2101.05961v2 [cs.SE] 23 Jun 2021

arxXiv

SoftNER: Mining Knowledge Graphs From
Cloud Incidents

Manish Shetty*, Chetan Bansal*, Sumit Kumar,
Nikitha Rao*, Nachiappan Nagappan*
*Microsoft Research
TMicrosoft

Abstract—The move from boxed products to services and the
widespread adoption of cloud computing has had a huge impact
on the software development life cycle and DevOps processes.
Particularly, incident management has become critical for devel-
oping and operating large-scale services. Prior work on incident
management has heavily focused on the challenges with incident
triaging and de-duplication. In this work, we address the fun-
damental problem of structured knowledge extraction from ser-
vice incidents. We have built SoftNER, a framework for mining
Knowledge Graphs from incident reports. First, we build a novel
multi-task learning based BiLSTM-CRF model which leverages
not just the semantic context but also the data-types for extract-
ing factual information in the form of named entities. Next, we
present an approach to mine relations between the named entities
for automatically constructing knowledge graphs. We have de-
ployed SoftNER at Microsoft, a major cloud service provider and
have evaluated it on more than 2 months of cloud incidents. We
show that the unsupervised machine learning pipeline has a high
precision of 0.96. Our multi-task learning based deep learning
model also outperforms the state-of-the-art NER models. Lastly,
using the knowledge extracted by SoftNER, we are able to build
accurate models for applications such as incident triaging and
recommending entities based on their relevance to incident titles.

I. INTRODUCTION

In the last decade, two major paradigm shifts have revolu-
tionized the software industry. First is the move from boxed
software products to services. Large software organizations
like Adobe and Microsofﬂ which pre-date the internet revolu-
tion have been aggressively trying to move from selling boxed
products to subscription based services. This has primarily
been driven by the benefits of subscription based services
such as scalability, faster releases, insights from telemetry,
and, better revenue stability. The second major shift has been
the widespread adoption of public clouds. More and more
software companies are moving from on-premises data centers
to public clouds like Amazon AWS, Google Cloud, Microsoft
Azure, etc. Gartner has forecaste(ﬂ the public cloud market to
grow to about $266 billion in revenue in 2020, out of which
about 43% revenue will be from the Software as a Service
(SaaS) segment. The cloud revolution has enabled companies
like Netflix, Uber, etc. to build internet scale products without
having to provision their own infrastructure.

Thttps://www.pcworld.com/article/2038194/microsoft-says-its-boxed-
software-probably-will-be-gone-within-a-decade.html

Zhttps://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-
forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020

These paradigm shifts have also had a transformational ef-
fect on the way software is developed, deployed, and main-
tained. For instance, software engineers no longer develop
monolithic software. They build services that have dependen-
cies on several 1°* party and 3" party services and APIs. Typ-
ically, any web application will leverage cloud services for ba-
sic building blocks like storage (relational and blob), compute,
and authentication. These complex dependencies introduce a
bottleneck where a single failure can have a cascading effect.
In 2017, a small typo led to a major outage in the AWS S3
storage serviceﬂ which ended up costing over $150 million
to customers like Slack, Medium, etc. Microsoft had a glitch
in their Active Directory in October 201qﬂ which locked out
customers from accessing their Office 365 and Azure accounts.
These outages are inevitable and can be caused by various
factors such as code bugs, misconfigurations [1]], or even en-
vironmental factors.

To keep up with these changes, DevOps processes and plat-
forms have also evolved over time [2], [3]]. Most software com-
panies these days have incident management and on-call duty
as a part of the DevOps workflow, where the key motivation is
to reduce impact on customers by mitigating any issue as soon
as possible. We discuss the incident life-cycle and some of
the associated challenges in detail in Section 2. Prior work on
incident management has largely focused on two challenges:
incident triaging [4], [5] and diagnosis [6]], [[7]. Here, triaging
refers to the process of identifying and routing the incident
to the appropriate team for resolution. Chen et al. [4] did an
empirical study where they found that upto 60% of incidents
can be mis-triaged. They proposed DeepCT, a deep learning
approach for automated incident triaging using incident data
(title, summary, comments) and environmental factors.

Based on our experience from operating web-scale cloud
services at Microsoft and discussions with various product
teams, we observe that a key challenge in incident manage-
ment lies in the lack of structured representations of these
incidents. These incidents could be created by a wide variety
of sources such as customers, engineers, and even automated
monitoring systems. They are mostly unstructured and contain
several types of information like incident metadata, descrip-

3https://www.wsj.com/articles/amazon-finds-the-cause-of-its-aws-outage-a-
typo-1488490506
“https://www.theregister.co.uk/2019/10/18/microsoft_azure_mfa/

tion, stack traces, outputs of shell scripts, images, etc. As a
result, on-call engineers spend a considerable amount of effort
manually parsing verbose incident descriptions to understand
the issue, locating key information for mitigation, and finally
engaging the appropriate team to acknowledge and fix the
issue. The time and effort spent here is termed as Time-To-
Engage (TTE) and adds a significant delay to the ensuing tasks
in the incident life-cycle as described in Section

Thus, in this work, we address the key problem of ex-
tracting structured knowledge from service incidents. This
structured knowledge would reduce the effort spent by on-
call engineers by opening up avenues for automating pro-
cesses like log extraction and health checks on resources
(VMs, Databases, etc.) identified within these descriptions.
The extracted knowledge would also help build better models
for performing downstream tasks like triaging and root-cause
analysis. Please refer to Section and Section [IX]to further
understand the applications of our framework.

Ideally, any knowledge extraction framework should have
the following qualities:

1) It should be unsupervised because it is laborious and
expensive to annotate a large amount of training data.
This is important since a service’s unique vocabulary is
unknown.

2) It should be domain agnostic so that it can scale to a high
volume and a large number of information entity types.
Unlike in the web domain, where there is a small set of
key entities such as people, places, and organizations, for
incidents, we don’t know these entities apriori.

3) It should be extensible so that we can adapt the boot-
strapping techniques to incidents from other services, or
even other data sets such as bug reports. This is critical
because each service (e.g. compute, networking, storage)
could have its unique vocabulary and terminology.

We have designed Software artifact KNowledge ExtRaction
(SoftNER), a framework for unsupervised knowledge
extraction from service incidents, which has these three
qualities: unsupervised, domain agnostic, and extensible. As
shown in Figure [1| we break down knowledge extraction into
three steps. First, we use Named-entity recognition (NER)
for extraction of factual and structured information from
the incidents. We leverage syntactic pattern extractors for
bootstrapping the training data. Further, we incorporate a
novel multi-task BILSTM-CRF deep learning model with an
attention mechanism. Next, we enrich these entities by mining
binary relations between the entities. Lastly, we automatically
construct knowledge graphs using the entities and relations
extracted. We have evaluated and deployed SoftNER at
Microsoft, a major cloud service provider. We show that our
unsupervised knowledge graph mining has high precision.
Our multi-task deep learning model also outperforms existing
state-of-the-art models on the NER task. Lastly, using the
extracted knowledge, we show that we can build more accurate
models for key downstream tasks like incident triaging and
also improve tooling in incident management platforms.

In this work, we make the following main contributions:

1) We propose SoftNER, the first approach for completely
unsupervised Knowledge Graph mining from service in-
cidents.

2) We build a novel multi-task learning based deep learning
model for named-entity recognition which leverages not
just the semantic features but also the data-types. Our
evaluation shows that it outperforms the existing state-of-
the-art NER models.

3) We propose a novel approach to mine relations be-
tween the extracted entities for construction of knowledge
graphs.

4) We do an extensive evaluation of SoftNER on over 2
months of cloud service incidents from Microsoftf]

5) Lastly, we have deployed SoftNER in production at Mi-
crosoft where it has been used for knowledge extraction
from incidents for over 6 months.

The rest of the paper is organized as follows: In Section
we discuss insights from the incident management processes
at Microsoft. Section [[lI| provides an overview of the SoftNER
framework. Section and |V| provide details of our approach
to knowledge extraction using named-entity recognition and
knowledge graph construction respectively. Section de-
scribes the implementation and deployment details. In Section
we discuss the experimental evaluation of our approach.
Section describes two applications of SoftNER in detail
and we discuss the generalizability and future work in Section
Section [X| discusses the related work and we conclude the
paper in Section

This paper extends our prior publication [8] presented at
the 43"¢ International Conference on Software Engineering:
Software Engineering in Practice. New materials with respect
to the conference version include:

« We have extended the SoftNER framework by proposing
and evaluating an unsupervised approach to further ex-
tract entity relations and constructing knowledge graphs
using mutual information and co-occurrences (Section[V)).

« We showcase an application of the constructed knowledge
graph by recommending required entities for incidents
based on incident titles (Section [VII-B). Here, we use a
combination of clustering and a novel path based scoring
technique to identify entity-incident relevance.x

« Additional details regarding the integration of the Soft-
NER framework with the incident management platform
at Microsoft are provided (Section [VI).

II. INCIDENT LIFE-CYCLE

In Microsoft, an incident is defined as an unplanned inter-
ruption or degradation of a product or service that is causing
customer impact. For example, a slow connection, a timeout,
a crash, etc. could constitute an incident. Here, we detail the
incident management process which defines the various steps
an incident goes through - from creation to closing. Bugs and

SWe cannot disclose the number of incidents due to Microsoft Policy.

Named
Entities

Named Entity

Recognition Extraction

Incidents

Entity Relation

Entity
Relations

\ @
ﬁ. / ™
°®

Incident Knowledge Graph

Knowledge Graph
Construction

Fig. 1: SoftNER Overview

incidents are very different, as in our case incidents may or
may not lead to bugs. Furthermore, incidents often require the
involvement of on-call developers who have been designated to
respond to incidents. Figure 2] presents a high level view of the
incident management process. Most online services have their
own specific incident management protocol. This figure is a
generic process that could apply outside of Microsoft as well.

The incident management process is broadly classified into
four phases. In the first phase - alerting phase, typically an
alert is fired when the service monitoring metrics fall below
a pre-defined acceptance level in terms of performance (e.g.
slow response, slow transfer rate, system hang or crash, etc.).
This leads to phase two - the engagement phase. In this phase,
an incident is first created in the incident database. It is then
escalated to a “related” team. The identification of the first
“related” team is automatic, based on heuristics or component
ownership. The team investigates the incidents and engages
with relevant stakeholders or re-routes it to a more appropri-
ate team to repeat the steps. This process is called Incident
Triage, where the appropriate team is identified to take up the
resolution of this incident. Following triage, in the investiga-
tion phase, the appropriate team identifies the problem cause
and moves over to mitigation and root cause analysis. Then,
identified bugs, if any, are filed for engineering teams to fix.
In the final phase of resolution, the incident is resolved and
bugs are fixed in the system. Our work applies directly to the
engagement and investigation phases, dealing with unsuper-
vised structured knowledge extraction from service incident
descriptions.

5 ; Escalate Engage it Root
Incident Incident Ack 929 Mitigate Resolve Fix B
Alert || Creation | | ey Incident or Issue | Incident | S & incident [0
Reassign ile Bugs
(Alerting) (C Engagement PI¢ Investigation) (_Resolution)

Fig. 2: Incident Life-Cycle

III. OVERVIEW

Incident management is key to running large scale services
in an efficient way. However, there is a lot of scope for
optimization which can inturn increase customer satisfaction,
reduce on-call fatigue, and provide revenue savings. Existing
work on incident management has primarily focused on inci-
dent triaging. The state-of-the-art incident triaging methods [4]
use novel deep learning methods which take raw unstructured
incident descriptions as input. In this work, we focus on the
fundamental problem of structured knowledge extraction from

these unstructured incidents. With the structured information,
we can save time and effort for on-call engineers by automat-
ing manual processes such as running automated health checks
on identified resources as described in an example at the end
of this section. At the same time, with this structured repre-
sentation, we can build simpler yet better machine learning
models for tasks like incident triaging.

To solve the challenges with incident management, we have
designed the SoftNER framework. It is the first automated
approach for structured knowledge extraction from service
incidents. We frame the initial structured knowledge extraction
problem as a Named-Entity Recognition (NER) task, which has
been well explored in the Information Retrieval (IR) domain
[9], [10]. Named-Entity Recognition is defined as the task of
parsing unstructured text to not only detect entities but also
classify them into specific categories. An entity can be any
chunk of text which belongs to a given type or category. As
an example, here is the input and output of a NER task for a
news headline:

Input. Over 320 million people have visited the Disneyland
in Paris since it opened in 1992.

Output: Over [320 million coynt] people have visited the
[Disneyland ogrg] in [Paris 1oc] since it opened in [1992
YEAR]-

Framing the knowledge extraction problem as a NER task
enables us to not only extract factual information from the in-
cidents but also classify them as specific entities. For instance,
if we just extract a GUID from the text, it provides limited
context. However, identifying that GUID as a Resource Id is
much more useful to on-call engineers, who can then identify
affected resources, or to other models that perform tasks like
triaging. Thus, making it more suitable for the incident man-
agement scenario when compared to other solutions like text
summarization.

One key limitation of any supervised machine learning
pipeline is the requirement of huge amounts of labeled data
which can be cost prohibitive to manually generate. In service
incidents, the lack of existing training data prevents us from
using any supervised or semi-supervised techniques. SoftNER
uses pattern extractors which leverage the key-value and tabu-
lar structural patterns in the incident descriptions to bootstrap
the training data. We then use label propagation to generalize
the training data beyond these patterns. We also incorporate a
novel multi-Task deep learning model that is able to extract
named-entities from the unstructured incident descriptions
with very high accuracy. The model not only leverages the

prd-cl-mchines

[resource/group/PRD-cl-35

32425579,,/
sba-prod-xyz

192452315

zmszN

10.2.4.1

4536dcd6-e

10.2.75.3

\ s‘ty -buh-vnet

/resource/gruup[SBA-prd—l

Entity Types
Service Source IP
Incident . Virtual IP
Resource Resource
Europe[west) Group URI
Vnet Name . Vnet Id
Vnet Region Dest IP

xaf-bu h -vnet

Fig. 3: Incident Knowledge Graph

semantic features but also the data type of the individual tokens
(such as GUID, URI, Boolean, Numerical, IP Address, etc.).

Example: Let’s consider a real incident reported by a cus-
tomer of the Cloud Networking service operated by Microsoft.
The incident was caused due to an error in deleting a Virtual
Network resource. The key information required to triage and
mitigate this incident is actually the ‘Problem Type’ and the
‘Virtual Network Id’. This information is already present in
an unstructured form within the incident description and the
challenge is to extract it automatically in a structured format.
Using SoftNER, we can not only provide this key information
to the on-call engineers but also automate some of the manual
tasks such as running health checks. For instance, in this
example, we can automatically look up the current status/logs
of the resource using the identifier (Virtual Network Id) before
the on-call engineer engages.

Service incidents can be created by external customers or
even automated monitoring systems. They contain unstruc-
tured information in various forms, like statements, conversa-
tions, stack traces, etc. As stated before, this makes incident
descriptions rich in information that are identifiable as entities.
Although extracting all entities is useful, certain entities are
more important for the investigation and mitigation of an inci-
dent. To capture complete knowledge that can be used for other
aspects, such as entity relevance, it is important to mine inter-
actions and relations between entities. For instance, it would
be quite useful to map a given Identifier and IP Address to the
same Virtual Machine resource. Another example, would be to
identify Source and Destination entity relations in an incident
dealing with physical networking devices. With these insights,
SoftNER uses an unsupervised approach to extract entity re-
lations using co-occurring entity pairs and pointwise mutual
information. Having identified related entities, SoftNER auto-

matically constructs an undirected incident knowledge graph.
As shown in Figure |3 the knowledge graph nodes represent
cloud services, incidents, and entities extracted from incidents,
and edges represent relatedness. The knowledge graph cap-
tures information that can be queried like traditional databases,
analyzed like graph data structures, and allows inference of
new knowledge.

Lastly, the structured knowledge extracted by SoftNER
opens a wide range of applications. For instance, the extracted
entities can be used as features to build more accurate learning
models for predictive tasks like triaging, root causing, etc. The
knowledge graph can also be utilized to improve tooling by
intelligently recommending expected entities based on their
relevance to the issue described in the incident. Below we
list some of the terms which we will be using throughout the
rest of the paper. These terms identify different aspects of the
named-entities.

« Entity Name: N-gram indicating the name of the entity.
In the current implementation, N can range from 1 to 3.

« Entity Value: The value of the named-entity for a given
instance.

« Data Type: The data type of the values for the named-
entity.

« Entity Relation: A relationship between 2 or more enti-
ties.

IV. NAMED ENTITY RECOGNITION

Here, we describe our approach in implementing SoftNER’s
named-entity recognition pipeline in detail. As shown in Fig-
ure] we start with the data cleaning process, followed by
unsupervised data labeling. Then we describe the label propa-
gation process and the architecture of the deep learning model.

Unsupervised Data Labeling

Incident
Descriptions

Entity Type
Tagging

Data
Cleaning

Tagging

Data Type

Multi Task Model

Named
Entities

Label
Propagation

Fig. 4: Named-Entity Recognition pipeline

Table I: Examples of entities extracted by SoftNER

Entity Name Data Type Example

Problem Type Alphabetical ~ VNet Failure

Exception Message Alphabetical ~ The vpn gateway deployment operation failed due to an intermittent error

Failed Operation Name Alphabetical ~ Create and Mount Volume

Resource Id URI /resource/2aa3abc0-7986-1abc-a98b-443fd7245e6f/resourcegroups/cs-net/providers/network/frontdoor/
Tenant Id GUID 4536dcd6-e2e1-3465-a22b-d25{62456233

Vnet Id GUID 45eal234-123b-7969-adaf-e0255045569¢

Link With Details URI https://cloudx.com/caseview ?cid=12

Source IP IP Address 198.168.0.1

Status Code Numeric 500

A. Data Cleaning

Service incident descriptions and summaries are created
by various sources such as external customers, feature en-
gineers and even automated monitoring systems. The infor-
mation could be in various forms, like textual statements,
conversations, stack traces, shell scripts, images, etc., all of
which make the information unstructured and hard to interpret.
Subsequently, we first prune tables in the incident description
that have more than two columns and get rid of HTML tags
using regexes and parsers. In this process, we also segment
the information into sentences using newline characters. Next,
we process individual sentences by cleaning up extra spaces
and tokenize them into words. Our tokenization technique is
custom implemented to handle camel-case tokens and URLs
as well.

B. Unsupervised Data Labelling

A major challenge in our case, was the lack of a pre-existing
labelled data set which can be used for a supervised NER
task. It would also be very expensive to manually label data
since entity types are unknown and also vary across different
services. Thus, SoftNER uses an unsupervised framework to
create a labeled corpus. Here are the steps followed to automat-
ically generate a labeled corpus for named-entity extraction:

1) Entity Type Tagging: As mentioned above, we neither
have a pre-existing labeled data set nor a predefined fixed set
of entity types. Thus, in this phase, we first identify a candidate
entity set. We then clean that set and eliminate noisy entities.
This final set of entities is used to tag the incident data set.

Step 1A (Candidate Identification): Since we don’t have
a list of entity types apriori, we first bootstrap the framework
with a candidate set of entity name and value pairs that are
identified without manual effort. For this, we have built pattern
extractors using some structural patterns commonly found in
the incident descriptions:

« Key-Value pairs - This pattern is commonly used in the
incident descriptions to specify various entities where the
Entity Type (key) and Value are joined by a separator
such as ‘:’. For instance, “Status code: 401” or “Problem
type: VM not found”. Here, we split the sentence on the
separator and extract the first half as the Entity Type and
the second half as the Entity Value.

« Tables - Tables also occur quite frequently in incident
descriptions, especially the ones which are created by bots
or monitoring services. In a two-column html table, we
extract the first column values as Entity Types and the
second as Entity Values.

The above commonly occurring patterns are used to extract
a candidate set of entity-value pairs after parsing the data
set. Note that the above listed patterns do not constitute an
exhaustive set. More patterns can be used to generate labeled
data using methods like weak supervision [11]], [12].

Step 1B (Candidate Elimination): Now, we have a candi-
date set of entity names and values. However, the candidate set
is noisy since we have extracted all text which satisfies these
patterns. Thus, we filter out candidate entity names that con-
tain symbols or numbers, as they are noisy labels. We further
extract n-grams (n: 1 to 3) from the candidate entity names
and take the top K most frequently occurring n-grams. Here,

K is a parameter that can be chosen by the user to retrieve a
fixed number of entity types. In this process, less frequent and
thus noisy candidate entity types, such as “foken acquisition
started” and “database connected”, are pruned. We manually
analyze the effect of K, in Section using a precision-
vs-rank plot. Furthermore, with this n-gram approach, entity-
value variations such as [“My Subscription Id”, “6572”] and
[“The Subscription Id”, “6572”] would be transformed to
[“Subscription 1d”, “6572”] since “Subscription Id” is a com-
monly occurring bi-gram in the candidate set.

After performing the above steps, a final set of entity types,
represented as n-grams, is determined. With this set, every
occurrence of these n-grams, in the context of the 2 chosen
patterns - key-value pairs and tables - are tagged in a single
pass over the data set. Please refer to Table [I] for examples of
entities extracted using the unsupervised approach.

2) Data-Type Tagging: For the refined candidate set, we
next infer the data type of the entity values using in-built
Python functions such as “isnumeric” along with custom
regexes. This step, in addition to the entity-type tagging, is
leveraged in SoftNER’s multi-task learning model, where we
jointly train to predict both the entity type and the data type.
These tasks are complementary and help improve the accuracy
for each of the individual prediction tasks. Based on discus-
sions with the service engineers, we have defined the following
data types:

« Basic Types: Numeric, Boolean, Alphabetical, Alphanu-

meric, Non-Alphanumeric

« Complex Types: GUID, URI, IP Address

o Other
To infer the data type for a given entity, we compute it for
each occurrence of a named entity in the data set. Then,
conflicts are resolved by taking the most frequent type. For
instance, if “VM IP” entity is most commonly specified as an
IP Address but sometimes is specified as a boolean, due to
noise or dummy values, we correctly infer its data type as an
IP Address.

C. Label Propagation

With the unsupervised tagging, we have bootstrapped the
training data using pattern extractors and heuristics. While this
allows us to generate a seed data set, the recall would suffer
since the entities could occur outside the context of the chosen
key-value or tabular patterns. In the absence of ground truth
or labeled data, it’s a nontrivial problem to solve. Thus, to
avoid overfitting the deep learning model on specific patterns
that were used to bootstrap labeled data, we would want to
generalize or diversify the labels.

We use the process of label propagation to solve this chal-
lenge. We use the entity values extracted in the bootstrapping
process and propagate their types to the entire corpus. For
instance, if the IP Address “127.0.0.1” was extracted as a
“Source IP” entity, we would tag all untagged occurrences of
“127.0.0.1” in the corpus as “Source IP”. As we can imagine,
there are certain edge cases that need to be handled. For in-
stance, we cannot use this technique for entities with Boolean

data type. It would also not work for entities whose values
are descriptive. Lastly, it’s possible that different occurrences
of a particular value were tagged as different entities during
bootstrapping. We resolve conflicts during label propagation
based on popularity, i.e., the value is tagged with the entity
type which occurs more frequently across the corpus.

Entity Type Prediction
Eg: Issue Type, Tenant Id, Resource URI

Data Type Prediction
Eg: GUID, URI, Alphabetical

CRF Layer CRF Layer
Attention Layer Attention Layer

t ‘

Time Distributed Dense Layer Time Distributed Dense Layer

Bi-LSTM

EEN EEE EEE NER []]
Pre-Trained
Embedding Layer
W1 w2 W3 Wn

Incident Description

Fig. 5: Multi-task model architecture

D. Multi-Task Named-Entity Recognition Model

The previous sections explain the phases of the SoftNER
NER pipeline, as shown in Figure 4] that automate the signif-
icant task of creating labeled data. Here, we propose a novel
Multi Task deep learning model that further generalizes entity
extraction. The model solves two entity recognition tasks si-
multaneously - Entity Type recognition and Data Type recog-
nition. The model uses an architecture, as described in Figure
[l that shares some common parameters and layers for both
tasks, but also has task specific layers. Incident descriptions
are converted to word level vectors using a pre-trained Glove
Embedding layer. This sequence of vectors is interpreted by
a Bi-directional LSTM layer. We then have distinct layers
for the two tasks. The attention mechanism helps the model
learn important sections of the sentences. Finally, the CRF
layer produces a valid sequence of output labels. We perform
back propagation using a combination of loss functions during

training and evaluate tag level precision, recall, and F1 metrics.
In the following sub sections we describe the important layers
and approaches used in our model.

1) Word Embeddings: Language models in the semantic
vector space, require real valued vectors as word representa-
tions [13]. GloVe [14]] vectors, demonstrated on tasks such as
word analogy and named entity recognition in [14], outper-
form various other word representations. Therefore, we use
GloVe by creating an embedding layer with pre-trained GloVe
weights loaded in our model as well as our baselines.

2) Bi-directional LSTM: Recurrent Neural Networks
(RNN) have been the basis for numerous language modelling
tasks in the past [[15]. But, RNNs tend to be biased towards
more recent updates in long sequence scenarios. Long Short-
term Memory (LSTM) networks [16] were designed to over-
come the problems associated with vanilla RNNs. Their archi-
tecture allows them to capture long range dependencies using
several gates. These gates control the portion of the input to
give to the memory cell, and the portion from the previous
hidden state to forget. Given a sentence as a sequence of real
valued vectors (1,2, ..,&,), the layer computes h; which
represents the leftward context of the word at the current time
step t. A representation of a word receiving context from
words occurring after it is achieved with a second LSTM that
interprets the same sequence in reverse, returning h; at each
time step. This combination of forward and backward LSTM
is referred to as Bi-Directional LSTM (BiLSTM) [17]]. The
final representation of the word is produced by concatenating
the left and right context, hy = [h¢; hy].

3) Neural Attention Mechanism: In recent years attention
mechanism has become increasingly popular in various NLP
applications like neural machine translation [18], sentiment
classification [19] and parsing [20]. Novel architectures like
transformers [21] and BERT [22] have proven the effective-
ness of such a mechanism for various downstream tasks. We
implement attention at the word level as a neural layer, with
a weight parameter W, . It takes as input the the hidden states
from the BiLSTM, transposed to output dimensions using a
time distributed dense layer. Let h = [hy, ha,..hy] be the
input to the attention layer. The attention weights and final
representation h* of the sentence is formed as follows:

scores = Wgh (D
a = softmax(scores) 2)
r = hal 3)

h* = tanh(r) “4)

We visualize the attention vector « for a test sentence in
Figure [6] where we observe that it learns to give more empha-
sis to tokens that have a higher likelihood of being entities.
In Figure [6] the darkness in the shade of blue is proportional

to the degree of attention. In case of long sequences, this
weighted attention to certain sections of the sequence, that
are more likely to contain entities, helps improve the model’s
recall/sensitivity.

It et il B 1234abc5-6789-1d23-45ef-4567891234g4 E facing E

appinsight W test probe is nd afd waf rule.

(ESIENST{ Ml 543ab98c-0abl-456¢-8d9e-abeld0g43210 I resource

/resource/1234abc5-6789-1d23-45ef-4567891234g4 /resourcegroups/idv-podr

Fig. 6: Attention visualization on a sample input

4) Conditional Random Fields: Simply using hidden state
representations (h;) as word features to make independent
tagging decisions at the word level leaves behind inherent
dependencies across output labels in tasks like Named Entity
Recognition. Our NER task also has this characteristic since
the initial SoftNER heuristics enforce structural constraints,
e.g. separators between key-value and html table tags. In learn-
ing these dependencies and generalizing them to sentences
without these constraints, we model tagging decisions jointly
using conditional random fields [23]].

For an input sequence X = (%1,T2,..,Zn), let
y = (Y1, Y2, .-, Yn) a potential output sequence, where n
is the no. of words in the sentence. Let P, the output of
the BiILSTM network passed through the dense and attention
layers, be the matrix of probability scores of shape n x k,
where k is the number of distinct tags. That is F; ; is a score
that the i*” word corresponds to the j'* tag. We define CRF
as a layer in the model, whose working is as follows.

n n
S(Xa y) = Z Ayi;yi+1 + Z Py,)
=0 =0

eS(va)

ZU’EY eS(val)

Here A represents the matrix of transition scores where
A; j is the score for the transition from tag; to tag;. The
score s(X,y) is converted to a probability for the sequence
y to be the right output using a softmax over Y (all possible
output sequences). The model learns by maximizing the log-
probability of the correct y. While extracting the tags for the
input, we predict the output sequence with the highest score -
y* = argmazy cyp(y'|X).

5) Multi-Task Learning: Caruana et al. [24] defines Multi-
Task Learning (MTL) as an approach to improve general-
ization in models by using underlying common information
shared among related tasks. Some well known applications
of MTL are multi-class and multi-label classification. In the
context of classification or sequence labelling, MTL improves
performance of individual tasks by learning them jointly.

In SoftNER, named-entity recognition is the primary task.
In this task, models mainly learn from context words that
support occurrences of entities. But we also observe that in-
corporating a complementary task of predicting the data-type

p(y|X) = (6)

of a token reinforces intuitive constraints indirectly on model
training. For example in an input like “The SourcelPAddress
is 127.0.0.1”, the token 727.0.0.1 is identified more accurately
by our model, as the entity type Source Ip Address, because it
is also identified as the data-type Ip Address, in parallel. This
supplements the intuition that all Source Ip Addresses are Ip
Addresses, thus, improving model performance.

As shown in Figure [5] we use a multi-head architecture,
where the lower level features generated by the BiLSTM
layers are shared, whereas the other layers are task specific.
We define the entity type prediction as the main task and that
of data type prediction as the auxiliary task. The losses are
initially calculated individually for both tasks, /; and l5, and
then combined into loss, = « X l; + 8 X l3. The parameter
loss_weights = («,) is used to control the importance
between main and auxiliary tasks.

V. KNOWLEDGE GRAPH CONSTRUCTION

Next, we describe our approach for mining entity relations
and automatically constructing knowledge graphs.

A. Entity Relation Extraction

Once named-entities in incidents are tagged by SoftNER’s
trained NER model, we recognize pairs of related entities, that
is, binary relations. Here, instead of directly classifying all
possible relation instances (n-ary), we first identify whether a
given pair of entities is related or not. With the aim of building
an unsupervised framework, similar to prior work [25], [26]],
we use co-occurrence of entity pairs in a sentence to extract
binary relations. By extracting all possible entity pairs that
follow this assumption, we get a noisy candidate set of binary
entity relations based solely on co-occurrence.

Consequently, we then score each candidate tuple using a
co-occurrence based measure and filter noisy candidates. In
information theory, mutual information (MI) [27] of 2 random
variables is a measure of the “amount of information” obtained
about one variable through observing the other. While mutual
information averages the measure over all possible outcomes,
pointwise mutual information (PMI) [28] is defined for a single
event (i.e. pair of outcomes). Mathematically, PMI is defined
as described in equation

() = log Y o pely) L p(yle)
pmi(z;y) =1 gp(a:)p(y) log (@) log o) @)
pmi(z;y) = pmi(y; z) (8)

PMI has been applied for finding collocations and associ-
ations between tokens [28], [29] by leveraging frequency of
occurrences to approximate probabilities. We observe that our
aim to score co-occurring entity pairs on their relatedness is
analogous to these applications. Thus, we use a variant of PMI
- normalized pointwise mutual information (NPMI) [30], to
score each entity pair - (e1, e2), as described in equations

pmi(es;es)

9
—10gp(61,62) ()

npmi(ey;es) =

cr o p(€1,€2)
pml(ela 62) - log p(el)p(ez) (10)
pler) = 1 plea) = 22— pler,en) = Lmy (1
ftotal ftotal total

In the above equations and in Table fi & fo are fre-
quencies of the entities e; & ey respectively, fjoint iS the
frequency of co-occurrence of the entity pair, and f;y¢4; is the
total frequency of all entities. Note that, from equation[§| PMI,
and consequently NPMI is symmetric. Therefore, all binary
entity relations extracted are undirected in nature. NPMI scores
€ [-1,1], resulting in -1 for never occurring together, 0 for
independence, and +1 for complete co-occurrence. Using this,
we eliminate all entity pairs with NPMI < 0 as noise, leaving
us with a final set of binary entity relations. Table [lI| shows
some examples of entity pairs and their NPMI scores.

Table II: Examples of extracted Binary Entity Relations

Entity Pair (f1, f25 fioint) NPMI

(Remote Port Range, Remote Address) (564, 558, 557) 0.99
(Tunnel Name, Encap Type) (761, 654, 486) 0.88
(VNet Name, VNet Id) (860, 985, 432) 0.78
(Gateway Id, VNet Id) (1071, 985, 124) 0.47
(Tunnel Name, Destination IP) (761, 72908, 1) -0.38
(Destination IP, Subscription Name) (72908, 19125, 11) -0.55
Subscription Id
VNet 1d Gateway Id Encap type

VNet Name

. Tunnel Name
VNet Region

Fig. 7: Sub-graph of Related Entities

B. Entity Knowledge Graph

A knowledge graph formally represents semantics by de-
scribing entities and relationships. It captures information that
can be queried like traditional databases, analyzed like graph
data structures, and allows inference of new knowledge. In
the incident management space, this unlocks various applica-
tions, such as mining complex interactions of cloud resources
(Table M), or inferring the relevance of an entity to the issue
described in an incident (Section [VIIL-B).

Having identified binary relations, we construct an undi-
rected knowledge graph G = (V, E), where nodes V are
entities and edges E are binary relations between pairs of
entities. We also assign weights W, .. = npmi(e;; e;), to
the edges between all entity pairs (e;,e;). Figure [/| shows a

sub-graph of related entity types in the entity knowledge graph
constructed from our incident data set. These relations are
utilized to construct the complete knowledge graph, as shown
in Figure 3]

We briefly explore mining more complex n-ary relations
from our knowledge graph. One simple approach is to view
n-ary relations as graph cliques - a subset of vertices of an
undirected graph such that every pair of vertices are adja-
cent (pairwise related entities) [25]. To overcome overlaps in
cliques, we query maximal-cliques, that is, those cliques that
are not subsets of other cliques. Table |lII| shows some exam-
ples of complex relations extracted with this method and what
they describe. While we do not perform statistical analysis,
examples from Table suggest that the constructed knowl-
edge graph is able to fairly represent complex relationships by
factoring them as binary relations.

VI. IMPLEMENTATION

The SoftNER implementation and deployment comprises
of various modules. First, we train the ML models using
historical incident data from Microsoft’s services. Next, we
deploy the models to a scalable REST API using the Flask
web framework. Lastly, we integrate the SoftNER API into the
incident management system at Microsoft. Here, we describe
each of these in detail:

A. Model training

We have implemented SoftNER and all the machine learn-
ing models using Python 3.7.5, with Keras-2.2.4 and the
tensorflow-1.15.0 backend. The hyper-parameters for the deep
learning models are set as follows: word embedding dimen-
sion used is 100, hidden LSTM layer size is set to 200
cells, and, maximum length of a sequence is limited to 300.
These optimal hyper-parameters were chosen to train a robust
yet light weight model and were re-used among all models.
The embedding layer uses pre-trained weights from stanford-
nlp’s glove.6B.100d. Our models are trained on an Ubuntu
16.04 LTS machine, with 24-core Intel Xeon E5-2690 v3 CPU
(2.60GHz), 112 GB memory and 64-bit operating system. The
machine also has a Nvidia Tesla P100 GPU with 16 GB RAM.

B. Model deployment

We have also deployed SoftNER as a REST API developed
using the Python Flask web app framework. The REST API
offers a POST endpoint which takes the incident description
as input and returns the extracted entities in JSON format.
We have deployed it on Microsoft’s Azure cloud platform
which allows us to automatically scale the service based on
the variation in request volume. This enables the service to be
cost efficient since majority of the incidents are created during
the day. We have also enabled application monitoring which
alerts us in case the availability or the latency regresses.

C. Integration

At Microsoft, we have thousands of production services
built and operated by tens of thousands of developers. In order

to effectively and efficiently handle the issues and regressions
in these services, we have a dedicated incident management
platform called IcM. This platform allows internal and ex-
ternal partners to create an incident against various services
and teams. The IcM platform provides an extensibility mech-
anism using which custom modules can be enabled which can
subscribe to various events such as incident creation, update,
mitigate and resolution. We have integrated SoftNER API with
the IcM platform to surface the insights directly into the IcM
portal. We have enabled multiple integration points based on
the user scenario:

o Manual Trigger - Any developer can enter an incident Id
and see the SoftNER results in real time. This is useful
when a team or a developer wants to try out SoftNER.

o Auto Trigger - Service owners can also enable SoftNER
for the incidents belonging to their respective teams. This
way, the insights are added to the incident automatically
even before an on-call engineer is engaged.

o Integration with other modules - The entities extracted
using SoftNER can be used to trigger other diagnostic
modules. For example, a network diagnostic module may
require the VNet Id and the Source IP Address to localize
a given incident. SoftNER is able to extract these enti-
ties automatically and can feed them to such diagnostic
modules.

VII. EVALUATION

SoftNER solves the problem of knowledge extraction from
unstructured text descriptions of incidents. To evaluate the
SoftNER framework in its entirety, we propose a three phase
evaluation:

« Entity Types: How does SoftNER’s unsupervised ap-
proach perform in recognizing distinct entity types?

« Named-Entity Recognition: How does SoftNER’s
Multi-Task model compare to state-of-the-art deep learn-
ing approaches for the NER task?

« Entity Relations: How does SoftNER’s unsupervised ap-
proach perform in extracting and scoring entity relations
using NPMI?

A. Study Data

In the following evaluation experiments, we apply Soft-
NER to service incidents at Microsoft, a major cloud service
provider. These are incidents retrieved from large scale online
service systems, which have been used by a wide distribution
of users. In particular, we collected incidents spanning over
a time period of 2 months. Each incident is described by its
unique Id, title, description, last-modified date, owning team
name and, also, whether the incident was resolved or not.
Incident description is the unstructured text with an average of
472 words, showing us how verbose the incident descriptions
are. Owning Team Name here, refers to the team to which the
incident has been assigned.

Table III: Examples of extracted Complex (n-ary) Entity Relations

Related Entities

Relation Description

(Destination IP, AS path, Output packets)
(Correlation Id, Allocation Id, VNet Id, MAC Address, Container Id)
(VNet Name, VNet Id, Gateway Id, Tunnel Name, Encap Type)

(Error Code, Error message, is retriable exception, is user error)

(VNet Name, VNet id, VNet region, v net name, v net id, Resource URI)

Describing a BGP routing incident causing connection issues.
Describing various tasks in network manager setup for a VM.
Describing a VNet gateway instance that is down.

Entities that describe errors and exceptions.

Entities co-referring a single resource related to the incident.

B. Entity Type Evaluation

Here, we evaluate the effectiveness of SoftNER’s unsuper-
vised approach for named-entity extraction. Specifically, we
evaluate the correctness of the entity types extracted by Soft-
NER on the entire study data. As the component performs
unsupervised entity extraction, we manually evaluate the pre-
cision of extraction. Top 100 (limited to 100 since evaluation
is manual) most frequent distinct entities are extracted by the
component. We then, manually validate each potential entity
and analyse the precision that is the fraction of extracted
entities that are actually software entities.

1 g8
£
® 09 -
=
2
B2
g 08| .
=9
07 | | | | | | | |
1 5 10 20 35 50 75 100

n Most Frequent Entities

Fig. 8: Precision vs Rank curve for Entity Types

Since the precision of SoftNER’s entity type extraction de-
pends on the frequency of occurrence of entities, we further
plot precision against a cut off rank n. Figure [8| summarizes
the precision of SoftNER’s entity type extraction against the
top n entities extracted, where n € [1,100]. From this analysis,
we see that SoftNER is able to extract 77 valid entities per
100 entities. In this experiment, n corresponds to the rank of
the entity extracted with respect to frequency of occurrence.
That is, a higher n refers to an entity with low frequency of
occurrence, which in turn can be extrapolated as an entity that
is less important. We thus see an expected decrease in preci-
sion, as n increases, due to noisy tokens (false positives) like
“to troubleshoot issue” and “for cleanup delay”. SoftNER’s
unsupervised entity type extraction has a minimal precision
variation, also known as fall out rate, of 0.23 for an n value as
high as 100. This strengthens the hypothesis that SoftNER’s
pattern extractors can pick up entities from unstructured text
effectively, in a completely unsupervised manner.

Table IV: NER Model Evaluation

Metric BIiLSTM-CRF BiLSTM-CRF SoftNER
Attention Model
Avg F1 0.8803 0.8822 0.9572
Weighted Avg F1 0.9401 0.9440 0.9682
Avg Precision 0.9160 0.9088 0.9693
Avg Recall 0.8669 0.8764 0.9525

C. Named-Entity Recognition Evaluation

Here, we evaluate the SoftNER deep learning model on the
Named-Entity Recognition Task. We compare the multi task
model, described in section and Figure [5] against two
baseline models, BILSTM-CRF and BiLSTM-CRF with atten-
tion mechanism. These baseline models are state-of-the-art for
NER [31]], [1O], [32] and other NLP tasks as well. The models
are compared on a fixed test set that accounts for 20% of the
ground-truth data set labeled using the unsupervised approach
as described in Note that we also ensure the incidents
in the test set occur after those in the training set temporally.
We use average precision, recall and F1 metrics to evaluate
and compare the models on the NER task. The metrics are
averaged over the distinct entities types tagged by the model.

As shown in Table we observe that the base-
line BiLSTM-CRF, with and without attention mechanism,
achieves an average F1 score of around 0.88. Whereas, Soft-
NER’s Multi Task Model, as described in Section
achieves a higher average F1 score of around 0.96, ie., a
AF1% of 8.7%. We also observe a high average recall of
0.95, reflective of a robust ability to extract a lot of relevant in-
formation from descriptions which directly correlates with the
ease of understanding the problem and identifying resources
affected by the incident.

We further analyze the generalization of the model by ana-
lyzing test examples that were falsely labeled. Table [V] shows
a few examples of sentences and the entities extracted from
them. Note that we refer to false positives as FP, and, false
negatives as FN in the table. We observe that some of the
FPs are actually correct and were mislabeled in the test set
because of the limitations of the pattern extractors. Let’s take
Example 1 from Table [V] for instance. Here, the unsupervised
labelling component was only able to label “2aa3abc0-7986-
labc-a98b-443fd7245e6” as Subscription Id, but not “vaopn-
uk-vnet-sc” as Vnet Name, due to restrictions with pattern

Table V: FP and FN examples

Sentence Result

Subscriptionld:2aa3abc0-7986- FP
labc-a98b-443fd7245¢6 unable to
delete vnet name vaopn-uk-vnet-sc

Device Name: njb02-23gmk, pa: FP

Entities Tagged

2aa3abc0-7986-1abc-
a98b-443fd7245¢6,
vaopn-uk-vnet-sc

njb02-23gmk,

192.168.0.5 could not be config- 192.168.0.5
ured!

The customer’s main ask: Need FN -

help to access cloud storage

The loopback (ipv4) address (pri- FN ipv4

mary) is 192.131.75.235

extractors and label propagation. But the SoftNER model was
able to extract both the entities from the sentence, proving it’s
ability to generalize beyond obvious structural pattern rules
visible in the training data. Row 2 shows a similar false posi-
tive example with the extraction of 192.168.0.5 as IP Address.
We also show a few contrasting false negatives, in rows 4 and
5, where the model was unable to extract entities Ask and Ip
Address respectively.

D. Entity Relation Evaluation

Next, we evaluate our unsupervised approach to extract
binary entity relations and score them using NPMI. These
binary entity relations and their scores represent the crux of
the knowledge graph constructed in Section [V] In turn, any
inference performed on the graph, like entity recommendation
(Section [VIII-B), depends on the quality of these relations.
Consequently, we manually evaluate the precision of NPMI
scores given to each entity pair. First, the top 150 (limited to
150 since evaluation is manual) most frequent entity pairs are
sampled. We then manually validate the correctness of NPMI
computed for each entity pair and analyze its precision, i.e.
the fraction of scores that are valid. We further plot precision
against rank n € [0, 150] in Figure E} Here, n corresponds to
the rank of the entity pair extracted with respect to frequency
of co-occurrence (fjoine). From this analysis, we see that
NPMI scores are valid for 90 per 100 entity pairs. A precision
of 0.9 for a n value as high as 100, strengthens the hypothesis
that binary entity relations can be effectively extracted and
scored with our approach.

VIII. APPLICATIONS

Automated knowledge extraction from service incidents can
unlock several applications and scenarios. Here, we explore
and evaluate the value of extracted knowledge for two ap-
plications. First, we show that entities extracted by SoftNER
can be utilized to improve simple machine learning models
for incident triaging. Next, we show that the knowledge graph
can be used to build entity recommenders that can improve
tooling in incident management platforms and in turn reduce
customer impact.

3
® 091
=
2
L
S 08} .
A
07 | | | | | |
1 17 33 49 65 81 97 113 129 145

n Most Frequent Entity Pairs

Fig. 9: Precision vs Rank for Entity Relations

A. Auto-Triaging of Incidents

Incident triaging is the process of assigning a new incident
to the responsible team. This is currently manually performed
by on-call engineers. It is not uncommon for an incident
to be rerouted to different teams until the appropriate team
is engaged, thereby reducing the accuracy and efficiency of
incident management. Based on an empirical study, Chen et
al. [5]] showed that the reassignment rate for incidents can be
as high as 91.58% for online services at Microsoft. Several
efforts [S]], [4] have been made to automate the triaging pro-
cess by leveraging the title, description and other meta-data
of the incidents. Here, we evaluate the effectiveness of the
knowledge extracted by SoftNER for the downstream task of
automated triaging of incidents. Incident triaging is essentially
a multi-class classification problem since the incident could
be assigned to one of many teams.

Table VI: Comparison of Accuracy for Auto-Triaging

Feature Set Random Linear Gaussian K-Nearest Naive

Forest SVM SVM Neighbors Bayes
Title + Description ~ 74.64 8593 87.06 8132 69.69
SoftNER Entities 93.38 93.34 93.39 9240 87.67
A % 22.31 8.26 7.02 1276 22.85
SoftNER Entities + 98.60 99.20 98.95 99.14 88.07
Title
A % 27.66 1434 12.78 19.75 23.30

We sample 20% of resolved incidents for the 10 most
common teams from the initial incident set (refer Section
and run the SoftNER model on the description to
extract entities. These extracted entity values can now act as
additional features to triaging models. The SoftNER entities
can be broadly classified as either categorical or descriptive.
While the descriptive entities are transformed to word em-
beddings using the same process described in Section
the categorical entities are encoded into one-hot vectors. We
then look at different combinations of features and compare
the 5-fold cross-validation accuracy on various classification

models. It is evident from Table [VI| that the models using the
SoftNER entities as features, either on their own or along with
the title, outperform the baselines that use only raw title and
description information. We observe significant margins, with
up to 7% - 27% increase in the cross-validation accuracies.
These results reinforce that the entities extracted by SoftNER
are indeed useful and can significantly help in downstream
tasks. Using the entities extracted by SoftNER also reduces
the input feature space since we no longer have to use the
whole incident description. We also achieve high performance
using simple machine learning models thereby eliminating the
need for complex deep learning models which have proven to
be superior in past studies [S].

Table VII: Importance scores for top features

Feature Exception Problem Ask Issue Title
Message Type
Importance 0.0133 0.0111 0.0097 0.0051 0.0009

In addition to comparing accuracy, we analysed feature
significance by using the feature_importances_ attribute of a
random forest model trained on the various input features. As
shown in Table we observe that the entities extracted by
SoftNER were given more importance compared to the ‘Title’,
with top features being - ‘exception message’, ‘problem type’,
‘ask’ and ‘issue’. This re-emphasises that the entities extracted
from SoftNER boost the performance of classification models
for the downstream task of automatic triaging of incidents.

B. Entity-Incident Relevance and Recommendation

Although extracting all entities from an incident is useful,
certain entities are more important for the investigation and
mitigation of an incident. Let’s consider a real incident re-
ported by a customer of the Cloud Networking service oper-
ated by Microsoft. The incident was caused due to an error in
deleting a Virtual Network resource. The key information re-
quired to mitigate this incident is actually the Virfual Network
(VNet) Id. But the customer had not mentioned the VNet Id in
their description. In this case, it would be useful to either intel-
ligently recommend or incorporate such entities as mandatory
in incident reporting forms to alleviate downstream mitigation
tasks. Thus, here we evaluate the effectiveness of the knowl-
edge extracted by SoftNER to infer the relevance of entities
to the issue described in the incident for recommendation.

Previously, statistical entity-topic models [33], [34] have
been studied to map named-entities to topics for document
topic analysis. Bhargava et al. [35]] proposed multiple methods
to learn to map wikidata entities to pre-defined topics. The
challenge, in our case, was the lack of a labeled set of incidents
based on pre-defined topics. Also, manually identifying topics
apriori would be difficult to scale to a multitude of services.
As a result, in our approach, we use clustered incident titles as
representatives of topics and map a subset of ranked related en-
tities leveraging the previously constructed knowledge-graph.

1) Clustering Incident Titles: Inferring a subset of entities
for each incident individually poses challenges. It is difficult
to apply rule-based approaches since they are computationally
expensive and also cannot be generalized to unseen incident
examples. Hence, we first aim to group incidents by clustering
their titles, which are generally a representative summary of
the incident. Here, we convert incident titles to 100 dimension
embeddings by averaging GloVe [14] vectors for all tokens in
the title. For clustering, we make use of DBSCAN - Density-
Based Spatial Clustering of Applications with Noise [36]], a
clustering algorithm that does not require us to define the
number of clusters apriori. The DBSCAN hyper-parameter e,
i.e. maximum distance between two samples for them to be in
the same neighborhood, was tuned using the elbow method and
plotting k-distance graphs, as suggested in the original paper
[36]. This provided us with over 50 clusters on our incident
data set. From Table we observe that clustering reduces
complexity and also uncovers underlying topics in incidents.

2) Inferring Related Entities: Having clustered incident ti-
tles, and as a result the corresponding incidents, we now infer
a related entity set for each cluster. First, for each cluster,
we extract the top-5 most frequently occurring entities in the
cluster’s incidents (ranked by frequency). Next, we loop over
this top-5 list and search for the first entity that exists in the
knowledge graph G = (V, E) constructed previously. Let this
entity be called the “primary entity” (ep) of a cluster C'. We
then use the primary entity as the source node to find the
shortest paths to every other reachable entity. We hypothesize
that every entity (e;) reachable from the primary entity (ep)
of a cluster is related to the incidents of that cluster. Then, the
relatedness between any reachable entity (e;) and a cluster
(C) is scored as the average of the edge weights in the path
taken from the primary entity to the entity of interest (eg).
Mathematically, it is defined as stated in equation We then
rank these entities based on the score computed and choose
the top-K entities as entities related to the cluster. Note, that
the primary entity itself is given a score of 1.0. Also, we
use averaging instead of product here, since the edge weights
We,,e; = npmi(e;;e;), and NPMI is a function of log
probabilities (Section [V)).

>)42
. Ve;Epath(ep,e €351
relation-score(e,; C) = path(ep,ca)

ZVe'Epath(eP,em) 1 (12)

where path(ep, e,) = shortest path from e, to e,

With the above approach, top-K related entities for each
cluster are pre-determined and stored. For a newly created
incident with a complete incident title, first, the nearest cluster
for that title is found. Then, the pre-determined top-K entities
for that cluster are recommended for that incident.

Table [VIII] shows a few examples of clustered titles and top-
5 related entities extracted using the approach described above.
While we leave more formal statistical evaluation of clustering
for future work, we make some informal observations here,

Table VIII: Titles and Top-5 Related Entities

Clustered Titles Top-5 Related Entities

(VNet Id, 1.0)

(Allocator Service URI, 0.70)
(Availability Zone, 0.68)
(VNet Name, 0.66)

(Tunnel Name, 0.63)

(Subscription Id, 1.0)
(VNet Name, 0.41)
(Deployment Id, 0.39)
(Resource 1Id, 0.35)
(VNet Id, 0.33)

(Closed in SLA, 1.0)

(SLA w/o Dependency, 0.44)
(Device Count, 0.40)
(Dependency Time, 0.37)
(Allocator Service URI, 0.31)

(SNMP Interface Index, 1.0)
(Allocator Service URI, 0.32)
(Availability Zone , 0.31)
(Resource Id, 0.28)

(Interface Address, 0.27)

Unable to delete Vnet
Vnet stuck in updating state
Vnet: Unable to delete Public IP

VM Network Profile fails to load
High 10 latency networking suspicious
Ping Mesh Drops networking suspicious

MAC Request - Port Provisioning
Port provisioning 1 device
Ports mop sent for review

Cluster unhealthy - Interface Down
Unhealthy cluster - BGP Session Down
Cluster is unhealthy : Device Reloaded

inferring from examples in Table Let’s take example 1
for instance. Here, the clustered titles suggest incidents where
the customer is unable to deleted a virtual network. From
the top-5 related entities, we see that our approach correctly
identifies key entities, such as Vnet Id and Vnet Name, that
point to the resource of interest, i.e. the virtual network. We
also observe that it identifies the Allocator Service responsible
for allocation/de-allocation of the virtual network. Example 2
shows a cluster of incidents that describe aggregated issues in
the control path of a virtual resource. In this case, an entire
hierarchy of entities, from Subscription to Deployment to
an individual Resource, is identified. These recommendations
are effective to quickly identify resources affected, layers of
dependencies, and mitigation steps to reduce customer impact.

IX. DISCUSSION

In this section, we first discuss the generalizability of Soft-
NER and then discuss some ideas for future work.

A. Generalizing SoftNER

Today, incident management in large-scale cloud services
is largely a manual process. On-call engineers have to read
through the incident reports, extract the relevant information
and then do root cause analysis and mitigation. This manual in-
tervention also causes downstream impact on service reliability
and customer satisfaction. Manual understanding and parsing
of incident reports is a key bottleneck for incident automation.
In this work, we have designed and deployed SoftNER at Mi-
crosoft for knowledge mining from incident reports. However,
the problem and applications are generic and applicable to any
cloud service provider. Further, since we have built SoftNER
in an extensible manner using unsupervised techniques, it can
be trained and applied to any service. We bootstrap the knowl-
edge graph using syntactic patterns such as key-value pairs
and tables which are generic and agnostic to the service. New

patterns can also be integrated very easily into the machine
learning pipeline, if required.

B. Future Work

SoftNER currently mines knowledge graphs from incidents
by extracting named-entities and inferring relations between
the entities. As next steps, we plan to expand the knowledge
mining and leverage it for more scenarios:

1) Incident summarization - Lot of critical information
about the incidents is embedded in natural language. For
instance, incident details like symptoms, reproduction and
mitigation steps is described using natural language. So,
we will extend the knowledge mining beyond named-
entities to even parsing and understanding natural lan-
guage. The extracted information can then be used for
several applications such as incident summarization.

2) Automated health-checks - Often times, on-call engi-
neers have to pull up telemetry and logs for the re-
sources affected by an incident. Or, they might look up
the resource allocation for a given subscription. We will
integrate SoftNER with the log mining and debugging
tools at Microsoft, so that, these checks can be triggered
automatically before the on-call engineers are engaged.

3) Better tooling - The knowledge extracted by SoftNER
can also be used to improve the existing incident reporting
and management tools. SoftNER identified entities can be
incorporated into the incident report forms, where some
of these entities can even be made mandatory fields. We
have already started working on this scenario with feature
teams that own incident reporting tools at Microsoft.

4) Type-aware models - The multi-task deep learning ar-
chitecture used in SoftNER uses both the semantic and
the data-type context for entity extraction. As per our
knowledge, this is the first usage of a multi-task and type-
aware architecture in the software engineering domain.
Given that software code and programs are typed, this
model can potentially be used in other applications like
code summarization.

5) Predictive tasks - In this work, we have shown that the
knowledge extracted by SoftNER can be used to build
more accurate machine learning models for incident triag-
ing. Similarly, we can build models to automate other
tasks such as severity prediction, root causing, etc.

6) Bug reports - Even though this work is motivated by the
various problems associated with incident management,
the challenges with lack of structure applies to bug reports
as well. We plan to evaluate SoftNER on bug reports at
Microsoft and, also, on the publicly available bug report
data sets.

X. RELATED WORK

SoftNER is inspired from prior work in two main areas:
software engineering and information retrieval. In this section,
we discuss related work in these areas.

Incident management: Recent work on incident manage-
ment has been focused on the problem of triaging incidents to

correct teams. As per the empirical study by Chen et al. [5]],
mistriaging of incidents happen quite frequently and can lead
up to a delay of over 10X in triaging time, apart from the lost
revenue and customer impact. To solve this problem, they have
also proposed DeepCT [4], a deep learning based method for
routing of incidents to the correct teams. There has also been a
significant amount of work done on diagnosing and root caus-
ing of service incidents. DeCaf [6] uses random forest mod-
els for automatically detecting and categorizing performance
issues in large-scale cloud services. Systems such as AirAlert
[37] have been built using machine learning to predict critical
service incidents, called outages, in large scale services. In our
work, we focus on structured knowledge extraction and how
it can be used as strong features to build significantly more
accurate models for these incident management tasks, as in
Section 5.4.

Bug reports: Significant amount of research has been done
on bug reports in the traditional software context. SoftNER
is inspired by InfoZilla [38] which leverages heuristics and
regular expressions for extracting four elements from Eclipse
bug reports: patches, stack traces, code, and lists. Unlike
InfoZilla, we build a completely unsupervised deep learning
based framework that enables SoftNER to extract hundreds
of entities without requiring any prior knowledge about them.
Our work also targets incidents, which are more complex than
bugs because of numerous layers of dependencies, and also,
the real-time mitigation requirements. Similar to incidents,
existing work on bug reports [39], [40] have largely used the
unstructured attributes like bug description as it is. Though
we have focused on incidents, SoftNER can be applied to
bug reports for extracting structured information and building
models for tasks like bug triaging, classification, etc.

Information retrieval: Knowledge and entity extraction
has been studied in depth by the information retrieval com-
munity. Search engines like Google and Bing rely heavily
on entity knowledge bases for tasks like intent understanding
[41] and query reformulation [42]. Supervised methods [43],
[44] require a large amount of training data which can be
cost prohibitive to collect. Hence, search engines commonly
use semi-supervised methods which leverage a small seed
set to bootstrap the entity extraction process. For instance,
the expert editors would seed the entity list for a particular
entity type, let’s say fruits with some initial values such as
{apple, mango, orange}. In this work, our goal was to build
a fully unsupervised system where we don’t need any pre-
existing list of entity types or seed values. This is primarily
because every service and organization is unique and manually
bootstrapping SoftNER would be very laborious. Additionally,
incident reports, unlike web data, contain not just natural
language tokens but also other entities such as GUIDs and IP
Addresses. Hence, SoftNER leverages a novel data-type aware
deep learning model for knowledge extraction.

XI. CONCLUSION

Incident management is a key part of building and operating
large-scale cloud services. In this paper, we propose SoftNER,

an unsupervised framework for mining knowledge graphs from
incident reports that incorporates a novel multi-task BiLSTM-
CRF model for software named-entity recognition. We have
evaluated SoftNER on the incident data from Microsoft, a
major cloud service provider. Our evaluation shows that even
though SoftNER is fully unsupervised, it has a high precision
of 0.96 (at rank 50) for learning entity types from the unstruc-
tured incident data. Further, our multi-task model architecture
outperforms existing state-of-the-art models in entity extrac-
tion. Lastly, our novel approach for mining entity relations has
a high accuracy of 0.9. We have deployed SoftNER at Mi-
crosoft, where it has been used for knowledge extraction from
incidents for over 6 months. Lastly, we show that the extracted
knowledge can be used for building significantly more accurate
models for critical incident management tasks like triaging.

REFERENCES

[1] S. Mehta, R. Bhagwan, R. Kumar, C. Bansal, C. Maddila, B. Ashok,
S. Asthana, C. Bird, and A. Kumar, “Rex: Preventing bugs and miscon-
figuration in large services using correlated change analysis,” in 17th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 20), 2020, pp. 435-448.

[2] Y. Dang, Q. Lin, and P. Huang, “Aiops: real-world challenges and re-
search innovations,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion).
IEEE, 2019, pp. 4-5.

[3] R. Kumar, C. Bansal, C. Maddila, N. Sharma, S. Martelock, and R. Bhar-
gava, “Building sankie: An ai platform for devops,” in Proceedings of
the Ist International Workshop on Bots in Software Engineering, ser.
BotSE ’19. IEEE Press, 2019, p. 48-53.

[4] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang,
and D. Zhang, “Continuous incident triage for large-scale online service
systems,” in 2019 34th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), 2019, pp. 364-375.

[5] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao, Z. Xu, Y. Dang,
and D. Zhang, “An empirical investigation of incident triage for online
service systems,” in 2019 [EEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP),
2019, pp. 111-120.

[6] C. Bansal, S. Renganathan, A. Asudani, O. Midy, and M. Janakiraman,
“Decaf: Diagnosing and triaging performance issues in large-scale cloud
services,” in 2020 IEEE/ACM 42nd International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP), 2020.

[7]1 C. Luo, J.-G. Lou, Q. Lin, Q. Fu, R. Ding, D. Zhang, and Z. Wang,
“Correlating events with time series for incident diagnosis,” in Proceed-
ings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2014, pp. 1583-1592.

[8] M. Shetty, C. Bansal, S. Kumar, N. Rao, N. Nagappan, and T. Zimmer-
mann, “Neural knowledge extraction from cloud service incidents,” in
2021 IEEE/ACM 43rd International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP), 2021, pp. 218-227.

[9] D. Nadeau and S. Sekine, “A survey of named entity recognition and
classification,” Lingvisticae Investigationes, vol. 30, no. 1, pp. 3-26.

[10] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” arXiv preprint
arXiv:1603.01360, 2016.

[11] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré,
“Snorkel: Rapid training data creation with weak supervision,” in Pro-
ceedings of the VLDB Endowment. International Conference on Very
Large Data Bases, vol. 11, no. 3. NIH Public Access, 2017, p. 269.

[12] N. Rao, C. Bansal, and J. Guan, “Code search intent classification using
weak supervision,” arXiv preprint arXiv:2011.11950, 2020.

[13] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of machine learning research, vol. 12, no. Aug, pp. 2493-2537, 2011.

[14] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
[31]

(32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh annual
conference of the international speech communication association, 2010.
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional 1stm and other neural network architectures,” Neural net-
works, vol. 18, no. 5-6, pp. 602-610, 2005.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

P. Chen, Z. Sun, L. Bing, and W. Yang, “Recurrent attention network
on memory for aspect sentiment analysis,” in Proceedings of the 2017
conference on empirical methods in natural language processing, 2017,
pp. 452-461.

Q. Li, T. Li, and B. Chang, “Discourse parsing with attention-based
hierarchical neural networks,” in Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, 2016, pp. 362-371.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998-6008.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” 2001.
R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp.
41-75, 1997.

R. McDonald, F. Pereira, S. Kulick, S. Winters, Y. Jin, and P. White,
“Simple algorithms for complex relation extraction with applications
to biomedical ie,” in Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL’05), 2005, pp. 491-498.
D. Zelenko, C. Aone, and A. Richardella, “Kernel methods for relation
extraction,” Journal of machine learning research, vol. 3, no. Feb, pp.
1083-1106, 2003.

R. M. Fano, “Transmission of information: A statistical theory of com-
munications,” American Journal of Physics, vol. 29, no. 11, pp. 793—
794, 1961.

K. W. Church and P. Hanks, “Word association norms, mutual
information, and lexicography,” Computational Linguistics, vol. 16,
no. 1, pp. 22-29, 1990. [Online]. Available: https://www.aclweb.org/
anthology/J90-1003

A. Thanopoulos, N. Fakotakis, and G. Kokkinakis, “Comparative eval-
uation of collocation extraction metrics.” in LREC, vol. 2. Citeseer,
2002, pp. 620-625.

G. Bouma, “Normalized (pointwise) mutual information in collocation
extraction,” Proceedings of GSCL, pp. 31-40, 2009.

Z. Huang, W. Xu, and K. Yu, “Bidirectional Istm-crf models for se-
quence tagging,” arXiv preprint arXiv:1508.01991, 2015.

J. P. Chiu and E. Nichols, “Named entity recognition with bidirectional
Istm-cnns,” Transactions of the Association for Computational Linguis-
tics, vol. 4, pp. 357-370, 2016.

D. Newman, C. Chemudugunta, and P. Smyth, “Statistical entity-topic
models,” in Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 2006, pp. 680—-686.
H. Kim, Y. Sun, J. Hockenmaier, and J. Han, “Etm: Entity topic models
for mining documents associated with entities,” in 2012 [EEE 12th
International Conference on Data Mining. 1EEE, 2012, pp. 349-358.
P. Bhargava, N. Spasojevic, S. Ellinger, A. Rao, A. Menon, S. Fuhrmann,
and G. Hu, “Learning to map wikidata entities to predefined topics,”
in Companion Proceedings of The 2019 World Wide Web Conference,
2019, pp. 1194-1202.

M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algo-
rithm for discovering clusters in large spatial databases with noise.” in
Kdd, vol. 96, no. 34, 1996, pp. 226-231.

Y. Chen, X. Yang, Q. Lin, H. Zhang, F. Gao, Z. Xu, Y. Dang, D. Zhang,
H. Dong, Y. Xu et al., “Outage prediction and diagnosis for cloud service
systems,” in The World Wide Web Conference, 2019, pp. 2659-2665.
N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Extracting
structural information from bug reports,” in Proceedings of the 2008
international working conference on Mining software repositories, 2008.
J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th ICSE, 2006, pp. 361-370.

[40]

[41]

[42]

[43]

[44]

Y. Tian, D. Wijedasa, D. Lo, and C. Le Goues, “Learning to rank for
bug report assignee recommendation,” in 2016 IEEE 24th International
Conference on Program Comprehension (ICPC). 1EEE, 2016, pp. 1-10.
P. Pantel, T. Lin, and M. Gamon, “Mining entity types from query logs
via user intent modeling,” in Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics: Long Papers-Volume
1. Association for Computational Linguistics, 2012, pp. 563-571.

Y. Xu, F. Ding, and B. Wang, “Entity-based query reformulation using
wikipedia,” in Proceedings of the 17th ACM conference on Information
and knowledge management, 2008, pp. 1441-1442.

R. Florian, A. Ittycheriah, H. Jing, and T. Zhang, “Named entity recog-
nition through classifier combination,” in Proceedings of the seventh
conference on Natural language learning at HLT-NAACL 2003-Volume
4. Association for Computational Linguistics, 2003, pp. 168-171.

A. McCallum and W. Li, “Early results for named entity recognition
with conditional random fields, feature induction and web-enhanced
lexicons,” in Proceedings of the seventh conference on Natural language
learning at HLT-NAACL 2003-Volume 4, 2003.

https://www.aclweb.org/anthology/J90-1003
https://www.aclweb.org/anthology/J90-1003

	I Introduction
	II Incident life-cycle
	III Overview
	IV Named Entity Recognition
	IV-A Data Cleaning
	IV-B Unsupervised Data Labelling
	IV-B1 Entity Type Tagging
	IV-B2 Data-Type Tagging

	IV-C Label Propagation
	IV-D Multi-Task Named-Entity Recognition Model
	IV-D1 Word Embeddings
	IV-D2 Bi-directional LSTM
	IV-D3 Neural Attention Mechanism
	IV-D4 Conditional Random Fields
	IV-D5 Multi-Task Learning

	V Knowledge Graph Construction
	V-A Entity Relation Extraction
	V-B Entity Knowledge Graph

	VI Implementation
	VI-A Model training
	VI-B Model deployment
	VI-C Integration

	VII Evaluation
	VII-A Study Data
	VII-B Entity Type Evaluation
	VII-C Named-Entity Recognition Evaluation
	VII-D Entity Relation Evaluation

	VIII Applications
	VIII-A Auto-Triaging of Incidents
	VIII-B Entity-Incident Relevance and Recommendation
	VIII-B1 Clustering Incident Titles
	VIII-B2 Inferring Related Entities

	IX Discussion
	IX-A Generalizing SoftNER
	IX-B Future Work

	X Related Work
	XI Conclusion
	References

