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Abstract
Evaluating and predicting software maintenance effort using source code metrics is one
of the holy grails of software engineering. Unfortunately, previous research has provided
contradictory evidence in this regard. The debate is still open: as a community we are not
certain about the relationship between code metrics and maintenance impact. In this study
we investigate whether source code metrics can indeed establish maintenance effort at the
previously unexplored method level granularity. We consider ∼730K Java methods origi-
nating from 47 popular open source projects. After considering seven popular method level
code metrics and using change proneness as a maintenance effort indicator, we demonstrate
why past studies contradict one another while examining the same data. We also show that
evaluation context is king. Therefore, future research should step away from trying to devise
generic maintenance models and should develop models that account for the maintenance
indicator being used and the size of the methods being analyzed. Ultimately, we show that
future source code metrics can be applied reliably and that these metrics can provide insight
into maintenance effort when they are applied in a judiciously context-sensitive manner.
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1 Introduction

The cost of software maintenance, which often exceeds the original cost of develop-
ment (Börstler and Paech 2016), has long been a concern for the software industry (Kafura
and Reddy 1987). This has led to considerable research estimating maintenance effort given
the current state of a software project, to support project optimization and risk planning
(e.g., Shin et al. 2011; Zhou et al. 2010; Ståhl et al. 2019; Cruz et al. 2019; Kondo et al. 2020;
McClure 1978; Tosun et al. 2010). External software metrics—such as correctness, and
performance—can indicate future maintenance effort, but they are difficult to collect (Gil
and Lalouche 2017) and are often not available in early development phases. In contrast,
source code metrics are easy to collect and are available throughout the software develop-
ment life cycle. Therefore, a holy grail for the developer and the research community has
been to predict future maintenance effort from code metrics (Gil and Lalouche 2017).

A number of code metrics (McCabe 1976; McClure 1978; Chidamber and Kemerer
1994; Lake and Cook 1994) have been used to predict maintenance indicators such as defect
proneness, change proneness, and test difficulty. However, the true effectiveness of code
metrics has been a subject of debate for the past forty years (e.g., Shepperd 1988; Gil and
Lalouche 2016, 2017). While some studies showed that code metrics were good predic-
tors (Johnson et al. 2019; Landman et al. 2014; Spadini et al. 2018; Bandi et al. 2003;
Antinyan et al. 2014), in others the outcome was negative (Shepperd 1988; Scalabrino et al.
2017; Gil and Lalouche 2017). According to these critics, other than program size (El Emam
et al. 2001; Gil and Lalouche 2017; Sjøberg et al. 2013), we do not have a single reliable
code metric to estimate software maintenance effort (El Emam et al. 2001; Scalabrino et al.
2017; Gil and Lalouche 2017). In fact, size was found to be a good predictor of other code
metrics (Herraiz et al. 2007), which is frustrating, because if size is the only valid metric,
we can not prioritize maintenance activities between two components with similar sizes.
Also, no good code metrics except size means that forty years of research (Lenarduzzi et al.
2017) on code metrics is potentially useless.

In this paper, we revisit the usefulness of code metrics so that we can inform both the
research and developer communities as to whether code metrics are indeed good main-
tenance predictors, or if they should be abandoned. Also, we reproduce the previous
contradictory claims as a means of guiding the research community on how to evaluate
future code metrics reliably. For example, while some prior studies accounted for size (usu-
ally measured in Source Lines of Code, without comments and blank lines (Landman et al.
2014)) as a confounding factor for validating a metric, many did not. By using the complete
history of ∼730K Java methods from 47 popular open source projects, along with seven
source code metrics and four change proneness based maintenance indicators, we provide
encouraging results. Our conclusion is that code metrics can in fact help estimate main-
tenance effort, such as change proneness, even when the confounding influence of size is
eliminated. However, the impact of a code metric varies in different evaluation contexts. For
example, nested block depth is not as good a predictor for large methods as it is for smaller
methods, and metric performance can vary greatly based on the maintenance indicator used.
We support our conclusion by answering the following research questions:

RQ1: Is the confounding effect of size a driving factor for the previous contradictory
findings on the relationships between code metrics and maintenance effort?

Contribution 1: We show that size is indeed a significant factor in previous contradic-
tory claims about the validity of code metrics. With our new method-level benchmark of
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code metrics and change evolution, we reproduce three major prior observations: 1) Similar
to some previous studies (e.g., Johnson et al. 2019; Tiwari and Kumar 2014; Subandri and
Sarno 2017; Romano and Pinzger 2011), we first ignore size as a confounding factor, and
show that code metrics are good maintenance predictors. 2) By dividing a metric value by
size—a common (Suh and Neamtiu 2010; Shepperd 1988; Robert et al. 2012), but inaccu-
rate approach (Gil and Lalouche 2017) for size normalization—we reproduce the claim that
code metrics are good maintenance predictors. 3) We then show that the widely adopted size
normalization approach fails to neutralize the size influence, and the maintenance impact of
code metrics can still be explained by their correlation with size. This reproduces the crit-
icism that without size influence there is no empirical evidence to support the validity of
code metrics other than size itself (Gil and Lalouche 2017; Shepperd 1988).

RQ2: Why does the widely used size normalization approach not neutralize the size
influence?

Contribution 2: Our expectation was similar to many other previous studies: a nor-
malized metric (after dividing by size) should not have any correlation with size. To our
surprise, we find that this is not the case. Some normalized metrics are negatively correlated
with size while others are positively correlated with size. For example, normalized McCabe
values are usually higher when the code size is small, thus producing a negative correlation
between maintenance effort and size. For some others, the observation is opposite. We pro-
vide an explanation for why this unexpected observation is surprisingly common across all
considered metrics.

RQ3: Can we apply simple regression analysis for observing the true (size neutralized)
maintenance impact of code metrics (proposed in a recent study by Chen et al. 2020)?

Contribution 3: Our conclusion is encouraging. By a combination of bivariate (i.e.,
size∼maintenance) and multivariate (e.g., size + McCabe∼ maintenance) regression anal-
ysis we show that code metrics are indeed good maintenance predictors, even when their
correlation with size is neutralized.

RQ4: Does the performance of code metrics vary based on the evaluation context
(maintenance indicators and method size), and why?

Contribution 4: We show that evaluation context is a significant factor for code metric
performance. Some code metrics perform well for small methods, but not for large meth-
ods. We show that these metrics lose variability when applied to large methods. Once they
reach a threshold they lose predictive power. Other metrics, however, can increase mono-
tonically (e.g., McCabe) and do not suffer from a lack of variability in the measurements.
So their performance is not negatively impacted by code size. Also, a metric’s performance
varies greatly based on the maintenance indicator used. A metric can be good for estimat-
ing the number of revisions, but not good for estimating the size and the nature of code
modifications.

These observations are novel because they clearly show that code metrics are useful as
maintenance predictors, while explaining the apparent contradictions from prior studies.
With context-based evaluations, we provide new ways to examine the effectiveness of exist-
ing and future code metrics, and how they should be used to build more accurate software
maintenance models. To aid reproducibility, we provide a public replication package1 con-
sisting of a data set of ∼730K Java methods with their complete histories and the values for
all computed metrics and maintenance indicators over time.

1https://github.com/shaifulcse/codemetrics-with-context-replication

https://github.com/shaifulcse/codemetrics-with-context-replication


  158 Page 4 of 31 Empir Software Eng          (2022) 27:158 

1.1 Paper Organization

Section 2 discusses the potential root causes of the previous contradictory claims about code
metrics, which helped design the methodology of this paper. Section 3 discusses the method-
ology. In Section 4, we reproduce the previous contradictory claims about code metrics. We
also discuss the inaccuracy of the traditional size normalization approach. In Section 5, we
show the true maintenance impact of code metrics by a combination of bivariate and mul-
tivariate regression analysis. We also demonstrate why different evaluation contexts should
be considered before drawing any conclusion about code metrics. The significance of our
findings and threats to validity are presented in Section 6. Section 7 concludes this paper
with some potential future studies.

2 RelatedWork &Motivation

First we discuss the McCabe cyclomatic complexity, a metric for measuring the number of
linearly independent paths through a component (McCabe 1976). This metric was proposed
in 1976, and has been widely studied and adopted (Ebert et al. 2016; Pantiuchina et al.
2018). We can divide all the McCabe-related studies into two groups: studies that support its
validity (e.g., Curtis et al. 1979; Landman et al. 2014; Tiwari and Kumar 2014; Zhou et al.
2010; Alfadel et al. 2017), and studies that do not (e.g., Weyuker 1988; Shepperd 1988; Gil
and Lalouche 2017; Scalabrino et al. 2017). McCabe is not the only metric that has been
debated. With strong empirical evidence, other widely adopted metrics, such as C&K (Chi-
damber and Kemerer 1994), readability (Buse and Weimer 2010) have been criticized (Gil
and Lalouche 2017; Scalabrino et al. 2017). We identify the following factors that may
influence the outcome of a code metric study, and thus support contradictory conclusions.

User studies are subjective: Much metrics research relies on user studies to understand
the impact of metrics on maintenance indicators (Abid et al. 2019; Hofmeister et al.
2017; Scalabrino et al. 2016; Buse and Weimer 2010; Scalabrino et al. 2017; Antinyan
et al. 2017; Bauer et al. 2019; Kafura and Reddy 1987; Curtis et al. 1979; Darcy et al.
2005). One peril related to user studies is that the outcome often depends on human
subjects, and can be inconclusive or even contradictory (Brittain 1982). Also, in the con-
text of code quality, user perception does not necessarily match with the true quality of
software (Pantiuchina et al. 2018). Unsurprisingly, we observe contradictory results for
similar maintenance indicators while code metrics were evaluated: both that code met-
rics are useful (Johnson et al. 2019), and that they are not useful (Scalabrino et al. 2017).
In this paper, we therefore focus on objective change measurements as maintenance
indicators that we collect from real-world software projects.
Size as a confounding factor: The most frequent criticism invalidating code metrics is
that they are highly correlated with size (Ebert et al. 2016; Landman et al. 2014; Shepperd
1988; Yu and Mishra 2013; Kafura and Reddy 1987). Therefore, none of the metrics
offer any new maintenance information when normalized against size (Gil and Lalouche
2017; El Emam et al. 2001).

To claim validity of a metric, we need to show that the metric has predictive power even
after its dependency to size is neutralized. Despite this well and long established fact, sev-
eral studies have ignored it (e.g., Johnson et al. 2019; Tiwari and Kumar 2014; Subandri and
Sarno 2017; Romano and Pinzger 2011). In a recent study by Johnson et al. (2019) devel-
opers took less time to read code snippets that followed certain rules (e.g., reduced nesting
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level) than those that did not follow such rules. The publicly available dataset enabled us
to analyze the size distribution of the snippets. Figure 1a (cumulative distribution function
of source lines of code) shows that the snippets that broke the rule were much larger than
those that followed the rules. More lines of code would naturally take more time to read, so
perhaps size made the difference in reading time, and not the reduced nesting level.

Some studies, however, have attempted to neutralize size while evaluating code metrics.
For example, Spadini et al. (2018) evaluated the maintenance impact of test smells in three
different size categories: small (SLOC < 30), average (30 < SLOC < 60), and large (SLOC
> 60). Although this approach should reduce the confounding impact of size to some extent,
analyzing all methods with SLOC > 60 (for example) in one group can not eliminate the
problem completely. A more common approach is to calculate metric density per lines of
code (Suh and Neamtiu 2010; Shepperd 1988; Robert et al. 2012; Gil and Lalouche 2017)—
i.e., 100×McCabe/Size. Unfortunately, Gil and Lalouche (2017) argued that this approach
is inaccurate and questions some of the previous claims of validity for different code met-
rics. We argue that a metric is a valid maintenance indicator only when it correlates with
maintenance after the confounding factor of size is neutralized, and traditional size nor-
malization approach does not help in making such observation. We need a new approach to
evaluate code metrics’ effectiveness.

Aggregated analysis: Some studies were based on aggregated analyses (Gil and
Lalouche 2017; Spadini et al. 2018; Pascarella et al. 2020). That is, they combined all
metrics and maintenance indicators from all the studied projects. This is problematic for
several reasons. Different external factors—e.g., code review policy (Wang et al. 2019),
developer commit patterns (Herzig and Zeller 2013) and expertise (Matter et al. 2009)—
cause code to evolve in projects differently. Figure 1b shows the distributions of revisions
for all the methods in each of our 47 projects (described later); each line corresponds to
one project. Evidently, these projects do not exhibit similar revision behavior. Combining
them together may lead us to inaccurate conclusions. Figure 1c shows that the difference
in distributions reduces after applying recommended log-normal transformation (Gil and
Lalouche 2016), but the differences do not completely disappear. Even for code metrics,
the distribution in their measurements greatly vary based on a project’s domain, program-
ming language, and life span (Zhang et al. 2013). Also, some projects are much bigger
than others. This means that in aggregated analyses, results can be unduly influenced by
few big projects.

These problems of aggregated analysis can be avoided by analyzing each project indi-
vidually (Shin et al. 2011; Zhou et al. 2010; Kafura and Reddy 1987; Romano and Pinzger
2011). Individual project analysis, however, has been criticized for selection and publication
bias (Gil and Lalouche 2017; Radjenović et al. 2013). As we also show in this paper, there
are always outlier projects that exhibit unique behavior, which might seem normal if too few
projects are studied. The argument is thus to analyze each project separately, while studying
a reasonably large number of projects with a systematic unbiased selection process.

Granularity: Software maintenance studies have been conducted at different granular-
ities that can influence observations (Landman et al. 2014); these include the system
level (Suh and Neamtiu 2010; Kafura and Reddy 1987), class/file level (Palomba et al.
2017), snippet level (Hofmeister et al. 2017; Bauer et al. 2019), and even git diff
level (Hindle et al. 2008). Understanding maintenance at the method level granularity
from real software evolution data is difficult (Ying et al. 2004; Higo et al. 2020; Grund
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Fig. 1 Figure (a) shows that size
was not normalized in the study
by Johnson et al. (2019). Code
snippets that broke the rules are
much larger than the code
snippets that followed the rules,
leading to inaccurate
comparisons. Figure (b) shows
that aggregated analysis is
inaccurate because different
projects exhibit different revision
behaviors. Each line represents
the revision distribution for a
given project, and these lines are
very different from each other.
Figure (c) shows that these
different revision patterns are not
neutralized, even after applying a
log-normal transformation, as
suggested by Gil and Lalouche
(2016)
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et al. 2021b); it is harder to reliably generate method level histories than file level histo-
ries. Despite the difficulty, method level is the most desirable granularity (Pascarella et al.
2020; Menzies et al. 2007), because class/file level granularity is often too coarse-grained
for practical use (Shihab et al. 2012; Giger et al. 2012; Pascarella et al. 2020). We also
argue that if we can estimate maintenance at method level granularity, we can extend
this understanding to coarser levels of granularity—a class is generally a collection of
methods.
Maintenance Indicators: We consider software maintenance as a construct (Ralph and
Tempero 2018), which is difficult to measure, but easier to estimate it through some
reflective indicators. Different studies have focused on different indicators: human effort
to read and understand code (Johnson et al. 2019; Sridhara et al. 2010), localizing
bugs (Zimmermann et al. 2007; Islam and Zibran 2020; Pascarella et al. 2020; Menzies
et al. 2007; Tosun et al. 2010), change proneness (Gil and Lalouche 2017), or developer
activities (Shin et al. 2011). In this paper, we focus on four change proneness indica-
tors of Java methods (justified later). We show that metric performance to understand
maintenance can vary significantly based on the indicators used.

3 Methodology

This section describes our process for: i) selecting projects, ii) choosing code metrics and
maintenance indicators, iii) collecting method-level history for analysis, iv) age normalization
for methods with different ages, and v) selecting statistical approaches for analysis.

3.1 Project Selection

To reduce inaccuracies that may stem from aggregated analysis, we opted to analyze indi-
vidual projects. To neutralize selection bias, we took the union of all GitHub Java projects
used in four different software evolution studies (Gil and Lalouche 2017; Grund et al.
2021b; Spadini et al. 2018; Palomba et al. 2017), totalling 47 projects—mixing projects
from different programming languages can significantly impact the outcome of code met-
rics studies (Zhang et al. 2013). As we show later, this project set is able to highlight code
metric behaviors that are generic (true for most projects) and which behaviors are rare.
Table 1 describes the dataset. The table suggests that only a small number of methods (e.g.,
95th percentile of revisions) undergoes a large number of revisions. That means we can sig-
nificantly reduce the search space for maintenance optimization by identifying the top 5%
high-churn methods. This paper investigates, if code metrics are indeed helpful for such
identification.

We also note that the number of methods is significantly different across the projects. If
we were to adopt aggregated analysis, results for small projects would be unnoticeable. The
set of projects is clearly diverse. For example, even for the subset that was used in Gil and
Lalouche (2017), the number of developers ranges between 16 and 197, and development
duration varies from one to 13 years.

3.2 CodeMetric Selection

In contrast to method-level granularity, many of the popular code metrics, such as C&K
and depth of inheritance, work only at class or higher level granularities. Also, the objec-
tive of this paper is not to show which code metric is the best for estimating maintenance
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Table 1 Description of the dataset used in this paper

Repository # methods # rev # rev # rev # rev

(avg) (med) (max) (95th percentile)

hadoop 70,081 1.8 1.0 67.0 6.0

elasticsearch 62,190 3.5 2.0 121.0 12.0

flink 38,081 1.8 1.0 93.0 7.0

lucene-solr 37,133 1.5 1.0 145.0 6.0

docx4j 36,514 2.2 2.0 49.0 4.0

hbase 36,274 3.2 2.0 109.0 11.0

intellij-community 35,950 3.6 2.0 120.0 13.0

weka 35,639 1.7 1.0 86.0 5.0

hazelcast 35,265 2.7 1.0 109.0 10.0

spring-framework 26,634 2.4 1.0 60.0 8.0

hibernate-orm 24,800 2.5 2.0 70.0 7.0

eclipseJdt 22,124 3.0 1.0 133.0 12.0

guava 20,757 1.1 0.0 45.0 4.0

sonarqube 20,627 3.0 2.0 305.0 9.0

jclouds 20,358 1.6 1.0 59.0 5.0

wildfly 19,665 2.1 1.0 83.0 8.0

netty 16,908 2.0 1.0 75.0 9.0

cassandra 15,953 1.5 0.0 62.0 6.0

argouml 12,755 3.3 2.0 80.0 10.0

jetty 10,645 2.2 1.0 93.0 8.0

voldemort 10,601 1.7 0.0 65.0 8.0

spring-boot 10,374 2.6 2.0 59.0 9.0

wicket 10,058 4.9 3.0 63.0 14.0

ant 9,781 2.0 1.0 73.0 8.0

jgit 9,548 1.4 1.0 44.0 6.0

mongo-java-driver 9,467 3.3 2.0 57.0 13.0

pmd 8,992 3.2 2.0 91.0 10.0

xerces2-j 8,153 1.3 0.0 65.0 5.0

RxJava 8,145 3.7 3.0 22.0 10.0

openmrs-core 6,066 2.1 1.0 51.0 7.0

javaparser 5,862 3.2 1.0 84.0 14.0

hibernate-search 5,345 3.2 2.0 61.0 11.0

titan 4,590 2.2 1.0 42.0 8.0

checkstyle 3,340 3.8 2.0 72.0 13.0

commons-lang 2,948 3.6 3.0 34.0 9.0

lombok 2,684 2.0 1.0 43.0 7.0

atmosphere 2,659 2.4 0.0 87.0 11.0

jna 2,636 2.3 1.0 38.0 8.0

Essentials 2,390 3.0 1.0 46.0 14.0

junit5 2,085 2.7 1.0 59.0 11.0

hector 1,958 1.7 1.0 43.0 8.0
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Table 1 (continued)

Repository # methods # rev # rev # rev # rev

(avg) (med) (max) (95th percentile)

okhttp 1,953 4.7 3.0 54.0 16.0

mockito 1,498 4.1 3.0 62.0 13.0

cucumber-jvm 1,146 2.6 1.0 36.0 9.0

commons-io 1,145 3.1 3.0 24.0 8.0

vraptor4 926 1.6 1.0 24.0 6.0

junit4 874 3.1 2.0 70.0 11.0

In total, 733,577 Java methods were collected from 47 GitHub Java projects. For each project, we show
the average (# rev (avg)), the median (# rev (med)), the maximum (# rev (max)), and the 95th percentile of
revisions, considering all the methods a project contains. The small average, and median number of revisions
compared to the large 95th percentile and maximum revisions suggest that most maintenance activities occur
in small areas of code

effort, because there are many of them (Scalabrino et al. 2017). Instead, we focus on code
metric validity: are they useful at all, and if so, are the underlying evaluation contexts impor-
tant? Therefore, we focus only on seven widely adopted and widely studied metrics that
are applicable at method-level granularity. We show that these seven metrics were suffi-
cient to reproduce previous contradictory claims and to examine how code metrics should
be reliably evaluated.

McCabe: The McCabe algorithm for measuring cyclomatic complexity is simply:
1 + #predicates (McCabe 1976). There are, however, two forms: one counts logical
&& and ‖, and the other ignores them. We only consider the latter form because con-
sidering them does not make any meaningful difference in McCabe’s validity as a code
metric (Landman et al. 2014).
McClure: A criticism of McCabe is that it does not consider the number of control vari-
ables in a predicate. If the outcome of a predicate depends on multiple control variables,
it should be considered more complex than the one with a single control variable (Kafura
and Reddy 1987). McClure differs in this regard (McClure 1978): it measures the sum
of the total number of comparisons (thus includes && and ‖) and the number of control
variables in a component.
Nested Block Depth: Neither McCabe, nor McClure, considers nesting depth. To both
of these metrics, two methods each with two loops (for example) are equally complex,
even if one of them has nested loops and the other does not. Measuring Maximum Nested
Block Depth (referred to as NBD) is a common solution (Johnson et al. 2019; Antinyan
et al. 2015).
Proxy Indentation: Hindle et al. (2008) argued that a metric like McCabe is hard to
calculate because one needs a language-specific parser. They found that it is similarly
useful to use the level of indentation in a code component. Counting the raw number
of leading spaces in each line is equally good as counting the number of logical spaces.
Instead of calculating the max, sum, mean, or median, the authors found that standard
deviation of those counts (referred to as IndentSTD) works as the best proxy for McCabe-
like complexity.
FanOut: The aforementioned metrics, to some extent, measure similar complexities—
mainly the number of conditional branches. Therefore, we add FanOut (total number
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of method calls made by a given method) to our list. This metric provides an indica-
tion of how a particular method is dependent on other methods (coupling). Mo et al.
observed that highly coupled systems are usually less maintainable (Mo et al. 2016). We
also wanted to use FanIn or unique FanOut, but these two require a symbol solver that
preprocesses a complete repository for each change commit a method has. It would be
extremely time demanding for the ∼730K methods that we consider.
Readability: Unlike the aforementioned five metrics, readability is a composite metric
that combines different code metrics to produce a single indirect maintenance index. For
this we adopt the widely used Readability metric by Buse and Weimer (2010) which
ranges from 0 (least readable) to 1 (completely readable code).
Maintainability Index: As another composite metric, we consider the popular maintain-
ability index metric, which is calculated as:

171 − 5.2 ∗ ln(Halstead V olume) − 0.23 ∗ (McCabe) − 16.2 ∗ ln(Lines of Code)

This is the evolved form of the original equation proposed by Oman and Hagemeis-
ter (Oman and Hagemeister 1992). Different evolved forms have been adopted by
popular tools such as Verifysoft technology2 and Visual Studio.3

3.3 Maintenance Indicator Selection

Modeling maintenance effort is a difficult problem, because there are many different effort
indicators that should be considered for building a comprehensive effort prediction model.
A subset of these indicators include human effort to read and understand code (Börstler and
Paech 2016; Buse and Weimer 2010; Johnson et al. 2019; Scalabrino et al. 2017), difficulty
to modify a code (Mo et al. 2016), bug proneness (Giger et al. 2012; Rahman and Roy 2017),
and change proneness (Catolino et al. 2018; Gil and Lalouche 2017; Romano and Pinzger
2011; Shihab et al. 2012). The objective of this paper is not to build an effort prediction
model, but to answer if code metrics are at all useful for understanding maintenance effort,
and how to evaluate these metrics reliably. In that vein, we focus on change proneness, as
it is measurable without conducting user studies, reducing threats related to such studies.
Also, the community unanimously agrees about the utility of change proneness as one of
the most applicable maintenance effort indicators (Catolino et al. 2018; Gil and Lalouche
2017; Romano and Pinzger 2011; Shihab et al. 2012; Ying et al. 2004; Palomba et al. 2017;
Mocku and Votta 2000; Khomh et al. 2012). While we considered bug proneness, we dis-
carded this indicator to reduce threats to construct validity. From our dataset, bug proneness
can be measured by capturing keywords from commit messages, such as error, bug, and
fixes (Mocku and Votta 2000; Ray et al. 2016). Unfortunately, this approach has been criti-
cized for low precision/recall (Gil and Lalouche 2017; Spadini et al. 2018), which is further
complicated due to tangled changes. Developers often commit unrelated changes, which
incorrectly labels bug-free code as buggy (Herzig and Zeller 2013). Additionally, change
proneness is often highly correlated to bug proneness (Moser et al. 2008; Bell et al. 2011;
Bavota et al. 2015; Rahman and Roy 2017; Pascarella et al. 2020). Therefore, if a code
metric is a good predictor of change proneness, it is likely to be a good predictor of bug
proneness as well. Ultimately we selected the following four change proneness indicators.

2https://verifysoft.com/en maintainability.html: last accessed: December-28-2021
3https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-
meaning?view=vs-2022: last accessed: December-28-2021

https://verifysoft.com/en_maintainability.html
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning?view=vs-2022
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#Revisions: Number of revisions of a component is considered as an indication of main-
tenance effort by many (Antinyan et al. 2014; Monden et al. 2002; Shin et al. 2011;
Antinyan et al. 2015). The consensus is that a well designed less complex component
should not need many revisions.
Diff size: Number of revisions does not disclose how large a change is. If two components
are revised the same number of times, their maintenance effort is not necessarily the
same. Also, the number of revisions can be influenced by developers’ commit habit or
culture (Wang et al. 2019). Therefore, some consider git diff size a more accurate
maintenance indicator (Scholtes et al. 2016; Shin et al. 2011).
Additions only: Adding new lines is perhaps more difficult than deleting lines. This
threat can be reduced by considering only the number of new lines added (Shin et al.
2011).
Edit Distance: Lines of changed code, as a metric, is affected by noise such as coding
style; it does not distinguish modifications between large and small lines. Also, a simple
automatic rename method refactoring may modify a large number of lines. Therefore,
Levenshtein edit distance (Levenshtein 1966) is considered as a better maintenance indi-
cator than number of lines (added and/or deleted) (Ståhl et al. 2019; Scalabrino et al.
2017; Scholtes et al. 2016). Levenshtein edit distance measures the number of characters
added + deleted + updated for converting one source code version into another.

3.4 Data Collection and Representation

We require a method’s complete change history: how many times the method was changed,
when the changes happened, and what was changed? There are only few tools that support
history tracing at method level granularity: Historage (Hata et al. 2011), FinerGit (Higo
et al. 2020), and CodeShovel (Grund et al. 2021a, b). Historage and FinerGit work similar
to Git’s file tracking mechanism by converting each Java method to a file. However, we
find that this approach does not scale well to larger projects. In contrast, CodeShovel tracks
a method (even if the method’s signature is changed) using string similarity and without any
project preprocessing. Unlike the other tools, CodeShovel’s accuracy was evaluated on both
open source and closed source industry projects, with 99% precision and 90% recall.

After collecting the complete history of 733,577 Java methods from 47 selected projects,
we collected the evolution of their code metrics (e.g., SLOC, McCabe), and change metrics
(e.g., edit distance). To the best of our knowledge, there is no existing tool that provides
measurements in this form, so we have implemented our own tool. We verified its correct-
ness by randomly selecting and validating 200 Java methods. In addition, the accuracy of
the tool was tested by an independent code metric researcher. A method, across its evolu-
tion history, can have different values for the same code metric (e.g., initially the McCabe
was 5, but then it changed to 3, and then to 5 again). For a single method, we thus summed
all the maintenance indicator values (e.g., sum of all edit distances) that a method had for
each unique code metric value. For a given method, for example, if edit distance 10, 20,
and 30 correspond to McCabe values 5, 3, and 5 respectively, McCabe value 5 is blamed
for edit distance 40 (10+30), and McCabe 3 is blamed for edit distance 20. This is how we
mapped code metrics value with different maintenance indicators to study the relationships
between them.

Why did we use sum instead of other descriptive statistics, such as mean? Let us con-
sider the history for two real methods from the Checkstyle project present in our dataset.
The method visitToken (in MagicNumberCheck.java, with CodeShovel method ID: visitTo-
ken ast-DetailAST) was revised 18 times with edit distances: 17, 425, 106, 437, 133, 96,
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41, 86, 2, 48, 2, 90, 29, 272, 3, 5, 126, and 65. The method hasJavadocInlineTags (in Single-
LineJavadocCheck.java, with CodeShovel method ID: hasJavadocInlineTags javadocRoot-
DetailNode) was revised three times, and the edit distances are: 4, 422, and 2. A natural
question is to ask which method is most change prone. While it is obvious that the visitToken
method is more change-prone than the method hasJavadocInlineTags, different statistics can
provide different interpretations. Specifically, the sum of edit distances suggests that visit-
Token is more change-prone (the sum edit distance for method visitToken is 1983, while for
hasJavadocInlineTags is 428). But the mean edit distance suggests the opposite: for method
visitToken the mean edit distance is 110.16, and for method hasJavadocInlineTags the mean
edit distance is 142.66. This is contrary to what one would reasonably expect, looking at the
raw data. For this reason, we believe using the metric’s mean is more likely to be misleading.

3.5 Age Normalization

It is inaccurate to compare the change history of two differently-aged methods. An older
method is more likely to have more revisions than a newer method (Lehman et al. 1997; Yu
and Mishra 2013). For the rest of the analysis, we consider methods that are at least two
years old: reasonably enough time to undergo their initial changes. However, this approach
does not completely neutralize the time effect; for instance, we should not compare a two
year with a year ten method. We neutralize this by considering changes that happen only
within the first two years of these filtered samples. This is like time traveling to each of
the methods change history when they were two years old. But why two years? Figure 2
(cumulative distribution functions with day) shows that more than 80% of our methods
(total 602,550 methods) are older than two years (Age). Among all the revisions in whole
dataset (All changes in the graph), ∼60% of them happened within the first two years. If we
consider the interval time of subsequent revisions, around 86% of changes happened within
the first two years. If we increase the age threshold value, we lose more methods. If we
decrease it, we lose more change history, so it is a trade-off. Note that if we set the threshold
to one or three years, the major conclusions of this paper remain the same.

Fig. 2 Two years is a good threshold for age normalization. We only lose ∼20% of the methods, and yet
retain ∼60% of the revisions that happened within our whole dataset



Empir Software Eng          (2022) 27:158 Page 13 of 31  158 

3.6 Correlation and Statistical Significance

To apply Pearson’s formula for calculating correlation coefficients between code metrics
and maintenance indicators we need to establish that each metric, for each change proneness
indicator, for each project is normally distributed. After applying the Anderson-Darling
normality test (Thode 2002) for some of the randomly selected projects, we found that they
are not normally distributed. Therefore, we opted to use Kendall’s τ correlation coefficient.
Unlike Pearson’s correlation coefficient, Kendall’s τ does not assume any distribution of
the data (non-parametric), and is less affected by outliers, which the community has chosen
to use for these kinds of analysis (Inozemtseva and Holmes 2014; Gil and Lalouche 2017;
Chowdhury et al. 2019). Unless otherwise stated, all results in this paper are statistically
significant (p-value < 0.05). When necessary, we also use the Wilcoxon rank-sum test to
test if the performance distributions of the code metrics are statistically different, and if so,
we report how large the differences are (Cliff’s Delta effect size). Similar to Kendall’s τ ,
these two tests are non-parametric and do not assume any distribution of the data (Sheskin
2020; Romano et al. 2006).

As we consider each project separately, we present the results as distributions. Therefore,
we use the Cumulative Distribution Function (CDF) for the visual representation of our
results. We considered using XY-plots, but CDF better conveys our findings. As CDF is a
monotonic function, comparing multiple lines (because of multiple code metrics) is easier
than XY-plots’ zigzag-patterns.

4 Results: Looking into the Past

In this section, we reproduce previous claims about the relationship between code met-
rics and software maintenance (RQ1). We show that the debate about source code metric
effectiveness stems from improperly considering, or normalizing for, size as a confounding
factor. We show that the most commonly used normalization approach fails to neutralize the
size effect in practice. We then explain why size normalization is difficult and remains an
open research problem (RQ2).

4.1 (RQ1) Metrics are (not) Useful

Figure 3a shows the cumulative distribution functions (CDF) of the correlation coefficients
between the selected code metrics and number of revisions (each line represents a particular
metric and shows the distribution across all the 47 projects). Results are similar for McCabe,
McClure, and NBD, so we show only McCabe to maintain graph readability.

Evidently, all the seven code metrics are correlated with maintenance measures, which
means that they are potentially good maintenance predictors. This approach aligns with a
group of prior studies (e.g., Johnson et al. 2019; Tiwari and Kumar 2014; Subandri and
Sarno 2017) that did not attempt to control for size as a confounding factor.

Correlating a metric with maintenance alone does not make a metric valid or useful (Gil
and Lalouche 2017; Shepperd 1988). The arguments supporting this are: (1) size is a great
predictor of maintenance, and (2) many code metrics are highly correlated with size. So
a metric’s correlation with maintenance could simply be due to its correlation with size.
Figure 3b shows the correlation between SLOC and the four maintenance indicators for all
47 projects (supporting argument 1). Figure 3c shows that all the metrics are correlated with
size (supporting argument 2). We observe that the direction and strength of the correlation
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Fig. 3 Figure (a) shows that all
the code metrics are significantly
correlated with number of
revisions in each project
(observations are similar for
other maintenance indicators).
Figure (b) shows that SLOC is
positively correlated with all the
maintenance indicators. Figure
(c) shows that code metrics are
correlated with SLOC. For graph
readability, the number of marks
in each line is fewer than the
actual number of data points
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between a code metric and maintenance is similar to the metric’s correlation with size. For
example, Readability is negatively correlated with both size and maintenance (larger size
means less readable and thus less maintainable). For IndentSTD the correlation is somewhat
lower (compared to McCabe and FanOut) with size and thus lower with maintenance. These
observations align well with the criticism that when the influence of size is considered, we
do not have any empirical evidence to support the usefulness of code metrics (Shepperd
1988). From this we conclude that without size normalization we do not know the true
effectiveness of code metrics.

The most common approach for size normalization takes the density of a metric and
divides its measure in a component by the size of the component (Suh and Neamtiu
2010; Shepperd 1988; Robert et al. 2012; Gil and Lalouche 2017). For example, 100 ×
McCabe/Size gives the McCabe value per 100 lines of code, so we should have a normal-
ized McCabe measure completely independent of size. The hypothesis is that, if we still see
correlation between a metric and maintenance, we can argue for the validity of the metric.
Figure 4a shows the distributions (for 47 projects) of correlation coefficients for all the nor-
malized code metrics with the number of revisions (results are similar for other maintenance
indicators). Evidently, all the metrics are still correlated with maintenance. This supports
the assumption of code metrics validity after the size influence is neutralized.

To our surprise, we find that this commonly practiced size normalization approach is
inaccurate. Figure 4b shows the correlation distributions between the normalized metrics
and size for all 47 projects. Although we were expecting the correlation to be close to zero,
this is not the case. We also note that the direction of the correlation between size and a
metric still dictates the direction of the correlation between maintenance and that metric.
For example, McCabe is negatively correlated with both size and number of revisions. We
later found that the same observation was made by Gil and Lalouche (2017), although their
granularity level was different (file-level instead of method-level). They concluded that size
is the only valid code metric because maintenance impact of other code metrics can directly
be explained by their correlations to size. Despite our similar observation, we see hope if
we carefully examine Fig. 4a and b. For example, the correlations with revisions are similar
for FanOut, NBD, and McClure, but not as similar to size. For Gil et al., size explains
everything (file-level), but for us it does not (method-level).

This difference of observations can be explained by the findings of Landman et al.
(2014), who have studied the correlation between McCabe and size at different granularity
levels. In their study, the strong correlation between McCabe and size is true only for large
code units, but dwindles significantly at the method level granularity. The authors, however,
did not examine McCabe’s impact on maintenance. In this paper, with the help of bivariate
and multivariate regression analysis, we show that code metrics are indeed good mainte-
nance predictors, even when their relations with size are neutralized. But before examining
this, we first explain why the widely adopted and believed size normalization fails (RQ2).

4.2 (RQ2) Size Normalization is Sensitive to Size

To see why size normalization does not work, we take a deeper look into McCabe complex-
ity (1+#predicates). Why is normalized McCabe negatively correlated with size (and thus
with maintenance)? Of course, a negative correlation here indicates that the lower the size
the higher the normalized value (i.e., density per 100 lines of code). Interestingly, we find
that the ‘1’ in the McCabe formula (1 + #predicates) is a major issue. Consider a simple 3
line Java method, which just returns the sum of two numbers. The McCabe is already 1, and
the normalized value is 0.33 (1/3). The effect of ‘1’, however, diminishes as method size
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Fig. 4 Figure (a) shows that all
the normalized code metrics are
still significantly correlated with
number of revisions in each
project. However, Figure (b)
suggests that even the normalized
code metrics are correlated with
SLOC. Figure (c) demonstrates
why the normalized McCabe is
negatively correlated with SLOC
(and thus with change)
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grows. Figure 4c depicts normalized McCabe score against size for all the 602,550 meth-
ods. Clearly, the normalized McCabe score decreases with the increase in size because of
the high density in small methods. We find that if we eliminate the ‘1’ from the formula,
the size influence in normalized McCabe is reduced, but does not go away completely. The
graph shows that the normalized score for small methods can even exceed 100. As an exam-
ple, consider the method from the Elasticsearch project, shown in Fig. 5. This method is
written as a one line method (size = 1), and because of the conditional operator, the plain
McCabe is 2 (1+#predicates). The normalized McCabe is thus 200 (100×(2/1)). Note that
this data point with 200 normalized McCabe score represents 56 methods, not just one.

As we show later, most methods in our dataset are small (SLOC ≤21), and therefore
the overall correlation is significantly impacted by the high McCabe density of this large
number of small methods. The problem is, Fig. 4b shows that different code metrics suffer
differently from this size normalization approach. Size normalization thus remains an open
research problem: we need to develop an approach that not only eliminates the influence of
size, but also does not normalize in a way that hides the effectiveness of code metrics.

5 Results: EvaluatingMetrics with Regression and Contexts

The problems of performing a size-decoupled metric evaluation with a traditional size nor-
malization approach led us to a study by Chen et al. (2020). The authors investigated
why different mutation testing studies claimed differently (Inozemtseva and Holmes 2014;
Gopinath et al. 2014; Just et al. 2014; Papadakis et al. 2018) about the relationship between
test suite size, test adequacy criteria (e.g., coverage), and test effectiveness (fault detection).
Although the context of their study is different than ours, the outcome is similar: two differ-
ent studies control for test suite size, while evaluating the relationship between test adequacy
criteria and test effectiveness, producing two different conclusions. For highly correlated
variables (code metrics and size in our case), the authors suggested that regression analysis
can be useful. Encouraged by their hypothesis, we designed our approach as follows.

1. With a bivariate regression analysis between size and a maintenance indicator (e.g.,
revisions), we calculate the goodness of fit score of the regression model.

2. In the same model, we then add one of the code metrics (e.g., McCabe) as the
second independent variable and asked whether this multivariate regression model
(size+McCabe ∼ #revisions) improves the goodness of fit score with statistical
significance (p-value < 0.05 for the coefficient of McCabe)?

3. We take the difference between the two fitness scores and convert it to a percent
improvement to show the distribution across the 47 different projects.

Fig. 5 A sample method from Elasticsearch
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4. We repeat steps 1 to 3 for all the maintenance indicators and code metrics.

We argue that this approach shows the true maintenance impact of code metrics because it
correctly eliminates the size influence.

5.1 (RQ3) Regression Analysis for CodeMetric Evaluation

Figure 6 shows the CDFs of percent of improvement in fitness scores with the multivari-
ate regression models for three of the maintenance indicators. We excluded the result for
the diff size indicator, because the observation is the same—all the metrics improve
the fitness scores for all of the indicators. Figure 6a, for example, shows that the Read-
ability metric improves the fitness accuracy by at least 10% for more than 80% of the
projects (and at least 100% for 20% of the projects). Maintainability Index performs even
better. This clearly refutes the claim that code metrics are not useful after size influence is
neutralized (Gil and Lalouche 2017; El Emam et al. 2001). Except for the Maintainability
Index, the performance of other metrics, however, are not the same across all maintenance
indicators. Readability is the second best metric for estimating the number of revisions.
For estimating change size (e.g., edit distance), however, NBD and IndentSTD outperform
Readability. Also, results in Fig. 6 are dominated by methods that are small in size, because
most of our methods are small. We need to evaluate if code metrics perform differently
when evaluated for large methods only, and if so, what factors influence their performance.
These are the questions we investigate in RQ4.

5.2 (RQ4) Evaluating CodeMetrics with Contexts

To investigate whether the performance of a code metric depends on the method size, we
need to first define a threshold for separating large methods from small ones. Instead of
defining such a threshold from intuition or from expert opinion, we followed the 6-step
systematic approach proposed by Alves et al. (2010). The main objective of the approach
is to find critical values for identifying low risk (small size), medium risk (medium size),
high risk (large size), and very high risk (very large size) code components in terms of
maintenance from a given set of projects. These critical values are robust, i.e., they are not
impacted by outlier projects or methods. We refer to Alves et al. (2010) for more detail. The
first 5 steps of Alves et al.’s approach deliver 3 critical values that are derived from Fig. 7.
The first critical value shows that SLOC is ≤ 21 for 70% of the Y-axis. The second (32) and
the third (58) critical values represent 80% and 90% of the Y-axis respectively. In step 6,
we can now find the range to define a method’s size category: small (SLOC ≤ 21), medium
(21 < SLOC ≤ 32), large (32 < SLOC ≤ 58), and very large (SLOC > 58). Clearly, the
results in Fig. 6 are dominated by methods with SLOC ≤ 32 (80% of the Y-axis), limiting
our understanding of metric performance for large methods. Here, we evaluate metrics for
large and very large methods only (SLOC > 32)—we refer to both groups as “large” for
simplicity.

Figure 8 shows that code metrics can be used to understand maintenance effort for large
methods. However, their ranks in performance are not the same when compared with meth-
ods from all sizes (Fig. 6, dominated by small SLOCs). We make the following observations
while comparing Figs. 6 and 8: 1) Code metrics are useful for estimating maintenance
effort for both large and small methods. 2) FanOut’s performance is pretty consistent across
different method sizes. This indicates that developers should be careful about coupling
(i.e., dependency on other methods) for all methods. 3) Readability effectiveness drops
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Fig. 6 Cumulative distribution
functions of percent of
improvement in goodness of fit
scores. All seven metrics
improve the prediction accuracy
of the regression models when
they are added with size. The two
boxed areas in Figure (a) show
why selecting only a few projects
can be inaccurate for providing a
generalizable observation about
code metric usefulness. By
selecting one boxed group only,
we can underestimate (or
overestimate) the effectiveness of
code metrics



  158 Page 20 of 31 Empir Software Eng          (2022) 27:158 

Fig. 7 Finding the critical values to determine small, medium, large, and very large methods, as proposed by
Alves et al. (2010)

significantly when considering for large methods only. For edit distance for example
(Fig. 8c), Readability was able to improve the maintenance effort prediction accuracy only
for 4 projects. 4) For edit distance, NBD and IndentSTD outperform all other metrics
(except for the Maintainability Index) when the evaluation was dominated by small methods
(Fig. 6c). Surprisingly, their performance drops significantly for large methods. Although
one may initially assume these observations as random noise, next we show that most of
these performance variations are indeed explicable. We, therefore, need to consider the eval-
uation contexts to truly understand the usefulness of code metrics in estimating software
maintenance effort.

Insight into the inconsistency of code metric performance: Source code metrics will
never model maintenance effort with 100% accuracy, because there are other factors that
influence how a code component evolves over time: developer habits (Terceiro et al.
2010), application domain and platforms (Zhang et al. 2013; Viggiato et al. 2019), code
clones (Monden et al. 2002), software architecture (Aniche et al. 2016), and test code
quality (Spadini et al. 2018; Athanasiou et al. 2014). Despite this difficulty, we take a
deeper look into the following questions: i) Why is Readability’s performance so poor
for large methods although it is excellent for all methods (i.e., dominated by small meth-
ods)? ii) Why do NBD and IndentSTD perform so well for estimating edit distance when
considered for all methods? And can we deduce a common phenomenon that explains
the inconsistent performance of source code metrics?
i) Readability: Figure 6a shows that Readability is the second best metric for estimat-
ing the number of revisions when the evaluation is dominated by a large number of
small methods. According to the Wilcoxon rank-sum test, the performance distribution
of Readability is statistically different from others. According to the Cliff’s Delta test,
Readability’s performance has negligible effect size with IndentSTD, small effect size
with NBD, and large effect size with all the others. Although its performance drops and
becomes similar to the others when other maintenance indicators are used, Readability
performs extremely poorly when evaluated for large methods only. For example, for edit
distance and large methods, Readability is outperformed by all with large to small effect
sizes. The scatter diagram in Fig. 9 indicates that the Readability metric by Buse and
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Fig. 8 Percent of improvement
in goodness of fit scores for large
and very large methods only.
Notice that all the metrics fail to
improve the fitness score for a
fraction of the projects. This is
because many of these projects
do not have enough large
methods to produce regression
coefficients with statistical
significance (p-values are >=
0.05)
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Fig. 9 Readability score against SLOC for all the methods in our dataset, based on the approach by Buse and
Weimer (2010). SLOCs>100 are discarded for graph readability

Weimer (2010) can only distinguish between how readable two methods are if the meth-
ods are small in size; to this model, all the large methods are similarly less readable.
Interestingly, we find that the readability model was based on small code snippets only
(maximum SLOC was 11 Posnett et al. 2011). Evidently, the model does not scale for
large methods. The graph shows that the variability in the readability measurements starts
dwindling after SLOC 11 (first box), and almost diminishes after SLOC 32 (second bar).
This clearly explains why the Readability metric performs poorly for the large methods.
ii) Nested Block Depth and IndentSTD: Figure 6c suggests that NBD and IndentSTD
outperform all other metrics (except Maintainablity Index), when edit distance is the
maintenance indicator. For example, NBD’s performance distribution is statistically
different than others with non-negligible effect sizes. Levenshtein edit distance (Lev-
enshtein 1966) counts even the number of white spaces when it captures how many
characters have been added, deleted, or edited to convert one method version into another.
Although initially it seems like unimportant information to capture, it can actually indi-
cate if a modification was done inside a nested block (by capturing the leading spaces) or
outside. This is a strength of edit distance as a maintenance indicator, because modifica-
tion inside nested blocks are considered more bug prone (Islam and Zibran 2020; Hindle
et al. 2008). This observation explains the superior performance of NBD and IndentSTD
for this maintenance indicator; among the seven code metrics, only these two capture
nesting information of a method.

But why do the performance of NBD and IndentSTD drops so significantly when evaluated
for large methods only? We observe that NBD and IndentSTD lack variability in large
methods. Let us consider NBD with two large methods. One method has 2 nested loops,
each with depth 3. The other one has one nested loop only, but with the same depth. NBD as
a metric fails to distinguish between these two methods— NBD is 3 for both. Some metrics
such as FanOut, McCabe, McClure, and Maintainability Index do not have this limitation.
Their value can change monotonically with the increase in SLOC. These four metrics, in
contrast to the others, do not exhibit noticeable performance degradation for large methods.
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To verify if our observation about measurement variability generalizes to all the metrics,
let us consider Fig. 10. Each metric measurement is represented by two box plots. The
first shows the measurement distributions for all methods, and the second only for large
methods. The measurement distribution of the Maintainability Index is much taller than the
other metrics, because of the large default constant (171) used in its equation. For this metric
and Readability, the values for large methods are smaller than small methods, because large
methods are less maintainable, and less readable.

For the other five metrics, however, the second boxplot is always taller than the first
one, because the measurements are naturally higher in large methods. When we com-
pare the first boxplots for these five metrics, they are not extremely different. However,
the second boxplots are noticeably different from each other, and show that some metrics
(FanOut, McCabe, and McClure) have much higher variability than others (e.g., NBD, and
IndentSTD) when only the large methods are considered. These observations explain the
size dependent performance of metrics like NBD, and IndentSTD. Interestingly, a 1988
study by Weyuker (1988) emphasized variability in measurements to be a desired property
of a code metric, stating “a measure which rates all programs as equally complex is not
really a measure”.

6 Discussion

In this paper, we studied and reproduced the early contradictory claims about the relation-
ship between maintenance impact and code metrics. We first focused on the methodological
aspects that have influenced the outcomes of many previous studies. This investigation out-
lines some fundamental challenges that must be understood for accurately understanding
a code metric’s validity. For example, if we can not neutralize the project’s difference in

Fig. 10 Comparing variability in measurements between all methods and large methods for all the code
metrics
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change evolution (Fig. 1b), we should not rely on aggregated analysis. At the same time,
enough projects should be considered to characterize outlying observations. While answer-
ing RQ1, and RQ2 (the confounding effect of size on the relationships between code metrics
and maintenance effort) we have established that the commonly used size normalization
approach fails to neutralize the influence of size and should not be used in practice.

Using regression analysis for the size neutralized metrics evaluation (RQ3), we showed
that we can use code metrics to prioritize our effort for reducing maintenance effort. This
is encouraging for the research and development communities, because it refutes the claim
that size is the only valid code metric (Gil and Lalouche 2017; El Emam et al. 2001; Herraiz
et al. 2007), and it suggests that as a community we can continue researching new source
code metrics that can provide greater insight into our software systems. The utility of a code
metric, however, greatly depends on the evaluation context in which it is applied. A metric,
due to the lack of variability in the measurements, may become less useful when applied to
large methods (RQ4). Additionally, a metric’s performance is impacted by the underlying
maintenance indicators used.

The varying performance of code metrics suggests that building context-aware main-
tenance models would be more effective than trying to derive a single generic model
applicable to all systems. Software maintenance models have been studied for the last
forty years (Lenarduzzi et al. 2017), but considering their accuracy, there remains room for
improvement (Pascarella et al. 2020). Along with other existing recommendations, such as
parameter optimization (Tantithamthavorn et al. 2016), we provide convincing evidence that
the community should also focus on building ensemble (Kotu and Deshpande 2015) main-
tenance models instead of generic models that are commonly built (e.g., Pascarella et al.
2020; Coleman et al. 1994; Nagappan and Ball 2005). The envisioned approach is not to
blindly apply a mixture of different machine learning algorithms (a form of ensemble mod-
eling Alsolai et al. 2018), but to focus more on a mixture of models where each model is
trained on a selected set of code metrics, a bounded method size, and a particular main-
tenance indicator. For example, while Readability, NBD and IndentSTD should be used
for small methods-based models, they should be excluded for other models that are better
able to forecast maintenance indicators for large methods. This way we can build multiple
base models based on the contextual code metrics evaluation, and can then aggregate the
prediction of each base model that produces one final maintenance prediction for a given
method (Kotu and Deshpande 2015).

6.1 Threats to Validity

Several threats may impact the observations in this study.
Construct validity is hampered by the maintenance indicators we used. Change prone-

ness is not the only indicator of maintenance effort. Also, the indicators we used may not be
sufficient to understand the true change proneness. Number of revisions, for example, can be
impacted by the commit habits of contributors (Ståhl et al. 2019). Some may commit more
frequently than others. A less revised code, which is difficult to understand, and structurally
complex to make a change, may require more effort than a more revised code. We mitigated
this threat, at least to some extent, by using all the four change proneness indicators that we
commonly found from the literature. The accuracy of collecting the complete change his-
tory in our measurements can be criticized, because we solely relied on CodeShovel (Grund
et al. 2021b). Considering the run-time performance and accuracy, however, CodeShovel is
the state-of-the-art tool for tracing method history.
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A metric’s validity can be evaluated in multiple ways. For example, by applying mea-
surement theory as proposed by Fenton and Kitchenham (1991). However, in this paper, we
consider a code metric as a valid/useful metric only if it can offer extra insight into main-
tenance after the influence of size is neutralized. While this definition of validity can be
argued, we found it common in previous studies (Gil and Lalouche 2017; El Emam et al.
2001; Sjøberg et al. 2013).

External validity can be limited by the representativeness of the Java open source
projects we used. Our results might not generalize to closed source projects. Also, we only
focused on seven selected code metrics. Although these seven metrics were sufficient to
demonstrate the problems and a potential solution for reliable evaluation of code metric
performance, more code metrics should be investigated in the future.

Internal validity can be criticized by the statistical tests we used; however, these tests
are well-established and well-recognized that seem appropriate for our context. We have
used the sum value for the change indicators; other descriptive statistics, such as mean,
and median, can be explored in the future. The selected metrics of this study, although
popular, can be correlated to each other, which may hinder the observations for a large set
of independent code metrics.

Conclusion validity can be hampered because of our dependence on regression anal-
ysis. We mitigated this threat by relying on regression coefficients that were statistically
significant (i.e., p-value <= 0.05).

7 Conclusion & FutureWork

In this paper we set out to investigate whether code metrics can help us gain insight into
maintenance effort, considering four code churn measures as maintenance effort indica-
tors. While this question has been investigated before—and contradictory results have been
presented—our approach was to reduce the level of granularity of our analysis to that of
methods, and investigate the influence of size.

The key take away of our study is that context is king. Code metrics are useful predictors
of maintenance effort, even after normalizing for size. However, their utility for predicting
maintenance effort depends greatly on the context of how they are applied based on the type
of maintenance indicators that are used and the size of the methods being examined.

This study presents a call-to-arms to the research community to investigate maintenance
models that are context-aware, both in terms of method sizes and maintenance indicators.
Implicitly, this is also a stringent warning for software engineering practitioners to not
blindly follow metrics without taking context into account.

As our focus was on the previously unexplored method level granularity, we could
not investigate the usefulness of some widely used class level code metrics (e.g., depth
of inheritance). It would be interesting future work to see if the famous class level code
metrics indeed help estimating future maintenance effort. We also plan to study the relation-
ship between code metrics and bug-proneness with dedicated dataset reporting manually
curated bugs.
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Khomh F, Penta MD, Guéhéneuc Y-G, Antoniol G (2012) An exploratory study of the impact of antipatterns
on class change- and fault-proneness. Emp Softw Eng: Int J 17(3):243–275

Kondo M, German DM, Mizuno O, Choi E-H (2020) The impact of context metrics on just-in-time defect
prediction. Emp Softw Eng 25(1):890–939

Kotu V, Deshpande B (2015) Chapter 2 - data mining process. In: Kotu V, Deshpande B (eds) Predictive
analytics and data mining. Morgan Kaufmann, Boston, pp 17–36

Lake A, Cook CR: Use of factor analysis to develop oop software complexity metrics. USA, 1994
Landman D, Serebrenik A, Vinju J (2014) Empirical analysis of the relationship between cc and sloc in a

large corpus of java methods. In: IEEE International conference on software maintenance and evolution,
pp 221–230

Lehman MM, Ramil JF, Wernick PD, Perry DE, Turski WM (1997) Metrics and laws of software evolution-
the nineties view. In: International software metrics symposium, pp 20–32

Lenarduzzi V, Sillitti A, Taibi D (2017) Analyzing forty years of software maintenance models. In:
International conference on software engineering companion (ICSE-C), pp 146–148

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet
physics doklady, vol 10, pp 707–710



  158 Page 28 of 31 Empir Software Eng          (2022) 27:158 

Matter D, Kuhn A, Nierstrasz O (2009) Assigning bug reports using a vocabulary-based expertise model
of developers. In: 2009 6th IEEE International working conference on mining software repositories,
pp 131–140

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng SE-2(4):308–320
McClure CL (1978) A model for program complexity analysis. In: Proceedings of the 3rd international

conference on software engineering, pp 149–157
Menzies T, Greenwald J, Frank A (2007) Data mining static code attributes to learn defect predictors. IEEE

Trans Softw Eng 33(1):2–13
Mo R, Cai Y, Kazman R, Xiao L, Feng Q (2016) Decoupling level: A new metric for architectural mainte-

nance complexity. In: 2016 IEEE/ACM 38th international conference on software engineering, pp 499–
510

Mocku A, Votta LG (2000) Identifying reasons for software changes using historic databases. In: Proceedings
2000 International conference on software maintenance, pp 120–130

Monden A, Nakae D, Kamiya T, Sato S, Matsumoto K (2002) Software quality analysis by code clones in
industrial legacy software. In: Proceedings IEEE symposium on software metrics, pp 87–94

Moser R, Pedrycz W, Succi G (2008) Analysis of the reliability of a subset of change metrics for defect
prediction. In: Proceedings of the Second ACM-IEEE international symposium on empirical software
engineering and measurement, ESEM ’08, pp 309–311

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In:
Proceedings. 27th International conference on software engineering, pp 284–292

Oman P, Hagemeister J (1992) Metrics for assessing a software system’s maintainability. In: Proceedings
conference on software maintenance 1992, pp 337–344

Palomba F, Zaidman A, Oliveto R, De Lucia A (2017) An exploratory study on the relationship between
changes and refactoring. In: Proceedings of the 25th international conference on program comprehen-
sion, pp 176–185

Pantiuchina J, Lanza M, Bavota G (2018) Improving code: The (mis) perception of quality metrics. In: IEEE
International conference on software maintenance and evolution, pp 80–91

Papadakis M, Shin D, Yoo S, Bae D-H (2018) Are mutation scores correlated with real fault detection? A
large scale empirical study on the relationship between mutants and real faults. In: Proceedings of the
40th international conference on software engineering, pp 537–548

Pascarella L, Palomba F, Bacchelli A (2020) On the performance of method-level bug prediction: A negative
result. J Syst Softw, 161

Posnett D, Hindle A, Devanbu P (2011) A simpler model of software readability. In: Proceedings of the 8th
working conference on mining software repositories, pp 73–82
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