
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

The Impact of a Continuous Integration Service on the
Delivery Time of Merged Pull Requests

João Helis Bernardo · Daniel Alencar da Costa ·
Uirá Kulesza · Christoph Treude

Received: date / Accepted: date

Abstract Continuous Integration (CI) is a software development practice that builds
and tests software frequently (e.g., at every push). One main motivator to adopt CI is the
potential to deliver software functionalities more quickly than not using CI. However,
there is little empirical evidence to support that CI helps projects deliver software
functionalities more quickly. Through the analysis of 162,653 pull requests (PRs) of
87 GitHub projects, we empirically study whether adopting a CI service (TRAVISCI)
can quicken the time to deliver merged PRs. We complement our quantitative study
by analyzing 450 survey responses from participants of 73 software projects. Our
results reveal that adopting a CI service may not necessarily quicken the delivery
of merge PRs. Instead, the pivotal benefit of a CI service is to improve the decision
making on PR submissions, without compromising the quality or overloading the
project’s reviewers and maintainers. The automation provided by CI and the boost
in developers’ confidence are key advantages of adopting a CI service. Furthermore,
open-source projects planning to attract and retain developers should consider the use

João Helis Bernardo
Federal Institute of Rio Grande do Norte (IFRN)
Federal University of Rio Grande do Norte (UFRN)
Natal, Brazil
E-mail: joao.helis@ifrn.edu.br

Daniel Alencar da Costa
University of Otago
Dunedin, New Zealand
E-mail: danielcalencar@otago.ac.nz

Uirá Kulesza
Federal University of Rio Grande do Norte (UFRN)
Natal, Brazil
E-mail: uira@dimap.ufrn.br

Christoph Treude
University of Melbourne
Melbourne, Australia
E-mail: christoph.treude@unimelb.edu.au

ar
X

iv
:2

30
5.

16
36

5v
1

 [
cs

.S
E

]
 2

5
M

ay
 2

02
3

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 2

of a CI service in their project, since CI is perceived to lower the contribution barrier
while making contributors feel more confident and engaged in the project.

Keywords Continuous Integration · Pull Request · Delivery Time · Code Review

1 Introduction

Development teams are required to deliver software functionalities more quickly than
ever to improve the time-to-market and success of their software projects (Debbiche
et al., 2014). The quick delivery of functionalities may keep customers engaged with
the project while providing valuable feedback. To improve the processes of software
integration and packaging, Continuous Integration (CI) has been proposed as part of
the Extreme Programming (XP) methodology (Beck, 2000), which claims that CI
can provide more confidence for developers and quicken the delivery of software
functionalities (Laukkanen et al., 2015).

Continuous Integration is a set of practices that enables development teams to inte-
grate software more frequently (Fowler and Foemmel, 2006). The increased number of
integrations is possible by using automated tools such as automated tests. Ideally, CI
should automatically compile, test, and package the software whenever code modifica-
tions occur. Nowadays, several vendors (e.g., APACHE or GITHUB) have developed
tools to provide CI as a service for developers to implement their CI pipelines. Exam-
ples of these tools are CLOUDBEES, GITHUB ACTIONS, and TRAVISCI. The main
philosophy behind CI is that the software must always be in a working state, which
is constantly put to test at each integration (Duvall et al., 2007). CI has been widely
adopted by the software development community in both open-source and corporate
software projects.

Existing research has analyzed the usage of CI in open-source projects hosted
on GITHUB (Vasilescu et al., 2014, 2015; Hilton et al., 2016; Bernardo et al., 2018;
Nery et al., 2019; Soares et al., 2022; Santos et al., 2022). For instance, Vasilescu
et al. (2015) investigated the productivity and quality outcomes of projects that use
CI services on GITHUB. They found that projects that use CI merge pull requests
(PRs) more quickly if they are submitted by core developers. Also, core developers
discover significantly more bugs when they use CI. Although existing research has
demonstrated that CI may provide benefits for development teams, Soares et al. (2022)
revealed that several studies investigate the benefits of using a CI service instead of
studying the benefits of CI as a whole practice. For example, instead of checking
whether studied projects adopt the full set of practices required by CI (Felidré et al.,
2019), most studies have assumed that projects use CI solely because a CI service
was employed (such as TRAVISCI). We as a community should be clear about such
scenarios when reporting our results. According to Fowler and Foemmel (2006),
adopting CI is not using a CI service alone but also adopting and maintaining specific
development practices. To adopt CI appropriately, projects must maintain short build
durations, fix broken builds as immediately as possible, check-in code frequently, and
maintain high code coverage (Duvall et al., 2007; Felidré et al., 2019; Santos et al.,
2022).

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 3

In this regard, a common claim about adopting CI is that projects are able to
release more frequently (Ståhl and Bosch, 2014; Hilton et al., 2016), implying that
software updates would be delivered more quickly to their end-users. However, there
is no sufficient empirical evidence to show that CI can indeed be associated with a
quicker delivery of software functionalities to end users. Studying whether CI can
quicken the delivery of software functionalities is important because release delays
are frustrating to end users (da Costa et al., 2014, 2016).

In our prior work (Bernardo et al., 2018), we quantitatively analyzed whether
the use of a CI service (TRAVISCI) is correlated with the time to deliver merged
Pull Requests (PRs) of GitHub projects. Our study investigated 162,653 PRs from
87 GitHub projects, which were implemented in 5 programming languages.1 We
found that the time-to-deliver PRs is shorter after adopting TRAVISCI in only 51.3%
of the projects. As we have observed that the use of a CI service is not necessarily
associated with a quicker delivery of pull requests, we designed a qualitative study to
obtain deeper explanations for our results while deepening our understanding of the
potential influence of CI as a whole practice on the time-to-market of merged PRs.
For example, do developers believe that CI, as a whole, influence the delivery of PRs
in their projects? We designed a qualitative study because we could not find answers
to such questions in our previous quantitative analyses. To sum up, our qualitative
study complements our previous study by providing more explanations and context for
the results we observed in the previous study. Therefore, we survey 450 participants
from 73 GitHub projects (out of the initial 87 projects of our quantitative study). Our
qualitative analysis is composed of:

– Data collection from survey responses of 450 participants of 73 popular open-
source projects from GitHub.

– An open-coding analysis of the answers to the open-ended questions of our survey
using a thematic analysis technique.

– An analysis of the extent to which the survey participants are in accordance with
the quantitative results of our prior work.

1.1 Quantitative Study

Our quantitative study addresses the following research questions:

– RQ1: Are merged pull requests released more quickly using a CI service? The
wide adoption of CI is often motivated by the perceived benefits of this practice.
For instance, higher confidence in the software product (Duvall et al., 2007), higher
release frequency (Ståhl and Bosch, 2014), and the prospect of delivering software
updates more quickly (Laukkanen et al., 2015). However, there is a lack of studies
that empirically investigate the association between using a CI service and the
time-to-deliver of merged PRs. In RQ1, we study the delivery time of merged PRs
before and after the use of TRAVISCI.

1 https://prdeliverydelay.github.io/#studied-projects

https://prdeliverydelay.github.io/#studied-projects

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 4

– RQ2: Does the increased number of PR submissions after adopting a CI service
increase the delivery time of pull requests? In RQ1, we find that only 51.3% of the
projects deliver merged PRs more quickly after adopting TRAVISCI. This result
contradicts the assumption that merged PRs would be delivered more quickly after
the adoption of a CI service in most of the projects. We then ask the following
question: is there another key factor influencing the delivery time of merged PRs
after TRAVISCI is adopted, such as a significant increase in workload?

– RQ3: What factors impact the delivery time after adopting a CI service? In
RQ1 and RQ2, we study the impact of adopting a CI service on the delivery
time of merged PRs. Nevertheless, it is also important to understand what are the
characteristics of the delivery time of merged PRs before and after the use of a
CI service. Such information may help decision makers to track and avoid a high
delivery time.

1.2 Qualitative Study

In our qualitative study, we address the following research questions:

– RQ4: What is the perceived influence of CI on the time to deliver merged PRs?
In this RQ, we aim to deepen our understanding of how CI may impact the
delivery time of PRs. We consult contributors of projects that use CI to obtain
qualitative data, which can provide relevant insights to the research community
and practitioners.

– RQ5: What are the perceived causes of delay in the delivery time of merged PRs?
In RQ4 we observe that 42.9% of participants are skeptical regarding the impact of
CI on the delivery time of merged PRs. Therefore, in this RQ, we further discuss
indirect factors (i.e., factors that are not necessarily related to CI) that participants
believe may also impact the delivery time of PRs.

– RQ6: What is the perceived influence of CI on the software release process?
Given that in RQ2 we observe a substantial increase in the number of delivered
PRs per release (after the adoption of TRAVISCI), we aim to obtain further insights
as to why the increase in the number of delivered PRs occurs. For this purpose, we
consult our participants regarding their perceived influence of CI on the release
process of their project. For example, is it the case that, because CI encourages the
constant packaging of the software, preparing a release is no longer a challenge?

– RQ7: What is the perceived influence of CI on the code review process? Intrigu-
ingly, in RQ1, we find that PRs are merged faster before the adoption of TRAVISCI
in 73% (46/63) of the projects. This result motivates us to further investigate factors
that influence the merge time when CI is adopted.

– RQ8: What is the perceived influence of CI on attracting more contributors
to open-source projects? In RQ1 and RQ2, we observe that there exist a higher
number of contributors and PR submissions after the adoption of TRAVISCI. In
RQ8, we consult our participants to better understand whether CI has any influence
on attracting more contributors to open-source projects.

Paper organization. The remainder of this paper is organized as follows. In
Section 2, we discuss the related work. In Section 3, we explain the design of our

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 5

quantitative and qualitative studies. In Sections 4 and 5, we present the results of our
quantitative and qualitative studies, respectively. We discuss the practical implications
of our observations for the research and practice in software engineering in Section 6.
In Section 7, we discuss the threats to the validity and limitations of our study. Finally,
we draw conclusions in Section 8.

2 Related work

Through a systematic literature review of Agile Release Engineering practices, Karvo-
nen et al. (2017) highlighted that empirical research in software engineering is crucial
to better understand the impact of adopting CI on software development.

CI and team productivity

The study by Hilton et al. (2016) revealed that 70% of the most popular GITHUB
projects use CI. The authors identified that CI helps projects to release more often,
whereas the CI build status may foster a faster integration of PRs. Vasilescu et al.
(2015) studied the potential impact of CI on the quality and productivity of software
projects. They found that projects that use CI merge PRs more quickly if these PRs
are submitted by core developers. The authors found that core developers identify
significantly more bugs when using CI. Regarding the acceptance and latency of PRs
in CI (where latency is the time taken to merge a PR), Yu et al. (2016) found that the
likelihood of rejecting a PR increases by 89.6% when the PR breaks the build. The
results also show that the more succinct the PR is, the greater the probability that
the PR is reviewed and merged earlier. Furthermore, Zhao et al. (2017) investigated
the transition to TRAVISCI2 in open-source projects. According to their study, the
following changes may occur when TRAVISCI is adopted: (i) a small increase in the
number of merged commits; (ii) a statistically significant decrease in the number of
merge commit churn; (iii) a moderate increase in the number of closed issues; and (iv)
a stationary behavior in the number of closed PRs.

In our study, we use an approach similar to Vasilescu et al. (2015) to identify
projects that use TRAVISCI. Our goal with our quantitative study is to understand
the association between TRAVISCI and the time taken for PRs to be delivered to end
users. Furthermore, our qualitative study investigates how contributors of open-source
projects perceive the impact of CI on the review and release processes of their projects.
Our work is complementary to prior studies, contributing to a larger understanding
of how CI can impact several development activities in software projects (i.e., code
review and project release).

CI and code review

Recent studies have investigated the impact of CI on code review. The study by
Zampetti et al. (2019) found that PRs that generate successful builds have 1.5 more

2 https://travis-ci.org/

https://travis-ci.org/

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 6

chances of being merged. Our qualitative investigation corroborates the results of
Zampetti et al. (2019), showing that the CI build status can influence the decisions
of code reviewers. Furthermore, Cassee et al. (2020) found that the discussion held
before the acceptance of a PR reduced considerably after CI was adopted. Conversely,
the number of changes developers performed during code review remained roughly
the same. The work of Zhang et al. (2022b) investigated the influence of various
factors on PR latency. They found that, when using CI, the build status and duration
are moderately relevant factors for accepting PRs. In a follow-up study, Zhang et al.
(2022a) observed that CI assists the acceptance of PRs by automating the code review
process and replacing part of the code inspection work, accelerating the review process.
Indeed, our qualitative study reveals that, among the list of CI factors that impact
the code review process, the most cited factors were related to an improvement in
automation and confidence. The participants of our study highlighted that CI facilitates
the understanding of code decisions, accelerating the code review process.

Adherence to CI best practices

Vasilescu et al. (2014) studied the use of TRAVISCI in a sample of 223 GITHUB
projects. They found that the majority of projects (92.3%) are configured to use
TRAVISCI but less than half actually use the CI service. Felidré et al. (2019) analyzed
1,270 open-source projects using TRAVISCI to understand the adherence of projects to
the recommended CI practices. The authors observed that 748 (60%) projects perform
infrequent check-ins. The study by Nery et al. (2019) studied the relationship between
the use of CI and the evolution of software tests. The authors found that the overall
test ratio and coverage of projects improved after CI was adopted. In our work, our
participants mention that CI impacts the delivery time of merged PRs by improving
project quality, automation, and the release process. According to our participants,
CI improves the code quality and stability, making developers more confident to ship
releases. The confidence in developers can be fostered by comprehensive automated
testing, especially when the code coverage is high.

Gallaba and McIntosh (2018) studied 9,312 open-source projects using TRAVISCI
to understand how projects are using or misusing the features of TRAVISCI. The
authors found that the majority (48.16%) of TRAVISCI configurations is specifying
job processing nodes. Furthermore, explicit deployment code is rare (2%), which
indicates that developers rarely use TRAVISCI to implement Continuous Delivery. In
our qualitative study, our participants often emphasize the relevance of automated tasks
in CI to improve the project release process. Automated tests and release automation
(i.e., Continuous Deployment) are frequently mentioned when our participants explain
the influence of CI on project releases. However, in addition to many developers
understanding CI as a Continuous Deployment enabler, such a feature is misused by
many projects that use CI (Gallaba and McIntosh, 2018).

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 7

Table 1: Summary of the number of projects and released pull requests grouped by
programming language.

Language Projects PRs total PRs before CI PRs after CI

JavaScript 33 57,104 17,556 39,548
Python 23 55,003 9,107 45,896

Java 11 7,700 3,433 4,267
Ruby 10 22,864 3,197 19,667
PHP 10 19,982 5,817 14,165
Total 87 162,653 39,110 123,543

3 Empirical Study Design

We perform two complementary studies: one quantitative and one qualitative. For
each study, we describe their studied projects, their data collection process, and their
methodology.

3.1 Quantitative Study—Study I

In Study I, we divide our projects in two time periods, before and after the adoption of
TRAVISCI. Segmenting the data into these two time periods is necessary to study the
association between the adoption of TRAVISCI and the delivery time of PRs.

3.1.1 Studied Projects

Our goal is to identify projects with substantial historical data that adopted TRAVISCI
eventually. We use such projects to better understand the potential influence of adopting
a CI service on the delivery time of merged PRs. We use an approach similar to
Vasilescu et al. (2015) and Hilton et al. (2016) to select projects that use TRAVISCI.
We use the date of the first build on TRAVISCI to determine when TRAVISCI was
introduced in a project.

We selected a set of 87 popular GITHUB projects (33 JavaScript, 23 Python, 11
Java, 10 Ruby, and 10 PHP). We collect metrics related to the PRs and releases of each
project. The detailed information about all computed metrics for each PR is described
in Tables 2 and 3. We believe these metrics can be correlated with the delivery time
of merged PRs. A total of 162,653 delivered PRs were collected (123,543 PRs were
delivered after the adoption of TRAVISCI, whereas 39,110 were delivered before
the adoption of TRAVISCI). The unbalanced number of PRs across time periods
is a reflection of the duration of the adoption of TRAVISCI in different projects.
The median age of our projects is 5.1 years, where the use of TRAVISCI accounts
for 60.8% (3.1 years) of the age of our projects. Table 1 shows the number of PRs
per programming language before and after the adoption of TRAVISCI. Our project
selection and data collection processes are explained in more detail in an earlier
publication of this work (Bernardo et al., 2018).

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 8

Table 2: Metrics that are used in our explanatory models (resolver, pull request, and
project dimensions).

Dimension Attributes Type Definition (d) — Rationale (r)

Resolver

Contributor
Experience Numeric

d: The number of previously released PRs that were sub-
mitted by the contributor of a particular PR. We consider
the author of the PR to be its contributor.
r: The greater the experience and participation of a user
within a specific open-source project, the greater his/her
chance of having his/her PR reviewed and integrated into
the codebase of such a project by its core integrators
(Shihab et al., 2010).

Contributor
Integration Numeric

d: The average in days of the previously released PRs that
were submitted by a particular contributor.
r: If a particular contributor usually submits PRs that
are merged and released quickly, his/her future PR might
be merged and released quickly as well (da Costa et al.,
2016).

Pull
Request

Stack Trace
Attached Boolean

d: We verify if the PR report has a stack trace attached in
its description.
r: If the PR provides a bug fix, a stack trace attached may
provide useful information regarding the causes of the
bug and the importance of the submitted code, which may
quicken the merge of the PR and its delivery in a release
of the project (Schroter et al., 2010).

Description
Size Numeric

d: The number of characters in the body (description) of
a PR.
r: PRs that are well described might be easier to merge
and release than PRs that are more difficult to understand
(da Costa et al., 2016).

Project

Queue Rank Numeric

d: The number that represents the moment when a PR
is merged compared to other merged PRs in the release
cycle. For example, in a queue that contains 100 PRs, the
first merged PR has position 1, while the last merged PR
has position 100.
r: A PR with a high queue rank is a recently merged PR.
A merged PR might be released faster/slower depending
on its queue position (da Costa et al., 2016).

Merge
Workload Numeric

d: The number of PRs that were created and still waiting
to be merged by a core integrator at the moment at which
a specific PR is submitted.
r: A PR might be released faster/slower depending of
the amount of submitted PRs waiting to be merged. The
higher the amount of created PRs waiting to be analyzed
and merged, the greater the workload of the contributors
to analyze these PRs, which may impact their delivery
time.

3.1.2 Research Approach

Figure 1 shows the basic life cycle of a delivered PR, where t1 is the merge phase and
t2 is the delivery phase. We refer to t1+ t2 as the lifetime of a PR. In RQ1, we analyze
the merge and delivery phases. The merge phase (t1) is the required time for PRs to be

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 9

Table 3: Metrics that are used in our explanatory models (process dimension).

Dimension Attributes Type Definition (d) — Rationale (r)

Process

Number of
Impacted Files Numeric

d: The number of files linked to a PR submission.
r: The delivery time might be related to the high number
of files of a PR, because more effort must be spent to
integrate it (Jiang et al., 2013).

Churn Numeric

d: The number of added lines plus the number of deleted
lines to a PR.
r: A higher churn suggests that a great amount of work
might be required to verify and integrate the code contri-
bution sent by means of PR (Jiang et al., 2013; Nagappan
and Ball, 2005).

Merge Time Numeric

d: Number of days between the submission and merge of
a PR.
r: If a PR is merged quickly, it is more likely to be released
faster.

Number of
Activities Numeric

d: An activity is an entry in the PR’s history.
r: A high number of activities might indicate that much
work was required to make the PR acceptable, which may
impact the integration of such PR into a release (Jiang
et al., 2013).

Number of
Comments Numeric

d: The number of comments of a PR.
r: A high number of comments might indicate the im-
portance of a PR or the difficulty to understand it (Giger
et al., 2010), which may impact its delivery time (Jiang
et al., 2013).

Interval of
Comments Numeric

d: The sum of the time intervals (days) between com-
ments divided by the total number of comments of a PR.
r: A short interval of comments indicates the discussion
was held with priority, which suggests that the PR is
important, thus, the PR might be delivered faster (da Costa
et al., 2016).

Commits per
PR Numeric

d: Number of commits per PR.
r: The higher the number of commits in a PR, the greater
the amount of contribution to be analyzed by the project
integrators, which might impact the delivery time of the
PR.

Fig. 1: The basic life-cycle of a delivered pull request.

merged into the codebase, whereas the delivery phase (t2) refers to the required time
for merged PRs to be released.

We use Mann-Whitney-Wilcoxon (MWW) tests (Wilks, 2011) and Cliff’s delta
effect-size measurements (Cliff, 1993) to compare different distributions of values.
MWW is a non-parametric test whose null hypothesis is that two distributions come

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 10

from the same population (α = 0.05). The Cliff’s delta is a non-parametric effect-size
metric to verify the magnitude of the difference between the values of two distributions.
We use the thresholds provided by Romano et al. (2006) to interpret the Cliff’s delta,
i.e. delta < 0.147 (negligible), delta < 0.33 (small), delta < 0.474 (medium), and
delta >= 0.474 (large). We analyze the entire life-cycle of a PR before and after the
adoption of TRAVISCI. First, we analyze the delivery time (t2) and then, we analyze
the merge time (t1). Lastly, we analyze the lifetime of a PR (t1+ t2).

Similar to RQ1, in RQ2 we use MWW tests (Wilks, 2011) and Cliff’s delta
measurements (Cliff, 1993) to analyze the data. We use box plots (Williamson et al.,
1989) to visually summarize the distributions and perform comparisons. In RQ2, we
investigate whether the increase in the lifetime of PRs after adopting TRAVISCI is
related to a significant increase in PR submission, merge, and delivery rates (also after
the adoption of TRAVISCI).

We group our dataset into two time periods: before and after the adoption of
TRAVISCI. For each time period, we count the number of PRs that are submitted,
merged, and delivered per release. We perform three comparisons in RQ2. First, we
compare whether the PR submission, merge, and delivery rates per release significantly
increase after the adoption of TRAVISCI. Next, we verify whether there is a statistical
increase in the release frequency of the projects after the adoption of TRAVISCI. We
use the Pearson correlation (Best and Roberts, 1975), to test whether two variables are
significantly correlated.

In RQ3, we use multiple regression modeling (Ordinary Least Squares) to de-
scribe the relationship between X (i.e., the set of explanatory variables, e.g., churn,
description length), and the response variable Y , i.e., the delivery time of merged
PRs in terms of days. We control covariates that might influence the results. For each
project, we build two explanatory models, one using the PR data before the adoption
of TRAVISCI, and another using PR data after the adoption of TRAVISCI. Tables
2 and 3 show the definition and rationale for each explanatory variable used in our
models. Our response variable Y is the length of time between when a PR was merged
and the time at which the same PR was delivered (i.e., delivery time).

We follow the guidelines of Harrell (2015) for fitting linear models. We assess
how stable our models are by computing the optimism-reduced R2. Finally, we use
the Wald X2 maximum likelihood test to evaluate the impact of each explanatory
variable in our models. The larger the X2 value for a variable, the larger the impact of
a variable (da Costa et al., 2016). Next, we analyze the direction of the relationship
between the most influential variables of our models and the delivery time. The
process we use to build our statistical models is explained in more detail in our earlier
publication (Bernardo et al., 2018).

3.2 Qualitative Study (Study II)

In this section, we explain the data collection and research approach of our qualitative
study (Study II).

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 11

3.2.1 Subject Projects

As the main goal of qualitative analysis is to complement Study I, we select the same
87 GitHub projects used in Study I for Study II. The goal of Study II is to better
understand the influence CI can have on the delivery time of merged PRs. We also
take the opportunity to better understand the perceived influence of CI on the code
review and release processes of our studied projects (i.e., according to the perception
of our participants).

3.2.2 Data Collection

We first identify contributors who have submitted at least one PR that made into an
official release of their project. The release date of the PRs must have fallen between
the projects’ creation date and November 11th, 2016, i.e., the range used in our search
on GITHUB for Study I. By inspecting the PR meta-data of the studied projects,
we find a total of 20,698 contributors that fulfill our criteria. To prioritize frequent
contributors, for each studied project, we select 15% of contributors that have the
highest number of delivered PRs, resulting in 3,105 contributors.

To collect our data, we designed a web-based survey and sent it by email to
all 3,105 participants (i.e., the contributors of our subject projects). To encourage
participation, we randomly provided six $50 Amazon gift cards to respondents who
explicitly stated their willingness to participate in the draw. To be eligible for the
gift cards, the participants needed to answer all questions of the survey. In total, we
received 450 responses, resulting in a response rate of 14.5% (450/3105). Our invitation
letter is available in Appendix B.

Our survey has three major parts. The first part concerns the influence of CI on
the delivery time of merged PRs, whereas the second and third parts concern the
potential influence of CI on the release and review processes of the studied projects,
respectively. A complete example of our survey is available in Appendix A, which
shows the questionnaire sent to participants of the haraka/haraka3 project. Because
our goal was to provide data specific to the projects of our participants, we designed
87 different questionnaires, aiming to obtain richer information about the project and
encourage participants to respond more fully to the survey.

Our questionnaire is organized as follows. The first six questions (#3–#8) collect
demographic information. Questions #9–#13 tap into the general experience of our
participants, whereas questions #14–#26 present data specific to our participants’
projects. In terms of questions’ goals, questions #9–#13 and #26 capture the potential
influence of CI on the delivery time of merged PRs. Question #14 captures the
perceived correctness of our approach to define the TRAVISCI adoption date in our
studied projects. Questions #17–#21 capture the potential influence of CI on the code
review process of the projects, whereas Questions #22–#25 capture the potential
influence of CI on the release process of the projects.

3 github.com/haraka/haraka

github.com/haraka/haraka

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 12

3.3 Research Approach

We use an inductive thematic analysis, which is designed for identifying, analyzing,
and reporting themes found within qualitative data (Braun and Clarke, 2006). In this
study, we use the guidelines proposed by Nowell et al. (2017) to perform our thematic
analysis.

The first step in our thematic analysis is the coding of our data. This step consists
of attaching codes to any piece of relevant qualitative data collected from our ques-
tionnaire. The first author conducts three sessions of open coding of the responses to
open-ended questions. The second author independently conducts three sessions of
open coding for 10% of the responses for each of those questions. Afterward, a new
set of codes is generated by the merge of the codes created by each author. We use
Cohen’s Kappa test to verify the agreement rate between authors when coding the
responses to 13 open-ended questions of our questionnaire. We calculate the Kappa
value separately for each of the 13 questions. We achieved a median Kappa value
of 0.84, indicating substantial agreement (Landis and Koch, 1977). The third author
reviews the set of codes to add additional entries and resolve disagreements between
the codes from the first and second authors. Next, the first author organizes the codes
into themes through axial coding. These themes represent higher conceptual constructs
(e.g., a theme might group many codes). This categorization was double-checked
by the second author. We report the codes and themes generated by our thematic
analysis in the result section. When reporting the results of RQ4—RQ8, we indicate
(in superscript) the number of quotes citing each code and theme. It is important to
highlight that the number in superscript does not necessarily indicate the relevance
of a code, e.g., a code may be mentioned in more quotes because the code is more
easily remembered by our participants. Additionally, when reporting our qualitative
results, the frequency with which codes occur across responses can be higher than
the total of responses. This is because a response from a participant can be associated
with several codes. For example, consider the following quote “Anything that is con-
sidered a critical security fix or major bug fix is generally shipped within 1-2 weeks of
submission. This happens frequently” (C020). We derived two codes from this quote,
which are bug fix and security fix. We use representative quotes from our participants
to aid in the understanding of the interpretation of the codes. We omit the participants’
names by replacing them with an ID, e.g., participant 01 receives the “name” C001.
In Appendix C, we provide the IDs assigned to our participants and their project.

4 Quantitative Study Results

In this section, we present the results of our quantitative study (RQ1—RQ3).

RQ1: Are merged pull requests released more quickly using a CI service?

Only 51.3% of the projects deliver merged PRs more quickly after the adoption
of TravisCI. Out of 87 projects, we observe that 82.7% (72/87) obtained significant

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 13

p-values (i.e., p < 0.05) when comparing the delivery time of merged PRs before and
after adopting TRAVISCI. Surprisingly, we observe that only 51.3% (37/72) of these
projects deliver merged PRs more quickly after adopting TRAVISCI. Our analyses
indicate that 82.7% (72/87) of the projects have a statistical difference on the delivery
time of merged PRs, but a small median Cliff’s delta of 0.304.

In 73% (46/63) of the projects, PRs are merged faster before adopting TravisCI. A
total of 72.4% (63/87) of the projects have a statistical difference on the time to merge
PRs with a median Cliff’s delta of 0.206 (small). With respect to such projects, we
observe that 73% (46/63) merge PRs more quickly before the adoption of TRAVISCI.

Surprisingly, in 54% of the projects, PRs have a longer lifetime after adopting
TravisCI. We observe that in 54% (47/87) of our projects, PRs have a longer lifetime
after the adoption of TRAVISCI. 71.3% (62/87) of these projects yield a statistically
significant difference (p-value < 0.05) and a non−negligible median delta between
the distributions of PR lifetime (delta>= 0.147). 37.1% (23/62) of such projects yield a
large Cliff’s delta (median 0.604), while 22.6% (14/62) and 40.3% (25/62) of the projects
obtained medium and small Cliff’s deltas, respectively (medians of 0.362 and 0.223).
Regarding the projects that yield a p-value < 0.05, we observe that 51.6% (32/62) have
a shorter PR lifetime before the adoption of TRAVISCI, while 48.4% (30/62) have a
shorter PR lifetime after the adoption of TRAVISCI.

Summary: Surprisingly, only 51.3% of the projects deliver merged PRs more
quickly after the adoption of TRAVISCI. In 54% (47/87) of the projects, PRs have a
longer lifetime after the adoption of TRAVISCI. Finally, PRs are merged faster
before the adoption of TRAVISCI in 71.3% (63/87) of the studied projects.
Implications: If the decision to adopt a CI service is mostly driven by the goal of
quickening the delivery time of merged PRs, this decision must be more carefully
considered by development teams.

RQ2: Does the increased number of PR submissions after adopting a CI service
increase the delivery time of pull requests?

71.3% (62/87) of the projects receive more PR submissions after the adoption of
TRAVISCI. Figure 2 shows the distributions of PRs submitted, merged, and delivered
per release for the studied projects. We observe that projects tend to submit a median of
42.6 PRs per release after the adoption of TRAVISCI, while the median number of PRs
submitted per release before the adoption of TRAVISCI is 15.3. A Wilcoxon signed
rank test reveals that the increase in the number of PR submissions is statistically
significant (p-value = 0.0001547), with a Cliff’s delta of 0.332 (medium effect-size).
We also observe a significant increase in the number of merged PRs per release after the
adoption of TRAVISCI (p-value = 7.897e−05, with a medium Cliff’s delta of 0.347).
The number of merged PRs per release increases from 10.4 (median) (before the
adoption of TRAVISCI) to 27.9 after the adoption of TRAVISCI. Interestingly, we also
observe an increase in PR code churn per release after the adoption of TRAVISCI. We
obtain a p-value = 0.002273 and a Cliff’s delta value of 0.27 (small). This significant
increase in PR code churn per release may help explain the increased lifetime of PRs
after the adoption TRAVISCI. Given that more code modifications are performed in

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 14

CI NO-CI

0
50

10
0

15
0

N
um

be
r

of
 p

ul
l r

eq
ue

st
s

pe
r

re
le

as
e

42.6

15.3

(a) Submitted PRs

CI NO-CI
0

5
0

1
0

0
1

5
0

27.9
10.4

(b) Merged PRs

CI NO-CI

0
5

0
1

0
0

1
5

0

31.7

9.2

(c) Delivered PRs

Fig. 2: PR submission, merge, and delivery rates per release.

PRs after the adoption of TRAVISCI, they may require more time to be reviewed,
merged and delivered.

After the adoption of TRAVISCI, projects deliver 3.43 times more PRs per
release than before the adoption of TRAVISCI. When we analyze the PR throughput
per release, we find that the number of PRs delivered per release increases significantly
after the adoption of TRAVISCI. The number of PRs delivered increased from 9.2 to
31.7 after the adoption of TRAVISCI (see Figure 2c). Furthermore, the increase in the
number of PRs delivered per release is statistically significant (p-value = 1.366e−05,
with a medium Cliff’s delta of 0.3819527).

We do not observe a significant difference in release frequency after the adoption
of TRAVISCI. A significant increase in PR submissions may be related to an increase
in release frequency after the adoption of TRAVISCI. Figure 3 shows the distributions
of releases per year before and after the adoption of TRAVISCI (for each of the
studied projects). In the median, projects tend to ship 12.03 releases per year before
the adoption of TRAVISCI, whereas the median drops to 10.15 after the adoption to
TRAVISCI. However, we obtain a p-value = 0.146, indicating that the differences in
release frequency per year before and after the adoption of TRAVISCI are statistically
insignificant. Our results suggest that the high increase in the number of PRs delivered
per release is unlikely to be linked with an increase in the number of releases. We
investigate whether the increased number of PRs delivered may be due to an increase
in the number of contributors after the adoption of TRAVISCI.

We find that 75.9% (66/87) of projects had an increase in the number of contribu-
tors per release after the adoption of TRAVISCI. Figure 4 shows the distributions
of contributors per release both before and after the adoption of TRAVISCI. The
median number of contributors per release increases from 4.4 to 11.2 after the adop-
tion of TRAVISCI. We observe that the difference is statistically significant (p-value
= 2.525e−06 with a medium Cliff’s delta of 0.413).

Despite the increase in contributors and PRs delivered per release after the adoption
of TRAVISCI, we did not observe a statistically significant correlation between PRs
delivered and number of contributors. Our results show that the number of PRs
delivered per release and the number of contributors in PRs per release have small

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 15

CI NO-CI

0
10

20
30

40
50

rel
ea

se
s/y

ea
r

10.15 12.03

Fig. 3: Releases per year before and after TRAVISCI.

CI NO-CI

0
20

40
60

80
10

0

of
 P

R
 c

on
tri

bu
to

rs
 /

re
le

as
e

11.2
4.4

Fig. 4: PR contributors per release.

positive coefficient correlation of 0.1906346. A Pearson correlation test reveals that
this correlation is not statistically significant (p-value = 0.07695). Our observations
suggest that the increase in PRs delivered after the adoption of TRAVISCI is not tightly
related to the increase in the number of contributors per release or release frequency.
The increase in PRs delivered per release might be due to the quicker feedback of
automated tests provided by TRAVISCI. A qualitative study with developers may shed
more light upon this matter. We further discuss this issue in Section 7.

Summary: After the adoption of TRAVISCI, projects deliver 3.43 times more PRs
per release than before TRAVISCI. The increase in PRs submitted, merged, and
delivered after the adoption of TRAVISCI is a possible reason as to why projects
may deliver PRs more quickly before the adoption of TRAVISCI.
Implications: Teams that wish to adopt TRAVISCI should be aware that their
projects will not always deliver merged PRs more quickly or release more often.
Instead, a pivotal benefit of a CI service is the ability to process more contributions
in a given time frame.

RQ3: What factors impact the delivery time after adopting a CI service?

Our models achieve a median R2 of 0.64 using pull request data before the adoption
of TRAVISCI, while achieving 0.67 after the adoption of TRAVISCI. Moreover, the

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 16

00 00 00 00 00 00 0

1

4

2

00

1

0

9

3

4

10

00
0.0

2.5

5.0

7.5

10.0

activ
itie

s

changed file
s

churn

comments

comments i
nterva

l

commits
per p

r

contrib
utor e

xperience

contrib
utor in

tegration

descr
iption length

merge tim
e

merge worklo
ad

queue ra
nk

sta
ckt

race attached

N
um

be
r o

f m
od

el
s

CI
NO CI

Fig. 5: The number of models per most influential variables.

0
20

40
60

80
10

0

%
 o

f e
xp

la
na

to
ry

 p
ow

er
co

mmits
 pe

r p
r

ch
an

ge
d fi

les
ch

urn
co

mmen
ts

co
mmen

ts
int

erv
al

merg
e w

ork
loa

d
qu

eu
e r

an
k

de
sc

rip
tio

n l
en

gth

co
ntr

ibu
tor

 ex
pe

rie
nc

e

co
ntr

ibu
tor

 in
teg

rat
ion

sta
ck

tra
ce

 at
tac

he
d

ac
tiv

itie
s

merg
e t

im
e

(a) Explanatory power of variables before
adopting TRAVISCI.

0
20

40
60

80
10

0

%
 o

f e
xp

la
na

to
ry

 p
ow

er
co

mmits
 pe

r p
r

ch
an

ge
d fi

les
ch

urn
co

mmen
ts

co
mmen

ts
int

erv
al

merg
e w

ork
loa

d
qu

eu
e r

an
k

de
sc

rip
tio

n l
en

gth

co
ntr

ibu
tor

 ex
pe

rie
nc

e

co
ntr

ibu
tor

 in
teg

rat
ion

sta
ck

tra
ce

 at
tac

he
d

ac
tiv

itie
s

merg
e t

im
e

(b) Explanatory power of variables after
adopting TRAVISCI.

Fig. 6: Distributions of the explanatory power of each variable of our models.

median bootstrap-calculated optimism is less than 0.069 for both set of R2s obtained
by our models.4 These results suggest that our models are stable enough to perform
the statistical inferences that follow.

The “merge workload” is the most influential variable in the models fit for
the time period before the adoption of TRAVISCI. Merge workload represents the
number of PRs competing to be merged (see Table 3) at a point in time. Figure 6
shows the distributions of the explanatory power of each variable of our models. The
higher the median explanatory power for a variable, the higher the influence of such a
variable on the delivery time of PRs. We observe that merge workload has the strongest
influence on our models to explain delivery time before the adoption of TRAVISCI.

4 https://prdeliverydelay.github.io/#rq3-r-squared-and-optimism

https://prdeliverydelay.github.io/#rq3-r-squared-and-optimism

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 17

0

2500

5000

7500

10000

0 500 1000 1500
merge workload

de
liv

er
y

tim
e

bcit-ci/CodeIgniter

(a)

-4000

-2000

0

0 1000 2000 3000 4000 5000
queue rank

de
liv

er
y

tim
e

aframevr/aframe

(b)

0

250

500

750

1000

1250

0 500 1000 1500 2000
contributor integration

de
liv

er
y

tim
e

HabitRPG/habitica

(c)

Fig. 7: The relationship between the most influential variables and delivery time.

Our models reveal that the higher the merge workload, the higher the delivery time of
a PR. Figure 5 shows each explanatory variable and the number of models for which
these variables are the most influential. Indeed, merge workload is the most influential
variable in (9/18) of models fit for the time period before the adoption of TRAVISCI.
Figure 7 shows the relationship between the most influential variables of our models
and delivery time. The relationship between merge workload and delivery time is
shown in Figure 7a. We choose 3 models with the highest R2s out of the 34 models to
plot the relationships. Indeed, the rest of our models reveal a similar trend.5

The “queue rank” variable is the most influential variable in the models fit
for the time period after the adoption of TRAVISCI. Queue rank represents the
moment at which a PR is merged in relation to other merged PRs within the release
cycle. Figure 7b shows the relationship between queue rank and delivery time. Our
models reveal that merged PRs have a lower delivery time when they are merged
more recently in the release cycle. In addition, contributor integration is the third
most influential variable in our models for both time periods, i.e., before and after the
adoption of TRAVISCI. Contributor integration represents the average number of days
that previously delivered PRs submitted by a particular contributor took to be merged.
Our models also reveal that if a contributor has their prior submitted PRs delivered
quickly, their future PR submissions tend to be delivered more quickly (Figure 7c).

Summary: Our models suggest that “merge workload” is the most influential vari-
able to model the delivery time of merged PRs before the adoption of TRAVISCI.
Additionally, our models show that after the adoption of TRAVISCI, merged PRs
have a lower delivery time when they are merged more recently in the release cycle.
Implications: If software development teams plan to deliver their merged PRs
more quickly to their end-users, they should consider having shorter release cycles.

5 Qualitative Study Results

We first discuss the demographics of our participants, focusing on their domain, their
main software development activities, and their experience using CI. Afterward, we
disclose the findings of each RQ (RQ4—RQ8).

5 https://prdeliverydelay.github.io/#rq3-variables-explanatory-power

https://prdeliverydelay.github.io/#rq3-variables-explanatory-power

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 18

The number of responses to each question may vary as none of the questions
are mandatory in our survey (to encourage a higher response rate). Hence, not all
participants answered all questions. Figure 8a shows the participants’ experience in
software development. We collect the data in Figure 8a from Question #3 where the
options range from “0 years” to “10 or more years”. We observe that 78% (348/444) of
participants have eight or more years of experience in software development. Finally,
Figure 8b shows the experience of participants with CI. 64.2% (282/439) of participants
have five or more years of experience with CI. Only five (1.3%) participants report
less than one year of experience with CI.

0
2

4
6

8
10

(a) In general.

0
2

4
6

8
1

0

5

(b) Using CI.

Fig. 8: Participants’ experience in software development.

We observe that 51.8% (226/436) of participants used CI in 60–100% of their
projects (see Figure 9). In terms of participants’ main activities, we observe that the
development of new features is the most common activity among them, followed by
test and review. A total of 92.9% of participants state that developing new features is
one of their main activities in their projects. Another 229 participants (50.9%) state
that code review is another main activity they perform in their projects. Figure 10
shows the participants’ main activities according to their own classification (Question
#7). Given that a participant can take on several roles, the sum of the percentages in
Figure 10 can be greater than 100%. Considering the demographics, we were able to
collect a diverse set of participants in terms of experience with CI, domain area, and
development activities (e.g., bug fixing, developing new features, or code review).

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 19

14%

(61)

12.8%

(56)

21.3%

(93)

23.2%

(101)

28.7%

(125)

0% 25
%

50
%

75
%

10
0%

Proportion

Ratio of projects
that uses CI

0 − 20%

20 − 40%

40 − 60%

60 − 80%

80 − 100%

Fig. 9: Proportion of participants’ projects that use CI (Question #5).

418

229

165

136

86
16

0

100

200

300

400

of

 p
ar

tic
ip

an
ts

Domain

Bug Fixes

Development

Documentation

Others

Project Management

Review

Test

Fig. 10: Developers’ main activities.

With respect to domain expertise, we observe that web development is the most
common domain of our participants. 77.8% (350/450) of participants state that web
development is one of their main domains (Question #8). The second and third most
common domains are business software development (35.3%, 159/450) and mobile
applications (32.2%, 145/450). Business software is a system used to measure and
improve enterprise productivity and to perform other business functions. Document
Management Systems, Employee Scheduling Software, and Enterprise Resource
Planning (ERP) are examples of business software. Additionally, a significant number
of participants are from areas such as scientific development (i.e., those who develop
software systems to analyze, visualize, or simulate processes or data) and big data
(i.e., those who use scientific software to process and analyze data). This diversity
of domains demonstrates that we obtain insights from several roles and development
areas.

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 20

100

159

17

68

39

21

145

76

139

350

0

100

200

300

of

 p
ar

tic
ip

an
ts

Domain

BIG DATA

BUSINESS DEVELOPMENT

DEFENSE SYSTEMS

EMBEDDED SYSTEMS

INDUSTRIAL AND PROCESS CONTROL

MEDICAL DEVICES

MOBILE APPLICATIONS

OTHERS

SCIENTIFIC DEVELOPMENT

WEB DEVELOPMENT

Fig. 11: Participants’ domain area.

In Table 4 we present the summary of Themes that were generated by our thematic
analysis for each research question (RQ). For instance, in RQ4 we investigate the
perceived influence of CI on the delivery time of merged PRs, which is associated with
the following themes: automation, project quality, and release process. Additionally,
a theme may emerge in the results of more than one RQ. For instance, the automation
theme emerges in the results of both RQ4 and RQ6. This is because participants of our
study believe that automation impacts the delivery time of merged PRs (RQ4) while
also impacting the release process of projects (RQ6). Table 4 presents an overview of
the findings of the qualitative study. The detailed analysis for each theme is described
in the result section of RQ4—RQ8.

RQ4: What is the perceived influence of CI on the time to deliver merged PRs?

77% (338/441) of participants agree with the statement that CI shortens the delivery
time of merged PRs. In question #12 of our survey, we ask participants to express the
extent to which they agree with the following statement: “the adoption of CI shortens
the time to deliver merged PRs to end users.” Most of our participants (77%, 338/441)
agree with the statement, while 16% (72/441) are neutral, and 7% (31/441) disagree or
strongly disagree with the statement (see Figure 12). However, it is not clear whether
these latter participants perceive CI as not having any influence on the delivery time of
merged PRs or whether they perceive CI as having a negative influence on the delivery
time of merged PRs.

After analyzing our participants’ responses, the influence of CI on the delivery
time of merged PRs was captured through the following themes: release process,
project quality, and automation. The description and examples of mentions for each

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 21

Table 4: High-level Overview of the Themes per RQ of the qualitative study.

Research Question Theme

RQ4: Impact of CI on the PR delivery time

Automation

Project quality

Release process

RQ5: Themes that impact the PR delivery time in general

PR characteristics

Project maintenance

Release process

Team characteristics

Contributors

Testing

RQ6: Influence of CI on the project release process

Automation

Project Stability

Release characteristics

RQ7: Influence of CI on the project review process
CI does not impact code review

CI impacts code review

RQ8: Impact of CI on attracting more contributors
Attractive project characteristics

Lower contribution barrier

7% 77%16%CI impacts delivery time

100 50 0 50 100

Percentage

Participant perception

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

Fig. 12: Developer’s perception about the influence of continuous integration on the
delivery time of merged pull requests (Question #12).

theme are presented in the following. Additionally, Table 5 shows the frequency of
mentions for each code and theme related to how CI may influence the delivery time
of merged PRs.

Release process.(49) Several responses to our questionnaire indicate that the adoption
of CI influences the delivery time of merged PRs because CI promotes faster release
cycles.(29) For instance, C346 declares that “Good use of CI could help in faster release
cycle, because you can be more confident in shipping something that works.” Some
practitioners of CI (Goodman and Elbaz, 2008) have claimed that some benefits of us-
ing CI are the improved release frequency and predictability. However, our quantitative

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 22

Table 5: Frequency of mentions in participants’ responses for each code and theme
related to how CI may influence the delivery time of merged PRs.

Theme Code
Frequency

Frequency
per code

Frequency
per theme

Automation

Automated testing 39

99

Earlier feedback 24

Reduced testing time 10

Reduced burden on review-
ers

9

Automated building 7

Less manual work 6

Improved automation 4

Project quality

Code quality 14

130

Code stability 23

Higher test coverage 6

Better confidence 83

Reduced regression risk 4

Release process

Faster release cycle 29

49Automated deployment 17

Smaller release 3

study (RQ2) does not support such a claim. We do not observe a significant difference
in release frequency after the adoption of a CI service (e.g., TRAVISCI) for the stud-
ied projects. Furthermore, we found that after the adoption of TRAVISCI, projects
delivered 3.43 times more PRs per release than before the adoption of TRAVISCI.
We observe that although the release frequency was not significantly affected by the
adoption of a CI service, projects process substantially more PRs per release than
before the adoption of TRAVISCI. Furthermore, automated deployment(17) can be
another step in the adoption of CI which helps projects to rapidly deliver software
changes to end users (Humble and Farley, 2010). Automated deployment refers to
the process of making developers’ code available to end users automatically (Rahman
et al., 2015). C347 explains that “CI is the only way to automate deployment, thus
speeding up customer delivery”. Finally, developers also mentioned smaller releases(3)

as an influencing factor of CI on the delivery time of merged PRs. For instance, C076
states that it “makes sense for the releases to be smaller and more frequent as a project
reaches a level of stability.”

Project Quality.(130) This is the theme most mentioned by our participants. According
to participants, CI influences the delivery time of merged PRs by increasing code
quality,(14) providing code stability,(23) and reducing regression risks.(4) For example,
C280 states that CI promotes a “much better quality of contributions and therefore
much shorter release cycles.” Also, CI influences code stability, as declared by C270:

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 23

“it makes the required time to deliver shorter because the maintainer can be relatively
sure the change does not break other use cases.” According to Vasilescu et al. (2015),
core developers using CI can discover more bugs than developers in projects not using
CI. Better quality confidence(83) is the most mentioned code when it comes to the
adoption of CI. According to participants, the delivery time of merged PRs is positively
influenced by CI because “it’s much easier to trust a PR that was built and tested at a
CI environment than having to do everything manually on my own machine” (C361).
This trust in CI is also related to a higher test coverage.(6) For instance, C151 states
that “CI requires a good test suite, which gives confidence in the correctness of the
project.” Indeed, poor test coverage may make successful builds misleading (Felidré
et al., 2019) (i.e., the builds may still contain unidentified bugs).

Automation.(99) According to our participants, CI also influences the delivery time of
merged PRs by improving automation.(4) Automation is a key aspect of CI. Projects
implementing proper CI must at least automate their build and testing processes.
Automation leads to less manual work,(6) as explained by C203 when stating that “Yes,
the amount of manual work involved in a release is much less when you use CI.” The
automated testing(39) code is mentioned several times as influencing the delivery time
of merged PRs, which is in accordance with the study by Rahman et al. (2015). For
example, C361 states that “I worked on the Bokeh project both before and after the
full integration of TRAVISCI. Previously, major releases took months of planning due
to a lack of manpower needed for running tests. With the adoption of CI, new versions
can be released semi-monthly thanks to CI greatly reducing the number of man-hours
needed for testing.”

The automated test execution provides earlier feedback,(24) which is also recur-
rently mentioned by our participants. For instance, C439 states that “early errors
are identified by CI, so it facilitates the delivery process.” Also according to our
participants, CI contributes to a reduced testing time.(10) C062 states that “when you
have CI (+ a strong test suite) you can in some cases shorten a lot the manual test
of that bug fix, or in some cases even skip it entirely (when the fix is simple enough).”
Finally, it was also mentioned that CI contributes to a reduced burden on reviewers.(9)

For instance, C026 declares that “relying on reviewers to build to test will increase
time to ship massively and will be a drain on the already scarce resource of reviewers.”
This observation is interesting as it may explain our results in RQ2 related to the
higher number of PRs delivered per release (see Section 4), i.e., as there is less burden
to reviewers, they have more capacity to review PRs that, otherwise, would have
waited longer in the delivering queue. Previous studies observed that there is less
discussion in PRs after the adoption of CI (Cassee et al., 2020), which could also save
reviewers’ time. The use of CI automates several tasks in software development (i.e.,
build and test), thus saving time from maintainers, so they can focus on the content of
the proposed software changes and launch software releases. Indeed, several partici-
pants stated that automated building(7) quickens the delivery time of merged PRs. For
instance, C400 declares that “it [automated building] reduced the required time [to
deliver] since CI built code, run tests etc.”

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 24

3%

14%

8%

1%

5%

48%

43%

39%

42%

63%

37%

38%

72%

60%

52%

47%

39%

32%

20%

20%

20%

18%

17%

17%

25%

26%

40%

53%

56%

19%

38%

41%

38%

19%

46%

45%

contributor experience

contributor integration

stacktrace attached

description length

queue rank

merge workload

comments

comments interval

changed files

churn

commits per PR

merge time

100 50 0 50 100
Percentage

Impact on delivery time

Makes delivery a lot slower

Makes delivery a little bit slower

Does not influence delivery time

Makes delivery a little bit faster

Makes delivery a lot faster

Fig. 13: Developers’ perception about factors’ impact on the delivery time of merged
PRs (Question #12).

According to our participants, PR churn and the number of PRs waiting to be
merged (merge workload) are the most important variables of our models in
Study I. In question #12, we request our participants to rate the degree to which 12
variables used in our regression models (see RQ3, Tables 2 and 3) may influence the
delivery time of merged PRs. We present the following variables: (i) a number that
represents the moment at which a PR is merged compared to other merged PRs within
the release cycle (queue rank); (ii) contributor integration; (iii) stack-trace attached;
(iv) description size; (v) contributor experience; (vi) merge workload; (vii) changed
files; (viii) churn; (ix) merge time; (x) number of commits per PR; (xi) number of
comments; and (xii) interval of comments.

Our participants were invited to rate their perception regarding the impact of each
above-mentioned variable on a 5-point Likert scale. The options were the following:
(i) makes delivery a lot slower; (ii) makes delivery a little bit slower; (iii) does not
influence the delivery time; (iv) makes delivery a little bit faster; and (v) makes delivery
a lot faster. Figure 13 shows the perception of participants regarding the influence of
each variable on the delivery time of merged PRs. Figure 14 shows the frequency of
each rating per variable. The lower the percentage of “does not influence delivery time,”
the higher the perceived influence of a variable on the delivery time of merged PRs.

The variables that are most rated as having influence on the delivery time are churn
and merge workload. This finding is partially in agreement with our regression models
(see RQ3). The merge workload is also one of the most influential variables in our
models. According to our regression models, the higher the merge workload the higher
the delivery time of merged PRs. This is in agreement with the perception of 81% of
participants of our survey. The influence of merge workload is explained by C093,
when they mention that a longer delivery time can be due to “not enough developers
and too many pull requests & issues to manage”. Contrasting our models, participants
rated PR churn as one of the most influential codes on delivery time. When asked

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 25

about examples of merged PRs that took long to be delivered, C109 mentioned PRs
that have a “big change for a core function”. However, our regression models (RQ3)
do not rate code churn as an influential variable to explain delivery time. Another
agreement between our models and participants is that 73.8% of participants rate
queue rank as influential to explain the delivery time of merged PRs. This corroborates
the results from RQ3, which reveals that queue rank is influential when explaining
delivery time.

Although the responses from participants confirm the influence of certain variables
used in our regression models (RQ3), in Figure 14, we observe that the option “Does
not influence delivery time” is frequently chosen for many other variables. 6 out of 12
variables (stacktrace attached, description length, contributor integration, commits
per PR, comments interval and changed files) were ranked above 40% (2 being over
50%), which means that a substantial number of participants is skeptical regarding
the influence of such variables on delivery time. This finding supports our regression
model’s results, except for the contributor integration metric. The contributor integra-
tion is the third most influential variable in our models for time periods before and
after the adoption of TRAVISCI. Our models suggest that if a contributor has their
prior PR delivered quickly, their future PRs are more likely to be delivered quickly.

4.02 (0.84)

3.73 (1.08)

3.53 (0.78)

3.56 (0.70)

3.41 (0.75)

2.85 (1.29)

2.68 (1.07)

2.72 (1.07)

2.73 (0.96)

2.40 (1.21)

2.73 (1.02)

2.75 (0.94)

 0.00%

 0.25%

 1.24%

 0.74%

 2.24%

13.83%

 8.35%

15.06%

 7.88%

23.95%

12.56%

14.91%

 2.94%

 0.50%

 3.72%

 6.88%

11.72%

34.57%

33.66%

23.70%

30.54%

39.51%

24.63%

27.63%

25.25%

52.72%

55.83%

40.29%

26.18%

19.26%

38.33%

41.48%

45.07%

19.01%

45.57%

37.65%

38.24%

35.64%

31.02%

43.00%

30.42%

17.28%

15.48%

13.58%

11.33%

 7.65%

11.33%

13.94%

33.58%

10.89%

 8.19%

 9.09%

29.43%

15.06%

 4.18%

 6.17%

 5.17%

 9.88%

 5.91%

 5.87%

contributor experience

contributor integration

stacktrace attached

description length

queue rank

merge workload

comments

comments interval

changed files

churn

commits per PR

merge time

Mean (S
D)

Make
s d

elive
ry

a lo
t s

lower

Make
s d

elive
ry

a lit
tle

 bit s
lower

Does n
ot in

flu
ence

 delive
ry

tim
e

Make
s d

elive
ry

a lit
tle

 bit f
aste

r

Make
s d

elive
ry

a lo
t fa

ste
r

0

25

50

75

100
Percent

Fig. 14: Rating of codes related to delivery time of merged PRs (Question #13).

When presented with the median delivery time of merged PRs before and after
the adoption of TRAVISCI, 42.9% (140/326) of participants state that TRAVISCI

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 26

has little influence on the delivery time, attributing the change in delivery time
to other unrelated factors. According to responses to Question #26 of our survey,
42.9% of participants attribute the delivery time of PRs to other factors not directly
related to the adoption of TRAVISCI (i.e., project maintenance, release strategy, and
PR characteristics). As an example, we observe that the median delivery time of PRs in
the rails/rails project increased from 120 to 184 days after the adoption of TRAVISCI.
However, according to 13 participants of the rails/rails project, “this is definitely
not related to CI. rails/rails has its own release schedules” (C063). Furthermore,
when we presented the data for participants of the ansible/ansible project, where the
median delivery time increased from 36 to 121 days (after the adoption of TRAVISCI),
C355 explained that “all depends on the project owners decision when to release.”
Additionally, in RQ5, we further discuss the factors that participants argue to not being
directly related to CI, but can influence the delivery time of merged PRs.

Summary: The general perception is that CI influences the delivery time by
improving automation, the release process, and the project quality. Furthermore,
code churn and merge workload are the variables with the highest perceived
influence on the delivery time of merged PRs. However, when showing specific
project data to the respective participants, 42.9% of participants are skeptical
regarding the influence of CI on the delivery time of the merged PRs.
Implications: Our participants consider that the key benefit of CI is to improve the
mechanisms by which project contributions are processed (e.g., facilitating deci-
sions related to PR submissions), without compromising the quality or overloading
the reviewers and maintainers of the projects.

RQ5: What are the perceived causes of delay in the delivery time of merged PRs?

The following themes are generated by our thematic analysis of the potential causes
of delivery delay in merged PRs: PR characteristics; project maintenance; release
process; team characteristics; contributors; testing and automation. Table 6 shows
the frequency of mentions in our participants’ responses for each of the codes and
themes that influence the delivery time of merged PRs. We describe all themes and the
most mentioned codes in the following.
PR Characteristics.(330) The characteristics of merged PRs theme is the theme most
mentioned by our participants. According to participants’ responses, PR prioritiza-
tion(57) is one of the main factors that can shorten or lengthen the time to deliver
merged PRs. The priority of a PR is recurrently associated with bug fixes(91) and
security fixes.(12) According to C020, “Anything that is considered a critical security
fix or major bug fix is generally shipped within 1-2 weeks of submission. This happens
frequently.” In contrast, several participants(22) state that PRs with a longer delivery
time are frequently associated with non-urgent features. As stated by C111, “The most
frequent reason [for a longer delivery time] is that the PR is not business-critical.” In
a similar vein, the study by Gousios et al. (2015) found that integrators commonly
prioritize contributions by examining their criticality or urgency, e.g., bug fixes or new
important features are commonly assigned a higher priority.

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 27

Table 6: Frequency of mentions in the developer responses for each code and theme
that impact the delivery time of merged PRs.

Theme Code
Frequency

Frequency
per code

Frequency
per theme

PR characteristics

Bug fix 91

330

PR position in the release
cycle

32

Change complexity 86

PR prioritization 57

PR size 13

Security fix 12

Code quality 11

Guideline adherence 7

Backward compatibility 6

Feature dependence 4

Good PR description 4

Feature improvement 4

Breaking change 3

Project maintainance

Maintainers availability 41

112

Maintainers activeness 34

Volunteer based 12

Interest gauging of maintainers 11

Maintainer responsive-
ness

7

Maintainers workload 7

Release process

Release cycle 86

137

Automated deployment 16

Batching 11

Business rules 10

Manual release process 5

Misuse of CI 5

Release early, release of-
ten culture

4

Team characteristics

Team size 21

40
Small project 13

Open source 4

Paid staff 2

Contributors

Contributor trustworthiness 4

9
Contributor experience 3

Contributor and maintain-
ers relationship

2

Testing

Test coverage 12

35

Testing time 9

Lacking tests 7

Broken tests 3

Manual testing 2

Build duration 2

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 28

Additionally, the code quality(11) of the PR, the change complexity(10) and the
guideline adherence(7) are commonly mentioned codes related to the delivery time of
merged PRs. For example, C168 exemplified that “adherence to pull request guidelines.
Small fix. Clearly defined solution” are factors that quicken the delivery time of merged
PRs. Along the same lines, Gousios et al. (2015) argue that contributions conforming to
project style and architecture, source code quality, and test coverage are top priorities
for integrators. Finally, the change complexity(86) is also mentioned to help PRs to be
quickly evaluated and delivered. For instance, C431 states that “the PR I issued to
Crafty was integrated very quickly, mainly because it was a trivial, absolutely non-
breaking change.” The study by Yu et al. (2016) also identified that the complexity
of PRs is a factor that influence the PR latency (i.e., the time taken for a PR to be
merged). Weißgerber et al. (2008) observed that smaller PRs are more likely to be
accepted. Indeed, according to our survey participants, the less complex or the more
trivial a PR is, the greater the more likely that the PR will be quickly delivered as less
effort is needed.

Project maintenance.(112) Project maintenance is associated with the project maintain-
ers’ activities. When considering the influence of the maintainers on the delivery time
of merged PRs, most participants mentioned maintainers’ availability(41). The study
by Yu et al. (2016) found that integrators’ availability has a significant effect on PR
latency. Additionally, our study suggests that maintainers’ availability influences the
delivery of PRs. For instance, C115 considers that a longer delivery time is associated
with “long times between releases, mostly due to maintainer availability”. Another
important and frequently mentioned cause of delay is that open-source projects are
volunteer based,(12) i.e., contributors are often volunteers (Hars and Shaosong, 2002).
For instance, C336 stated that “OSS projects are staffed by volunteers who come
and go and then the priorities of the project shift and some feature become less
important”. Furthermore, maintainers’ workload,(7) maintainer activeness(34) and
maintainers’ engagement(11) are believed to influence the delivery time of merged
PRs. For instance, C419 states that “if the maintainers of the project are interested,
it [the PR] will get processed quickly.” Previous work also observed that workload
is a factor that plays a key role in the delivery time of addressed issues of three large
open-source projects (da Costa et al., 2018), which corroborates our results. The
maintainer responsiveness(7) also influences the delivery time of merged PRs. C090
states that “it also helps [to deliver PRs more quickly] if maintainers can be easily
contacted (IRC/Slack/Twitter)”. Furthermore, codes related to project maintenance
should be carefully considered in project management, since they might influence not
only the delivery time of merged PRs, but also project success. The study by Coelho
and Valente (2017) elucidates that lack of maintainers’ time and interest are factors
that might lead open-source projects to fail.

Team Characteristics.(40) Team characteristics are also believed to influence the
delivery time of merged PRs. Several participants explained that a long delivery time
may occur due to team size.(21) As stated by C393 “the team doing reviews were
(and is still) understaffed.” The study by Vasilescu et al. (2015) also identified that
larger teams can process more PRs (i.e. merge or reject PRs). This is common in
open-source(4) projects, as explained by C238 when stating that “Open source projects

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 29

tend to delay the publication. Private projects suffer from this problem with much less
impact. I wonder if it is due to the lack of a dedicated team in the open-source project,
or maybe the focus isn’t necessary in the part of the software I contributed.” Small
project(13) is also believed to quicken the delivery of merged PRs, as explained by
C321, “on small projects some PRs might be released as a hotfix release very quickly.
So I think the speed of delivery is usually in direct proportion to the size of the project.”

Overall, the codes related to project characteristics should be carefully observed for
projects attempting to decrease the time to deliver their merged PRs. Our participants
believe that small projects tend to deliver their PRs more quickly, as they can manage
the incoming contributions more easily. With project growth (e.g., an increased number
of PRs and project complexity), a small core team size can become a bottleneck when
delivering merged PRs. In open-source projects, the bottleneck may be exaggerated
as projects are volunteer-based (Hars and Shaosong, 2002) with most developers
working in their free time. To overcome these barriers, projects may consider adopting
strategies to deal with the large increase in contributions, as well as to deal with
maintainers’ inattentiveness, like transfer the project to new maintainers or accept
new core developers (Coelho and Valente, 2017). Additionally, adding paid staff (2)

to the project could be an alternative to deal with the project workload and quicken
the delivery time of the merged PRs. For instance, C225 explained the importance
of paid staff on the software project by stating the following: “I have submitted PRs
to very large open-source projects, like sklearn or AWS CLI. These projects typically
get released frequently on established schedules by maintainers who are, in part,
employed to release the projects.”

Contributors.(9) This theme reflects the potential influence that contributors (i.e., those
who submit PRs) have on the delivery time of PRs. The contributors’ social status is
important when it comes to the delivery of their PRs. When analyzing the time length
between the submission and merge of a PR, Yu et al. (2016) found that open-source
projects prefer to quickly accept PRs originating from trusted contributors. After PRs
are merged, the contributors’ social status also influences the time to deliver PRs. For
example, contributor trustworthiness(4) is often evaluated before a PR is delivered.
C421 states that “after you work with people for a while, you recognize and trust
those that have proved to be good at what they do.” According to our participants, the
greater the contributor experience,(3) the more likely the contributor will have their
PR delivered more quickly. Furthermore, Soares et al. (2018) observed that the social
relationship between contributors and reviewers influences the evaluation of a PR. In
fact, we also identify that the contributor and maintainer relationship(2) positively
influences the delivery time of merged PRs (i.e., contributors that are socially closer to
a core team member have a higher chance to have their PRs delivered more quickly).
C403, for example, states that “some [PRs] were shipped quickly because one of
maintainers is my friend then he merged immediately.”

Testing.(35) The delivery time of merged PRs can also be associated with testing. When
asked about factors that might cause a PR to be delayed, our participants listed testing
time,(9) lacking tests,(7) broken tests,(3) and manual testing.(2) For instance, in relation
to testing time, C030 states that “release time can be quite long but not due to a
specific PR, but to an overall review and testing process of a whole software release.”

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 30

In this respect, reducing manual steps is a must for projects wishing to release code
more frequently (Neely and Stolt, 2013). Test planning is very important in the Quality
Assurance (QA) process. For instance, with automated test suites, the QA team no
longer needs to manually execute the tests for the majority of the system, which would
be more error-prone and slow (Neely and Stolt, 2013). However, beyond the automated
test execution, projects must also be concerned with test coverage(12). Automated test
execution for projects with low test coverage potentially leads to certain bugs not
being identified during build time (Felidré et al., 2019). Several participants mention
test coverage(12) as influencing the delivery time of PRs. C347 declares that “code
that had a large test coverage and small PR are generally deployed safely and quickly.”
Additionally, C287 mentions issues related to building duration when testing their
PRs: “NixOS nixpkgs stable chanel: CI for deep dependencies take a huge amount of
computation time.” Indeed, keeping the build and test process short (ideally by not
taking more than 10 minutes) is one of the prerequisites for CI adoption (Humble
and Farley, 2010). A long build duration may lead to a set of problems, for example,
developers may check-in their code less often, as they have to sit around for a long
time while waiting for the build (and tests) to run.
Release process.(132) The delivery time of merged PRs may also be associated with
the release process of projects. The release cycle(86) code is the most cited code of this
theme. For instance, C029 states that “code was merged quickly, but had to wait for
the test, review, and release cycle to complete. So had to wait for months to see the
code I needed released publicly.” Indeed, a shorter release cycle has been mentioned
to shorten the time-to-market and quicken the users’ feedback loop (da Silva et al.,
2016). da Costa et al. (2018) also found that traditional release cycles (which are
longer cycles) could actually deliver new functionalities more quickly by using minor
releases. Therefore, it seems that the higher the frequency of user-intended releases,
the quicker the delivery of merged PRs.

When explaining potential reasons for the quick delivery of PRs, our participants
recurrently mentioned automated deployment.(16) For instance, C100 states “we also
implemented continuous deployment so that when a change is merged, it is automati-
cally deployed.” Automated deployment is mandatory for the adoption of continuous
deployment (CD). The goal of CD is to automatically deploy every change to the
production environment (Shahin et al., 2017). In the context of the pull-based devel-
opment model, CD is said to have a substantial influence on the delivery time of the
proposed changes, since each merged PR is automatically deployed.

Additionally, batching(11) and business rules(10) are also important codes when it
comes to the delivery time of PRs. The batching code is associated with the process
of queuing up PRs to launch bigger releases. For instance, C092 states that a PR
that experiences a long delivery time is linked to the fact that “Usually they [project
maintainers] wait for a good amount of fixes or an important fix like the ones involving
security [to launch a release].” However, project managers should be careful about
the risks of bigger releases. Usually, big releases are a result of a longer release cycle,
which may delay the delivery of PRs for a longer time. In contrast, smaller batch sizes
would help the production environment to have fewer defects as smaller code changes
may lead to faster feedback from the CI system (Neely and Stolt, 2013). Regarding
the business impact on delivery time, C353 declared that “If the change introduces

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 31

a new feature that has an impact on end users, the marketing and customer success
team need to communicate to them in advance and it takes weeks.” Indeed, the work
of da Costa et al. (2018) also found that the delivery time may also be associated
with the collaboration with other teams. They also mention that the marketing team is
recurrently cited when delays to release occur due to other teams’ collaboration. For
instance, a PR may be delayed due to the need of aligning the software release with
external events for marketing reasons. Additionally, the misuse of CI(5) is mentioned
as a factor that negatively impacts the delivery time of PRs, i.e., C118 states the
following: “I’ve worked in a project that hadn’t CI nor automated tests, so each
release took at least one week to be deployed. Once, we had some issues with our
deploy system that made us delay the deploy for one month.” Lastly, the release culture
also impacts delivery time. For example, C090 stated that “projects with release
early, release often(4) culture are usually the fastest to deliver.” Overall, our results
suggest that projects should reduce manual processes to quicken the release process
and increase the release frequency. The adoption of continuous software engineering
practices (Shahin et al., 2017), i.e., CI, Continuous Delivery (CDE), and Continuous
Deployment (CD), should be considered in this regard.

Summary: The delivery time of merged PRs is impacted by several factors. 87.3%
(579/663) of the mentions associate the delivery time of PRs with their characteristics,
the project release process, and project maintenance. According to our survey
responses, simple PRs and PRs that fix bugs are delivered more quickly. The PR
delivery time is also often linked to the availability of maintainers and the size of
the release cycle.
Implications: Teams that wish to deliver their merged PRs more quickly to their
users should also be concerned with other aspects beyond CI, such as encouraging
their contributors to submit simple PRs and maintaining short release cycles.

RQ6: What is the perceived influence of CI on the software release process?

We report the results of RQ6 in two subsections. First, we report on the release
processes of our participants’ projects in general (i.e., not considering influences of CI
yet). This is important to obtain an overview of the variety of release processes in our
data and will provide us with more context when interpreting the influence of CI on
release processes. Afterward, we show the perceived influence of CI on the release
processes of our participants’ projects.

Release processes in general.

According to our participants, the release process of their project are goal oriented,(97)

maintainer oriented,(18) follow a specific release strategy,(94) such as continuous
delivery,(28) and are driven by business(18) and user demand.(7) In addition, some
participants perceive an ad hoc(7) approach to the release process of their project.
Table 7 shows the citation frequency of each theme and code related to the release
process of projects.

Goal oriented(97) is the theme that emerged the most when it comes to the release
process of our participants’ projects. An example of a goal that projects strive to

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 32

Table 7: Frequency of themes and codes as captured from our participants’ responses.

Theme Code
Frequency

Frequency
per Code

Frequency
per Theme

Goal oriented

Code stability 28

97

New feature 22

Tested code 13

Feature completeness 10

Enough content 10

Project roadmap 7

Project milestone 7

Release strategy

Fixed periods 49

94

Continuous delivery 28

Release schedule 10

Release early, release often
practice

4

Time-based release 3

Maintainer oriented 18

Business-driven 18

User demand 7

Ad hoc 7

achieve is code stability.(28) As C370 explains, their project creates a release “when
the API is stable and extensively tested.” Other participants also explain that their
projects produce a release when a desired new feature has been developed,(22) the
code has been tested,(13) or enough content(10) has been developed to launch a new
version of the software. For example, C178 explains that “it [the release] is usually
done when enough new features and patches have been made.” Therefore, we observe
that some participants perceive that their projects adopt a more traditional release
strategy (as opposed to rapid releases (da Costa et al., 2016)) to deliver new versions of
their project. This strategy may also be called feature-based releases, where a project
launches a new release when a set of bug fixes and new features are ready (Michlmayr
et al., 2015). However, feature-based releases may not be ideal in a volunteer-based
open-source project. For example, there is a risk that projects have an unpredictable
release schedule, where releases may take a long time to be launched or never happen
due to certain features never being completed (Michlmayr et al., 2015).

In a different vein, when explaining the release process of certain projects, our
participants perceive that they adopt a more modern release strategy.(94) For example,
in certain projects, there exist fixed periods(49) and a predictable release schedule(10)

for launching new releases. Other projects use continuous delivery(28) or follow the
release early, release often(4) practice. C032 explains that in the saltstack/salt project
there is a fixed period(49) for its releases, “feature release every 6 months, bug fix

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 33

releases when necessary”. Practices such as release early, release often are well
established in open source development, which leads to benefits related to quality and
consistency as errors can be detected sooner (Fitzgerald and Stol, 2017).

Some participants have recurrently mentioned that the release process of their
project is maintainer oriented,(18) business driven,(18) or dependent on the user
demand.(7) We also observe seven citations that state that the process is not clearly
defined or is ad hoc.(7) For instance, C444 explains that the bokeh/bokeh project “is
volunteer based, so [the release is launched] when we can and think it’s reasonable.”
C117 also states that the fog/fog project produces its release “when the maintainer
decided it was time to do so.” Additionally, C003 states that the act of launching a
release in grails/grails-core “is a decision between business and the development team.”
The release process may also depend on the outreach of the release. For instance, C302
explains that an important factor to produce a release in boto/boto is “when [they]
need a wider audience.”

Our participants perceive different release strategies for their project. Some
projects follow a feature-based release strategy, whereas others adopt a time-
based release approach (e.g., release based on business needs or user demands).

The influence of CI on release processes.

52.3% (168/321) of the developers perceive an increase in release frequency after
the adoption of CI. 15.9% (51/321) of the developers do not perceive any influence
from CI on release processes. Also, 3.4% (11/321) agree that CI leads to a decrease in
the number of releases while 28.3% (91/321) refrain from stating an opinion (i.e., the
participants do not know of or are unsure about an influence of CI on release processes,
see Figure 15).

52.3% 15.9%3.4%28.3%

0% 25
%

50
%

75
%

10
0%

Proportion

The perceived impact of CI
on the project release process

CI does not impact the release process

CI slows down the release process

CI speeds up the release process

Not sure

Fig. 15: Percentage of the perceived influence of CI on release processes (Question
#18).

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 34

Table 8: Frequency of citations for each theme and code related to CI that might impact
the project release process.

Theme Code
Frequency

Frequency
per code

Frequency
per theme

Automation

Automated testing 24

59

Release automation 17

Earlier feedback 11

Easier to produce a re-
lease

3

Automated building 2

Earlier integration 2

Project Stability

Confidence 35

47
Code stability 6

Releasable master 3

Less regressions 3

Release characteristics

Minor releases 5

13
Smaller releases 3

Bug fix releases 3

Security releases 2

CI increases the release frequency by improving automation,(59) project stability,(47)

and release characteristics.(13) Table 8 shows the frequency of citations identified for
each theme related to the use of CI that may impact the project release process. Each
theme is described in the following.

Automation.(59) In the previous subsection, we identified automation as one of the
themes that may quicken the time to deliver merged PRs. In this subsection, we identify
that 59 of our participants draw a relationship between automation improvements
brought by CI and the increase in release frequency. For example, automated tests(24)

and release automation(17) are frequently cited when participants explain the increase
in release frequency. As explained by C070, “The testing becomes much simpler and
automated, thus it takes less time to validate a release.” C79 complements the previous
answer when they state that “CI helps with automated tests, so we can merge and
release faster.” Furthermore, when discussing the benefits of CI in relation to release
automation, C252 states: “we can do release often with CI. It’s automated.” CI is seen
as a continuous deployment enabler, as explained by C327: “with CI, you can increase
the frequency because CI can also deploy automatically.”

Project stability.(47) The release process of projects is impacted by project stability.
The most cited code related to project stability is confidence.(35) For instance, C084
states that “with the confidence gained from CI jobs, maintainers can reduce their
time with testing tasks and focus on releases/new features.” C056 also states that “CI
allows to keep a releasable master-branch at all times and allows external parties to

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 35

rely on the quality of master.” The feedback from our participants reveals that code
stability(35) allows releases to be prepared more easily. C331 expresses that, because
CI reduces the number of blocking issues, creating a release becomes easier: “it [CI]
in general contributes to fewer bugs so there are less blocking issues so it is easier to
follow a release schedule.”

Release characteristics.(13) The adoption of CI is also mentioned to have changed cer-
tain characteristics of releases, which might lead to a higher frequency of releases over
time. Several participants perceive that the adoption of CI started a trend of smaller(3)

and minor releases.(5) Participant C203 from chef/chef explains the following: “Yes it
[CI] made releases and deployments much more frequent. It removed a lot of manual
testing effort and validation. It also changed the culture of the team in such a way
that people delivered changes in a smaller and more incremental way.” Additionally,
participants also perceived an increase in bugfix(3) and security fix(2) releases.

15.9% (51/321) of participants do not perceive any influence from CI on the release
process of their projects. According to such participants, the release frequency is
maintainer oriented(2), depends strictly on the project release policy(1) or depends on
the project maturity.(1) According to participants, instead of influencing the release
frequency, CI influences the merge time(1), quickens the testing process(1), and provides
better quality(5). For instance, C317 states that “CI may help add more features. It
should not increase the frequency of releases essentially. It is a matter of policy I
think.” Additionally, C110 expresses: “It looks like it depends on wish of repository
owners and their plan”. On another note, C169 perceives that the increase in release
frequency is a side-effect of the maturation of a project, which can occur due to the
adoption of CI: “Only insofar as adoption of CI indicates the professionalization of a
project, which can be correlated with more frequent releases.”

Finally, only 3.4% (11/321) of participants perceive that CI decreases the release
frequency in their projects. According to 11 participants, the decrease in release
frequency can be related to the influence of CI on code stability(2) and quality.(2) For
instance, C094 explains that in ipython/ipython “The releases are bit less frequent.
The use of CI makes the code more tested and lowers a need for bugfix-minor releases.”
Additionally, C257 declares that “CI made the number of releases smaller and less
frequent, because it helped to catch errors in the code during review. While this made
releasing slower, it made the quality of those releases much better.”

Summary: 52.3% (168/321) of participants perceive an increase in the release fre-
quency after the adoption of CI. This increase is related to improvements brought
by CI, such as better automation, project stability, and changes in release char-
acteristics (e.g., smaller releases). Furthermore, only 3.4% (11/321) of participants
agree that CI decreases the release frequency of their projects.
Implications: Teams planning to improve their release process should consider the
adoption of CI, which will not always release more often. However, the automation
provided by CI fosters more confidence in releasing the software.

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 36

Table 9: Frequency of citations for each theme and code related to review processes.

Theme Code
Frequency

Frequency
per code

Frequency
per theme

Project review strategy

Peer review 109

184

GitHub standard review 37

Expert review 11

Ad-hoc code review process 9

Review checklist 5

Development branch review 5

Project goals 3

Mailing list discussion 3

Pair programming 2

Quality assurance
metrics

CI check 44

130

Tests verification 38

Code style 20

Proper documentation 7

Linter check 6

Security 3

Data coverage check 3

Efficiency check 3

Avoiding conflicts 2

Code line inspection 2

Error detection 2

NA 92

RQ7: What is the perceived influence of CI on the code review process?

We first request our participants to detail the review process of their project before
we gauge their perceptions about how CI may influence the code review process.
Our participants highlight that the projects have specific review strategies(184) that
are followed. Examples of these strategies are peer review(109) and expert review.(11)

Additionally, review processes have to be mindful of quality assurance metrics.(130)

Table 9 shows the frequency of codes generated from the responses of our participants.
Peer review(109) and CI check(44) are the most frequently mentioned codes. Peer

review is the process of manually checking violations of code standards and logical
errors in a patch submitted by developers (Rahman and Roy, 2017). In the existing
literature, peer review has been demonstrated to be effective for improving design
quality and the overall quality of software projects (Rahman and Roy, 2017). In a
similar vein, many quotes(109) from our participants highlight the use of peer review in
their projects. For example, C420 states that in the dropwizard project, “All changes
are reviewed by one or two peers depending on self-assessed complexity of the change”.

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 37

Other developers state that their projects follow the GitHub standard review(37) flow.
For instance, C308 states: “We use GitHub flow, open PR, require review(s), review
with suggestions or concerns, discuss and revise if needed and review again, then
merge.”

We also identify more specific review strategies in some projects, e.g., review
checklist,(5) development branch review,(5) project goals,(3) mailing list discussion(3)

and pair programming.(2) For instance, when talking about the review checklist, C203
states that “Code review occurs when a PR is opened. We have a checklist for both the
reviewer and committer to go through for each change. Tests run on each PR and the
tests need to pass before a change can be merged.” Additionally, the submitted PR
should be aligned with the project goals, as explained by C129 when declaring that

“The reviewer should read and understand all of the changes, and the changes should
be in-line with the project’s conventions and goals.” We also receive 9 responses in
which participants do not identify a specific review process in their projects. These
participants state that their projects follow an ad-hoc code review process.

The quality assurance metrics(130) theme has also been frequently cited by our
participants when explaining the review process of their projects. Indeed, improving
the quality of patches to software projects is one of the main motivators of modern
code review (Bacchelli and Bird, 2013; Bavota and Russo, 2015). When observing
quality assurance metrics, reviewers often use the results of CI checks(44) to ensure the
quality of submitted PRs. Other verifications are frequently mentioned by participants
when checking code quality, e.g., tests verification,(38) code style,(20) and proper
documentation.(7) Project maintainers, in general, rely on automated tools to support
the process of code review (Vasilescu et al., 2015). CI is often used in popular open-
source projects to check whether the PR breaks the build. Moreover, CI verifies
whether the tests pass and automatically checks whether the PR matches the project
style guide (Cassee et al., 2020). According to C160, “If CI is green and PR looks
sane, merge.” Additionally, C408 explains that, in their project, the review process
also has to “check CI jobs (lint, test, build).”

Our participants perceive that their projects have specific code review strategies
(e.g., peer review and expert review). Moreover, the review process of our partici-
pants’ projects rely on quality assurance verification (e.g., CI check, code style,
proper documentation).

The perceived impact of CI on the project review process

Most of our participants’ quotes (58%, 335/578) agree that CI influences the review
process of software projects. Among the 578 quotes related to the influence of CI
on the code review process, we observe that the majority (58%, 335/578) state that CI
has some influence on the code review process. 15% (87/578) of quotes state that CI
has no influence on code review, while 27% (156/578) of quotes did not express a clear
position.

Automation(139) is the most cited code when it comes to how CI influences code
review. As expressed by C100, “It made it [the code review process] more efficient
because the amount of manual testing that needs to happen reduced a lot. It also
democratized the process, so the whole team is able to get started doing reviews.”

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 38

Table 10: Frequency of citations for each theme and code related to the impact of CI
on review processes.

Theme Code
Frequency

Frequency
per code

Frequency
per theme

CI does not influence
code review

87

CI impacts code review

Automation 139

335

PR filtering 51

Higher confidence 43

Better focus 25

Faster review 15

Earlier feedback 38

Less review workload 7

Regression identification 4

Easier to reference failure 3

Improved testability 4

Smaller PR granularity 6

NA 156

Indeed, automated processes (as brought by CI) are often combined with manual
code reviews made by the quality assurance team (Rahman and Roy, 2017). The
infrastructure of CI is frequently used with automated builds and quality checks,
involving static analysis tools and automated testing (Zampetti et al., 2019). In that
respect, our participants argue that CI influences code reviews because reviewers enjoy
a better focus(25) during the review, e.g., a better focus on the code logic, security,
and design. C352 elaborates on this focus when stating the following: “We try to use
linters/style checkers to remove the style nit part of the code review process. It means
we spent more time thinking about the architecture and logic vs. the formatting”.

In addition, reviewers can have a better focus on specific checks because of the
PR filtering(51) process promoted by the use of CI. The process of PR filtering reduces
the reviewers’ burden by filtering out PRs that break the build. For instance, C059
highlights that “we do not even start reviews before CI is green.” The study by
Zampetti et al. (2019) reveals that PRs with green builds have slightly more chances to
get merged than broken builds, although other process-related factors have a stronger
correlation with the merge process. Table 10 shows the complete list of codes related
to how CI influences code review processes.

Higher confidence(43) is recurrently cited when it comes to how CI influences code
review. C370 argues that, with CI, there is a “reduced time of the code review because
you are more confident the PR works and focus more on code quality during the review
than checking the logic.” Another important point offered by CI within the reviewer
tasks is the earlier feedback(26) of the proposed PRs. C316 argues that CI “increased
the speed [of code review], as certain issues are pointed out immediately”.

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 39

Although most of the quotes related to RQ7 agree that CI influences code review,
still, 15% (87/578) of quotes state that CI has no influence on code review processes.
For instance, C215 perceives that CI influences the release process of software projects,
but does not influence code review, “I think CI does not have much to do with code
review speed. Reviewers only receive one bit of information from CI, and they are
expected to look at the code carefully, not the CI results. But the project manager tends
to be more confident in releasing new versions with CI enabled”.

Summary: Most participants agree that CI influences code review processes. 58%
(335/578) of the quotes related to CI and code review agree that CI has an impact
on code review. According to participants, automation is a key aspect of CI that
speeds up code review.
Implications: CI may quicken the process of sorting which PRs are worth review-
ing, e.g., a PR with green build status, which may improve the decision-making
process of software projects.

RQ8: What is the perceived influence of CI on attracting more contributors to
open-source projects?

59% (227/383) of quotes in RQ8 argue that projects using CI are more attractive to
receive external contributors. The most recurrent themes in RQ8 reveal that projects
using CI have more attractive characteristics(73) (e.g., easier PR acceptance) and
a lower contribution barrier.(154) Conversely, 26% (98/383) of the quotes argue that
CI does not influence the number of project contributors, attributing the increase of
contributors to other factors, such as project growth,(35) maturity(14) and popularity.(22)

The remaining 15% (58/383) of quotes refer to answers, such as “No Answer (NA)”.
Table 11 shows the complete list of themes and codes related to the influence of CI on
attracting contributors to open-source projects.
Attractive project characteristics.(73) Several quotes state that developers feel more
attracted to the characteristics of projects that use CI. They argue that, when using
CI, projects tend to have a reduced review effort/time,(22) which may lead to PRs
being accepted more easily.(7) As explained by C033, “It’s easier to handle incoming
changes from people, so it’s possible to have more of them.” Additionally, the project
quality(7) and stability(7) of the projects are frequently mentioned by our participants
as a consequence of using CI, which may motivate developers to contribute more.
In this regard, C178 declares that “People want to work in high-quality projects. CI
is a mark of quality.” According to our participants, potential contributors also look
for stability in projects and CI provides this sense of stability. As explained by C051,

“Projects that use CI tend to look more stable and serious. It might be a reason for some
contributors to be attracted to more serious projects.” Finally, potential contributors
prefer projects that follow industry best practices. In this regard, C355 states: “Maybe
because the project looks more professional, following best industrial practices.(2) I
would not contribute to a project without CI, or I would setup CI first”.
Lower contribution barrier.(154) The majority of quotes stating that CI attracts more
contributors explain that this is due to CI projects having a lower contribution barrier.

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 40

Table 11: Frequency of citations per theme and code related to the influence of CI on
attracting contributors to open-source projects.

Theme Code
Frequency

Frequency
per code

Frequency
per theme

Attractive project
characteristics with CI

Reduced review effort/time 22

73

Clear development process 12

Project quality 7

Project stability 7

Easier PR acceptance 7

Actively maintained project 5

Faster delivery 4

Welcoming for contributions 3

Regular releases 2

Projects with CI seems more mature 2

Best industrial practices followed 2

Lower contribution
barrier with CI

CI confidence 60

154

Build status awareness 57

Build and test automation 28

Engagement to contribute 6

Lowered entry barrier 3

Not related to CI

Project growth 35

98

Project popularity 22

Project maturity 14

Project activeness 3

Non-causal correlation 24

NA 58

This lower barrier promotes an increased confidence(60) in contributors when a project
is using CI. The quotes also argue that CI promotes a better build status awareness(57)

for contributors. Regarding confidence, C146 declares that “Developers like CI, it adds
confidence to your work and it is pleasurable to work in this highly structured and
coordinated way.” These observations corroborate the study by Coelho and Valente
(2017), which also found CI as one of the most important maintenance practices in
top open-source projects. Regarding CI promoting a better build status awareness,
C084 states: “In my case, I like to have my changeset reviewed and tested soon as
possible, and CI jobs are really fast for that.” Moreover, several participants argue
that it is easier to contribute when a project uses CI. In this matter, C100 declares
that “As a contributor not part of the core team, CI makes it easier to understand the
code, because you can look at the tests to understand the design. It makes it easier to
contribute without a lot of prior knowledge of the project”.

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 41

Although most quotes agree that CI attracts more contributors, 26% (98/383) of
quotes state that there is no causal relationship between CI and the increase in
contributors. Many participants argue that there is a non-causal relationship(24) be-
tween the increase in contributors and the adoption of CI. For instance, C352 declares
that “I think that people adopt CI because contributions become difficult to manage
due to increasing quantity (probably driven by popularity). I would imagine these
two variables are not causally related but simply correlated.”. Indeed, many of our
participants attribute the increase in contributors to project growth(35), maturity,(14) and
popularity.(22) For instance, C423 states that the increase in contributors is “probably
not related [to CI], but accidentally relates to a hype curve and or maturity level of
the project.” Indeed, the study by Hilton et al. (2016) shows that popular projects are
more likely to use CI. Hilton et al. (2016) also found that the first CI build in their
investigated projects occurred around 1 year (median) after the project creation. They
argue that this is the case because the adoption of CI may not always provide a large
amount of value during the very initial phases of the development of a project.

Summary: Although most quotes from participants (59%, 227/383) argue that
projects using CI are more attractive to potential contributors, 26% (98/383) of
quotes argue that there is no causal relationship between CI and the increase in
contributors, i.e., other factors play a role instead, such as project growth and
increase in project popularity over time.
Implications: Open-source projects intending to attract and retain external con-
tributors should consider the use of CI in their pipeline since CI is perceived to
lower the contribution barrier while making contributors feel more confident and
engaged in the project.

6 Discussion

In this section, we outline the implications of our results to both research and practice
in software engineering.

Using a Continuous integration service is not a silver bullet. Through our quan-
titative analyses, we observe that a CI service does not always reduce the time for
delivering merged PRs to end users. In fact, analyzing 87 projects, we observe that
only 51% of the projects deliver merged PRs more quickly after the adoption of
TRAVISCI (Section 4 - RQ1). Additionally, our qualitative study reveals that there is
no consensus regarding the impact of CI on the delivery time of merged PRs. 42.9%
of our participants declared that CI does not have impact on the delivery time of
merged PRs (Section 4 - RQ4), instead, factors such as project release process, project
maintenance and PR characteristics (i.e., trivial PRs) are believed to influence the
delivery time of merged PRs (Section 4 - RQ5). If the decision to adopt CI is mostly
driven by the goal of quickening the delivery of merged PRs (Laukkanen et al., 2015),
such a decision must be more carefully considered by development teams. Finally,
previous research suggests that the adoption of CI increases the release frequency of a
software project Hilton et al. (2016). However, we did not observe such an increase in
our quantitative analyses (Section 4 - RQ2). Our study only considers user-intended
releases, so we do not consider pre, beta, alpha, and rc (release candidate) releases in

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 42

our analyses. It might be the case that when considering only established releases, the
release frequency does not statically increases after the adoption of TRAVISCI.

If CI is a CD enabler, why is CD seemingly rare? CI, Continuous Delivery (CDE),
and Continuous Deployment (CD) are complementary practices that can be used
in the agile releasing engineering environment (Karvonen et al., 2017). CDE is a
practice that automates the software delivery process, and it is often considered to
extend CI. Therefore, a project that uses CDE, the delivery can occur at any time, with
little manual effort required. Furthermore, CD is a step further from the adoption of
CDE, which is a practice where projects release each successful build to end users
automatically. In this context, several participants of our study consider that automated
deployment is a subsequent step in CI adoption that can help projects rapidly deliver
software changes to end users (e.g., CD can deliver merged PRs automatically).
However, through the analysis of 9,312 open-source projects that use TRAVISCI, the
study by Gallaba and McIntosh (2018) found that explicit deployment code is rare
(2%), which suggests that developers rarely use TRAVISCI to implement Continuous
Deployment. An interesting future study is to better understand the gap between CI
and CD as well as how to bridge this gap. Furthermore, we observe that before the
adoption of TRAVISCI, the merge workload is the most influential variable to model
the delivery time of PRs, while after the adoption of TRAVISCI, the most influential
variable is the moment at which a PR is merged in the release cycle (i.e., queue
rank metric). One possible reason for the change in most influential variables in the
time periods before and after TRAVISCI, is that after the adoption of TRAVISCI, the
merge workload could have been better managed, leading the queue rank to be more
influential on the delivery time of merged PRs. This indicates that the delivery time of
merged PRs is more dependent on when the PR was merged in the release cycle than
whether the project adopts a CI service. Therefore, projects that wish to quicken the
delivery of merged PRs need to foster the culture of frequent release instead of solely
relying on the adoption of a CI service (i.e., Travis CI) in their pipeline.

Automation and confidence are key aspects for the throughput generated by CI.
We observe that the adoption of a CI service is associated with many benefits, such as
a higher number of contributors, PR submissions, and a higher PR churn per release
(Section 4 - RQ2). However, the release frequency is roughly the same as before using
TRAVISCI. Therefore, teams that wish to adopt a CI service should be aware that
their projects will not always deliver merged PRs more quickly or release them more
often, but that the pivotal benefit of a CI service is the ability to process substantially
more contributions in a given time frame, which is closely tied to the automation
and confidence that release managers (Section 5 - RQ6), reviewers (Section 5 - RQ7),
and external contributors (Section 5 - RQ8) feel towards their codebase and project
environment.

CI may improve the decision-making process of software projects. Our results
(Section 5 - RQ7) reveal that most contributors’ quotes (58%, 87/578) agree that CI
impacts the time required to review PRs. According to our participants, CI may
quicken the process of sorting which PRs are worth reviewing, e.g., a PRs with green
builds. However, project maintainers should be concerned with the test coverage in
their project, as it is essential for reviewers to be more confidence in the CI feedback
to submitted PRs. We observe that contributors whose previously submitted PRs were

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 43

merged and delivered quickly, are also likely to have their future PRs delivered quickly
(4 - RQ3). Hence, we recommend that the first PR submissions of a new contributor
should be carefully crafted to maintain a successful track record in their projects
(so they can build trust, causing their future PRs to be delivered more quickly). An
interesting future work would be to investigate how CI can influence the decision-
making process involved in different development tasks, i.e., from requirements
engineering to project delivery (Sharma et al., 2021).

7 Threats to the validity and Limitations

In this section, we discuss the threats to the validity and limitations of our studies.

7.1 Threats to Validity – quantitative study

Construct Validity. The threats to construct validity are concerned with the extent to
which the operational measures in the study really represent what researchers intended
to measure. We define the delivery time of a PR as the time between when a PR is
merged and the moment at which a PR is delivered through a release. However, the
way we link PRs to releases may not match the actual number of delivered PRs per
release. For instance, if a version control system of a project has the following release
tags v1.0, v2.0, no-ver, and v3.0, we remove the no-ver tag. If there are PRs associated
with the no-ver release, such PRs will be associated with release v3.0. However, only
5.36% (403/7519) of our studied releases are affected by this bias.
Internal Validity. Internal threats are concerned with the ability to draw conclusions
from the relationship between the dependent variable (delivery time of merged PRs)
and independent variables (e.g., release commits and queue rank). Regarding our mod-
els, we acknowledge that our independent variables are not exhaustive. Although our
models achieve sound R2 values, other variables may be used to improve performance
(e.g., a boolean indicating whether a PR is associated with an issue report and another
boolean that verifies whether a PR was submitted by a core developer or an external
contributor). Nevertheless, our set of independent variables should be approached as a
starting set that can be easily computed rather than a final solution.

At the time the quantitative data was extracted from GitHub, our projects had a
median of 5.1 years of life (2 without using TRAVISCI and 3.1 using TRAVISCI). As
we extracted data from the entire lifetime of the projects, we collected more PRs in
the after-TRAVISCI time period. However, the Mann-Whitney-Wilcoxon (MWW) test
and Cliff’s delta effect size, which were the statistical methods used to perform the
comparisons, are suitable for groups of different sizes (Mann and Whitney, 1947).
Furthermore, we are aware that factors not related to the adoption of TRAVISCI may
have impacted the delivery time of merged PRs as well (i.e., project maturity and
team size). We argue that this concern was alleviated by the conceptual replication
of our study conducted by Guo and Leitner (2019). First, they replicated our study
using the same subject projects and methodology. Then, they addressed the same
research question of our study, by using the Regression Discontinuity Design (RDD),

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 44

which allows verifying whether there is a trend of PR delivery times over time and
whether this trend changes significantly when TRAVISCI is introduced. Finally, they
introduced a control group of comparable projects that never used TRAVISCI. They
found that the results of our quantitative study largely hold in their replication study.
External Validity. External threats are concerned with the extent to which we can
generalize our results (Perry et al., 2000). In this work, we analyzed 162,653 PRs
of 87 popular open-source projects from GitHub. All projects adopt TRAVISCI as
their CI service. We acknowledge that we cannot generalize our results to any other
projects with similar or different settings (e.g., private software projects). Nevertheless,
in order to achieve more generalizable results, replications of our study in different
settings are required. For replication purposes, we publicize our datasets and results to
the interested researcher.6

7.2 Limitation of our qualitative study

The main limitation of our qualitative study is the thematic analysis of the survey
responses. The first author coded all responses to the 13 open-ended questions of
the survey, and the second author coded a sub-set of 10% of the responses to each
question, which was selected randomly. Although the systematic analytical process
was used to analyze the data, the credibility of the findings is enhanced if more than
one researcher completely analyzes the data. Nevertheless, we used the Cohen’s Kappa
test to verify the agreement level of the two authors when coding the answers. Given
that we achieved an almost perfect level of agreement between them (median Kappa’s
value of 0.84), we believe that the coding process has been consistent.

While we achieved theoretical saturation concerning the responses to the research
questions of our qualitative study, we are aware that the self-selection of our partici-
pants may have biased our results. From the subset of 3,105 individuals, we received
450 responses to the survey (14.5% response rate). Therefore, the contributors that did
not respond to our survey invitation may have different views on the questions, which
could lead us to different results. Additionally, the participants that responded to our
survey may have been affected by social desirability bias, which is the tendency to
answer questions in a way that will be seen as advantageous by others (i.e., partici-
pants responding according to what they think the “correct” answer should be, making
themselves and their software development look better than it actually is).

In our qualitative study, we investigated the perception of CI practitioners regarding
the influence of CI on the delivery time of PRs, and its potential influence on the
review and release processes of software projects. The participants of our qualitative
study are contributors from 73 out of the 87 GitHub projects studied in our quantitative
analysis. However, we cannot measure the degree to which the studied projects use
CI. Hence, selecting participants of projects that use a CI service, but not necessarily
CI as a whole practice, may bias our analysis. This is because we may have received
responses from participants that did not fully witness the benefits of CI when it is fully
implemented. Nevertheless, 73.2% of the participants reported that they used CI in

6 https://prdeliverydelay.github.io/#datasets

https://prdeliverydelay.github.io/#datasets

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 45

60–100% of their projects, which suggests that most of our participants have a varied
experience with CI. Another issue is that we did not distinguish our participants by
core and external contributors. Had we considered the responses from different types
of contributors separately, different conclusions could have been drawn. On the other
hand, we were able to collect a diverse set of participants, i.e., while 77.8% of the
participants have web development as one of their main activities, 52% of participants
consider code review as one of their main activities, and 30.9% are involved in project
management (see Figure 10), which provides us with insightful feedback.

8 Conclusion

Our work consists of two studies that quantitatively and qualitatively investigate the
influence of a CI service (e.g., TRAVISCI), and CI as a practice, on the time-to-delivery
of merged PRs, respectively. In our quantitative study, we analyze 162,653 PRs of 87
GitHub projects to understand the factors that influence (and improve) the delivery
time of merged PRs. In our qualitative study, we analyze 450 survey responses from
participants of 73 projects (out of the initial 87 projects). We investigate the perceived
influence of CI on the delivery time of merged PRs. We also study the perceived
influence of CI on the code review and release processes.

As a key takeaway, our studies demonstrate that the adoption of TRAVISCI will
not necessarily deliver or merge PRs more quickly. Instead, the pivotal benefit of a CI
service is to improve the mechanisms by which contributions to projects are processed
(e.g., facilitating decisions on PR submissions), without compromising the quality of
the project or overloading developers. The automation provided by CI and the boost
in developers’ confidence are key aspects of using CI. For instance, CI may help
the process of sorting which PRs are worth reviewing (e.g., PRs with green builds).
Furthermore, open-source projects wishing to attract and retain external contributors
should consider the use of CI in their pipeline, since CI is perceived to lower the
contribution barrier while making contributors feel more confident and engaged in the
project.

Acknowledgments

This work is partially supported by INES (www.ines.org.br), CNPq grants 465614/2014-
0 and 425211/2018-5, CAPES grant 88887.136410/2017-00, FACEPE grants APQ-
0399-1.03/17, and PRONEX APQ/0388-1.03/14.

Data Availability

For replication purposes, we publicize our datasets and results to the interested re-
searcher: https://prdeliverydelay.github.io/#datasets

www.ines.org.br
https://prdeliverydelay.github.io/#datasets

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 46

Declarations

Conflict of interests. The authors declare that they have no conflict of interest.

�USplM���å�2TM�H@mUI�]URMåIxI]M�aR�@�ip]]�lMkpMmoÈ

��

3_KMlmo@_KU_S��M]UuMlx�2U^M�aR�-p]]å
0MkpMmom
3RGI�E�TYPP�VIUYIWX�MW�QIVKIH��M�I���VIZMI[IH��XIWXIH�ERH�VIEH]�XS�FI�HIPMZIVIH
��XLMW�TYPP�VIUYIWX�
QE]�WXMPP�[EMX�E�PSRK�XMQI�XS�FI�HIPMZIVIH�XS�IRH�YWIVW�SJ�E�WSJX[EVI�TVSNIGX��;I�GEPP�XLMW�XMQI�
HIPMZIV]�XMQI��WII�*MKYVI��
��-R�XLMW�WXYH]��[I�MRXIRH�XS�YRHIVWXERH�XLI�JEGXSVW�XLEX�QE]�
EGGIPIVEXI�SV�HIPE]�XLI�HIPMZIV]�SJ�QIVKIH�TYPP�VIUYIWXW��3YV�VIWIEVGL�XIEQ�MW�JVSQ�&VE^MP��2I[�
>IEPERH��ERH�%YWXVEPME�

8LMW�UYIWXMSRREMVI�MW�TEVX�SJ�FVSEH�VIWIEVGL�IJJSVX�XLEX�WXYHMIH����PEVKI�STIR�WSYVGI�TVSNIGXW�
XS�MRZIWXMKEXI�XLI�JEGXSVW�XLEX�QSWX�MQTEGX�XLI�XMQI�XLEX�MW�RIGIWWEV]�XS�HIPMZIV�QIVKIH�TYPP�
VIUYIWXW�XS�IRH�YWIVW�SJ�E�WSJX[EVI�TVSNIGX�XLVSYKL�ER�SJJMGMEP�VIPIEWI��

8LI�WYVZI]�[MPP�EWO�]SY�E�JI[�KIRIVEP�ERH�WTIGMJMG�UYIWXMSRW��M�I���[I�[MPP�WLS[�]SY�HEXE�XLEX�MW�
HIVMZIH�JVSQ�LEVEOE�,EVEOE�TVSNIGX
�
�3FVMKEXëVMS

�È��x�@_mvMlU_S�oTUm�mpluMxÉ�xap�vU]]�HM�M_oMlMK�U_oa�@�Kl@v�aR�mUw�ý����^@{a_�SURo
I@lKmÈ��R�xapõK�]U\M�oa�i@loUIUi@oM�U_�oTM�Kl@vÉ�i]M@mM�]M@uM�xapl�M^@U]�@KKlMmm
HM]avÈ

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 47

Appendix A Project Survey Example

��

1EVGEV�ETIREW�YQE�SZEP�

=IW

2S 4YPEV�TEVE�E�TIVKYRXE���

�M^aSl@iTUI�/pMmoUa_m

��

1EVGEV�ETIREW�YQE�SZEP�

=IEVW

� � � � � � � � � � ��

SV�QSVI

��

��

1EVGEV�ETIREW�YQE�SZEP�

������	

�������	

�������	

�������	

��������	

�È��@uM�vM�IallMIo]x�UKM_oURUMK�xap�@m�ma^Ma_M�vTa�Ia_olUHpoMm�al�Ia_olUHpoMK�oa
@�ila[MIo�oT@o�pmMm�
a_oU_papm��_oMSl@oUa_Ï�Ó

�È��al�Tav�]a_S�T@uM�xap�HMM_�KMuM]aiU_S�maRov@lMÏ

�È�%po�aR�xapl�ila[MIom�vTUIT�pmM�
a_oU_papm��_oMSl@oUa_�ß
�àÉ�vTUIT�ila[MIo�T@uM
xap�^amo�Ia_olUHpoMK�auMl�oTM�]@mo�xM@lmÏ

�È�9T@o�Um�oTM�l@oUa�aR�ila[MIom�oT@o�xap�T@uM�val\MK�a_�oT@o�pmMK�
�Ï

��

1EVGEV�ETIREW�YQE�SZEP�

=IEVW

� � � � � � � � � � ��

SV�QSVI

��

3YXVS�

1EVUYI�XSHEW�UYI�WI�ETPMGEQ�

8IWX

6IZMI[

(IZIPSTQIRX

1EREKIQIRX

��

3YXVS�

1EVUYI�XSHEW�UYI�WI�ETPMGEQ�

1SFMPI�ETTPMGEXMSRW

;IF�HIZIPSTQIRX

7GMIRXMJMG�HIZIPSTQIRX

&YWMRIWW�HIZIPSTQIRX

1IHMGEP�HIZMGIW

-RHYWXVMEP�ERH�TVSGIWW�GSRXVSP

)QFIHHIH�W]WXIQW

&MK�(EXE

(IJIRWI�W]WXIQW

-MlIMioUa_m�@Hapo�KM]UuMlx�oU^M�aR�ip]]ålMkpMmom

��

�È��al�Tav�]a_S�T@uM�xap�HMM_�KMuM]aiU_S�ila[MIom�oT@o�pmM�
�Ï

�È�9T@o�@lM�xapl�^@U_�@IoUuUoUMm�a_�oTM�ila[MIom�xap�Ia_olUHpoM�oaÏ

 È��_�vTUIT�Ka^@U_m�aR�maRov@lM�KMuM]ai^M_o�T@uM�xap�val\MKÏ

¡È�
@_�xap�oM]]�pm�@Hapo�@�ip]]�lMkpMmo�oT@o�xap�mpH^UooMK�al�lMuUMvMK�@_K�oT@o
MuM_op@]]x�Sao�^MlSMKÉ�Hpo�oaa\�@�]a_S�oU^M�oa�HM�MRRMIoUuM]x�mTUiiMK�U_�@_�aRRUIU@]
lM]M@mMÏ�9T@o�vMlM�oTM�lM@ma_m�Ral�oTUm�KM]@xÏ

���

���

���

1EVGEV�ETIREW�YQE�SZEP�

7XVSRKP]�EKVII

%KVII

2IYXVEP

(MWEKVII

7XVSRKP]�HMWEKVII

��È��]maÉ�I@_�xap�oM]]�pm�@Hapo�@�ip]]�lMkpMmo�oT@o�xap�mpH^UooMK�al�lMuUMvMK�ß@_K
oT@o�MuM_op@]]x�Sao�^MlSMKàÉ�vTUIT�v@m�kpUI\]x�mTUiiMK�U_�@_�aRRUIU@]�lM]M@mMÏ
9T@o�vMlM�oTM�lM@ma_m�Ral�mpIT�@�kpUI\�mTUi^M_oÏ

��È��IIalKU_S�oa�xapl�MwiMlUM_IMÉ�Ka�xap�oTU_\�oT@o�oTM�@KaioUa_�aR�
a_oU_papm
�_oMSl@oUa_�ß
�à�^@x�T@uM�ma^M�U_R]pM_IM�a_�oTM�lMkpUlMK�oU^M�oa�KM]UuMl�^MlSMK
ip]]�lMkpMmom�oa�M_K�pmMlmÏ��R�maÉ�Tav�KaMm�
��U_R]pM_IM�oTUm�lMkpUlMK�oU^MÏ

��È�2a�vT@o�MwoM_o�Ka�xap�@SlMM�vUoT�oTM�Ra]]avU_S�mo@oM^M_oÊ�2TM�@KaioUa_�aR

a_oU_papm��_oMSl@oUa_�mTaloM_m�oTM�oU^M�oa�KM]UuMl�^MlSMK�ip]]�lMkpMmom�oa�M_K
pmMlmÏ

���

1EVGEV�ETIREW�YQE�SZEP�TSV�PMRLE�

��È�2a�vT@o�MwoM_o�Ka�xap�@SlMM�oT@o�oTM�R@Ioalm�]UmoMK�U_�oTM�o@H]M�HM]av
U_R]pM_IM�oTM�oU^M�_MIMmm@lx�oa�lM]M@mM�@�^MlSMK�ip]]�lMkpMmo�oT@o�Um�v@UoU_S�oa
HM�KM]UuMlMKÏ

1EOIW
HIPMZIV]�E
PSX�JEWXIV

1EOIW
HIPMZIV]�E
PMXXPI�FMX
JEWXIV

(SIW�RSX
MRJPYIRGI
HIPMZIV]
XMQI

1EOIW
HIPMZIV]�E
PMXXPI�FMX
WPS[IV

1EOIW
HIPMZIV]�E
PSX�WPS[IV

8LI�GSRXVMFYXSV
I\TIVMIRGI

8LI�XMQI�XLEX
TVIZMSYWP]
WYFQMXXIH�46W�SJ
E�GSRXVMFYXSV�[IVI
HIPMZIVIH

%�46�LEW�E
WXEGOXVEGI
EXXEGLIH

8LI�HIWGVMTXMSR
WM^I�SJ�E�46

8LI�XMQI�EX�[LMGL
E�TYPP�VIUYIWX�MW
QIVKIH�HYVMRK�E
VIPIEWI�G]GPI

8LI�RYQFIV�SJ
46W�[EMXMRK�XS�FI
HIPMZIVIH�EX�XLI
QSQIRX�XLEX�E
RI[�46�[EW
QIVKIH

8LI�RYQFIV�SJ
GSQQIRXW
VIGSVHIH�SR�E�46

8LI�XMQI�MRXIVZEP
FIX[IIR�XLI�46
GSQQIRXW

8LI�RYQFIV�SJ
JMPIW�EXXEGLIH�XS�E
46

2YQFIV�SJ�PMRIW

8LI�GSRXVMFYXSV
I\TIVMIRGI

8LI�XMQI�XLEX
TVIZMSYWP]
WYFQMXXIH�46W�SJ
E�GSRXVMFYXSV�[IVI
HIPMZIVIH

%�46�LEW�E
WXEGOXVEGI
EXXEGLIH

8LI�HIWGVMTXMSR
WM^I�SJ�E�46

8LI�XMQI�EX�[LMGL
E�TYPP�VIUYIWX�MW
QIVKIH�HYVMRK�E
VIPIEWI�G]GPI

8LI�RYQFIV�SJ
46W�[EMXMRK�XS�FI
HIPMZIVIH�EX�XLI
QSQIRX�XLEX�E
RI[�46�[EW
QIVKIH

8LI�RYQFIV�SJ
GSQQIRXW
VIGSVHIH�SR�E�46

8LI�XMQI�MRXIVZEP
FIX[IIR�XLI�46
GSQQIRXW

8LI�RYQFIV�SJ
JMPIW�EXXEGLIH�XS�E
46

2YQFIV�SJ�PMRIW

1iMIURUI
kpMmoUa_m�Ral
oTM�ila[MIo
T@l@\@Õ�@l@\@

-R�XLI�RI\X�UYIWXMSRW�SJ�XLMW�WYVZI]�[I�[MPP�WLS[�WTIGMJMG�HEXE�SJ�XLI�TVSNIGX�
LEVEOE�,EVEOE�XLEX�]SY�GSRXVMFYXI�XS��;I�KVSYT�WYGL�HEXE�MRXS�X[S�FYGOIXW��
FIJSVI�ERH�EJXIV�XLI�EHSTXMSR�SJ�'-��;I�GSRWMHIVIH�XLEX�XLI�TVSNIGX�WXEVXIH�YWMRK�
'-�SR�XLI�HEXI�SJ�MXW�JMVWX�FYMPH�SR�8VEZMW�'-������������
��%PWS��[I�YWIH�XLI�
+MX,YF�%4-�XS�GSPPIGX�HEXE�SJ�XLI�LEVEOE�,EVEOE�TVSNIGX�JVSQ�MXW�GVIEXMSR�SR�
+MX,YF�SR�1EVGL����XL�������XS�2SZIQFIV���XL�������

���

SJ�GSHI�MR�E�46

2YQFIV�SJ
GSQQMXW�MR�E�46

8LI�XMQI�XLEX�E
TYPP�VIUYIWX
[EMXIH�XS�FI
QIVKIH

SJ�GSHI�MR�E�46

2YQFIV�SJ
GSQQMXW�MR�E�46

8LI�XMQI�XLEX�E
TYPP�VIUYIWX
[EMXIH�XS�FI
QIVKIH

��È��aMm�oTM�v@x�vM�KUuUKMK�oTM�ila[MIo�oU^M]U_M�U_oa�ô�MRalM�
�ô�@_K�ô�RoMl�
�ô
^@\M�mM_mM�oa�xapÏ

���

1EVGEV�ETIREW�YQE�SZEP�

=IEVW

� � � � � � � � � � ��

SV�QSVI

���

1EVGEV�ETIREW�YQE�SZEP�

=IW

2S

���

���

���

���

��È��al�Tav�]a_S�T@uM�xap�val\MK�U_�oTM�T@l@\@Õ�@l@\@�ila[MIoÏ

��È��UK�xap�i@loUIUi@oM�U_�oTM�@KaioUa_�aR�
��U_�T@l@\@Õ�@l@\@Ï

��È�9T@o�Um�oTM�lM]M@mU_S�ilaIMmmÕia]UIx�aR�xapl�oM@^Ï��al�Mw@^i]MÉ�Tav�Ka�xap
KMIUKM�vTM_�oa�mTUi�@�lM]M@mM�aR�xapl�ila[MIoÏ

� È��_�xapl�aiU_Ua_É�KUK�oTM�@KaioUa_�aR�Ia_oU_papm�U_oMSl@oUa_�T@uM�@_x�U_R]pM_IM
a_�oTM�RlMkpM_Ix�aR�lM]M@mMmÏ�
ap]K�xap�KMmIlUHM�oTUm�U_R]pM_IM�oa�pmÏ

�¡È�9TM_�@_@]x{U_S�oTM�K@o@�aR�oTM�ila[MIo�T@l@\@Õ�@l@\@É�vM�aHmMluMK�oT@o�oTUm
ila[MIo�oM_KMK�oa�mTUi�� �lM]M@mMm�iMl�xM@l�HMRalM�
�É�vTU]M�Uo�KMIlM@mMK�oa���iMl
xM@l�@RoMl�
�È��av�vap]K�xap�Mwi]@U_�oTUm�IT@_SMÏ

��È�9M�kp@_oUo@oUuM]x�mopKUMK� ��iaip]@l�ila[MIom�a_��Uo�pH�@_K�vM�aHmMluMK
oT@oÉ�@RoMl�@KaioU_S�Ia_oU_papm�U_oMSl@oUa_É�oTMmM�ila[MIom�KM]UuMlMK���oU^Mm�@m
^@_x�ip]]�lMkpMmom�Ia^i@lMK�oa�HMRalMÈ��av�vap]K�xap�Mwi]@U_�oTUm�IT@_SMÏ

���

���

���

���

��È��_�apl�mopKxÉ�vM�@]ma�aHmMluMK�oT@oÉ�@RoMl�@KaioU_S�
�É�oTM�ila[MIom�oM_KMK�oa
lMIMUuM�Ia_olUHpoUa_m�Rla^�^alM�KMuM]aiMlm�oT@_�HMRalM�@KaioU_S�
�È��av�vap]K
xap�Mwi]@U_�oTUm�KURRMlM_IMÏ

��È�
ap]K�xap�HlUMR]x�KMmIlUHM�oa�pm�oTM�IaKM�lMuUMv�ilaIMmm�@KaioMK�Hx�xapl
ila[MIoÏ

��È��UK�oTM�@KaioUa_�aR�
a_oU_papm��_oMSl@oUa_�U_R]pM_IM�oTM�IaKM�lMuUMv�ilaIMmm
aR�xapl�ila[MIoÏ��R�maÉ�TavÏ

��È��_�xapl�aiU_Ua_É�KUK�oTM�@KaioUa_�aR�
a_oU_papm��_oMSl@oUa_�U_IlM@mM�al
KMIlM@mM�oTM�miMMK�aR�IaKM�lMuUMvmÏ�9TxÏ

��� ��È�9TM_�@_@]x{U_S�oTM�K@o@�aR�oTM�ila[MIo�xap�Ia_olUHpoMK�oa�ßT@l@\@Õ�@l@\@àÉ
vM�aHmMluMK�oT@o�HMRalM�oTM�@KaioUa_�aR�ol@uUmå
��oTM�mpH^UooMK�ip]]�lMkpMmom
o@\M�@�^MKU@_�aR���Taplm�oa�HM�^MlSMK�vTU]M�oTUm�oU^M�U_IlM@mMK�oa� �Taplm�@RoMl

�È��a�xap�oTU_\�oTM�@KaioUa_�aR�oTUm�
��mMluUIM�T@K�@_x�U_R]pM_IM�a_�oTM�oU^M�oa
lMuUMv�@_K�^MlSM�@�ip]]�lMkpMmoÏ��R�maÉ�TavÏ

���

���

1EVGEV�ETIREW�YQE�SZEP�

=IW

2S

��È��IIalKU_S�oa�oTM�K@o@�vM�Ia]]MIoMK�Ral�oTM�ila[MIo�T@l@\@Õ�@l@\@É�a_IM�@�ip]]
lMkpMmo�Um�lMuUMvMK�@_K�^MlSMKÉ�oTUm�ip]]�lMkpMmo�moU]]�v@UoMK�@�^MKU@_�aR��¡�K@xm
oa�HM�mTUiiMK�oa�M_K�pmMlm�HMRalM�
�É�vTU]M�@RoMl�
��oTUm�_p^HMl�U_IlM@mMm�oa��
K@xmÈ��a�oTMmM�_p^HMlm�^@\M�mM_mM�oa�xapÏ�9TxÏ

��È�9ap]K�xap�]U\M�oa�HM�U_Ral^MK�@Hapo�apl�RU_KU_SmÏ

���

1EVGEV�ETIREW�YQE�SZEP�

=IW

2S

���

���

1allxÉ�vM�@lM�val\U_S
a_�apl�kpMmoUa__@UlM
lMmia_KM_om�mM]MIoUa_
@]SalUoTU^

%W�[I�EVI�WIIOMRK�XS�YRHIVWXERH�XLI�MQTEGX�SJ�EHSTXMRK�GSRXMRYSYW�
MRXIKVEXMSR�SR�XLI�HIPMZIV]�XMQI�SJ�TYPP�VIUYIWXW��[I�EVI�PSSOMRK�JSV�
VIWTSRHIRXW�XLEX�LEZI�YWIH�'-�MR�WSQI�TEVX�SJ�XLIMV�GEVIIV��

;I�EVI�XV]MRK�XS�MQTVSZI�SYV�UYIWXMSRREMVI�VIWTSRHIRXW�WIPIGXMSR�
EPKSVMXLQ��=SY�HS�RSX�LEZI�XS�ERW[IV�XLI�VIWX�SJ�XLI�UYIWXMSRW��8LERO�
]SY�

���

)WXI�GSRXIðHS�RÝS�JSM�GVMEHS�RIQ�ETVSZEHS�TIPS�+SSKPI�

� È�9ap]K�xap�HM�vU]]U_S�oa�HM�Ia_o@IoMK�Ral�@�kpUI\�a_]U_M�Ra]]avåpi�U_oMluUMv�ß@o
@�oU^M�Ia_uM_UM_o�Ral�xapàÏ

�¡È��R�xap�ITMI\MK�xMm�a_�a_M�aR�oTM�ova�kpMmoUa_m�@HauM�@_K�T@uM�_ao�xMo�]MRo
xapl�Må^@U]É�i]M@mM�]M@uM�Uo�HM]avÈ

��È��a�xap�T@uM�RploTMl�Ia^^M_om�Ral�pmÏ

�È��R�xapõK�]U\M�oa�HM�U_Ral^MK�@Hapo�apl�RU_KU_Sm�@_K�T@uM�_ao�xMo�]MRo�xapl�Må^@U]É
i]M@mM�]M@uM�Uo�HM]avÈ

½8ad_g^xd[ae

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 58

Appendix B Invitation Letter

MAIL SUBJECT: Why do PRs take so long to be delivered? Research survey

Dear $contributor.name,

We are a group of researchers from universities based in Brazil, Australia, and New Zealand. We
are studying the impact of Continuous Integration on the time to release merged pull requests
to end users of open source projects.

We have collected public data from the project $project.fullName in the period from
$project.creationDate to 2016-11-11. According to our data, you have contributed $contribu-
tor.deliveredPRsCount pull-requests to $project.fullName which were effectively merged and
delivered to end users.

As you were a contributor of the project $project.fullName, we would appreciate if you shared
your experience with us by answering a few questions in the following survey:

Google Form: Understanding Delivery Time of Pull Requests

The survey has 24 questions (all of them are optional) and will take less than 15 minutes to
complete. To compensate you for your time, all participants that answer all questions will be
entered into a draw of six $50 Amazon gift cards.

Best Regards,

João Helis Bernardo.
PhD student at the Federal University of Rio Grande do Norte, Brazil.

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 59

Appendix C Number of participants per project

The number of participants per project are distributed in Tables 12 and 13.

Table 12: Number of participants per project and their IDs (PART I)

project participants IDs total of participants

1 grails/grails-core C001 – C005 5

2 saltstack/salt C006 – C035 30

3 mozilla-b2g/gaia C036 – C042 7

4 rails/rails C043 – C066 24

5 owncloud/core C067 – C079 13

6 cakephp/cakephp C080 – C092 13

7 ipython/ipython C093 – C097 5

8 ansible/ansible C098 – C113 16

9 fog/fog C114 – C125 12

10 appcelerator/titanium mobile C126 1

11 TryGhost/Ghost C127 – C133 7

12 mozilla/pdf.js C134 – C139 6

13 elastic/kibana C140 – C143 4

14 AnalyticalGraphicsInc/cesium C144 – C147 4

15 twbs/bootstrap C148 – C150 3

16 sympy/sympy C151 – C157 7

17 matplotlib/matplotlib C158 – C169 12

18 scipy/scipy C170 – C185 16

19 divio/django-cms C186 – C191 6

20 woocommerce/woocommerce C192 – C201 10

21 chef/chef C202 – C206 5

22 puppetlabs/puppet C207 – C211 5

23 Theano/Theano C212 – C217 6

24 frappe/erpnext C218 – C221 4

25 scikit-learn/scikit-learn C222 – C228 7

26 callemall/material-ui C229 – C231 3

27 zurb/foundation-sites C232 – C240 9

28 laravel/laravel C241 – C243 3

29 Leaflet/Leaflet C244 – C251 8

30 BabylonJS/Babylon.js C252 – C254 3

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 60

Table 13: Number of participants per project and their IDs (PART II)

project participants IDs total of participants

31 HabitRPG/habitica C255 – C258 4

32 hapijs/hapi C259 – C263 5

33 getsentry/sentry C264 – C266 3

34 elastic/logstash C267 – C268 2

35 kivy/kivy C269 – C278 10

36 apereo/cas C279 – C283 5

37 jashkenas/underscore C284 1

38 ether/etherpad-lite C285 – C289 5

39 mantl/mantl C290 1

40 Pylons/pyramid C291 – C298 8

41 boto/boto C299 – C309 11

42 request/request C310 1

43 jhipster/generator-jhipster C311 – C318 8

44 refinery/refinerycms C319 – C321 3

45 Netflix/Hystrix C322 – C323 2

46 square/picasso C324 1

47 humhub/humhub C325 – C326 2

48 bundler/bundler C327 – C329 3

49 isagalaev/highlight.js C330 – C338 9

50 haraka/Haraka C339 – C342 4

51 ReactiveX/RxJava C343 – C345 3

52 andypetrella/spark-notebook C346 – C348 3

53 TelescopeJS/Telescope C349 – C351 3

54 robolectric/robolectric C352 – C357 6

55 fchollet/keras C358 – C362 5

56 photonstorm/phaser C363 – C370 8

57 siacs/Conversations C371 – C373 3

58 jsbin/jsbin C374 – C381 8

59 buildbot/buildbot C382 – C385 4

60 cython/cython C386 – C390 5

61 spinnaker/spinnaker C391 1

62 openhab/openhab C392 – C399 8

63 jashkenas/backbone C400 – C408 9

64 aframevr/aframe C409 – C413 5

65 androidannotations/androidannotations C414 – C415 2

66 dropwizard/dropwizard C416 – C423 8

67 scikit-image/scikit-image C424 – C425 2

68 invoiceninja/invoiceninja C426 – C430 5

69 craftyjs/Crafty C431 – C433 3

70 serverless/serverless C434 1

71 bokeh/bokeh C435 – C444 10

72 vanilla/vanilla C445 – C448 4

73 Yelp/mrjob C449 – C450 2

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 61

References

Bacchelli A, Bird C (2013) Expectations, outcomes, and challenges of modern code review. In: 2013 35th
International Conference on Software Engineering (ICSE), IEEE, pp 712–721

Bavota G, Russo B (2015) Four eyes are better than two: On the impact of code reviews on software quality.
In: 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME), IEEE, pp
81–90

Beck K (2000) Extreme Programming Explained: Embrace Change. Addison-Wesley Professional
Bernardo JH, da Costa DA, Kulesza U (2018) Studying the impact of adopting continuous integration on the

delivery time of pull requests. In: 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), IEEE, pp 131–141

Best D, Roberts D (1975) Algorithm as 89: the upper tail probabilities of spearman’s rho. Journal of the
Royal Statistical Society Series C (Applied Statistics) 24(3):377–379

Braun V, Clarke V (2006) Using thematic analysis in psychology. Qualitative research in psychology
3(2):77–101

Cassee N, Vasilescu B, Serebrenik A (2020) The silent helper: the impact of continuous integration on
code reviews. In: 2020 IEEE 27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), IEEE, pp 423–434

Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal questions. Psychological Bulletin
114(3):494

Coelho J, Valente MT (2017) Why modern open source projects fail. In: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pp 186–196

da Costa DA, Abebe SL, McIntosh S, Kulesza U, Hassan AE (2014) An empirical study of delays in
the integration of addressed issues. In: Software Maintenance and Evolution (ICSME), 2014 IEEE
International Conference on, IEEE, pp 281–290

da Costa DA, McIntosh S, Kulesza U, Hassan AE (2016) The impact of switching to a rapid release
cycle on the integration delay of addressed issues: An empirical study of the mozilla firefox project. In:
Proceedings of the 13th International Conference on Mining Software Repositories, ACM, New York,
NY, USA, MSR ’16, pp 374–385

da Costa DA, McIntosh S, Treude C, Kulesza U, Hassan AE (2018) The impact of rapid release cycles on
the integration delay of fixed issues. Empirical Software Engineering 23(2):835–904

Debbiche A, Dienér M, Svensson RB (2014) Challenges when adopting continuous integration: A case
study. In: International Conference on Product-Focused Software Process Improvement, Springer, pp
17–32

Duvall P, Matyas SM, Glover A (2007) Continuous Integration: Improving Software Quality and Reducing
Risk (The Addison-Wesley Signature Series). Addison-Wesley Professional

Felidré W, Furtado L, da Costa DA, Cartaxo B, Pinto G (2019) Continuous integration theater. In: 2019
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM),
IEEE, pp 1–10

Fitzgerald B, Stol KJ (2017) Continuous software engineering: A roadmap and agenda. Journal of Systems
and Software 123:176–189

Fowler M, Foemmel M (2006) Continuous integration. Thought-Works) http://www thoughtworks
com/Continuous Integration pdf p 122

Gallaba K, McIntosh S (2018) Use and misuse of continuous integration features: An empirical study of
projects that (mis) use travis ci. IEEE Transactions on Software Engineering 46(1):33–50

Giger E, Pinzger M, Gall H (2010) Predicting the fix time of bugs. In: Proceedings of the 2nd International
Workshop on Recommendation Systems for Software Engineering, ACM, pp 52–56

Goodman D, Elbaz M (2008) ” it’s not the pants, it’s the people in the pants” learnings from the gap agile
transformation what worked, how we did it, and what still puzzles us. In: Agile 2008 Conference, IEEE,
pp 112–115

Gousios G, Zaidman A, Storey MA, Van Deursen A (2015) Work practices and challenges in pull-based
development: the integrator’s perspective. In: Proceedings of the 37th International Conference on
Software Engineering-Volume 1, IEEE Press, pp 358–368

Guo Y, Leitner P (2019) Studying the impact of ci on pull request delivery time in open source projectsa
conceptual replication. PeerJ Computer Science 5:e245

Harrell F (2015) Regression modeling strategies: with applications to linear models, logistic and ordinal
regression, and survival analysis. Springer

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 62

Hars A, Shaosong O (2002) Working for free? motivations for participating in open-source projects.
International journal of electronic commerce 6(3):25–39

Hilton M, Tunnell T, Huang K, Marinov D, Dig D (2016) Usage, costs, and benefits of continuous integration
in open-source projects. In: Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering - ASE 2016

Humble J, Farley D (2010) Continuous delivery: reliable software releases through build, test, and deploy-
ment automation. Pearson Education

Jiang Y, Adams B, German DM (2013) Will my patch make it? and how fast? case study on the linux kernel.
In: Mining Software Repositories (MSR), 2013 10th IEEE Working Conference on, IEEE, pp 101–110

Karvonen T, Behutiye W, Oivo M, Kuvaja P (2017) Systematic literature review on the impacts of agile
release engineering practices. Information and Software Technology 86:87 – 100

Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. biometrics pp
159–174

Laukkanen E, Paasivaara M, Arvonen T (2015) Stakeholder perceptions of the adoption of continuous
integration – a case study. In: Proceedings of the 2015 Agile Conference, IEEE Computer Society,
AGILE ’15, pp 11–20

Mann HB, Whitney DR (1947) On a Test of Whether one of Two Random Variables is Stochastically Larger
than the Other. The Annals of Mathematical Statistics 18(1):50 – 60, DOI 10.1214/aoms/1177730491,
URL https://doi.org/10.1214/aoms/1177730491

Michlmayr M, Fitzgerald B, Stol KJ (2015) Why and how should open source projects adopt time-based
releases? IEEE Software 32(2):55–63

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In:
Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on, IEEE, pp
284–292

Neely S, Stolt S (2013) Continuous delivery? easy! just change everything (well, maybe it is not that easy).
In: 2013 Agile Conference, IEEE, pp 121–128

Nery GS, da Costa DA, Kulesza U (2019) An empirical study of the relationship between continuous
integration and test code evolution. In: 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME), IEEE, pp 426–436

Nowell LS, Norris JM, White DE, Moules NJ (2017) Thematic analysis: Striving to meet the trustworthiness
criteria. International journal of qualitative methods 16(1):1609406917733847

Perry DE, Porter AA, Votta LG (2000) Empirical studies of software engineering: A roadmap. In: Proceed-
ings of the Conference on The Future of Software Engineering, ACM, ICSE ’00, pp 345–355

Rahman AAU, Helms E, Williams L, Parnin C (2015) Synthesizing continuous deployment practices used
in software development. In: 2015 Agile Conference, IEEE, pp 1–10

Rahman MM, Roy CK (2017) Impact of continuous integration on code reviews. In: 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), IEEE, pp 499–502

Romano J, Kromrey J, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: Should
we really be using t-test and Cohen’sd for evaluating group differences on the NSSE and other surveys?
In: annual meeting of the Florida Association of Institutional Research, pp 1–3

Santos J, Alencar da Costa D, Kulesza U (2022) Investigating the impact of continuous integration prac-
tices on the productivity and quality of open-source projects. In: Proceedings of the 16th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, pp 137–147

Schroter A, Schröter A, Bettenburg N, Premraj R (2010) Do stack traces help developers fix bugs? In:
Mining Software Repositories (MSR), 2010 7th IEEE Working Conference on, IEEE, pp 118–121

Shahin M, Babar MA, Zhu L (2017) Continuous integration, delivery and deployment: a systematic review
on approaches, tools, challenges and practices. IEEE Access 5:3909–3943

Sharma P, Savarimuthu T, Stanger N (2021) Influence of roles in decision-making during oss developmenta
study of python. In: Evaluation and Assessment in Software Engineering, pp 50–59

Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Hassan AE, Matsumoto Ki (2010)
Predicting re-opened bugs: A case study on the eclipse project. In: Reverse Engineering (WCRE), 2010
17th Working Conference on, IEEE, pp 249–258

da Silva ACBG, de Figueiredo Carneiro G, de Paula ACM, Monteiro MP, e Abreu FB (2016) Agility
and quality attributes in open source software projects release practices. In: 2016 10th International
Conference on the Quality of Information and Communications Technology (QUATIC), IEEE, pp
107–112

Soares DM, de Lima Júnior ML, Plastino A, Murta L (2018) What factors influence the reviewer assignment
to pull requests? Information and Software Technology 98:32–43

https://doi.org/10.1214/aoms/1177730491

The Impact of a Continuous Integration Service on the Delivery Time of Merged Pull Requests 63

Soares E, Sizilio G, Santos J, da Costa DA, Kulesza U (2022) The effects of continuous integration on
software development: a systematic literature review. Empirical Software Engineering 27(3):1–61

Ståhl D, Bosch J (2014) Modeling continuous integration practice differences in industry software develop-
ment. J Syst Softw 87:48–59

Vasilescu B, Van Schuylenburg S, Wulms J, Serebrenik A, van den Brand MG (2014) Continuous integration
in a social-coding world: Empirical evidence from github. In: Software Maintenance and Evolution
(ICSME), 2014 IEEE International Conference on, IEEE, pp 401–405

Vasilescu B, Yu Y, Wang H, Devanbu P, Filkov V (2015) Quality and productivity outcomes relating to
continuous integration in GitHub. In: Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2015

Weißgerber P, Neu D, Diehl S (2008) Small patches get in! In: Proceedings of the 2008 international
working conference on Mining software repositories, pp 67–76

Wilks DS (2011) Statistical methods in the atmospheric sciences, vol 100. Academic press
Williamson DF, Parker RA, Kendrick JS (1989) The box plot: A simple visual method to interpret data.

Annals of Internal Medicine 110:916–921
Yu Y, Yin G, Wang T, Yang C, Wang H (2016) Determinants of pull-based development in the context of

continuous integration. Sci China Inf Sci 59(8)
Zampetti F, Bavota G, Canfora G, Di Penta M (2019) A study on the interplay between pull request review

and continuous integration builds. In: 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), IEEE, pp 38–48

Zhang X, Yu Y, Georgios G, Rastogi A (2022a) Pull request decisions explained: An empirical overview.
IEEE Transactions on Software Engineering

Zhang X, Yu Y, Wang T, Rastogi A, Wang H (2022b) Pull request latency explained: An empirical overview.
Empirical Software Engineering 27(6):1–38

Zhao Y, Serebrenik A, Zhou Y, Filkov V, Vasilescu B (2017) The impact of continuous integration on other
software development practices: a large-scale empirical study. In: Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering, IEEE Press, pp 60–71

	Introduction
	Related work
	Empirical Study Design
	Quantitative Study Results
	Qualitative Study Results
	Discussion
	Threats to the validity and Limitations
	Conclusion
	Appendix Project Survey Example
	Appendix Invitation Letter
	Appendix Number of participants per project

