

Delft University of Technology

Semantically-enhanced topic recommendation systems for software projects

Izadi, Maliheh; Nejati, Mahtab; Heydarnoori, Abbas

DOI
10.1007/s10664-022-10272-w
Publication date
2023
Document Version
Final published version
Published in
Empirical Software Engineering

Citation (APA)
Izadi, M., Nejati, M., & Heydarnoori, A. (2023). Semantically-enhanced topic recommendation systems for
software projects. Empirical Software Engineering, 28(2), Article 50. https://doi.org/10.1007/s10664-022-
10272-w

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-022-10272-w
https://doi.org/10.1007/s10664-022-10272-w
https://doi.org/10.1007/s10664-022-10272-w

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Empirical Software Engineering (2023) 28:50
https://doi.org/10.1007/s10664-022-10272-w

Semantically-enhanced topic recommendation
systems for software projects

Maliheh Izadi1 ·Mahtab Nejati2 ·Abbas Heydarnoori3

Accepted: 30 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Software-related platforms such as GitHub and Stack Overflow, have enabled their users to
collaboratively label software entities with a form of metadata called topics. Tagging soft-
ware repositories with relevant topics can be exploited for facilitating various downstream
tasks. For instance, a correct and complete set of topics assigned to a repository can increase
its visibility. Consequently, this improves the outcome of tasks such as browsing, search-
ing, navigation, and organization of repositories. Unfortunately, assigned topics are usually
highly noisy, and some repositories do not have well-assigned topics. Thus, there have been
efforts on recommending topics for software projects, however, the semantic relationships
among these topics have not been exploited so far.

In this work, we propose two recommender models for tagging software projects that
incorporate the semantic relationship among topics. Our approach has two main phases; (1)
we first take a collaborative approach to curate a dataset of quality topics specifically for the
domain of software engineering and development. We also enrich this data with the seman-
tic relationships among these topics and encapsulate them in a knowledge graph we call
SED-KGraph. Then, (2) we build two recommender systems; The first one operates only
based on the list of original topics assigned to a repository and the relationships specified
in our knowledge graph. The second predictive model, however, assumes there are no top-
ics available for a repository, hence it proceeds to predict the relevant topics based on both
textual information of a software project (such as its README file), and SED-KGraph.

Communicated by: Sousuke Amasaki, Xin Xia, Shane McIntosh

This article belongs to the Topical Collection: Predictive Models and Data Analytics in Software
Engineering (PROMISE)

� Maliheh Izadi
m.izadi@tudelft.nl

� Abbas Heydarnoori
aheydar@bgsu.edu

Mahtab Nejati
mahtab.nejati@uwaterloo.ca

1 TU Delft, Delft, Netherlands
2 University of Waterloo, Waterloo, Ontario, Canada
3 Bowling Green State University, Bowling Green, Ohio, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10272-w&domain=pdf
http://orcid.org/0000-0001-5093-5523
mailto: m.izadi@tudelft.nl
mailto: aheydar@bgsu.edu
mailto: mahtab.nejati@uwaterloo.ca

 50 Page 2 of 36 Empir Software Eng (2023) 28:50

We built SED-KGraph in a crowd-sourced project with 170 contributors from both
academia and industry. Through their contributions, we constructed SED-KGraph with
2,234 carefully evaluated relationships among 863 community-curated topics. Regarding
the recommenders’ performance, the experiment results indicate that our solutions outper-
form baselines that neglect the semantic relationships among topics by at least 25% and
23% in terms of Average Success Rate and Mean Average Precision metrics, respectively.
We share SED-KGraph, as a rich form of knowledge for the community to re-use and
build upon. We also release the source code of our two recommender models, KGRec and
KGRec+ (https://github.com/mahtab-nejati/KGRec).

Keywords Recommender system · Topics · Tags · Semantic relationships · Knowledge
graph · Software projects · GitHub

1 Introduction

Software engineers and developers explore Software Information Sites such as GitHub and
Stack Overflow to find interesting software components tailored to their needs, to reuse
source code, to find answers to their programming questions and many more. However,
the sheer number of software entities (projects, questions, etc.) hosted on these sites hin-
ders efficient searching, retrieving, navigating, and categorizing said entities. For instance,
GitHub currently hosts more than 240 million software projects.1 Many of these projects
share common characteristics such as similar objectives and functionalities. With the contin-
uous growth of these platforms, more advanced automatic solutions are needed to improve
the retrieval of relevant software projects. Existing techniques for better organization, doc-
umentation or and retrieval of software entities include various types of recommender
systems (Xia et al. 2013; Xin-Yu Wang and Xia 2015; Vargas-Baldrich et al. 2015; Zhou
et al. 2017; Wang et al. 2018; Liu et al. 2018; Izadi et al. 2021; Izadi et al. 2022; Mazrae
et al. 2021), similar repository retrieval (McMillan et al. 2012; Thung et al. 2012; Zhang
et al. 2017), and project clustering (Escobar-Avila et al. 2015; Zhang et al. 2019; Reyes
et al. 2016; Yang et al. 2016). Topics, also known as tags, are a form of concise yet highly
valuable metadata, that enrich software entities with human knowledge. Topics annotate an
entity based on its core concepts. A software topic encompasses the key features of a repos-
itory including which category it belongs to, its main programming language, its intended
audience, its user interface, and more. Topics complement textual descriptions of reposi-
tories as they highlight their main aspects with explicit and short tokens. Thus, topics can
greatly help with the visibility of relevant entities to user queries. Consequently, they are
used for improving the organization and retrieval of software repositories.

Topics can convey information in two ways; explicitly as stand-alone sources of infor-
mation, and implicitly through their semantic connections to one other. The former has been
extensively exploited to build topic recommendation systems (Xia et al. 2013; Di Sipio et al.
2020; Di Rocco et al. 2020; Izadi et al. 2021). For the latter, consider the topic angular
which refers to an open-source web application framework.2 As Angular provides func-
tionality for front-end development, a programmer can almost immediately relate this topic
to the frontend or web-development topic. Thus, there exist implicit links between

1January 2022, https://github.com/search
2https://angular.io/

https://github.com/mahtab-nejati/KGRec
https://github.com/search
https://angular.io/

Empir Software Eng (2023) 28:50 Page 3 of 36 50

topics angular, frontend, and web-development. In practice, repository owners
-probably due to a lack of motivation- neglect tagging their projects with sufficient top-
ics. Implicit connections mentioned above, can be utilized to track missing information,
complement such incomplete topic sets, and consequently, improve the visibility of a given
repository. They can also help recommendation systems suggest more accurate topic lists.
However, the semantic relationships among software engineering topics and their impact on
the performance of such predictive models are not properly explored yet. In this study, we
strive to build more advanced recommendation systems for predicting key topics of software
repositories through exploiting these relationships.

As much as topics and the relationships among them appear enticing for improving
automated information retrieval-based tasks, there are several challenges for employ-
ing them in real-world scenarios, including the well-known tag explosion phenomenon
(Golder and Huberman 2006) and the problem we call tangled topics. As users are free
to define topics in the free-format text, they can create differently-written yet synony-
mous topics for any given concept, as well as compound and personal topics. This freedom
results in an explosion of tags. That is when the set of topics exceedingly grows in
number to the point that the sheer multitude of topics defeats their intended purposes.
Furthermore, inspecting topics assigned by users, we came upon many tangled topics.
These are compound topics that bundle multiple atomic concepts into a single tag and
treat this tag as a distinct concept. Note that compound topics which communicate an
atomic concept do exist, e.g., single-page-application is an atomic topic which
should not be further dissected into multiple topics. However, a compound topic such as
java-library can easily be broken down into its constituent atomic concepts without
losing any semantic content. The same can happen by adding adjectives to the existing
atomic topics, such as small-library or big-library and the situation exacerbates
when small-java-library is also considered a unique concept. Unfortunately, some
models redundantly recommend such topics together for a given repository. We believe
that learning and recommending tangled topics adds little value when an entity is already
assigned their atomic constituent topics while increasing the size and complexity of the topic
set. As a result, to build an enhanced recommender system, we need to address both tag
explosion and tangled topics problems through carefully assessing the input set of topics. In
an attempt to resolve the above challenges and to collect a set of quality topics, GitHub has
commenced a crowd-sourced project to feature a set of community-curated Software Engi-
neering and Development (SED) topics.3 At the time of commencing this study, this project
curated 389 topics over the course of almost three years. This set of GitHub’s featured top-
ics contains valuable explicit information, however, semantic relationships among topics are
missing. In this study, we take this seed as an initial set for topic collection and build upon
it by acquiring more high-quality topics, and annotating them with semantic information
based on human knowledge.

The next challenge is to properly store the high-quality SED topics along with their
semantic connections. Knowledge graphs (KG) are a viable solution to this problem. More
specifically, such relationships can be modeled in the form of relation triples 〈 subject,
verb-phrase, object 〉. Take the previous example, we can store two types of relations
as 〈angular, is-a, framework〉, and 〈angular, provides-functionality, frontend〉.
KGs have been shown useful in different tasks such as information retrieval, recommenda-
tion, question answering, and search results ranking (Zou 2020). As a prominent example,

3https://github.com/github/explore

https://github.com/github/explore

 50 Page 4 of 36 Empir Software Eng (2023) 28:50

Google’s KG is used to enhance its search engine results. They have also been widely used
in domain-specific applications for medical, financial, news, social networks, etc. purposes
(Zou 2020) as well as software engineering (Li et al. 2018; Chen et al. 2019). A KG of SED
topics can improve the performance of topic-dependent tasks based on the topics assigned
to the entities. In addition, such a KG can also be utilized as a structured knowledge base
for the community to query, navigate, and perform an exploratory search. Hence, we aim to
store the semantic information along with our topics in a KG, which we then feed into our
predictive model to recommend better topics.

A domain-specific KG can be built automatically through processing domain knowl-
edge, manually with the help of domain experts, or in a hybrid manner. In the software
engineering domain, there exist a few semi- or fully-automatic approaches to build KGs
(Zhao et al. 2017; Li et al. 2018; Chen et al. 2019; Sun et al. 2019; Sun et al. 2021). Zhao
et al. propose HDSKG using a semi-automatic approach to construct a KG of SED topics
(Zhao et al. 2017). Although HDSKG aims to minimize the manual effort that goes into
the construction of a KG, it obsessively chunks noun phrases. This leads to the introduc-
tion of numerous tangled topics in this KG. Moreover, the knowledge scope acquired using
fully-automatic approaches tends to be restricted to specific aspects/technologies such that
the concepts can be predetermined or easily extracted. Construction of a KG of SED top-
ics at the scope of this study is much more challenging due to the diversity of topics, their
types of relationships, and the different abstraction levels of topics. Not to mention the data
sparsity on particular topics, and data scatteredness across the web and multiple sources
which cause duplicate, incomplete, and incorrect data (Fathalla and Lange 2018). Conse-
quently, we take a mostly manual approach in conjunction with automation techniques for
facilitating knowledge acquisition and evaluation.

In the first phase of our approach, using the contributions of 170 SE experts from
both academia and industry, we acquire high-quality SED topics, extract their semantic
relationships, evaluate this information, and store them in a domain-specific KG we call
SED-KGraph. We developed an online platform on which we partially automated the growth
of SED-KGraph using the help of our contributors in multiple snapshots. We expand the set
of GitHub’s featured topics to a more comprehensive and inclusive one. To guarantee the
consistency of SED-KGraph, we centrally coordinate the expansion of this KG. By captur-
ing the semantic relationships among topics in a KG, utilizing SED-KGraph can potentially
improve the performance of solutions to numerous software community problems such
as software entity classification, automated labeling, navigation, search, etc. While our
approach to KG construction is a manual one, similar to FreeBase (Bollacker et al. 2008)
which has been utilized in automated tasks in other studies (Dong et al. 2015; Xu et al. 2016;
Yao and B. Van Durme. 2014), SED-KGraph too can pave the way for numerous automated
topic-dependent tasks, while it continues to grow further over time.

In the second phase, we propose recommendation systems for two scenarios; (1) KGRec,
a topic recommender system to predict missing topics, the topics relevant to the entities
but not assigned to them by users. Correctly predicting the missing topics improves the
completeness of the set of topics assigned to each project, which has been shown as an
important factor in performance of solutions to topic-dependent tasks (Held et al. 2012). We
build KGRec purely based on SED-KGraph through the application of spreading activation
techniques. (2) Next, we build upon KGRec by adding a Machine Learning-based (ML)
component to the model and proposing KGRec+, a fully automated topic prediction model.
KGRec+ works based on both the projects’ textual data and the knowledge captured in
SED-KGraph.

Empir Software Eng (2023) 28:50 Page 5 of 36 50

We demonstrate that the recommender systems based on KGRec outperform the ones
based on TopFilter, the state-of-the-art technique for relevant topic prediction (Di Rocco
et al. 2020), especially when the set of initial topics assigned to the project is limited in
number. Our contributions are as follows:

– We develop and evaluate two topic recommenders that outperform the competing
approaches by 23% to 151% in terms of Mean Average Precision (MAP) score.

– We collaboratively augment the set of GitHub featured topics with 393 community-
suggested topics. Furthermore, we present SED-KGraph to capture the semantic
relationships among atomic and semantically unique SED topics to improve the per-
formance of topic recommenders. We engage 170 practitioners and researchers from
16 technology-based companies and 11 universities in the expansion and validation of
SED-KGraph. The resultant KG consists of 863 topics, 2,234 verified relationships,
and 13 relation types.

– We publicly share our two main software artifacts; the data component (SED-KGraph),
and the model component (KGRec, KGRec+) along with their source code for use by
the SE community.4

In the following, we first define the problem formally. Next, we present the approach in
Section 3, experiments’ settings in Section 4, and our results in Section 5. We then discuss
the results, lessons learned, and possible applications and implications of this work. Finally,
we discuss the threats to the validity of this study and review the related work around the
study.

2 Problem definition

GitHub hosts millions of repositories S = {r1, r2, .., rn}, where ri denotes a single software
project. Each repository may contain various types of information such as a description,
README files, wiki pages, and source code files. Each project may include a set of topics
T = {t1, t2, ..., tm}, where m is the number of assigned topics to a repository. Our goal is to
(1) augment the initial set of topics assigned to a given repository ri , or (2) recommend a set
of topics from scratch for a given topic-less repository rj . In both cases, we aim to enhance
recommender models using semantic relationships among high-quality topics.

3 Approach

Our approach consists of two main phases; (1) acquire and store high-quality topics and
the semantic relationships among them, (2) build stronger recommenders exploiting the
semantic source of information. In the first phase, we exploit explicit human knowledge in
the domain to procure rich input data for our topic prediction models. In the next phase,
we propose two recommenders; KGRec is a topic augmentation model which is used when
an initial set of topics is already assigned to a given project which we aim to extend, i.e.,
predict the missing topics only based on the original set. Finally, we stack this model on top
of a ML-based component, building KGRec+, an automated topic set recommender system.
KGRec+ eliminates the need for the initial set of topics and takes the textual data on the

4https://github.com/mahtab-nejati/KGRec

https://github.com/mahtab-nejati/KGRec

 50 Page 6 of 36 Empir Software Eng (2023) 28:50

project and SED-KGraph as input. Figure 1 depicts the overall workflow of our approach.
In the following, we provide more details on the proposed approach.

3.1 Phase 1: KG construction

As part of our approach for building better recommender systems, we need to utilize high
quality software engineering topics and their semantic relationships. KGs are a viable
solution to store such information in a structured format. In this section, we lay out the
methodology through which we construct and evaluate such KG. We utilize a crowd-
sourcing technique to build the SED-KGraph in a two-step process with the second step
being an on-going and continuous expansion phase. To this end, we design an online plat-
form for SED-KGraph’s growth through community contributions. Throughout the process,
individuals are involved in one of the two roles of maintainer or contributor. The first
two authors take on the role of maintainers and the participants of the second step are the
contributors. Figure 2 demonstrates the overall process of KG construction.

3.1.1 Initialization

Maintainers initialize SED-KGraph with a set of topics, relation types, and relationships in
a manual coding process (Wagner and Fernández 2015). They incorporate the triangular
validation (Wagner and Fernández 2015) process in which coders cross-evaluate the coding
results. To initialize SED-KGraph, maintainers studied the 389 topics featured provided
by GitHub and used it as the seed set. For each topic, maintainers studied the information
available on GitHub about it, as well as the top projects on GitHub (based on the number of
stargazers) labeled with it. Moreover, maintainers also searched each topic online to glean
more knowledge on them. They referenced these projects to make sure their understanding
of the topic matched with the usage of the topic in the community.

After acquiring an overall insight into the topics, maintainers defined the relationships
among them in a manual coding process. They first discussed the possible types of relation-
ships among the topics and decided on four basic, yet strongly effective ones as a primary
set of relation types. Note that this decision was made with the conciseness feature in mind,

Acquire high-quality SE topics

Extract the relationships among

these topics

Build a knowledge

graph of quality SE

topics and the

semantic information

among them:

SED-KGraph

Use GitHub’s
set of featured
topics as the

seed set

Phase 1:
Extract and

structure domain

knowledge for

feeding the

models

Phase 2:
Develop and

enhance topic

recommender

systems

KGRec (Topic augmentation): predict missing topics given the

original set of topics of a repository using only SED-KGraph

KGRec+ (Topic set recommendation): predict a set of topics from

scratch using SED-KGraph and a repository’s information

Fig. 1 Overall workflow of our proposed approach

Empir Software Eng (2023) 28:50 Page 7 of 36 50

Maintainers

SED-KGraph

GitHub Featured Topics
algorithm
backend
testing...

Contributors

Crowd-Sourcing

Partially Objective Labeling Task

Maintainers Free-text Suggestions
Relation Types
Topics
Relationships

Suggestion
Refinement

Stage 1: KG Initialization Stage 2: KG Expansion

Evaluation

Aquisition

Manual Coding

Initial KG Draft
Relation Types
Topics
Relationships

Triangular Validation

Fig. 2 KG construction

knowing that the primary set of relation types is not comprehensive. To minimize the impact
of the maintainers’ subjectiveness on the resultant KG, they take note to keep the initial
structure minimal. by making the initial draft as concise as possible. Yet, the maintainers
look to include as many distinct atomic topics as possible to cover the diverse range of
SED topics. Then, they defined the relationships in an iterative manual coding process. In
this process, each maintainer iterated over the set of topics several times, each time defin-
ing and/or correcting the relationships. Maintainers also incorporated triangular validation
into the process to validate the relationships. They reviewed the relationships defined by
each other to validate their correctness and effectiveness. In case of a disagreement, main-
tainers discussed their reasons for approving/disapproving of a relationship and made the
final decision on the relationship’s correctness together. If a consensus was not made, they
included the relationships of conflict in the initial KG to allow the contributors to deliver
the final verdict on the correctness of these relationships as a third jury.

3.1.2 Expansion

After establishing the first draft of SED-KGraph, the defined relationships needed to be
evaluated. Furthermore, acquiring the community’s knowledge on the topics and the rela-
tionships among them would help expand SED-KGraph into a more comprehensive KG.
During the Expansion step, two separate tasks run simultaneously: a) Evaluation of the pre-
viously defined relationships, and b) Acquisition of new community knowledge on topics,
relation types, and relationships among the topics. To facilitate this step, we deployed an
online platform through which contributors engage in evaluation and expansion of the KG.
Contributors review the relationships among topics and submit their suggestions in free-
text forms. In the online platform, contributors are allowed to skip unfamiliar topics and
choose topics of their interest to contribute to. This measure is taken to avoid mandating
contributions when contributors are not familiar with a concept.

 50 Page 8 of 36 Empir Software Eng (2023) 28:50

Finally, for this KG to be valid at all times, a continuous expansion method is required to
maintain and update it with new knowledge. This is because the SED fields are dynamic, i.e.,
new topics frequently emerge and/or evolve such that the previously defined relationships
can be affected. Moreover, we can not obviate the probability of unnoticed topics, i.e., topics
that are insignificant or unknown to the contributors at the moment but grow into popularity
over time. Therefore, the platform later evolved for maintenance purposes.

Evaluation In the KG Expansion step, contributors validate the correctness of the already
defined relationships in SED-KGraph. They evaluate all the relationships defined during
the Initialization step and Acquisition task. We achieve this through a partially objective
labeling task (Alonso et al. 2014), a type of crowd-sourced labeling task in which the label
of the subject to the task is determined based on inter-rater agreement. That is, the subject
〈relationship〉 is assigned the label (“True” or “False”) which the majority of raters (con-
tributors) have given the subject. Contributors validate the correctness of each relationship
by labeling it with “True” and disapprove of the relationship by labeling it with “False”. In
the end, we consider the relationships as “approved” and add them to SED-KGraph only if
the majority of the contributors who reviewed the relationship have labeled it with “True”.
Otherwise, the relationship is disposed of. Therefore, to determine the objective label for
each relationship, we need votes from at least three contributors.

Acquisition The expansion of SED-KGraph solely depends on community contributions.
To expand SED-KGraph such that it covers the currently missing SED topics and the rela-
tionships among them, we ask the contributors to provide relationship suggestions for each
of the topics, they review through free-text forms. We also allow for new topic and relation
type definitions As contributors submit their suggestions in the free-format text, there is a
chance for tag explosion and/or tangled topics. Moreover, the semantic uniqueness of the
relation types and topics is also at risk, leading to redundancy/duplication. To mitigate such
occurrences, we implement policies and functionalities, some of which are (described in
Section 4.6) into the online platform over which SED-KGraph is maintained. These policies
and functionalities are designed such that they give the contributors autonomy in expanding
the KG while ensuring that the integrity and consistency of the KG are preserved. Through
initial snapshots, maintainers inspected the suggestions to mitigate the possibility of tag
explosion and tangled topics, as well as to ensure the semantic uniqueness of the relation
types. Once a suggestion is made, it must be validated by at least three other contributors
before it is integrated into the KG. The refined relationships and topics amassed through
the Acquisition phase will be the ones subject to evaluation in the next snapshot. Later, we
added automation measures and restriction policies into the evolved version of the online
platform to minimize the manual work required of the maintainers.

3.2 Phase 2: automated topic recommendation

In this phase, we propose two topic prediction models for two different scenarios; topic aug-
mentation and topic set recommendation. We build these recommenders using the semantic
information obtained in the previous phase.

3.2.1 Topic augmentation

We first propose KGRec, a model that takes the topics already assigned to a software
project as input and recommends missing but relevant topics. Note that the input to this

Empir Software Eng (2023) 28:50 Page 9 of 36 50

model is only the seed set topics and no extra information about the repository. Using the
SED-KGraph we aim to expand this initial set. We apply a spreading activation technique
(Crestani 1997) on SED-KGraph to depth one. Spreading activation techniques operate on
semantic networks based on the Spreading Activation theory in semantic networks. Figure 3
displays an overview of the spreading activation effect. When a set of nodes are activated,
in the graph spreading activation computes the activation score of other nodes.

We first annotate SED-KGraph with node weights computed based on the popularity of
the topic in the community and the degree of the topic node in SED-KGraph. Our intuitions
are; (1) if a topic is used frequently in the community, its a more useful and valuable topic,
and (2) a topic with a higher degree in SED-KGraph is related to more topics, and conse-
quently has a better chance of being relevant to more projects which might be assigned the
related topic. The weights are calculated as

Wt = α × Pt + β × Dt, α + β = 1 (1)

in which Wt denotes the weight of the node corresponding to topic t . Pt and Dt are defined
as below as a measure of popularity and degree of the topic t , respectively

Pt = log (nt + 1)

max
ti∈T

log (nti + 1)

Dt = log (dt + 1)

max
ti∈T

log (dti + 1)
(2)

where nt is the number of projects in the platform labeled with topic t , dt is the total degree
of topic t in SED-KGraph, and T is the set of topics in SED-KGraph. Note that α and β

are coefficients to scale the scores. Note that the results can vary for different values of
α and β. For instance, for α > β, the results will mostly rely on the set of most popular
GitHub-featured topics. With α < β, one can emphasize topics that are not widely used
by the community yet. To account equally for both popularity and node degree, we set

Fig. 3 Spreading Activation

 50 Page 10 of 36 Empir Software Eng (2023) 28:50

α = β = 0.5. Future researchers and practitioners can set these values according to their
needs and use cases.

To generalize the formulation of the approach such that it can apply to the KGRec+
model as well, consider that topic t is relevant to project p with the probability Pr

p
t (here

Pr
p
t = 1 since topics are already assigned to the projects). I is the set of initial topics

assigned to project p and N(I) denotes the set of topics that are immediate neighbors to
at least one of the topics in I . For all t in N(I), we spread this probability to compute
the relevance score of topic t to project p along SED-KGraph edges using (3). Then, the
model sorts the list of candidate topics by the S

p
t s and return the top-k ones as a list of

recommendations.

S
p
t = Wt ×

∑

tk∈I

P r
p
tk
; ∀t ∈ N(I) (3)

Note that in our current model, we do not take the relation type into account when spread-
ing the activation along the edges of the KG. Doing so requires extensive analysis of whether
certain types of relations result in augmented topics that are a better fit for the repository.
As the evaluation of the recommendations is a human-intensive task, verifying the effect of
the relation types on the quality of the recommendation can only be achieved in the long run
when the recommender system has been used enough times to provide adequate data for the
analysis. We leave this as a future direction for this research.

3.2.2 Topic set recommendation

In this application, we assume that repositories are not labeled with any initial topic. We
build upon KGRec and propose KGRec+ as a stand-alone topic set recommender model.
We feed the model with the available textual data on the projects. This textual data include
README files, repository description, and wiki pages. We concatenate and then transform
these pieces of textual data to their respective TF-IDF vectors for consumption by the classi-
fiers. Note that we use the preprocessed dataset provided by Izadi et al. (2021) in their recent
work on the topic recommendation. 5 After the model is trained on repositories’ textual data
and assigned topics, it can predict a list of relevant topics for a given project. Finally, we
take this set predicted by the ML-based component and complement it using KGRec.

As the ML-based component in our proposed model, we use two classifiers employed
in our baselines. Based on Di Sipio et al.’s approach, we train a Multinomial Naive Bayes
(MNB) text classifier that takes as input the textual data on the software project and predicts
the Pr

p
t s for the GitHub featured topics. We also take Izadi et al.’s approach and train a

multi-class multi-label Logistic Regression (LR) classifier which operates similarly to the
baseline and yet significantly outperforms it Izadi et al. (2021). Note that we follow the
instructions provided by the baselines to build these classifiers.

The ML-based component, trained with textual data of projects, predicts the Pr
p
t for

each topic. We take the top-m topics with the highest Pr
p
t and feed them to the KGRec

component as the set I . The KGRec component operates on this set of topics as input and
augments the list of m topics with g more topics to return a list of k = m + g topics
as the recommendations. We propose LR+KGRec as our main approach and show that it
outperforms all models in terms of all the considered metrics.

5https://github.com/MalihehIzadi/SoftwareTagRecommender

https://github.com/MalihehIzadi/SoftwareTagRecommender

Empir Software Eng (2023) 28:50 Page 11 of 36 50

4 Experiment settings

In this section, we present our experimental setting. We first state the research questions of
this study, then review the dataset, evaluation metrics, and model setting. Next, we provide
an overview of our baselines, contributors’ information engaged in the construction of SED-
KGRaph, and the platform using which the graph was built.

4.1 Research questions

We aim to augment topic recommender models for software projects semantically using a
high-quality KG tailored to SE topics. Thus, we answer the following research questions:

– RQ1: What are the characteristics of our collaboratively-constructed KG, SED-
KGraph? First, as the dataset containing the KG is one of our main contributions,
we describe the KG characteristics including its size, entities quantities or types, con-
tributors’ agreement rates during each snapshot, and more. As with any other dataset
contributed to the research or industry community, we aim to report these characteris-
tics to clarify details for the readers and future users of the KG. Moreover, as the KG is
susceptible to expand over time, we would like to report our contribution at the time of
conducting the research.

– RQ2: How accurately can we augment a set of initial topics assigned to a repository
utilizing SED-KGraph? Missing topics recommendation is one of the main appli-
cations of SED-KGraph. Hence, with RQ2 we assess the accuracy of recommenders
which solely augment missing topic sets using a seed of initial topics.

– RQ3: How accurate is our topic set recommender, KGRec+, as a stand-alone pre-
dictive model? Finally, we would like to build upon the previous application and
propose a stand-alone recommender that takes a repository’s textual information and
predicts relevant topics. This is different from the previous question in which we only
feed the model the initial topic seeds and not the repository’s textual information.

With these three questions, we hope to clarify our contribution regarding the KG itself
and also the two semantically-enhanced predictive models built upon such a graph.

4.2 Dataset

We use the dataset from Izadi et al.’s study (Izadi et al. 2021)6, which contains cleaned tex-
tual data on about 152K projects, along with their cleaned topics. Our set of topics in the
dataset contains 236 of GitHub’s featured topics, eight more topics compared to the baseline
(Izadi et al. 2021). This small difference (eight topics) comes from a mapping of synony-
mous topics in the dataset to their corresponding GitHub-featured ones based on the golden
mapping provided by the baseline. This resulted in a strengthened number of samples for
the few topics which qualified them for the training of the ML-based component. Note that
all repositories have owner-assigned topics. In this dataset, all repositories have at least one
topic, and on average, 2.46 topics are assigned to each repository by their owners. The tex-
tual data we use to train the models include repositories’ descriptions, README files, and
wiki pages. We do not use source file names and project names. In the provided prepro-
cessed dataset (Izadi et al. 2021), about 12% of repositories have wiki pages. Considering

6https://github.com/MalihehIzadi/SoftwareTagRecommender

https://github.com/MalihehIzadi/SoftwareTagRecommender

 50 Page 12 of 36 Empir Software Eng (2023) 28:50

that all repositories in the data have at least one README file, we have ample data even for
those that do not have wiki pages. Hence, we do not perform additional preprocessing tasks
on the data. The baseline study provides more details on the statistics of data (Izadi et al.
2021). Similar to the common standard, we take 80% of the 152K projects as the training
set for our ML-based component and leave the remaining 20% as the test set.

4.3 Evaluationmetrics

We report the Success Rate (SR) of the relationships in the partially objective labeling
task as a measure of the quality of the relationships defined by the maintainers during KG
Initialization or suggested by the contributors during Acquisition. SR is the ratio of the
relationships labeled “True” over the set of all the relationships under evaluation. The rela-
tionships labeled with “True” are considered successfully defined. Thus, with NT as the
number of relations labeled as “True” and NF as the number of relations labeled as “False”,
the metric is defined as

SR = NT

(NT + NF)
. (4)

We also report the Absolute Agreement Ratio over True Relationships (AARTR) as a
measure of the quality of the community-approved relationships. A relationship is abso-
lutely agreed upon if all the contributors label it with the same label (“True” or “False”).
Respectively, a true relationship is absolutely agreed upon if all the contributors label it as
“True”. Considering NAA

T as the number of absolutely agreed true relationships and NT as
the total number of true relationships, we define AARTR as

AART R = NAA
T

NT

. (5)

Finally, to quantify the reliability of the contributors in the Evaluation step, we report
Average Rater-Objective Conformance Rate (AROCR). Rater-Objective Conformance Rate
(ROCR) is how the reliability of raters (contributors) is measured in a crowd-sourced par-
tially objective labeling task (Alonso et al. 2014). Considering NC

Ri
as the number of votes

from Ri that conform with the final objective label of the items (relationships) and NRi
as

the total number of votes from Ri , the ROCR for rater Ri is calculated as

ROCRRi
= NC

Ri

NRi

, (6)

AROCR for the labeling task is defined as the average of ROCRRi
over all raters who

contributed to the task. We select this metric since we engage a large number of contributors.
Moreover, not all of our contributors review all the relationships, which makes metrics such
as Cohen’s Kappa an inadequate measure of reliability for our case.

Please note that Cohen’s Kappa coefficient is a statistic that is used to measure inter-rater
reliability for qualitative items. However, in this study, we have multiple and varying raters
per relationship, hence, we cannot incorporate Cohen’s Kappa. Moreover, in most cases, our
raters share only a few relationships they have voted for with each of the other contributors.
This incurs a huge amount of missing data and makes the results even more sensitive to
human error in votes. As previous crowd-sourced studies have also exemplified (Zhang and
Banovic 2021), even Krippendorf’s alpha which accounts for missing data is not a well-
suited metric for crowd-sourced studies with large numbers of participants. Hence, we used
AARTR.

Empir Software Eng (2023) 28:50 Page 13 of 36 50

To evaluate the recommender systems, we run all approaches on the test set (20% of the
projects in the dataset). However, since KGRec recommends “missing” topics, both as a
stand-alone model and as a component of KGRec+, automatically calculated classification
metrics such as Recall and Precision are irrelevant to the purpose of this study (Izadi and
Ahmadabadi 2022). We support this statement by evaluating two baseline approaches (Di
Sipio et al. 2020; Izadi et al. 2021) both automatically against the ground truth and manu-
ally through human evaluation, and list the results in Table 1. The results show that since
the ground truth does not contain the missing topics, the automated evaluation of the recom-
mendation lists does not serve justice to the merits of each model in recommending missing
topics. Therefore, we randomly sample 50 projects from the test set and evaluate the results
through a human evaluation process with five experts. Three evaluators validate the results
for each project. We engage five Computer Science experts from both academia and indus-
try in this human evaluation process. For each sampled project, we ask three evaluators to go
through the content of the project and then determine whether the recommended topics were
relevant to the project. To avoid biasing our evaluators towards any one of the approaches,
we shuffle the results from different approaches before anonymously presenting them to the
evaluators. KGRec is evaluated against TopFilter, and the ML+KGRec is evaluated against
the ML+TopFilter as their goals are aligned. We also include evaluations on the ML-based
components to investigate how KGRec can improve a ML-based solution.

As a measure of the practicality of the missing topic recommendation task, we report the
percentage of the test cases in the test set and in the test sample set for which each of the
approaches fails to recommend any topics. For this purpose, with NFC as the number of test
cases a model fails to return any recommendations for and NC as the total number of test
cases in the set, we define Failed Case Ratio (FCR) as

FCR = NFC

NC

. (7)

To quantify the quality of the recommendations, we report Average Success Rate @k

(ASR@k) to evaluate the performance of the topic recommendation approaches. We also
report Mean Average Precision @k (MAP@K) metric, a commonly-used measure for eval-
uating recommender systems that returns a ranked list of results. It captures how high
successful suggestions are positioned in the recommendation list as well as the number of
successful suggestions. Note that as FCR is already reported in the missing topic recom-
mendation task’s results, we only report the ASR and MAP over the set of test case samples
for which the KGRec or TopFilter components do return a list of recommendations. How-
ever, reporting FCR for the automated topic recommendation task is irrelevant since the
recommendation list is never empty.

Table 1 Automated versus manual evaluation

Model ASR@5 Evaluation Method

Automated Manual

Di Sipio et al. (2020) 24.60% 30.80%

Izadi et al. (2021) 30.00% 50.80%

 50 Page 14 of 36 Empir Software Eng (2023) 28:50

4.4 Model settings

First, to calculate the topic weights (Wt), we get the number of public repositories labeled
with each of the 863 topics in SED-KGraph through GitHub API calls. We then construct
the weighted graph and implement KGRec in a tailored Python script. As we use the dataset
from the baseline study (Izadi et al. 2021), the mean and maximum number of tokens in
the concatenated input data is 235 and 650 tokens. Similar to the baseline paper, we set
the maximum input length to 512 tokens and the maximum number of features to 20K for
TF-IDF embedding vectors. The input data to the ML-based components is repositories’
descriptions, README files, and wiki pages. We train the MNB (Di Sipio et al. 2020) and
LR (Izadi et al. 2021) models from the python library, scikit-learn, for 236 of the
GitHub featured topics, as these are the topics with enough supporting instances for training
in the dataset. We set k to 5 as the length of recommendation lists. When evaluating the
KGRec+ models, as the average number of topics assigned to the projects is 2.46, we set m

to three. Then, feeding these m topics to the KGRec component, we take top-f = 2 topics
from KGRec to make a full list of top-5 recommendations.

4.5 Baselines

Baselines for topic augmentation TopFilter, the state-of-the-art approach for augment-
ing a repository’s topics list based on its initial set, is an item-based collaborative filtering
approach (Di Rocco et al. 2020). In this approach, each project is represented with a set
of assigned topics using a project-topic matrix. For each project, taking the set of topics
assigned to the project, the model computes the similarity of this topic set with the topic sets
of all other projects in the dataset and takes the topics assigned to the top-25 most similar
projects (in terms of the set of topics assigned to the project) as the candidate set of topics.
Calculating a ranking metric defined by the authors, the model returns the top-k topics as
recommendations. While the authors do not evaluate TopFilter as a single component, we
use this model as the baseline for our first task (topic augmentation).

Baselines for topic set recommendation For the second task, we use MNB+TopFilter pro-
posed by Di Rocco et al. (2020) as one of the baselines. We also compare our method
against Izadi et al. (2021) and Di Sipio et al. (2020) proposed methods for the topic rec-
ommendation. The third baseline uses an LR classifier based on our previous work. LR
takes a repository’s textual information including README files, description, and available
wiki pages, concatenate them, and transforms them into TF-IDF vectors. Then the classi-
fier is trained on the TF-IDF vectors. The labels for the classifier are the assigned topics. To
provide a more comprehensive evaluation, we also stack our model (KGRec) on Di Sipio
et al. (2020) proposed model. Moreover, we combine Di Rocco et al. (2020) and Izadi et al.
(2021) approaches together and introduce it as another baseline.

4.6 Platform

We designed and deployed an online platform to collect contributions from the SE commu-
nity and use their help in building and evaluating topics, relation types, and relationships
(collectively called KG entities). First to construct the KG, we automatically retrieved
GitHub’s featured topics and presented them to contributors for knowledge acquisition
in our platform. Contributors performed CRUD operations on KG entities independently.

Empir Software Eng (2023) 28:50 Page 15 of 36 50

Then, to minimize human effort and facilitate the KG Expansion step, we added more func-
tionalities to the online platform. In the following, we describe our platform and it features
with more details. Generally, after logging in, contributors can access and modify their pre-
vious contributions through their dashboard. 7 For snapshots of the platform please refer to
the appendix.

Platform functionalities Inspired by similar crowed-sourced projects in code hosting and
information websites such as GitHub and Stack overflow we provide a set of functionalities
to help maintain the KG as it grows. These functionalities provide a level of auton-
omy for contributors while keeping the aforementioned challenges under check. They are
used/performed by contributors, maintainers, or the platform itself. More specifically, users
can contribute to the expansion and maintenance of the KG in several ways, including

– vote to approve or disapprove an already defined relationship,
– suggest new relationships for each of the topics they review through free-text forms,
– introduce new KG entity,
– edit their previously suggested KG entity,
– remove their own suggestion (before they are featured on the platform),
– request edit for existing KG entities so that SED-KGraph is modifiable upon evolution

and emergence of topics,
– report spams, and finally
– report duplicates or aliases manually. Such reports are then brought to the entity owners’

and maintainers’ attention to address. This solution can also help with semantically-
similar topics or relationships that are written with different lexicons.

The platform automatically runs the following actions.

– verify new entities based on our policies described in the following,
– run reliability check for contributors,
– check for possible aliases/redundancies. This is done automatically to check whether

the topics that are being introduced by the contributors are already defined in the KG.
We detect aliases and redundancies based on the topics’ names, and alias lists. Specifi-
cally, we use the NLTK library’s edit distance functionality.8 Through this mechanism,
the edit distance between all names (full name and display name) and aliases of each
pair of topics are calculated. Thus, for a pair of topics t1 and t2 with m1 and m2 names
(full name, display name, and aliases) respectively, m1 × m2 similarities are computed.
The pair is marked as potential redundancy if at least one of these similarities is above
a certain threshold, here 80%. We choose this threshold to retrieve all potential dupli-
cates and minimize the False Negative error. However, this value can be tuned. Once
a topic is detected as potentially duplicate, it is listed along with the pair causing the
duplicate for maintainers to check on them.

Finally, maintainers perform the below tasks to keep the KG intact. The platform
automatically runs the following actions.

– random checks,
– verify edits,

7To access the platform, please refer to our public GitHub repository at https://github.com/mahtab-nejati/
KGRec.
8https://tedboy.github.io/nlps/generated/generated/nltk.edit distance.html

https://github.com/mahtab-nejati/KGRec
https://github.com/mahtab-nejati/KGRec
https://tedboy.github.io/nlps/generated/generated/nltk.edit_distance.html

 50 Page 16 of 36 Empir Software Eng (2023) 28:50

– check reported spams, and
– resolve reported redundancies. The potential redundant pairs identified either manually

by contributors or automatically by the system are brought to the entity owners’ and
maintainers’ attention to address.

Platform policies We also establish policies to guarantee contributors’ eligibility for eval-
uation and expansion of SED-KGraph. The policies include tutorials before granting
permission to perform CRUD operations, random checks on the suggestions and evaluations
by maintainers, and reliability checks based on the conformance of contributors’ answers
with the objective labels of relationships. This helps identify issues in the KG and poten-
tially detecting unreliable users. More specifically, we have different policies in place for
user permissions and entity acceptance as explained in the following.

1. User Permission Policies

– Only users with at least three years of academic experience or one year of industrial
experience and Computer Science-related fields shall contribute to the study. Once a
user meets the minimum requirement, they are considered reliable to start contributing.

– We constantly check for the reliability of the users by comparing whether the major-
ity of their votes conform with the majority agreement for each relationship they have
voted for. If the portion of their conforming votes falls under a set threshold, here
50%, their reliability is revoked and all their previous votes are nullified. Note that this
threshold can be configured to other values as well.

– We provide background information on topics (if any). For instance, several topics
already have definitions in the GitHub featured set.

– Reliable contributors can up/down-vote the relationships. To vote for a relationship,
contributors need to first read the definition of the verb in the relationship and mark it
as read.

– Contributors are also allowed to skip assessing a relationship in case they do not have
enough knowledge to evaluate it or simply prefer not to comment.

– Reliable contributors get creator-level permissions if they have marked all the verbs
as read and voted for a total of 50 relationships involving 20 topics. Similarly, the
parameter values here can also be tuned. As a creator, contributors can define new
topics, verbs, and relationships.

– Take note that once the reliability is revoked, creator-level permissions are revoked too.
– Contributors can edit or delete the entities they have created unless the entity is accepted

(featured in the platform).

2. Entity Acceptance Policies

– Relationships are accepted through a partially objective labeling task.
– In this task, contributors up-vote or down-vote each of the relationships. They can also

declare that they do not know whether the relationship is correct, in which case the vote
is considered a null vote and does not affect the acceptance criteria.

– For a relationship to be accepted, at least three non-null votes from the contributors are
required.

– If all first three voters agree that a relationship is correct (absolute agreement, 100%
acceptance), the relationship is accepted and featured. Otherwise, we gradually lower
the threshold for acceptance down to 65% among at least nine contributors. We do
not lower the threshold any further to make sure that suspicious relationships are not
accepted. Note that we tried lowering it down to 50% and the graph did not change a

Empir Software Eng (2023) 28:50 Page 17 of 36 50

lot. However, we chose not to decrease the threshold to have higher confidence in the
result.

– A topic/verb is accepted and featured if it is in at least one accepted relationship.
– GitHub-featured topics are also accepted by default as they have already been assessed

by the GitHub community and the project’s maintainers.

4.7 Contributors’ overview

In this section, we provide an overview of contributors. To engage contributors and ensure
diversity, we sent out invitations to the technical teams of 30 local technology-based com-
panies active in a variety of SED-related fields including software engineering, cloud
computing, data science, network, blockchain, security, social media, e-commerce, digital
advertisement, entertainment, etc. We also invited students of related programs including
Computer Engineering, Computer Science, Data Science, Software Engineering, IT, etc.
from 20 top local and international universities. The invitation was open for a total of seven
months, over which individuals could apply to participate in the study.

To improve reliability, we disqualified (1) students with less than three years of academic
experience and no industrial experience, and (2) practitioners with less than three years of
industrial experience who did not have at least three years of prior academic experience.
Since the first six months of KG Expansion required central control over the suggestions, the
maintainers thoroughly refined the suggestions every two months and issued refined sugges-
tions for evaluation. Therefore, the first three snapshots of the SED-KGraph were captured.
We engaged the first 50 applicants during the first, the next 40 applicants in the second,
and the next 30 applicants in the third two-months period of KG Expansion, resulting in the
three snapshots. Finally, the last 50 applicants were engaged in a long-term (six months)
snapshot for expansion of the KG (fourth snapshot). Throughout the KG Expansion step, we
eliminated and replaced unreliable contributors, i.e., contributors with Rater-Objective Con-
formance Rate (ROCR, defined in Section 3.1.2) lower than 50%. The reliability checker
functionality of the online platform automatically applies this policy among others to assure
the reliability of the contributors.

In the end, 170 individuals have made contributions to the study from 16 companies
and 11 universities. The diversity of the contributors’ experience and expertise matched
our requirements, considering the wide range of topics in the KG, and allowed for a fair
evaluation and expansion process. Table 2 presents more details, including the average years
of experience in both industry and academia, on the contributors.

5 Results

In this section, we provided the results of our approach. We first review the characteristics
of the constructed KG to answer RQ1. Then, we proceed to present the evaluation results of
the two recommender models to address RQ2 and RQ3.

5.1 SED-KGraph: data characteristics

This section first summarizes the results of each step in the KG construction process, fol-
lowed by the characteristics of SED-KGraph. Tables 3 and 4 summarize the results captured
in each snapshot.

 50 Page 18 of 36 Empir Software Eng (2023) 28:50

Table 2 Overview of contributors’ information

Snapshot Duration BG All Gender Experience
(Academia, years)

Experience
(Industry, years)

M F Avg Min Max Avg Min Max

#1 2M Academia 25 15 10 3.24 3 5 0 0 0

Industry 25 21 4 3.92 3 10 1.92 1 9

All 50 36 14 3.58 3 10 0.96 0 9

#2 2M Academia 13 10 3 5.08 3 10 0 0 0

Industry 27 13 14 7.81 0 16 5.85 1 10

All 40 23 17 6.73 0 16 3.95 0 10

#3 2M Academia 12 5 7 5.83 4 10 0 0 0

Industry 18 17 1 7.94 4 15 4.56 2 14

All 30 22 8 7.1 4 15 2.74 0 14

#4 6M Academia 18 7 11 4.21 3 9 0 0 0

Industry 32 15 17 5.46 2 8 3.11 1 6

All 50 22 28 5.01 2 9 1.99 0 6

Initialization The seed set of topics from GitHub’s project contained 389 topics from a
wide variety of areas in SED, and from different levels of abstraction, i.e., topics could
be as coarse-grained as ai or as fine-grained as django. However, this set proved to be
relatively inadequate in representing the final goal of the study since many proper topics
such as web-development, and ui-ux were missing. Moreover, such an occurrence
is inevitable due to the constant emergence of new topics in the community. The main-
tainers identified this issue while defining the relationships and as a solution, augmented
the seed set with 72 more topics in the process of constructing the first draft of SED-
KGraph, enlarging the set to include 461 distinct topics. This was done with the aim to
provide a more comprehensive set and to facilitate the contributors’ task. Having concise-
ness in mind, maintainers defined four primary relation types, namely is-a, is-used-in-field,

Table 3 Statistics for different snapshots

Snapshot Topics Relationship Types Verified Relationships

#1 461 4 0

#2 640 12 982

#3 716 13 1,548

#4 812 13 1,864

All 863 13 2,234

Empir Software Eng (2023) 28:50 Page 19 of 36 50

Table 4 Results of expansion and maintenance tasks on the graph

Evaluation (Relationships) Acquisition (Suggestions)

Snapshot TL FL SR AARTR AROCR Relationship Types Topics Rels

#1 982 101 0.907 0.887 0.791 8 179 635

#2 566 69 0.891 0.744 0.726 1 76 322

#3 316 6 0.981 0.877 0.891 0 15 39

#4 370 41 0.900 0.754 0.780 0 51** 372**

All 2,234 217 0.911 0.828 0.789 9 321 1368

(*) TL and FL denote the number of True Labels and False Labels. (**) These topics and relationships are
gradually added to and evaluated in the snapshot#4

provides-functionality, and works-with described and exemplified in Table 5.9 The first three
relation types capture three determinative characteristics of a topic regarding the topic’s
scope. The last relation type connects the most closely intertwined yet differently catego-
rized topics together. In the end, the maintainers agreed on 995 relationships and disagreed
over a total of 88 of them (8.13%). This yielded 1,083 relationships with the four primary
types among the 389 featured topics and the 72 augmented topics in the initial draft of
SED-KGraph.

Expansion Figure 4 illustrates a sample node and its relationships’ evolution over the KG
Expansion process in the SED-KGraph.

In the first snapshot, we evaluated the initial draft of SED-KGraph. From the 995 rela-
tionships in the initial KG, (excluding the 88 that the maintainers disagreed on) contributors
labeled 963 as “True” but disapproved 32 relationships. Contributors also rejected 69 of
relationships already disapproved by the maintainers and accepted only 19 of them. This
yielded a success rate of 96.78% for the set of 995 relationships, 21.60% for the set of 88
relationships, and 90.67% in total. Among the 982 approved relationships, 88.68% were
unanimously labeled as true relationships by the contributors and the AROCR was 79.12%.
Contributors also contributed to the expansion of the KG by providing 838 new suggestions
in total. Through refinement of these suggestions, the maintainers yielded 635 new and dis-
tinct relationships, introducing 179 topics and eight relation types that were not previously
defined in SED-KGraph. This made the set of topics grow in size up to 640.

In the second snapshot, the 635 new relationships acquired during the first snapshot were
subject to evaluation, from which 566 were approved and 69 relationships were deemed
ineffective by the contributors. This yielded a success rate of 89.13% for the Evaluation
step. The AARTR dropped to 74.38% and the AROCR was 72.56%. The reason for such
a drop can be explained by the number of relation types and their granularity. The number
of relation types reaches 12, which adds to the complexity of the KG and might confuse
the contributors to some extent. In this snapshot, the contributors made a total of 642 rela-
tionship suggestions. Upon inspection, the maintainers identified 322 of these as distinct
and new ones. The 322 new relationships introduced 76 new topics to the KG, enlarging

9For more samples please refer to Appendix B

 50 Page 20 of 36 Empir Software Eng (2023) 28:50

Ta
bl
e
5

R
el

at
io

n
ty

pe
s’

de
sc

ri
pt

io
ns

an
d

ex
am

pl
es

St
ep

R
el

at
io

n
Ty

pe
D

es
cr

ip
tio

n
E

xa
m

pl
e

#1
Is
-a

T
hi

s
is

th
e

m
os

tb
as

ic
re

la
tio

n
ty

pe
th

at
al

lo
w

s
fo

rt
he

ca
te

go
ri

za
tio

n
of

th
e

to
pi

cs
of

th
e

sa
m

e
ty

pe
to

ge
th

er
.

(d
j
a
n
g
o

,i
s-
a,

f
r
a
m
e
w
o
r
k

)

Is
-u
se
d-
in
-f
ie
ld

R
el

at
io

ns
hi

ps
of

th
is

ty
pe

m
ap

th
e

to
pi

c
to

th
e

fi
el

d
or

ar
ea

it
is

us
ed

in
an

d
al

lo
w

fo
r

ca
te

go
ri

za
tio

n
ba

se
d

on
th

e
ap

pl
ic

at
io

n
fi

el
d.

(d
j
a
n
g
o

,i
s-
us
ed
-i
n-
fi
el
d,

w
e
b
-
d
e
v
e
l
o
p
m
e
n
t

)

P
ro
vi
de
s-
fu
nc
ti
on
al
it
y

R
el

at
io

ns
hi

ps
of

th
is

ty
pe

m
ap

th
e

to
pi

c
to

th
e

fu
nc

tio
na

lit
y

(i
.e

.,
th

e
fu

nc
-

tio
na

lp
ur

po
se

of
th

e
to

pi
c)

it
pr

ov
id

es
an

d
al

lo
w

fo
r

ca
te

go
ri

za
tio

n
ba

se
d

on
th

e
fu

nc
tio

na
lit

y
of

to
pi

cs
.

(d
j
a
n
g
o

,p
ro
vi
de
s-
fu
nc
ti
on
al
it
y,
b
a
c
k
e
n
d

)

W
or
ks
-w

it
h

R
el

at
io

ns
of

th
is

ty
pe

m
ap

th
e

to
pi

c
to

its
de

pe
nd

en
ci

es
or

co
m

pa
tib

ili
ty

co
n-

st
ra

in
ts

.T
hi

s
re

la
tio

n
is

a
bi

di
re

ct
io

na
lo

ne
,i

.e
.,

it
m

at
ch

es
th

e
to

pi
cs

th
at

w
or

k
to

ge
th

er
.

(d
j
a
n
g
o

,w
or
ks
-w
it
h,

p
y
t
h
o
n

)

#2
Is
-s
ub
se
t-
of

T
hi

s
ty

pe
of

re
la

tio
n

al
lo

w
s

fo
r

hi
er

ar
ch

ic
al

ca
te

go
ri

za
tio

n
of

to
pi

cs
,p

ut
tin

g
th

e
su

bj
ec

tt
op

ic
un

de
r

a
br

oa
de

r
co

nc
ep

t(
ob

je
ct

to
pi

c)
.

(d
e
e
p
-
l
e
a
r
n
i
n
g

,i
s-
su
bs
et
-o
f,
n
e
u
r
a
l
-
n
e
t
w
o
r
k

)

Is
-b
as
ed
-o
n

R
el

at
io

ns
hi

ps
of

th
is

ty
pe

in
di

ca
te

th
at

th
e

cr
ea

tio
n

or
de

ve
lo

pm
en

to
ft

he
su

bj
ec

t
to

pi
c

w
as

ac
hi

ev
ed

th
ro

ug
h

us
e

of
th

e
ob

je
ct

to
pi

c.
(a
r
c
h
l
i
n
u
x

,i
s-
ba
se
d-
on

,l
i
n
u
x

)

Is
-f
oc
us
ed
-o
n

R
el

at
io

ns
hi

ps
of

th
is

ty
pe

em
ph

as
iz

e
th

e
co

nc
ep

ts
th

at
th

e
su

bj
ec

t
to

pi
c

is
co

nc
er

ne
d

w
ith

.
(a
g
i
l
e

,i
s-
fo
cu
se
d-
on

,f
l
e
x
i
b
i
l
i
t
y

)

H
as
-p
ro
pe
rt
y

T
hi

s
ty

pe
of

re
la

tio
n

co
nn

ec
ts

th
e

su
bj

ec
t

to
pi

c
to

m
et

a-
da

ta
to

pi
cs

.
T

he
m

et
a-

da
ta

to
pi

cs
on

ly
in

cl
ud

e
w

el
l-

kn
ow

n
an

d
w

id
el

y
us

ed
on

es
.

(m
y
s
q
l

,h
as
-p
ro
pe
rt
y,
o
p
e
n
-
s
o
u
r
c
e

)

O
ve
rl
ap
s-
w
it
h

T
hi

s
is

a
bi

di
re

ct
io

na
l

re
la

tio
n

th
at

lin
ks

tw
o

to
pi

cs
th

at
sh

ar
e

so
m

e
co

m
m

on
gr

ou
nd

s
bu

ta
re

no
tn

ec
es

sa
ri

ly
in

te
rd

ep
en

de
nt

.
(r
o
b
o
t
i
c
s

,o
ve
rl
ap
s-
w
it
h,
a
i

)

P
ro
vi
de
s-
pr
od
uc
t

T
hi

s
re

la
tio

n
ty

pe
co

nn
ec

ts
th

e
su

bj
ec

t
to

pi
c

as
a

pr
ov

id
er

to
th

e
pr

od
uc

ts
it

pr
ov

id
es

.
T

he
pr

ov
id

er
co

ul
d

be
a

co
m

pa
ny

,
a

so
ft

w
ar

e
sy

st
em

,
a

to
ol

,
or

an
y

ot
he

r
en

tit
y

th
at

cr
ea

te
s

an
d

pr
ov

id
es

an
ot

he
r

en
tit

y
as

a
pr

od
uc

t.

(g
o
o
g
l
e

,p
ro
vi
de
s-
pr
od
uc
t,
f
l
u
t
t
e
r

)

P
ro
vi
de
d-
by

T
hi

s
is

th
e

in
ve

rs
e

of
th

e
“
pr
ov
id
es
-p
ro
du
ct
”

re
la

tio
n

ty
pe

an
d

ke
ep

s
th

e
pr

ov
id

er
an

d
th

e
pr

od
uc

tc
on

ne
ct

ed
w

he
n

th
e

pr
ov

id
er

is
th

e
to

pi
c

of
th

e
us

er
’s

in
te

re
st

.
(a
t
o
m

,p
ro
vi
de
d-
by

,g
i
t
h
u
b

)

M
ai
nt
ai
ne
d-
by

R
el

at
io

ns
hi

ps
of

th
is

ty
pe

co
nn

ec
t

th
e

su
bj

ec
t

to
pi

c
to

th
e

au
th

or
iti

es
th

at
m

ai
nt

ai
n

th
e

su
bj

ec
tt

op
ic

.
(h
t
m
l

,m
ai
nt
ai
ne
d-
by

,w
3
c

)

#3
H
as
-l
ic
en
se

T
hi

s
re

la
tio

n
ty

pe
m

ap
s

co
nn

ec
ts

th
e

su
bj

ec
tt

op
ic

to
its

co
rr

es
po

nd
in

g
lic

en
se

.
(b
a
c
k
b
o
n
e
j
s

,h
as
-l
ic
en
se

,m
i
t
-
l
i
c
e
n
s
e

)

Empir Software Eng (2023) 28:50 Page 21 of 36 50

Fig. 4 Sample Node Expansion

the set of topics to 716 distinct ones. Moreover, one new relation type was introduced.
Rejected relation types (verbs) were either too specific (e.g., included versioning) or they
were synonymous to other verbs. The latter, rather than getting rejected, were merged.
For instance, the two relation types used-for and provides-functionality were
merged. Moreover, rejected relationships mainly were rejected due to the granularity of the
object topic (and in some cases the subject topic). For example, if the object topic contained
a version such as 3 in python3. In such cases, relationships sometimes became practically
a duplication of another relationship and were rejected or merged.

In the third snapshot, we evaluated the new 322 relationships acquired in the previous
snapshot from which only six were disapproved. Contributors verified the remaining 316
relationships, resulting in a success rate of 98.14%. As the KG became more stable and
the number of new suggestions dropped, the AARTR grows back to an 87.66% and the
AROCR is 89.02%. The contributors made a total of 53 relationship suggestions in this two-
months period. After refinement, the maintainers acquired 39 new and distinct relationship
suggestions. These suggestions introduced 15 new topics to the KG.

For the final snapshot, maintainers identified 17 more topics, and acquired 81 new top-
ics added to GitHub’s feature topic list during the past few months. Maintainers gradually
injected these topics, without initializing their relationship set, into the KG. We asked con-
tributors to define new relationships for these topics. As a result of this extra knowledge
acquisition step, contributors defined 532 more relationships. Refinement of these sug-
gested relationships resulted in a set of 372 relationships, introducing 51 more topics. These
acquired relationships were also gradually injected into the KG and evaluated over the same

 50 Page 22 of 36 Empir Software Eng (2023) 28:50

six months. Therefore, for the fourth snapshot, a total of 411 relationships (acquired over the
previous step and during the fourth step) were evaluated. This resulted in 370 of the relation-
ships under review getting accepted and 41 of them getting rejected, yielding a success rate
of 90.02%. We terminated this long-term phase as the number of suggested relationships
and topics by the contributors gradually diminished.

5.1.1 Resultant KG

SED-KGraph consists of 2,234 relationships of 13 relation types among 863 distinct soft-
ware topics. Topics appear as both the subject and the object topic in relationships. The
topic web-development has the maximum number of appearances (78 relationships),
while the minimum number of appearances is one. While one might argue that such rare
topics should be eliminated from the KG, they can be among the useful topics frequently
used by the community. Examples of such topics are awesome, authorization, and
augmented-reality, each assigned to 3,863, 1,847, and 1,628 projects on GitHub,
making them well-known topics in the community. They are also evidently important top-
ics in the SED domain. Not to mention the topics denoting programming languages that fall
under the same circumstances are important topics when used as labels for software entities.
Moreover, we believe that dropping such topics hinders the effective expansion of SED-
KGraph. For SED-KGraph to remain valid and correct, it should be continuously expanded
as new fields and technologies are always at emergence. Such rarely present topics might
rise to popularity or be newly emergent ones that need to be well-established in the KG
through future contributions. Thus, we address this issue by assigning weights to topics and
relationships. Figure 5 presents the long-tail plot of the number of relationship appearances
per topic, for the 25 most recurrent ones. Moreover, Table 6 details the number of rela-
tionships in the KG per type of relations. Notice how the four primary relation types, is-a,
is-used-in-field, provides-functionality, and works-with, are the most common relationships
in the KG.

5.2 KGRec: topic augmentationmodel

Table 7 summarizes the results from the missing topic recommendation task. As the FCR
values indicate, TopFilter (Di Rocco et al. 2020) fails to make any recommendations for

Fig. 5 Top 25 most frequent topics

Empir Software Eng (2023) 28:50 Page 23 of 36 50

Table 6 Relation type frequency

Relation Type Count Relation Type Count

Has-license 30 maintained-by 6

Has-property 134 overlaps-with 7

Is-a 578 provided-by 25

Is-based-on 55 provides-functionality 429

Is-focused-on 43 provides-product 18

Is-subset-of 19 works-with 450

Is-used-in-field 440

almost 50% of the test cases, no matter the correctness of the recommendations. The rea-
son behind this is mainly the limited number of topics assigned to the projects in the dataset
(2.46 topics on average which is closer to reality). Any collaborative filtering method suf-
fers from the cold start problem (Wang et al. 2018). An average of 2.26 topics indicates the
data sparsity, i.e., there are limited items (topics) assigned to projects, which in turn results
in the cold start problem. This shortcoming of TopFilter is also pointed out as a limitation
of the approach by Di Rocco et al. (2020). Taking into account that the dataset is captured
from a real-world setting, this raises questions about the practicality of TopFilter. However,
KGRec overcomes this limitation and manages to make recommendations under such cir-
cumstances. To better understand the magnitude of the improvements that KGRec brings
forth, one must take the FCR into account. The ASR measure for this task is only calculated
over the set of test cases for which the approach under evaluation has managed to make
recommendations. That is, for TopFilter, the ASR is calculated over 54% of the test cases,
while for KGRec, it is calculated over 98% of the test cases. Regardless, KGRec outper-
forms the baselines by +67% and +218% in terms of ASR and MAP respectively. That is,
KGRec performs considerably better over a wider set of test cases, while the baseline has a
high ratio of FCR.

5.3 KGRec+: topic set recommendationmodel

To further evaluate KGRec+, we improve the baseline approaches by combining them or
stacking KGRec on top of the approach. We include the resultant models as modified
baselines. Table 8 presents the automated topic set recommendation results. Notice that
reporting FCR for this task is irrelevant since the ML-based components of the approaches
always manage to make a list of recommendations, which compose part of the final rec-
ommendation lists. Therefore, FCR for each of the approaches values at zero in such
circumstances.

Table 7 Topic augmentation results

Model Over Test Set Over Sampled Test Set

FCR FCR ASR@5 MAP@5

Di Rocco et al. (2020) 50.15% 46.00% 28.33% 10.31%

KGRec (proposed) 2.06% 2.00% 47.32% 32.86%

 50 Page 24 of 36 Empir Software Eng (2023) 28:50

Table 8 Automated topic set recommendation results

Model ASR@5 MAP@5

Baselines MNB (Di Sipio et al. 2020) 30.80% 27.07%

TopFilter (Di Rocco et al. 2020) 41.20% 33.47%

LR (Izadi et al. 2021) 50.80% 48.93%

Modified Baselines KGRec plus MNB (Di Sipio et al. 2020) 54.80% 42.94%

TopFilter (Di Rocco et al. 2020) plus LR (Izadi
et al. 2021)

58.40% 55.05%

Proposed KGRec+ (KGRec plus LR (Izadi et al. 2021)) 72.80% 67.87%

Outperforming baselines by +25% to +136% +23% to +151%

The results indicate that not only does KGRec+ outperforms all the previously proposed
baselines by at least 43.31% and 38.71% in terms of ASR and MAP respectively, but it also
yields better results than the modified and improved versions of the baseline approaches. To
be exact, KGRec+ outperforms all the approaches, including the modified ones by at least
25% and 23% in terms of ASR and MAP, respectively. As mentioned before, LR outper-
forms MNB as the ML-based component. As we use LR in our approach and to understand
the impact of KGRec as part of the proposed approach (KGRec+), one can compare the LR
classifier performance with and without the KGRec component. According to this table, LR
alone achieves 50.8% and 48.93% regarding ASR@5 and MAP@5, respectively. However,
KGRec+ achieves 72.8% and 67.8% for ASR@5 and MAP@5, respectively. This outper-
formance (43% ASR@5 and 39% MAP@5) highlights the contribution of KGRec as part
of KGRec+. We believe our unique advantage lies in the fact that current recommenders
are restricted to the training data which suffers from missing topics. Machine learning tech-
niques’ performance is usually limited by the quality of the data they consume. However,
using the knowledge graph built on human expertise, we provide the recommender model
with missing blocks of information that it can exploit to complement and enhance the rec-
ommendation list. In other words, the combination helps us utilize both the strengths of the
ML-based component and expert knowledge.

5.4 Discussion

In the following, we discuss various aspects of our approach and its settings, our results,
lessons learned, and possible applications of this work.

KGRec+ parameter setting When recommending the final top k topics per repository, we
take m topics from the ML-based component and g topics from the KGRec component,
where k = m+g. We can use arbitrary values of m and g that fit the above criterion. Increas-
ing m translates to taking more topics from the ML-based component. But one should
also consider the number of available topics in the ground truth set on which the model
is trained to avoid going beyond the characteristics/limitations of the classifier. Moreover,
in a fixed-length recommendation list, increasing m leaves fewer places for missing top-
ics to be predicted, hence hindering effective evaluation of the missing topic recommender

Empir Software Eng (2023) 28:50 Page 25 of 36 50

component. On the other hand, decreasing m causes the approach to rely on fewer topics dis-
covered by the ML-based component. Note that providing very few initial topics may cause
the missing topic recommender component to struggle for finding sufficient relevant topics.
Hence, all this should be taken into account while tuning these parameters’ values in dif-
ferent use cases. For our application, as the average number of topics per repository is 2.4,
and the model is trained on that data, we choose m = 3 to be fair to the ML-based compo-
nent. Then, as we aim to complement the predicted topic set, we set g = 2 to construct a set
of 5 topics per repository. This setting considering the dataset characteristics seemed more
logical. Regarding the total size of the recommended list, we also experimented with other
settings. As expected, as the number of predicted tags goes up, the recall score increases
and precision decreases. This means while we are becoming more confident that the ground
truth tags are being retrieved by the recommender, more unrelated or missed tags can be
also added to the recommendation list. This highlights the need for the manual inspection of
these missing topics to determine whether they are relevant to the repository or not. Hence,
this number needs to be customized based on the dataset and the problem domain at hand
in other use cases.

Tangled topics In this study, we mainly focused on constructing the KG using the help of
experts to avoid tangled topics and tag explosion. Hence, we set a number of policies in
our platform to prevent tangled topics polluting the data as much as possible. More specif-
ically, in our platform, we have redundancy detection, spam report, and edit suggestion
capabilities to mitigate such risks. Please refer to Section 4.6 for the platform functionali-
ties. Redundancy detection can potentially detect tangled topics. When someone defines a
topic, they can see the list of the redundancies with that new topic and either delete their
topic to resolve the redundancy or edit it to clarify the differences if needed. Maintainers
can also check reported redundancies and resolve them. The same goes for the tag explosion
problem. Finally, we would like to point out that there are more advanced features to detect
semantically-similar topics such as ML techniques using contextual embeddings. This is
indeed a possible future feature for our platform.

Lessons learned Through our experiments, we learned a few lessons; some helped us bet-
ter understand and adjust our process, and some are worthy of further investigation by future
studies. Next, we will review them. Based on our experience in this study, we realized that
topic sets can easily enlarge and become irrelevant or useless for practical downstream tasks.
Hence, it was evident to us that to capture a high-quality set of topics, manual inspection
by experts is highly recommended. However, one should also mind the cost. Here, semi-
automatic features can be helpful. Another clear lesson was the fact that the KG should be
maintained and updated as the SE community grows and expands. Hence, we improved our
platform to include several automatic and semi-automatic functionalities to help maintain
the KG. Moreover, we observed that SE practitioners seem to be more familiar with SE
topics and how they work or relate to each other compared to SE researchers without any
industrial background. This may be due to the fact that practitioners interact with these tech-
nologies on a daily basis and may be more up-to-date. This notion can indicate that topics
in our KG may be more practical in nature. This is of course not verified and a controlled
experiment and more qualitative studies are required to confirm such assumptions. Based on
the assessments, we also suggest that contributors limit their contributions to topics related
to their specialty rather than trying to contribute to the whole graph. We emphasize this
notion to our contributors on the platform. An interesting remark is that some concepts or
fields may be lacking initial seed topics to begin with. For instance, a popular concept such

 50 Page 26 of 36 Empir Software Eng (2023) 28:50

as software security does not have well-curated seed topics in GitHub’s featured set yet.
This makes it more difficult for contributors to expand the KG for this specific field as
they rarely come across topics hinting at security. Subsequently, recommenders based on
this may under-recommend such topics. This is an existing challenge for such applications
and is an interesting line of research to pursue. Finally, we observed that as the topic set
matures and becomes more stable over time, the growth in the average performance of rec-
ommenders over all topics slows down gradually. This can indicate that while the KG helps
build better recommenders (compared to recommenders that do not utilize the KG), indi-
vidual repositories associated with newer or rarely-used topics may benefit more from the
growth of the KG over time.

During the KG construction and expansion phases, we encountered a few controversial
aspects of topics/relationships including: A main controversial issue was to whether use
abbreviated or long forms of topics. For instance, we can use SE instead of Software
Engineering. Currently, our policy is to include both under the display and full names
for a topic to avoid confusion or redundancy. Moreover, some topics have different mean-
ings. This is exasperated in the case of abbreviated topics. In these cases, one can refer to
tagged repositories to determine the difference. Users who try to introduce such topics will
be notified of duplicates. Moreover, topics that are a single topic in nature may seem to
be compound at first look. For example, material-design-for-bootstrap sounds
compound but it is a single topic. Another controversy may arise from the experience or
familiarity level of users with different SE fields. Consider the topic less which stands for
Leaner Style Sheets in the SE domain and refers to a dynamic preprocessor style sheet lan-
guage that can be compiled into CSS. However, an inexperienced user may confuse it with
the “less” determiner in the English language. Finally, bidirectional relationships such as
works-with may create duplicate pairs. Nonetheless, the multiple-rater policy we have
in place on the platform helps avoid mistakes.

Implications and potential applications We curated SED-KGraph to help build better
topic recommenders for software repositories. Through experiments, we demonstrated that
utilizing SED-KGraph in the topic recommendation task improves the quality of recom-
mendation lists. Topic sets assigned to repositories can be enlarged twice their original size
using only cleaned and high-quality topics. Moreover, the accuracy of complemented topic
sets can be increased up to 151% which is a notable improvement. Moreover, it has been
shown that the correctness and completeness of the set of topics assigned to entities improve
their visibility, and in turn, impact the performance of any topic-based solution to informa-
tion retrieval problems (Held et al. 2012). Hence, SED-KGraph can also be beneficial in
other settings. Our work paves the way for future research with many possible directions to
improve both industrial and academic problems. Practitioners and researchers can tailor our
KG to other applications including (but not limited to) categorizing SE entities, enhancing
retrieval and searching, improving exploratory navigation in information websites, recom-
mending similar repositories, discovering duplicate QA posts on Stack Overflow, and many
more. Furthermore, SED-KGraph, as a structured knowledge base, can serve as a rich source
of information on SED topics themselves. In SED-KGraph, topics are stored in the form of
info boxes, i.e., topics are saved along with a list of their aliases, links to the informative
pages on the topics, and short descriptions of the topics. Therefore, information on SED
topics is easily accessible through queries, especially since the semantics of relation types
can be easily injected into the queries. We hope the SE community utilizes this carefully
curated knowledge base for numerous downstream tasks.

Empir Software Eng (2023) 28:50 Page 27 of 36 50

5.5 Threats to validity

In this section, we discuss the possible threats to the validity of this study and how we have
addressed these threats.

Internal validity These threats correspond to the correctness of the relationships and the
subjectiveness of contributors and maintainers. We address the former by evaluating every
relationship through a partially objective labeling task in which at least three and up to nine
contributors validate the correctness of the relationships. As for the latter, aside from the
KG Initialization stage, the effect of maintainers’ personal experience and knowledge was
minimized by limiting their role to fixing consistency issues in the suggestions from the
community in the continuous second stage. The subjectiveness of the contributors was also
mitigated by engaging 170 experts as contributors. Although we invited people with rele-
vant and sufficient background in SE and development, it is possible that some participants
may not be familiar with some topics. To avoid inaccurate votes, we make it possible for
contributors to only contribute to the topics related to their expertise and skip unfamiliar
topics. Moreover, we provided background information on topics so that the participants
can make more informed contributions. Another factor can be errors in our source code.
We have double-checked the source code to decrease this threat,. However, there could be
experimental errors in the setup that we did not notice. Therefore, we have publicly released
our source code and dataset, to enable the community to use and/or replicate our work10.

External validity These threats correspond to the generalizability and effectiveness of our
graph and recommenders. Through crowd-sourcing and the expansion of SED-KGraph, we
address the generalizability and effectiveness concerns. We also validated the relationships
in multiple snapshots with the community, assuring their correctness and effectiveness.
Although we use GitHub’s featured set as the initial seed set, the resultant KG is not
restricted to any platform and can be reused in other software-related platforms. Contribu-
tors were indeed instructed to incorporate their knowledge of Software Engineering while
assessing/suggesting relationships and topics, irrespective of any specific SED platform.
As for the topic recommendation, the KGRec component only takes the initial set of top-
ics assigned to software projects as the input. Thus, it can be easily adapted for use on
any software-related platform and any software entity. For the KGRec+ model, as long as
proper textual information is available for a project, the model is able to recommend rele-
vant topics. Moreover, the ML-based component can be re-trained with textual information
of other software entities, using the model to recommend topics for those entities as well.
Also for training, datasets were randomly split to avoid introducing bias. Finally, when
assessing recommenders’ performance, we use 50 repositories. Incorporating more reposi-
tories can improve the generalizability of our approach. However, assessing the correctness
of the assigned missing tags requires manual inspection per repository and approach. Not to
mention that each sample is examined by multiple evaluators to avoid introducing bias. This
accumulates to a large number of evaluations and takes a lengthy time. Due to this, we take
at most 50 repositories and could not afford to increase the number of repository samples.

Construct validity These threats correspond to the features and capabilities of the online
platform used for KG expansion, and the sensitivity of KGRec to its input. We allowed for

10https://github.com/mahtab-nejati/KGRec

https://github.com/mahtab-nejati/KGRec

 50 Page 28 of 36 Empir Software Eng (2023) 28:50

free-text topics and relation types in the suggestion forms to allow for the expansion of the
KG. This resulted in consistency issues, which maintainers handled by refining the sugges-
tions. This concern is further handled in the final version of the platform through the use of
specially designed features and policies. Moreover, KGRec is sensitive to the correctness of
the initial set of topics assigned to the project, such that the inaccuracy misleads the model
on SED-KGraph. This limitation calls for an accurate ML-based component to be combined
with KGRec. To address this threat, we used a multi-class multi-label LR classifier, which
has been shown to exhibit the best performance among similar ML-based approaches (Izadi
et al. 2021).

6 Related work

We organize the related work as approaches on (1) topic recommendation for software
projects, (2) for other software entities, and finally studies on (3) KGs for software
engineering.

Topic recommendation for software projects There are several studies with a focus on
the topic recommendation for software projects (Xia et al. 2013; Xin-Yu Wang and Xia
2015; Vargas-Baldrich et al. 2015; Cai et al. 2016; Zhou et al. 2017; Wang et al. 2018;
Wang et al. 2014; Liu et al. 2018; Di Sipio et al. 2020; Izadi et al. 2021). Sally presented
by Vargas-Baldrich et al. (Vargas-Baldrich et al. 2015), is a tool for generating topics for
Maven-based software projects by analyzing their bytecode and the dependency relations
among them. Their approach, unlike ours, is limited in application due to being dependent
on the programming language. Cai et al. (2016) proposed a graph-based cross-community
approach calledGRETA, for assigning topics to repositories. Their approach is to first con-
struct an Entity-Tag Graph and for each queried project, take a random walk on a subset of
the graph around the most similar entities to the queried one to assign tags to the project.
While they do propose a graph-based approach, their graph fundamentally differs from ours
in nature. Di Sipio et al. (2020), proposed using an MNB classifier for the classification of
about 134 GitHub topics. In each top-k recommendation list, authors predict k − 1 topics
using text analysis and one topic using a code analysis tool called GuessLang. TopFilter (Di
Rocco et al. 2020), the state-of-the-art for missing topic recommendation, is the most simi-
lar study to ours in terms of purpose (topic augmentation task). Authors take an item-based
collaborative approach for recommending missing topics. Our experiments prove that their
approach suffers from practicality issues, which our proposed approach overcomes. Most
recently, Izadi et al. (2021), demonstrated the impact of clean topics and proposed a multi-
label Logistic Regression classifier for recommending topics. Our approach is orthogonal
to this study, thus we incorporate their approach in this work.

Topic recommendation for other software entities There are several pieces of research
on tag recommendation for other types of software entities such as questions on Stack Over-
flow, Ask Ubuntu, and Ask Different (Wang et al. 2018; Wang et al. 2014; Zhou et al. 2017;
Xia et al. 2013; Liu et al. 2018; Maity et al. 2019). The discussion around these tags and
their usability in the SE community have been so fortified that the Stack Overflow plat-
form has also developed a tag recommendation system of its own. These approaches mostly
employ word similarity-based and semantic similarity-based techniques. Xia et al. (2013)
focused on calculating the similarity based on the textual description. The authors propose
TagCombine for predicting tags for questions using a multi-label ranking method based

Empir Software Eng (2023) 28:50 Page 29 of 36 50

on OneVsRest Naive Bayes classifiers. Semantic similarity-based techniques (Wang et al.
2018; Wang et al. 2014; Liu et al. 2018) consider text semantic information and perform
significantly better than the former approach. Wang et al. (2018) and Wang et al. (2014),
proposed ENTAGREC and ENTAGREC++ which uses a mixture model based on LLDA to
consider all tags together. Liu et al. (2018), proposed FastTagRec, for tag recommendation
using a neural-network-based classification algorithm and bags of n-grams (bag-of-words
with word order). As a possible future direction, our SE-based KG and approach can also
be utilized for recommending topics for these types of software entities.

KGs for software engineering KGs have been utilized in numerous studies to address dif-
ferent software engineering problems. In some cases, researchers strive for a fully automated
KG extraction approach from the available textual data. However, more often than not, these
studies narrow the scope of their KG’s content down to very specific aspects. In such cases,
concept extraction from the textual data can be achieved through use case-specific tailored
solutions, especially when the input data for KG construction is in a semi-structured or
expected format (Li et al. 2018; Chen et al. 2019; Sun et al. 2019; Sun et al. 2021; Wang
et al. 2017) or in some extreme cases, the concepts are predefined (Zhao et al. 2019). Some
studies recognize that a fully-automated approach does not suffice their purpose, even in
the limited scope of knowledge they intend to model and opt for semi-automated solutions
(Karthik and Medvidovic 2019; Cao et al. 2019). HDSKG (Zhao et al. 2017) is a framework
for mostly-automated KG construction. The authors applied their approach to the tagWiki
pages on Stack Overflow in an attempt to construct a domain-specific KG of SED topics.
The authors claim HDSKG includes 4,4800 unique concepts (topics) and 3,5279 relation
triples of 9,660 unique verb phrases (relation types). While HDSKG can guarantee the lex-
ical uniqueness of concepts and verb phrases through applying text processing techniques,
the semantic uniqueness can not be promised. The lack of semantic uniqueness leads to tag
explosion and redundant/duplicate verb phrases and relationships, which can be well hidden
since neither the concepts nor the verb phrases are mapped to their semantically equivalent
terms. Unfortunately, neither the resultant KG nor the code base of this work is publicly
available. However, based on the sample nodes of HDSKG, its automatic method of extract-
ing noun phrases results in tangled topics such as small-java-library. This justifies
the enormous number of extracted topics and relationships. While HDSKG can be used in
conjunction with our approach and replace the Acquisition process, the sheer multitude of
the concepts and verb phrases works to the detriment of integrity and consistency concerns.
The applicability of a KG of SED topics is highly sensitive to tag explosion and tangle top-
ics problems, a threat that semi-automated and fully-automated approaches fail to mitigate.
Especially with tangled topics as a concern while there are compound topics that convey
atomic concepts as SED topics, each of the approaches leans towards detecting one and
missing the other. Finally, some studies resort to fully-manual construction approaches due
to data scatteredness and sparsity (Fathalla and Lange 2018) or make use of pre-constructed
community-defined KGs for their purposes (Han et al. 2018). Consequently, we opted for
a hybrid approach to avoid the pitfalls of each method described above, while obtaining
high-quality topics and relationships as much as possible.

7 Future work

The main contributions of this study namely the SED-KGraph, the KGRec+ topic recom-
mender, and also the platform all can be improved with future work. In the following,

 50 Page 30 of 36 Empir Software Eng (2023) 28:50

we present possible directions for extending this work. In the future, we aim to main-
tain both SED-KGraph and the platform through which is expanded by the community.
We can further improve different aspects of our platform and add more automated solu-
tions. For instance, we aim to enhance our redundancy checker using ML techniques to
discover semantically-similar topics that are written differently. The KG itself and the con-
tributions received from the community can be further investigated. For instance, several
factors including participants’ numbers, duration of the snapshot, gender or background of
participants, etc. differ for different snapshots. Such factors may impact the results of var-
ious snapshots. Further studies are required to explore the possible effects. The ML-based
component for recommending topics can also be improved. For instance, one can also pro-
cess the source files associated to repositories to enhance the ability of the classifiers and
suggest more relevant topics. Moreover, one can invest in training contextual-based models
to further improve the performance of the recommenders. Currently, our missing topic rec-
ommender does not utilize the relation types. Different relation types and their frequencies,
if properly investigated, can potentially help build stronger recommenders. This is also a
possible direction to investigate in future research. Finally, we aim to study other applica-
tions of SED-KGraph in different contexts such as search engines and information retrieval
as well as other information websites such as Stack Overflow.

8 Conclusions

To discover the semantic relationships among SED-related topics, we engaged 170
researchers and practitioners to collaboratively construct a KG we call SED-KGraph. To
initialize the KG, we first drafted a primary version, taking GitHub’s featured topics as the
seed topic set. Through their contributions, we constructed SED-KGraph with 2,234 care-
fully evaluated relationships among 863 community-curated topics. We also developed a
platform through which we evaluated and expanded SED-KGraph in a crowd-sourced con-
tinuous method. Knowing that the KG will keep growing as do the SED technologies, we
maintained the platform to sustain the continuous expansion of SED-KGraph in a more
continuous and semi-automated manner requiring less human effort.

In the second stage of the proposed approach, we propose two recommender systems,
KGRec and KGRec+ for tagging software projects augmented by the semantic relationship
among their topics. We developed KGRec to predict the missing topics of software projects
in GitHub based on SED-KGraph. The second recommender, however, assumes there is
no topic available for a repository, and proceeds to predict the relevant topics based on
both textual information of a software project (such as its README file), SED-KGraph,
and its ML-based component. Our experiments yield that this model achieves 1.7X and
3.2X higher scores regarding ASR@5 and MAP@5, respectively. We also built upon the
missing topic recommender (KGRec) and added an ML-based component to the approach
to develop a stand-alone automated topic recommender system, KGRec+. The results show
that KGRec+ outperforms the state-of-the-art baseline approaches as well as the modified
and improved ones by at least +25% and +23% regarding ASR@5 and MAP@5 measures,
respectively. Finally, we publicly share SED-KGraph, as a rich form of knowledge for the
community to reuse and build upon. Furthermore, we release the source code of our two
recommender models.

Empir Software Eng (2023) 28:50 Page 31 of 36 50

Appendix A: Platform Screenshots

Figures 6 and 7 present multiple screenshots of our online platform for both the construction
and maintenance phases.

Fig. 6 Platform dashboard and review panel for KG construction phase

 50 Page 32 of 36 Empir Software Eng (2023) 28:50

Fig. 7 KG entities in the maintenance phase

Empir Software Eng (2023) 28:50 Page 33 of 36 50

Appendix B: Samples

Table 9 presents several samples per relation type from SED-KGraph.

Table 9 Samples per relation types

Relation Type Samples

Is-a (django, is-a, framework) (android, is-a,
operating-system) (atom, is-a, text-editor)

Is-used-in-field (django, is-used-in-field, web-development) (3d, is-used-in-
field, graphics) (azure, is-used-in-field, cloud-computing)

Provides-functionality (django, provides-functionality, backend) (auth0,
provides-functionality, authentication) (blockchain,
provides-functionality, decentralization)

Works-with (django, works-with, python) (blockchain, works-with,
cryptography) (kubernetes, works-with, docker)

Is-subset-of (image-processing, is-subset-of, machine-learning)
(continuous-deployment, is-subset-of, cicd)
(user-experience, is-subset-of, ui-ux)

Is-based-on (archlinux, is-based-on,linux) (xmake, is-based-on,lua)
(reactiveui, is-based-on,mvvm)

Is-focused-on (agile, is-focused-on, speed) (end-to-end-encryption, is-
focused-on, privacy) (neo4j, is-focused-on, scalability)

Has-property (mysql, has-property, open-source) (anki, has-property,
cross-platform) (elite-dangerous, has-property,
multiplayer)

Overlaps-with (robotics, overlaps-with, ai) (data-science, overlaps-with,
ai) (nlp, overlaps-with, machine-learning)

Provides-product (google, provides-product, flutter) (amazon, provides-product,
aws) (mediawiki, provides-product, wikipedia)

Provided-by (atom, provided-by, github) (flutter, provided-by, google)
(macos, provided-by, apple)

Maintained-by (html, maintained-by, w3c) (symfony, maintained-by,
sensiolabs-sas) (uportal, maintained-by, apereo)

Has-license (backbonejs, has-license, mit-license) (ansible, has-
license, gnu-gpl-license) (robotframework, has-license,
apache-license)

Acknowledgements We would like to thank all the participants for helping us with constructing and
evaluating our KG, as well as for assessing our recommender model.

Data Availability The dataset generated during the current study is available in the authors’ public GitHub
repository.11 The dataset used for training the ML-based components and comparing approaches is also
available in the baseline paper’s public GitHub repository.12

Declarations

Conflict of Interests The authors declare that they have no conflict of interest.

11https://github.com/mahtab-nejati/KGRec
12https://github.com/MalihehIzadi/SoftwareTagRecommender

https://github.com/mahtab-nejati/KGRec
https://github.com/MalihehIzadi/SoftwareTagRecommender

 50 Page 34 of 36 Empir Software Eng (2023) 28:50

References

Alonso O, Marshall C, Najork M (2014) Crowdsourcing a subjective labeling task: a human-centered
framework to ensure reliable results. Microsoft Res, Redmond, WA, USA, Tech Rep MSR-TR:2014–91

Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph
database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD international
conference on management of data, pp 1247–1250

Cai X, Zhu J, Shen B, Chen Y (2016) Greta: graph-based tag assignment for github repositories. In: In
proceedings of the 40th annual computer software and applications conference (COMPSAC). IEEE, vol
1, pp 63–72

Cao J, Du T, Shen B, Li W, Wu Q, Chen Y (2019) Constructing a knowledge base of coding conventions from
online resources. In: The international conference on software engineering and knowledge engineering
(SEKE), pp 5–14

Chen D, Li B, Zhou C, Zhu X (2019) Automatically identifying bug entities and relations for bug analysis.
In: 2019 IEEE 1st international workshop on intelligent bug fixing (IBF), pp 39–43

Crestani F (1997) Application of spreading activation techniques in information retrieval. Artif Intell Rev
11(6):453–482

Di Rocco J, Di Ruscio D, Di Sipio C, Nguyen P, Rubei R (2020) Topfilter: an approach to recommend
relevant github topics. In: In proceedings of the 14th international symposium on empirical software
engineering and measurement (ESEM). ACM, ESEM ’20, New York

Di Sipio C, Rubei R, Di Ruscio D, Nguyen PT (2020) A multinomial naı̈ve bayesian (mnb) network to
automatically recommend topics for github repositories. In: In proceedings of the 24th international
conference on evaluation and assessment in software engineering (EASE). ACM, pp 71–80

Dong L, Wei F, Zhou M, Xu K (2015) Question answering over freebase with multi-column convolutional
neural networks. In: Proceedings of the 53rd annual meeting of the association for computational lin-
guistics and the 7th international joint conference on natural language processing (vol 1: long papers),
pp 260–269

Escobar-Avila J, Linares-Vásquez M, Haiduc S (2015) Unsupervised software categorization using bytecode,
pp In proceedings of the 23rd international conference on program comprehension (ICPC). IEEE, pp
229–239

Fathalla S, Lange C (2018) Eventskg: a knowledge graph representation for top-prestigious computer science
events metadata. In: In proceedings of the 10th international conference on computational collective
intelligence (ICCCI). Springer, pp 53–63

Golder SA, Huberman BA (2006) Usage patterns of collaborative tagging systems. J Inf Sci 32(2):198–208
Han Z, Li X, Liu H, Xing Z, Feng Z (2018) Deepweak: reasoning common software weaknesses via knowl-

edge graph embedding. In: In proceedings of the 25th international conference on software analysis,
evolution and reengineering (SANER). IEEE, pp 456–466

Held C, Kimmerle J, Cress U (2012) Learning by foraging: the impact of individual knowledge and social
tags on web navigation processes. Comput Hum Behav 28(1):34–40

Izadi M, Ahmadabadi MN (2022) On the evaluation of nlp-based models for software engineering. In: 2022
IEEE/ACM 1st international workshop on natural language-based software engineering (NLBSE). IEEE
computer society, USA, pp 48–50

Izadi M, Akbari K, Heydarnoori A (2022) Predicting the objective and priority of issue reports in software
repositories. Empir Softw Eng 27(2):1–37

Izadi M, Heydarnoori A, Gousios G (2021) Topic recommendation for software repositories using multi-label
classification algorithms. Empir Softw Eng 26(5):1–33

Karthik S, Medvidovic N (2019) Automatic detection of latent software component relationships from online
qa sites. In: Proceedings of the 7th international workshop on realizing artificial intelligence synergies
in software engineering (RAISE). IEEE Press, pp 15–21

Li H, Li S, Sun J, Xing Z, Peng X, Liu M, Zhao X (2018) Improving api caveats accessibility by min-
ing api caveats knowledge graph. In: In proceedings of the 34th international conference on software
maintenance and evolution (ICSME), pp 183–193

Liu J, Zhou P, Yang Z, Liu X, Grundy J (2018) Fasttagrec: fast tag recommendation for software information
sites. Autom Softw Eng 25(4):675–701

Maity SK, Panigrahi A, Ghosh S, Banerjee A, Goyal P, Mukherjee A (2019) Deeptagrec: a content-cum-
user based tag recommendation framework for stack overflow. In: In proceedings of the 41st european
conference on information retrieval (ECIR). Springer, pp 125–131

Empir Software Eng (2023) 28:50 Page 35 of 36 50

Mazrae PR, Izadi M, Heydarnoori A (2021) Automated recovery of issue-commit links leveraging both tex-
tual and non-textual data. In: 2021 IEEE international conference on software maintenance and evolution
(ICSME). IEEE computer society, USA, pp 263–273

McMillan C, Grechanik M, Poshyvanyk D (2012) Detecting similar software applications. In: In proceedings
of the 34th international conference on software engineering (ICSE). IEEE, pp 364–374

Reyes J, Ramı́rez D, Paciello J (2016) Automatic classification of source code archives by programming
language: a deep learning approach. In: 2016 International conference on computational science and
computational intelligence (CSCI), pp 514–519

Sun J, Xing Z, Chu R, Bai H, Wang J, Peng X (2019) Know-how in programming tasks: from textual tuto-
rials to task-oriented knowledge graph. In: IEEE international conference on software maintenance and
evolution (ICSME), pp 257–268, 09

Sun J, Xing Z, Peng X, Xu X, Zhu L (2021) Task-oriented api usage examples prompting powered by
programming task knowledge graph. In: 2021 IEEE international conference on software maintenance
and evolution (ICSME). IEEE, pp 448–459

Thung F, Lo D, Jiang L (2012) Detecting similar applications with collaborative tagging. In: In proceedings
of the 28th international conference on software maintenance (ICSM). IEEE, pp 600–603

Vargas-Baldrich S, Linares-Vásquez M, Poshyvanyk D (2015) Automated tagging of software projects using
bytecode and dependencies (n). In: In proceedings of the 30th international conference on automated
software engineering (ASE). IEEE, pp 289–294

Wagner S, Fernández DM (2015) Chapter 3 - analyzing text in software projects. In: Bird C, Menzies T,
Zimmermann T (eds) The art and science of analyzing software data. Morgan Kaufmann, Boston, pp
39–72

Wang H, Zhang F, Wang J, Zhao M, Li W, Xie X, Guo M (2018) Ripplenet: propagating user preferences
on the knowledge graph for recommender systems. In: Proceedings of the 27th ACM International
Conference on Information and Knowledge Management (CIKM). ACM, New York, pp 417–426

Wang L, Sun X, Wang J, Duan Y, Li B (2017) Construct bug knowledge graph for bug resolution. In: In
proceedings of the 39th international conference on software engineering companion (ICSE-C). IEEE,
pp 189–191

Wang S, Lo D, Vasilescu B, Serebrenik A (2018) Entagrec++: an enhanced tag recommendation system for
software information sites. Empir Softw Eng 23(2):800–832

Wang T, Wang H, Yin G, Ling CX, Li X, Zou P (2014) Tag recommendation for open source software.
Frontiers Comput Sci (FCS) 8(1):69–82

Xia X, Lo D, Wang X, Zhou B (2013) Tag recommendation in software information sites. In: 2013 10th
Working conference on mining software repositories (MSR). IEEE, pp 287–296

Xin-Yu Wang DL, Xia X (2015) Tagcombine: recommending tags to contents in software information sites.
J Comput Sci Technol 30(5):1017

Xu K, Reddy S, Feng Y, Huang S, Zhao D (2016) Question answering on freebase via relation extraction
and textual evidence

Yang Y, Li Y, Yue Y, Wu Z, Shao W (2016) Cut: a combined approach for tag recommendation in soft-
ware information sites. In: Lehner F, Fteimi N (eds) Knowledge science, engineering and management.
Springer, Cham, pp 599–612

Yao X, B. Van Durme. (2014) Information extraction over structured data: question answering with freebase.
In: Proceedings of the 52nd annual meeting of the association for computational linguistics (vol 1: long
papers), pp 956–966

Zhang E, Banovic N (2021) Method for exploring generative adversarial networks (gans) via automatically
generated image galleries. In: Proceedings of the conference on human factors in computing systems
(CHI), pp 1–15

Zhang Y, Lo D, Kochhar PS, Xia X, Li Q, Sun J (2017) Detecting similar repositories on github. In:
In proceedings of the 24th international conference on software analysis, evolution and reengineering
(SANER). IEEE, pp 13–23

Zhang Y, Xu FF, Li S, Meng Y, Wang X, Li Q, Han J (2019) Higitclass: keyword-driven hierarchical clas-
sification of github repositories. In: 2019 IEEE international conference on data mining (ICDM). IEEE,
pp 876–885

Zhao X, Xing Z, Kabir MA, Sawada N, Li J, Lin S (2017) Hdskg: harvesting domain specific knowledge
graph from content of webpages. In: In proceedings of the 24th international conference on software
analysis, evolution and reengineering (SANER), pp 56–67

Zhao Y, Wang H, Ma L, Liu Y, Li L, Grundy J (2019) Knowledge graphing git repositories: a preliminary
study. In: 2019 IEEE 26th international conference on software analysis, evolution and reengineering
(SANER), pp 599–603

 50 Page 36 of 36 Empir Software Eng (2023) 28:50

Zhou P, Liu J, Yang Z, Zhou G (2017) Scalable tag recommendation for software information sites. In:
In proceedings of the 24th international conference on software analysis, evolution and reengineering
(SANER). IEEE, pp 272–282

Zou X (2020) A survey on application of knowledge graph. J Phys Conf Ser 1487(03):012016

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Maliheh Izadi is currently a post-doctoral researcher and lecturer
in the Software Engineering Research Group at the Delft Univer-
sity of Technology, Netherlands. Her research lies in the intersection
of software engineering and machine learning. Specifically, she uses
natural and programming language processing techniques to build
recommender systems for various software development tasks.

Mahtab Nejati is currently a PhD candidate in the Software Analy-
sis Group at University of Waterloo, where she studies and analyzes
software artifacts to improve release pipelines.

Abbas Heydarnoori is a faculty member in the Department of
Computer Science at Bowling Green State University, USA. Dr. Hey-
darnoori has also worked as a faculty member in the Department
of Computer Engineering at the Sharif University of Technology,
directing the Intelligent Software Engineering Lab. Before that, he
was a post-doctoral fellow in the Faculty of Informatics at the Uni-
versity of Lugano, Switzerland. Dr. Heydarnoori finished his Ph.D.
studies in the School of Computer Science at the University of
Waterloo, Canada, in 2009. His research interests focus on Software
Analytics, Empirical Software Engineering, and Intelligent Software
Engineering.

	Semantically-enhanced topic recommendation systems for software projects
	Abstract
	Introduction
	Problem definition
	Approach
	Phase 1: KG construction
	Initialization
	Expansion
	Evaluation
	Acquisition

	Phase 2: automated topic recommendation
	Topic augmentation
	Topic set recommendation

	Experiment settings
	Research questions
	Dataset
	Evaluation metrics
	Model settings
	Baselines
	Baselines for topic augmentation
	Baselines for topic set recommendation

	Platform
	Platform functionalities
	Platform policies

	Contributors' overview

	Results
	SED-KGraph: data characteristics
	Initialization
	Expansion

	Resultant KG

	KGRec: topic augmentation model
	KGRec+: topic set recommendation model
	Discussion
	KGRec+ parameter setting
	Tangled topics
	Lessons learned
	Implications and potential applications

	Threats to validity
	Internal validity
	External validity
	Construct validity

	Related work
	Topic recommendation for software projects
	Topic recommendation for other software entities
	KGs for software engineering

	Future work
	Conclusions
	Appendix A A: Platform Screenshots
	 B: Samples
	Appendix B B: Samples
	Declarations
	References

