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Abstract Context: Reviews of mobile apps on App Stores and on social me-
dia are valuable resources for app developers. Analyzing app reviews have
proved to be useful for many areas of software engineering (e.g., requirement
engineering, testing, etc.). Existing approaches rely on manual curating of a
labeled dataset to classify app reviews automatically. In practice, new datasets
must be labeled as the classification purpose changes (e.g., identifying bugs
versus usability issues or sentiment), limiting the power of developed models
to classify new classes or issues. Employing models that can produce the same
or better result using less labeled data can eliminate the problem by reduc-
ing this manual effort. Recent Pre-trained Transformer based Models (PTM)
are trained on large natural language corpora in an unsupervised manner to
retain contextual knowledge about the language and have found success in
solving similar Natural Language Processing (NLP) problems. However, the
applicability of PTMs has not yet been explored for issue classification from
app reviews.

Objective: We explore the advantages of PTMs for app review classification
tasks by comparing them with existing models; we also examine the transfer-
ability of PTMs by applying them in multiple settings.
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Method: We select six datasets from the literature which contain manu-
ally labeled app review from Google Play Store, Apple App Store, and Twit-
ter data. We empirically study the performance and time efficiency of PTMs
compared to Prior approaches. In addition, we evaluate the performance of the
PTMs when app reviews are incorporated in their pre-training (i.e., domain-
specific PTMs). We set up different studies to evaluate PTMs in multiple set-
tings: binary vs. multi-class classification, zero-shot classification (when new
labels are introduced to the model), multi-task setting, and classification of
reviews from different resources. In all cases, Micro and Macro Precision, Re-
call, and F1 scores are used and the time required for training and prediction
with the models are also reported.

Results: Our results show that PTMs can classify the app issue with higher
scores. However, in the multi-resource setting, the Ensemble method and Deep
learning with word embedding score higher than PTMs. When PTMs are pre-
trained with app specific reviews (i.e. Custom PTMs), the models achieve
the highest scores among all in all settings, and the prediction times are also
reduced; with the highest scores belonging to customized PTMs that are pre-
trained with a larger number of app reviews.

Conclusion: For app issue classification, the PTMs are the best choices in
some settings, compared to Prior approaches; but they are not the best ones
for all the studied settings. It is worth considering the customized PTMs pre-
trained on app reviews when higher performance and lower prediction times
are required.

Keywords pre-trained transformer models · app review classification ·
registered report

1 Introduction

Mobile application (app) marketplaces, such as Apple App Store and Google
Play enable the users to rate and review apps [25]. Users express their usage
experience through writing reviews from different perspectives, such as the
app’s quality, performance, and functionality. The reviews provide a distinct
way for the application developers to acquire customer feedback [4]. The de-
velopers monitor the reviews regularly to address users’ major concerns and
resolve the reported issues in the forthcoming app update. If the app is not reg-
ularly updated addressing the issues, it will gradually lose its popularity [1,2].
Therefore, app reviews have been studied extensively [3] and are shown to
be resourceful for requirement engineering [4], release planning [5], software
maintenance [6], change-file localization [7], and testing [8]. Different studies
also focused on analyzing the reviews to filter non-informative reviews [9],
identify bugs [10], classify usability and quality concerns [4], and find security
and privacy issues [11].

Other than App Stores, mobile app users also express their opinions on
social media such as Twitter, which regularly reveal new information for the
developers [12]. Nonetheless, the manual extraction of informative feedback
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from App Stores or social media is difficult, as there are many unrelated and
noisy user comments. Therefore, researchers have developed techniques, in-
cluding rule-based, machine learning, or deep learning approaches, for auto-
matic extraction of useful information from user reviews to help app develop-
ers [9, 12, 26, 27]. There are many studies that classify the reviews for differ-
ent purposes, which range from identifying problems, user inquiries, feature
requests, and aspect evaluations (e.g., feature strengths, weaknesses, and per-
formance) to sieving usability, portability, and reliability [3–5, 10–12]. These
studies provide app developers with a variety of serviceable information that
facilitates making informed decisions for planning the app updates. This ex-
tra information is crucial for app developers as mobile applications and their
updates get released quite frequently over a short period to meet the mar-
ket requirements; so, it often proves challenging to identify and prune all the
software defects and bugs during the testing phase [28].

The topics of interest in app review classification are numerous and differ-
ent studies leverage various supervised machine learning techniques to extract
useful software engineering information from app reviews [3]. A main require-
ment of supervised techniques is the availability of labeled datasets, which
needs to be done manually by field-experts [12]. Although app review analysis
is shown to be useful for software developers in practice, this manual effort is
expensive and seems to be a barrier in many studies [3]. Recent works try to
alleviate the problem by incorporating semi-supervised learning [13] or active
learning [14]. However, with the emergence of new labels of interest, e.g., pri-
vacy or security issues [11], developers must label new datasets, which renders
the previously curated datasets obsolete. In addition, the distribution of the
data collected from different platforms (i.e., App Stores or social media) varies.
Therefore, even though the same labels are to be classified from two platforms,
a model that has been trained on one (e.g., Google Play) needs to be retrained
to extract the same labels from another (e.g., Twitter) to yield similar per-
formance [12]. Whenever the classification purpose (i.e., labels of interest)
or platform changes, the models require retraining on newly labeled datasets
since they do not retain the natural language properties learned from previ-
ous training, including the linguistic features and the context of the trained
labels [10]. Training from scratch prevents the extensibility of the developed
models for classifying new issues in practice.

A more recently established and widely accepted practice in Natural Lan-
guage Processing (NLP) is using Pre-Trained Language Models (PTM) and
then transferring its learned knowledge to various downstream NLP tasks,
such as sentiment analysis, question answering, or classification [29]. In NLP,
PTMs (such as BERT) are large language models that are trained on large
natural language corpora using a deep neural network in an unsupervised man-
ner [15]. These models are then fine-tuned for various downstream tasks using
limited labeled datasets. As PTMs are trained on large general domain cor-
pora, they learn contextual linguistic information and eliminate the need to
train downstream task models from scratch [17]. PTMs reduce the amount of
effort (i.e., new model development time per task) to build models for each
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task separately, and they reduce the amount of required labeled dataset [18].
Consequently, PTMs are used to transfer the learned knowledge to a new do-
main or a new task, and in settings where a model has not seen any example
of the required task or interested label during training (known as zero-shot
learning) [19]. Although PTMs are used extensively and led to many advances
in NLP, their applicability for software engineering is barely known. Only a
few studies exist that explore the use of PTMs for sentiment analysis in soft-
ware engineering [15, 20], or for tasks related to programming languages such
as comment generation [30]. But, to what extent PTMs can be applied for app
review classification is unknown.

Moreover, the PTMs that are trained on domain-specific data, show signifi-
cant improvements over general purpose PTMs such as BERT (i.e. PTMs that
are trained on general purpose data) for NLP tasks in fields such as science
or law [21, 22]. These domain-specific PTMs leverage unsupervised training
on a large domain-specific corpus to compensate for the lack of high-quality,
large-scale labeled data in the specified domains. Our problem of interest, the
classification of app reviews, aims to extract useful information for software
engineers/app developers, which are domain-specific information. In addition,
app reviews are short text, and many reviews are noisy and unrelated, which
can introduce more complications [25]. To what extent the PTMs can be useful
in the context of app review classification and whether domain-specific PTMs
trained on app reviews can improve the results is unknown. Previously, the
deep learning approaches used Convolutional Neural Networks (CNN) to im-
plement the transfer of static linguistic knowledge from non-contextual word
embedding, which has shown to have comparable results with traditional ma-
chine learning approaches for classification of requirements related app re-
views [12]. In contrast, another study using CNN shows improvements over
previous approaches for app review classification [23]. Though these studies
do not use PTMs, they use a deep learning approach which sheds doubt on
whether PTMs can be useful.

Therefore, in this study, we aim to explore the benefits of PTMs com-
pared to the existing approaches for app review analysis, specifically the app
review classification tasks. We define the app review classification as the task
of extracting useful information from users’ feedback which can be related to
app requirements, release planning, and software maintenance. The extracted
information may help identify different aspects of the application, such as fea-
ture requests, aspect evaluations (e.g., feature strength, feature shortcoming,
application performance), usability, portability, reliability, energy consump-
tion, problem reports, privacy, and security inquiries about the application.
Our goal is to investigate the accuracy and time efficiency of PTMs for the
app issue classification task over different selected datasets from literature
with various labels and multiple tasks (i.e., issue classification and sentiment
analysis of app reviews). Therefore, experiments will be conducted in differ-
ent settings: by fine-tuning the PTMs on different sizes of the labeled dataset
for downstream tasks, exploring the same PTMs for multiple tasks in app re-
view analysis, and finally, comparing the performance of PTMs when they are
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trained on non-domain-specific dataset versus PTMs trained on the domain-
specific dataset. These experiments will provide baselines on the applicability
of PTMs for app review analysis, including the cost of using them (in terms of
required time for predictions) and their capability to reduce the manual effort
required to label large datasets.

The contributions of this study are as follows:

– This is the first study that explores the applicability of PTMs for automatic
app issue classification tasks compared to the existing tools.

– We conduct an extensive comparison between four PTMs and four existing
tools/approaches on six different app review datasets with different sizes
and labels.

– We are the first to explore the performance of general versus domain-
specific pre-trained PTMs for app review classification.

– This is the first empirical study to examine the accuracy and efficiency of
PTMs in four different settings: binary vs. multi-class classification, zero-
shot setting, multi-task setting, and setting in which training data is from
one resource (e.g., App Store) and the model is tested on data from another
platform (e.g., Twitter).

We explore the following research questions for our study:

RQ1: How accurate and efficient are the PTMs in the classifica-
tion of app reviews compared to the existing tools? In this research
question, we explore how the current PTMs perform compared to the existing
tools, including their required time for training and prediction. The existing
tools are based on curated rules, feature engineered machine learning algo-
rithms, and deep learning models.

Findings: We find that different PTMs outperform Prior approaches by
∼3% to ∼15% on all datasets. Additionally, the best-performing PTMs require
slightly more time for prediction, although the difference in prediction time is
negligible (+0.04s to +2.87s).

RQ2: How does the performance of the PTMs change when they
are pre-trained on app-review dataset, instead of a generic dataset
(e.g. Wiki-documents, book corpus)? The current PTMs are trained us-
ing general text scraped from the web. In some studies, domain-specific mod-
els are trained e.g. LEGAL-BERT [22] and medical BERT [17] which have
been shown to improve the performance compared to the non-domain-specific
models. In RQ2, we intend to explore the performance of a domain-specific
pre-trained model when trained on app reviews.

Findings: The PTMs trained from scratch on domain-specific data (i.e.
adding app-reviews to the model) performed better than out-of-the-box models
(+0.8% to +2.2% micro-F1 score). The Custom PTMs trained from scratch
do not fluctuate much in prediction times with respect to the readily available
PTMs for app issue classification. In addition, we find that incorporating a
greater number of app reviews in the pre-training can help PTMs produce up
to 15.2% better micro-F1 score.
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RQ3: How do the PTMs perform in the following settings?
(RQ3-1) Binary vs multi-class setting,
(RQ3-2) Zero-shot classification,
(RQ3-3) Multi-task setting (i.e. different app-review analysis tasks),
(RQ3-4) Classification of user-reviews collected from different re-
sources (i.e., Twitter, App Store).

The answers to this research question will help us understand the appli-
cability of PTMs and their performance in different settings (i), when the
classification is on two or more classes; (ii), when a labeled dataset is not
available; (iii), the task changes; and (iv) different resources are used. In part
(iv) we explore the transferability of the models as the distributions of data
on various platforms is different [24].

Findings: Both Prior and PTM models yield better performance for bi-
nary classification tasks than for multi-class settings. PTMs are the best
choice for zero-shot classification settings. Custom PTMs improve the results
of their non-domain-specific models. For multi-task and multi-resource set-
tings, the Custom LARGE PTMs (i.e., PMTs pre-trained with 10 million
app reviews) performed better than readily available PTMs. RoBERTa-based
Custom PTMs have the best scores among all models. They also have lower
prediction times in the multi-resource setting than Prior approaches.

Deviations from the Registered Report. The following are the parts
that we have changed compared to the Registered Report.

– In the multi-task setting (RQ3-3), we add experiments on another dataset,
in addition to the previous dataset mentioned in the Registered Report.
This new dataset is on app reviews, but classifies them as different cate-
gories (e.g. game, family). This new dataset is added to assess the perfor-
mance of these models for a different classification task but in the same
domain.

– Another difference of this submission with the original plan in the Regis-
tered Report is on the multi-resource setting (RQ3-4). Here, we add ex-
periments on the Prior approaches as well to examine their capabilities for
this setting and compare the results of PTMs against them.

Paper Organization. The rest of the paper is organized as follows. We
review the related works in Section 2. Section 3 discusses the Study Overview,
including research design, datasets, selection of the approaches, and exper-
imental setup. In Section 4 we detail our approach to answer each of the
research questions and discuss the results in Section 5. Section 6 is dedicated
to the discussions. Threats to validity are in Section 7 and we conclude the
paper in Section 8.
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2 Related Works

2.1 App Review Classification in Software Engineering

2.1.1 Topic Modeling Based Models

According to Silva et al. [106], topic modeling has been applied to software
engineering research, including app review classification. Among the most fre-
quent topic modeling techniques used to categorize app reviews, the researchers
found that Latent Dirichlet Allocation (LDA) [101] and LDA-based techniques
are the most common. AR-Miner is one of the initial works for mining app
reviews proposed by Chen et al. [9], which uses topic modeling to group the
informative reviews and investigates categories of users’ discussions. Nayebi
et al. [107] examined how Twitter app reviews can contribute to mobile app
development and applied topic modeling and crowdsourcing. Adaptive Online
LDA was developed by Gao et al. to classify app reviews based on users’ feed-
back on various versions of mobile apps [32]. Consequently, Hadi and Fard
developed Adaptive Online Biterm Topic Model (AOBTM) [33] to model top-
ics of app reviews in different categories adaptively, therefore, alleviating the
sparsity problems in short-texts, which considered the statistical data for mul-
tiple previous time slices.

Topic modeling approach is used in other works [32, 32, 46, 108, 109] to
categorize app reviews for detecting emerging issues for developers to update
their apps, identifying fine-grained app features in the reviews to extract users’
sentiments, prioritizing important user reviews for developers, and performing
aspect-based sentiment analysis of app reviews.

2.1.2 Machine Learning Based Approaches

Earlier research has focused on using machine learning approaches for app
review filtering. Chen et al. [9] classified non-informative reviews by training a
classifier and categorizing them into informative and non-informative groups.
Using a regression model, Fu et al. [100] filter out rating-inconsistent reviews
that differ in sentiment from their ratings. In [26], Gu et al. identified software
features and distinguish between features that are evaluated and those that
are requested, using Max-Entropy [151]. There are other studies that used
machine learning techniques for app issue classification: [104] and [105] use
lexical features and multi-text features to use in conjunction with different
machine learning models for app review classification task. Maalej and Nabil
[10] empirically evaluated different feature extraction techniques to work with
machine learning models to automatically classify bug reports and feature
requests. Martin et al. [52] and Sarro et al. [44] have also explored the breadth
of research done on App Store analysis (i.e., feature life cycle, dormant feature
identification) for software engineering.

In [27, 110–113], researchers have used ensemble machine learning tech-
niques to classify app reviews into categories relevant to software evolution, to
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identify more efficiently and earlier terms in reviews that could be classified
into specific topics, and to filter out useful feedback from users, such as feature
requests, bug descriptions, and requirement analysis.

2.1.3 Deep Learning Based Approaches

Using machine learning, [12] demonstrated that they could still achieve com-
parable results with deep learning when analyzing user feedback in English
and Italian into problem reports, inquiries, and irrelevant. Aslam et al. pro-
posed an approach for app reviews classification using non-textual information
to classify app reviews and exploiting deep learning technique [23]. In [114],
a BERT-based sequence classifier was developed and validated to achieve a
state-of-the-art average classification accuracy (87%) for feedback analysis.
From a large volume of online product reviews, Qiao et al. [115] proposed to
apply a domain-oriented approach to deep learning to discover the most criti-
cal users’ needs, such as app product new features and bug reports. Henao et
al. [116] investigated the prospect of transfer learning for the classification of
app reviews and found that monolingual BERT models outperform existing
baseline methods in the classification of English App Reviews.

Other studies [25,117–121] also applied deep learning techniques to differ-
ent extents, such as detecting promotion attacks, matching bug reports, de-
tecting adversarial spam, analyzing energy-related reviews, and requirement
evolution predictions from app reviews.

2.2 Pre-trained Models

There are two generations of pre-trained models: static and contextual word
embeddings [86]. The Global Vectors for Word Representation (Glove) [87]
and word2vec [98] are examples of first-generation static word embeddings.
Software Engineering (SE) research has used word embeddings for various
tasks, including code retrieval [93], detecting incoherent comments [88], spec-
ifying SE-relevant tweets [89], and program comprehension with graphs [94].
These kinds of embeddings are context-independent, where each word has
only one embedding and cannot change with different contexts. These embed-
dings only take the syntax of the words in a sentence into account. Therefore,
non-contextual embeddings cannot capture semantic information and model
polysemous words [86].

The second-generation pre-trained models learn context-sensitive word rep-
resentations and can be tailored to perform downstream tasks effectively.
LSTM [99]-based Universal Language Model Fine-tuning (ULMFiT) [90] and
Embeddings from Language Models (ELMo) [91] have also been used for differ-
ent SE-related tasks, such as identifying ambiguous software requirements [95]
and sentiment analysis for software engineering [96]. Transformer architec-
tures [85] have been used to build several pre-trained Transformer-based mod-
els [16,18,69,70] that have achieved state-of-the-art performance for a variety
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of downstream tasks, such as sentiment classification of SE-related texts [15]
and identifying error-prone software [97].

Other studies [122–127] have used PTMs for solving Question-Answering
problem. PTMs have also been extensively used the sentiment analysis task
[128–135]. Previous studies [136–138] developed Named Entity Recognition
systems with the help of PTMs. Others [139–141] studied how PTMs can
improve machine translation tasks. Other works include using PTMs for text
summarization [143–145] and adverserial defense and attacks identification
[146–150].

Though the studies that use PTMs or classify app reviews are numerous,
there is no previous work that investigates their capability for app issue clas-
sification as we conduct in this work.

3 Study Overview

In this section, we first overview the design of the research, and then provide
details about the selected datasets, Prior approaches, and chosen pre-trained
models. We also discuss what metrics will be used to evaluate the models, as
well as explain the experimental setup.

3.1 Research Overview

Fig. 1 Overview of Research Steps for RQ1

Figures 1 and 2 show the overall process of our study. First, we select 6
widely used datasets from the literature for app review classification. We also
combine these datasets and make another dataset, which has multiple labels
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Fig. 2 Overview of Research Steps for RQ2 (left) and RQ3 (right)

and is highly imbalanced (D7). We choose four approaches from the literature
that we refer to as Prior approaches. Four pre-trained language models are
selected to evaluate their capabilities regarding the research questions in this
study. We evaluate all the Prior approaches and the PTMs for the datasets.
From the PTMs, the best performing ones are selected to train Custom PTMs
(CPTM) and assess them in RQ2 for all the seven datasets. In RQ3, we evaluate
the performance of the PTMs and Custom PTMs in four different settings.
The details of the datasets and selected approaches and PTMs are explained
in next sub-sections.

3.2 Datasets

App reviews are analyzed automatically for various purposes and reviews are
classified with different labels such as user concerns, feature requests, feature
modifications, bug reports, and usability analysis [83]. In our experiments,
we examine the performance of PTMs for app issue classification. Therefore,
we select a diverse set of datasets from the literature as described below.
These datasets have various sizes, different labels, and collected from different
platforms (i.e., Google Play, Apple App Store, Twitter), and therefore, can
represent to what extent the PTMs can be useful for app issue classification.

Dataset 1 (D1) This dataset is procured by Gu and Kim [26] and contains
reviews for 17 popular Android apps from Google Play in 16 most popular cat-
egories, such as games and social. The authors have manually labeled 2,000
reviews for each app (34,000 in total) in five classes according to their prede-
fined rules: Aspect Evaluation (5,937), Praise (8,112), Feature Request (2,323),
Bug Report (2,338), and Others (15,290).

Dataset 2 (D2) This dataset contains 6,406 app reviews from Google
Play and 10,364 tweets (sampled from 5 million tweets written in English)
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which are labeled manually into three classes: Problem Report, Inquiry, and
Irrelevant [12]. They included Problem Report (1,437), Inquiry (1,100), and
Irrelevant (3,869) records from Google Play. The number of records in each of
these categories from Twitter data is 2,933, 1,405 and 6,026, respectively.

Dataset 3 (D3) This dataset is provided by Lu and Liang. [4]. Researchers
selected two popular Apps, one from Apple App Store (iBooks in the books
category) and one from Google Play (WhatsApp in the communication cate-
gory). They sampled the raw reviews collected from each platform and manu-
ally classified 2,000 reviews for each app (4,000 in total). The reviews are clas-
sified into six categories: Usability (432), Reliability (587), Portability (119),
Performance (121), Feature Request (558), and Others (2,183).

Dataset 4 (D4) This dataset was procured by Maalej and Nabil [10]
and contains 2,000 manually labeled reviews from random apps selected from
top apps in different categories (1,000 from Apple App Store and 1,000 from
Google Play), where half of the apps are paid and half of them are free apps.
The authors ensured that there are 200 reviews for each of the 1, 2, 3, 4, and
5 stars in each of the 1000-reviews datasets. In addition, they provide 2,400
more reviews which are manually labeled. These reviews are for selected 3
random Android apps and 3 iOS apps from the top 100 apps (400 reviews
for each app). This dataset contains 4,400 labeled reviews in total with four
categories: Bug Report (378), Feature Request (299), User Experience (737),
and Rating (2721).

Dataset 5 (D5) This dataset is published by Guo et al. [34] and contains
1,500 app reviews, which are manually labeled as User Action (428), App
Problem (399), and Neither (673). The reviews are selected from over 5.8
million records for 151 apps from Apple App Store.

Dataset 6 (D6) This dataset was procured by Guzman et al. [27]; it
contains reviews of 3 apps from Apple App Store and 4 apps from Google Play.
The apps are popular and from diverse categories. They sampled 260 reviews
per app and five annotators labeled the records, summing to 1,820 reviews
that are manually labeled. This dataset includes seven categories, namely:
Bug Report (990), Feature Strength (644), Feature Shortcoming (1281), User
request (404), Praise (1703), Complaint (277), and Usage Scenario (593)1.

Reasons behind choosing these Datasets (D1 to D6): We considered these
datasets for their diverse characteristics from three perspectives, other than
having different categories. First, the considered datasets were constructed
from various repositories: Apple App Store, Google Play, and Twitter. Second,
the size of the datasets vary and they have different number of records for
each label. For example, Dataset 2 is around four times larger than Dataset
5. Also, Dataset 2 contains approximately 2,000 reviews per label, whereas
Dataset 1 has around 400 reviews per label. The size differences can provide
insights about the ability of PTMs for different sizes (total training set and the

1 Note that adding numbers in all categories will exceed the total number, because some
reviews belong to multiple groups. We will follow the steps in [27] to calculate the evaluation
metrics for this dataset.
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available data for each label). Third, except Dataset 1 and Dataset 5 which
are balanced dataset, the other four datasets are imbalanced. These differences
ensure that we explore the capability of PTMs for different sizes, platforms,
and in more realistic settings.

Merged Dataset (D7) This dataset will be compiled by merging all the
6 datasets, D1–D6. This Merged Dataset has 55,933 app reviews with 16 la-
bels. As some of the labels used in the datasets are the same or have similar
definitions, we have grouped some of them. For grouping the labels, we have
consulted the definitions of the classes from the studies that published the
datasets D1–D6. This dataset would be closer to practical applications, where
a lot of irrelevant data exists and multiple classes of informative reviews are
of interest to be extracted from this highly imbalanced dataset. The labels in
the Merged Dataset, the grouped labels from D1–D6, and the number of app
reviews per group are provided in Table 1.

3.3 Prior approaches

In this section, we discuss the four widely-used approaches for app review anal-
ysis and the reasons of choosing them in our experiments. We have conducted
literature review and reviewed analysis of app review surveys to select these
Prior approaches.

AR-Miner Chen et al. proposed App Review Miner (AR-Miner) [9] which
extracts valuable information from user reviews. Provided a collection of user
reviews, AR-Miner first applies a pre-trained classifier that separates non-
informative reviews. Then, AR-Miner applies Latent Dirichlet Allocation (LDA)
over the informative reviews to chunk them into different groups for prioritiz-
ing them by an efficient ranking model proposed by the authors. AR-Miner
has been widely used to mine app-issues from user-reviews [35–40]. Therefore,
it is considered as a prior approach in our experiments.

Reason behind choosing AR-Miner: AR-Miner is an unsupervised approach
and its performance could be evaluated against other models. We mainly
choose these techniques to evaluate the PTMs against unsupervised, super-
vised, ensemble methods using classical machine learning approaches, and fi-
nally deep learning technique that is enriched by contextual embedding. AR-
Miner is the first framework to accommodate application developers in mining
informative topics from a large volume of app reviews. This was the first effec-
tive attempt to leverage an unsupervised Topic Modeling technique to extract
edifying issues from app reviews. Developers embraced AR-Miner for its abil-
ity to filter out non-informative reviews and display the key user feedbacks in
an intuitive, concise manner. The effectiveness of AR-Miner was validated by
conducting a comprehensive set of experiments on user reviews of four Android
apps. Researchers compared the AR-Miner results against real app develop-
ers’ decisions in different studies [35–40]. They analyzed the advantages of
AR-Miner over manual inspection and other techniques used in a traditional
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Table 1 Description for Merged Dataset (D7)

Labels in
Merged
Dataset

Grouped Labels [Label Name:
Dataset Initial (# of Re-
views)]

# App
Reviews
in Total

Performance Performance: D3 (121) 121

Portability Portability: D3 (119) 119

Usability Usability: D3 (432) 432

Reliability Reliability: D3 (587) 587

Usage Scenario Usage Scenario: D6 (593) 593

Feature
Strength

Feature Strength: D6 (644) 644

User Experi-
ence

User Experience: D4 (737) 737

Feature Short-
coming

Feature Shortcoming: D6 (1,281) 1,281

Inquiry
Inquiry: D2 (1,100), User Action:
D5 (428)

1,528

Problem
Problem Report: D2 (1,437), App
Problem: D5 (399), Complaint: D6
(277)

2,113

Rating Rating: D4 (2,721) 2,721

Bug Report
Bug Report: D1 (2,338), Bug Re-
port: D4 (378), Bug Report: D6
(990)

3,706

Feature Re-
quest

Feature Request: D1 (2,323), Fea-
ture Request: D3 (558), Feature
Request: D4 (299), User request:
D6 (404)

3,584

Aspect Evalua-
tion

Aspect Evaluation: D1 (5,937) 5,937

Praise
Praise: D1 (8,112), Praise: D6
(1703)

9,815

Irrelevant
Others: D1 (15,290), Irrelevant: D2
(3,869), Others: D3 (2,183), Nei-
ther: D5 (673)

22,015

Total 55,933

channel [41–44]. Based on the empirical results, AR-Miner has proven to be
effective and efficient in extracting informative reviews.

SUR-Miner Gu et al. [26] proposed Software User Review Miner (SUR-
Miner), which is a framework that summarizes users’ sentiments, opinions, and
emotions toward different aspects of an application. SUR-Miner parses aspect-
opinion pairs from reviews by considering their structures. For this purpose, it
uses pre-defined sentence templates/patterns2. Then, for each review, it com-
bines the sentiment of the sentences with its aspect-opinion pairs. These are

2 https://guxd.github.io/srminer/appendix.html
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used in the final step to summarize the software aspects. SUR-Miner generates
reliable summaries and achieved high F1 score for aspect-opinion identifica-
tion, sentiment analysis, and app review classification compared to the previ-
ous works [45,46] by using a simple but effective machine learning algorithm,
Max-Entropy . It is adopted in many studies [47–51] and therefore we choose
it as a prior approach.

Reason behind choosing SUR-Miner: SUR-Miner is the first framework
that fully took advantage of user reviews’ monotonic structure and semantics;
it also defined sentence patterns to extract aspect opinion pairs from app-
review. Researchers carefully selected five distinct text features, specifically
tailored for app reviews, and leveraged these features to train a supervised
machine learning classifier. Based on the empirical evaluation, we choose this
machine learning approach as the terminal classes categorized by the SUR-
Miner model were shown to be significantly more accurate and precise than
other methods, demonstrating its effectiveness [45,46].

Ensemble Methods Guzman et al. systematically evaluated different sets
of ensemble methods and identified one for classifying user reviews [27]. They
selected machine learning techniques that were used for text classification,
and compared the performance of each algorithm individually, for app review
classification. They also studied the performance of these models when their re-
sults are combined using ensemble methods. Ensemble methods are well known
machine learning techniques as they can enhance the prediction performance
of single classifiers, maintaining their strengths and reduce their vulnerabili-
ties. In this work, Logistic Regression, Naive Bayes, Support Vector Machines,
and Neural Network Classifier were grouped to vote for the final prediction.
This ensemble method outperformed the individual algorithms with statistical
significance. It was tested on a large dataset of seven diverse apps, where it
shows that in all cases, this ensemble method either outperformed or matched
its best baseline. Also, this method influenced further research in the field of
app review analysis [5, 52–56] and therefore is used in our study.

Reason behind choosing Ensemble Methods: Different studies have attempted
to identify the best machine learning approach for app issue classification with-
out spending too much time perfecting custom-engineered features for different
issues [4,51,57–59]. Guzman et al. [27] first leveraged different machine learn-
ing algorithms and combined their predictions to circumvent the problem of
various machine learning models being used for classification of issues from
app reviews. Their study showed that recall (an evaluation metric) improved
significantly after combining the predictions of Logistic Regression and Neural
Networks. Software developers and software evolution experts widely adopted
this approach to analyze user reviews and prioritize their tasks [60–63].

Deep Learning Model leveraging Non-contextual Word Embed-
ding Stanik et al. used a Deep Convolutional Neural Network (CNN) [12]
for classifying app reviews. Their model contains an embedding layer and
its weights are initialized with a word embedding model, e.g. word2vec or
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FastText. This CNN architecture outperforms the shallow Neural Networks
classifying app reviews in the determined groups, with a small margin. This
method uses non-contextual word embedding within a deep neural network
and performed a transfer of knowledge representation. This approach is one of
the first studies leveraging transfer learning and deep learning and is used in
other studies for issue classification task [23, 64, 65], and therefore, we choose
it as a prior approach in our study.

Reason behind choosing this Deep Learning Approach: This study is a re-
cent work with the purpose of understanding and evaluating the extent to
which deep learning models could be used to categorize user feedback into dif-
ferent predefined categories [12]. Based on this study, researchers determined
that the domain experts’ knowledge incorporation with traditional machine
learning model could achieve comparable results to those of the deep learn-
ing approach due to the substantial performance improvements provided by
using simple yet powerful features in the traditional machine learning tech-
niques. Nevertheless, the developers and researchers widely adopted this deep
learning approach as the improvement of pre-trained word embeddings bring
considerable performance gain to the classifier in other domains [66–68].

It is worth noting that the number of studies for app review classification
is numerous. We choose these four Prior approaches as they are well cited
and widely used in many other studies. More importantly, they use different
machine learning and deep learning approaches which can be representative
of multiple techniques used in other studies. Additionally, these models are
open sourced and are publicly available. The best of these four approaches in
terms of the performance metrics defined in Section 3.7 will be chosen as the
baseline.

We have already considered two more tools that we eliminated from our
study: AR-Doc and CLAP. AR-doc uses a parser based on a NLP Classifier,
which uses a set of 500 sentence-structures manually evaluated for four types of
classes: Information Giving, Information Seeking, Feature Request, and Prob-
lem Discovery. To use AR-Doc, we will need to build different sets of sentence
structures for each dataset and their respective labels, which is infeasible. In
addition, we could not find any publicly available implementation of CLAP
and therefore unable to use CLAP3.

3.4 Pre-Trained Models (PTM)

In this section, we briefly discuss our choice of the four PTMs. All these models
have Transformer deep learning architecture which is based on attention mech-
anism [69]. As Transformer is currently the main architecture for PTMs [18],
we choose the following Transformer PTMs: BERT, XLNet, RoBERTa, and
ALBERT. The same PTMs are also used for sentiment classification in soft-
ware engineering [15].

3 We contacted the authors of CLAP but did not receive a response.



16 Mohammad A Hadi, Fatemeh H Fard

BERT Devlin et al. [16] designed Bidirectional Encoder Representations
from Transformers (BERT) to learn contextual word representations from un-
labeled texts. Contextual word embeddings designate a word’s representation
based on its context by capturing applications of words across different con-
texts. BERT employed a bidirectional encoder to learn the words’ contextual
representations by optimizing for Masked Language Model (MLM) and Next
Sentence Prediction (NSP) tasks. For MLM, 15% of all the tokens are replaced
with a masked token (i.e., [MASK]) beforehand, and the model is trained to
predict the masked words, based on the context provided by the non-masked
words. For NSP, the model takes sentence-pairs as input for learning to predict
whether a pair-match is correct or wrong. During training, 50% of the inputs
are true consequent pairs, while the other 50% are randomized non-consequent
sentence-pairs. Devlin et al. trained two versions: small-sized BERTBASE and
big-sized BERTLARGE. BERTBASE is a smaller model with 12 layers and 110
million parameters. BERTLARGE has 24 layers and 340 million parameters.
BERTLARGE is more computationally expensive and consumes more memory
compared to BERTBASE. Thus, in this work, we will use BERTBASE.

Reason behind choosing BERT: BERT advanced the state-of-the-art for 11
NLP tasks. It achieved an absolute improvement of 7.6% over the previous best
score on General Language Understanding Evaluation (GLUE) benchmark4;
it also achieved 93.2% accuracy on SQuAD 1.15, outperforming human perfor-
mance. As the tasks in these datasets require natural language understanding
and include classification tasks, we choose BERT.

XLNet XLNet [69] uses Auto-Regressive language modeling and Auto-
Encoding. The model is “generalized” because it captures the bi-directional
context using a mechanism called Permutation Language Modeling (PLM).
XLNet integrates auto-regressive models and bi-directional context modeling,
yet overcoming the disadvantages of BERT. PLM is the idea of capturing
bidirectional context on all permutations of terms present in an input se-
quence. XLNet discards the one-directional linear modeling to maximize the
log-likelihood over all permutations of the sequence-terms. Each position is
expected to learn utilizing contextual information from the entire sequence,
thereby capturing the bidirectional context. No [MASK] is needed, and input
data need not be corrupted.

In addition, XLNET addresses capturing the dependency between masked
positions, which is neglected by BERT. Consider the sentence “New Delhi
is a city.” Then, input to BERT to be “[MASK] [MASK] is a city,” and the
objective of BERT would be predicting ”New” given ”is a city” and predicting
”Delhi” given ”is a city”. In this objective, there is no dependency between
learning “New” and “Delhi.” So, BERT can result in a prediction like “New
Gotham is a city.” If we assume that the current permutation is [is, a, city,
New, Delhi], BERT would predict the tokens 4 and 5 independent of each other.

4 https://gluebenchmark.com/
5 Stanford Question Answering Dataset: https://rajpurkar.github.io/SQuAD-

explorer/explore/1.1/dev/
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Whereas, XLNet, predicts in the order of the sequence. i.e., first predicts token
4 and then predicts token 5: it computes the likelihood of ”New” given ”is a
city” plus the likelihood of ”Delhi” given ”New, is a city”.

Reason behind choosing XLNet: XLnet outperformed BERT on many NLP
tasks; for 8 different tasks XLNet beat BERT by a substantial margin. This
model achieved best results for 18 NLP tasks, including sentiment classification
and natural language inference. As XLNET is outperforming other models on
text classification tasks, we choose it as one of the PTMs in our study.

RoBERTa Robustly optimized BERT approach (RoBERTa) outperformed
all the state-of-the-art benchmarks upon release [18]. Liu et al. modified BERT’s
pre-training steps that yield substantially better performance on all the classi-
fication tasks. RoBERTa increased the amount of mini-batch sizes, data, and
training time to train the model. RoBERTa is also trained on dataset that
includes longer sequences than before. The masking pattern in RoBERTa was
also modified to be generated spontaneously.

Reason behind choosing RoBERTa: RoBERTa outperforms BERT on nine
different NLP tasks on the GLUE benchmark; it also equals or exceeds XLNet’s
model in four out of nine individual tasks. Based on these results, RoBERTa
can present a reasonable choice for PTM in our study.

ALBERT A Lite BERT (ALBERT) [70] applies three parameter reduc-
tion techniques: Factorized embedding parameterization, Cross-layer param-
eter sharing, and Inter-sentence coherence loss. In the first one, researchers
separated the hidden layers’ size from the input embeddings’ size (previously
of same sizes). They projected one-hot vectors to embedding and the hidden
space with lower dimensions; it increased the hidden layer-size without sig-
nificantly increasing the vocabulary embeddings’ parameter size. Second, all
the parameters across all layers are shared. The big-scale ALBERT model
has substantially fewer parameters than BERTLARGE. Finally, the NSP task
is swapped with Sentence-Order Prediction (SOP) loss which help ALBERT
perform better.

Reason behind choosing ALBERT: ALBERT uses parameter reduction
techniques which resulted in having 18 times less parameters than BERT.
Its’ training time is 1.7 faster and has negligible inferior performance than the
original BERTLARGE model. The much larger ALBERT architecture, which
contains fewer parameters than BERTLARGE, achieved higher F1 scores on the
SQuAD 2.0 and the GLUE benchmarks; it also achieved high accuracy on the
ReAding Comprehension from Examinations benchmark (RACE benchmark).
Therefore, we choose ALBERT as one of the PTMs in our experiments to eval-
uate its performance and inference time for app issue classification, because
ALBERT is shown to be faster than other PTMs without sacrificing much
performance.

For BERT, XLNET, RoBERTa and ALBERT, their base versions are used.
Table 2 includes the names of the models used from the Huggingface Trans-
formers library [84] and default configurations.
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Table 2 Details of PTMs Used in Our Study

Architecture Used Model Parameters Layers Hidden Heads
BERT bert-base-cased 110M 12 768 12
RoBERTa roberta-base 125M 12 768 12
XLNet xlnet-base-cased 110M 12 768 12
ALBERT albert-base-v1 11M 12 768 12

3.5 Implementation

We are going to discuss the implementations of both Prior and PTM ap-
proaches for the mentioned datasets.

3.5.1 Prior approaches

AR-Miner uses LDA [101] topic modeling algorithm to categorize text docu-
ment corpus into a predefined number of different related and coherent topics.
For app review classification, we hid the labels of the considered datasets and
presented the app reviews altogether as a text corpus, where each review rep-
resented different documents. If a dataset has n classes, we would extract n
number of topics from the app review corpus; so, the documents will be sep-
arated into n number of segments. After the extraction of topics, we looked
into the associated labels for each review for assigning each document cluster
(topic) to a relevant class/label. The relevance was measured by the prevalence
of a class or label in a topic after extraction. Suppose, the highest number of
app reviews belong to label/class x in a topic (document cluster), we would
understand that AR-Miner has labeled all documents in that cluster with class
x, where the app reviews that truly belonged to class/label x are regarded as
the True Positives and the rest of the reviews are regarded as False Positive.

SUR-Miner used Max-Entropy model to classify app reviews. This clas-
sifier model considers all probability distributions empirically consistent with
the training data and chooses the distribution with the highest entropy. Em-
pirically consistent probability distribution with training data is one in which
an estimated frequency of occurrence of a class and a feature value is equal to
the actual frequency in the training data. Following the literature [26], we have
implemented Generalized Iterative Scaling (GIS) as our scaling method and
performed Early Stopping to avoid over-fitting and to stop the iterative solver
from taking a long time to optimize over a large number of feature weights.
As mentioned in [26], we have also adopted 2-4 Grams (Character N-Gram)
for the classification task.

Ensemble Approach adopted an ensemble of Logistic Regression clas-
sifier and shallow Neural Network classifier, and applied the majority voting
scheme to combine the output of the classification approaches, by following the
literature [27]. We have concatenated TF-IDF vector representations of app
reviews, number of words in the review, number of characters in the review,
number of lower case characters, number of upper case characters to use as
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features for our ensemble approach. We have used Adam optimizer and binary
cross entropy as our loss function in the shallow neural network.

Deep Learning approach with Word Embeddings followed [12]. For
the neural network’s input layer, text inputs must have a fixed size. This input
size has been fixed at 400 words, a measure we found suitable for all the app
reviews in all of the datasets we studied, and we identified no app reviews
that exceeded 400 words. In addition to the input layer, our network consists
of an embedding layer (pre-filled with a fast-text model), a 1D convolution
layer, a 1D global max-pooling layer, a dense layer, and a final output layer
with a softmax activation. Tanh activation was used for the previous layers.
The embedding layer weights were frozen during training, leaving the trainable
parameters.

3.6 Experimental Setup

We will train all the Prior approaches and fine-tune all the PTMs on each of
the datasets separately. In the following, we provide the general information
about training the models using stratified k-fold cross validation, as well as
how PTMs will be trained and a classifier is added on top of each model. The
detailed process for each research question is provided in section 4.

To avoid introducing bias to the results due to probable differences in the
distribution of the training and test splits, following [12], we will use k-fold
cross validation on each dataset Di separately, where Di represents one of the
seven datasets in our study. We use k-fold cross validation as a more rigorous
approach than splitting the dataset into train and test set once [15]. Also,
this method is used previously for app review classification in the software
engineering domain [71]. In the k-fold cross validation, we split a dataset D
into k equal size disjoint parts/folds D(1), ..., D(k). We then build k classifiers
c(i), each time using k− 1 splits as training and one part D(i) as test set. This
way, each split of the data can be used as test set once. As a result, we will have
k different test set performances. As the datasets in the study are imbalanced,
we will use an alternate option of cross validation called stratified k-fold cross
validation [72, 73]. In this method, the only difference is that the distribution
of the examples from each class in the original dataset is preserved in each
fold D(i). The stratified k-fold cross validation is commonly used in machine
learning practices as it reduces the experimental variance. Therefore, when
comparing different methods, it is easier to identify the best method [72]. We
consider k = 5 as this value has been shown empirically to have test error rate
estimates that do not suffer from high bias or high variance [74]. The value of
k = 5 is also used in previous app review classification studies [12]. For the
evaluation, we use metrics explained in section 3.7. It is worth mentioning that
we apply the stratified 5-fold cross validation on each of the datasets D1–D7

separately. For example, we split D1 into 5 folds D1
(1), ..., D1

(5) and build 5
classifiers for D1. We then compute the evaluation metrics for D1. We continue
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this process for each of the datasets D2–D7 and report the performance on
each of them separately.

Note that the number of labels in the datasets D1 − D6 ranges between
[3,7] and all the considered Prior approaches were designed for multi-class
classification. Therefore, we can retrain and evaluate them using the stratified
5-fold cross validation. Among the Prior approaches, only AR-Miner requires
some adaptation. AR-Miner has three phases: classification of non-informative
reviews, topic modeling of informative reviews, and ranking of the groups
according to their relevance to developers’ applications. As all datasets D1–
D7 are labeled, we will directly utilize the second step to group all the reviews
(from both training and test set) in a dataset into the corresponding number
of labels available. Following the literature [9], we will count the training set
reviews in a resulting group and use the label with the majority count to
annotate the group. This annotation indicates the class that the reviews in
the group belong to. Then, we will examine the group’s test set reviews to
compute the evaluation metrics.

For evaluating the PTMs, for each dataset, we will use the training set to
fine-tune the PTMs and then evaluate them on the test set. We will obtain all
the four PTMs that are pre-trained on general domain corpora from Hugging
Face library6. To build a classifier, a feed-forward dense layer and Soft-max
activation function will be added on top of each model. We follow [15] and [16]
to set the hyper-parameter values. In our work, we set the batch size to 16
and Adam learning rate to 2e − 5. The models are trained for 4 epochs and
AdamW optimizer is used for all models.

We execute all the experiments on a Linux machine with Intel 2.21 GHz
CPU and 16GB memory. For training PTMs from scratch, we use 2 × NVIDIA
Tesla V100 32GB to enhance the parallelization performance.

3.7 Evaluation Metrics

In this section, we describe the evaluation metrics. For all the classifications,
we will use three metrics: Precision (P), Recall (R), F1 score (F1), and their
micro and macro average values. To answer the time efficiency of the models,
we will examine the training time for the Prior approaches and the fine-tuning
time for PTMs. We will also report the prediction times and changes in time
(increase or decrease of time compared to a baseline).

Precision (P): Precision can be calculated by dividing the number of
records that their labels are correctly predicted by total number of predicted
observations in that class: P = TP

TP+FP . Here, TP refers to the number of
records that their label is correctly predicted, and FP refers to the the number
of records falsely predicted to belong to this class. In multi-class classification,
for each group A, all the observations that belong to other labels and are
falsely predicted as group A are added to compute the FP.

6 https://huggingface.co/
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Recall (R): For each group A, Recall can be calculated by dividing the
number of accurately predicted observations in A by the number of all ob-
servations available in the corresponding class: R = TP

TP+FN Here, FN is the
number of observations in class A which are falsely predicted as other labels.

F1 Score (F1): F1 score is the weighted average of Precision and Recall:

F1 =
2 · (P ·R)

P + R
(1)

As we have multi-class classification and the datasets are imbalanced, we
use micro-average and macro-average metrics as follows. Here, the micro-
average calculates the contribution of all records in all classes (therefore the
contribution of the class with the predominant number of records is taken into
account), whereas the macro-average is the average of the values for each class
(therefore, each class contributes equally in the final value). The micro- and
macro-averaged precision (P) are computed as:

Pmicro =

∑m
j=1 TPj∑m

j=1 TPj +
∑m

j=1 FPj
(2)

Pmacro =

∑m
j=1 Pj

m
(3)

TPj and FPj are the number of true positive and false positive predictions
for the j-th class, respectively. Pj is the precision for class j and m is the
number of classes. Similarly, the micro- and macro-average of Recall (R) and
F1 score will be calculated and denoted as Rmicro, Rmacro, F1micro, and F1macro.

As we are using stratified 5-fold cross validation, for each dataset D, we
will report averages of these metrics obtained from each of the k classifiers:

F1avgmicro = 1/k

k∑
n=1

F1micro
(i) (4)

F1avgmacro = 1/k

k∑
n=1

F1macro
(i) (5)

The F1micro
(i) and F1macro

(i) refer to the test performance of classifier c(i)

on held out test set D(i). Similarly, the Pavg
micro, Pavg

macro, Ravg
micro, and

Ravg
macro will be computed.

Following previous works [15], if a model has higher values for both F1avg
micro

and F1avg
macro, we consider it to be better than other models.

Time: To compare the time efficiency, we will report the training time for
other approaches and fine-tuning time for PTMs, and the prediction time of
all the approaches. Prediction time is the time the model requires to process
the test data and predict labels. The time will be measured in seconds and will
be reported for each dataset. A model is considered to be more time efficient
than another if the prediction time is less; as training a model or fine-tuning
a PTM is a one-time process and need not be repeated.
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Time Change in Percentage: We employ all four Prior approaches on
all datasets D1–D7 and choose their best as our baseline approach. In addition
to the Time mentioned above, we will also report the increase and decrease
in percentage for the studied PTMs with respect to the considered baseline
for the measured Time. The reason of reporting this change in percentage is
that time-duration depends on hardware configuration, and percentage change
provides a better understanding about the change in time for the readers.

4 Approach for Research Questions

The following steps will be taken to answer each research question.

4.1 Approach for Research Question 1

For RQ1, we identify the accuracy and efficiency of PTMs compared to Prior
approaches. For this RQ, all Prior approaches and PTMs will be trained and
tested on all of the datasets separately, as explained in section 3.6. We only
consider the reviews (not tweets) from Dataset 2 for RQ1. For each dataset
and approach, all the evaluation metrics described in section 3.7 will be re-
ported. We highlight the best model for each dataset with highest F1avgmicro

and F1avgmacro. The lowest training/fine-tuning and prediction times will also
be highlighted for each dataset, along with the time change in percentages.
We denote the best performing PTM among others as PTM-X to pursue ex-
periments in other research questions. If no PTM achieves the best results
in terms of both micro- and macro- F1 score, the PTM that achieves the
highest F1avgmicro-score (denoted as PTM-XM1) and the PTM with the highest
F1avgmacro-score (denoted as PTM-XM2) will be selected to be studied in RQ2.

4.2 Approach for Research Question 2

In RQ2, we are interested to evaluate the performance of PTMs when they
are pre-trained on domain-specific corpus rather than non-domain-specific cor-
pora. In RQ2, we will use PTM-X (or PTM-X1 and PTM-X2) from RQ1 and all the
seven datasets. We can either pre-train PTM-X using just the domain-specific
app reviews or combine them with the general domain documents to pre-train
PTM-X from scratch. In the first approach, PTM-X with the same architecture
will be trained from scratch on app review sentences. But pre-training PTM-X

on a small number of domain-specific documents has its disadvantages; the
model may overfit our dataset and it can result in performance degradation
in downstream tasks. By pre-training PTMs using both general and domain-
specific datasets, we can avoid this problem. We use the approach of Wada et
al. [17], where we pre-train the PTM-X simultaneously with both general and
domain-specific documents. Following the literature [17], we double the fre-
quency of pre-training domain-specific documents during the optimization on
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the Masked Language Modeling (MLM) task, which is the task the ALBERT
and RoBERTa models are trained on.

To accomplish this, we must increase the frequency of pre-training for MLM
over app reviews. The objective can be achieved by improving the vocabulary
representation of app reviews. Therefore, we use simultaneous pre-training
after the up-sampling introduced in [17]. We create pre-training instances from
a set of corpora with different sizes to pre-train a PTM, as described in Figure
3. Upsampling refers to the copying and pasting the app reviews portion of the
corpus until the predetermined ratio of app reviews and general pre-training
data is achieved; also, we have uniformly mixed the book documents, wiki
documents, and app reviews consecutively to form the pre-training corpus.
With this up-sampling technique, more instances from the small app review
corpus are used for MLM.

Fig. 3 Creating Up-sampled dataset for PTM pre-training tasks

We will pre-train three different PTM-Xs, where we will respectively in-
tegrate 2.8 million, 5.6 million, and 10 million app reviews that we have col-
lected from Google Play, with the general domain documents from Wiki-texts7.
Our collected dataset has app reviews for more than 2000 apps from differ-
ent categories. The dataset includes app name, app category, review, rating,
reply text, and date. This will give us three versions of a domain-specific pre-
trained model which we refer to as Customized PTM-X (CPTM-X). We denote
the three sizes of the CPTM-X as CPTM-Xbase, CPTM-Xmedium, and CPTM-Xlarge, re-
spective to the number of the app review sentences integrated for pre-training.
Finally, we will fine-tune all the CPTM-Xs on the seven datasets according to
the steps and evaluation metrics explained in sections 3.6 and 3.7. The best
CPTM-X will be used in RQ3.

4.3 Approach for Research Question 3

We have used both the readily available PTMs and our CPTM-X in differ-
ent settings for evaluating RQ3. We are considering four different settings to
determine the PTMs’ capacity regarding app review analysis.

7 The Wiki-texts dataset is open sourced at https://dumps.wikimedia.org/.
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4.3.1 Binary vs. Multi-Class Setting

Previous studies have shown that the pre-trained Transformer based models
deviate from their original performance when the classification task involves
multiple classes instead of binary classes [75, 76]. Studies on app review clas-
sification also show that binary classification yields better results [57,77]. We
are, therefore, interested in evaluating the performance of the PTMs in both
binary and multi-class settings, especially, investigating the performance of
CPTM-X. We will investigate the accuracy and time efficiency of PTMs for bi-
nary classification compared to the original multi-class settings. We convert all
the seven datasets into binary-class datasets by randomly choosing one class
(i.e. label) for each dataset and switching all the other labels in that dataset
into ”Others”. Then, we will use these modified datasets to regenerate the
PTM and CPTM results for the binary classification task on each dataset.
The four PTMs and CPTM-X will be used to record the evaluation metrics. All
other steps will remain similar to RQ1.

4.3.2 Zero-Shot Classification Setting

The Zero-Shot Learning (ZSL) that we will investigate in our study is the
recent approach in which we evaluate the models on fully-unseen labels. In
this setting, we assume that the system is never trained on any labeled data
for the task we are interested in, which is different from some ZSL settings in
which labels are partially seen by the model. The setting we choose here is
more realistic and can provide insights about the potential benefits of PTMs
in practice, where the developers might want to use the same model to derive
new unseen aspects of the dataset. Using PTMs for this kind of zero-shot
classification requires different training.

For ZSL, we will explore the method proposed by Yin et al. [19] in which
classification is considered as a Natural Language Inference (NLI) task. This
approach determines the compatibility of two distinct sequences by embedding
both sequences and labels into the same space. In NLI, a pair of sentences are
considered: “premise” and “hypothesis”; and the task is to predict whether
the “hypothesis” is an entailment of “premise” or not (contradiction). We
follow the steps in [19] to prepare the datasets and models and set up our
study for ZSL. We will use the reviews as “premise” and candidate labels as
“hypothesis”. For Example, for the app review “Please add a back button in
the armory page.” and its label “Feature Request”, we use the review as a
premise and the label as hypothesis. So, the NLI model can predict whether
the hypothesis is an entailment of the premise or not. This prediction will
be compared to the actual labels for the reviews to calculate the evaluation
metrics. If the NLI model correctly predicts the hypothesis as an entailment
of the premise, it is recorded as a True Positive. On the other hand, if the
NLI model predicts the hypothesis as contradiction or neutral to the premise,
it is recorded as a False Negative. If the NLI model predicts the hypothesis
as contradiction or neutral, where the hypothesis is actually an entailment,
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we refer to this as False Positive (FP). On the other hand, if the NLI model
predicts the hypothesis as contradiction or neutral, where the hypothesis is
actually contradiction or neutral, it is regarded as True Negative (TN).

We fine-tune CPTM-X on NLI dataset8 and test it on the seven datasets to
determine how well PTMs can classify issues from app-reviews without being
trained on them. Note that Multi-NLI data does not contain app reviews.
In addition, we use RoBERTa-large-nli9, which is a readily available fine-
tuned model for zero-shot classification 10. This will provide insights about
using a custom PTM trained on app reviews and the PTM trained on general
purpose corpora in a zero-shot setting.

4.3.3 Multi-Task Setting

Research has confirmed that when a new classification task (e.g. sentiment
classification) is introduced, a new model should be trained and the models for
another classification task (e.g. app issue classifiers) cannot be applied for this
new task [12]. In addition, the same model or classification technique can have
different performances on various analysis tasks. For example, Hemmatian and
Sohrabi found Naive Bayes (a probabilistic classifier) to be performing better
than Decision Tree (a non-probabilistic classifier) for sentiment classification
tasks [78]; on the other hand, Maalej et al. reported that using Bag-of-Word
technique and Decision Tree outperformed Naive Bayes for app issue classifi-
cation task [57]. Therefore, we are interested in evaluating the performance of
PTMs in both app issue classification and sentiment analysis task settings. In
sentiment analysis, the task is to classify the sentiment of a given review into
positive, neutral, or negative polarities [15], which is different from the app is-
sue classification. In this setting, we will evaluate the PTMs and CPTM-X on the
new task of sentiment classification for app reviews. We fine-tune these models
on the sentiment classification dataset and test them for sentiment classifica-
tion. This set up will help evaluating whether the models trained for app issue
classification can be applied for another task, thus providing insights about
the multi-task ability of the PTMs. For the sentiment classification, we will
use another dataset11 that consists of 37,185 app reviews with three sentiment
polarity labels: positive (13,758), neutral (9,993), and negative (13,434).

We have gone beyond sentiment classification and implemented the PTMs
for category classification as well. The same Kaggle datasets also contains
category information for 20,955 app review. The number of user reviews in
this categories are: Family (18.9%), Games (50.3%), Tools (12.5%), Medical
(10.7%), and Business (7.6%). As it is an imbalanced dataset, we use stratified
K-fold cross validation for maintaining uniformity with other experiments.
The experimental settings and evaluation metrics we will use are similar to

8 https://cims.nyu.edu/ sbowman/multinli/
9 https://huggingface.co/joeddav/xlm-roberta-large-xnli

10 We only use the readily available PTMs for this study and avoid fine-tuning other PTMs
on Multi-NLI data in this setting, due to high computational expenses.
11 https://www.kaggle.com/lava18/google-play-store-apps
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RQ1. The results will determine how these models perform for a different
classification task in the same domain (app reviews).

4.3.4 Multiple Resources

The distribution of the data from multiple resources varies and models built for
App Stores are not suitable to classify user feedbacks from another resource
such as Twitter [79]. In this setting, we will study the accuracy and time
efficiency of the PTMs for the classification of data collected from multiple
resources. For this experiment, Dataset 2 will be used as it contains App
Store reviews and Twitter data with the same labels. First, we will fine-tune
the PTM-X and CPTM-X on App Store reviews of Dataset 2 and report the
evaluation metrics (training steps are similar to RQ1) when tested on Twitter
data. In addition, we will fine-tune the PTM-X and CPTM-X on Twitter part
of Dataset 2 and report the results when tested on App Store reviews. This
way, we will gain insights about the PTMs’ capacity to classify app reviews
collected from different resources on which the PTMs were not fine-tuned on.
The evaluation metrics used here are explained in section 3.7. To have a
comparison, we also test the Prior approaches for this setting. From the Prior
approaches, AR-Miner does not require training. For the other approaches, we
train them on the App Store reviews of Dataset 2 and test them on Tweets
in Dataset 2.

5 Results

In this section, we present the results of our experiments for each of the re-
search questions. Note that we have computed all the scores (micro- and macro-
scores of P, R, F1) and the training and prediction times for all of the models
for each dataset. But due to the large number of experiments, we bring all
tables in the appendix. In the following, we only discuss the the F1- scores in
addition to the prediction time. The full results are shown in Tables 3 and 4
for RQ1, Tables 5 and 6 for RQ2, Tables 7 and 8 for RQ3.1, Table 9 for RQ3.2,
Table 10 for RQ3.3, and Table 12 for RQ3.4 in the appendices.

5.1 RQ1: Accuracy and Efficiency of PTMs Compared to Prior approaches

Fig 4 shows the micro-F1 scores for Prior approaches and PTMs, where the
performance of all models are shown for each dataset. Among the Prior ap-
proaches, DL+WE is the best performing model, followed by Ensemble ap-
proach. Only for D5, which has the lowest number of app-reviews, the En-
semble method has better scores than DL+WE. We conjecture that this low
number of reviews favored the Ensemble model to enhance the prediction per-
formance of participating classifiers. For the cumulative dataset (Dataset 7 ),
DL+WE improves the results of Ensemble Method, SUR-Miner and AR-Miner
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Fig. 4 PTM and Prior Performance (micro-F1 score)

by ∼8%, ∼20%, and ∼40%, respectively. So, we have selected DL+WE as our
baseline from Prior approaches.

Among the PTMs, on most datasets ALBERT and RoBERTa achieve the
highest F1-micro and F1-macro scores. The F1-micro results of these PTMs are
higher than the best Prior Approach and other PTMs for all datasets, except
that BERT outperforms other models for D3. The Ensemble and DL+WE
approaches can match the performance of some worse performing PTMs in
the respective Dataset, such as DL+WE outperformed BERT on Dataset 2.
The other Prior approaches (i.e., AR-Miner and SUR-Miner) have significantly
lower scores than the PTMs for all Datasets. The performance of XLNET
varies compared to Prior approaches. For some datasets such as D1, D4, and
D5, it has comparable or lower micro-F1 compared to Ensemble and DL+WE ;
but for D7 it has higher scores. RoBERTa performs best on all metrics for
Datasets 4 and 6, and yields best micro-average scores for D5. These three
datasets have the least number of app reviews. On the other hand, ALBERT
performs best on Datasets D1 and D2, the two datasets with the highest
number of app reviews. For the cumulative dataset (Dataset 7), RoBERTa
outperforms the other PTMs on micro-scores, XLNET has the highest macro-
scores, and the other PTMs have relatively close results.

For D3, the established order of PTM’s performance persists (RoBERTa
>ALBERT >XLNet), except for the performance yielded by BERT. BERT
outperformed the other three PTMs by a small margin for this dataset (∼1.5%
to ∼4.5%). D3 has 4,000 records with six labels, for which the ‘Other’ class has
more than 2,000 records. In other words, the models learn about 5 classes from
a small portion of reviews. When we further analyzed the confusion matrices
of ALBERT and RoBERTa for D3, we find that the main reason for dropping
their performance in this dataset is that they predict the records of the ’Other’
class wrong, but their prediction for the other five classes are mostly correct.
So, the False Negative predictions are higher and this is also confirmed by
having higher precision than recall for these models in D3. This is in contrast
for D1. Dataset 1 has a large number of records (15,290) labeled as ’Other’
out of 34,000 records. The rest of this dataset is labeled by 4 other classes.
Therefore, in D1, the number of available reviews per label is much higher
than the number of reviews for each label in D3, and the two PTMs perform
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better as they learn the features for each class. That being said, still, ALBERT
and RoBERTa have F1-micro scores of over 85% and F1-macro of over 83% for
D1 and D3. The score of most models for D6 is their lowest. This is also due
to the specific characteristics of this dataset, where it has the lowest number
of records per label.

As both RoBERTa and ALBERT have the highest or second highest scores
in maximum number of datasets, we choose these two PTM models as the best
performing ones to pursue with the next research questions. Here, these two
PTMs will be our PTM-X models and are chosen for training from scratch
to develop CPTM-X (Custom PTMs). We refer to these Custom PTMs as C-
ALBERT and C-RoBERTa.

Fig. 5 PTM and Prior Prediction Time (seconds)

Fig 5 illustrates the prediction time for Prior and PTM approaches in
seconds. AR-Miner uses topic modeling to predict the labels/classes; so, the
prediction time is not reported for AR-Miner. From Fig 5, we can see that both
Prior and PTM approaches follow a similar trend, and their prediction times
are related to the size of the dataset, i.e., the larger the size of the dataset,
the longer the prediction time is.

Among the Prior approaches, our previously selected baseline DL+WE
yielded the least prediction time on 3 datasets (D1, D4, and D7), whereas
SUR-Miner method’s prediction time is the least for rest of the datasets (D2,
D3, D5, and D6). Among the PTMs, ALBERT consistently yields the least
prediction time for all the datasets. On the other hand, the prediction time
for XLNet is the highest for all datasets.

In the last column of Table 4 (Time-Diff (%)), we have included the per-
centage change of the prediction times of PTMs with respect to the prediction
time of the Prior approach that has the lowest time. For example, for D1,
the Time-Diff (%) for PTMs are calculated based on the prediction time of
DL+WE ; and for D2 it is calculated based on the prediction time of SUR-
Miner. For all datasets except D7, the prediction time of PTMs compared to
the best Prior Approach increases by 0.49% to ∼500%. For D7, BERT and
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ALBERT predicted the classes ∼ 3% and ∼ 22%, respectively, faster than the
fastest Prior approach (DL+WE ). For D7, RoBERTa increases the time by
0.15% and XLNET increases the time by ∼89%.

Findings of RQ1

PTMs are generally superior to Prior approaches when predicting
classes with higher scores across all datasets. The two candidates for
the best PTMs we choose are ALBERT and RoBERTa, as they invari-
ably perform well across all dataset sizes. Based on the time taken for
prediction, DL+WE took the shortest amount of time among all Prior
and PTM approaches, and ALBERT has taken the shortest amount of
time among the PTM approaches.

5.2 RQ2: Domain-Specific PTMs vs. General PTMs

Fig. 6 Performance of Custom PTMs (micro F1 score)

Fig 6 shows the performance of C-ALBERT and C-RoBERTa after they
are pre-trained on domain-specific app-reviews along with general domain cor-
pora. In CPTM-X-Base, we have incorporated 2.8 million app reviews during
pre-training. For CPTM-X-Medium and CPTM-X-Large, we have increased the
number of app reviews during pre-training to 5.6 million and 10 million, re-
spectively. From the result, we can see that all the Custom PTMs performed
better in all datasets than their corresponding out-of-the-box PTMs. We also
find that increasing the number of app reviews in pre-training corpora helps
boost the performance of Custom PTMs.

ALBERT has lower F1-micro scores for datasets D3 and D4. After pre-
training with app reviews, we notice that all C-ALBERT models (i.e., C-
ALBERT-BASE, C-ALBERT-MEDIUM, and C-ALBERT-LARGE) have sig-
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nificantly better predictions for both of these datasets (∼ 5% to ∼ 13% im-
proved performance). Although this is not the case for D6, all C-ALBERT
models still improve their performances. We relate this to the low number of
reviews per class in D6. The Custom PTMs produce better predictions than
their readily available counterpart. C-RoBERTa models also have better per-
formance, yielding up to 15.2% increase in performance over RoBERTa. As
seen in Fig 6, C-RoBERTa improves RoBERTa’s F1-micro scores for datasets
D1–D4, where RoBERTa has scores of below 95. There is none to little fluc-
tuation in prediction time for all the Custom PTMs.

Findings of RQ2

Incorporating domain-specific data (i.e., app reviews) during pre-
training of the PTMs improves their performance for app review classi-
fication, and slightly improves the prediction time of CPTMs compared
to PTMs. The performance of the models benefits from incorporating
more domain-specific data in the pre-training.

5.3 RQ3: Experimenting PTMs in Different Settings

5.3.1 RQ3-1: Binary vs. Multi-class Setting

We report the binary classification results in Tables 7 and 8 for RQ3-1. The
multi-class classification results of the PTMs and CPTMs are previously re-
ported in Table 3 to Table 6. The micro- and macro- scores were calculated
for accommodating the existence of multi-class in our datasets, which is no
longer the case after we converted each multi-class datasets into binary class
datasets.

The randomly selected classes for D1 to D7 are Bug-Report, Inquiry, Re-
liability, Feature Requests, App Problem, Bug-Report, and Aspect Evaluation,
respectively. All the other classes in these datasets are labeled as Other or
Irrelevant.

From the results in Table 7 and Table 8 we observe that both Prior and
PTM approaches have performed better in binary classification compared to
multi-class classifications. The improvement for the Prior approaches ranges
from 0 (for AR-Miner) to ∼3.2%. On the other hand, the improvement for the
PTM approaches ranges from 1 to ∼7.7%. All the PTM approaches yielded
better performance for binary classification than they did for multi-class clas-
sifications and we observe that readily-available PTMs’ performance boost is
similar to the performance boost produced by the Custom PTMs.
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5.3.2 RQ3-2: Zero-Shot Setting

We report Precision, Recall, and F1 score for zero-shot classification results
in Table 9. As in this setting, we are not fine-tuning our model on a portion
of our considered Datasets D1 to D7 (rather, we are fine-tuning our PTMs on
a separate NLI dataset), we no longer require cross validation over multiple
folds.

In this setting, we anticipate lower performance because our PTM mod-
els do not have any exposure to any instances of the datasets to fine-tune
on. In this experiment, we use AR-Miner as the baseline to compare the re-
sults of this setting for PTMs and CPTMs. AR-Miner is chosen as it is a
topic modeling based approach that does not require seeing the label before-
hand. The other models from Prior approaches are not considered here as
all of them are supervised machine learning or deep learning techniques that
require training with the labels beforehand. The C-RoBERTa-LARGE-NLI
and C-ALBERT-LARGE-NLI are the CPTMs that are pre-trained on 10 mil-
lion app reviews (See RQ2). Overall, in D7, RoBERTa-LARGE-MNLI yielded
best performance (71%). We observe that RoBERTa-based models achieve
higher scores compared to ALBERT-based PTMs. Results of AR-Miner vary
between 36% and 44% F1 score for the datasets, and AR-Miner has closer
results to ALBERT-NLI. For D5, ALBERT-NLI yielded a ∼37% F1 score,
which is ∼5% worse than the performance of AR-Miner. For Datasets D1

to D7, the PTMs yield on an average 45.875%, 44.425%, 43.125%, 43.225%,
46.45%, 38.8%, 42.725% less F1 score than their counterparts in RQ1. All
PTM approaches outperformed AR-Miner, the only prior approach capable of
zero-shot classification, except in D5 for ALBERT-NLI. The Custom PTMs
in all cases improve the results by approximately 10 F1 scores in all datasets.
Similar to previous RQs, the ALBERT-based model has a lower prediction
time.

5.3.3 RQ3-3: Multi-task Setting

In Tables 10 and 11, we report the micro and macro Precision, Recall, and F1
score and the training and prediction times for two classification tasks in the
app review domain: category classification and sentiment classification.

Among all the PTMs, C-ALBERT-LARGE yielded the best result for
category classification tasks with micro-average F1 scores of ∼91% and C-
RoBERTa-LARGE yielded the best result for sentiment classification tasks
with micro-average F1 scores of ∼93%, respectively.

BERT, ALBERT, RoBERTa, and XLNET performed 2.4%, 1.8%, 7.5%,
and 4.3% worse for category classification, respectively; they performed 1.1%,
0.1%, 5.5%, and 0.9% worse for Sentiment classification task, respectively
with respect to their averaged micro-F1 scores over 7 datasets, in Table 4.
C-ALBERT-BASE, MEDIUM, and LARGE performed 4%, 2.7%, and 2.4%
worse for category classification, respectively, compared to their averaged micro-
F1 scores over 7 datasets, in Table 4; they performed 2.8%, 3.4%, and 2.3%
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worse for the sentiment classification task, respectively with respect to their F1
scores averaged over 7 datasets, in Table 5. On the other hand, C-RoBERTa-
BASE, MEDIUM, and LARGE performed 4.1%, 5.9%, and 6.2% worse for cat-
egory classification, respectively; they performed 1.5%, 2.3%, and 3.3% worse
for the sentiment classification task, respectively with respect to their F1 scores
averaged over 7 datasets, in Table 6. For both classification tasks, we observe
that the custom PTMs achieve higher scores compared to the PTMs, showing
that although the task is different (e.g., sentiment analysis vs. app review clas-
sification), they still benefit from pre-training the models on the same domain
(app reviews).

5.3.4 RQ3-4: Multi-resource Setting

Dataset D2 contains labeled app reviews from two different sources: App Store
and Twitter. In the previous results (Table 3 to 10), we have not incorporated
app reviews collected from Twitter. Here, we use the reviews from both App
Store and Twitter from D2.

Training on App Store App-reviews and Testing on Twitter. In
the first part of this setting, we fine-tuned all the available approaches (except
for AR-Miner) on app reviews from App Store and tested them on app reviews
collected from a different resource, i.e., Twitter. The results are available in
Table 12. Being a topic modeling approach, AR-Miner does not require any
supervised training.

C-RoBERTa-LARGE achieves the best score among all the considered ap-
proaches for this setting, in terms of F1 score (0.86). From the previous ap-
proaches, DL+WE approach scored higher than the readily available PTMs,
and all Custom PTMs, except C-RoBERTa-LARGE. It also beats the C-
ALBERT-LARGE by 1% F1 score. The Ensemble method surpassed only
readily available PTMs and closely matched the performance of C-ALBERT-
MEDIUM. AR-Miner and SUR-Miner have the lowest scores among the Priors,
and, we do not observe a big reduction in their performance with respect to
single-resource setting, in terms of F1 scores. These approaches have scored
(∼5%) and (∼2%) less in multi-resource setting than their single-source coun-
terparts.

Compared to the setting where PTMs are evaluated only on app reviews
from App Store, we observe ∼13% to ∼31% performance reduction for micro-
F1 scores. This performance reduction is less for Custom-PTMs. Among the
Custom ALBERT models, the C-ALBERT-LARGE model produced the best
micro-F1 score of 0.80 (∼25% reduction) and C-ALBERT-BASE model pro-
duced the least micro-F1 score of 0.71 (∼21% reduction). The C-RoBERTa
group has less reduction compared to C-ALBERT models, where the C-RoBERTa-
LARGE produced the best micro-F1 score of 0.86 (∼15% reduction) and C-
RoBERTa-BASE model produced the least micro-F1 score of 0.77 (∼15% re-
duction) among all C-RoBERTa models.

Training on Twitter and Testing on App Store App-reviews. In the
second part of this setting, we trained/fine-tuned all the available approaches
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(except for AR-Miner) on Twitter and tested them on app reviews collected
from a different resource, App Store. The results are available in Table 13.

C-RoBERTa-LARGE achieves the best score among all the considered
approaches for this setting, with an F1 score of 0.92. From the previous
approaches, the DL+WE approach scored higher than the readily available
PTMs in this setting. Here, it could not surpass the C-ALBERT-LARGE
but beat the C-ALBERT-MEDIUM by 1% F1 score. The Ensemble method
outperformed only readily available PTMs and C-ALBERT-BASE from the
Custom PTMs. AR-Miner and SUR-Miner have the lowest scores among the
Priors, which have scored (∼10%) less and (∼2%) more in multi-resource set-
ting than their single-source counterparts, respectively. SUR-Miner beat the
BERT in this setting by ∼4%.

Compared to the setting where PTMs are evaluated only on app reviews
from App Store, we observe ∼9% to ∼30% performance reduction for micro-
F1 scores. This performance reduction is less for Custom-PTMs. Among the
Custom ALBERT models, the C-ALBERT-LARGE model produced the best
micro-F1 score of 0.87 (∼8% reduction), and C-ALBERT-BASE model pro-
duced the least micro-F1 score of 0.74 (∼18% reduction). The C-RoBERTa
group has less reduction compared to C-ALBERT models, where the C-RoBERTa-
LARGE produced the best micro-F1 score of 0.92 (∼5% reduction) and C-
RoBERTa-BASE model produced the least micro-F1 score of 0.78 (∼14% re-
duction) among all C-RoBERTa models. The smaller performance reduction
for the models in this part, compared to when models are trained on App Store
data and tested on Twitter data, could be related to the size of the training
data. The dataset D2 has a higher number of labeled tweets (∼ 10K) than the
app reviews from App Store (∼ 6.5K).

The prediction times of all Custom PTMs are lower than Prior approaches
in this setting.

Findings of RQ3

1. Both Prior and PTM models yield better performance for binary
classification tasks than they do for multi-class setting.

2. PTMs are the best choice for zero-shot classification setting and
Custom PTMs, though having less score than the large RoBERTa-
MNLI model, improve the results of their non-domain specific mod-
els by approximately 10 F1 scores.

3. For multi-task and multi-resource settings, the readily available
PTMs and Custom PTMs showed the same trend as demonstrated
in RQ1 and RQ2, that is: Readily Available PTM < Custom-BASE
< Custom-MEDIUM < Custom-LARGE.

4. RoBERTa-based Custom PTMs have the best scores among all
models. They also have lower prediction times in the multi-resource
setting compared to Prior approaches.
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6 Discussions

6.1 Implications For Users

In the following, we discuss our findings and implications for the users12.

Prior approaches: Deep learning with word embedding can be used
for app issue classification when one does not want to use PTMs.
From the Prior approaches, Deep Learning Technique leveraging Word Em-
bedding (DL+WE) generated the best results for predicting the correct classes
of app reviews (RQ1), followed closely by the Ensemble Method. DL+WE also
took the least amount of time to predict the classes, whereas SUR-Miner took
the second least amount of time. However, if no labels are available to train the
mentioned models, AR-Miner should be used, which utilizes topic modeling to
separate the classes of app reviews.

Prior approaches vs. PTMs: If the prediction time does not mat-
ter much but high performance is required, PTMs should be used to
classify app issues. From the results of RQ1, we observed that all PTMs
outperformed the Prior approaches (except for 1 out of 28 cases) to predict
classes accurately. RoBERTa and ALBERT scored the highest F1 scores in
most of the datasets among D1 to D7. Compared with the fastest prior ap-
proach, ALBERT has the lowest, and XLNET has the highest increase in
prediction time. Consequently, it is worth applying PTMs for app-review clas-
sification if the developer, researcher, or software engineer can spare marginally
additional time to achieve higher prediction scores.

Prior approaches vs. PTMs: PTMs can be used for all settings
when higher performance is required, except for multi-resource set-
ting, where the deep learning model with word embedding has better
scores. For the multi-class classification (RQ1), PTMs perform significantly
better than the Prior approaches for most datasets. For Dataset D2, the dif-
ference in the scores among the two groups is not much, but when we consider
D7, the results of PTMs are almost 10 F1 score higher than the best Prior
Approach. The prediction times also vary, but, some PTMs can predict the
labels at approximately the same time as the best Prior approaches (Ensem-
ble and DL+WE). For binary classification, the best Prior approaches achieve
scores of below 90% and mostly in the low 80% F1 score. But, the F1 scores of
PTMs are mainly above 90% and the Custom PTMs have even higher scores.
However, for multi-resource setting (RQ3-4), the Ensemble and DL+WE have
better F1 scores than all PTMs, but not higher than CPTMs. This result is
interesting, showing that the learned knowledge about the app review domain
for issue classification is important in this setting, no matter if the model is
trained on App Store data and tested on Twitter data, or vice versa. This is
confirmed by the obtained results of the C-RoBERTa-LARGE, which have the
highest scores among all models in this setting.

12 Here, users can be developers, practitioners, or researchers who want to use the studied
models to classify issues related to mobile apps from user feedbacks.
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Binary vs. Multi-class: When possible, the classification task should
be turned into a binary classification to achieve higher scores. All
PTMs and Prior approaches performed better in binary classification than in
multiclass classification. From Tables 7 and 8 , we observe that converting or
trimming a multi-class dataset to a binary class dataset help all the prior and
PTM approaches to yield better performance. Prior approaches are improved
by 0 to ∼3%, whereas the gain for the PTMs ranges from 1 to ∼7%. For binary
classification, all PTM approaches performed better than they did for multi-
class classifications, and the performance boost produced by readily-available
PTMs is proportionate to the performance boost produced by Custom PTMs.

Zero-shot: In a zero-shot setting, the Roberta-based Custom PTMs
or RoBERTa-LARGE-MNLI can be used to classify app issues. All
PTMs can be implemented in a Zero-Shot setting and yield adequate perfor-
mance. The only Prior approach that can be used directly in this setting is
AR-Miner which is based on topic modeling. All the readily available and Cus-
tom PTMs are fine-tuned on NLI dataset for Inference classification task. Due
to the fact that these PTM models had not been exposed to any instances of the
datasets in our study in the zero-shot setting, they are expected to perform
worse than their reported performance in Tables 4, 5, and 6. The Custom-
PTMs pre-trained with domain-specific knowledge could not outperform the
readily available RoBERTa-LARGE-MNLI. This can be related to the dataset
used for its training, which is a much larger dataset than the NLI datasets we
used to train our PTMs. Although the CPTMs cannot beat the RoBERTa-
LARGE-MNLI model, it is notable that these CPTMs are smaller models and
the RoBERTa-LARGE-MNLI model is a very large language model; but still,
the CPTMs we studied achieve significant improvements compared to their
general domain PTMs in this setting.

Custom PTMs vs. PTMs: Custom PTMs are the best models
among all that should be used to achieve better prediction scores
with lower prediction times. Customized PTMs that are pre-trained with
the app review data have the best performance in all settings: binary classifi-
cation, multi-class classification, multi-task, and multi-resource setting. Even
for zero-shot setting, they perform better than all the other models (except for
RoBERTa-LARGE-MNLI which is trained on a much larger NLI data). The
benefit of using Custom PTMs, specifically RoBERTa-based ones, compared
to PTMs, is more obvious for the multi-task and multi-resource setting in
RQ3-3 and RQ3-4. Interestingly, the PTMs do not perform well in the multi-
task and multi-resource setting, while CPTMs have the highest scores. The
PTMs in these two settings perform lower than the Ensemble and DL+WE
models. But, the best CPTMs achieve scores of above 90% for multi-task and
86% and 92% F1 score for multi-resource. Other than achieving the best score,
CPTMs have the lowest prediction time among all models for multi-class clas-
sification, multi-task, and multi-resource settings. They also achieve the lowest
prediction time for some of the datasets in binary classification. Our results
for RQ3-4 confirm that using over-the-shelf PTMs might not be the best op-
tion when classifying issues for app reviews in all settings. PTMs can still
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have good performance in binary and multi-class classification. But for harder
scenarios (i.e., zero-shot, multi-task, and multi-resource), pre-training them
with domain-specific data increases their performance and reduces their pre-
diction time. Moreover, the more app review data is used in the pre-training
of CPTMs, the better their performances are.

6.2 Implications For Researchers

Training Custom PTMs: Research for incorporating app review data
in the pre-training of the current PTMs is needed. The inclusion of
app reviews in the pre-training corpus allows PTMs to classify user feedbacks
with higher F1 scores. We have pre-trained three models of both ALBERT
and RoBERTa with three different sizes of corpora. This experiment found
that more domain-specific information during the pre-training helps the newly
trained PTMs yield better predictions of app reviews. C-ALBERT and C-
RoBERTa models can improve the ALBERT and RoBERTa scores for up to
∼13% and ∼14%, respectively. Here, we followed the work of Wada et al. [17] to
incorporate app review data for pre-training of the PTMs. However, there are
multiple research on training the PTMs with the domain-specific data [22,137].
Other approaches can be investigated for domain-specific models that achieve
higher scores in the settings of RQ3.

Multi-class Classification and Zero-shot Settings: Research needed
to build models that perform better in multi-class and zero-shot set-
ting. Our results showed that the studied models perform better in a balanced
binary classification setting, rather than an imbalanced multi-class setting.
This suggests that more research is needed to develop models that perform
better when multiple labels are available and the dataset is imbalanced. More-
over, researchers can work on a method to increase the performance of the
models when classifying with new labels that the model has not seen are re-
quired.

7 Threats to Validity

Internal Validity. A possible internal validity can be related to the obtained
results. To mitigate this threat, we use stratified k-fold cross-validation to
avoid the bias that might be introduced to the results by the test set. In
addition, to mitigate threats to the validity of the results, hyper-parameter
values are kept the same for all PTMs and Deep learning models in all the
fine-tuning steps. Also, we prevent overfitting by using early stopping and
higher dropout rate. We also keep the values of alpha and beta for LDA as
reported in AR-Miner. We run all the experiments on a single machine, and we
report the machine configuration to enforce the reproducibility of the results.
Furthermore, we consider the same metrics to compare the PTMs with Prior
approaches. Along with the generated raw duration, we also provide the change
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of time in percentage as compared to the baseline. Our adopted stricter micro
and macro-metrics diminish the ambiguity while providing comparisons among
the considered approaches’ associated results.

Construct Validity. The selection of the Prior approaches and PTMs
can pose a validity threat to our study. We identified the four most com-
mon approaches as priors by examining the highly practiced methods, tools,
and techniques employed by researchers and application developers. The con-
sidered approaches include different Machine Learning algorithms, Ensemble
methods, and Deep Learning Approaches for app issue classification tasks and
are selected after conducting a literature review. The PTMs were adopted by
following previous study [15] that conducted an empirical study on PTMs per-
formance for sentiment analysis in Software Engineering. Additionally, we pre-
trained transformer-based models by incorporating app-review-related datasets
with the previously used generic dataset to better understand the potential
of domain-specific PTMs (CPTM-X) for app issue classification. Another threat
to the study can be related to dataset D7. This dataset is a merge of other
datasets and has labels borrowed from them. Although we consulted the def-
initions of the labels from their publishers, there might be a chance that the
samples in one group of a dataset are closely related to the samples from an-
other label of another dataset, thus, affecting the results. We mitigate this
threat by combining labels from different datasets that have similar names.
We also used stratified k-fold cross validation to alleviate potential threats.

External Validity. In this study, we empirically study the ability of the
PTMs in issue classification of app reviews. The app review classification
mainly focuses on extracting useful information in the context of software
engineering; which can be used by app developers for requirements engineer-
ing, release planning, and other tasks as mentioned in the paper. Our study
is therefore limited to app review classification for software engineers and we
do not study PTMs for other purposes such as finding issues from business
perspectives [80], product reviews [81], and applications such as intention min-
ing [82]. We also do not study the summarization of relevant issues from app
reviews. However, we conduct our study on six different datasets. In addition,
by merging them, we run experiments on D7 which has multiple classes cover-
ing different aspects of apps useful for app developers. Another threat in the
generalizability of the results lies in different tasks we considered. We mitigate
this threat by studying the sentiment classification and category classification
of app reviews in the multitask setting. Although PTMs might be useful for
other tasks, we do not study them in this work. To ensure the generalizability
of our study in the specified scope, we have incorporated datasets that include
app reviews from diverse app categories and from two platforms i.e., Google
Play and Apple App Store. The datasets have various sizes and different labels.
In addition, we experiment on issue classification from another platform, i.e.
Twitter, which has been shown to require different models than App Stores
due to the differences of the platforms, noise data, and user feedback.
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8 Conclusion

We conducted an extensive exploratory study comparing app issue classifica-
tion tools and pre-trained Transformer-based models in various settings. We
conducted the experiments on six available datasets and a highly imbalanced
dataset, which is a combination of the six datasets. Domain-specific PTMs
were trained using different sizes of app review data we collected from Google
Play and these customized PTMs were also studied here. Our results confirm
that PTMs are achieving higher scores in binary and multi-class classification
compared to Prior approaches, but the over-the-shelf PTMs are not always
the best models to be used in all scenarios. Instead, CPTMs have the high-
est scores and are able to perform better than other models in all settings.
Moreover, incorporating app specific data in the pre-training of PTMs reduces
the prediction time. One of the future directions of this research is assessing
domain-specific PTMs in other areas of app reviews and exploring ways to
increase performance in zero-shot setting.
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Table 3 RQ1 results for Prior approaches. The best scores for each dataset are shown in
bold.

Micro-avg Scores Macro-avg scores
Training
Time (s)

Prediction
Time (s)

P R F1 P R F1

Dataset-1

AR-MINER 0.36 0.36 0.36 No micro or macro average 261.71 NA

SUR-MINER 0.57 0.56 0.56 0.53 0.47 0.5 105.31 21.06

Ensemble 0.71 0.7 0.7 0.7 0.6 0.65 115.84 23.17

DL+WE 0.84 0.71 0.77 0.83 0.67 0.74 99.62 14.23

Dataset-2

AR-MINER 0.49 0.32 0.39 No micro or macro average 81.17 NA

SUR-MINER 0.6 0.55 0.57 0.65 0.51 0.57 27.18 3.88

Ensemble 0.8 0.69 0.74 0.7 0.66 0.68 29.9 4.98

DL+WE 0.93 0.84 0.88 0.94 0.84 0.89 26.31 5.26

Dataset-3

AR-MINER 0.44 0.36 0.4 No micro or macro average 74.62 NA

SUR-MINER 0.62 0.63 0.62 0.59 0.53 0.56 19.33 3.22

Ensemble 0.77 0.75 0.76 0.69 0.71 0.7 21.46 4.29

DL+WE 0.86 0.84 0.85 0.77 0.72 0.74 19.74 3.95

Dataset-4

AR-MINER 0.45 0.33 0.38 No micro or macro average 71.96 NA

SUR-MINER 0.63 0.58 0.6 0.55 0.53 0.54 11.74 2.35

Ensemble 0.84 0.74 0.79 0.82 0.7 0.76 13.5 2.7

DL+WE 0.87 0.76 0.81 0.85 0.73 0.79 12.29 2.05

Dataset-5

AR-MINER 0.53 0.35 0.42 No micro or macro average 57.02 NA

SUR-MINER 0.62 0.54 0.58 0.57 0.56 0.56 9.11 1.3

Ensemble 0.86 0.76 0.81 0.84 0.81 0.82 10.93 2.19

DL+WE 0.84 0.75 0.79 0.83 0.81 0.82 9.73 1.62

Dataset-6

AR-MINER 0.47 0.41 0.44 No micro or macro average 71.91 NA

SUR-MINER 0.58 0.52 0.55 0.6 0.57 0.58 10.07 1.44

Ensemble 0.75 0.73 0.74 0.85 0.81 0.83 11.98 1.71

DL+WE 0.77 0.76 0.76 0.86 0.82 0.84 10.3 1.47

Dataset-7 Merged Dataset

AR-MINER 0.49 0.34 0.4 No micro or macro average 401.57 NA

SUR-MINER 0.66 0.55 0.6 0.64 0.6 0.62 156.54 31.31

Ensemble 0.76 0.7 0.73 0.79 0.76 0.77 176.89 29.48

DL+WE 0.84 0.78 0.81 0.82 0.74 0.78 155.66 25.94
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Table 4 RQ1 results for PTMs. The best scores for each dataset are shown in bold.

Micro-avg Scores Macro-avg scores
Training
Time (s)

Prediction
Time (s)

Time-
diff
(%)

P R F1 P R F1

Dataset-1

BERT 0.79 0.74 0.764 0.76 0.69 0.723 345.8 19.21 34.34

ALBERT 0.93 0.91 0.92 0.89 0.84 0.864 286.5 15.92 11.33

RoBERTa 0.89 0.82 0.854 0.85 0.82 0.835 357.35 19.85 38.81

XLNET 0.76 0.68 0.718 0.72 0.68 0.699 514.92 36.78 157.2

Dataset-2

BERT 0.77 0.69 0.728 0.86 0.83 0.845 185.14 10.29 165.21

ALBERT 0.96 0.88 0.918 0.94 0.89 0.914 119.93 6.66 71.65

RoBERTa 0.9 0.85 0.874 0.79 0.74 0.764 202.44 11.25 189.95

XLNET 0.85 0.77 0.808 0.87 0.78 0.823 345.57 24.68 536.08

Dataset-3

BERT 0.93 0.91 0.92 0.9 0.82 0.858 156.9 6.82 111.8

ALBERT 0.91 0.87 0.89 0.89 0.79 0.837 105.53 4.59 42.55

RoBERTa 0.93 0.88 0.904 0.89 0.81 0.848 175.29 7.62 136.65

XLNET 0.88 0.86 0.87 0.79 0.73 0.759 307.66 17.09 430.75

Dataset-4

BERT 0.84 0.78 0.809 0.79 0.72 0.753 75.69 2.91 41.95

ALBERT 0.85 0.81 0.83 0.72 0.65 0.683 53.66 2.06 0.49

RoBERTa 0.93 0.9 0.915 0.87 0.81 0.839 87.61 3.37 64.39

XLNET 0.78 0.75 0.765 0.8 0.76 0.779 149.36 7.11 246.83

Dataset-5

BERT 0.88 0.81 0.844 0.8 0.77 0.785 74.52 2.57 97.69

ALBERT 0.93 0.89 0.91 0.93 0.88 0.904 38.63 1.33 2.31

RoBERTa 0.94 0.89 0.914 0.87 0.83 0.85 80.69 2.78 113.85

XLNET 0.87 0.79 0.828 0.924 0.85 0.904 127.46 4.9 276.92

Dataset-6

BERT 0.79 0.74 0.764 0.84 0.82 0.83 74.83 2.77 92.36

ALBERT 0.8 0.77 0.785 0.93 0.86 0.894 48.74 1.81 25.69

RoBERTa 0.82 0.77 0.794 0.93 0.91 0.92 81.2 3.01 109.03

XLNET 0.73 0.66 0.693 0.93 0.85 0.888 143.15 6.22 331.94

Dataset-7 Merged Dataset

BERT 0.91 0.84 0.874 0.88 0.8 0.844 574.32 24.97 -3.74

ALBERT 0.95 0.85 0.897 0.85 0.8 0.824 460.19 20.01 -22.86

RoBERTa 0.97 0.91 0.939 0.87 0.82 0.838 597.65 25.98 0.15

XLNET 0.92 0.86 0.889 0.89 0.84 0.864 836.96 49.23 89.78
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Table 5 RQ2 results for C-PTM-X1 (PTM-X1 = ALBERT). The best scores for each
dataset are bold.

Micro-avg Scores Macro-avg scores
Training
Time (s)

Prediction
Time (s)

Time-
Diff
(%)

P R F1 P R F1

Dataset-1

ALBERT (PTM-X1) 0.93 0.91 0.92 0.89 0.84 0.864 286.5 15.92 11.33

C-ALBERT-BASE 0.94 0.916 0.928 0.902 0.844 0.872 295.1 15.6 9.09

C-ALBERT-MEDIUM 0.95 0.926 0.938 0.908 0.865 0.886 280.77 15.44 7.97

C-ALBERT-LARGE 0.977 0.945 0.961 0.92 0.87 0.894 295.1 15.6 9.09

Dataset-2

ALBERT (PTM-X1) 0.96 0.88 0.918 0.94 0.89 0.914 119.93 6.66 71.65

C-ALBERT-BASE 0.972 0.888 0.928 0.947 0.894 0.92 117.53 6.79 75

C-ALBERT-MEDIUM 0.987 0.906 0.945 0.958 0.903 0.93 123.53 6.86 76.8

C-ALBERT-LARGE 0.991 0.91 0.955 0.978 0.933 0.955 121.13 6.86 76.8

Dataset-3

ALBERT (PTM-X1) 0.91 0.87 0.886 0.8 0.75 0.774 105.53 4.59 42.55

C-ALBERT-BASE 0.938 0.922 0.93 0.91 0.829 0.868 107.64 4.64 44.1

C-ALBERT-MEDIUM 0.949 0.926 0.937 0.914 0.841 0.876 106.59 4.5 39.75

C-ALBERT-LARGE 0.965 0.945 0.955 0.941 0.845 0.89 104.47 4.64 44.1

Dataset-4

ALBERT (PTM-X1) 0.85 0.81 0.83 0.72 0.65 0.683 53.66 2.06 0.49

C-ALBERT-BASE 0.94 0.907 0.923 0.875 0.821 0.847 54.2 2.02 -1.46

C-ALBERT-MEDIUM 0.945 0.92 0.932 0.886 0.832 0.858 53.12 2.04 -0.49

C-ALBERT-LARGE 0.976 0.945 0.96 0.9 0.841 0.87 52.59 2.08 1.46

Dataset-5

ALBERT (PTM-X1) 0.93 0.89 0.91 0.93 0.88 0.904 38.63 1.33 2.31

C-ALBERT-BASE 0.952 0.899 0.925 0.942 0.892 0.916 39.4 1.3 0

C-ALBERT-MEDIUM 0.965 0.917 0.94 0.957 0.898 0.927 37.86 1.3 0

C-ALBERT-LARGE 0.984 0.922 0.952 0.967 0.908 0.937 38.24 1.34 3.08

Dataset-6

ALBERT (PTM-X1) 0.8 0.77 0.785 0.93 0.86 0.894 48.74 1.81 25.69

C-ALBERT-BASE 0.831 0.775 0.802 0.938 0.921 0.929 49.71 1.83 27.08

C-ALBERT-MEDIUM 0.842 0.791 0.816 0.95 0.924 0.937 49.71 1.77 22.92

C-ALBERT-LARGE 0.86 0.799 0.828 0.963 0.943 0.953 49.71 1.83 27.08

Dataset-7 Merged Dataset

ALBERT (PTM-X1) 0.95 0.85 0.897 0.85 0.8 0.824 460.19 20.01 -22.86

C-ALBERT-BASE 0.98 0.92 0.949 0.903 0.848 0.875 464.79 20.21 -22.09

C-ALBERT-MEDIUM 0.993 0.933 0.962 0.908 0.86 0.883 450.99 20.41 -21.32

C-ALBERT-LARGE 0.998 0.942 0.979 0.935 0.866 0.899 469.39 19.81 -23.63
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Table 6 RQ2 results for C-PTM-X2 (PTM-X2 = RoBERTa). The best scores are bold.

Micro-avg Scores Macro-avg scores
Training
Time (s)

Prediction
Time (s)

Time
Diff (%)P R F1 P R F1

Dataset-1

RoBERTa (PTM-X2) 0.89 0.82 0.854 0.85 0.82 0.835 357.35 19.85 38.81

C-RoBERTa-BASE 0.949 0.925 0.937 0.903 0.85 0.876 360.92 19.65 37.41

C-RoBERTa-MEDIUM 0.958 0.959 0.958 0.933 0.869 0.9 360.92 20.25 41.61

C-RoBERTa-LARGE 0.991 0.982 0.996 0.97 0.911 0.94 364.5 19.45 36.01

Dataset-2

RoBERTa (PTM-X2) 0.9 0.85 0.874 0.79 0.74 0.764 202.44 11.25 189.95

C-RoBERTa-BASE 0.985 0.895 0.938 0.949 0.902 0.925 204.46 11.36 192.78

C-RoBERTa-MEDIUM 0.962 0.914 0.937 0.989 0.938 0.963 200.42 11.03 184.28

C-RoBERTa-LARGE 0.985 0.956 0.97 0.997 0.946 0.971 204.46 11.36 192.78

Dataset-3

RoBERTa (PTM-X2) 0.93 0.88 0.904 0.89 0.81 0.848 175.29 7.62 136.65

C-RoBERTa-BASE 0.953 0.931 0.942 0.925 0.845 0.883 173.54 7.7 139.13

C-RoBERTa-MEDIUM 0.978 0.942 0.96 0.927 0.859 0.892 177.04 7.47 131.99

C-RoBERTa-LARGE 0.995 0.986 0.99 0.965 0.884 0.923 177.04 7.47 131.99

Dataset-4

RoBERTa (PTM-X2) 0.93 0.9 0.915 0.87 0.81 0.839 87.61 3.37 64.39

C-RoBERTa-BASE 0.943 0.912 0.927 0.879 0.82 0.848 88.49 3.44 67.8

C-RoBERTa-MEDIUM 0.966 0.94 0.953 0.897 0.841 0.868 89.36 3.4 65.85

C-RoBERTa-LARGE 0.986 0.962 0.974 0.947 0.877 0.911 89.36 3.4 65.85

Dataset-5

RoBERTa (PTM-X2) 0.94 0.89 0.914 0.87 0.83 0.85 80.69 2.78 113.85

C-RoBERTa-BASE 0.95 0.917 0.933 0.948 0.901 0.924 79.08 2.84 118.46

C-RoBERTa-MEDIUM 0.982 0.917 0.948 0.974 0.917 0.945 81.5 2.75 111.54

C-RoBERTa-LARGE 0.997 0.949 0.972 0.974 0.947 0.96 79.08 2.81 116.15

Dataset-6

RoBERTa (PTM-X2) 0.82 0.77 0.794 0.93 0.91 0.92 81.2 3.01 109.03

C-RoBERTa-BASE 0.833 0.78 0.806 0.954 0.925 0.939 82.01 3.07 113.19

C-RoBERTa-MEDIUM 0.869 0.802 0.834 0.961 0.945 0.953 79.58 2.95 104.86

C-RoBERTa-LARGE 0.874 0.837 0.855 0.987 0.97 0.978 82.82 2.98 106.94

Dataset-7 Merged Dataset

RoBERTa (PTM-X2) 0.97 0.91 0.939 0.87 0.82 0.838 597.65 25.98 0.15

C-RoBERTa-BASE 0.98 0.921 0.95 0.903 0.856 0.879 585.7 25.46 -1.85

C-RoBERTa-MEDIUM 0.983 0.938 0.96 0.926 0.889 0.907 603.63 25.72 -0.85

C-RoBERTa-LARGE 0.995 0.975 0.984 0.949 0.895 0.921 591.67 26.5 2.16
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Table 7 RQ3 results for Binary Classifications (Part i)

Datasets & Approaches P R F1 Training Time (s) Prediction Time (s)

Dataset-1 Randomly Selected Class: Bug Report

AR-MINER 0.37 0.36 0.36 260.92 NA

SUR-MINER 0.58 0.56 0.57 105.63 21.08

Ensemble 0.73 0.72 0.72 115.61 23.05

DL+WE 0.87 0.73 0.79 99.72 14.3

BERT 0.81 0.75 0.78 344.42 19.29

ALBERT 0.95 0.92 0.93 287.93 15.95

RoBERTa 0.91 0.83 0.87 358.78 19.87

XLNET 0.78 0.69 0.73 514.41 36.74

C-ALBERT-BASE 0.95 0.95 0.95 293.92 15.66

C-ALBERT-MEDIUM 0.96 0.95 0.95 281.89 15.52

C-ALBERT-LARGE 0.97 0.98 0.97 295.99 15.62

C-RoBERTa-BASE 0.98 0.95 0.96 361.64 19.55

C-RoBERTa-MEDIUM 0.98 0.97 0.97 359.84 20.17

C-RoBERTa-LARGE 1 0.99 0.99 366.32 19.37

Dataset-2 Randomly Selected Class: Inquiry

AR-MINER 0.5 0.32 0.39 80.93 NA

SUR-MINER 0.6 0.56 0.58 27.04 3.88

Ensemble 0.81 0.7 0.75 29.78 4.99

DL+WE 0.94 0.86 0.9 26.34 5.29

BERT 0.8 0.7 0.75 184.58 10.32

ALBERT 0.98 0.91 0.94 120.29 6.69

RoBERTa 0.93 0.86 0.89 203.45 11.21

XLNET 0.87 0.78 0.82 345.92 24.66

C-ALBERT-BASE 0.91 0.94 0.92 117.77 6.8

C-ALBERT-MEDIUM 0.92 0.95 0.93 124.15 6.87

C-ALBERT-LARGE 0.92 0.98 0.95 120.65 6.87

C-RoBERTa-BASE 1 0.92 0.96 203.85 11.39

C-RoBERTa-MEDIUM 0.98 0.93 0.95 200.02 11.07

C-RoBERTa-LARGE 1 0.99 0.99 204.66 11.33

Dataset-3 Randomly Selected Class: Reliability

AR-MINER 0.44 0.36 0.4 74.77 NA

SUR-MINER 0.63 0.65 0.64 19.43 3.21

Ensemble 0.79 0.77 0.78 21.42 4.29

DL+WE 0.87 0.86 0.86 19.76 3.97

BERT 0.93 0.93 0.93 157.53 6.83

ALBERT 0.93 0.88 0.9 105.95 4.59

RoBERTa 0.95 0.89 0.92 175.64 7.66

XLNET 0.89 0.89 0.89 307.04 17.16

C-ALBERT-BASE 0.94 0.95 0.92 107.1 4.65

C-ALBERT-MEDIUM 0.93 0.94 0.95 107.02 4.49

C-ALBERT-LARGE 0.96 0.96 0.96 104.68 4.63

C-RoBERTa-BASE 0.98 0.97 0.96 173.37 7.72

C-RoBERTa-MEDIUM 1 0.97 0.98 177.93 7.5

C-RoBERTa-LARGE 1 1 1.0 177.22 7.46

Dataset-4 Randomly Selected Class: Feature Request

AR-MINER 0.46 0.34 0.39 71.67 NA

SUR-MINER 0.64 0.59 0.61 11.76 2.35

Ensemble 0.85 0.75 0.8 13.54 2.7

DL+WE 0.88 0.78 0.83 12.23 2.05

BERT 0.86 0.8 0.83 75.84 2.9

ALBERT 0.86 0.83 0.84 53.93 2.06

RoBERTa 0.96 0.93 0.94 87.87 3.36

XLNET 0.79 0.78 0.78 148.91 7.14

C-ALBERT-BASE 0.94 0.94 0.9 54.15 2.02

C-ALBERT-MEDIUM 0.94 0.94 0.91 53.33 2.03

C-ALBERT-LARGE 0.96 0.97 0.91 52.38 2.07

C-RoBERTa-BASE 0.97 0.95 0.94 88.31 3.42

C-RoBERTa-MEDIUM 1 0.97 0.98 89.27 3.39

C-RoBERTa-LARGE 1 0.99 0.99 89 3.42
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Table 8 RQ3 results for Binary Classifications (Part ii)

Datasets & Approaches P R F1 Training Time (s) Prediction Time (s)

Dataset-5 Randomly Selected Class: App Problem

AR-MINER 0.54 0.35 0.42 56.96 NA

SUR-MINER 0.63 0.56 0.59 9.08 1.3

Ensemble 0.88 0.77 0.82 10.94 2.18

DL+WE 0.85 0.76 0.8 9.72 1.62

BERT 0.91 0.82 0.86 74.45 2.58

ALBERT 0.95 0.91 0.93 38.82 1.32

RoBERTa 0.97 0.92 0.94 80.53 2.78

XLNET 0.9 0.81 0.85 127.08 4.92

C-ALBERT-BASE 0.91 0.94 0.92 39.6 1.29

C-ALBERT-MEDIUM 0.93 0.97 0.95 37.82 1.3

C-ALBERT-LARGE 0.94 0.98 0.96 38.35 1.35

C-RoBERTa-BASE 0.98 0.92 0.95 79.48 2.83

C-RoBERTa-MEDIUM 1 0.93 0.96 81.34 2.74

C-RoBERTa-LARGE 1 0.97 0.98 79.48 2.82

Dataset-6 Randomly Selected Class: Bug Report

AR-MINER 0.48 0.42 0.45 71.98 NA

SUR-MINER 0.59 0.53 0.56 10.02 1.44

Ensemble 0.76 0.75 0.75 11.92 1.72

DL+WE 0.78 0.77 0.77 10.32 1.47

BERT 0.81 0.75 0.78 75.13 2.76

ALBERT 0.82 0.79 0.8 48.79 1.82

RoBERTa 0.84 0.78 0.81 81.52 3.01

XLNET 0.75 0.67 0.71 142.72 6.24

C-ALBERT-BASE 0.79 0.81 0.8 49.96 1.83

C-ALBERT-MEDIUM 0.81 0.84 0.82 49.91 1.78

C-ALBERT-LARGE 0.82 0.86 0.84 49.51 1.82

C-RoBERTa-BASE 0.85 0.79 0.82 82.17 3.08

C-RoBERTa-MEDIUM 0.88 0.81 0.84 79.66 2.94

C-RoBERTa-LARGE 0.89 0.84 0.86 82.65 2.99

Dataset-7 Merged Dataset; Randomly Selected Class: Aspect Evaluation

AR-MINER 0.51 0.35 0.42 402.77 NA

SUR-MINER 0.68 0.56 0.61 157.01 31.25

Ensemble 0.78 0.71 0.74 177.6 29.45

DL+WE 0.86 0.79 0.82 156.13 26.04

BERT 0.93 0.86 0.89 573.75 25.04

ALBERT 0.97 0.87 0.92 462.49 20.05

RoBERTa 1.0 0.93 0.96 600.64 25.88

XLNET 0.94 0.88 0.91 834.45 48.98

C-ALBERT-BASE 0.94 0.98 0.96 463.4 20.11

C-ALBERT-MEDIUM 0.96 0.99 0.97 450.09 20.51

C-ALBERT-LARGE 0.96 1.0 0.98 467.98 19.79

C-RoBERTa-BASE 0.99 0.93 0.96 584.53 25.33

C-RoBERTa-MEDIUM 0.99 0.95 0.97 605.44 25.8

C-RoBERTa-LARGE 1.0 0.98 0.99 592.26 26.47
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Table 9 RQ3 results for Zero-Shot Classification

Dataset # P R F1 Prediction Time (s)

Dataset-1

AR-MINER 0.36 0.36 0.36 N.A.

ALBERT-NLI 0.47 0.42 0.44 15.35

RoBERTa-NLI 0.5 0.46 0.48 20.35

C-ALBERT-LARGE-NLI 0.5 0.47 0.48 16.7

C-RoBERTa-LARGE-NLI 0.59 0.53 0.56 20.66

RoBERTa-LARGE-MNLI 0.64 0.6 0.62 19.1

Dataset-2

AR-MINER 0.49 0.32 0.39 N.A.

ALBERT-NLI 0.46 0.42 0.44 6.98

RoBERTa-NLI 0.5 0.47 0.48 10.85

C-ALBERT-LARGE-NLI 0.51 0.48 0.49 6.47

C-RoBERTa-LARGE-NLI 0.56 0.5 0.53 11.64

RoBERTa-LARGE-MNLI 0.64 0.58 0.61 10.8

Dataset-3

AR-MINER 0.44 0.36 0.4 N.A.

ALBERT-NLI 0.43 0.4 0.41 4.37

RoBERTa-NLI 0.51 0.46 0.48 7.28

C-ALBERT-LARGE-NLI 0.55 0.51 0.53 4.72

C-RoBERTa-LARGE-NLI 0.61 0.57 0.59 7.95

RoBERTa-LARGE-MNLI 0.71 0.65 0.68 7.78

Dataset-4

AR-MINER 0.45 0.33 0.38 N.A.

ALBERT-NLI 0.42 0.38 0.4 2.00

RoBERTa-NLI 0.51 0.47 0.49 3.22

C-ALBERT-LARGE-NLI 0.47 0.42 0.44 2.12

C-RoBERTa-LARGE-NLI 0.65 0.59 0.62 3.51

RoBERTa-LARGE-MNLI 0.69 0.64 0.66 3.21

Dataset-5

AR-MINER 0.53 0.35 0.42 N.A.

ALBERT-NLI 0.39 0.35 0.37 1.37

RoBERTa-NLI 0.53 0.49 0.51 2.91

C-ALBERT-LARGE-NLI 0.47 0.44 0.45 1.37

C-RoBERTa-LARGE-NLI 0.59 0.54 0.56 2.72

RoBERTa-LARGE-MNLI 0.74 0.67 0.70 2.9

Dataset-6

AR-MINER 0.47 0.41 0.44 N.A.

ALBERT-NLI 0.4 0.36 0.38 1.73

RoBERTa-NLI 0.43 0.4 0.41 2.95

C-ALBERT-LARGE-NLI 0.43 0.41 0.42 1.88

C-RoBERTa-LARGE-NLI 0.52 0.48 0.5 3.13

RoBERTa-LARGE-MNLI 0.64 0.58 0.61 2.87

Dataset-7 Merged Dataset

AR-MINER 0.49 0.34 0.4 N.A.

ALBERT-NLI 0.47 0.44 0.45 19.11

RoBERTa-NLI 0.58 0.53 0.55 24.94

C-ALBERT-LARGE-NLI 0.48 0.44 0.46 19.39

C-RoBERTa-LARGE-NLI 0.65 0.61 0.63 24.84

RoBERTa-LARGE-MNLI 0.74 0.68 0.71 27.28
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Table 10 RQ3 results for Multi-Task (Category) Classification

Micro-Scores Macro-Scores Training
Time (s)

Prediction
Time (s)P R F1 P R F1

Category Labeled Data

BERT 0.813 0.759 0.791 0.752 0.714 0.732 287.16 9.988

ALBERT 0.883 0.865 0.86 0.842 0.785 0.823 230.095 12.006

RoBERTa 0.844 0.782 0.81 0.736 0.693 0.698 239.06 10.392

XLNET 0.798 0.717 0.753 0.822 0.721 0.779 418.48 19.692

C-ALBERT-BASE 0.888 0.85 0.872 0.853 0.785 0.807 139.437 12.126

C-ALBERT-MEDIUM 0.897 0.864 0.897 0.865 0.809 0.837 180.396 6.123

C-ALBERT-LARGE 0.933 0.89 0.917 0.859 0.804 0.831 281.634 5.943

C-RoBERTa-BASE 0.945 0.837 0.878 0.887 0.858 0.86 292.85 10.184

C-RoBERTa-MEDIUM 0.894 0.86 0.877 0.942 0.894 0.904 301.815 12.86

C-RoBERTa-LARGE 0.932 0.90 0.901 0.931 0.879 0.927 295.835 10.6

Table 11 RQ3 results for Multi-Task (Sentiment) Classification

Micro-Scores Macro-Scores Training
Time (s)

Prediction
Time (s)P R F1 P R F1

Sentiment Labeled Data

BERT 0.852 0.769 0.804 0.759 0.748 0.739 689.184 32.461

ALBERT 0.886 0.889 0.877 0.848 0.806 0.822 552.228 26.013

RoBERTa 0.862 0.805 0.83 0.75 0.711 0.74 836.71 31.176

XLNET 0.808 0.737 0.787 0.849 0.754 0.794 1088.048 63.999

C-ALBERT-BASE 0.908 0.883 0.884 0.868 0.796 0.838 604.227 26.273

C-ALBERT-MEDIUM 0.913 0.878 0.89 0.879 0.829 0.845 541.188 26.533

C-ALBERT-LARGE 0.93 0.911 0.918 0.892 0.823 0.858 610.207 23.772

C-RoBERTa-BASE 0.958 0.861 0.904 0.913 0.858 0.903 644.27 33.098

C-RoBERTa-MEDIUM 0.934 0.864 0.913 0.955 0.905 0.929 784.719 28.292

C-RoBERTa-LARGE 0.964 0.934 0.93 0.972 0.907 0.935 828.338 31.800

Table 12 RQ3 results for Multi-Resource Classification (Trained on App Reviews and
Tested on Twitter)

Datasets & Approaches P R F1 Prediction Time (s)

Dataset-2

AR-Miner 0.42 0.28 0.34 N.A.

SUR-Miner 0.61 0.56 0.58 39.22

Ensemble 0.78 0.72 0.75 38.79

DL+WE 0.85 0.78 0.81 27.79

BERT 0.57 0.50 0.53 17.49

ALBERT 0.69 0.65 0.67 9.99

RoBERTa 0.67 0.60 0.63 18.0

XLNET 0.64 0.56 0.60 44.42

C-ALBERT-BASE 0.75 0.67 0.71 11.54

C-ALBERT-MEDIUM 0.79 0.75 0.77 10.29

C-ALBERT-LARGE 0.84 0.76 0.80 12.35

C-RoBERTa-BASE 0.80 0.74 0.77 20.45

C-RoBERTa-MEDIUM 0.82 0.77 0.79 19.85

C-RoBERTa-LARGE 0.87 0.86 0.86 20.45



PTM for App Review classification 55

Table 13 RQ3 results for Multi-Resource Classification (Trained on Twitter and Tested on
App Reviews)

Datasets & Approaches P R F1 Prediction Time (s)

Dataset-2

AR-Miner 0.36 0.24 0.29 N.A

SUR-Miner 0.66 0.59 0.62 25.1

Ensemble 0.83 0.76 0.79 23.66

DL+WE 0.89 0.83 0.86 16.4

BERT 0.62 0.55 0.58 9.62

ALBERT 0.73 0.72 0.72 6.29

RoBERTa 0.70 0.64 0.67 11.7

XLNET 0.69 0.62 0.65 28.43

C-ALBERT-BASE 0.79 0.70 0.74 6.81

C-ALBERT-MEDIUM 0.85 0.83 0.84 5.87

C-ALBERT-LARGE 0.93 0.82 0.87 6.79

C-RoBERTa-BASE 0.82 0.75 0.78 13.09

C-RoBERTa-MEDIUM 0.89 0.82 0.85 11.12

C-RoBERTa-LARGE 0.92 0.92 0.92 11.45
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