

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2022-06-03

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Reis, J., Brito e Abreu, F. & Figueiredo Carneiro, G. (2022). Crowdsmelling: A preliminary study on
using collective knowledge in code smells detection. Empirical Software Engineering. 27 (3)

Further information on publisher's website:
10.1007/s10664-021-10110-5

Publisher's copyright statement:
This is the peer reviewed version of the following article: Reis, J., Brito e Abreu, F. & Figueiredo
Carneiro, G. (2022). Crowdsmelling: A preliminary study on using collective knowledge in code smells
detection. Empirical Software Engineering. 27 (3), which has been published in final form at
https://dx.doi.org/10.1007/s10664-021-10110-5. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/s10664-021-10110-5

Accepted version in Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Crowdsmelling: A preliminary study on using
collective knowledge in code smells detection

José Pereira dos Reis · Fernando Brito e
Abreu · Glauco de Figueiredo Carneiro

Received: date / Accepted: December 20, 2021

Abstract Code smells are seen as a major source of technical debt and, as such,
should be detected and removed. However, researchers argue that the subjective-
ness of the code smells detection process is a major hindrance to mitigating the
problem of smells-infected code.

This paper presents the results of a validation experiment for the Crowdsmelling
approach proposed earlier. The latter is based on supervised machine learning
techniques, where the wisdom of the crowd (of software developers) is used to
collectively calibrate code smells detection algorithms, thereby lessening the sub-
jectivity issue.

In the context of three consecutive years of a Software Engineering course, a
total “crowd” of around a hundred teams, with an average of three members each,
classified the presence of 3 code smells (Long Method, God Class, and Feature
Envy) in Java source code. These classifications were the basis of the oracles used
for training six machine learning algorithms. Over one hundred models were gener-
ated and evaluated to determine which machine learning algorithms had the best
performance in detecting each of the aforementioned code smells.

Good performances were obtained for God Class detection (ROC=0.896 for
Naive Bayes) and Long Method detection (ROC=0.870 for AdaBoostM1), but
much lower for Feature Envy (ROC=0.570 for Random Forrest).

The results suggest that Crowdsmelling is a feasible approach for the detection
of code smells. Further validation experiments based on dynamic learning are
required to comprehensive coverage of code smells to increase external validity.

José Pereira dos Reis
ISTAR-Iscte, Instituto Universitário de Lisboa, Lisboa, Portugal
E-mail: jvprs@iscte-iul.pt

Fernando Brito e Abreu
ISTAR-Iscte, Instituto Universitário de Lisboa, Lisboa, Portugal
E-mail: fba@iscte-iul.pt

Glauco de Figueiredo Carneiro
Universidade Salvador (UNIFACS), Salvador, Bahia, Brazil
E-mail: glauco.carneiro@unifacs.br

2 José Pereira dos Reis et al.

Keywords Crowdsmelling · code smells · code smells detection · software quality ·
software maintenance · collective knowledge · machine learning algorithms

1 Introduction

Maintenance tasks are incremental modifications to a software system that aim
to add or adjust some functionality or to correct some design flaws and fix some
bugs. It has been found that feature addition, modification, bug fixing, and de-
sign improvement can cost as much as 80% of total software development cost
(Travassos et al., 1999). In addition, it is shown that software maintainers spend
around 60% of their time in understanding code (Zitzler et al., 2003). Therefore,
as much as almost half (80%x60%=48%) of total development cost may be spent
on understanding code. This high cost can be reduced by the availability of tools
to increase code understandability, adaptability, and extensibility (Mansoor et al.,
2017).

In software development and maintenance, especially in complex systems, the
existence of code smells jeopardizes the quality of the software and hinders several
operations such as code reuse. Code smells are not bugs, since they do not pre-
vent a program from functioning, but rather symptoms of software maintainability
problems (Yamashita and Moonen, 2013). They often correspond to the violation
of fundamental design principles and may slow down software evolution (e.g. due
to code misunderstanding) or increase the risk of bugs or failures in the future.
Code smells can then compromise software quality in the long term by inducing
technical debt (Bavota and Russo, 2016).

Many techniques and tools have been proposed in the literature for detecting
code smells (Pereira dos Reis et al., 2021), but that detection faces a few challenges.
The first is that code smells lack a formal definition (Wang et al., 2015). Therefore,
their detection is highly subjective (e.g. dependent on the developer’s experience).
Second, due to the dramatic growth in the size and complexity of software systems
in the last four decades (Humphrey, 2009), it is not feasible to detect code smells
thoroughly without tools.

Several approaches and tools for detecting code smells have been proposed.
Kessentini et al. (2014) classified those approaches into 7 categories: metric-based
approaches, search-based approaches, symptom-based approaches, visualization
based approaches, probabilistic approaches, cooperative based approaches, and
manual approaches. The most popular code smells detection approach is metric-
based. The latter is based on the application of detection rules that compare the
values of relevant metrics extracted from the source code with empirically identified
thresholds. However, these techniques present some problems, such as subjective
interpretation, a low agreement between detectors (Fontana et al., 2012), and
threshold dependability.

To overcome the aforementioned limitations of code smell detection, researchers
recently applied supervised machine learning techniques that can learn from pre-
vious datasets without needing any threshold definition. The main impediment for
applying those techniques is the scarcity of publicly available oracles, i.e. tagged
datasets for training detection algorithms. To mitigate this hindrance, we have
proposed Crowdsmelling (Reis et al., 2017), a collaborative crowdsourcing ap-
proach, based in machine learning, where the wisdom of the crowd (of software

Title Suppressed Due to Excessive Length 3

developers) is used to collectively calibrate code smells detection algorithms. The
applications based in collective intelligence, where the contribution of several users
allows attaining benefits of scale and/or other types of competitive advantage, are
gaining increasing importance in Software Engineering (Stol and Fitzgerald, 2014)
and other areas (Bigham et al., 2014; Bentzien et al., 2013). The most notable
examples of crowdsourcing in Software Engineering are crowdtesting (Sharma and
Padmanaban, 2014) and code snippets recommendation (Proksch et al., 2014).

In this paper we present the first results of applying Crowdsmelling in practice.
The paper is organized as follows: next section introduces the related work; then,
section 3 describes the experiment; results and corresponding analyses and the
answers to the research questions are presented in section 4; discussing the results
and threats to the validity are presented in section 5; and the concluding remarks,
as well as scope for future research, are presented in section 6.

2 Related Work

The related work is organised in two subsections and chronologically within each
one.

2.1 Crowd-based approaches

Palomba et al. (2015) presented LANDFILL, a Web-based platform for sharing
code smell datasets, and a set of APIs for programmatically accessing LANDFILL’s
contents. This platform was created due to the lack of publicly available oracles
(sets of annotated code smells). The web-based platform has a dataset of 243
instances of five types of code smells (Divergent Change, Shotgun Surgery, Parallel
Inheritance, Blob, and Feature Envy) identified from 20 open source software
projects and a systematic procedure for validating code smell datasets. LANDFILL
allows anyone to create, share, and improve code smell datasets.

Oliveira et al. (2016) performed a controlled experiment involving 28 novice
developers, aimed at assessing the effectiveness of collaborative practices in the
identification of code smells. The authors used Pair Programming (PP) and Cod-
ing Dojo Randori (CDR), which are two increasingly adopted practices for im-
proving the effectiveness of developers with limited or no knowledge in Software
Engineering tasks, including code review tasks, and compared this two practices
(PP and CDR) with solo programming in order to better distinguish their impact
on the effective identification of code smells. The results suggest that collaborative
practices contribute to the effectiveness on the identification of a wide range of
code smells. for nearly all types of inter-class smells, the average of smells identified
by novice pairs or groups outperformed at least in 40% of the corresponding aver-
age of smells identified by individuals and collaborative practices tend to increase
the rate of success in identifying more complex smells. In the same year Oliveira
(2016) performed a research based on a set of controlled experiments conducted
with more than 58 novice and professional developers, with the aim of knowing
how to improve the efficiency in the collaborative identification of code smells, and
reached the same conclusions as the first study.

4 José Pereira dos Reis et al.

Oliveira et al. (2017) is this paper reports an industrial case study aimed at
observing how 13 developers individually and collaboratively performed smell iden-
tification in five software projects from two software development organizations.
The results are in line with previous studies by these author, where they suggest
that collaboration contributes to improving effectiveness on the identification of a
wide range of code smells.

de Mello et al. (2017) presents and discusses a set of context factors that may
influence the effectiveness of smell identification tasks. The authors presented an
initial set of practical suggestions for composing more effective teams to the iden-
tification of code smells. These suggestions are, i) be sure all team professionals
are aware of the code smell concepts applied in the review, ii) be sure all team
professionals are aware of the relevance of identifying code smells, iii) take prefer-
ence to use collaboration in the reviews, iv) include professionals that had worked
in the module and professionals without such experience, v) include professionals
with different professionals roles.

Tahir et al. (2018) presented a study where they investigate how developers
discuss code smells and anti-patterns over Stack Overflow to understand better
their perceptions and understanding of these two concepts. In this paper, both
quantitative and qualitative techniques were applied to analyze discussions con-
taining terms associated with code smells and anti-patterns. The authors reached
conclusions like: i) developers widely use Stack Overflow to ask for general assess-
ments of code smells or anti-patterns, instead of asking for particular refactoring
solutions, ii) developers very often ask their peers ‘to smell their code’ (i.e., ask
whether their own code ‘smells’ or not), and thus, utilize Stack Overflow as an in-
formal, crowd-based code smell/anti-pattern detector, iii) developers often discuss
the downsides of implementing specific design patterns, and ‘flag’ them as poten-
tial anti-patterns to be avoided. Conversely, the authors also found discussions on
why some anti-patterns previously considered harmful should not be flagged as
anti-patterns, iv) C#, JavaScript and Java were the languages with most ques-
tions on code smells and anti-patterns, constituting 59% of the total number of
questions on these topics, v) Blob, Duplicated Code and Data Class are the most
frequently discussed smells in Stack Overflow, vi) when authors analyzed tempo-
ral trends in posts on code smells and anti-patterns in Stack Overflow, show that
there has been a steady increase in the numbers of questions asked by developers
over time.

Oliveira et al. (2020) have carefully designed and conducted a controlled exper-
iment with 34 developers. The authors exploited a particular scenario that reflects
various organizations: novices and professionals inspecting systems they are unfa-
miliar with. They expect to minimize some critical threats to validity of previous
work. Additionally, they interviewed 5 project leaders aimed to understand the
potential adoption of the collaborative smell identification in practice. Statistical
testing suggests 27% more precision and 36% more recall through the collaborative
smell identification for both novices and professionals. The interviews performed
by the authors showed that leaders would strongly adopt the collaborative smell
identification. However, some organization and tool constraints may limit such
adoption.

Baltes and Treude (2020) presented a study with similarities and differences
between code clones in general and code clones on Stack Overflow and point to
open questions that need to be addressed to be able to make data-informed deci-

Title Suppressed Due to Excessive Length 5

sions about how to properly handle clones on this important platform. The results
of his first preliminary investigation indicated that clones in Stack Overflow are
common, diverse, similar to clones in regular software projects, affect the main-
tainability of posts and can lead to licensing issues. The authors further point to
specific challenges, including incentives for users to clone successful answers and
difficulties with bulk edits on the platform.

2.2 Multiple ML models based approaches

Regarding the use of the machine learning approach in the detection of code smells,
most studies only use one algorithm, being the most usual algorithm the decision
trees. We will present below the most relevant studies that use multiple machine
learning algorithms.

Some of the most relevant studies in the area of machine learning were per-
formed by Fontana et al. (2013, 2015). In the first work Fontana et al. (2013),
they outlined some common problems of code smell detectors and described the
approach they were following based on machine learning technology. In this study
the authors focused on 4 code smells (Data Class, Large Class, Feature Envy, Long
Method), considered 76 systems for analysis and validation and experimented 6
different machine learning algorithms. The results with a use of 10-fold cross-
validation to assess the performance of predictive models shown that J48, Random
Forest, JRip and SMO have accuracy values greater than 90% for the 4 code smells,
and on average they have the best performances. In the second work Fontana et al.
(2015), they performed the largest experiment of applying machine learning algo-
rithms. They experimented 16 different machine-learning algorithms on four code
smells (Data Class, Large Class, Feature Envy, Long Method) and 74 software
systems, with 1986 manually validated code smell samples. They found that all
algorithms achieved high performances in the cross-validation data set, yet the
highest performances were obtained by J48 and Random Forest, while the worst
performance were achieved by support vector machines. The authors concluded
that the application of machine learning to the detection of these code smells can
provide high accuracy (>96 %), and only a hundred training examples are needed
to reach at least 95 % accuracy. The authors interpret the results as an indication
that “using machine learning algorithms for code smell detection is an appropriate
approach”.

Di Nucci et al. (2018) replicated the Fontana et al. (2015) study with a differ-
ent dataset configuration. The dataset contains instances of more than one type
of smell, with a reduced proportion of smelly components and with a smoothed
boundary between the metric distribution of smelly and non-smelly components,
and therefore more realistic. The results revealed that with this configuration the
machine learning techniques reveal critical limitations in the state of the art which
deserve further research. They concluded that, when testing code smell prediction
models on the revised dataset, they noticed: i) accuracy of all the models is still
noticeably high when compared to the results of the reference study (on average,
76% vs 96%), ii) that performances are up to 90% less accurate in terms of F-
Measure than those reported in the Fontana et al. study. Thus, the problem of
detecting code smells through the adoption of machine learning techniques may

6 José Pereira dos Reis et al.

still be worthy of further attention, e.g., in devising proper machine learning-based
code smell detectors and datasets for software practitioners.

To the best of our knowledge, namely obtained while performing a system-
atic literature review on code smells detection techniques Pereira dos Reis et al.
(2021), there is no study that uses a collective knowledge-based approach to de-
tect code smells automatically, i.e. based on machine learning, with a dataset
increment over 3 years. The use of groups of people in code smells detection is
typically used in manual detection approaches and in the construction of oracles
(a tagged dataset for training detection algorithms). A distinctive feature of our
approach is the use of crowds. While in related work a group of 3 to 5 people
is typically used to build an oracle, we used hundreds, thus embodying a much
larger large diversity of opinions. However, manual techniques are human-centric,
tedious, time-consuming, and error-prone. These techniques require a great human
effort, therefore not effective for detecting code smells in large systems.

3 Experiment Planning

3.1 Research Questions

The concept of Crowdsmelling – use of collective intelligence in the detection of
code smells – aims to mitigate the aforesaid problems of subjectivity and lack of
calibration data required to obtain accurate detection model parameters, by using
machine learning techniques. We have formulated the following research questions
to assess the feasibility of Crowdsmelling:

• RQ1: What is the performance of machine learning techniques when trained
with data from the crowd and therefore more realistic?

• RQ2: What is the best machine learning model to detect each one of the three
code smells?

• RQ3: Is it possible to use Collective Knowledge for code smells detection?

The goal of these RQs is to understand if our Crowdsmelling approach is feasible.
For this, it is fundamental to understand the performance of machine learning
techniques (RQ1), which will make our approach feasible. However, it is always
important to know, in addition to performance, if there is any tendency towards
algorithms (RQ2). If it is found that there is a tendency for one algorithm to
overlap with the others, in the future we can simplify our research, focusing on
fewer algorithms. This aspect will also propose the simplification of an application
that automates this approach. Finally, based on this data, we intend to determine
the feasibility of this approach in detecting code smells (RQ3).

3.2 Participants

Our approach consists of several teams using a tool, as an advisor, to detect code
smells and then confirming the validity of the detection manually. In addition to
the code smells detected by the advisor tool, teams can always add other code
smells manually. In the end, code identification, code metrics and classification
(presence or absence of code smells) are saved by creating an oracle for each code

Title Suppressed Due to Excessive Length 7

smell. This oracle will allow training machine learning algorithms for code smells
detection. These oracles have been increased for 3 years, with data collected each
year.

The repetition of this process for 3 years, allowed every year to increase the
oracle with data from new teams, thus increasing the variability of existing clas-
sifications. This variability of opinions in the code smells classification is very
important, because it will allow collecting data from teams with different opinions
on the definition of code smells, enriching the oracle.

Our subjects were the finalists (3rd year) of a B.Sc. degree in computer sci-
ence at the ISCTE-IUL University, attending a compulsory Software Engineering
course. They had similar backgrounds as they have been trained across the same
set of courses along their academic path. However, there are differences between
the students, as the skills and experience in code development are different. The
knowledge about code smells was acquired in the Software Engineering curricular
unit.

Table 1: Teams whose code smells detection was included in the oracles

Year Number of teams Total number of elements

2018 8 31
2019 51 152
2020 44 179

The teams had a variable size depending on the year (see Table 1) and the
number of participants were increasing each year. In 2018, 19 teams were formed,
essentially with 4 elements each, for a total of 73 elements, but in the end, only
the data from 8 teams, for a total of 31 elements were used for the oracle. In
subsection 3.3 we explain why the data from 11 teams were not used. In 2019 we
had 51 teams, mainly made up of 3 members, with a total of 152 members. In 2020
we had 44 teams, mainly made up of 6 members, with a total of 179 members.
These teams were requested to complete a code smells detection assignment.

3.3 Data

Participants were invited to perform the detection of 3 code smells (God Class,
Feature Envy, Long Method) in a code extract (e.g. of their choice). They used
JDeodorant1 as an auxiliary tool in the detection. The use of tools to help detect
code smells in the process of creating oracles is usual. For example, in the Fontana
et al. (Fontana et al., 2015) study, 5 advisors were used, depending on the code
smell that was intended to be detected. We chose to use JDeodorant because it
detects refactoring opportunities for the 3 code smells we used, because it is one
of the best known and used tools, as we can see in the paper by Tsantalis et al.
(2018). To account for individual judgement in the oracle, teams could either
decide to accept (true positives) or not (false positives) the tool suggestions or
add additional manual detections (false negatives).

1 https://users.encs.concordia.ca/ nikolaos/jdeodorant/

8 José Pereira dos Reis et al.

In 2018 each team chose the Java project where they wanted to do code smells
detection from a list of 8 open-source projects. The latter have already been used in
other studies, namely in those using machine learning approaches mentioned in the
related work section (Fontana et al., 2013, 2015; Di Nucci et al., 2018). However,
in the end, only 3 projects/versions were considered: jasml-0.102, jgrapht-0.8.13

and jfreechart-1.0.134. We discarded the collected data from the other projects,
chosen by 11 teams (42 participants), since those teams used diversified versions
and, therefore, the collected metrics were not consistent from version to version,
and that would be a validity threat. In the next 2 years we just used Jasml-0.10
to avoid the aforementioned issue.

The results of each team’s detection are saved in a file with the following
fields for the code smells Feature Envy and Long Method: Team number, project,
package, class, method, 82 metrics of code, is code smell. In the case of the code
smell God Class, as the scope is to the class, does not have the method field and
61 code metrics are saved. At the end we have 3 files, one for each smell code.

The data obtained each year serve to reinforce the calibration datasets of the
machine learning algorithms, with the objective of improving their detection per-
formance over time. This way we will have several datasets, so we can evaluate
which one gives the best results for each code smell.

Table 2: Datasets (Oracles) and their composition

Dataset Code smell Nº Cases True % True False % False

2018 Feature Envy 10 3 30% 7 70%
2019 Feature Envy 197 110 56% 87 44%
2019+2018 Feature Envy 207 113 55% 94 45%
2020 Feature Envy 123 79 64% 44 36%
2020+2019 Feature Envy 320 189 59% 131 41%
2020+2019+2018 Feature Envy 330 192 58% 138 42%
2018 God class 22 8 36% 14 64%
2019 God class 129 74 57% 55 43%
2019+2018 God class 151 82 54% 69 46%
2020 God class 136 84 62% 52 38%
2020+2019 God class 265 158 60% 107 40%
2020+2019+2018 God class 287 166 58% 121 42%
2018 Long Method 59 24 41% 35 59%
2019 Long Method 414 180 43% 234 57%
2019+2018 Long Method 473 204 43% 269 57%
2020 Long Method 853 350 41% 503 59%
2020+2019 Long Method 1267 530 42% 737 58%
2020+2019+2018 Long Method 1326 554 42% 772 58%

In Table 2 we present the composition of the datsets, indicating the following
elements, i) name of the dataset, ii) code smell to which the dataset refers, iii)
number of cases, iv) number of true instances, v) percentage of true instances, vi)
number of false instances, vii) percentage of false instances. Each dataset is identi-
fied by the year or the years that constitute it, for example, 2019 is the dataset of

2 http://jasml.sourceforge.net/
3 https://jgrapht.org/
4 https://www.jfree.org/

Title Suppressed Due to Excessive Length 9

the year 2019 and 2019+2020 is the dataset resulting from the aggregation of the
datasets of the years 2019 and 2020. Unlike several authors, such as Fontana et al.
(2015), we do not normalize our datasets in size in order to balance the number
of positive and negative instances. Even with the risk of getting worse results, we
used the datasets with all the cases classified by the teams. Thus, we believe that
we are reproducing the reality of the teams’ thinking about code smells. The size
of the datasets varies widely depending on the type of the code smell. Since the
datasets of code smell Feature Envy are too small, i.e., for a code smell in the
scope of the method, they do not have a large enough variance of cases, it was not
possible to obtain good results. Even so, we intend to use all the datasets, as they
represent the obtained reality and serve as a basis for a future amplification and
evolution of the crowd’s study in code smells detection.

The 18 datasets are available on GitHub5.

3.4 Code Smells

In this study we considered three different types of code smells defined by Fowler
et al. (1999):

– God Class.This smell characterises classes having a large size, poor cohesion,
and several dependencies with other data classes of the system. Class that has
many responsibilities and therefore contains many variables and methods. The
same Single Responsibility Principle (SRP) also applies in this case;

– Feature Envy. When a method is more interested in members of other classes
than its own, is a clear sign that it is in the wrong class;

– Long Method. Methods implementing more than one functionality are affected
by this smell. Very large method/function and, therefore, difficult to under-
stand, extend and modify. It is very likely that this method has too many
responsibilities, hurting one of the principles of a good Object Oriented design
(SRP: Single Responsibility Principle);

The choice of these 3 code smells is due to the fact that, according to the
Systematic Literature Review we conducted, they are the three most detected
code smells Pereira dos Reis et al. (2021). Therefore, it is easier for teams to
obtain documentation and understand these 3 code smells for better detection.

3.5 Code Metrics

In this study, we used the same metrics that were used in the study of Fontana
et al. (2015), since the metrics are publicly available.

The metrics extracted from the software which constitute the independent
variables in the machine learning algorithms, are at class, method, package and
project level. For God Class, we used a set of 61 metrics, and for the other two
code smells, Feature Envy and Long Method, we used a set of 82 metrics, plus
21 metrics than God Class, since these codes smells are at the method level. The
main metrics are described in the table Appendix A..

5 https://github.com/dataset-cs-surveys/Crowdsmelling

10 José Pereira dos Reis et al.

3.6 Machine Learning Techniques Experimented

The application used in this experiment to train and evaluate machine learning
algorithms was Weka (open source software from Waikato University) (Hall et al.,
2009), and the following algorithms available in Weka were implemented:

– J48 (Quinlan, 2014) is an implementation of the C4.5 decision tree, and its three
types of pruning techniques: pruned, unpruned and reduced error pruning;

– Random Forest (Breiman, 2001) consists of a large number of individual deci-
sion trees, a forest of random trees, that operate as an ensemble;

– AdaBoostM1 (Freund and Schapire, 1996) Boosting works by repeatedly run-
ning a given weak learning algorithm on various distributions over the training
data, and then combining the classifiers produced by the weak learner into a
single composite classifier. Weka uses the Adaboost M1 method;

– SMO (Platt, 1999) is a Sequential Minimal Optimization algorithm widely used
for training support vector machines. We use the Polynomial kernel;

– Multilayer Perceptron (Rumelhart et al., 1986) is a classifier that uses back-
propagation to learn a multi-layer perceptron to classify instances;

– Näıve Bayes (John and Langley, 1995) is a probabilistic model based on the
Bayes theorem.

Experiments were performed to evaluate the performance values of the machine
learning algorithms used with their default parameters for each type of code smell.
Also, no feature selection technique was used.

3.7 Model Evaluation

To assess the capabilities of the machine learning model, we adopted 10-Fold Cross
Validation (Stone, 1974). This methodology randomly partitions the data into 10
folds of equal size, applying a stratified sampling (e.g., each fold has the same
proportion of code smell instances). A single fold is used as test set, while the
remaining ones are used as training set. The process was repeated 10 times,using
each time a different fold as test set. The result of the process described above con-
sisted of a confusion matrix for each code smell type and for each model (Pecorelli
et al., 2019).

Several evaluation metrics can be used to assess model quality in terms of false
positives/negatives (FP/FN), and true classifications (TP/TN). However, com-
monly used measures, such as Accuracy, Precision, Recall and F-Measure,
do not perform very well in case of an imbalanced dataset or they require the use
of a minimum probability threshold to provide a definitive answer for predictions.
For these reasons, we used the ROC6, which is a threshold invariant measure-
ment. Nevertheless, for general convenience, we kept present in results tables all
the evaluation metrics (Caldeira et al., 2020).

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

6 Receiver operating characteristic (ROC) is a curve that plots the true positive rates against
the false positive rates for all possible thresholds between 0 and 1.

Title Suppressed Due to Excessive Length 11

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F −measure = 2 ∗ Recall ∗ Precision

Recall + Precision
(4)

ROC gives us a 2-D curve, which passes through (0, 0) and (1, 1). The best
possible model would have the curve close to y = 1, with and area under the curve
(AUC) close to 1.0. AUC always yields an area of 0.5 under random-guessing.
This enables comparing a given model against random prediction, without wor-
rying about arbitrary thresholds, or the proportion of subjects on each class to
predict (Rahman and Devanbu, 2013).

3.8 Process

In this subsection, we describe the three stages that constitute the process adopted
in this exploratory study.

3.8.1 Stage 1: Developer - Code smell classification

All Java developers use the Eclipse IDE with the JDeodorant plug-in installed. In
the first year - the year 2018 - each team was free to choose, from a list of Java
projects, the one they wanted to use to detect code smells. So, in the first year,
the teams chose the Java projects jasml-0.10, jgrapht-0.8.1, and jfreechart-1.0.13.In
the following two years, the teams just used jasml-0.10.

Figure 1 shows the code smells classification process by the programmer, where
we can see that after importing the Java project, the participants were invited to
perform the detection of 3 Code smell (Long Method, God Class, Feature Envy).
In 2018, detections of code smells were performed in the 3 Java projects as follows:
a) Long Method, 5 teams detected this smell in jasml-0.10, 2 teams detected it in
jfreechart-1.0.13, and all detections performed in jgrapht-0.8. 1 were not used for
the reasons described in subsection 3.3; b) God Class, 4 teams detected this smell
in jasml-0.10, 2 teams detected it in jfreechart-1.0.13, and 1 team detected it in
jgrapht-0.8.1; c) Feature Envy, only the detections made by 4 teams in jasml-0.10
were used, all other detections were discarded for the reasons already mentioned.
In the following 2 years, all teams detected all 3 code smells in jasml-0.10.

In this detection the participants could use JDeodorant as an auxiliary tool
in the detection of smells, i.e., they first used JDeodorant as an advisor, and
then manually validated the result of the detection of the tool, saying whether
or not they agreed with the code smells detected. JDeodorant detects refactoring
opportunities (refactoring is a controlled technique for improving the design of
an existing code base (Fowler et al., 1999)), consequently, when JDeodorant de-
tects a refactoring opportunity it is detecting a code smell candidate. The use of
JDeodorant also had the advantage that participants could export the code smells
identified by this tool to a text file, where they later registered their agreement or
not with this identification, i.e., they performed the final classification.

12 José Pereira dos Reis et al.Crowdsmelling (Developer) (Copy)
D

ev
el

op
er

's
 C

om
pu

te
r

O
pe

ra
ti

ng
 s

ys
te

m
Ec

lip
se

 ID
E

Ba
si

c
di

st
ri

bu
ti

on

Operating system - Eclipse IDE - Basic distribution

Java project
Import
project

CS
detection

Load plugin

JD
eo

do
ra

nt

Operating system - Eclipse IDE - JDeodorant

Load plugin
CS

identification
Detect CS

Exit command

Identified
CS (TXT)

Ed
it

or

Operating system - Editor

CS
classification

Classified
CS (TXT)

Developer Classify CS

Ends CS identificationIdentify CS

Start IDE

Fig. 1: Process of code smells classification by the developer

Regardless of the use of JDeodorant, all participants could identify the code
smells directly in the Java project code (using the code metrics) and record their
occurrence or not in a text file. In this case, the participants wrote in the text file
the name of the class or method, and if there existed or not a code smell. The
percentage of teams that performed code smells detection without the help of the
JDeodorant advisor was 7%. Although, the work of detecting code smells without
the use of the advisor is higher we found that, on average, the teams that did
not use the advisor detected 30% more Long Methods and 20% more God Class.
Regarding Feature Envy, the detection was on average 16% less than the teams
that used JDeodorant.

With the use of JDeodorant, as advisor, in detecting smells, there is a risk
that teams will only classify code smells resulting from advisor detection, in our
case, code smells candidates detected by JDeodorant. To mitigate this risk the
teams were asked to classify all classes and methods in a project package, thus
extending the classification to cases not detected by JDeodorant. Another factor
that minimizes this risk is the fact that JDeodorant identifies refactoring oppor-
tunities in code that is clearly not code smell, but the code can still be improved.
This fact causes in JDeodorant’s detection result a larger scope of cases and conse-
quently a larger disagreement between the teams’ classification and JDeodorant’s
identification. In the detection of the Long Method, the degree of disagreement
with JDeodorant in the year 2018 was 66% (highest disagreement), and in the
year 2019, it was 49% (lowest disagreement), being in total for the three years
54%. For God Class, the disagreement with JDeodorant for the three years was

Title Suppressed Due to Excessive Length 13

47% and varied from 68% in the year 2018 to 40% in 2020. In Feature Envy the
disagreement ranged from 70% in 2018 to 34% in 2020, being in the three years
45%.

Regarding the code classified by the teams, methods, and classes of the ap-
plications, we found that the majority was classified by more than one team. In
the first year, 2018, due to the diversity of Java projects used there was a greater
dispersion of the code classified, with most classes (75%) and methods (76%) clas-
sified by only one team. Consequently, the most used class was classified by four
teams, and the most used method in the classification was classified by six teams.
The next two years saw a reversal, with most classes and methods being classified
by more than one team. Regarding classes, 60% in the year 2019 and 75% in the
year 2020 were classified by more than one team, with the most used class being
classified by 43 teams. Regarding methods, 85% and 60% were classified by more
than one team in 2020 and 2019, respectively, with the most-used method being
classified by 44 teams.

The time given to the teams to classify the three code smells was three weeks,
and no indication was given on how they should work as a team, that is, how
they should divide the code smells classification among the various team members.
Hence, based on the data obtained from the experiment, we are not able to identify
specifically which members performed a specific code analysis. However, we were
able to identify which code smells were analyzed. For example, according to data
available in GitHub7, it is possible to identify that in the 2020 Long Method
dataset, the private void consumeDigits() method was classified by 37 teams, by
applying a filter to the method field. We have made available on GitHub the file
code-classification-statistics.csv with a set of statistics about the percentages of
teams that classified the methods and classes. We also found that the teams divided
the classification of the three code smells among their members, for example, when
the team had six members, they created groups of two members, and each group
classified one code smell in the code.In this way, the teams increased the reliability
of the classification, since the code was classified by 2 team members.

As a result of this stage, all teams produced three files - one for each code smell
- with the classification of a set of methods and classes of the Java project, i.e.,
with the record of the existence or not of code smells in those classes or methods.
This stage was performed over 3 years, 2018, 2019 and 2020.

3.8.2 Stage 2: Researcher - Evaluation of machine learning models

After collecting data in three years, we proceeded to the second phase, which
aimed to produce the datasets for the 3 code smells and evaluation of the different
machine learning techniques. In figure 2 is represented the whole process of this
second stage.

The first task to be performed by the researcher is the creation of the datasets
described in section 3.3.

The creation of the datasets is done by joining all the text files with the clas-
sifications of a code smell, produced by the teams of each year, in a single Excel
file. Then, to this excel file are added the code metrics for the methods or classes
(see section 3.5), depending on the scope of the code smell to which the dataset

7 https://github.com/dataset-cs-surveys/Crowdsmelling

14 José Pereira dos Reis et al.Crowdsmelling (Researcher) (Copy)
Re

se
ar

ch
er

's
 C

om
pu

te
r

W
ek

a

Weka

Import
dataset

ML classification

Choose
algorithm

Train
algorithm

Cross
validation

testing ML classifier
output
(CSV)

Ex
ce

l

Excel

Data
preparation

Classified
CS (TXT)

CS
dataset

(CSV)

Code
metrics
(XLSX)

Output file
conversion

ML classifier
output
(XLSX)

Fig. 2: Process of creation of the datasets and evaluation of the machine learning
techniques by the researcher

belongs. Thus, in a first step, datasets are created - usually called oracles - with
the data for each year, for each of the three code smells, for a total of 6 datasets.
These datasets have been given the name of the year to which they belong, i.e.,
2018, 2019 and 2020. In a second step, we proceed to aggregate the dataset of
the year with those of previous years to make the dataset larger, increasing the
number of instances. In the end, we created six datasets for each code smell, with
a total of 18 datasets (see table 2).

After creating the datasets, we proceed to the creation and evaluation of the
machine learning models using Weka (open source software from Waikato Univer-
sity) (Hall et al., 2009). To import datasets into Weka, we convert the datasets
files, from excel XLSX to CSV. At Weka, we trained the six algorithms described
in section 3.6, with each of the 18 datasets, and evaluated the model produced
using the 10-Fold Cross Validation methodology. In the end, 36 machine learning
models were created for each code smell, with a total of 108 models for the three
code smells. Finally, all the metrics (Accuracy, Precision, Recall, F-Measure, and
ROC) resulting from the evaluation of each model were saved in the ”ML classifier
output” file (see section 3.7).

3.8.3 Stage 3: Researcher - Model variance test

To check if there were significant differences between the classifications presented
by the different models, we proceeded to the analysis of variance through a one-way
analysis of variance (ANOVA) (see figure 3).

To test the variance between the machine learning models we use the ROC
value. Thus, the first step was to produce a data file, for each code smell, with the
identification of the machine learning models and the respective ROC. This file
was created aggregating the results of the evaluations of all models produced by
Weka, by code smell.

To analyze if there were differences between the classifications of the machine
learning models for each code smell, we performed an analysis of variance using a
one-way analysis of variance (ANOVA) test in the IBM SPSS Statistics 27 software.

Title Suppressed Due to Excessive Length 15Crowdsmelling2 (Researcher) (Copy)

Re
se

ar
ch

er
 C

om
pu

te
r

SP
SS

SPSS

ANOVA

ANOVA
results

Ex
ce

l

Excel

Assess ML
algorithms

ML classifier
output
(XLSX)

Merge
classifier

output files
Merged ML

classifier

Fig. 3: Process of testing the variance between machine learning models

4 Results

In this section, we present the experiment results with respect to our research
questions.

4.1 RQ1. What is the performance of machine learning techniques
when trained with data from the crowd and therefore more realistic?

In this RQ we will evaluate the performance of the 36 models for each code
smell in a total of 108 models. These models resulted from the training of the 6
machine learning algorithms (J48, Random Forest, AdaBoostM1, SMO, Multilayer
Perceptron, Näıve Bayes), described in section 3.6, by the datasets presented in
table 2. These algorithms were trained with the various datasets resulting from the
crowd, and as explained in 3.3 we want these datasets to be as real as possible, to
represent as faithfully as possible what the detection teams think about the code
smells.

From the various existing metrics for evaluating machine learning models, we
have chosen to use the ROC as the primary metric, but we also use accuracy,
precision, recall, and f-measure. For testing, we used the 10-Fold Cross Validation,
for the reasons presented in 3.7.

4.1.1 Performance of machine learning techniques for the code smell Long Method

Starting by analyzing the machine learning techniques for the Long Method data,
described in Table 3, we observed that the best results were obtained by the Ran-
dom Forrest and AdaBoostM1 algorithms. The best result with a ROC of 0.870 was
obtained by AdaBoostM1 when trained by the dataset 2020, followed by the Ran-
dom Forrest with ROC of 0.869 for the same dataset. For the dataset 2018, the best
result was also that of AdaBoostM1. However, the most uniform algorithm was
Random Forrest, with the best results in 4 of the 6 datasets (2020+2019+2018,
2020+2019, 2019+2018, 2019) and for the dataset 2020, the difference for Ad-
aBoostM1 is insignificant (0.001). The Multilayer Perceptron and J48 algorithms,
were two other algorithms to present ROC results above 0.800. Especially the

16 José Pereira dos Reis et al.

Multilayer Perceptron algorithm which for the datasets of the year 2020 presented
an ROC between 0.868 and 0.822.

Table 3: Long Method: ROC Area results for the machine learning algorithms
trained by the 3 years datasets

year 2020 2019 2018

Algorithm
dataset

2020+2019+2018 2020+2019 2020 2019+2018 2019 2018

J48 0.792 0.801 0.832 0.677 0.678 0.617
Random Forest 0.828 0.828 0.869 0.684 0.679 0.671
AdaBoostM1 0.807 0.818 0.870 0.665 0.673 0.707
SMO 0.753 0.753 0.803 0.634 0.649 0.524
MultilayerPerceptron 0.822 0.822 0.868 0.683 0.667 0.604
NaiveBayes 0.736 0.742 0.783 0.584 0.614 0.471

The worst results were obtained by the NaiveBayes algorithm with ROC be-
tween 0.783 and 0.471. The second worst algorithm was SMO, with ROC results
between 0.803 and 0.524.

In table 3, we can still observe that the best results were obtained when the
algorithms were trained with the datasets for the year 2020, with ROC of 0.870
for the dataset 2020 and ROC of 0.828 for the datasets 2020+2019+2018 and
2020+2019. In opposition is the year 2019, with the worst results, ROC of 0.684
and 0.679 for the datasets 2019+2018, 2019, respectively.

4.1.2 Performance of machine learning techniques for the code smell God Class

Table 4 shows the results of the machine learning techniques for the God Class
data. The best result was obtained by the NaiveBayes algorithm, when trained
by the dataset 2020, with the ROC value of 0.896. The algorithms that obtained
the best performances were NaiveBayes and MultilayerPerceptron, with the best
result in 3 of the datasets each one. NaiveBayes obtained the best results for
the datasets 2020, 2020+2019, 2019, with ROC values of 0.896, 0.859 and 0.804,
respectively.Also with the best result in 3 datasets (2020+2019+2018, 2019+2018,
2018) the MultilayerPerceptron algorithm presented ROC values between 0.768
and 0.885. The Random Forest and AdaBoostM1 algorithms presented their best
ROC values of 0.893 and 0.876, respectively, for the dataset 2020.

The worst results were presented by J48 and SMO, with their best ROC values
for the dataset 2020 of 0.759 and 0.857, respectively.

Regarding the datasets that presented the best results were those of the year
2020, with the dataset only with data of the year 2020 being the best (dataset
2020) with ROC values between 0.896 and 0.791. The dataset with the worst
results was 2018, with the ROC between 0.491 and .0768.

4.1.3 Performance of machine learning techniques for the code smell Feature
Envy

The ROC Results for the machine learning algorithms trained by the 3-year
datasets for the code smell Feature Envy are presented in table 5. Feature Envy

Title Suppressed Due to Excessive Length 17

Table 4: God Class: ROC Area results for the machine learning algorithms
trained by the 3 years datasets

year 2020 2019 2018

Algorithm
dataset

2020+2019+2018 2020+2019 2020 2019+2018 2019 2018

J48 0.763 0.759 0.791 0.693 0.725 0.692
Random Forest 0.853 0.850 0.893 0.781 0.802 0.491
AdaBoostM1 0.854 0.857 0.876 0.771 0.793 0.571
SMO 0.815 0.800 0.857 0.716 0.751 0.741
MultilayerPerceptron 0.880 0.853 0.885 0.805 0.797 0.768
NaiveBayes 0.731 0.859 0.896 0.669 0.804 0.651

detection results are low, with the Random Forest algorithm having the best ROC
value of 0.570 when trained by dataset 2019. As already explained in point 3.3,
the datasets for Feature Envy are very small, considering the variance of cases,
however we are convinced that when we have bigger datasets the results will be
better. The machine learning algorithms showed better results when trained with
the datasets of the year 2019, with ROC values between 0.570 and 0.508.

Table 5: Feature Envy: ROC Area results for the machine learning algorithms
trained by the 3 years datasets

year 2020 2019 2018

Algorithm
dataset

2020+2019+2018 2020+2019 2020 2019+2018 2019 2018

J48 0.518 0.484 0.467 0.552 0.563 0
Random Forest 0.539 0.494 0.486 0.542 0.570 0
AdaBoostM1 0.498 0.437 0.468 0.554 0.548 0
SMO 0.520 0.491 0.500 0.551 0.508 0
MultilayerPerceptron 0.533 0.498 0.536 0.548 0.544 0
NaiveBayes 0.524 0.519 0.482 0.548 0.547 0

4.1.4 The one-way analysis of variance (ANOVA)

To determine if there were significant differences between the performance of ma-
chine learning techniques when trained with data from the crowd and therefore
more realistic, a One-way ANOVA was conducted to compare effect of machine
learning techniques on the ROC. Before performing the ANOVA, we checked all
the assumptions for its application, namely, the inexistence of outliers, the nor-
mality of the distribution (Shapiro-Wilk test), and the homogeneity of variances
(Levene’s test). All assumptions were fulfilled and the following results were ob-
tained:

i) For the code smell Long Method, an analysis of variance showed that the
effect of the performance of machine learning techniques on ROC value was not
significant, F(5,30)=1.096, p=.383.

18 José Pereira dos Reis et al.

ii) For the code smell God Class, an analysis of variance showed that the
effect of the performance of machine learning techniques on ROC value was not
significant, F(5,30)=.655, p=.660.

ii) For the code smell Feature Envy, an analysis of variance showed that the
effect of the performance of machine learning techniques on ROC value was not
significant, F(5,24)=.585, p=.712.

The results of the variance tests show there was no statistically significant dif-
ference between the performance of the six machine learning models, when trained
with data from the crowd and therefore more realistic.

4.1.5 Summary of RQ1 results

For the code smell Long Method the best result with a ROC of 0.870 was obtained
by AdaBoostM1 when trained by the dataset 2020, followed by the Random Forrest
with a ROC of 0.869 for the same dataset. For the code smell God Class the best
result was obtained by the NaiveBayes algorithm, when trained by the dataset
2020, with the ROC value of 0.896. Feature Envy detection results are low, with
the Random Forest algorithm having the best ROC value of 0.570 when trained
by dataset 2019.

The results of the variance tests (performed through One-way ANOVA) show
there was no statistically significant difference between the performance of the six
machine learning models when trained with data from the crowd and therefore
more realistic.

4.2 RQ2. What is the best machine learning model to detect each one
of the three code smells?

In this RQ we want to know which is the best model to detect each of the code
smells. To do so, we analyzed the various metrics that evaluate the performance of
code smells prediction models in detecting each of the 3 code smells. Of course, the
best model will vary with the metric we choose to analyze the model performance
(accuracy, precision, recall, f-measure, ROC), but for the reasons described in 3.7
we will use as the main metric the ROC.

Tables 6, 7, and 8 present the performance of the prediction models for the 3
code smells, where the best values for each of the evaluation metrics are marked.

4.2.1 Best machine learning model for the code smell Long Method

For the code smell Long Method, the model that best performs its detection is
AdaBoostM1, presenting the best values for all evaluation metrics. As we can see
in the table 6, AdaBoostM1 obtained a ROC value of 0.870, a accuracy of 81.36%,
a precision of 82.90%, a recall of 81.40%, and F-measure of 81.50%. However,
two more models present an almost equal ROC, Random Forest and Multilayer
Perceptron, with ROC values of 0.869 and 0.868, respectively.

Except for NaiveBayes, all the other five models have values higher than 0.803
for ROC and values higher than 80.00% for f-measure, precision, and recall in the
detection of code smell Long Method.

Title Suppressed Due to Excessive Length 19

Table 6: Long Method: Performance of the code smell prediction models

Dataset Classifier Accuracy TP Rate FP Rate Precision Recall F-Measure ROC Area

2018 J48 61.02% 61.00% 37.20% 63.40% 61.00% 61.30% 0.617
2018 Random Forest 61.02% 61.00% 45.10% 60.00% 61.00% 60.00% 0.671
2018 AdaBoostM1 67.80% 67.80% 36.50% 67.30% 67.80% 67.40% 0.707
2018 SMO 55.93% 55.90% 51.20% 54.30% 55.90% 54.50% 0.524
2018 MultilayerPerceptron 57.63% 57.60% 46.10% 57.40% 57.60% 57.50% 0.604
2018 NaiveBayes 61.02% 61.00% 47.70% 59.40% 61.00% 58.70% 0.471
2019 J48 64.73% 64.70% 34.10% 66.10% 64.70% 64.90% 0.678
2019 Random Forest 66.18% 66.20% 34.50% 66.40% 66.20% 66.30% 0.679
2019 AdaBoostM1 66.67% 66.70% 29.60% 70.70% 66.70% 66.30% 0.673
2019 SMO 65.46% 65.50% 35.70% 65.50% 65.50% 65.50% 0.649
2019 MultilayerPerceptron 63.29% 63.30% 38.60% 63.10% 63.30% 63.10% 0.667
2019 NaiveBayes 61.11% 61.10% 40.80% 60.90% 61.10% 61.00% 0.614

2019+2018 J48 65.75% 65.80% 33.20% 67.00% 65.80% 65.90% 0.677
2019+2018 Random Forest 65.33% 65.30% 35.30% 65.60% 65.30% 65.40% 0.684
2019+2018 AdaBoostM1 66.60% 66.60% 29.10% 71.40% 66.60% 66.20% 0.665
2019+2018 SMO 63.85% 63.80% 37.10% 64.00% 63.80% 63.90% 0.634
2019+2018 MultilayerPerceptron 63.00% 63.00% 39.40% 62.70% 63.00% 62.80% 0.683
2019+2018 NaiveBayes 58.35% 58.40% 43.70% 58.20% 58.40% 58.30% 0.584

2020 J48 79.95% 80.00% 20.30% 80.30% 80.00% 80.00% 0.832
2020 Random Forest 80.66% 80.70% 20.70% 80.60% 80.70% 80.70% 0.869
2020 AdaBoostM1 81.36% 81.40% 16.70% 82.90% 81.40% 81.50% 0.870
2020 SMO 80.77% 80.80% 20.20% 80.90% 80.80% 80.80% 0.803
2020 MultilayerPerceptron 80.07% 80.10% 21.50% 80.00% 80.10% 80.00% 0.868
2020 NaiveBayes 73.39% 73.40% 33.00% 73.70% 73.40% 72.30% 0.783

2020+2019 J48 76.32% 76.30% 22.10% 77.80% 76.30% 76.50% 0.801
2020+2019 Random Forest 77.19% 77.20% 22.60% 77.70% 77.20% 77.30% 0.828
2020+2019 AdaBoostM1 76.80% 76.80% 20.30% 79.40% 76.80% 76.90% 0.818
2020+2019 SMO 75.53% 75.50% 25.00% 75.80% 75.50% 75.60% 0.753
2020+2019 MultilayerPerceptron 75.85% 75.80% 24.60% 76.10% 75.80% 75.90% 0.822
2020+2019 NaiveBayes 68.43% 68.40% 35.70% 68.00% 68.40% 67.90% 0.742

2020+2019+2018 J48 76.40% 76.40% 22.70% 77.40% 76.40% 76.50% 0.792
2020+2019+2018 Random Forest 76.77% 76.80% 22.70% 77.50% 76.80% 76.90% 0.828
2020+2019+2018 AdaBoostM1 76.40% 76.40% 20.50% 79.30% 76.40% 76.50% 0.807
2020+2019+2018 SMO 75.19% 75.20% 24.60% 75.80% 75.20% 75.30% 0.753
2020+2019+2018 MultilayerPerceptron 76.92% 76.90% 22.50% 77.70% 76.90% 77.10% 0.822
2020+2019+2018 NaiveBayes 68.18% 68.20% 35.70% 67.80% 68.20% 67.70% 0.736

4.2.2 Best machine learning model for the code smell God Class

Table 7 presents the results of God Class detection using the 10-Fold Cross-
Validation technique and where the best values are marked. As we can see in
table 7, the model that presents the best value for the ROC is Naive Bayes with
a value of 0.896. For the remaining four evaluation metrics, the Random Forest
model presents the same values as the Naive Bayes. Thus, the Naive Bayes and
Random Forest models present an accuracy value of 88.97%, a precision value of
89.70%, a recall value of 89.00%, and an f-measure value of 88.70%.

When we evaluate the models by the ROC value, we verify that, except for
the J48 model, all the other five models have values higher than 0.857. For the
remaining evaluation metrics all six models have: a) accuracy values higher or
equal to 87.50%, b) precision values higher or equal to 87.80%, c) recall values
higher or equal to 87.50%, and d) f-measure values higher or equal to 87.20%.

When we compare the results of the code smell God Class detection with those
of the Long Method, we verify that the results of God class are better.

4.2.3 Best machine learning model for the code smell Feature Envy

Regarding the code smell Feature Envy, we present in table 8 the results of the
evaluation of the different models. For the dataset 2018 of Feature Envy it was not
possible to obtain precision, and consequently f-measure, since all the instances
classified as TRUE were poorly classified, i.e., all the instances were classified as

20 José Pereira dos Reis et al.

Table 7: God Class: Performance of the code smell prediction models

Dataset Classifier Accuracy TP Rate FP Rate Precision Recall F-Measure ROC Area

2018 J48 81.82% 81.80% 26.50% 82.00% 81.80% 81.10% 0.692
2018 Random Forest 63.64% 63.60% 47.60% 61.90% 63.60% 62.30% 0.491
2018 AdaBoostM1 68.18% 68.20% 39.60% 67.40% 68.20% 67.70% 0.571
2018 SMO 77.27% 77.30% 29.10% 76.90% 77.30% 76.90% 0.741
2018 MultilayerPerceptron 72.73% 72.70% 31.70% 72.70% 72.70% 72.70% 0.768
2018 NaiveBayes 68.18% 68.20% 45.00% 66.70% 68.20% 66.10% 0.651
2019 J48 72.87% 72.90% 29.50% 72.70% 72.90% 72.70% 0.725
2019 Random Forest 73.64% 73.60% 28.50% 73.50% 73.60% 73.50% 0.802
2019 AdaBoostM1 72.87% 72.90% 29.50% 72.70% 72.90% 72.70% 0.793
2019 SMO 76.74% 76.70% 26.60% 76.90% 76.70% 76.30% 0.751
2019 MultilayerPerceptron 75.97% 76.00% 27.70% 76.10% 76.00% 75.50% 0.797
2019 NaiveBayes 76.74% 76.70% 26.60% 76.90% 76.70% 76.30% 0.804

2019+2018 J48 70.86% 70.90% 30.00% 70.80% 70.90% 70.80% 0.693
2019+2018 Random Forest 67.55% 67.50% 32.40% 67.80% 67.50% 67.60% 0.781
2019+2018 AdaBoostM1 69.54% 69.50% 30.90% 69.50% 69.50% 69.50% 0.771
2019+2018 SMO 72.19% 72.20% 28.90% 72.10% 72.20% 72.00% 0.716
2019+2018 MultilayerPerceptron 71.52% 71.50% 29.00% 71.50% 71.50% 71.50% 0.805
2019+2018 NaiveBayes 74.83% 74.80% 26.50% 74.90% 74.80% 74.60% 0.669

2020 J48 87.50% 87.50% 17.30% 87.80% 87.50% 87.20% 0.791
2020 Random Forest 88.97% 89.00% 16.40% 89.70% 89.00% 88.70% 0.893
2020 AdaBoostM1 88.24% 88.20% 16.80% 88.70% 88.20% 87.90% 0.876
2020 SMO 88.24% 88.20% 16.80% 88.70% 88.20% 87.90% 0.857
2020 MultilayerPerceptron 88.24% 88.20% 16.80% 88.70% 88.20% 87.90% 0.885
2020 NaiveBayes 88.97% 89.00% 16.40% 89.70% 89.00% 88.70% 0.896

2020+2019 J48 82.64% 82.60% 21.70% 82.90% 82.60% 82.30% 0.759
2020+2019 Random Forest 83.02% 83.00% 21.50% 83.40% 83.00% 82.60% 0.850
2020+2019 AdaBoostM1 82.64% 82.60% 21.70% 82.90% 82.60% 82.30% 0.857
2020+2019 SMO 82.26% 82.30% 22.30% 82.60% 82.30% 81.90% 0.800
2020+2019 MultilayerPerceptron 82.26% 82.30% 22.30% 82.60% 82.30% 81.90% 0.853
2020+2019 NaiveBayes 83.02% 83.00% 21.50% 83.40% 83.00% 82.60% 0.859

2020+2019+2018 J48 81.88% 81.90% 21.70% 82.30% 81.90% 81.50% 0.763
2020+2019+2018 Random Forest 81.53% 81.50% 22.00% 81.90% 81.50% 81.20% 0.853
2020+2019+2018 AdaBoostM1 80.84% 80.80% 22.70% 81.20% 80.80% 80.50% 0.854
2020+2019+2018 SMO 83.28% 83.30% 20.30% 83.80% 83.30% 82.90% 0.815
2020+2019+2018 MultilayerPerceptron 82.23% 82.20% 20.10% 82.20% 82.20% 82.10% 0.880
2020+2019+2018 NaiveBayes 81.88% 81.90% 21.30% 82.10% 81.90% 81.60% 0.731

FALSE. For the dataset 2020, we also did not obtain precision and f-measure,
because all the instances classified as FALSE were badly classified, i. e., all the
models created from this dataset to classify the future envy, classified all the
instances of the dataset 2020 as TRUE. For this reason we will not consider in the
response to the RQ the models resulting from the training by these two datasets.

When we evaluate the models by the ROC metric, we find that the best model
is the Random Forrest with a ROC of 0.570. However, if we compare the various
evaluation metrics we find that all the other evaluation metrics have better values
than the ROC metric. The best performance in the detection of Feature Envy
is obtained by the Naive Bayes model for precision with a value of 61.40%. The
Random Forrest model also obtains the best accuracy with 59.69% and recall with
a value of 59.70%.

When we compare the results of the models for the detection of the three smells,
we verify that the worst results are obtained by the Feature Envy detection models.

4.2.4 Summary of RQ2 results

For the code smell Long Method, the model that best performs its detection is
AdaBoostM1, presenting the best values for all evaluation metrics. For the God
Class, the model that presents the best value for the ROC is Naive Bayes with
a value of 0.896. For Feature Envy, when we evaluate the models by the ROC
metric, we find that the best model is Random Forrest. However, for this code
smell, the best performance is obtained by the Naive Bayes model, for the precision

Title Suppressed Due to Excessive Length 21

Table 8: Feature Envy: Performance of the code smell prediction models

Dataset Classifier Accuracy TP Rate FP Rate Precision Recall F-Measure ROC Area

2018 J48 70.00% 70.00% 70.00% - 70.00% - 0.000
2018 Random Forest 70.00% 70.00% 70.00% - 70.00% - 0.000
2018 AdaBoostM1 70.00% 70.00% 70.00% - 70.00% - 0.000
2018 SMO 70.00% 70.00% 70.00% - 70.00% - 0.000
2018 MultilayerPerceptron 70.00% 70.00% 70.00% - 70.00% - 0.000
2018 NaiveBayes 30.00% 30.00% 87.10% 35.00% 30.00% 32.30% 0.000
2019 J48 56.85% 56.90% 46.10% 56.20% 56.90% 56.20% 0.563
2019 Random Forest 58.38% 58.40% 44.70% 57.80% 58.40% 57.70% 0.570
2019 AdaBoostM1 54.82% 54.80% 51.40% 52.90% 54.80% 51.40% 0.548
2019 SMO 52.79% 52.80% 51.30% 51.50% 52.80% 51.40% 0.508
2019 MultilayerPerceptron 51.78% 51.80% 52.30% 50.40% 51.80% 50.40% 0.544
2019 NaiveBayes 52.28% 52.30% 45.40% 54.30% 52.30% 52.00% 0.547

2019+2018 J48 57.97% 58.00% 42.80% 57.90% 58.00% 58.00% 0.552
2019+2018 Random Forest 57.49% 57.50% 43.80% 57.30% 57.50% 57.30% 0.542
2019+2018 AdaBoostM1 53.62% 53.60% 48.80% 52.90% 53.60% 52.90% 0.554
2019+2018 SMO 55.56% 55.60% 45.40% 55.50% 55.60% 55.50% 0.551
2019+2018 MultilayerPerceptron 53.62% 53.60% 47.50% 53.50% 53.60% 53.50% 0.548
2019+2018 NaiveBayes 51.69% 51.70% 47.30% 52.60% 51.70% 51.70% 0.548

2020 J48 64.23% 64.20% 64.20% - 64.20% - 0.467
2020 Random Forest 64.23% 64.20% 64.20% - 64.20% - 0.486
2020 AdaBoostM1 64.23% 64.20% 64.20% - 64.20% - 0.468
2020 SMO 64.23% 64.20% 64.20% - 64.20% - 0.500
2020 MultilayerPerceptron 64.23% 64.20% 64.20% - 64.20% - 0.536
2020 NaiveBayes 51.22% 51.20% 38.20% 61.40% 51.20% 50.90% 0.482

2020+2019 J48 59.38% 59.40% 56.70% 57.00% 59.40% 48.40% 0.529
2020+2019 Random Forest 59.69% 59.70% 56.10% 58.00% 59.70% 49.40% 0.548
2020+2019 AdaBoostM1 58.75% 58.80% 59.30% 34.80% 58.80% 43.70% 0.519
2020+2019 SMO 59.06% 59.10% 56.50% 55.70% 59.10% 49.10% 0.513
2020+2019 MultilayerPerceptron 57.50% 57.50% 56.40% 52.80% 57.50% 49.80% 0.545
2020+2019 NaiveBayes 52.81% 52.80% 40.70% 58.70% 52.80% 51.90% 0.532

2020+2019+2018 J48 57.58% 57.60% 57.80% 50.50% 57.60% 44.50% 0.518
2020+2019+2018 Random Forest 58.48% 58.50% 55.90% 56.20% 58.50% 47.70% 0.539
2020+2019+2018 AdaBoostM1 57.88% 57.90% 58.40% 33.80% 57.90% 42.70% 0.498
2020+2019+2018 SMO 58.79% 58.80% 54.70% 56.90% 58.80% 49.70% 0.520
2020+2019+2018 MultilayerPerceptron 54.85% 54.80% 58.50% 46.80% 54.80% 45.50% 0.533
2020+2019+2018 NaiveBayes 51.82% 51.80% 43.20% 56.10% 51.80% 51.10% 0.524

metric, with a value of 61.40%. When we compare the results of the models for
the detection of the three smells, we verify that the worst results are obtained by
the Feature Envy detection models and the best results by God Class.

4.3 RQ3. Is it possible to use Collective Knowledge for code smells
detection?

Several studies present code smells detection results through machine learning
techniques with accuracy, precision, recall, and f-measure, very close to 100%.
However, these studies use very treated datasets to obtain good results, which
makes the datasets unrealistic. A proof of this is the replication of one of the most
important studies on code smells detection using machine learning techniques by
Di Nucci et al. (2018), where more realistic datasets were used in this replication.
The results of this replication show that the accuracy value, on average, decreased
from 96% to 76%, but the f-measure presented results 90% lower than in the
reference work. When we compare our results with the Di Nucci et al. (2018)
study, we find that the results are similar in some metrics, and better in others.

As reported in the answers to RQ1 and RQ2, we obtained values for some
machine learning models close to 90%, which can be considered very good. The
fact that the most recent datasets are the ones that usually present the best
results, mainly the year 2020, leaves us with expectations of being able to improve
the results further. This improvement is mainly due to the improvement of the

22 José Pereira dos Reis et al.

methodological process, which has been progressively refined each year. Thus, the
answer to this RQ is yes, it is possible to use Collective Knowledge for code smells
detection.

4.3.1 Summary of RQ3 results

The answer to this RQ is yes, it is possible to use Collective Knowledge for code
smells detection. The Crowdsmelling approach obtained values for some ML mod-
els close to 90%, which can be considered very good. Overall our results are similar
to those of Di Nucci et al. (2018)’s study and are even better in some metrics. The
fact that the most recent datasets are the ones that usually show the best results,
mainly the year 2020, leaves us with expectations that we can improve the results
even more.

5 Discussion

5.1 Research Questions (RQ)

In this section, we present the discussion of the results considering the three RQs.
Regarding the comparison of our results with existing works, we will compare with
Di Nucci et al. (2018) study, since it is the one that presents more similarities with
ours, also using more realistic datasets.

For the long Method, the model with the best prediction is AdaBoostM1,
trained on the 2020 dataset, with a ROC of 0.870 (see Table 3), but also F-
Measure and Accuracy show values higher than 80%, namely 81.50%, and 81.36%,
respectively (see table 6). Random Forest, with a ROC of 0.869, shows a value
almost equal to AdaBoostM1. These two models show good results, in line with
the results presented in Di Nucci et al. (2018)’s study. The MultilayerPerceptron
and J48 models also show good results with the best ROC of 0.868 and 0.832,
respectively, for the 2020 dataset. Namely, MultilayerPerceptron is the second-
best model for three datasets (2019+2018, 2020+2019, 2020+2019+2018). In
opposition is NaiveBayes and SMO which show the worst results for all datasets,
for example, for the 2020 dataset where they have their best values, the ROC is
0.783 for NaiveBayes, and 0.803 for SMO.

Also, regarding the code smell Long Method, the models trained with the
most recent dataset, the year 2020, have the best values, with a ROC greater
than or equal to 0.803 for five models (J48, Random Forest, AdaBoostM1, SMO,
MultilayerPerceptron) out of the six we used. Only the NaiveBayes model has
a ROC lower than 0.800, more precisely 0.783, but still higher than all models
trained with datasets from previous years.The fact that the models trained on the
most recent dataset show the best results is important because it means that there
has been an evolution in the production of the datasets over the three years by
this approach.

For the code smell God Class, prediction values very close to 90% were ob-
tained, as such, we consider these to be good values compared to similar studies.
The model that presented the best ROC value was NaiveBayes with 0.896, followed
by Random Forest with 0.893 (see table 4) for the 2020 dataset. These two models
also had the best values for the other metrics, with both having equal values for

Title Suppressed Due to Excessive Length 23

F-Measure 88.70% and Accuracy of 88.97% (see table 7) for the 2020 dataset. For
the MultilayerPerceptron model, good results were also obtained, with a ROC of
0.885, for the 2020 dataset and a ROC of 0.880 for the 2020+2019+2018 dataset.
Hence, this model presented the 3rd and 4th best values. The AdaBoostM1 and
the SMO models obtained their best values with the 2020 dataset, with a ROC
value of 0.876 and 0.857, respectively. The worst values were presented by the J48
model, with its best ROC value of 0.791, thus being the only model that failed
to exceed the ROC value of 0.800. For the code smell God Class it happened the
same as for the code smell Long Method, all models presented their best ROC
values when trained with the most recent year datasets, the year 2020.

For the code smell Feature Envy, it was not possible to obtain the values for
all the evaluation metrics for the reasons already explained in the results section
(see subsection 4.2.3). The models for this code smell showed low results, being
the worst results of the three code smells. Thus, the best ROC value was 0.570
for Random Forrest, but far from the values obtained for God Class and Long
Method, 0.896 and 0.870, respectively. The NaiveBayes model showed the best
result of all the evaluation metrics with a value of 61.40% for Precision. Random
Forrest again presented the best value for Recall 59.70% and Accuracy 59.69%. For
F-Measure, the best value of 58.00% is obtained with the J48 model. Regarding
the datasets that show better results for Feature Envy, the Accuracy, Precision,
and Recall metrics were the 2020+2019, for the F-measure and ROC metrics were
the 2019+2018 and 2019, respectively. Hence, no dataset concentrates most of the
best values for the various metrics.

In the following subsections we provide a summary for each of the RQs.

5.1.1 RQ1. What is the performance of machine learning techniques when trained
with data from the crowd and therefore more realistic?

The best result was obtained for the code smell God Class with a ROC
value of 0.896, however, the Long Method with a ROC of 0.870 is very
close. The worst result was obtained for Feature Envy with a ROC
of 0.570. The difference in ROC value between the best and worst code smell
is 0.326. This considerable difference is due to the constitution of the Feature
Envy datasets. When we analyze the composition of the datasets, we see that the
diversity of cases (classified methods) is much smaller compared to that of the Long
Method datasets, which is also a code smell in the method scope, and consequently
uses the same code metrics. The solution to this problem is to continue to grow
the dataset by classifying methods that are not already part of it. However, this
problem alerts us to the classification of more complex code smells, as such, with
fewer occurrences in the code, and where programmers tend to follow more of the
advisors’ detection results.

When we compare our ROC values with those obtained by Di Nucci et al.
(2018), we find that for the code smells God Class and Long Method, we obtain
similar values in the range of 0.89 and 0.87, respectively. Regarding the code smell
Feature Envy, for the reasons already presented, our value of 0.57 is considerably
lower than the one presented by Di Nucci et al. (2018), which is 0.89.

24 José Pereira dos Reis et al.

5.1.2 RQ2. What is the best machine learning model to detect each one of the
three code smells?

Having the ROC as the reference metric, for the Long Method the best
models were AdaBoostM1 and Random Forrest, for the God Class it
was Naive Bayes and Random Forrest that presented the best values,
and for the Feature Envy, it was Random Forrest and Naive Bayes
models. Thus, we can conclude that in regards to which is the best ML model
for the detection of the three code smells, we do not have a model that guarantees
the best detection value in the three smells, however, Random Forrest stands out.

When we compare the results of the models for the detection of the three
smells, we verify that the best results are obtained by the God Class detection
models, and the worst results are obtained by the Feature Envy detection models.

In the Di Nucci et al. (2018) study, the best performances (for all code smells)
were obtained by the Random Forrest and J48 models. These two models have
in common that they are based on decision trees. When we compare them to our
models we can conclude, i) Random Forrest was also the model with which we
obtained the best results when considering all smells, ii) regarding J48, it was
not one of our best models, because only for the F-Measure in the Feature Envy
code smell it presented the best value, iii) Naive Bayes, which was one of our best
models, did not present significant results in the Di Nucci et al. (2018) study.

5.1.3 RQ3. Is it possible to use Collective Knowledge for code smells detection?

This study is the first to use the Crowdsmelling approach for code smell detection,
as such, there are always methodological aspects that could have been improved.
As a result of this study, we have also already found more aspects that can be
improved in the future which we present in this discussion.

When we have dozens of participants, it is not possible to have total control
over the actions of each participant. In our case, this was reflected in the non-
use, in the first year, of data from 11 teams, out of a total of 42 participants.
To have better control over the participants’ actions, we removed the possibility
for them to choose the Java project on which to detect the code smells, and
all the teams started using the same project. This decision resulted in a lack of
diversity of cases when a code smell is more complex and consequently has fewer
existences in the code (in our case, Feature Envy). Another consequence was that
the participants started to follow the advisor’s suggestions more since the code
smell is more complex.

In this experiment, we performed many processes manually, such as the data
aggregation process, which proved to be time and effort consuming, and therefore
impractical to implement in a company’s reality. However, our goal was to perform
the first experiment to verify the potential of this approach.

This first study presents promising results, therefore, we are con-
vinced of the applicability of this approach in detecting code smells.
One of the reasons for this is that this approach allowed us to gather in the
datasets a wide variety of opinions regarding the classification of code smells since
it has the contribution of more than 350 participants. Another reason is that the
datasets have borderline smells (where it is not clear whether it is a smell or not)

Title Suppressed Due to Excessive Length 25

which make it harder to detect. Finally, the fact that the datasets are not balanced
also contributes to the datasets being considered more realistic.

We have organized the datasets by year so that we can compare the results
of each year and thus understand the progress in implementing this approach.
The results obtained show progress over these years, with the best values being
obtained in 2020. Thus, we are led to conclude that we are on the right track and
that we can improve these results much more.

From a methodological point of view, more validation experiments are needed
to cover more code smells, build more broad datasets, and to increase external
validity. To address many of the issues presented, we are developing a tool based
on micro-tasks to automate the whole process of the Crowdsmelling approach, from
the extraction of metrics from the Java project code to the validation of code smells
by the developers. With these tools, our goal is to move to the next level, which
is to study the implementation of this approach in an industrial environment.

5.2 Implications and limitations of the Crowdsmelling Approach

The Crowdsmelling approach has several advantages for developers and researchers
because it is a dynamic approach that does not require the definition of rules for the
detection of each code smell and its thresholds. This approach through the input
given by developers produces datasets more and more adapted to the developers’
reality, which implies the production of better ML models and consequently a
better detection of code smells. These dynamics presented by the approach has
two main advantages: i) although we have used only three code smells in this study,
it is not limited to these code smells, and can be generalized to other code smells;
ii) it makes the detection accuracy improve as the feedback from the developers
grows (by improving the learning datasets) and leads the ML models to converge
to maximum accuracy.

The learning dynamics presented in the previous paragraph, are also the main
limitation of the approach, because it is dependent on feedback from developers,
and it is not possible to predict exactly how much convergence in learning can be
achieved, i.e., what is the maximum detection accuracy.

To better demonstrate our approach, we will exemplify two scenarios: i) a com-
pany where there is a set of development rules, namely, code smells, that is known
and respected by all developers. In this scenario all developers are aligned with the
code smells rules, thus contributing to a clear definition of what a code smell is in
the datasets. In this scenario, we have faster convergence and will achieve higher
detection accuracy; ii) A successful open-source project, where many developers
contribute. In this scenario, it will be more complicated for all developers to re-
spect the rules since there will be less alignment among developers, and therefore
more divergence on what is a code smell. Our approach will always translate in the
datasets what the developers understand to be a code smell, but the convergence
will take longer and the detection accuracy will be lower.

In both scenarios, this approach learns from the context in which it is used
by learning the code smells detection rules used, thus always translating the de-
velopers’ reality. The more precise the detection rules, the higher the detection
accuracy.

26 José Pereira dos Reis et al.

5.3 Threats to validity

In our study, we made assumptions that may threaten the validity of our results.
In this section, we discuss possible sources of threats, and how we mitigated them.

5.3.1 Conclusion Validity

Threats in this category impact the relation between treatment and outcome.
The first threat is in the evaluation methodology, so we adopted the 10-fold

cross-validation, which is one of the most used in machine learning, and to directly
compare our results with those achieved in the other study’s.

As for the evaluation metrics adopted to interpret the performance of the ex-
perimented models, we have adopted the most common machine learning metrics,
which have been used in other studies with some similarity.

To test if there was a statistically significant difference between the perfor-
mance of the six machine learning models, we used the one-way analysis of variance
(ANOVA).

5.3.2 Construct Validity

As for potential issues related to the relationship between theory and observation,
we may have been subject of problems in the adopted methodology. To avoid bias
in process, we elaborated a script in which we detailed all the steps that the teams
had to carry out to detect code smells, so that there would be uniformity in the
process. However, we cannot guarantee the correct use of this script by all the
teams.

Code metrics are extremely important because they play the role of inde-
pendent variables in the machine learning algorithms. To avoid bias in metrics
extraction we used the same metrics as in Fontana et al. (2015), since they are
publicly available. As for the experimented prediction models, we exploited the im-
plementation provided by the Weka framework (Hall et al., 2009), which is widely
considered as a reliable tool. To avoid bias in the parameterization of the Weka
algorithms, we used the default values for the parameters.

5.3.3 Internal Validity

This threat is related to the correctness of the experiments’ outcome. Since the
definition of code smells is subjective, it may cause different interpretations and,
as such, the manual evaluation is not entirely reliable. To mitigate this problem,
an advisor is used in the experiment to serve as a basis for identifying code smells,
although the final decision is always made by the team, which is composed of
several developers, and all had the same training.

To avoid participants only classifying code smells detected by the JDeodorant
advisor (although it was optional to use it), it was indicated that they would have
to classify at least one package, however, not all teams did so. This requires teams
to manually classify, based directly on code metrics, a set of false positive and
negative code smells as detected by JDeodorant.

The participants in this study were students attending a compulsory Software
Engineering course. In the scope of this course, an optional assignment was done

Title Suppressed Due to Excessive Length 27

where this experiment was carried out. To have rigor in the accomplishment of this
work, since it was optional, the works were evaluated by the teachers and a grade
was assigned according to the quality demonstrated. The fact that only students
were used can be a threat, however, these are finalists who in three months will
be working in companies. On the other hand, the use of students has advantages
and disadvantages as we can see in the paper by Feldt et al. (2018).

The maturity, experience, and knowledge of team members about code smells is
a variable that we cannot control. As such, there may be variations in the accuracy
and precision of the detection of code smells. To minimize the possible bias, the
decisions are not individual, but taken by the team. The time given to do this
work was 3 weeks, which may have been a reason for bias, but considering that it
was a team effort we thought it was sufficient.

Because code smells is only detected in three Java projects, there may be some
bias as to the number and type of code smells existing in these Java projects. We
chose these projects because they are open-source, are widely used in code smells
detection, and are not toy examples due to their considerable dimension.

5.3.4 External Validity

Finally, the External validity is concerned with whether we can generalize the
results outside the scope of our study.

With respect to the generalizability, we used the three most common code
smells in this type of studies. Regarding the code metrics, we used a high number,
61 metrics for God Class and 82 metrics for Feature Envy and Long Method, thus
ensuring a wide scope.

In terms of programming languages, we only used Java projects, but Java is by
far the most used language in code smells detection studies, accounting for 77.1%
of the cases Pereira dos Reis et al. (2021).

The fact that this study has a very manual component does not make it easy
to reproduce, however, all the necessary indications are in the study, and a set of
materials is available on GitHub.

6 Conclusion and future work

In (Reis et al., 2017) we have proposed the concept of Crowdsmelling – use of
collective intelligence in the detection of code smells – to mitigate the aforesaid
problems of subjectivity and lack of calibration data required to obtain accurate
detection model parameters. In this paper we reported first results of a study in-
vestigating the approach Crowdsmelling, a collaborative crowdsourcing approach,
based in machine learning, where the wisdom of the crowd (of software developers)
will be used to collectively calibrate code smells detection algorithms.

For 3 years we collected code smells detection data by several teams manually,
although they could use JDeodorant as an advisor if they wanted. Combining the
data from each year with the previous ones, we created several oracles for each of
the three code smells (Long Method, God Class, Feature Envy). The latter were
used to train a set of machine learning algorithms, creating the detection models
for each of the three code smells, in a total of 108 models. Finally, to evaluate
the models we tested them using the 10-Fold Cross-Validation methodology, and

28 José Pereira dos Reis et al.

analyzed the metrics Accuracy, Precision, Recall, and F-Measure, with special
emphasis on ROC, because the datasets were not treated, for example, balanced.
This way we created the most realistic datasets possible. To check if there were
significant differences between the classifications presented by the different models,
we proceeded to the analysis of variance through a one-way analysis of variance
(ANOVA).

Regarding RQ1, we conclude that the best results for the code smell Long
Method were obtained by the Random Forrest and AdaBoostM1 algorithms. The
best result with a ROC of 0.870 was obtained by AdaBoostM1 when trained by
the dataset 2020, followed by the Random Forrest with ROC of 0.869 for the
same dataset. For the code smell God Class, the best result was obtained by the
NaiveBayes algorithm, when trained by the dataset 2020, with the ROC value of
0.896. For Feature Envy the results are low, with the Random Forest algorithm
having the best ROC value of 0.570 when trained by dataset 2019. The results of
the variance tests (ANOVA) show there was no statistically significant difference
between the performance of the six machine learning models, when trained with
data from the crowd and therefore more realistic.

As for RQ2, the best machine learning model for Long Method detection is
AdaBoostM1, presenting the best values for all evaluation metrics, a ROC value
of 0.870, a accuracy of 81.36%, a precision of 82.90%, a recall of 81.40%, and F-
measure of 81.50%. For the God Class, the model that presents the best value for
the ROC is Naive Bayes with a value of 0.896. the Naive Bayes and Random Forest
models present an accuracy value of 88.97%, a precision value of 89.70%, a recall
value of 89.00%, and an f-measure value of 88.70%. For the Feature Envy, best
model is the Random Forrest with a ROC of 0.570. However, the best performance
in the detection of Feature Envy is obtained by the Naive Bayes model for precision
with a value of 61.40%.

Regarding RQ3, it is possible to use the Crowdsmelling – use of collective
intelligence in the detection of code smells – as a good approach for the detection
of code smells, because we obtained values for some machine learning models close
to 90%, which can be considered very good, for realistic datasets, which reflect
the detection performed by developers. The fact that the most recent datasets,
the year 2020, are the ones that usually presented the best results, leaves us with
great motivation to continue developing this detection approach because we think
that we can even better the results.

We are currently developing a plugin for the Eclipse IDE, which extracts the
code metrics, detects the code smells, identifies the code smells in the code, receives
the programmer’s opinion regarding the detection of the code smell (i.e., if the
programmer agrees or not with the code smell and stores all this information in
a database). This plugin is expected to simplify the use of the Crowdsmelling
approach, making it simple for programmers to use when developing their Java
projects.

Acknowledgements This work was partially funded by the Portuguese Foundation for Sci-
ence and Technology, under ISTAR’s projects UIDB/04466/2020 and UIDP/04466/2020, and
by Anima Institute (Edital Nº 43/2021).

Title Suppressed Due to Excessive Length 29

References

Baltes, S. and Treude, C. (2020). Code duplication on stack overflow. In Proceed-
ings of the ACM/IEEE 42nd International Conference on Software Engineering:
New Ideas and Emerging Results, ICSE-NIER ’20, page 13–16, New York, NY,
USA. Association for Computing Machinery.

Bavota, G. and Russo, B. (2016). A large-scale empirical study on self-admitted
technical debt. In Proceedings of the 13th International Conference on Mining
Software Repositories, pages 315–326.

Bentzien, J., Muegge, I., Hamner, B., and Thompson, D. C. (2013). Crowd comput-
ing: Using competitive dynamics to develop and refine highly predictive models.
Drug Discovery Today, 18(9-10):472–478.

Bigham, J. P., Bernstein, M. S., and Adar, E. (2014). Human-Computer Interac-
tion and Collective Intelligence. In Malone, T. W. and Bermstein, M. S., editors,
The Collective Intelligence Handbook. CMU.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.
Caldeira, J., Brito e Abreu, F., Cardoso, J., and dos Reis, J. P. (2020). Unveiling

process insights from refactoring practices.
de Mello, R., Oliveira, R., Sousa, L., and Garcia, A. (2017). Towards effective

teams for the identification of code smells. In 2017 IEEE/ACM 10th Interna-
tional Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE), pages 62–65.

Di Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik, A., and De Lucia, A.
(2018). Detecting code smells using machine learning techniques: Are we there
yet? In 2018 IEEE 25th International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER), pages 612–621.

Feldt, R., Zimmermann, T., Bergersen, G. R., Falessi, D., Jedlitschka, A., Ju-
risto, N., Münch, J., Oivo, M., Runeson, P., Shepperd, M., Sjøberg, D. I., and
Turhan, B. (2018). Four commentaries on the use of students and professionals
in empirical software engineering experiments. Empirical Software Engineering,
23(6):3801–3820.

Fontana, F. A., Braione, P., and Zanoni, M. (2012). Automatic detection of bad
smells in code: An experimental assessment. Journal of Object Technology, 11(2).

Fontana, F. A., Mäntylä, M. V., Zanoni, M., and Marino, A. (2015). Compar-
ing and experimenting machine learning techniques for code smell detection.
Empirical Software Engineering.

Fontana, F. A., Zanoni, M., Marino, A., and Mäntylä, M. V. (2013). Code smell
detection: Towards a machine learning-based approach. In 2013 IEEE Interna-
tional Conference on Software Maintenance, pages 396–399.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D. (1999). Refactoring:
improving the design of existing code. Addison-Wesley Longman Publishing Co.,
Inc.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algo-
rithm. In Proceedings of the Thirteenth International Conference on Interna-
tional Conference on Machine Learning, ICML’96, page 148–156, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.
(2009). The weka data mining software: An update. SIGKDD Explor. Newsl.,
11(1):10–18.

30 José Pereira dos Reis et al.

Humphrey, W. (2009). The Future of Software Engineering: I. The Watts New?
Collection: Columns by the SEI’s Watts Humphrey.

John, G. and Langley, P. (1995). Estimating continuous distributions in bayesian
classifiers. In In Proceedings of the Eleventh Conference on Uncertainty in Ar-
tificial Intelligence, pages 338–345. Morgan Kaufmann.

Kessentini, W., Kessentini, M., Sahraoui, H., Bechikh, S., and Ouni, A. (2014). A
cooperative parallel search-based software engineering approach for code-smells
detection. IEEE Transactions on Software Engineering, 40(9):841–861.

Mansoor, U., Kessentini, M., Maxim, B. R., and Deb, K. (2017). Multi-objective
code-smells detection using good and bad design examples. Software Quality
Journal, 25(2):529–552.

Oliveira, R. (2016). When more heads are better than one? understanding and
improving collaborative identification of code smells. In 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C), pages
879–882.

Oliveira, R., de Mello, R., Fernandes, E., Garcia, A., and Lucena, C. (2020).
Collaborative or individual identification of code smells? on the effectiveness
of novice and professional developers. Information and Software Technology,
120:106242.

Oliveira, R., Estácio, B., Garcia, A., Marczak, S., Prikladnicki, R., Kalinowski,
M., and Lucena, C. (2016). Identifying code smells with collaborative prac-
tices: A controlled experiment. In 2016 X Brazilian Symposium on Software
Components, Architectures and Reuse (SBCARS), pages 61–70.

Oliveira, R., Sousa, L., de Mello, R., Valentim, N., Lopes, A., Conte, T., Garcia,
A., Oliveira, E., and Lucena, C. (2017). Collaborative identification of code
smells: A multi-case study. In 2017 IEEE/ACM 39th International Conference
on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP),
pages 33–42.

Palomba, F., Di Nucci, D., Tufano, M., Bavota, G., Oliveto, R., Poshyvanyk, D.,
and De Lucia, A. (2015). Landfill: An open dataset of code smells with public
evaluation. In 2015 IEEE/ACM 12th Working Conference on Mining Software
Repositories, pages 482–485.

Pecorelli, F., Di Nucci, D., De Roover, C., and De Lucia, A. (2019). On the role of
data balancing for machine learning-based code smell detection. In Proceedings
of the 3rd ACM SIGSOFT International Workshop on Machine Learning Tech-
niques for Software Quality Evaluation, MaLTeSQuE 2019, page 19–24, New
York, NY, USA. Association for Computing Machinery.

Pereira dos Reis, J., Brito e Abreu, F., de Figueiredo Carneiro, G., and Anslow, C.
(2021). Code smells detection and visualization: A systematic literature review.
Archives of Computational Methods in Engineering.

Platt, J. C. (1999). Fast training of support vector machines using sequential min-
imal optimization. In Advances in Kernel Methods - Support Vector Learning,
page 185–208. MIT Press.

Proksch, S., Amann, S., and Mezini, M. (2014). Towards standardized evaluation
of developer-assistance tools. In Proceedings of the 4th International Workshop
on Recommendation Systems for Software Engineering - RSSE 2014, pages 14–
18, New York, New York, USA. ACM Press.

Quinlan, J. R. (2014). C4.5: Programs for Machine Learning. Elsevier.

Title Suppressed Due to Excessive Length 31

Rahman, F. and Devanbu, P. (2013). How, and why, process metrics are better.
In Proceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, page 432–441. IEEE Press.

Reis, J. P., Brito e Abreu, F., and de F. Carneiro, G. (2017). Code smells detec-
tion 2.0: Crowdsmelling and visualization. In 2017 12th Iberian Conference on
Information Systems and Technologies (CISTI), pages 1–4.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning Internal
Representations by Error Propagation, page 318–362. MIT Press, Cambridge,
MA, USA.

Sharma, M. and Padmanaban, R. (2014). Leveraging the wisdom of the crowd in
software testing. CRC Press.

Stol, K.-J. and Fitzgerald, B. (2014). Researching crowdsourcing software de-
velopment: Perspectives and concerns. In Proceedings of the 1st International
Workshop on CrowdSourcing in Software Engineering, CSI-SE 2014, page 7–10,
New York, NY, USA. Association for Computing Machinery.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society. Series B (Methodological), 36(2):111–
147.

Tahir, A., Yamashita, A., Licorish, S., Dietrich, J., and Counsell, S. (2018). Can
you tell me if it smells? a study on how developers discuss code smells and anti-
patterns in stack overflow. In Proceedings of the 22nd International Conference
on Evaluation and Assessment in Software Engineering 2018, EASE’18, page
68–78, New York, NY, USA. Association for Computing Machinery.

Travassos, G., Shull, F., Fredericks, M., and Basili, V. R. (1999). Detecting defects
in object-oriented designs: Using reading techniques to increase software quality.
In Proceedings of the 14th conference on object oriented programming, systems,
languages, and applications, pages 47–56, New York, NY, USA. ACM Press.

Tsantalis, N., Chaikalis, T., and Chatzigeorgiou, A. (2018). Ten years of jdeodor-
ant: Lessons learned from the hunt for smells. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER), pages
4–14.

Wang, C., Hirasawa, S., Takizawa, H., and Kobayashi, H. (2015). Identification and
Elimination of Platform-Specific Code Smells in High Performance Computing
Applications. International Journal of Networking and Computing, 5(1):180–
199.

Yamashita, A. and Moonen, L. (2013). To what extent can maintenance problems
be predicted by code smell detection? - an empirical study. Inf. Softw. Technol.,
55(12):2223–2242.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G.
(2003). Performance Assessment of Multiobjective Optimizers: An Analysis
and Review. IEEE Transaction on Evolutionary Computation, 7(2):117–132.

32 José Pereira dos Reis et al.

Appendices

Appendix A. Code metrics

Metric Acronym

Lines of Code LOC
Lines of Code Without Accessor or Mutator Methods LOCNAMM
Number of Packages NOPK
Number of Classes NOCS
Number of Methods NOM
Number of Not Accessor or Mutator Methods NOMNAMM
Number of Attributes NOA
Cyclomatic Complexity CYCLO
Weighted Methods Count WMC
Weighted Methods Count of Not Accessor or Mutator Methods WMCNAMM
Average Methods Weight AMW
Average Methods Weight of Not Accessor or Mutator Methods AMWNAMM
Maximum Nesting Level MAXNESTING
Weight of Class WOC
Called Local Not Accessor or Mutator Methods CLNAMM
Number of Parameters NOP
Number of Accessed Variables NOAV
Access to Local Data ATLD
Number of Local Variable NOLV
Tight Class Cohesion TCC
Lack of Cohesion in Methods LCOM
Fanout FANOUT
Access to Foreign Data ATFD
Foreign Data Providers FDP
Response for A Class RFC
Coupling Between Objects Classes CBO
Called Foreign Not Accessor or Mutator Methods CFNAMM
Coupling Intensity CINT
Coupling Dispersion CDISP
Maximum Message Chain Length MAMCL
Number of Message Chain Statements NMCS
Mean Message Chain Length MEMCL
Changing Classes CC
Changing Methods CM
Number of Accessor Methods NOAM
Number of Public Attributes NOPA
Locality of Attribute Accesses LAA
Depth of Inheritance Tree DIT
Number of Interfaces NOI
Number of Children NOC
Number of Methods Overridden NMO
Number of Inherited Methods NIM
Number of Implemented Interfaces NOII
Number of Default Attributes NODA
Number of Private Attributes NOPVA
Number of Protected Attributes NOPRA
Number of Final Attributes NOFA
Number of Final and Static Attributes NOFSA
Number of Final and Non - Static Attributes NOFNSA
Number of Not Final and Non - Static Attributes NONFNSA
Number of Static Attributes NOSA
Number of Non - Final and Static Attributes NONFSA
Number of Abstract Methods NOABM
Number of Constructor Methods NOCM
Number of Non - Constructor Methods NONCM
Number of Final Methods NOFM
Number of Final and Non - Static Methods NOFNSM
Number of Final and Static Methods NOFSM
Number of Non - Final and Non - Abstract Methods NONFNABM
Number of Final and Non - Static Methods NONFNSM
Number of Non - Final and Static Methods NONFSM
Number of Default Methods NODM
Number of Private Methods NOPM
Number of Protected Methods NOPRM
Number of Public Methods NOPLM
Number of Non - Accessors Methods NONAM
Number of Static Methods NOSM

