18
https://doi.org/10.1145/2597073.2597118
https://doi.org/10.1109/CHASE.2015.9
https://doi.org/10.1109/ICSE.2019.00123
https://doi.org/10.5281/zenodo.5026134
http://arxiv.org/abs/1910.06932
https://doi.org/10.1109/MSR.2017.9
https://doi.org/10.1109/ICSE.2019.00066
https://doi.org/10.1109/SCAM51674.2020.00011

Maipradit R, Treude C, Hata H, Matsumoto K (2020b) Wait for it: identifying ”On-Hold” self-admitted
technical debt. Empir Softw Eng 25(5):3770–3798. https://doi.org/10.1007/s10664-020-09854-3

Mäntylä M, Adams B, Destefanis G, Graziotin D, Ortu M (2016) Mining valence, arousal, and dominance:
Possibilities for detecting burnout and productivity? In: Proc. of the 13th international conf. on mining
software repositories, MSR ’16. ACM, New York, pp 247–258, https://doi.org/10.1145/2901739.2901
752

Morrison P, Murphy-Hill E (2015) Is programming knowledge related to age? An exploration of stack
overflow. In: Di Penta M, Pinzger M, Robbes R (eds) 12Th working conference on mining software
repositories (MSR 2015). IEEE Computer Society, Florence, pp 69–72

Munaiah N, Kroh S, Cabrey C, Nagappan M (2017) Curating github for engineered software projects. Empir
Softw Eng 22(6):3219–3253. https://doi.org/10.1007/s10664-017-9512-6

Murgia A, Tourani P, Adams B, Ortu M (2014) Do developers feel emotions? an exploratory analysis of
emotions in software artifacts. In: Proc. of the 11th working conf. on mining software repositories, MSR
’14. ACM, New York, pp 262–271, https://doi.org/10.1145/2597073.2597086

Novielli N, Serebrenik A (2019) Sentiment and emotion in software engineering. IEEE Softw 36(5):6–23.
https://doi.org/10.1109/MS.2019.2924013

Novielli N, Girardi D, Lanubile F (2018) A benchmark study on sentiment analysis for software engineering
research. In: Proc. of the 15th international conference on mining software repositories, MSR ’18. Asso-
ciation for Computing Machinery, New York, pp 364–375, https://doi.org/10.1145/3196398.3196403

Novielli N, Begel A, Maalej W (2019) Introduction to the special issue on affect awareness in software engi-
neering. J Sys Softw 148:180–182. https://doi.org/10.1016/j.jss.2018.11.016. http://www.sciencedirect.
com/science/article/pii/S0164121218302504

Ortu M, Adams B, Destefanis G, Tourani P, Marchesi M, Tonelli R (2015) Are bullies more productive?
empirical study of affectiveness vs. issue fixing time. In: Proc. of the 12th working conf. on mining
software repositories, MSR ’15. IEEE Press, pp 303–313

Pang B, Lee L (2008) Opinion mining and sentiment analysis. Found Trends Inf Retriev 2(1-2):1–135.
https://doi.org/10.1561/1500000011

Pascarella L, Spadini D, Palomba F, Bruntink M, Bacchelli A (2018) Information needs in contemporary
code review. In: Proc. of the 21st ACM conference on computer supported cooperative work, CSCW
’18, vol 2, pp 135:1–135:27

Pletea D, Vasilescu B, Serebrenik A (2014) Security and emotion: Sentiment analysis of security discussions
on github. In: Proc. of the 11th working conf. on mining software repositories, MSR ’14. ACM, New
York, pp 348–351, https://doi.org/10.1145/2597073.2597117

Potdar A, Shihab E (2014) An exploratory study on self-admitted technical debt. In: Proc. of the 2014 IEEE
international conference on software maintenance and evolution, ICSME ’14. IEEE Computer Society,
USA, pp 91–100, https://doi.org/10.1109/ICSME.2014.31

Rahman MM, Roy CK, Kula RG (2017) Predicting usefulness of code review comments using textual
features and developer experience. In: Proc. of the 14th international conference on mining software
repositories, MSR ’17, pp 215–226

Raman N, Cao M, Tsvetkov Y, Kästner C, Vasilescu B (2020) Stress and burnout in open source: Toward
finding, understanding, and mitigating unhealthy interactions. In: Proc. of the ACM/IEEE 42nd interna-
tional conference on software engineering: new ideas and emerging results, ICSE-NIER ’20. Association
for Computing Machinery, New York, pp 57–60, https://doi.org/10.1145/3377816.3381732

Robillard MP, Treude C (2020) Understanding wikipedia as a resource for opportunistic learning of comput-
ing concepts. In: Proc. of the 51st ACM technical symposium on computer science education, SIGCSE
’20. Association for Computing Machinery, New York, pp 72–78, https://doi.org/10.1145/3328778.336
6832

Rosen C, Shihab E (2016)What are mobile developers asking about? a large scale study using stack overflow.
Empir Softw Eng 21(3):1192–1223. https://doi.org/10.1007/s10664-015-9379-3

Sahar H, Hindle A, Bezemer CP (2021) How are issue reports discussed in gitter chat rooms? J Syst Softw
172:110852

Sinha V, Lazar A, Sharif B (2016) Analyzing developer sentiment in commit logs. In: Proc. of the
13th international conf. on mining software repositories, MSR ’16. ACM, New York, pp 520–523,
https://doi.org/10.1145/2901739.2903501

Steinmacher I, Graciotto Silva MA, Gerosa MA, Redmiles D (2014) A systematic literature review on
the barriers faced by newcomers to open source software projects. Inf Softw Technol 59:67–85.
https://doi.org/10.1016/j.infsof.2014.11.001

Steinmacher I, Treude C, Gerosa MA (2019) Let me in: Guidelines for the successful onboarding of new-
comers to open source projects. IEEE Softw 36(4):41–49. https://doi.org/10.1109/MS.2018.110162131

3 Page 30 of 32 Empir Software Eng (2022) 27: 3

https://doi.org/10.1007/s10664-020-09854-3
https://doi.org/10.1145/2901739.2901752
https://doi.org/10.1145/2901739.2901752
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1145/2597073.2597086
https://doi.org/10.1109/MS.2019.2924013
https://doi.org/10.1145/3196398.3196403
https://doi.org/10.1016/j.jss.2018.11.016
http://www.sciencedirect.com/science/article/pii/S0164121218302504
http://www.sciencedirect.com/science/article/pii/S0164121218302504
https://doi.org/10.1561/1500000011
https://doi.org/10.1145/2597073.2597117
https://doi.org/10.1109/ICSME.2014.31
https://doi.org/10.1145/3377816.3381732
https://doi.org/10.1145/3328778.3366832
https://doi.org/10.1145/3328778.3366832
https://doi.org/10.1007/s10664-015-9379-3
https://doi.org/10.1145/2901739.2903501
https://doi.org/10.1016/j.infsof.2014.11.001
https://doi.org/10.1109/MS.2018.110162131

Storey MA, Ryall J, Bull RI, Myers D, Singer J (2008) Todo or to bug: Exploring how task annotations
play a role in the work practices of software developers. In: Proc. of the 30th international conference
on software engineering, ICSE ’08. Association for Computing Machinery, New York, pp 251–260,
https://doi.org/10.1145/1368088.1368123

Storey MA, Zagalsky A, Figueira Filho F, Singer L, German DM (2016) How social and communication
channels shape and challenge a participatory culture in software development. IEEE Trans Softw Eng
43(2):185–204

Sulistyo Nugroho Y, Islam S, Nakasai K, Rehman I, Hata H, Gaikovina Kula R, Nagappan M, Matsumoto
K (2020) Sustaining a Healthy Ecosystem: Participation, Discussion, and Interaction in Eclipse Forums.
arXiv:2009.09130

Thelwall M, Buckley K, Paltoglou G, Cai D, Kappas A (2010) Sentiment strength detection in short informal
text. J Am Soc Inf Sci Technol 61(12):2544–2558

Treude C, Barzilay O, Storey MA (2011) How do programmers ask and answer questions on the web? (nier
track). In: Proc. of the 33rd international conference on software engineering, ICSE ’11. Association for
Computing Machinery, New York, pp 804–807, https://doi.org/10.1145/1985793.1985907

Tsay J, Dabbish L, Herbsleb J (2014) Let’s talk about it: Evaluating contributions through discussion in
github. In: Proc. of the 22nd ACM SIGSOFT international symposium on foundations of software
engineering, FSE ’14, pp 144–154

Uddin G, Khomh F (2017) Opiner: An opinion search and summarization engine for apis. In: Proc. of the
32nd IEEE/ACM international conf. on automated software engineering, ASE ’17. IEEE Press, pp 978–
983

Vasilescu B, Capiluppi A, Serebrenik A (2012) Gender, representation and online participation: a quantitative
study of StackOverflow. In: Aberer K, Flache A, Jager W, Liu L, Tang J, Gueret C (eds) Proc. of the 4th
international conference on social informatics, springer, lausanne, switzerland, socinfo ’12, pp 332–338

Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the kappa statistic. Family Med
37(5):360–3

Wang S, Lo D, Jiang L (2013) An empirical study on developer interactions in StackOverflow. In: Shin SY,
Maldonado JC (eds) Proc. of the 28th annual ACM symposium on applied computing, SAC ’13. ACM,
Coimbra, Portugal, pp 1019–1024

Wang S, Chen TP, Hassan AE (2018) How do users revise answers on technical q&a websites? a case study
on stack overflow. IEEE Trans Softw Eng 46(9):1024–1038

Yang D, Martins P, Saini V, Lopes CV (2017) Stack Overflow in github: any snippets there?. In: Gonzalez-
Barahona JM, Hindle A, Tan L (eds) Proc. of the 14th international conference on mining software
repositories, MSR ’17. IEEE Computer Society, Buenos Aires, Argentina, pp 280–290

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 31 of 32 3Empir Software Eng (2022) 27: 3

https://doi.org/10.1145/1368088.1368123
http://arxiv.org/abs/2009.09130
https://doi.org/10.1145/1985793.1985907

Affiliations

Hideaki Hata1 ·Nicole Novielli2 · Sebastian Baltes3 ·Raula Gaikovina Kula4 ·
Christoph Treude5

Nicole Novielli
nicole.novielli@uniba.it

Sebastian Baltes
research@sbaltes.com

Raula Gaikovina Kula
raula-k@is.naist.jp

Christoph Treude
christoph.treude@unimelb.edu.au

1 Shinshu University, Nagano, Japan
2 University of Bari, Bari, Italy
3 QAware GmbH, University of Adelaide, Adelaide, Australia
4 Nara Institute of Science and Technology, Ikoma, Japan
5 University of Melbourne, Parkville, Australia

3 Page 32 of 32 Empir Software Eng (2022) 27: 3

http://orcid.org/0000-0003-0708-5222
mailto: nicole.novielli@uniba.it
mailto: research@sbaltes.com
mailto: raula-k@is.naist.jp
mailto: christoph.treude@unimelb.edu.au

	GitHub Discussions: An exploratory study of early adoption
	Abstract
	Introduction
	GitHub Discussions
	Research Questions
	Data Collection
	Online Appendix

	Methods
	Qualitative Analysis
	Discussion categories (RQ1.1)
	Project characteristics (RQ1.3)
	Initial discussions (RQ2.1)
	Impact on channels (RQ3.1)

	Quantitative Analysis (RQ1.2)
	Survey (RQ2.2)
	Sentiment Analysis (RQ3.2)

	Results
	Discussion Categories (RQ1.1)
	Discussion Participants (RQ1.2)
	Project Characteristics (RQ1.3)
	Initial Discussions (RQ2.1)
	Developer Survey (RQ2.2)
	Impact on Other Channels (RQ3.1)
	Sentiment Characteristics (RQ3.2)

	Discussion
	Threats to Validity
	Related Work
	Communication During Software Development
	Sentiment Polarity in Communication Channels

	Conclusion
	References
	Affiliations

