
HAL Id: hal-03976601
https://telecom-paris.hal.science/hal-03976601

Submitted on 7 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A grounded theory of Community Package Maintenance
Organizations

Théo Zimmermann, Jean-Rémy Falleri

To cite this version:
Théo Zimmermann, Jean-Rémy Falleri. A grounded theory of Community Package Maintenance
Organizations. Empirical Software Engineering, 2023, 28 (4), pp.101. �10.1007/s10664-023-10337-4�.
�hal-03976601�

https://telecom-paris.hal.science/hal-03976601
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

A grounded theory of Community Package Maintenance
Organizations

Théo Zimmermann · Jean-Rémy Falleri

Received: date / Accepted: date

Abstract In many programming language ecosystems, developers rely more
and more on external open source dependencies, made available through pack-
age managers. Key ecosystem packages that go unmaintained create a health
risk for the projects that depend on them and for the ecosystem as a whole.
Therefore, community initiatives can emerge to alleviate the problem by adopt-
ing packages in need of maintenance.

The goal of our study is to explore such community initiatives, that we
will designate from now on as Community Package Maintenance Organiza-
tions (CPMOs) and to build a theory of how and why they emerge, how they
function and their impact on the surrounding ecosystems.

To achieve this, we use a qualitative methodology called Grounded Theory.
We have applied this methodology in two steps. First, on “extant” documents
(documentation, discussions on public forums) originating from several CP-
MOs. From this data, we have built a theory of CPMOs, which we have then
refined through interviews and reliability checks with CPMO participants.

Our theory can inform developers willing to launch a CPMO in their own
ecosystem and help current CPMO participants to better understand the state
of the practice and what they could do better. It is a basis on which future
research can be done on how to help open source ecosystems improve the
maintenance status of their most important packages.

T. Zimmermann
LTCI, Télécom Paris, Institut Polytechnique de Paris, France
E-mail: theo.zimmermann@telecom-paris.fr

J.-R. Falleri
Univ. Bordeaux, Bordeaux INP, CNRS
LaBRI, UMR 5800, F-33400 Talence, France
Institut Universitaire de France
E-mail: falleri@labri.fr

2 Théo Zimmermann, Jean-Rémy Falleri

Keywords Grounded theory · Package ecosystem · Software maintenance ·
Collaborative maintenance · Open source software · Open source maintainers ·
Open source communities · Software libraries

1 Introduction

The state of the practice in many programming language ecosystems is for de-
velopers to heavily rely on third-party open source packages [14]. For instance,
Decan et al. found that a majority of packages depend on other packages in
all seven ecosystems they studied [8]. This is made possible in large part by
the advent of package managers, that have allowed developers to easily add
third-party dependencies, but also to easily share reusable code with others.
This large dependency of many software projects on graciously provided open
source packages can lead to a risk that some of them will be abandoned and
thus stop being maintained [1]. This is especially true for packages with a low
truck-factor [2, 3]. Reliance on an unmaintained software package may then
create problems such as the inability to migrate to a newer version of the
programming language or toolchain and reported bugs not being fixed. It can
even lead to security issues as it was the case for the infamous event-stream
npm package1.

When an open source package becomes unmaintained, it is possible for
its users to take measures to keep maintaining it, such as pushing fixes to a
fork [34], or vendoring the package in the project that depends on it, and push-
ing fixes to this copy [36]. However, it is only an individual and uncoordinated
measure that will typically lead to inefficiencies, as soon as several users need
to do the same [33].

To avoid this issue, ecosystem participants may decide to launch commu-
nity initiatives to alleviate the problem of key packages being left unmain-
tained. During his PhD, the first author has observed an emerging model
of “community organizations for the long-term maintenance of ecosystems’
packages” and he has produced an informal analysis mostly based on the Elm
Community example [35, 36]. His key observations were that the existence of
these organizations could: facilitate the creation of community forks for un-
maintained packages; provide an exit strategy for authors of popular packages
no longer willing to maintain them.

The goal of the present study, which executes a pre-registered protocol [37],
is to refine or revise these initial findings by looking more in depth at several
examples of these Community Package Maintenance Organizations (CPMOs)
and build an actual theory of how and why they emerge, what are their ob-
jectives and how they function.

To the best of our knowledge, this theory is the first formal study of the
CPMO model, which has not been studied by other researchers so far, and
which also constitutes the first known collective model to alleviate the problem
of unmaintained packages in open source ecosystems.

1 https://blog.logrocket.com/the-latest-npm-breach-or-is-it-a427617a4185/

A grounded theory of Community Package Maintenance Organizations 3

By providing a formal description abstracting over the many initiatives that
have emerged independently of each other, our theory highlights key compo-
nents and processes of CPMOs, but also how CPMOs emerge, and expected
benefits and risks. This should allow both practitioners from ecosystems with-
out a CPMO to launch such an initiative, by providing a clear model and
justification for the associated processes, but also current CPMO participants
to reflect on their practices and make them evolve.

We have built this theory through a qualitative study following the princi-
ples of Grounded Theory (GT). GT is appropriate for this setting because it
provides a methodology for analyzing both existing data that we retrieve (“ex-
tant documents”) and elicited data (such as through interviews with CPMO
participants).

This study is of a purely qualitative nature and the theory that we have
built has not been used to derive “predictions” that could be “tested”. It is
beyond the scope of this study to make and test such predictions. However,
this theory can inform future research that will make and test predictions on
specific aspects of CPMOs, by means of quantitative methods.

In the next section, we present the GT methodology and how we have
applied it to conduct our study. Section 3 provides the general structure of our
theory, then Sections 4, 5, and 6 detail the results. In Section 7, we discuss and
compare the results to our own experience, and attempt to derive preliminary
guidelines for CPMO initiators and participants. Finally, Section 8 compares
the CPMO concept with the related literature, and Section 9 concludes and
proposes avenues of future work.

2 Methodology

Grounded Theory (GT) is a qualitative methodology for generating theories
grounded in data. Several variations of this methodology exist. We base our
work on the constructivist version of Charmaz [7], complemented by the per-
spectives brought by Stol et al. on GT applied to Software Engineering [29]
and of Muller and Kogan on GT applied to Human-Computer Interactions and
Computer-Supported Cooperative Work [18]. We also inspire from the SAGE
Handbook chapter by Wiener about team work in GT [32] and on the recom-
mendations of Ralph et al. for contextual positioning of extant documents in
GT [21].

One of the core characteristics of GT is that it is an incremental method.
Analysis and theory building (using coding and memoing) start as soon as the
researchers have gathered some initial data and the resulting theory is then
refined by looking at additional data that will help address unanswered ques-
tions. Data are not sampled for representativity (statistical sampling) but for
what they may bring to the theory under construction (theoretical sampling).
Data collection only stops when the constructed theory is solid enough to fit
new collected data (theoretical saturation).

4 Théo Zimmermann, Jean-Rémy Falleri

2.1 Defining the scope of our study

In this paper, we explore a model of community organizations that aim to
maintain important packages by “adopting” them (CPMOs) that we have ob-
served in several ecosystems. However, because this model is emergent, we
have to define the limits of what we want to study. First, we study community
initiatives that are rooted in an application-specific package ecosystem. There-
fore, we exclude both general initiatives targeted at improving sustainability
of open source projects and general-purpose package ecosystems (such as Arch
Linux, Debian, Homebrew or Nixpkgs). As a consequence, the packages hosted
in the community organizations that we decide to study are most often soft-
ware libraries. These software libraries may encounter maintenance issues, and
this leaves the possibility for a CPMO to “adopt” them to help alleviate these
issues. Second, we exclude organizations that do package maintenance with-
out clearly communicating on their objectives nor their processes. Third, we
exclude organizations that already encompass all community packages of an
ecosystem (as we have sometimes observed in small ecosystems). If packages
are already gathered like this, this does not leave any possibility to “adopt”
an unmaintained ecosystem package into the CPMO.

2.2 Strategy for data gathering

Our plan for this study has been to start with the data that were the most
accessible, that is the documentation provided by the CPMOs we identified,
and to defer contacting CPMO participants to a later theoretical sampling
phase.

The reason for adopting this strategy is both ethical and practical. We know
that open source software developers are over-sollicited by empirical software
engineering researchers [4]. Therefore, contacting them too early would be both
unethical (because we would be wasting their time with questions to which
we could have found an answer by ourselves) and inefficient (because reaching
out more personally to specific users is more likely to elicit answers and we
should be able to ask questions which we are missing data to answer).

Our initial list of CPMOs to study comes from the thesis of the first au-
thor [35, 36]. The list was obtained by a systematic search of GitHub orga-
nizations using GitHub’s advanced search feature, starting from 75 keywords
like “collective”, “maintain”, “participate” but also “library”, “module” or
“package”, and followed by a series of filters regarding number of repositories,
popularity, and presence of repositories predating the organization (and that
were thus transferred to it). These filters were intended to keep the resulting
list to a size that would be reasonable to explore manually. This list was then
manually browsed for organizations fitting the scope described above, exclud-
ing in particular many organizations that did not provide sufficient information
on their purpose.

A grounded theory of Community Package Maintenance Organizations 5

Table 1 List of potential CPMOs to study. For each CPMO, we provide the GitHub handle
(add https://github.com/ in front to find the URL), how we have found it, and how many
documents we have coded (documentation + public discussions + interviews). Strikethrough
indicates potential CPMOs that we have excluded from our list because we have no evidence
that they proceed to adoptions, which was a criterion for inclusion in our study.

CPMO name GitHub handle Origin Documents

Dlang-community dlang-community Initial list 1 + 8 + 1
Elm Community elm-community Initial list 1 + 10 + 1
Flutter Community fluttercommunity Manual search 3 + 0 + 0
LM Commons LM-Commons Manual search
Meteor Community Meteor-Community-Packages Manual search 2 + 2 + 0
Node.js PMT pkgjs Manual search
RNC react-native-community Initial list
ReasonML Community reasonml-community Initial list
Sous Chefs sous-chefs Initial list 8 + 1 + 0
Trac Hacks trac-hacks Snowballing 2 + 0 + 0
Vox Pupuli voxpupuli Initial list 6 + 0 + 0

To make sure we did not miss any important or newer CPMO, we com-
pleted this initial list by doing a manual GitHub search for repositories and
organizations with the keywords “package maintenance” and “package com-
munity” and looking at the first 10 pages of results for each query. This did
bring up additional organizations fitting the scope of our study, confirming
that the list previously established was incomplete. Finally, we have identified
one more CPMO by snowballing (referenced from a data source in a previously
identified CPMO).

Even if we still cannot claim to have identified all CPMOs, we have obtained
a list longer than what we could reasonably study in depth in the context of
this article, so we have focused on a subset, and we have relied more on some
CPMOs than others, depending on the data that were available in each of
them for the needs of our theoretical sampling.

There are a few organizations that we first added to our list of potential
CPMOs to study, but decided to remove later because we found no evidence
of these organizations adopting packages (no adoption documentation and
no adoption discussions). For instance, in Node.js PMT’s documentation, no
adoption process was mentioned, and while looking for adoption discussions,
we understood that it was still undecided if this organization (or Working
Group as they sometimes describe themselves) would ever adopt packages.
When we looked, they were more focused on developing tooling and best prac-
tices, and helping projects outside the organization. While this initiative is
also interesting and certainly worth studying, we have to set limits to what
we include in our theory, so we decided to remove it from our results. Never-
theless, since we have coded one piece of documentation before removing it, it
had an influence on the focused coding of other documents and allowed us to
identify early on that CPMOs could have other objectives than only adopting
unmaintained packages.

6 Théo Zimmermann, Jean-Rémy Falleri

There are other CPMOs that we are aware of, but have decided against
including in our data sources. During his PhD, the first author was the initiator
of Coq-community, a CPMO for the Coq ecosystem. This CPMO was directly
inspired by Elm Community and had some influence on OCaml-community, a
CPMO for the OCaml ecosystem that was created shortly after. We excluded
these two CPMOs from our data to focus on learning from CPMOs in other
ecosystems where we did not play a role. Nevertheless, this work takes the
constructivist view that, like any preexisting knowledge of the authors, this
experience influences the way we see the world and how we construct our
theory. Furthermore, we rely on it to reflect on our results in the discussion
section of our paper.

2.3 Coding, memoing, and theory building

Following Charmaz’s presentation of GT [7], we have coded the collected doc-
uments in two phases. During the initial line-by-line coding phase, we devise
codes that precisely represent the content of the document. During the follow-
up focused coding phase, we abstract our initial codes and look for common
patterns through constant comparison between codes and codes, codes and
data, and data and data.

The focused codes that seem to be the most important, or repeated patterns
in several focused codes, become the basis to form our categories. Throughout
the process, we write memos to sketch the precise definition and characteristics
of our categories, that we keep editing until they form the basis for the writing
of our results in this article. During the theory building process and after
collecting and analyzing new documents that spark new codes, we frequently
revisit our focused codes for previously coded documents when we discover
new insights that help to understand them differently.

GT is mainly described as a research methodology employed by individual
researchers (e.g., in sociology). Guidance on how to employ it as a team of
researchers is limited, and it is also the role of the researchers to decide how
to proceed. We decided to use a GitHub repository to collaborate, with issues
being used for writing memos, and documents with codes being committed
into the repository.

Data that are collected but not created for the purpose of the research are
called “extant documents” [7]. Extant documents are harder to code because
they contain lots of data that are irrelevant to our research (the relevant parts
are typically buried under irrelevant ecosystem-specific technical considera-
tions for instance). To alleviate this difficulty, when encountering a new type
of document, we often decided to code documents separately and compare our
codes.

While such double-coding is generally conducted to obtain more “objec-
tive” results in empirical software engineering research (by measuring inter-
rater reliability), it is typically not required from a constructivist perspective
(where it is expected that different researchers will have different interpreta-

A grounded theory of Community Package Maintenance Organizations 7

tions). However, this approach was still useful to us because the differences in
our codes raised interesting discussions during our meetings, and frequently
led to memo-writing. This was especially true when comparing focused codes,
so we most often limited double-coding and discussion to the focused coding
phase only, or we adopted a strategy where one researcher would do the initial
coding and another would do the focused coding (of the same document) then
the two would discuss the focused codes and revisit them. This strategy aligns
with the observations of Wiener [32] that team meetings can be used to code
as a group and may spark new ideas leading to memos that will be written by
individual researchers.

When coding extant documents, it is important to situate them with re-
spect to their context, audience, etc. Ralph et al. call this “contextual posi-
tioning” and provide a list of questions to ask about the document [21]. In
order to answer them, in particular with respect to community documents
that are not attributed to a specific author, but were committed to a GitHub
repository, we rely on the git history to better understand who contributed to
writing what parts and when. This is sometimes helpful to explain how differ-
ent and apparently contradictory perspectives coexist in the same document,
or how CPMO processes evolve. On GitHub, looking at the history of a file
sometimes leads to a pull request where the change was proposed, discussed
and amended, and which we can even decide to code as a new document if it
is interesting enough.

2.4 Theoretical sampling

One key idea that drove our theoretical sampling procedure was to delay inter-
viewing participants as much as possible. Indeed, there is an increasing fatigue
among open source maintainers about solicitations they receive in the context
of software engineering research [4], which are sometimes perceived as spam.
In order to alleviate this issue, we decided to rely as much as possible on the
large body of extant documents available to us (both documentation describ-
ing the processes of CPMOs and public discussions where we could see the
processes being applied) to accumulate as much knowledge as possible before
starting the interviews, with the hope that the accumulated knowledge would
enable us to perform fewer and more relevant interviews.

Following our “interview last” principle, we proceeded to five main sam-
pling phases:

1. We started by looking at core CPMO documentation: README files, man-
ifestos and website homepages of CPMOs from our list. This coding phase
allowed us to explore CPMO objectives as well as their core processes and
governance models. Contextual positioning for these documents also led us
to add process discussions to our data sources.

2. As we identified package adoption as a key objective of CPMOs, we looked
for pull requests and issues discussing package adoptions in several CPMOs.
It allowed us to gain knowledge about how package adoptions are done in

8 Théo Zimmermann, Jean-Rémy Falleri

practice. Beyond adoption discussions, we have also explored maintainer
change and deprecation discussions.

3. As CPMO documentation generally did not contain much information
about the CPMO creation context and creation process, we looked for kick-
off discussions in issues and forum threads, from which we gained knowl-
edge of the way CPMOs get created.

4. To dig into secondary objectives of CPMOs, in particular the objective
of establishing and transferring best practices that we had identified ear-
lier on, we gathered additional CPMO documentation, from the CPMO
meta repositories or their website. This includes blog posts, in particular
one which is the transcript of a talk given by a CPMO initiator (Mina
Galić, from Vox Pupuli). This also allowed us to get even more data on the
adoption process itself.

5. Finally, we relied on interviews of CPMO initiators to fill remaining gaps
in our theory as well as to conduct a reliability check [29] of the concepts
we identified in the first four sampling steps.

2.5 Interviewing process

Given the incremental nature of GT, we conduct one interview, that we record
and transcribe, then analyze by the usual process of initial and focused coding,
and that we use to refine and revise our theory, before planning the next
interview (deciding who to interview next, and adapting the interview guide).

Whereas, as an open science commitment we make available all our codes
for public documents, we keep interview transcripts and codes private. Indeed,
we can expect participants would have answered differently to our questions if
we had told them that the interviews would be made public. We seek interview
participant consent for each of their quotes that we include in our article. This
allows ensuring that they are comfortable making these quotes public, but also
that they are comfortable with the way we use them in our theory, and that
we interpret them correctly.

In this article, we have relied on two interviews. Both interviews were con-
ducted, transcribed and initial coded by the first author. Each author handled
the focused coding for one interview and focused codes were discussed during
dedicated meetings as done with other types of documents. It should be noted
that the interview of Ryan Rempel, the initiator of Elm Community, was per-
formed in 2019, before the start of our GT study, although we transcribed
and coded it during the interview phase of the present study, just before the
interview of Sebastian Wilzbach, the initiator of Dlang-community.

2.6 Reliability checks

Stol et al. [29] recommend conducting reliability checks to confront the theory
under construction with external points of view. They can be performed by

A grounded theory of Community Package Maintenance Organizations 9

asking feedback on the theory to researchers not involved in the study, or to
participants, e.g., during interviews.

The first reliability check we performed was with Karl Palmskog, a re-
searcher who is also one of the most active participants of Coq-community,
the CPMO initiated by the first author. The reliability check was an opportu-
nity to show him the state of our theory and obtain feedback, before starting
the actual interviewing process. To present our theory, we used a mind map
representation, whose final version is available in our supporting data pack-
age. Besides obtaining feedback, that we incorporated into our theory, this
step allowed us to ensure that the theory was understandable by an inde-
pendent person, and that we could rely on the mind map representation to
communicate about it.

The second reliability check was performed during the interview of Se-
bastian Wilzbach, from Dlang-community. During his interview, we included
several reliability check phases where the interviewer presented the state of
our theory (using the mind map representation) to elicit comments from the
interviewee about how this matched (or not) with his experience (after having
asked any question related to this part of the theory).

Since the interview of Ryan Rempel predated the construction of our the-
ory, it did not include a reliability check phase. However, after finishing writing
our theory, we asked Ryan Rempel to check the quotes that we included, and
we provided him the article, so this should be considered as a reliability check
as well.

2.7 Literature review

Following standard recommendations in GT, we delayed most of the literature
review work to the end of the study, after having written our main results, so
as to limit the influence of preexisting theories from the literature on our new
CPMO theory, and to keep the latter mostly grounded in data.

2.8 Deviations from the pre-registered protocol

The only deviation from the pre-registered protocol [37] is the following. In
our report, we had announced some theoretical sampling plans to qualita-
tively code commit histories and pull requests of adopted packages. We have
attempted this, and have also added changelogs to the list, but we did not find
a satisfying method to code these types of documents. Besides, it now seems
to us the theory that we report in our article is rich enough to not warrant
this additional coding phase.

10 Théo Zimmermann, Jean-Rémy Falleri

Fig. 1 Mind map representing subcategories of the CPMO core category.

3 Outline of the theory

Figure 1 depicts an excerpt of a mind map representing the structure of our
theory about CPMOs. The full mind map is available in our supporting data
package and can be used to trace the relation from the categories in our theory
to the codes and the quotes, taken from the coded documents. We divided our
theory in three first-level categories:

– Creation context and objectives that groups concepts about why CP-
MOs get created. We present this category in Section 4.

– Creation process that groups concepts about how CPMOs are started.
We present this category in Section 5.

– Operations that groups concepts about how CPMOs operate in practice.
We present this category in Section 6.

We also define here several important terms that will be used in our theory.
Core project refers to the project that is central to the CPMO’s ecosys-

tem (Elm for Elm Community, Puppet for Vox Pupuli, etc.).
Package refers to a project that could be maintained in the CPMO. We

choose not to distinguish between packages that are published through the
ecosystem’s package manager (typically software libraries) and packages that
contain tooling to be distributed to users through other means (IDE support
packages, continuous integration packages, etc.).

Package adoption refers to the process of moving the maintenance of a
package within the CPMO. There are two main ways of adopting a package:
by transferring it to the CPMO (with the authorization of its author / owner);
by forking it into the CPMO (usually, this means the owner is completely un-
responsive). Transferring, when it is performed on GitHub, is usually preferred
because it allows preserving issue tracking data.

Original author refers to the person that authored the package and owns
the repository where it is (or was) maintained before a package adoption takes
place. It can sometimes happen that the current owner and maintainer of the
“upstream” repository at the time of the adoption is already different from the
person that initially authored the package, but for the purpose of our theory,
we include these people in the term “original author”.

A grounded theory of Community Package Maintenance Organizations 11

Principal maintainer refers to a CPMO member being assigned the re-
sponsibility of a given package (see Section 6.3).

CPMO initiator refers to a person who is responsible for triggering the
CPMO creation process (creates an organization, most often a GitHub or-
ganization, and initiates the process to gather momentum, e.g., by inviting
participants to join the organization, see Section 5.1).

4 Creation context and objectives

CPMOs get created in a preexisting context. This context is the one of the
surrounding package ecosystem to which a CPMO will belong and of its core
project. Some specific issues in this ecosystem may be identified by CPMO
initiators or other participants of the kickoff discussions, and these issues may
lead to specific objectives. Finally, additional benefits are identified by CPMO
participants, beyond those related to the main objectives of the CPMO.

4.1 Initiators and reasons for initiating a CPMO

There are several reasons that we have observed being repeatedly mentioned
that led to the creation of CPMOs. We present them below.

Package maintenance lag. Avoiding ending-up with lagging important pack-
ages is the main driver for the creation of CPMOs. Both the Elm Community
manifesto and the Dlang-community README express this idea (in words
that come from the initial version of the documents by the CPMO initiators):

“It sometimes happens that packages which are widely used need a
bit of maintenance—for instance, to accommodate changes in Elm, or
for other reasons. Normally, package authors will deal with that
themselves, of course, possibly with the help of pull requests from
interested community members etc. However, sometimes package
authors may not be available, for one reason or another, and other
work can be blocked until the maintenance is performed.”

“This organization was formed by annoyance of needing to fork
popular repositories to get fixes merged.”

This concern is also present in the Sous Chefs creation announcement:

“Anyone who’s been in the chef community for a while has felt the
pain of abandoned cookbooks.”

12 Théo Zimmermann, Jean-Rémy Falleri

Forest of forks inefficiencies. The next reason that leads to the creation of
CPMOs is the will to avoid getting a “forest of forks” that try to maintain an
abandoned package, as expressed in the Vox Pupuli webpage:

“One of the benefits we hope to achieve is that [...] we no longer
end up in situations where the original maintainer has moved on and
a forest of disparate forks try to fill the void.”

This idea is also contained in the README of Dlang-community:

“in case the author is completely gone, the DLang community has
one upstream repository instead of ten different forks containing the
same fix.”

And in the Meteor Community kickoff discussion:

“It should also give clarity to package users where to get the
package from instead of having to investigate multiple different forks
of a package.”

Forking overhead. On the other hand, CPMO initiators also invoke forking
overheads, that may discourage users from forking unmaintained packages,
as an additional reason for creating the CPMO. This appears in the Elm
Community manifesto:

“In such cases, it is certainly possible for some individual to fork
the package, do the necessary maintenance, and publish it
themselves—and we do not wish to discourage that. However, there
may be cases where people don’t want to take on the implicit
obligations involved in maintaining a published package—and yet, it
needs to be done.”

Forking overheads can also be package-manager-specific and may explain
why CPMOs emerge more naturally in some ecosystems than others. Both
initiators from Elm Community and Dlang-community told us about some
package-manager-specific issues creating overhead. For instance, in the words
of Sebastian Wilzbach, the initiator of Dlang-community:

“I should probably explain that in the D ecosystem it’s a bit
different to NPM or Rust or Go because it’s quite hard to actually
publish packages. Whereas in NPM, I would just create a fork of the
GitHub repo and move on and then maintain that for myself. [...]
What I’m trying to summarize here is that it was quite hard to create
forks and it took a very long time.”

A grounded theory of Community Package Maintenance Organizations 13

Push-back from the core project. CPMO initiators are generally users that were
heavily involved in the ecosystem before they launched the CPMO creation
process. This is the case of the two initiators that we interviewed. Ryan Rempel
for Elm Community:

“I got heavily involved in the Elm ecosystem”

And Sebastian Wilzbach for Dlang-community:

“I have made 300 or 400 pull requests to the D ecosystem. I got
sucked in there quite heavily.”

But CPMOs are generally started independent of the core project, and this
can happen after the initiator has attempted to push similar ideas directly to
the core project, but has received some push-back. Sebastian Wilzbach, who
was also a core D maintainer, told us:

“I think initially we also tried to check whether we can move [an
important package] under the Dlang normal GitHub organization and
namespace, but there was some push-back against that because then it
would be seen as an official project, officially maintained by the D
Language Foundation. That’s why we ended up creating a separate
organization.”

And in a similar vein, Ryan Rempel, who was further away from the core
Elm team:

“It seemed to me that [Elm] at the time was a little too structured,
a little too disciplined, a little too centrally controlled, and that
something needed to be done [...] to provide an opportunity for some
work that was kind of outside of that. For a period of time, I had been
doing a little bit of advocacy [...]. And it was clear to me at that point
that that wasn’t going to work, that the core team had thought this
through pretty carefully. They were pretty committed to what they were
doing.”

4.2 Objectives

From the reasons listed for initiating a CPMO, several objectives naturally
emerge. Depending on CPMO participants, some additional objectives may
be proposed and retained. In this section, we focus on the objectives that we
have observed repeatedly across various CPMOs.

Gathering and maintaining important packages. The most pervasive objective
of CPMOs is to gather ecosystem packages under a common ownership in order
to maintain them in the long-term. E.g., in the main document presenting
Flutter Community:

14 Théo Zimmermann, Jean-Rémy Falleri

“The Flutter Community is an organization aimed at providing a
central place for community made Flutter packages and content to live.
Our goal is to ensure packages made by the Flutter community are
kept alive and maintained in one place.”

In most CPMOs, however, there is an additional explicit focus on the main-
tenance of the most important or most widely used packages:

“This organization unites packages that are important to the
Meteor community to guarantee their long term maintenance”

“DLang-community is a GitHub organization which maintains D
packages that are important to the D ecosystem.”

“Flutter Community aims to bring the best community-made
packages forward. Because of this, not all proposed packages will be
accepted.”

Finally, it can be considered worthwhile to gather the most critical packages
under a common ownership, even if they do not suffer from maintenance issues.
This can become a new objective of a CPMO if it was initially focused on
unmaintained packages, as Ryan Rempel from Elm Community explained:

“Partly the way it’s evolved is as a home for tools that are
important to the community generally and probably shouldn’t be sort of
exclusively in one person’s hands to maintain. So things like the
testing framework that basically everybody uses, and it would be a bit
weird if it was just one person in charge of it. And so to have multiple
owners for some of those key packages is kind of handy.”

Sharing package maintenance workload. One of the reasons why CPMOs may
want to gather important packages needing maintenance is to share mainte-
nance workload over a larger group. As we can read, e.g., in the README of
Dlang-community:

“Moreover, thanks to being a larger organization, the overhead of a
project can be distributed”

Anticipating turnover and unresponsive maintainers, enabling packages to be
picked up by new people. But the most important reason for wanting to gather
important packages is to anticipate turnover and enable packages to live on,
beyond the departure of their current maintainer. This objective to anticipate
turnover in the ecosystem was already highlighted in quotes from Vox Pupuli
and Dlang-community in the previous section. It was also the main point in
the first post of the kickoff discussion of Meteor Community:

“It might make sense to have a community organization with packages
repositories that can easily be picked up by other maintainers if
somebody leaves Meteor.”

A grounded theory of Community Package Maintenance Organizations 15

And reiterated later in this discussion:

“Mission Statement - To provide a way to keep updating Meteor
packages even after the initial developer has moved on. (or something
along the line)”

This objective leads to concrete guidelines in documentation of CPMOs
like Elm Community:

“Unresponsive champions will be emailed. Lack of response will
mean a new maintainer will be assigned to that repo.”

or Trac Hacks:

“Once you take ownership of a package name on PyPI there is no
process for transferring ownership of the package that can happen
independent of you (see PEP:0541). This is a frequent cause of
abandoned packages on PyPI, where the original owner is not
reachable and a new maintainer of the package cannot update the
published package. For that reason, please consider giving ownership of
the package to other users in case you someday decide to no longer
maintain the package. For example, you could give ownership to the
TracHacks admins.”

Of course, even in CPMOs, packages can still stall if nobody is interested
in maintaining them anymore. The objective is really to leave the possibility
for new people to pick up unmaintained packages. This was clarified by the
Meteor Community initiator later in the kickoff discussion:

“Moving packages here indeed doesn’t ensure they will get
attention. However, it’s about ensuring that if there are new people
that want to give them attention, that they can pick up development
where someone else left off without having to fork & republish the
package”

This possibility was actually used in Dlang-community according to Sebas-
tian Wilzbach (even if he considers that this does not happen frequently):

“I think it has happened in the past too that people were actually
making this pull request and then everybody has left and then he gets
access, but they usually don’t want to have access, they just want a
pull request to be merged.”

Establishing and transferring best practices and tools. CPMO participants fre-
quently identify their CPMO as a good place to establish standard practices
and tools for package maintainers, so establishing best practices (or at least
applying them to CPMO packages) typically becomes an additional objective.

For instance, this is mentioned several times in the Meteor Community
kickoff discussion:

16 Théo Zimmermann, Jean-Rémy Falleri

“People have shared patterns, tricks either in form of Articles or
on Meteor-forum. These gems are opinionated and problem specific. If
we start putting it all together as a community we might start
coming-up with standards.”

“Another purpose of this group could also be to define best
practices, together with MDG, and writing them down in the Meteor
guide. The community should have a word in when deciding which
packages are the most useful and most beneficial in the long term.”

We have observed that this kind of proposal leads to documented objec-
tives, as in Meteor Community:

“This repository serves to [...] establish shared practices and
patterns.”

And also to actual guidelines behind written, either for the packages hosted
in the CPMO, as in Dlang-community:

“Best practices. This is a list of requirements that should be
enabled for each repository. It’s not a requirement for adoption, but a
reminder for DLang community members.”

Or, more generally, for package maintainers in the ecosystem. E.g., the
Trac Hacks plugin development guide:

“This page documents some best practices and guidelines for plugin
development.”

And finally to some of these best practices behind applied across CPMO
packages. E.g., in an issue discussing standard guidelines for Dlang-community
packages, Sebastian Wilzbach wrote:

“Okay I have enabled [protected branches with required status
checks] for all of our maintained repos (except for dsymbol and
DGrammar as they don’t have a Travis config as of now)”

Common best practices being discussed include the use of continuous inte-
gration, of pull-based development, documentation standardization, licensing,
code formatting, and releasing. However, there are limits to what CPMOs can
achieve. As Sebastian Wilzbach explained:

“I think that was definitely like a goal of the organization and, I
am not sure whether we did that, but the idea at some point was that
you set up like static code analysis and formatting for these projects in
the same way. But I don’t think that happened, simply for the reason
that it’s like a lot of effort and because all of these projects were
moved in from different people so they have different coding styles
already, and like unifying them if you don’t actively work on them is a
lot of work, so that just didn’t happen.”

A grounded theory of Community Package Maintenance Organizations 17

4.3 Additional benefits

Beyond the main objectives that are stated in CPMO documentation or that
are implicitly shared by CPMO participants, there are additional benefits that
come with CPMOs and may not have been objectives in the first place.

Enabling collaboration with the core project. CPMOs often clearly mark their
independent and unofficial status, as one can read on the Vox Pupuli webpage:

“Having no official relation to Puppet Inc. allows us to maintain
our own pace and direction when it comes to how we work and
develop.”

And in the Elm Community manifesto:

“The idea behind elm-community is to have a shared, unofficial
home for certain kinds of collaborative Elm-related work.”

While keeping this independence can be an explicit objective of the CPMO,
it can bring a (potentially unexpected) benefit. This unofficial status actually
facilitates collaboration between core project members and external ecosystem
contributors, according to Ryan Rempel:

“And it actually ended up being a context in which it’s been
possible for both people closer to Elm’s core and people a little further
from it to work together and interact.”

Similarly, both Dlang-community and Vox Pupuli have members who are
also core project members, as highlighted on the Vox Pupuli webpage:

“all community members are welcome and this includes many
Puppet Labs employees”

Becoming a brand. Despite their unofficial status, another perceived benefit
of CPMOs is that they become a sort of “brand”, reassuring users about the
quality of the hosted packages. As highlighted by Ryan Rempel:

“I think the fact that something’s in the Elm Community repository
does probably provide some reassurance to people that there’s multiple
eyes on it and multiple people that can fix things. And if they’ve got a
good opinion of some Elm Community repo’s packages, then that will
sort of flow over into others.”

We also found evidence of this idea when the package setup-dlang was
proposed for adoption in Dlang-community:

“With adoption, it could be then referenced using
dlang-community/setup-dlang which would look more professional”

18 Théo Zimmermann, Jean-Rémy Falleri

5 Creation process

CPMOs often start with kickoff discussions on public forums, and we have
analyzed these (and asked specific questions to CPMO initiators when inter-
viewing them) to understand the creation process.

5.1 Launching a CPMO.

Acting on a proposal. CPMO initiators are not necessarily the ecosystem mem-
bers that come up with the idea of gathering packages to address maintenance
issues, but they are the ones who act on this idea and create the organization
(usually a GitHub organization). For instance Sebastian Wilzbach introduces
the “first steps” discussion of Dlang-community like this:

“From the pain of the Dlang Tour maintainers the following
discussion started: [...]
So I went ahead and created such an organization”

Similarly, the Meteor Community initiator triggers a kickoff discussion
with:

“As per one of [GitHub user]’s suggestions here [link] it might
make sense to have a community organization with package
repositories that can easily be picked up by other maintainers if
somebody leaves Meteor.”

And Ryan Rempel, the initiator of Elm Community, recalled:

“I was looking for practical action at that point, which is why I
jumped on [mailing list participant]’s suggestion so fast. I saw the
suggestion and I thought to myself, this is something that we shouldn’t
talk about. I should just do something and then see what happens, see
where it goes.”

Announcing the CPMO, gathering enough people to get momentum. After cre-
ating an organization, the initiators need to announce it using ecosystem fo-
rums:

“From: [...], Subject: [chef] Announcing [Sous Chefs]. Anyone
who’s been in the chef community for a while has felt the pain of
abandoned cookbooks. [...] So I’ve created a github organization [...]”

The goal is to start recruiting organization members and get momentum.
As recalled by Sebastian Wilzbach:

“what’s quite cool is that [...] we made a bit of fuss in the
newsgroups and a couple of other people who were logging in the
repositories and doing like bug fixes also got admin permissions or at
least the maintenance permissions to merge pull requests. Then there
was a rather fast feedback cycle [...]”

A grounded theory of Community Package Maintenance Organizations 19

To gather enough people, there are two complementary strategies: inviting
people already involved in package maintenance, and inviting anyone else who
is interested in joining. From the Sous Chefs announcement:

“I’ve already invited a number of people, and would love to invite
/you/.”

And from the initial post of the Meteor Community kickoff discussion:

“I just added, on top of my head, a couple of people that have
recently been involved with forking/maintaining packages [...]. But of
course everybody is welcome to join.”

Sometimes, CPMO initiators prefer to be careful who they invite, despite
the need to gather enough people to get momentum. As explained by Ryan
Rempel:

“I’m pretty sure that the original people that I invited were about
five or six. [....] I added enough people so that it would have some
momentum. But I wanted to pick people originally that I had some
confidence in.”

In the end, this also becomes the strategy of Meteor Community after an
initial phase of inviting new members, as clarified by an admin in the kickoff
discussion:

“So far I have invited to the organization people who have
important contributions or own packages and expressed desire to
transfer them over. Second people that I know from community AFK
that I can vouch for. I do not plan to invite any more people until we
establish things a bit more.”

Immediately adding other admins. Beyond getting momentum, another reason
to immediately invite members (more precisely owners / admins of the CPMO)
is to ensure that the objective of the CPMO to anticipate turnover in the
ecosystem will be achieved, as was explained by a participant to the Meteor
Community kickoff discussion:

“Owners of [the] whole organization (who have permissions over
all repositories) should be strictly controlled, of course. But having
those owners can then help if [the] owner of a repo disappears. Then
organization owners can help navigating transition to a new
maintainer.”

But also by Ryan Rempel, during his interview:

“One of the things that I did was immediately kind of invite several
other people who I kind of knew of through the mailing list, et cetera,
who I thought would be sort of good stewards of the thing, to be owners
of the GitHub organization [...] so that if I kind of lost interest or
whatever the thing wouldn’t stall, there was multiple people in charge,
so to speak.”

20 Théo Zimmermann, Jean-Rémy Falleri

5.2 Bootstrapping governance

Self-organizing community, starting with liberal rules. We have observed that
CPMOs often start with liberal rules and with the hope that the community
will be self-organizing and gradually come up with rules when they are needed.
From the Sous Chefs creation announcement:

“For now, this community is low ceremony. If there’s anything
you’d like [Sous Chefs] to do, please let me know!”

And from the initial post in the Meteor Community kickoff discussion:

“I hope this can be a somewhat self-organizing thing where
everybody has admin rights? [...] This post can act to offload this part
of the discussion [...] and get ideas around the best way to organize
this.”

Refining rules and processes. However, in many cases, CPMO participants will
soon start expressing needs for documented processes, either in the kickoff
discussion as was the case for Meteor Community:

“
– What is the process that somebody becomes an admin of whole

organization.
– What is the process that somebody becomes an admin/maintainer

of a repository (probably after the repository is left without an
active one).

– What is the process that somebody creates a new repository:
– A completely new one. [...]
– Moves an existing project under this organization.

”

Or quickly after (from Ryan Rempel’s interview):

“There was a little bit of discussion around that time, but I don’t
remember any of that being very controversial. It was all fairly
practical, and people basically converged on the current process.”

But it can also happen that most processes remain informal as the need
for rules isn’t necessarily perceived by participants (from Sebastian Wilzbach’s
interview):

“We actually never really defined the rules of Dlang-community.
[...] Whenever you have these incidents, this is when you start making
rules, right? [...] There was never any incident. So that’s why they are
essentially like unwritten rules only and no actual rules.”

Despite this claim, the Dlang-community documentation actually contains
a few rules, as we will discuss in Section 6.2.

Ultimately, formal rules can be replaced (or complemented by) a strong
reliance on trust, which is built by requiring a “proven track record” from
participants before they can become members. We will come back to this in
Section 6.1.

A grounded theory of Community Package Maintenance Organizations 21

5.3 Bootstrapping package adoption

Since the main objective of CPMOs is to gather packages to ensure their main-
tenance, one of the first step, beyond adding members, is to adopt packages.
Several strategies can be followed then.

Starting with liberal package inclusion. A first strategy is to adopt many pack-
ages and encourage members to add their own. This was proposed by a par-
ticipant in the Meteor Community kickoff discussion, and this was also the
strategy adopted by the initiator of Sous Chefs:

“So I’ve created a github organization to own my repos.”

Starting with most important packages, adopting a growing number of pack-
ages. On the other hand, as we’ve already mentioned when discussing the ob-
jectives, most CPMOs decide to be picky and focus only on the most important
ecosystem packages, possibly only on packages already in need of maintenance.
CPMOs can start by adopting a specific package with maintenance issues. Ex-
ample from Meteor Community:

“We moved in link-accounts. I suggest we use that repo as a
testing ground to establish a process.”

This is also how Dlang-community and Elm Community started (each of
them being created with a specific important package in mind), but they even-
tually adopted a growing number of packages, as Ryan Rempel told us:

“It grew faster than I expected, to be honest. People had a whole
variety of reasons for wanting to even move their own packages into
the organization, and it grew up fairly quickly.”

5.4 Benefiting from past experience

Finally, during the CPMO creation process, it can be useful to reflect on and
benefit from past experience.

Learning from examples. The initiators that we have interviewed were not
inspired by a model or previous CPMO example. Sebastian Wilzbach:

“I’m pretty sure I have seen other communities or organizations
on GitHub, like managing very popular libraries. I’m not sure whether
there was like one in particular that inspired me or anything like that.”

Ryan Rempel:

“I can’t quite pinpoint any particular community that I had in
mind at the time.”

22 Théo Zimmermann, Jean-Rémy Falleri

But it can happen that a participant points to a CPMO example during
the kickoff discussion. For instance, in the case of Meteor Community:

“I like this idea. It was done for Trac Hacks and I think it saved
many useful plugins there. I have made few in the past but then
stopped using Trac, but because we moved all under same GitHub
organization, others were able to step up and help.”

We are also aware that Coq-community, the CPMO initiated by the first
author of this article, was mentioned by a participant during the kickoff dis-
cussion of OCaml-community, and subsequently strongly inspired the latter.

Besides, CPMO initiators or participants often try to learn lessons from
previous failed attempts at similar organizations. From the Meteor Community
kickoff discussion:

“This isn’t the first attempt at doing this and I think the previous
attempts have suffered from a lack of documented process.”

Similarly, Dlang-community was built in contrast to the std-experimental
organization from the D ecosystem, according to Sebastian Wilzbach:

“that one died entirely because there was some people putting their
code into it but that code was experimental and wasn’t used yet. So
there were also no maintainers around.”

Anticipating risks and pitfalls. One of the reasons for referring to past failed
attempts is to anticipate common risks and pitfalls. The most striking and
common risk for new CPMOs is failing to meet their main objectives, either by
being overambitious or by not gathering enough active maintainers to handle
all the adopted packages. The two sides of this risk were highlighted in the
Meteor Community kickoff discussion:

“Some great ideas, although I’d personally start of a little less
ambitious. Committing to all those things might easily start to feel like
a drag.”

“I have the feeling that if anyone can add or delete repos [...] things
could get unwieldy very quickly. Eventually we could have a big mess
of repos that are still just abandoned and unmaintained as before.”

This risk was confirmed as real by Sebastian Wilzbach:

“There’s only like ten repos of these which have been touched in
the last year so it’s also like some repos were moved in there but then
were still left to die I guess.”

Another difficulty can be positioning the CPMO with respect to the core
project. Despite their claimed independence, CPMOs can gain an important
role in the ecosystem, and it can make relationships with the core project
difficult. For instance, Ryan Rempel recalled:

A grounded theory of Community Package Maintenance Organizations 23

“[One core Elm maintainer was] a little uncomfortable recognizing
the Elm Community organization [...] would become a little bit of a de
facto authority in the community”

Even when this issue does not appear, a related positioning difficulty may
appear if the core project starts considering adopting important packages itself:

“The other thing that has happened more recently is that the core
team has created its Elm-explorations. [...] And in a way, it’s yet
another sort of stage between the core Elm and the Elm Community
stuff. So Elm-explorations is not quite in core, but it’s more core than
Elm Community.”

Similarly, it seems like the D core project would now be ready to adopt
packages itself if the need appeared, according to Sebastian Wilzbach:

“initially they were actually very against the idea of making [an
important but undermaintained package] official but maybe if the same
thing would happen now they might even move it under the normal
Dlang organization.”

Joining forces with preexisting initiative. Beyond past examples that allow
anticipating risks, another way of benefiting from past experience is by joining
forces with preexisting initiatives. According to CPMO kickoff discussions, it
frequently happens that several people in the ecosystem had a similar idea and
thus that the CPMO that eventually gets momentum joins forces with one or
several previous initiatives (that the initiator was not aware of). This was the
case in the Sous Chefs creation announcement thread:

“– Nice initiative! Same problem happen to us a long time ago and
we created similar organization. We are currently working on
formalize rules and guideline for maintainers. Maybe we can work
together? [...]
– Absolutely! I’ve added your members [...].”

And in the Meteor Community kickoff discussion:

“I’m the owner of both the communitypackages org for Meteor and
[...] meteor-community-packages on GitHub.
Feel free to get in touch so we can move forward with moving
important packages under community maintenance.
[GitHub user] and I have some effort into this already.”

6 Operations

In this section, we describe how CPMOs operate in practice. We base our
results on documented processes, but also on public process discussions and
on observing the actual processes in practice in issues and pull requests.

24 Théo Zimmermann, Jean-Rémy Falleri

6.1 Membership and governance

Even when it is very lightweight and informal, all CPMOs need to have some
form of governance. This includes a process for admitting new members, new
admins, and to take decisions as a group.

Membership. CPMOs are generally very welcoming and encourage participa-
tion. As we can read in documentation of Dlang-community or Vox Pupuli for
instance:

“How do I become a member of the DLang community? First of
all, by reading this you most likely are already.”

“Users should be encouraged to participate in the life of the project
and the community as much as possible.”

However, most of them also document a trust-building process to get per-
missions in the CPMO. Continuing with quotes from the same two documents:

“You are already a well-known member of the D community, then
simply ping us for merge rights. Otherwise, start contributing to one
of the projects and earn your trust.”

“Collaborators are contributors who have shown wide dedication to
the Vox Pupuli project in general or deep dedication to one project in
particular, and the ability to work well with contributors and other
users.”

We have found that the Vox Pupuli document quoted above was adapted
to the specifics of CPMOs from a template for open source project governance
provided by OSS Watch [10]. Indeed, requiring some long-standing involvement
before gaining privileges is standard in open source communities, but contrary
to usual open source projects, involvement in a CPMO has several dimensions:
it can be wide dedication to the CPMO, by helping maintain all packages or
common tools, or it can be deep dedication to one or a selection of packages
hosted by the CPMO.

Besides the trust-building process, a widely shared practice seems to be
to give member privileges to people who “donate” a package to the CPMO.
Continuing with the Vox Pupuli document:

“It is also common to give collaborator status to an individual who
donates code to the project by migrating a repository to the github
namespace”

But most CPMOs nuance this possibility by not accepting all package
donations. For instance, Sebastian Wilzbach told us:

“If someone comes with a project that no one has heard about,
then it’s unlikely that it gets accepted, but also that they get
membership, so really they need to be known to be trusted.”

A grounded theory of Community Package Maintenance Organizations 25

Elm Community differs from many other CPMOs because it documents a
process to become a member which does not include trust-building:

“Become a maintainer: Open a PR against maintainers.md adding
your email and Github username.”

Sous Chefs is similar here:

“Becoming a Member: Join us on the Chef community slack, and
say hi! Go to: modules/org_membership/main.tf. Click the pencil to
“Edit this file” [...]”

And we have indeed observed new members being added to Elm Com-
munity simply because they volunteered to become maintainers of a package,
either during its adoption, or when the previous maintainer had stepped down.
We will come back to this in Sections 6.2 and 6.3.

One thing to note though was that the initial version of the Elm Commu-
nity manifesto did contain a reference to a trust-building process:

“We plan to be fairly liberal in granting ‘write’ access. However, if
we’re not familiar with your work from Github or the mailing list, we
might ask that you work from issues and pull requests first for a
while.”

But this reference was removed when the role of principal maintainer (see
Section 6.3) was introduced.

Governance model. Most CPMOs remain very informal and keeping this in-
formal aspect can even be an objective of CPMO initiators or participants, as
explained by Ryan Rempel:

“If they had wanted to move to a very formal sort of governance
model, I would have resisted that to a degree, because in my mind, the
whole point was for this to be relatively free and unofficial.”

This informality can also be explained by the CPMO initiator having no
intention of being a community leader, as illustrated here in the initial post of
the Meteor Community kickoff discussion:

“I do not have the ambition nor the time to be a community leader
here, and from what I understood nobody else seems to have time to
volunteer”

Or as explained by Sebastian Wilzbach:

“There was no real leadership. It was just like the people I trusted,
they got admin permissions. Maybe they gave admin permissions to
some other people they trusted or invited some people as owners or
normal members. Maybe they created groups for specific projects and
so on. But there was no leadership from my side.”

26 Théo Zimmermann, Jean-Rémy Falleri

Some of the oldest CPMOs in our study, Sous Chefs and Vox Pupuli, differ
here, as they have established a formal governance with an elected board of
leaders (although, in the case of Vox Pupuli, elections do not seem to have
taken place as regularly as documented). As already explained above, the Vox
Pupuli governance document was adapted from a template for open source
projects. The following extract highlights the role of the board of leaders:

“The PMC [Project Management Committee] has to make
decisions when community consensus cannot be reached. The PMC
has final say over who can become a committer [...]. Membership of
the PMC is by election. Condorcet voting is held once a year.”

We will come back to decision processes for specific types of decisions
(related to, e.g., package adoption or maintenance) in the following sections.

Communication channels, code of conduct. One of the most pervasive choice of
CPMOs that we have observed is to provide a central open CPMO discussion
channel, most often in the form of the issue tracker of a meta repository (which
can be called various names, such as meta, manifesto, discussions, community,
etc.), and which is also often used to host general documentation on the CPMO
processes. This is where we generally encounter CPMO policy discussions, but
also, for some CPMOs, adoption and maintainer change discussions.

For instance, while the initial Sous Chefs announcement informed that the
core project forums would be used to discuss anything about the CPMO:

“At the moment, communications should occur on this list (chef@)
or irc (#chef) or the issue pages for the respective repos. Feel free to
contact me directly.”

Only three days after, the Sous Chefs initiator created a meta repository
in the GitHub organization with description:

“Discussion about [Sous Chefs]”

And he opened a first issue to hold a discussion on joining forces with a
preexisting similar initiative.

Similarly, according to their documentation, Dlang-community, Elm Com-
munity, and Flutter Community use the issue tracker of a meta GitHub repos-
itory, Vox Pupuli uses a dedicated mailing list and IRC channel (but also its
“plumbing” repository, according to the previously mentioned talk by Mina
Galić, one of the two Vox Pupuli initiators), Meteor Community uses a ded-
icated Slack workspace (but held its kickoff discussion and receives adoption
requests in its “organization” repository), and Sous Chefs uses a dedicated
channel in the core project Slack (in addition to the issue tracker of its meta
repository).

It is also relatively common for CPMOs to define a code of conduct. In the
case of Meteor Community, it was introduced very early. The need for a code
of conduct was expressed during the kickoff discussion:

A grounded theory of Community Package Maintenance Organizations 27

“CoC: Every organization should have one. we could adopt [...] the
current CoC from Meteor.”

And it was added only four days later, even before the documentation of
the CPMO processes.

The two CPMOs with a board of leaders give responsibility to the board
to enforce the code of conduct. From the Vox Pupuli governance document:

“One of the most important duties [of the PMC] is to uphold the
community code of conduct and ensure its values.”

Its importance was explained by Mina Galić in her talk:

“Every contribution, no matter how trivial or elaborate, or even
wrong is immensely valuable. Treating it, and the person it comes
from with the respect and humility strengthens our ties to the
community, and can broaden it, too.”

6.2 Package adoption

To avoid maintenance issues with important packages in the ecosystem, CP-
MOs perform package adoptions, by transferring or forking packages inside a
CPMO-owned repository. In this section, we explore the package adoption pro-
cess, based on CPMO documentation, discussions of new adoption proposals
(to understand how the process works in practice), and interviews.

Adoption context: reasons and initiators. Various stakeholders can trigger an
adoption process by proposing a new package. Given the primary focus of
most CPMOs on packages with maintenance issues, it is not surprising that
a common case is the one of an interested user or contributor noticing that
the package maintenance is lagging and proposing adoption. As explained by
Sebastian Wilzbach:

“what typically happens with these projects is that you try to make
a couple of pull requests to a project like one or two or three, and then
you realize, hey, it takes like a month or so to do that and then you
start the discussion of hey you should move that into the
Dlang-community because it is an important project”

In the adoption discussions that we have studied, we have observed many
cases of an interested user or contributor proposing adoption. Besides perceived
package maintenance lag or abandonment, there are cases where the proposed
package is officially abandoned:

“https://github.com/facebookarchive/dfuse is archived and not
accepting contributions, however there is still interest in using the
project.”

28 Théo Zimmermann, Jean-Rémy Falleri

Possibly more surprising for CPMOs focusing primarily on packages with
maintenance issues is the case of packages being proposed by their original
author. As recalled by Ryan Rempel:

“There was a little bit of discussion early on about why were we
accepting some packages. Because I had originally articulated it in
terms of packages that had been abandoned, but then some package
authors were wanting to move stuff in, and clearly they were still
around. So then what was the purpose of that?”

There are many possible reasons. Ryan Rempel goes on and provides two of
them (which we have also observed in actual package proposals), anticipating
package maintenance issues and gathering important packages:

“in one case, it was an author who was sort of preparing to
abandon his packages, if I remember correctly. In other cases, what I
remember is that they were sort of packages of general significance to
the Elm community”

Another quite common reason is the original author having identified on
their own that they already have maintenance issues, most commonly because
they are lacking time for maintenance tasks or because they have already left
the ecosystem / are not using the package anymore:

“I definitely have a few Meteor packages that I don’t have much
time for anymore. Happy to transfer them.”

“I do have a lot of packages for Meteor, the biggest have been [...].
I don’t have time to maintain nor am I using Meteor [...]. As [other
discussion participant] I’m low on time - and would happily transfer
packages to this org.”

But also sometimes for more technical reasons:

“Does anyone in [Sous Chefs] have the ability to help me with [...]?
Being able to maintain those well requires access to specialized storage
hardware to test configuration against. Since storage hardware is
something I no longer use day-to-day [...], I’ve found it extremely
difficult to maintain these two just on my own.”

In these last three quotes, the original authors were triggered by the CPMO
kickoff discussion to identify and propose their packages with maintenance
issues. In another case of an original author proposing their own package, they
were directed to the CPMO by an interested user:

“I’m the author of [...], which is apparently useful to some users,
but which I have trouble finding time to maintain and fix issues.
[GitHub user] pointed me to dlang-community, and I’m willing to
transfer ownership to whoever is ok to continue maintaining it.”

A grounded theory of Community Package Maintenance Organizations 29

A third type of initiator can be the maintainer of an active fork of an
inactive package, as we can see from these quotes from Meteor Community
and Dlang-community:

“I’m currently “maintaining” a forked meteor-aggregate - i’d be
happy to pass this to this org if anyone wants it”

“I have a fork at [...] with some fixes, and someone sent me a pull
request, so we could use that as the base.”

“I would be willing to take over and fix the package. I have forked
it already months ago. The most important thing would be to give me
access on code.dlang.org, so users would find it.”

In each of these cases, forkers are maintaining a package for their own
purposes, but they propose to move it to the CPMO to make it officially
a community fork. Depending on the ecosystem, it may even be possible to
modify the published package in the package registry to point to the fork, by
requesting the intervention of package registry admins (this has happened in
the context of Dlang-community).

Finally, we should note that while some CPMOs request a reason for
proposing a package adoption, as we can see from the Flutter Community
package proposal template:

“Reason for transfer: [REASON WHY YOU WANT TO
TRANSFER THE PACKAGE TO FLUTTER COMMUNITY]”

Or from the Meteor Community package proposal template:

“Reasoning: Why should we take on this project?”

Some CPMOs seem more likely to accept any popular package donation.
According to Mina Galić (Vox Pupuli) in her talk:

“If you have a popular module or gem, we can adopt it”

Adoption guidelines. Most CPMOs provide package adoption guidelines, but
they are often not very specific about the process and mostly focus on technical
aspects that should not be forgotten. As explained by Ryan Rempel:

“in the manifesto repository, there’s a migration checklist, which
kind of goes through what I guess emerged as the best practice”

Several CPMOs do not even document how to trigger the adoption process.
For those that do, the first step is generally to create an issue in the CPMO
meta repository:

“Q: What should I do when I want to move a package to
dlang-community? Please open an issue and let’s have a discussion -
we don’t bite!”

30 Théo Zimmermann, Jean-Rémy Falleri

On the opposite side of the spectrum, there are CPMOs which are will-
ing to accept any package donation, therefore, the only non-technical process
documentation that they have is in case the adoption is not proposed by the
original author:

“Transferring to Sous Chefs
Got a cookbook you’d like help with? We’d love to help! [...] We need
to work with the GitHub repo owner [...]. If you aren’t this person, let
us know and we’ll try to contact them.”

Adoption criteria, decision process. The many CPMOs that do not accept
every package donation must define adoption criteria, but again these are
not always documented, so we also observe which criteria are used in actual
adoption discussions.

A pervasive criterion being mentioned, in both adoption documentation
and discussions, is package popularity, although this is rarely defined. Flutter
Community documents the use of qualitative and quantitative metrics for
package quality and popularity in its transfer guide:

“Factors such as code quality, documentation, comments and
especially pub.dev scores all determine whether or not your package is
accepted”

For other CPMOs, popularity may be a more lax criterion and having users
interested in an unmaintained package may be sufficient. As explained to us
by Sebastian Wilzbach:

“There were never written down but it was basically is it a popular
or crucial library of the ecosystem. So it was not you need to have X
GitHub stars because that’s silly. But it was really just is the library
used or not by the community.”

However, having a popular package is not enough. A more important, also
pervasive, and easier to define criterion is whether someone is available to
maintain it. As explained (again) by Sebastian Wilzbach in a D forum thread
that led to an adoption proposal:

“the capacities that dlang-community can maintain are limited
[...]. We generally only move a package if there’s a volunteer in dlang
community that actually is interested in maintaining the library
(though it’s not hard to become such a volunteer).”

This is also reflected in the Sous Chefs forking documentation:

“Typically, a hard fork decision will be made only after: sous-chefs
receives a request to fork from someone willing to be primary
maintainer, [...]”

And in Flutter Community’s transfer template:

A grounded theory of Community Package Maintenance Organizations 31

“Needs new maintainer after transfer: [NO/YES]
New maintainer (if applicable): [EMPTY / NOT FOUND /
MAINTAINER NAME, EMAIL ADDRESS AND GITHUB
USERNAME]”

Thus, once it is determined that a package is interesting and worth main-
taining, many adoption discussions focus on determining whether a maintainer
is available. A strategy may be for instance to look for users who have forked
the project:

“In a personal message, [GitHub user] has agreed to serve as
maintainer of the ratio package if it is moved to elm-community. He
already has a fork in which he has worked on the package and made
improvements, and ported to Elm 0.18”

Adoption discussions may be concluded by a CPMO admin formally ap-
proving the adoption, sometimes leaving a delay to ensure that there is no
opposition to this adoption, and the adoption is finalized by proceeding to a
repository transfer (most common case) or a fork.

There are also cases of adoptions being rejected by CPMO admins. This
may be because the popularity / usefulness of the package was deemed to low,
because no one is available to maintain the package, or because of a quality or
licensing issue making maintenance or reuse difficult. Usually, these rejections
are not definitive, and adoption proposals may be discussed again after the
package has improved or the situation has changed. As documented in the
Flutter Community transfer guide:

“Don’t worry, if it gets rejected, you’ll get feedback and will know
what changes you could make to get it re-reviewed.”

Finally, there are cases of adoption discussions stalling when interest was
low and no one has taken care of properly evaluating the proposal and answer-
ing. As summarized by Sebastian Wilzbach:

“when someone says hey, I’m working on this tool, it’s great [...],
please maintain it and no one was actually using it, right? So no one
actually saw any benefit. I think the issue was from three years ago
and is still open. [...] It really depends on what people like, I guess.”

Relations with the original author. CPMOs are often quite reluctant to create
hard forks of unmaintained packages when the original author is not completely
unresponsive. For instance, the Vox Pupuli guidelines explain:

“We do ask that you show that reasonable efforts have been made
to engage the owner and they are unresponsive. If the owner has
responded and is not interested in migrating their module to VP, it
will be evaluated on a case by case basis.”

32 Théo Zimmermann, Jean-Rémy Falleri

Even when the original author was unresponsive, we have observed adop-
tions being significantly delayed because the CPMO participants were taking
every possible step to contact the original author.

When original authors answer and approve the transfer to the CPMO,
they are generally given CPMO membership so that they can continue to
participate in the maintenance, if they have time to do so. Dlang-community
documents:

“projects are still driven by their original authors if they have the
time”

This practice is not as automatic in CPMOs that assign a single maintainer
to each project (see next section). In this case, either the original author
is willing to keep maintaining the package in the CPMO, or a new official
maintainer is found.

6.3 Package maintenance

Maintenance objectives, setting priorities. The maintenance objectives of CP-
MOs with respect to the adopted packages are usually not clearly defined. A
theoretical sensitizing concept here is the staged model of the software lifecycle
by Rajlich and Bennett [20]. Do CPMOs generally plan to do servicing only
or do they also accept projects that are actively evolving or even in their ini-
tial development phase? The Meteor Community package proposal template
hints that packages may be accepted at several stages of their lifecycle (though
maybe not in their initial development phase):

“Current status of the project: Active / Maintained / Abandoned”

The Elm Community manifesto attempts to address this question, but it
is also self-contradicting as shown by these two excerpts:

“For the most part, we don’t expect to do innovative work on
packages here. That is, to the extent that innovative new features can
be added to a package, that should mostly be done in people’s
individual accounts. What we’ll do here is mostly maintenance.”

“Lead the direction of a repository. As a champion, you will need
to make calls on API design. Don’t let packages come to
elm-community to die.”

This contradiction can be explained by the latter paragraph having been
added later on by someone else than the CPMO initiator, who was the author
of the first version of this document.

Overall, it would seem that while active feature development is not rejected
by CPMOs, it is also not the top priority, which is instead to keep packages
useful for their current users, by fixing bugs and adapting them to an evolving
context. New features, when they are added, are often proposed and developed
by the users that need them. As explained by Sebastian Wilzbach:

A grounded theory of Community Package Maintenance Organizations 33

“I don’t think there’s any active feature development, it’s more like
just bug fixes. [...] I think if someone really needed like a feature in
these libraries, they were added. Every now and then, you see one
person that wants to build that game or tool or whatever and needs
this feature for it. For example, in the IDE [...], where they get really
annoyed by the lack of a feature [...] and then they add it. But that
happens very rarely. So usually it’s just people running into an issue
like a bug or something and then fixing that particular bug in which
they ran. But unfortunately that’s how open source development
works.”

Workload sharing, decision processes, principal maintainers. Maintenance ob-
jectives may also vary widely across packages depending on who actually main-
tains them. At the one end of the spectrum, for some CPMOs, the objective
is clearly to enable anyone at any time to improve any package and propose a
new release. As explained in her talk by Mina Galić from Vox Pupuli:

“We tried really hard to make our release process as easy as
possible, so that anyone who wants, or needs a release of the current
master, can request that simply by creating a pull-request. [...] So if
you need a fresh release of [a given package], you can do that. All you
have to do is create a pull-request. And hunt-down someone who’ll
merge it, and run rake travis release.”

She also highlights how the decision process for changes to packages works:

“Every pull request is reviewed and merged by someone who is not
the author.”

This is consistent with the Vox Pupuli governance document (which em-
phasizes reliance on lazy consensus):

“A collaborator will use lazy consensus to decide on whether to
merge a pull request from a contributor. [...] For lazy consensus to be
effective, it is necessary to allow at least 72 hours before assuming
that there are no objections to the proposal. [...] We do require one
affirmative vote as part of the Lazy consensus model.”

Next, some CPMOs decide to assign a team of maintainers to each package.
This is the case of Meteor Community and of Sous Chefs according to their
documentation:

“Each repository should have at least one corresponding GitHub
team, containing all maintainers of the repository. It is suggested that
team’s name match repository’s name, unless team is used for
multiple repositories.”

“Once the cookbook has been transferred, a Sous-Chefs board
member can setup the proper permissions for the repo

34 Théo Zimmermann, Jean-Rémy Falleri

• Add a new GitHub team with the same name as the cookbook
• Add maintainers to that group
• Add that team to the repo with Admin privileges”

Finally, at the other end of the spectrum, some CPMOs, that are more fo-
cused on ensuring that packages are maintained and can be picked up by a new
maintainer when they are not, decide to assign a single “principal maintainer”
to each package. For instance, in Elm Community, this is how this policy was
justified when it was introduced:

“Right now, there’s a lot of PRs and issues with no-one merging or
doing anything about it. The problem is ownership. Each repo is not
“owned” by a single person, so there is not a single person to act as
the representive for that repo. That needs to change. So, instead, this
should happen: If a repo is proposed to be moved to elm-community,
we must assign a “champion” to that repo. The champion will have
full support to merge PRs as they seem fit. [...] This is based loosely
off how package maintenance works in Fedora/RH/Debian.”

In these CPMOs, principal maintainers are documented, in a central doc-
ument (e.g., in Elm Community) or in a specific file in the packages. E.g., in
Flutter Community:

“Now that your package has been accepted to Flutter Community,
there are a few changes you need to make to your pubspec.yaml file.
Add the maintainer field to your pubspec.yaml. Only one maintainer
is currently supported.”

These CPMOs also provide a process for replacing a departing maintainer.
Flutter Community has an issue template to look for a new maintainer, and
the manifesto of Elm Community documents:

“If there’s something that really needs to get merged, and the
maintainer has taken more than 7 days to respond, we can merge
things without their involvement.
Unresponsive champions will be emailed. Lack of response will mean a
new maintainer will be assigned to that repo.”

Looking through the git history of the document listing the Elm Commu-
nity maintainers, we could find cases of the process being actually followed.
Usually, new maintainers volunteer to take over the packages of a departing
maintainer after a call on a core project / ecosystem channel. E.g., a new-
comer opened her first pull request in Elm Community, adding herself to the
maintainer table with the following explanation:

“The original maintainer handed the repo to [CPMO member] who
hasn’t been active, and apparently neither use it for work anymore so
[other CPMO member] offered on Slack to identify a new maintainer.”

A grounded theory of Community Package Maintenance Organizations 35

Shared tooling, automation. Beyond shared and documented practices (that
we have highlighted as one of the objectives of CPMOs), shared tooling may
also be created to simplify package maintenance at scale. For instance, Sebas-
tian Wilzbach told us:

“we were able to set up some tooling to make our life a bit easier”

And indeed, the README of Dlang-community highlights this aspect:

“thanks to being a larger organization, the overhead of a project
can be [...] more easily automated (e.g. documentation builds, binary
releases etc.).”

This was also highlighted by Mina Galić from Vox Pupuli in her talk:

“So how are we doing this? With people; obviously. With robots,
too. And with tools, that enforce standards and conventions.”

And in Sous Chefs’s documentation:

“Managing Cookbooks at Scale [...]
we have created 3 different bot applications that are designed to each
tackle one problem we had with managing our multitude of cookbooks.
[...] These bots are already critical to our management infrastructure”

6.4 Package creation and termination

Beyond package adoption and maintenance, the package lifecycle may include
steps such as package creation and package termination. CPMOs may provide
a policy for these steps as well.

Package creation. Creating new packages is never the primary objective of a
CPMO, but there are cases where package creation happens directly in the
CPMO.

To best achieve their objective of anticipating turnover and unresponsive
maintainers, CPMO may consider encouraging CPMO members to create new
packages directly in the CPMO, as a sort of default location. This was proposed
during the Meteor Community kickoff discussion by a participant:

“So one thing could also be to encourage people to start projects in
this organization. I know that for many projects I created in the past I
do not really care where I would start them, so if there is simple
default people could have, it could make it easier for keeping
maintenance later on.”

But other participants disagreed, as we have already explained in Section
5.4, and in the end the idea was not retained. This idea goes against the rules
of Dlang-community as well:

36 Théo Zimmermann, Jean-Rémy Falleri

“Please don’t create new packages without consulting other
dlang-community members.”

There are, however, CPMOs that are more lax and allow anyone to create
a new package. For instance, Trac Hacks documents:

“Plugins can be created, adopted, and may eventually be
deprecated. The aim of this site is to create an ecosystem in which
plugins can live long past the participation of the original author. This
is a community site which welcomes everyone to participate in
building, maintaining and providing support for plugins.”

And this documentation contains a link to a form for package creation.
In CPMOs which require discussion before creating or adopting a package,

we have not observed many cases of package creation. When it has happened,
the most common reason was to create a tooling package that would be useful
for managing the CPMO itself, and possibly for helping maintainers outside
the CPMO as well. Another reason that we have observed (in the context of
Elm Community) was to consolidate several related libraries in the ecosystem
into a single one, and the CPMO was a good place for this kind of collaborative
work.

Package termination and departure. For an organization maintaining many
packages, it is natural to end up having to take decisions about terminating
the maintenance of a package. CPMOs may provide a documented policy about
this. For instance, both Sous Chefs and Vox Pupuli do.

There are several reasons for stopping to maintain a package in a CPMO.
A common reason is because the package is not useful anymore: it is based on
an obsolete technology, does not have users anymore, has been superseded by
another package, etc. For instance, Sous Chefs’s documentation lists:

“If a cookbook is for software that’s no longer feasible to keep
running”

“If a cookbook seems entirely unused”

And Vox Pupuli provides a similar example:

“if the module/project no longer serves a valid purpose. For
example, a module that interacted with a discontinued 3rd party
service.”

Finally, Sous Chefs also documents the possibility for a CPMO to stop
maintaining a package when maintenance has moved elsewhere:

“When the maintainer wants to leave”

Besides all these reasons, a reason for packages to end up unmaintained is
simply when no one is interested in maintaining them anymore. CPMOs may
not necessarily have a process to detect these situations or act on them. As
explained by Sebastian Wilzbach from Dlang-community:

A grounded theory of Community Package Maintenance Organizations 37

“if a repository is in there and just doesn’t get any pull request,
doesn’t get any activity there’s also no cost to it. But we could argue
that it looks bad or something but no one has ever made this argument
yet. And also no one actually went through the list and said “hey this
repo hasn’t been accessed in the last years, so let’s probably archive
it?””

On the other hand, CPMOs (like Elm Community) which assign maintain-
ers to each package may know when a maintainer has left and no replacement
has been found and may document the package as unmaintained until a new
maintainer is found.

CPMOs that maintain lists of hosted packages and their maintainers may
use these lists to mark packages as unmaintained or deprecated. This is the
case of Elm Community. Among the reasons to deprecate a package, we have
observed the case of packages departing to a new sponsor:

“0.19 fork hosted by CurrySoftware ([link])”

The case of packages moving to the core project:

“mark elm-test as unmaintained [...] Also adds a note explaining
the move to elm-explorations”

And the case of packages not being useful anymore:

“Per [commit removing the dependency from other package], I
think this project is definitively dead.”

Sebastian Wilzbach has also observed cases of packages departing to the
core project:

“And the [package maintainers] actually merged this library in the
standard library.”

And of package maintainers leaving to create a new version outside the
CPMO:

“he created his own improved version of the [package], which is
moved in the newer project”

CPMOs may also provide a decision process to validate package depreca-
tion / archival. For instance, Vox Pupuli documents:

“An issue needs to be raised on the module to discuss whether it
should be archived or not. The decision will be made by lazy consensus
(as described in our governance guidelines)”

And in Elm Community, we have also observed instances of a similar pro-
cess being used:

“I’ve pushed the notice to the repository, and I’m planning to
merge this PR myself unless I hear otherwise in the next 7 days.”

38 Théo Zimmermann, Jean-Rémy Falleri

Sous Chefs also documents that opposition to a package departure is pos-
sible (but it is not recommended):

“If someone objects to the project moving and wants to continue
maintenance under the sous-chefs, we add a prominent link to fork on
the readme and continue development. People are generally not idiots,
so if they have a reason to leave us we should support them.”

Finally, let’s note that package termination may also lead to the departure
of CPMO members, as we can see in this example from Elm Community:

“Since I’ll no longer maintain any projects. I’m planning to
remove myself from the organization as well.”

7 Discussion

In this section, we reflect on the results presented above, and how they relate
to the experience of the first author in Coq-community, the CPMO that he
initiated. On this basis, we attempt to derive preliminary guidelines for CPMO
initiators and participants.

Refining and documenting processes progressively. We have seen that CPMOs
generally start with very few rules and with the hope to be self-organizing and
derive processes progressively. Our observations show that this can work, but
there is an obvious selection bias because, assuming that they exist, unsuc-
cessful CPMO attempts that never documented their objectives or processes
could not make it to our list of potential CPMOs to study.

Our recommendation for CPMO initiators and participants is to be care-
ful to always document the processes that are (actually) used and to keep
this documentation up-to-date. Indeed, CPMOs critically rely on wide par-
ticipation from ecosystem users. Keeping the organization as transparent as
possible by documenting every process (but also being explicit when processes
are followed, e.g., in pull requests and issues) will help onboard newcomers
more quickly and alleviate the risk of the CPMO losing its momentum after
important members become less active.

However, a very formal governance model does not seem to be required
for a CPMO to be successful. Thus, we recommend avoiding setting up too
formal processes until they are needed, in particular if abiding by the processes
(e.g., holding a board election every year in which all ecosystem members
can participate) is going to be difficult. Even if the CPMO does not have
an official board of leaders, it is nonetheless important to document who are
the admins and to keep the list of admins up-to-date, so that ecosystem and
CPMO members know who to refer to, in case the intervention of CPMO
admins is necessary.

A grounded theory of Community Package Maintenance Organizations 39

Setting up and documenting an adoption process. To give the best chances to
a CPMO to have an impact on its ecosystem, one of its key activities, package
adoption, needs to have a well-functioning and well-documented process.

In an ecosystem with a CPMO without a clear adoption process (Rea-
sonML Community), we have observed an important and unmaintained ecosys-
tem package being regularly flagged for CPMO adoption by users on ecosystem
forums, without any action being taken. The package was only adopted many
months later as a community fork after an active fork was finally created by
a motivated user and it was eventually transferred to the CPMO.

What we recommend is to use issues in a meta repository for package adop-
tion proposals, and to use an issue template so that proposers know which
information to provide. The template can even include a checklist of criteria
to accept the package, and a checklist of technical steps to apply after the
proposal is accepted. Many CPMOs use issues in their meta repositories for
package adoption proposals, and at least Meteor Community, Flutter Com-
munity, and Coq-community use an issue template. When an issue template
is used and the CPMO has a notion of principal maintainer, it can make sense
to also provide a template for maintainer departure / replacement. This is the
case in both Flutter Community and Coq-community.

Limiting the need for a trust-building process. If the CPMO workforce is lim-
ited, there is only so much that the CPMO can do to alleviate maintenance
issues in the ecosystem. Therefore, it is essential to ensure wide participation
to the CPMO by ecosystem members. Trust-building is of course an impor-
tant question in open source, and it can be critical to ensure the security of
undermaintained packages, as highlighted in the case of event-stream, that we
have mentioned in the introduction. However, having a well-functioning trust-
building process can also be difficult in an organization whose activities are
spread across a multitude of small packages maintained by different people.
Thus, unless specific monitoring tools are set up to ensure that deserving par-
ticipants are noticed and get privileges (which could be the objective of future
research), another option is to be more liberal with CPMO membership and
start giving privileges to participants earlier on, while ensuring security by
having checks in place.

For instance, many CPMOs set up automatic processes for some tasks (e.g.,
package releasing). Making it mandatory to go through the automation unless
you have some special privileges (e.g., unless you are a CPMO admin) can
guarantee that some tasks are done according to the rules. Other checks can
be the use of protected branches and mandatory reviews (for CPMOs where
lazy consensus is used for package maintenance).

The level of security to put in place also strongly depends on the ecosys-
tem. It depends in particular on the ecosystem language and package manager.
In ecosystems based on a strongly typed language (like Elm) that strongly re-
stricts the behavior a function can have based on its type, and where the pack-
age manager builds from sources from a tag in a version-controlled repository,
and has checks to ensure that the contents of the sources cannot be changed,

40 Théo Zimmermann, Jean-Rémy Falleri

many security risks of an ecosystem like npm are already avoided. Thus, it
can be reasonable to give maintenance privileges of an important package to
a user after a shorter trust-building process. Using mechanisms that ensure
traceability of actions, or having an onboarding process that includes face to
face meetings, can also be options to reduce the level of trust needed before
granting member privileges.

Strategies to recruit members. Besides reducing the need for a trust-building
process, CPMOs may have various strategies for recruiting members. In the
case of Coq-community, the CPMO is always open to adding more “interest-
ing” packages (it is not a requirement that packages are widely used), and
there is a very low need for a trust-building process (because Coq is a very
strongly-typed language in which users and library authors prove properties of
their programs, and the system checks that the proofs are correct, so users do
not need to trust package authors or maintainers as much). Therefore, CPMO
admins actively monitor activity on a large number of packages that are virtu-
ally unmaintained (former Coq contribs, that used to be maintained directly
by the Coq team). Every time that someone opens a pull request on such a
package, they jump in to ask the contributor whether they would be interested
in becoming the new package maintainer (within Coq-community). It has al-
ready happened several times that the contributor was actually interested and
initiated the adoption process.

Another time when recruiting new members may be necessary is when
CPMO maintainers step down and the CPMO needs to assign a new principal
maintainer. The strategy that Elm Community follows in such cases seems to
be pretty efficient. By calling for new volunteers in the ecosystem channels,
they reach a wide audience, including many Elm users that are looking for
ways to contribute to the ecosystem. With this strategy, they have success-
fully replaced departing maintainers on several occasions (sometimes, they
have even found several new volunteers, to take care of several packages that
were maintained by the departing member). Inspired by this observation, the
Coq-community admins have applied the same strategy successfully on two
occasions in the recent months.

Determining maintenance objectives and responsibilities. CPMOs should de-
cide early on how they plan to collectively maintain packages: do they assign
a principal maintainer (or maintainer team) to each package, do they use a
collaborative process based on lazy consensus where every member can ap-
prove any pull request on any package, or do they use an even more open
process where any member can push any change anywhere as long as they do
not break some ground rules?

These choices are important because they will have an impact on which
packages authors will be willing to move (will they keep some form of control
after the move?), on how workload should be distributed, and on what will be
the maintenance objectives of the CPMO.

A grounded theory of Community Package Maintenance Organizations 41

On the one hand, CPMOs that assign a principal maintainer (or maintainer
team) can declare that these maintainers have some responsibilities and that
they can be removed if they fail to meet them (and alternative maintainers
are found) or conversely that the assigned maintainers are responsible for de-
termining their own maintenance objectives and priorities. On the other hand,
CPMOs where anyone can help move forward any package will usually have
their package maintenance entirely driven by need, and may have a stronger
need for monitoring tools to detect undermaintained packages in the CPMO.

Role of automation and members with wide involvement. The experience of
the first author in the Coq-community CPMO is that packages can benefit
from being hosted together when changes are required that are pretty similar
across the ecosystem (e.g., in case of changes in the core project, or evolution
in best practices). In these cases, CPMO members with a wide involvement
can propagate the knowledge of the new way of doing throughout the CPMO,
and they can help assigned maintainers (when they exist) apply the necessary
changes.

CPMO members with a wide involvement will frequently notice that they
would be more efficient by creating tooling or automation to help update a
large number of packages. This tooling and automation will also be important
to ensure that packages adhere to best practices, which in turn is useful to re-
duce the maintenance burden. Besides Dlang-community, Sous Chefs and Vox
Pupuli, which all mention the importance or benefits of automation, there was
a similar experience in the context of Coq-community, where a project was cre-
ated to host templates for standard package files (documentation, packaging,
continuous integration configuration files, etc.) and these templates were suc-
cessfully used to apply best practices throughout the CPMO, and also helped
package maintainers in the wider Coq ecosystem.

Such automation may be even more critical when there is no principal
maintainer assigned to each package, because it helps CPMO members manage
packages at a large scale.

CPMO sustainability. In this article, we have focused our data collection and
theory building on CPMO creation and operations. A question that we have
not explored as much is the evolution and sustainability of CPMOs in the
long run. We have preliminary evidence that CPMOs can sustain beyond the
departure of their initiator. From Ryan Rempel’s interview:

“One of the things that I’ve been very pleased about is that for the
first three months [of Elm Community], I was fairly involved in
keeping up with stuff and doing things and commenting on stuff, et
cetera. But ever since then, I more or less just ignored it. I have not
been active, particularly in that organization, for, I don’t know, a
couple of years, and it’s only because it seems to be working so well.”

But also that a CPMO may lose some of its momentum after the initiator
has left. According to Sebastian Wilzbach:

42 Théo Zimmermann, Jean-Rémy Falleri

“the Dlang-community has died a bit on the maintainer front, with
like for example me leaving or me getting very passive”

It should be possible now to explore this question since several CPMOs
are becoming older: Vox Pupuli was founded in 2014, Sous Chefs and Elm
Community were founded in 2015. Trac Hacks is much older (2005), but it has
served several roles beyond the one of a CPMO: SVN hosting provider and
package registry. So, its evolution may also be largely related to these other
important objectives and may not be as relevant to initiators or participants
of CPMOs whose main infrastructure is just a GitHub organization.

8 Related work

As we have already mentioned, to the best of our knowledge, we are the first
researchers to study the CPMO model. However, there is previous research
on several related topics that could be of interest to CPMO initiators and
participants, and that we can compare to our own results.

Open source communities. Open source software is frequently developed by
communities. Since the seminal report of Raymond [22], many researchers
have studied specific open source communities (e.g., Linux and Apache [15],
GNOME [11], etc.), and part of the accumulated knowledge on standard open
source communities is also applicable to CPMOs. For instance, open source
governance models [19] are relevant for CPMOs who may want to adapt them
(as was done by Vox Pupuli). Results on community inclusion (contribution
barriers faced by newcomers [28], codes of conduct [25,27,30], etc.) are appli-
cable as well. Finally, the well-known onion model of contributor involvement
has been challenged in the context of open source ecosystems [13], where con-
tributors do not necessarily follow a per-project sociabilization process and
may quickly jump to technical contributions. These results are also directly
relevant for CPMOs as they reveal how ecosystem members may have a wide
impact across ecosystem packages.

Linux distributions. But CPMOs are communities that maintain a variety of
loosely coupled (or independent) packages. These communities look quite dif-
ferent from standard open source communities focused on a single project,
but they have a lot in common with communities that develop Linux distri-
butions. Thus, many challenges faced by CPMOs may be similar to challenges
faced by Linux distributions, and since Linux distributions are usually much
older and much more mature, there may be a lot to learn there. For instance,
the Debian project is one of the oldest Linux distribution, and it is entirely
community-based. Researchers have studied Debian to explore themes such as
the evolution of volunteer participation [24], or the apparition of governance
structures [26], both of which should be relevant for CPMOs. Automation de-
veloped to help maintain Linux distributions [5] could also inspire automation
for CPMOs.

A grounded theory of Community Package Maintenance Organizations 43

Open source foundations. Open source foundations are non-profit legal enti-
ties created to ensure the long-term sustainability of open source projects,
and related objectives, by raising funds and managing legal assets [17]. Most
foundations were created around a specific project (e.g., the Linux founda-
tion around the Linux kernel, the Apache foundation around the Apache web
server), but have been extended to host a variety of open source projects [16].
Their action to ensure the sustainability of many open source projects can be
seen as similar to the activity of CPMOs. However, open source foundations
are rarely rooted in a specific ecosystem, are more formal structures than CP-
MOs, and often act as a support team for the open source projects they host,
while leaving the actual maintenance work entirely in the hands of the projects’
teams [12]. Foundations will usually only adopt projects that already have a
team of active maintainers, and not projects that are facing maintenance is-
sues because they have a single maintainer or that are already unmaintained.
Thus, to improve open source software sustainability, foundations and CPMOs
are complementary since they address different classes of projects. Similar to
our qualitative study to produce a theory of CPMOs, qualitative research has
been conducted to model open source foundations [23].

Communities of practice. CPMOs are “communities of practice” [31] because
they are communities of practitioners that share the practice of maintaining
packages (for a specific ecosystem) and look for ways to improve this practice.
Therefore, it is not surprising that one of the objectives that we commonly
find in CPMOs is the objective of establishing / transferring best practices, an
objective directly related to knowledge creation and management. However,
an organization gathering package maintainers and establishing best practices
without adopting packages, like Node.js PMT can be considered a community
of practice just the same. CPMOs go beyond communities of practice (cen-
tered around learning and knowledge transfer) by collectively acting to achieve
their practioners’ objective: adopting packages and collaborating to maintain
them. Nevertheless, the large body of literature available about communities
of practice, and more specifically virtual communities of practice [9], is likely
to be of interest to CPMO participants and people willing to launch a CPMO.

9 Conclusion and future work

In this article, we have presented a model of Community Package Mainte-
nance Organizations (CPMOs) that we have observed across several ecosys-
tems. These organizations are created by ecosystem members to alleviate is-
sues of maintenance lag and abandonment of important ecosystem packages.
CPMOs can “adopt” packages to collectively maintain them, and ensure that
abandoned packages can be picked up by new interested maintainers.

To build a theory of CPMOs based on the examples we identified, we have
relied on the Grounded Theory (GT) methodology. GT is a qualitative method
of theory building that was well-suited for our study because we have analyzed

44 Théo Zimmermann, Jean-Rémy Falleri

“extant” documents (CPMO documentation and public discussions) that we
have completed by interviewing CPMO initiators in a later phase of our study.

Based on our results (Sections 3 to 6) and on the experience of the first
author as the initiator of a CPMO for the Coq ecosystem, we have sketched
some guidelines for CPMO participants and ecosystem members willing to
launch a CPMO in their own ecosystem (Section 7).

To gain a deeper understanding of CPMOs, the next steps would be to
conduct quantitative studies (e.g., to explore the impact of CPMOs on package
maintenance lag in their ecosystem, or the impact of CPMO adoption on the
maintenance of individual packages) and longitudinal studies to understand
CPMO evolution and sustainability in the long run.

Since CPMOs emerge across many ecosystems (and could become popular
across even more ecosystems following this research), there is also an oppor-
tunity to help many practitioners by developing generic tools to help CPMOs
achieve their objectives. For instance, these tools could help detect underpro-
duced packages in the ecosystem [6] (packages that are of insufficient quality
relative to their importance), unmaintained packages that have active forks,
identify potential maintainers based on package usage, contribution activities
or maintenance activities (in a fork). They could also help maintenance activ-
ities within the CPMO by detecting packages with no active maintainer (e.g.,
where issues and pull requests get ignored), propagate knowledge throughout
the CPMO, or propose active CPMO contributors for CPMO membership.

Acknowledgments

We wish to thank Ryan Rempel and Sebastian Wilzbach for accepting to be
interviewed, and Karl Palmskog for providing feedback on our theory.

Conflicts of interest

The authors declare that they have no conflict of interest.

Data availability

Supporting data for this article is made available on Figshare at https://

doi.org/10.6084/m9.figshare.20502228.v1. This dataset contains all the
(initial and focused) codes for the public documents that have been used to
generate the theory in this paper, as well as a mind map making the link
between categories and quotes presented in this paper and the coded docu-
ments. The coded interview transcripts are excluded from this dataset and
will only be made available privately at individual researchers’ request after
getting permission from each of the interviewees.

A grounded theory of Community Package Maintenance Organizations 45

References

1. Avelino, G., Constantinou, E., Valente, M.T., Serebrenik, A.: On the abandonment and
survival of open source projects: An empirical investigation. In: arXiv:1906.08058 [cs]
(2019). URL http://arxiv.org/abs/1906.08058. ArXiv: 1906.08058

2. Avelino, G., Passos, L., Hora, A., Valente, M.T.: A novel approach for estimating Truck
Factors. In: 2016 IEEE 24th International Conference on Program Comprehension
(ICPC), pp. 1–10 (2016). DOI 10.1109/ICPC.2016.7503718

3. Avelino, G., Valente, M.T., Hora, A.: What is the Truck Factor of popular GitHub
applications? A first assessment. Tech. Rep. e1233v3, PeerJ Inc. (2017). DOI 10.7287/
peerj.preprints.1233v3. URL https://peerj.com/preprints/1233. ISSN: 2167-9843

4. Baltes, S., Diehl, S.: Worse Than Spam: Issues In Sampling Software Developers. In:
Proceedings of the 10th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM 2016, Ciudad Real, Spain, September 8-9, 2016,
pp. 52:1–52:6 (2016). DOI 10.1145/2961111.2962628. URL https://doi.org/10.1145/

2961111.2962628

5. Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Mancinelli, F.: Improving the Quality
of GNU/Linux Distributions. In: 2008 32nd Annual IEEE International Computer
Software and Applications Conference, pp. 1240–1246 (2008). DOI 10.1109/COMPSAC.
2008.226. ISSN: 0730-3157

6. Champion, K., Hill, B.M.: Underproduction: An Approach for Measuring Risk in Open
Source Software. In: 2021 IEEE International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), pp. 388–399 (2021). DOI 10.1109/SANER50967.
2021.00043. ISSN: 1534-5351

7. Charmaz, K.: Constructing Grounded Theory, 2nd édition edn. SAGE Publications
Ltd, London ; Thousand Oaks, Calif (2014)

8. Decan, A., Mens, T., Grosjean, P.: An empirical comparison of dependency network evo-
lution in seven software packaging ecosystems. Empirical Software Engineering 24(1),
381–416 (2019). DOI 10.1007/s10664-017-9589-y. URL https://doi.org/10.1007/

s10664-017-9589-y

9. Dubé, L., Bourhis, A., Jacob, R.: The impact of structuring characteristics on the
launching of virtual communities of practice. Journal of Organizational Change Man-
agement 18(2), 145–166 (2005). DOI 10.1108/09534810510589570. URL https:

//doi.org/10.1108/09534810510589570. Publisher: Emerald Group Publishing Lim-
ited

10. Gardler, R., Hanganu, G.: Meritocratic governance model. Tech. rep., OSS
Watch, University of Oxford (2013). URL http://oss-watch.ac.uk/resources/

meritocraticgovernancemodel

11. German, D.M.: The GNOME project: a case study of open source, global software de-
velopment. Software Process: Improvement and Practice 8(4), 201–215 (2003). DOI 10.
1002/spip.189. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/spip.189.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spip.189

12. Izquierdo, J.L.C., Cabot, J.: The role of foundations in open source projects. In:
Proceedings of the 40th International Conference on Software Engineering: Software
Engineering in Society, ICSE-SEIS ’18, pp. 3–12. Association for Computing Ma-
chinery, New York, NY, USA (2018). DOI 10.1145/3183428.3183438. URL https:

//doi.org/10.1145/3183428.3183438

13. Jergensen, C., Sarma, A., Wagstrom, P.: The Onion Patch: Migration in Open Source
Ecosystems. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE ’11, pp. 70–
80. ACM, New York, NY, USA (2011). DOI 10.1145/2025113.2025127. URL http:

//doi.acm.org.gate6.inist.fr/10.1145/2025113.2025127

14. Klug, D., Miller, H.: Open Source Is A-Changin’: How Qualitative Research Can Help Us
Adapt (2018). URL https://infoscience.epfl.ch/record/255139. Number: CONF

15. Kogut, B., Metiu, A.: Open-Source Software Development and Distributed Innovation.
Oxford Review of Economic Policy 17(2), 248–264 (2001). DOI 10.1093/oxrep/17.2.248.
URL https://doi.org/10.1093/oxrep/17.2.248

16. Michlmayr, M.: FOSS Foundations p. 24 (2021)

46 Théo Zimmermann, Jean-Rémy Falleri

17. Michlmayr, M.: Growing Open Source Projects with a Stable Foundation p. 67 (2021)
18. Muller, M., Kogan, S.: Grounded Theory Method in Human–Computer Interaction and

Computer-Supported Cooperative Work. In: Human–Computer Interaction Handbook,
vol. 20126252, pp. 1003–1024. CRC Press (2012). Series Title: Human Factors and
Ergonomics

19. Pawelzik, R., Foulonneau, M.: Governance Models for Online Communities - An analysis
of communities supporting Open Source Software projects (2014). DOI 10.13140/2.1.
3345.1524

20. Rajlich, V., Bennett, K.: A staged model for the software life cycle. Computer 33(7),
66–71 (2000). DOI 10.1109/2.869374. Conference Name: Computer

21. Ralph, N., Birks, M., Chapman, Y.: Contextual Positioning: Using Documents as Ex-
tant Data in Grounded Theory Research. SAGE Open 4(3), 2158244014552425 (2014).
DOI 10.1177/2158244014552425. URL https://doi.org/10.1177/2158244014552425.
Publisher: SAGE Publications

22. Raymond, E.: The cathedral and the bazaar. Knowledge, Technology & Policy 12(3),
23–49 (1999). URL http://link.springer.com/article/10.1007/s12130-999-1026-0

23. Riehle, D., Berschneider, S.: A Model of Open Source Developer Foundations. In:
I. Hammouda, B. Lundell, T. Mikkonen, W. Scacchi (eds.) Open Source Systems: Long-
Term Sustainability, IFIP Advances in Information and Communication Technology, pp.
15–28. Springer, Berlin, Heidelberg (2012). DOI 10.1007/978-3-642-33442-9 2

24. Robles, G., Gonzalez-Barahona, J.M., Michlmayr, M.: Evolution of Volunteer Partici-
pation in Libre Software Projects: Evidence from Debian p. 8 (2005)

25. Robson, N.: Diversity and decorum in open source communities. In: Proceedings of
the 2018 26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 986–987. ACM,
Lake Buena Vista FL USA (2018). DOI 10.1145/3236024.3275441. URL https:

//dl.acm.org/doi/10.1145/3236024.3275441

26. Sadowski, B.M., Sadowski-Rasters, G., Duysters, G.: Transition of governance in a ma-
ture open software source community: Evidence from the Debian case. Information
Economics and Policy 20(4), 323–332 (2008). DOI 10.1016/j.infoecopol.2008.05.001.
URL https://www.sciencedirect.com/science/article/pii/S0167624508000310

27. Singh, V., Bongiovanni, B., Brandon, W.: Codes of conduct in Open Source Soft-
ware—for warm and fuzzy feelings or equality in community? Software Quality
Journal (2021). DOI 10.1007/s11219-020-09543-w. URL https://doi.org/10.1007/

s11219-020-09543-w

28. Steinmacher, I., Conte, T., Gerosa, M.A., Redmiles, D.: Social Barriers Faced by New-
comers Placing Their First Contribution in Open Source Software Projects. In: Pro-
ceedings of the 18th ACM Conference on Computer Supported Cooperative Work
& Social Computing, CSCW ’15, pp. 1379–1392. Association for Computing Ma-
chinery, New York, NY, USA (2015). DOI 10.1145/2675133.2675215. URL https:

//doi.org/10.1145/2675133.2675215

29. Stol, K., Ralph, P., Fitzgerald, B.: Grounded Theory in Software Engineering Research:
A Critical Review and Guidelines. In: 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE), pp. 120–131 (2016). DOI 10.1145/2884781.2884833.
ISSN: 1558-1225

30. Tourani, P., Adams, B., Serebrenik, A.: Code of conduct in open source projects. In: 2017
IEEE 24th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 24–33. IEEE, Klagenfurt, Austria (2017). DOI 10.1109/SANER.2017.
7884606. URL http://ieeexplore.ieee.org/document/7884606/

31. Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Cambridge
University Press (1999). Google-Books-ID: heBZpgYUKdAC

32. Wiener, C.: Making Teams Work in Conducting Grounded Theory. In: The
SAGE Handbook of Grounded Theory, pp. 292–310. SAGE Publications Ltd,
1 Oliver’s Yard, 55 City Road, London England EC1Y 1SP United Kingdom
(2007). DOI 10.4135/9781848607941.n14. URL http://methods.sagepub.com/book/

the-sage-handbook-of-grounded-theory/n14.xml

33. Zhou, S., Vasilescu, B., Kästner, C.: What the fork: a study of inefficient and efficient
forking practices in social coding. In: Proceedings of the 2019 27th ACM Joint Meeting

A grounded theory of Community Package Maintenance Organizations 47

on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2019, pp. 350–361. Association for Computing
Machinery, New York, NY, USA (2019). DOI 10.1145/3338906.3338918. URL https:

//doi.org/10.1145/3338906.3338918

34. Zhou, S., Vasilescu, B., Kästner, C.: How Has Forking Changed in the Last 20 Years? A
Study of Hard Forks on GitHub. In: 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE), pp. 445–456 (2020). ISSN: 1558-1225

35. Zimmermann, T.: Challenges in the collaborative evolution of a proof language and its
ecosystem. Ph.D. thesis, Université de Paris (2019)

36. Zimmermann, T.: A first look at an emerging model of community organizations for the
long-term maintenance of ecosystems’ packages. In: Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, ICSEW’20, pp. 711–718.
Association for Computing Machinery (2020). DOI 10.1145/3387940.3392209. URL
https://doi.org/10.1145/3387940.3392209

37. Zimmermann, T., Falleri, J.R.: A grounded theory of Community Package Main-
tenance Organizations-Registered Report. CoRR abs/2108.07474 (2021). URL
https://arxiv.org/abs/2108.07474. ArXiv: 2108.07474

