2401.04287v1 [cs.SE] 8 Jan 2024

arXiv

Noname manuscript No.
(will be inserted by the editor)

What is an App Store?
The Software Engineering Perspective

Wenhan Zhu - Sebastian Proksch -
Daniel M. German -

Michael W. Godfrey - Li Li -
Shane MclIntosh

Author pre-print copy. The final publication is available at Springer via: https://doi.org/
10.1007/s10664-023-10362-3

Abstract “App stores” are online software stores where end users may browse,
purchase, download, and install software applications. By far, the best known
app stores are associated with mobile platforms, such as GoocLe Pray for An-
droid and Apple’s Are Store for i0OS. The ubiquity of smartphones has led to
mobile app stores becoming a touchstone experience of modern living. App
stores have been the subject of many empirical studies. However, most of this
research has concentrated on properties of the apps rather than the stores
themselves. Today, there is a rich diversity of app stores and these stores have
largely been overlooked by researchers: app stores exist on many distinctive
platforms, are aimed at different classes of users, and have different end-goals
beyond simply selling a standalone app to a smartphone user.

The goal of this paper is to survey and characterize the broader dimen-
sionality of app stores, and to explore how and why they influence software
development practices, such as system design and release management. We
begin by collecting a set of app store examples from web search queries. By
analyzing and curating the results, we derive a set of features common to app
stores. We then build a dimensional model of app stores based on these fea-
tures, and we fit each app store from our web search result set into this model.

Wenhan Zhu - Michael W. Godfrey - Shane McIntosh
David R. Cheriton School of Computer Science, University of waterloo, Waterloo, Canada
E-mail: {w65zhu, migod, shane.mcintosh}@uwaterloo.ca

Sebastian Proksch
Delft University of Technology, Delft, Netherlands
E-mail: s.proksch@tudelft.nl

Daniel M. German

Department of Computer Science, University of Victoria, Victoria, Canada
E-mail: dmg@uvic.ca

Li Li

School of Software, Beihang University, Beijing, China

E-mail: lilicoding@ieee.org

2 Wenhan Zhu et al.

Next, we performed unsupervised clustering to the app stores to find their nat-
ural groupings. Our results suggest that app stores have become an essential
stakeholder in modern software development. They control the distribution
channel to end users and ensure that the applications are of suitable quality;
in turn, this leads to developers adhering to various store guidelines when cre-
ating their applications. However, we found the app stores’ operational model
could vary widely between stores, and this variability could in turn affect the
generalizability of existing understanding of app stores.

Keywords app store, software release, software distribution, empirical
software engineering

1 Introduction

The widespread proliferation of smartphones and other mobile devices in re-
cent years has in turn produced an immense demand for applications that run
on these platforms. In response, online “app stores” such as GoocLe Pray and
Apple’s Arp Store have emerged to facilitate the discovery, purchasing, instal-
lation, and management of apps by users on their mobile devices. The success
of mobile app stores has enabled a new and more direct relationship between
app creators and users. The app store serves as a conduit between software
creators (often, developers) and their users, with some mediation provided by
the app store. The app store provides a “one-stop shopping” experience for
users, who can compare competing products and read reviews of other users.
The app store might also acts as a quality gatekeeper for the platform, pro-
viding varying levels of guarantees about the apps, such as easy installation
and removal, expected functionality, and malware protection. To the software
creator, the app store provides a centralized marketplace for their app, where
potential users can find, purchase, and acquire the app easily; the app store
also relieves the developer from basic support problems related to distribution
and installation, since apps must be shown to install easily during the required
approval process. Indeed, one of the key side effects of mobile app stores is that
it has forced software developers to streamline their release management prac-
tices and ensure hassle-free deployment at the user’s end.

The success of mobile app stores has also led to the establishment of a
plethora of other kinds of app store, often for non-mobile platforms, serving
diverse kinds of user communities, offering different kinds of services, and us-
ing a variety of monetization strategies. Many technical platforms now operate
in a store-centric way: essential services and functionality are provided by the
platform while access to extensions/add-ons is offered only through interaction
with the app store. For instance, GoocLe Pray, the app store, operates on top
of the technical platform Android, which provides the runtime environment
for the applications. When new technical platforms are introduced, an app
store is often expected to serve as a means to host and deliver products to
its users [1]. Example technical platforms that use app store-like approaches

What is an App Store? The Software Engineering Perspective 3

include Steam [2], GitHus MarkeTrrace [3], the CuromME WEB STorE [4], Worb-
Press [5], AuroDesk [6], DockerHus [7], Amazon WeB Services (AWS) [8], Home-
BrREW [9], Or UsunTU Packaces [10].

For platforms that operate in this way, the app store is an essential part
of the platform’s design. For example, consider source code editors, such as
VSCobt and InteLuiJ. The tool itself — which we consider to be a technical
platform in this context — offers the essential functionality of a modern source
code editor; however, many additional services are available through the asso-
ciated app store that are not included by default. Thus, extensions that allow
for language-specific syntax highlighting or version control integration must be
added manually by the user through interaction with the tool’s app store. We
conjecture that the app store has fundamentally changed how some classes of
software systems are designed, from the overall ecosystem architecture of the
technical platform to the way in which add-ons are engineered to fit within its
instances.

In this work, we will explore the general space of app stores, and also
consider how app store-centric design can affect software development prac-
tices. Previous research involving app stores has focused mainly on mobile app
stores, often concentrating on properties of the apps rather than properties of
the stores. For example, Harman et al. performed one of the first major studies
of app stores in 2012, focusing on the BrackBerry App WorLp [11]. However,
concentrating the investigative scope so narrowly may lead to claims that do
not generalize well across the space of all app stores. For example, Lin et al.
found that reviews of games that appeared in mobile app stores differed sig-
nificantly from the reviews of the same game that appeared within the Steam
platform’s own app store [12]. In our work, we aim to take a more holistic
approach to studying app stores by considering both mobile and non-mobile
variants. In so doing, we hope to create a more general model of app stores
that fits this broader space.

To achieve a holistic view, we start from the definition of an app store.
A precise definition of the term “app store” has been omitted in much of the
previous research in this area. Currently, GoocLe Pray and Apple’s Arp Store
dominate the market and are the main targets of research on app stores; in the
past, the BLackBerry Arp WorLp and Microsoft’s Winpows PHONE STORE were
also important players, but these stores are now defunct.! Wikipedia recog-
nizes ELectronic ApPWrapPER [13] as the first true platform-specific electronic
marketplace for software applications, but the term became popular when Ap-
ple introduced its App Store along with the iPhone 3G in 2008. Since then, the
term has largely come to refer to any centralized store for mobile applications.
We present our own working definition of the term “app store” in Sec. 2.4.

The goal of this work is to survey and characterize the broader dimension-
ality of app stores, and also to explore how and why they may feed back into
software development practices, such as release management. As a step toward

1 The Winpows PHONE STORE was absorbed into the broader WINDOWS STORE in 2015.

4 Wenhan Zhu et al.

this goal, we focus on two research questions (RQs) that aim to explore the
space of app stores:

RQ1: What fundamental features describe the space of app stores?

To understand app stores, we first need a way to describe them. It would be
especially useful if this description framework would highlight the similarities
and differences of app stores. We start by collecting a set of app store exam-
ples, and then extract from them a set of features that illustrate important
differences between them. We then expand this list of app stores with search
queries to derive a larger set of example stores. We explicitly seek general-
ized web queries to broaden our search space beyond the common two major
mobile app stores of Apple and Google. By combining the web queries and
the initial set of app stores, we selected a representative set of app stores and
extracted their features. In the end, we first surveyed app stores and derived a
feature-based model to describe them; we then expanded the set of app stores
through web queries; and finally, we extracted features based on the model for
a representative set of app stores.

RQ2: Are there groups of stores that share similar features?

Despite the ability to describe individual stores, it is also important to un-
derstand the relationships between different stores. Having a understanding
of the natural groupings can help us gain insights into the understanding of
the generalizability of results gathered for different app stores. We perform a
K-means [14] clustering based on the extracted features of the expanded set
of app stores collected previously. The optimal k value is determined by the
Silhouette method [15]. The clustering results suggest that there are 8 groups
in the expanded set of app stores. The differences can be observed in the
type of application offered, standalone or extension, and/or type of operation,
business or community-oriented.

In this study, we make several contributions towards a better understanding
of the app store ecosystem.

— We identified a set of descriptive features that can be used to characterize
app stores.

— We identified a set of 291 app stores and mapped 53 of them into the feature
space.

— We identified 8 coherent groups of app stores based on the similarity of
features.

— We discuss our insights on how the features and the diversity of app stores
can impact software engineering practices.

Overall, our study contributes towards a holistic view of app stores within
software engineering, which can form the basis for subsequent study of app
stores in general.

What is an App Store? The Software Engineering Perspective 5

2 Background and Related Work
2.1 Early App Store Research

To date, research in this area has concentrated on a narrow set of app stores
that primarily involves mobile platforms. Harman et al. [11] proposed app
stores as a valid kind of software repository worthy of formal study within the
broader research area of mining software repositories; while their work was
not specific to mobile app stores, they used BrackBerry Arp WorrLp as their
canonical example. Ruiz et al. [16] studied the topic of reuse within app stores,
focusing their work on Axprom Markererace.? In both cases, these early works
did not provide a formal definition of “app store”, and tacitly used only app
stores for mobile platforms in their studies.

In their 2016 survey on app store research, Martin et al. [17] observed that
studies have often focused on only a few specific app stores, and have ignored
comparisons between app stores. In a recent literature survey, Dabrowski et
al. [18] found the median number of app stores studied to be 1, with the
maximum being 3. We also note that results from one app store study may
not generalize to another store since the two stores may differ in significant
ways; for example, if a store does not allow users to provide their own reviews
of the apps within the store, app creators will have to rely on other means to
gain popularity and trust from users, such as promotion outside of the app
store. The same trend can be observed in more specific app store topics such
as app reviews; for example, Lin et al. [12] found that reviews of games within
the Steam app store can be dramatically different from reviews of the same
game in mobile app stores.

Existing work has yet to explore the full diversity of app stores, concentrat-
ing on GoocrLe Pray and Apple’s Arp Store, and largely ignoring those such
as Steam, AWS, and GirtHus MarkeTPLACE that are not specific to mobile plat-
forms. With the heterogeneity of app stores and their typical uses, we believe
that the research in this area can be strengthened by expanding the breadth
to encompass a more diverse perspective on app stores; in turn, this breadth
can help to validate the generalizability of the study findings.

2.2 App Stores in Recent Software Engineering Research

To better understand the involvement of app stores in recent research, we
reviewed relevant recent papers from the two flagship software engineering
research conferences: the ACM/IEEFE International Conference on Software
Engineering (“ICSE”) and the ACM SIGSOFT International Symposium on
the Foundations of Software Engineering (“FSE”) We used Google Scholar to
find papers containing the keyword “app store” between January 2020 and
April 2022 for the two conferences. We found a total of 34 such papers (listed
in Table 2.1). After reading through all of them, we found that each paper

2 ANDROID MARKETPLACE has since been re-branded as GooGLE PLAY.

Wenhan Zhu et al.

fit into one of two broad categories: mining software applications (20/34) and
mining app store artifacts (14/34). We note that our efforts do not constitute
a comprehensive literature survey; instead, our goal was to gain an overview
of how app stores are involved in recent research, and why app stores matter
in their context.

Table 2.1 Recent papers on app stores

Loc

Paper

Store

Mining software applications

ICSE ’

ICSE ’

21

20

FSE 21

FSE 20
FSE 20

ICSE ’

ICSE ’

ICSE ’
ICSE ’

ICSE ’

ICSE ’

ICSE ’

ICSE ’
ICSE ’

21

22

20
20

21

20

21

21
21

FSE 21

ICSE ’

ICSE ’
ICSE ’

ICSE ’

21

21
21

20

FSE 21

Mining app
ICSE "2

ICSE
ICSE
ICSE

ICSE
ICSE
ICSE
ICSE
ICSE

ICSE ’

0

20
21
21

21
21
21
21

21

20

FSE 21

ICSE ’
ICSE ’

ICSE ’

21
21

20

Atvhunter: Reliable version detection of third-party libraries for vulnerability
identification in android applications [19]

How does misconfiguration of analytic services compromise mobile privacy? [20]
Algebraic-datatype taint tracking, with applications to understanding Android
identifier leaks [21]

Code recommendation for exception handling [22]

Static asynchronous component misuse detection for Android applications [23]

Sustainable Solving: Reducing The Memory Footprint of IFDS-Based Data Flow
Analyses Using Intelligent Garbage Collection [24]

DescribeCtx: Context-Aware Description Synthesis for Sensitive Behaviors in Mo-
bile Apps [25]

Time-travel testing of android apps [26]

An empirical assessment of security risks of global android banking apps [27]

Too Quiet in the Library: An Empirical Study of Security Updates in Android
Apps’ Native Code [28]

Ac ility issues in android apps: state of affairs, sentiments, and ways for-
ward [29]

Don’t do that! hunting down visual design smells in complex uis against design
guidelines [30]

Identifying and characterizing silently-evolved methods in the android API [31]
Layout and image recognition driving cross-platform automated mobile test-
ing [32]

An empirical study of GUI widget detection for industrial mobile games [33]
Fine with “1234”? An Analysis of SMS One-Time Password Randomness in An-
droid Apps [34]

IMGDroid: Detecting Image Loading Defects in Android Applications [35]
GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Net-
works [36]

Unblind your apps: Predicting natural-language labels for mobile gui components
by deep learning [37]

Frontmatter: mining Android user interfaces at scale [38]

store non-technical attributes

Schrédinger’s security: Opening the box on app developers’ security rationale [39]

Scalable statistical root cause analysis on app telemetry [40]

An empirical assessment of global COVID-19 contact tracing applications [41]
We'll Fix It in Post: What Do Bug Fixes in Video Game Update Notes Tell
Us? [42]

Automatically matching bug reports with related app reviews [43]

Prioritize crowdsourced test reports via deep screenshot understanding [44]

A first look at human values-violation in app reviews [45]

Does culture matter? impact of individualism and uncertainty avoidance on app
reviews [46]

COVID-19 vs social media apps: does privacy really matter? [47]

Society-oriented applications development: Investigating users’ values from
bangladeshi agriculture mobile applications [48]

Checking conformance of applications against GUI policies [49]

Identifying key features from app user reviews [50]

Champ: Characterizing undesired app behaviors from user comments based on
market policies [51]

Caspar: extracting and synthesizing user stories of problems from app reviews [52]

GooGLE Pray

GooGLE Pray
GooGLE Pray

GooGLE Pray

F-Droid, GooGLE Pray, Wan-
doujia App Store

GooGLE Pray

GooGLE Pray

GooGLE Pray
GooGLE Pray,
and others
GooGLE Pray

APKMonk,

GoOOGLE PLay
Android

GoOGLE Pray

Apple’s App STORE, GOOGLE
Pray

Android Games
GOOGLE Pray,
Myapp

Android

Android

Tencent

GooGLE Pray
GooGLE Pray

Apple’s App STORE, GOOGLE
Pray

Facebook App

Android

Steam

GooGLE Pray
Android

GooGLE Pray
Apple’s App STORE

GooGLE Pray, Apple’s App
STORE
GooGLE Pray

Android

Apple’s APP STORE

GooGLE Pray, Chinese an-
droid app stores

Apple’s APP STORE

> Mining software applications — App stores have been extensively used as
a mining source of software applications. In these papers, the major focus is
often on another subject and app stores provide a source where they can col-
lect applications for either a data source or verification dataset. For example,

What is an App Store? The Software Engineering Perspective 7

Zhan et al. [19] proposed an approach to detect software vulnerabilities in
third-party libraries of Android applications. They leveraged the app store to
collect a dataset to verify the effectiveness of their approach. In these studies,
the app store is both a convenient and practical source of data collection. How-
ever, the involvement of app stores may not be necessary since the purpose is
to gather a dataset of application. In Yang et al.’s work [30], they leveraged
Android applications from an existing dataset without the need to collect from
an app store. We argue that the importance of app stores in these types of
studies is the selection criteria used by the researchers to collect applications
from app stores. These features can include star ratings, total downloads, and
app category.

> Mining app store artifacts — In these studies, researchers focused on unique
software artifacts that come from the operation of the app stores. App stores
have a much heavier involvement in these studies compared to the previous
group. App reviews is the major software artifact the researchers focused on,
where they leverage the data to identify features of applications [50], locating
bug reports [43], and detect undesired app behaviors [51]. One interesting
research practice we observed is where van der Linden et al. [39] leveraged
the developer contact information shared on app stores to send out surveys
related to security practices.

2.3 Store-Focused Research

As stated above, we found that most recent research involving app stores fo-
cuses on the applications they offer rather than on studying the app stores
themselves; in particular, most research in the domain focuses on the devel-
opment of mobile applications. Meanwhile, a few papers have specifically con-
sidered app stores and their effects on software engineering, but again these
works focus heavily on mobile app stores.

In a recent paper, Al-Subaihin et al. [53] interviewed developers about how
app stores affect their software engineering tasks. They found that developers
often leverage the review section from similar applications to help with un-
derstanding the expected user experience and anticipated features. App stores
also provides a kind of playground for releasing beta version of apps to receive
feedback from users. The built-in communication channels also play a large
role in informing development. The interviews suggest that developers pay at-
tention to viewing user requests in app store via channels such as reviews and
forums. The approval period of app stores affects how developers plan their
release. App stores introduce non-technical challenges in the development pro-
cess. Given the app store model of release, app store-specific metrics, such as
total number of downloads, are considered highly important to developers.

Running an app store presents both technical and non-technical challenges
to the store owner. Technical challenges include verifying that each app will
install correctly, while non-technical challenges include ensuring that the pro-
motional information in the app’s product page adheres to store guidelines.

8 Wenhan Zhu et al.

Wang et al. [54] investigated several Android app stores in China and com-
pared them to GoocLe Pray. Their study showed that these stores were much
less diligent in screening the apps they offered, with a significantly higher
presence of fake, cloned, and malicious apps than GoocLe Pray.

Jansen and Bloemendal surveyed the landscape of app stores from the per-
spective of the business domain [55]. They selected 6 app stores — 5 mobile
stores and 1 Windows store — at the time of publication (2013), and inves-
tigated each store manually to find features (i.e., those actors can interact
with) and policies (i.e., rules, regulations and governing processes that limit
the functional reach of the features) from each app store. The actors they
define are the same as the three major stakeholders of the app store model
(i.e., the store owner, users, and developers). Our study further contributes
to the understanding of app stores. First, we studied a significantly larger set
of app stores: our methodology was focused towards the identification of as
many different types of stores as possible. In total, we studied 53 stores in
various domains including mobile, embedded systems, computer games, appli-
cation add-ons, and open source distributions and packaging systems. Second,
Jansen and Bloemendal studied app stores from the perspective of a software
business; for example, in their work they would consider features and policies
on whether users are able to generate affiliate links to earn revenue through
sharing applications. In contrast, our work focuses on app stores in the per-
spective of their role in the software engineering process.

In our study, we approach app stores from a broad landscape not limited
to mobile app stores. We focus on the similarity of features offered between
stores to understand their natural groupings and discuss the challenges in the
diversity of app stores.

2.4 Working Definition of an App Store

Previous researchers have often taken a casual approach to defining the term
“app store”, when a definition has been provided at all. For example, in their
survey paper, Martin et al. define an app store as “A collection of apps that
provides, for each app, at least one non-technical attribute”, with an app de-
fined as “An item of software that anyone with a suitable platform can install
without the need for technical expertise” [17]. However, we feel that this defi-
nition is too generous. For example, consider a static website called Par’s Apps
that lists of a few of someone’s (Pat’s) favourite applications together with
their personalized ratings and reviews; superficially, this would satisfy Martin
et al.’s requirements as it is a collection of apps together with Pat’s own re-
views (which are non-technical attributes). We feel that this kind of “store”
is outside our scope of study for several reasons: Pat’s software collection is
not comprehensive, it is unlikely that Pat provides any technical guarantees
about quality of the apps, and a passive list of apps on a web page does not
constitute an automated “store”.

What is an App Store? The Software Engineering Perspective 9

A

App storé manager

Curate apps,
provide store functionality (e.g, browsing),
coordinate app installation/updating,
coordinate payment

< NN Browse apps,
i urchase/order apps,
%mDevelop + submit apps, | .‘ _____ P pps, i

datt -Appz review apps,
paate apps update apps

App store End user

App creator

Fig. 2.1 Three major stakeholders of most app stores

Jansen and Bloemendal [55] define app store as “An online curated mar-
ketplace that allows developers to sell and distribute their products to actors
within one or more multi-sided software platform ecosystems.” We note that
this definition ignores that app stores are expected to provide infrastructure for
the deployment, installation, and maintenance of the apps, which impacts the
software development process. Their model also ignores marketplaces that do
not have payment mechanisms, such as the Google Chrome Extensions store
and the various open source apps stores, where all of the software products
may be free to download and install.

In our work, we seek to define an idea of app store beyond the well-known
mobile ones and with an emphasis on how their existence may affect the soft-
ware development cycle. Because we are focused on exploring the notion of
what app stores are, we formulate a working definition of the term; we did so
to provide clear inclusion/exclusion criteria for the candidate app stores that
we discover in Sec. 3.

Our working definition was influenced by considering the three major stake-
holders of the app store model: the app creators who create and submit appli-
cations to the store; the app stores themselves, and the organizations behind
their operation who curate the app collection and coordinate both the store
and installation mechanisms; and the end users who browse, download, review,
and update their applications through the app store (see Figure 2.1).

We thus arrived at the following working definition for app store as
an online distribution mechanism that:

1. offers access to a comprehensive collection of software or software-based ser-
vices (henceforth, “apps”) that augment an existing technical infrastructure
(i.e., the runtime environment),

2. is curated, i.e., provides some level of guarantees about the apps, such as
ensuring basic functionality and freedom from malware, and

3. provides an end-to-end automated “store” experience for end users, where

(a) the user can acquire the app directly through the store,

10 Wenhan Zhu et al.

(b) users trigger store events, such as browsing, ordering, selecting options,
arranging payment, etc., and

(c) the installation process is coordinated automatically between the store
and the user’s own instance of the technical platform.

We can see that using this working definition, our Par’s Apps example fails to
meet all three of our main criteria.

We note that our working definition above evolved during our investiga-
tions; it represents our final group consensus on what is or is not an app
store for the purposes of doing the subsequent exploratory study. The steps
by which the representation is finalized are discussed in Sec. 3.1.2. For ex-
ample, our working definition implicitly includes package managers such as
the Debian-Linux apt tool and Javascript’s NPM tool. It is true that package
managers are typically non-commercial, and so are “stores” only in a loose
sense of the term; furthermore, they usually lack a mechanism for easy user
browsing of apps and do not provide a facility for user reviews. However, at the
same time, they are a good fit conceptually: they tend to be comprehensive,
curated, and offer an automated user experience for selection and installation.
Furthermore, some package managers serve as the backend to a more tradi-
tional store-like experience; for example, the Usuntu Sorrware CenTer builds
on a tool aptitude, which interacts with software repositories to provide a user
experience similar to that of GoocLe Pray.

3 Research Methodology

To investigate the research questions, we designed a three-stage methodology
that is illustrated in Figure 3.1. The goal of the first two stages is to answer
RQ1, while the third stage addresses RQ2.

In the first stage (Step (D) and (2)) we identified our initial list of features
using a small set of well-known app stores (Apple’s App STore, GoocLE Pray,
Steam etc.) In the second stage (Steps (3), (4), and (5)) we methodically ex-
panded our list to a conceptually wider ranging set of 53 app stores. We then
described these stores using the features identified in the first stage. A major
goal of this stage was to evaluate whether the set of available features was
sufficient to describe the characteristics of all these stores. This set of features
forms the answer to RQ1.

In the third stage (Step (6)), we took advantage of the labeling of the 53
stores. We used K-means clustering analysis to identify groups of stores that
shared similar features. These groupings form the answer to RQ2.

We now describe our methodology in more detail.

3.1 Extracting Features Describing App Stores

Our basic assumption is that an app store can be categorized based on a finite
set of features. The features would correspond to traits of the app store where

What is an App Store? The Software Engineering Perspective 11

Stage 1 @

Initial seeding of
app stores

Y

Original list of
stores

®

Stage 2
xtracting attribute

for app stores

Expanding list of
app stores

Y
Selection of Original list of
representative
stores
stores

O]

Refining attributes

Stage 3

Attributes
describing app
stores

anually labeling o
attributes of stores

K-means clustering

Set of stores labeled
by attributes

Groupings of stores

Fig. 3.1 Methodology overview: There are three main stages, further broken down into six
steps.

12 Wenhan Zhu et al.

they describe the distinguishing qualities or functional characteristics of the
app store. We encode these features as binary values, i.e., each store has or
does not have a given feature.

In order to identify such features, we first created a seeding set of repre-
sentative app stores. We started by enumerating well-known app stores that
we were aware of (Step (1)). Once this set of representative app stores was
created, we used an iterative process to identify the features that we felt best
characterized these stores (Step (2)). We then used these features to describe
each store.

3.1.1 Stage 1: Identifying Features

First, each of the six authors was tasked with identifying representative char-
acteristics of five stores and the possible features for each. Each author worked
alone in this step; however, to seek better reliability as well as encourage di-
verse opinions, each store was assigned to two authors. We list the 15 stores
that were assigned in this step with a short description in Table 3.1. After
that, all of the authors met as a group to discuss their findings and further
refine the proposed feature set.

In the subsequent iterations, the authors worked in pairs, and the pairings
were reassigned after each iteration (Step (2)). In these iterations, each author-
pair was assigned a set of 2-3 app stores and was asked to describe them using
the current set of features; a key concern was to evaluate whether the existing
features were sufficient or needed refinement. For each store, each author-pair
analyzed both its store-front and its documentation; in some cases, we could
navigate the store as users but not as developers, in these cases, we relied on
the store’s supporting documentation.

After this step, the six authors discussed their findings as a group and
updated the set of features. The features were discussed in detail to ensure
that they were conceptually independent from each other. We also made sure
that each feature applied to at least one store to ensure that it was relevant.

Our process leveraged ideas from the coding process of Grounded the-
ory [56] to extract the features of app stores, and followed the practice of
open card sorting [57] to create the categorized feature set. Similar to prior
work [58-60], we followed practices of Grounded theory’s coding process to ex-
tract the features— where we consider codes as a specific feature of app store
operation — and stopped when we reached saturation with no new features
added after a new round of describing app stores. Similar to prior work [61-63],
we applied card sorting to the collected features so inter-related features are
grouped together. The authors formed a group in this process and discussed
how different features belong to the same conceptual group and stopped when
consensus was reached.

What is an App Store? The Software Engineering Perspective 13

Table 3.1 Investigated stores for feature extraction

Store

Description

Google Play Store
Apple App Store
Samsung GalaxyApps
GitHub Marketplace

Atlassian Marketplace

Homebrew
MacPorts
Ubuntu Packages

Steam
Nintendo EShop

GoG

JetBrains Plugin Store
VSCode Marketplace
Chrome Web Store
AWS Marketplace

Google’s app store for Android

Store for Apple devices

Store specifically for Samsung devices

Providing applications and services to integrate with GitHub plat-
form

Providing applications and services to integrate with various At-
lassian products

Package manager for MacOS

A package manager for MacOS

Software repository for the Ubuntu Linux distribution, with a
official front end Ubuntu Software Center

Gaming focused app store running on multiple operating systems
(e.g., Windows, Linux)

Provides applications for Nintendo devices (e.g., Nintendo Switch,
Nintendo 3DS)

Gaming focused store focusing on providing DRM free games
Provides plugins to enhance the behavior of JetBrains IDEs
Provides plugins to enhance the editor

Provides extensions to enhance Chromium based web browsers
Provides servers and cloud services

3.1.2 Stage 2: Expanding Our Set of App Stores and Further Evaluation and
Refinement the Features

Once we had agreed on the features, our next goal was to verify that these
features were capable of describing other app stores that were not part of
the initial seed, or if features were missing or needed refinement. We used a
common search engine, Google, to expand our set of app stores in a method-
ical manner (Step (3)). To achieve the goal of including a broad range of yet
undiscovered app stores, we first derived general search terms by combining
synonyms for "app" and "store". More specifically, we have built all possible
combinations of the following terms to construct our search queries:

First half software, (extension -hair -lash), (addon OR add-omn),
solution, plugin OR plug-in, install, app, package

Second half repository, shop, ("app store" OR store), ("market place"
OR marketplace), manager

For example, a concrete query was created by combining app and ("app
store" OR store). For some queries, it was necessary to refine the term to
avoid noise in the results; for example, searching for the term extension would
mainly return results related to hair product or eye lashes. In total, with
8 synonyms for app and 5 synonyms for store we were able to create 40
unique Google search queries. We felt confident that these search terms were
representative when we found that the initial seed list had been exhaustively
covered.

14 Wenhan Zhu et al.

Our Google search was performed in November 2020. We queried and stored
the search results for each search query. Two authors classified each result as
to whether or not it corresponded to an app store. We devised two inclu-
sion criteria for this decision: 1) the store in question should offer software or
software-based services, and 2) the store in question should offer an end-to-
end experience for users (ordering, delivery, installation). We considered only
direct hits to the store (e.g., product page), and we explicitly excluded results
that contain only indirect references to a store, such as blog posts, videos,
or news. Any disagreements were resolved through discussion. However, de-
spite our initial effort of maintaining a clear set of inclusion criteria for app
stores, several corner cases became apparent during the labeling process. The
first two authors discussed these cases as they arose, and continually updated
the inclusion criteria throughout the labeling process. In a few special cases
no agreement could be reached, so another author acted as a moderator and
resolved the disagreement by a majority vote. Over time, the inclusion crite-
ria and features evolved and eventually reached a stable state (in Step (3)).
Our final state of the inclusion/exclusion criteria is presented as the working
definition for app stores defined in Sec. 2.4.

The classification of search results was stopped when a new results page
did not contain any new links to app stores, or once all 10 retrieved pages
were analyzed. Initially, 586 URLs were examined by the first two authors
until a saturation of agreement was reached (90.7% agreement rate). The first
author continued to label the rest. In the end, a total of 1,600 URLs were
labeled. Multiple search results can refer to the same store; these duplicates
were detected and eliminated by using the root domain of the URL. The most
common duplicate references were found for the domains google. com (61),
apple. com (22), and microsoft. com (18). In the end, we found 291 stores.
We note that the exact number of unique stores may differ since two root
domains can point to the same store, kodz. tv and kodi. wik%, or the same
root domain may contain multiple stores, chrome. google. com and play.
google. com.

In the next step (Step (5)), we constructed and labeled a set of app stores
based on our identified features from Step (2). We began from the URLSs labeled
in the last step and selected the first three occurring stores for each search
term; this resulted in 104 URLSs pointing to 48 unique stores. Two of the stores
were could not be accessed by the authors: ASRock Arp Snop requires physical
hardware to use it, and PLCnexT STorE’S Website was unresponsive at the time
of labeling. These stores were removed from the list. In addition, we discussed
several more stores that we felt deserved explicit investigation: AWS, Frarpak,
GoG, MacPorrs, NINTENDO ESHOP, STEAM, and Samsung’s Garaxy Store. These
are the stores that the authors investigated in Step (2) but did not show up in
the first three occurring results from the search terms. Meanwhile, the added
stores all show up in the list of 291 stores identified by all labeled URLs.

We thus selected and labeled a total of 53 app stores. This sample is non-
exhaustive, but we believe that our wide range of search queries has created a

What is an App Store? The Software Engineering Perspective 15

representative sample of the population of app stores that enables our exper-
iments.

The first two authors proceeded to describe 12 app stores, selected as the
first from each search query, using the set of features. This was done to make
sure there was consistency in the interpretation and use of each feature. After
that, the first author labeled the remaining stores.

To check the applicability of our dimensions and the labeling guidelines, we
have measured the inter-rater agreement between two authors on the 12 stores.
We used the Cohen’s Kappa [64] as a measurement for our inter-rater agree-
ment. The Cohen’s Kappa is widely used in software engineering research [65].
We have reached an agreement of 86.3% with Cohen’s Kappa [64] of 0.711).
Our agreement based on the Cohen’s Kappa is considered as a substantial [66]
inter-rater agreement suggesting a high confidence of agreement between the
two raters.

The outcomes of RQ1 were a list of features that describe the main char-
acteristics of app stores grouped by dimensions, and a set of 53 App Stores,
each labeled using these features.

3.2 Finding Natural Groupings of App Stores

With the outcomes of RQ1, we next performed a K-means clustering analysis
to identify groups of similar stores. K-means is a well known clustering algo-
rithm widely used in software engineering research [67-70]. It groups vectorized
data points iteratively until £ centroids are formed. We used the K-means++
implementation [71] to conduct the clustering process.

3.2.1 Stage 3: Cluster Analysis

To identify related app stores, we decided to cluster them using the K-means
algorithm (Step (6)).

To prepare our labels for the K-means clustering process, we converted
each label of the feature to a binary value: 1 if the store has the feature, and 0
if it does not. Having binary-encoded data ensured that we do not suffer from
having categorical values that do not make sense in the scope of K-means.
However, performing K-means on binary data can also be problematic, since
the initial centroids selected will be binary. To mitigate this issue, we applied
Principal Component Analysis (PCA) [72] to both reduce the dimensional
space and to produce a mapping in the continuous range. We kept all principal
components that explained a variance of at least 0.05. Finally, we used the
Silhouette method [15] to determine the best number of clusters within a
range of 1 to 20. To identify the features that best characterize each cluster,
we have calculated the deviation of each cluster centroid (i.e, the center of the
cluster) from the centroid-of-centroids (C') over all clusters.

As an unsupervised method, the result of K-means provides only the clus-
tering result with the stores in each cluster. We then further discussed the

16 Wenhan Zhu et al.

results of the K-means process and categorized the clusters by the proper-
ties of the contained stores. Following our discussion and categorization, we
assigned groupings and names to each of the clusters.

4 Results

In this section, we present the results of our investigations into each of the re-
search questions. The results are organized based on the three stages discussed
in Sec. 3.

RQ1: What fundamental features describe the space of app stores?
Stage 1: Features characterizing app stores

As discussed in Sec. 3.1, we derived a set of features and organizational cat-
egories that describe the set of studied app stores; the results of these efforts
are summarized in Table 4.1. We have modelled the features as a binary rep-
resentation; thus, each store either has or does not have this feature. We note
that for some categories, the features are mutually exclusive; for example, in
the category Rights Management, a store can have either Creator managed
DRM or Store-enforced DRM, but not both. In other categories, an app store
may have several of the features within a given category; for example, there
may be several kinds of communication channels between users, app creators,
and the store owner for a given app store. We now describe each high-level
category in detail.

> Monetization — describes what, if any, payment options are provided to
the user directly by the store. If a product is offered free within the store, but
requires an activation key obtained elsewhere, we consider that the product is
free. While most of the options are self-explanatory, some may be less obvi-
ous. For example, GitHus MarkerpLace offers seat-based subscriptions where
app pricing is calculated by the number of installations made to individual
machines; usually, this occurs within the context of enterprise purchase. Also,
AWS offers resource-based subscription where the price charged is determined
by the amount of resources — such as cloud storage and CPU time — that
are used during the execution of the service.

> Rights Management — describes the Digital Rights Management (DRM)
policy of the store; the values describe whether the store uses a store-wide
DRM feature. For example, for Steam, all games have DRM encryption, whereas
the F-Droip store contains only open source apps, so there is no need for DRM.

> Do I need an account? — describes whether a user can access and use
the store without being registered with the app store. We find that most
stores are either account required (e.g., Apple’s App STorr) or no registration
possible (e.g., Snapcrart). However, we also found that some stores can be used
without an account for some purposes, with other features requiring explicit

What is an App Store? The Software Engineering Perspective 17

Table 4.1 Features for describing app stores

Feature Description
Monetization The type of payment options directly offered by the app store.
Free Free as in in the product can be directly acquired

One-time payment

Seat-based subscription

Time-based subscription

Resourced-based subscription
Micro-transaction

Custom pricing (i.e., “Contact us for price”)

Rights Management*
Creator-managed DRM
Store-enforced DRM

Do I need an account?*

Account required
No registration possible
Some features requires registration

Product type
Standalone apps
Extension /add-ons to apps/hardware
Service,/resources
Package/library
Target audience*
General purpose
Domain-specific
Type of product creators
Business
Community
Intent of app store
Community building/support
Profit
Centralization of product delivery
Expanding a platform popularity/usefulness
Role of intermediary
Embedded advertisement APT
C1/CD
Checks at run time
Checks before making available to the customer
Composability*
Independent
Vendor internal add-on /extension /unlock

Package manager type of app relationship
Analytics
Sentiment and popularity ratings
Marketing feedback
Product usage data
Communication channels
Documentation
Product homepage
Ratings
Written reviews (in text)
Community forum

Support ticket

Promotion /marketing

A single payment needed for the product
The subscription is based on the number of products provided

A payment is needed by a set time interval (e.g., monthy, yearly)

A payment is needed by the amount of resource used (e.g., API calls, CPU time)
Additional payment can be collected based on additional feature offered in a product
The actual price is based on a per case situation; this happens mostly in business-focused
app stores

How does the store take care of DRM on the product provided.

No DRM is offered by the store and is taken care of by the creator

Store wide DRM for every product offered in the store

Whether it is possible to use the app store without registration.

An account is required to use the store

The store does not have an account system

Some content of the store is locked behind an account, but the store can be used without
one.

The type of product the store offers.

The product operates by itself

The product acts as a feature extension to another application/hardware

The software product is a service

The product is not an end-user product, but offers functionality to other products

The intended users of the app store.

The app store is intended to be used by everyone.

The app store have a specific focus and is very unlikely to be used by a normal person
The type of creators who submits products to the app store.

The creators mostly have a commercial or business focus

The creators are from the community (e.g., open source developers)

The reason why the app store exists from the app stores’ perspective.

The app store aims to serve a technical community

The app store aims to earn money

The app store aims to provide a way for customer to gather apps in a centralized way
The app store aims to extend functionality from the platform it is based on

The role app store play between the creator of products and the customer of the app store.
Provides an advertisement method for creators to take advantage of

Offers continuous integration/continuous deployment for creators

Provide checks when apps installed from the app store is ran

Provide checks when an app is submitted to the app store for quality reasons

The relationship between products provided in the app store.

The products in the app store are unrelated to each other

Some products can be based on other products from the same creator (e.g., game DLC,
app feature packs)

A dependency relationship exists between products in the app store

The type of analytical data provided by the app store.

Information related to the popularity of a product (e.g., downloads, score ratings)
Information related to marketing for the creator (e.g., sales, conversion, retention)
Information related to the usage of the product. (e.g., logging, user profiling)

The methods where different parties of the app store can communicate with each other.
Information related to the operation of the store (e.g., instructions to install applications)
A homepage for a specific product in the app store

Any form of rating customers can give to a product (e.g., star, score, up/down vote)

A written viewer where customers can write their experience to the product.

A forum like feature offered by the store where people can dis
store/product.

A system where customers can inquiry for support questions related to the product offered
by the store.

The store offers a way to provide promotional/marketing feature to the products in the
app store (e.g., featured apps, top downloads of the month).

1ss things related to the

*: Categorical values are mutually exclusive; one and only one categorical value in the
dimension can apply to a given store.

registration; for example, the Microsort Store allows users to download free
applications without an account, but to purchase an app or leave a review, an

account is required.

> Product type — describes the kinds of applications that are offered by the
store. For example, GoocLe Pray and Steam focus on standalone apps, the
VSCope MarkerprLack store offers add-ons to an existing tool, and AWS allows
users to “rent” web-based resources and services.

> Target audience — describes the intended user base of the store. General-
purpose stores offer products aimed at the broad general public of everyday

18 Wenhan Zhu et al.

technology users; this includes stores such as Goocre Pray, Steam, and the
CuroME WeB Store. Domain-specific stores, on the other hand, have a ded-
icated focus on a specialized field; for example, Apose MacenTo focuses on
building e-commerce platforms.

> Type of product creators — describes the typical focus of creators submitting
applications to the store. We distinguish between two groups of creators: those
with a commercial or business focus, and those with community focus such as
open source developers.

> Intent of app store — describes the perceived high-level goals of the app
store. The values are derived from the app stores’ own descriptions of their
goals, often found in “About us” web pages. For example, both F-Drom and
ArxPure are Android app stores; however, F-Drom’s focus is to provide a
location to download and support FOSS software, while ApkPurr’s goal is to
provide a location for users to be able to download Android apps when GoocLE
PLay may be unavailable.

> Role of intermediary — describes the roles that the app store plays in me-
diating between the users and creators; these are software engineering-related
services that are mostly independent of each other. For example, checks at run
time tracks if the app store ensures that its products function correctly (e.g.,
Steam tracking game stats). Also, CI/CD indicates that the app store provides
explicit support for continuous integration and deployment of the apps, which
may be linked to specific development tools used by the creator.

> Composability — describes the relationship between products offered by
the store. App stores of independent composability offer products that have
no relationship with each other, such as Firerox App-ons. Vendor internal
add-on/extension/unlock means that the products within the app store can
be based on each other, but only when they are from the same vendor, such
as game DLC and micro-transaction unlocks. Package managers contain apps
that can have complicated dependency relationships regardless of the creator
of the products, such as the Ubuntu package management tool apr.

> Analytics — describes what kind of diagnostic information is provided by
the store. We distinguish between three kinds: Sentiment and popularity rat-
ings offer user-based information related to store products, such as number
of installs in Home Assistant. Marketing feedback tracks telemetry information
for creators on the performance of their product, such as GiTHus MARKETPLACE
tracking retention rate for their products for creators. Product usage data de-
tails the observed usage of the products; for example, Steam tracks the average
number of hours users spend on each product.

> Communication channels — tracks the types of methods the store directly
offers for communications between both users and creators. Since most stores
offer a product homepage for each of their products, the app creators are largely
free to put any information here. This means that if a creator wishes, they can
put links to other communication methods external to the store. We do not
track such information here since it is product dependent instead of store

What is an App Store? The Software Engineering Perspective 19

dependent. While ratings and reviews/comments are often paired together,
during our exploration, we found cases where user ratings were permitted but
user reviews were not; thus, we have separate values for ratings and reviews.
Communication channels can take various forms with different variability, for
example, some stores allow responses for reviews. For this aspect, we stay at
a high level based on the functionality of the communication channels and
consider the variations as detailed implementation for each functionality.

Stage 2: Expanded collection of app stores and labeled set of representative
stores

In stage 1, we identified 53 store candidates. To provide the required data for
our experiments, two authors explored these stores to identify which of the
fundamental features of the previous stage are true for each store. The query
results are summarized in Table 4.2, where we list the search term construction
keywords and the first 3 occurrence of stores by the search term. For example,
in search term constructed from (addon OR add-on) and ("market place")
OR marketplace, the first 3 occurrences are GoocLe Pray, PrestaSuop, and
CS-CART.

There are many app stores beyond Goocre Pray and Apple’s Arp Store. These
app stores exhibit a diverse set of features.

RQ2: Are there groups of stores that share similar features?

Using the labeled data of the 53 stores, we were able to perform the K-means
cluster analysis that we have introduced in Sec. 3.2. With the number of
clusters guided by the Silhouette method to choose the best K value for K-
means, our clustering resulted in eight clusters.

Due to the nature of unsupervised methods, K-means is able to identify
only the clusters and their members; no real-world meanings are extracted
for why the cluster members belong together. It is also important to note
that the K-means algorithm performs hard clustering; that is, it creates a
partitioning of the stores into mutually exclusive groups that together span
the whole space. Thus each store will be assigned to the unique cluster that
the algorithm considers to best represent it. For this reason, the raw results
from K-means should not be seen as authoritative, but rather as a vehicle for
identifying groups of stores with similar characteristics. Therefore, we leverage
the K-means clustering and further examine the clusters in detail to try to
derive a human understandable categorization of the stores.

We start by analyzing the differences between clusters by analyzing the
definitive characteristics of each cluster. In Sec. 4, we show the details of
the top 10 features that deviate the most from the C. Column C contains

Wenhan Zhu et al.

20

PHNN

‘INAN ‘Aegeioooy)

aszeq ‘eind>yf
-dv ‘Aeld 9[Soon

segeord njungn
‘1d4d ‘gs1desped

qnygaIaxdo(g ‘jue)
-SISSy QWO ‘IpPO}]

Ar[q 918005

9101G 1JOSOID
SN ‘Aeld 91800H
‘o101g ddy e1ddy

G910I0U0D ‘4IeD)-SD)
ooe[djosre N

qnHEHD ‘SUOISUNXH LD
‘ooededaRIN 9pPODSA

HeDH-SD

osdipoyg ‘Ae[q o[8005)
21018 (oA dWOIYD

jyerodeug ‘Ae(q o[300x5)
‘01098 ddvy orddy

9103G 3JOSOIOIIN
9101g 1JOSOID
-I]N ‘eroyg ddy ovy

210319
ddy o1ddy ‘Aerq o18005H)

a8exoed

(#00q- AI1eIqT oIxemijos)

uoTaNTOS

TTe3sut

TTIHHS ‘ogue8e]N oqopy ‘eoerd 93pH 1J0S0Id
01038 qop\ ewoIy) HINOND ‘€OdAL 91018 (AN PWOIYD) -1oqIRIN 9PODSA -IJN ‘9101S gop\ dwoIy) (ysel- ITeY- UOTSUSIXS)
Asepoiny sureldq anbry VIIHL HODIY ‘uon
‘I [‘sunuar -1er ‘SSOIJPIOAN -nog uidnyd ‘4png sureigiof ‘ssarJpIopn -0 YD10YS ‘Ar[J 9[S005) (ut-8n1d yg utdnid)
suo
uomIN 91015 qIM 3e)-8D ‘doyge)sald -PPy X0Jaarg ‘juessissy
‘moly ‘e81ogesiny PO swoayy) ‘doyge)serg ‘Ke1q o18005) owoy ‘o108 ddy orvN (uo-ppe YO uoppe)
11eH-g) ‘snoio
-R[[0G ‘9I3[20R[J 191N a101g ddy oeyN aIemlyos
proiq
-uAzz] ‘900loag jodgqny ‘Aerq Aelq o18005)
Ae1q o13005) uerpiens) ‘proig-g 0101g ddy oiddy o[Soor) ‘eorowrwio)Srg ‘a109g ddy orddy dde
(eoerdaexaeuw
Io8euRW Lxoq1sodex doys 4o ,ooerd jexrxew,)

(ex03s y¥Q ,ox03s dde,)

A19nb 276005 YO®S 10] SOI0S PAYTIUSPT 92I) ISIT] T'F S[qeL

What is an App Store? The Software Engineering Perspective 21

Table 4.3 The 8 clusters found by the K-means algorithm, with top deviated features from
the centroid of centroids (C). Each cell with a value represents one of the ten most influential
features of the corresponding cluster. The number indicates the percentage of stores with
the specific feature. The color encodes whether stores in that cluster are less (magenta) or
more (green) likely to have the feature, compared to the centroid.

Cluster Index

Features C 1 2 3 4 5 6 7 8
Monetization
Free 1.00
One-time payment 0.35 0.00 0.00 0.00 1.00
Seat-based subscription 0.09 0.50
Time-based subscription 0.30 0.75 0.00 0.86
Resource-based subscription 0.05
Micro-transactions 0.11
Custom Pricing 0.01
Rights Management
Creator managed DRM 0.72 0.25 1.00 0.14
Store-enforced DRM 0.27 0.75
Do I need an account to use the store
Account Required 0.33 0.00 0.75 1.00 0.86
No registration possible 0.35 1.00 0.00 0.00 0.00 1.00
Some features require registration 0.30 1.00
Product Type
Standalone apps 0.42 0.00
Extension/add-ons to apps/hardware 0.68 0.33
Service/Resources 0.08
Package/Library 0.17 0.89
Target audience
General purpose 0.33 0.00 0.83 0.00 1.00
Domain-specific 0.67 1.00 0.17 1.00 0.00
Type of product creators
Business 0.67 0.22 m 1.00
Community 0.67 1.00
Intent of app store
Community building / support 0.52 1.00 1.00 0.00 0.11
Profit 0.38 0.00 0.00 0.00 0.78 0.00
Centralization of product delivery 0.84
Expanding the platform 0.76 0.17
Role of intermediary
Embedded Advertisement API 0.16 0.71
CI/CD 0.05
Checks at run time 0.14 0.50
Quality/security checks 0.74 0.25
Composability
Independent 0.56 1.00 1.00
Vendor internal 0.15 1,00
Package manager type 0.19
Analytics
Sentiment and popularity ratings 0.73 0.33
Marking feedback 0.25
Product Usage data 0.33
Communication channels
Documentation (wikis, FAQs) 0.81
Product homepage 0.97
Star/Score/Up/Downvote rating 0.57 0.11 1.00 1.00 [UOTOE 1.00 OO
Written reviews (in text) 0.47 0.00 1.00 0.00 0.89 0.00
Community Forum 0.45 0.75 0.00
Support Ticket 0.35
Promotion/Marketing 0.71 0.25

the centroid-of-centroids with values for each feature. The remaining columns
represent each cluster by an index from 1 to 8. The values in these columns
represent the proportion of app stores in the cluster with a specific feature,
the mean, and the background color of each cell represent the deviation of
the particular cluster centroid (i.e., difference between the centroid of this
cluster and the centroid-of-centroids for the feature). Each row corresponds to
a feature of the stores, which makes it easy to understand which features are
descriptive of a cluster.

22 Wenhan Zhu et al.

The table only shows the top 10 deviations per cluster (i.e., column) to
focus on the most important contributors to each cluster. Since all features
are binary — each store has or does not have the feature— all values of the
centroid-of-centroids are between [0, 1]; thus, a positive deviation (shown with
a green background) implies that the stores in the cluster are more likely to
have the attribute, and a negative deviation (shown with a magenta back-
ground) implies that the stores are less likely to have the attribute.

For example, for cluster 8 the most important contributor is [Composabil-
ity] Vendor internal add-on/extension/unlock where the centroid of the cluster
is 1. When comparing against the centroid-of-centroids (at 0.15), the devia-
tion is at 0.85; this implies that all stores in this cluster have this feature. On
the other hand, an example of negative deviation for cluster 1 is the feature
[Composability] Independent with a centroid of 0 indicating that no stores in
this cluster have this feature. Since the centroid-of-centroids for this features
is at 0.56, this implies the deviation for stores in this cluster is —0.56.

After the top characteristics that make each cluster distinctive had been
identified, we leveraged this information to name and describe each cluster
accordingly. Using the information from Sec. 4 which shows the defining fea-
tures of each cluster, we derived an organization of the clusters based on several
dimensions. The results are described in Table 4.4.

One important dimension focuses on the type of application served by
stores in the cluster. We identified three major types of applications that dif-
ferentiate the clusters: General, where the store offers stand-alone programs
that run without the need of specific software (aside from a specific oper-
ating system, e.g., GooaLe Pravy, AWS, Stram); Extensions, where the store
offers extensions to a specific program or platform e.g., VSCope MARKETPLACE
for VSCode, Curome WeB Store for Google Chrome; and Package manager,
where the store offers stand-alone programs, but also manages dependency-
relationships and requirements between different applications in the store e.g.,
NPM, MacPorrs, UsunTu Packaces. Another dimension in which these clus-
ters can be organized is whether they are Commercial (business-oriented) or
Community-managed (no money is involved).

App stores are not all alike. Intuitive groupings emerge naturally from the
data. Their differences can be due to the type of application they offer —
standalone or extensions — and their operational model, either business- or
community-oriented. We found that app stores in different groups of our clus-
tering have different properties, and these properties may have bearing on
empirical studies involving app stores.

23

What is an App Store? The Software Engineering Perspective

‘uo peseq o1e Aoy wiojjerd
oY) 0} A[[eIjU9D SUOISUD)XD 9INCLIJSIP 0} S)SIXd A[jsour
S9109S 9], 'SAI09S dYJ UI }SIXd J0U Op SMdIIAdI pue 3urjey

‘wraojye[d oY) 0} SUOISUD)XD
sopiaoiad pue wiojjerd

aezep ‘snope[es ‘VIAHL

["POIOPO S[OUURYD UOITRIIUNUWIUIOD YONUI dARY j0U OP AdY T, 90IoWWOd9 ® SI $N020D]2S HODIY ‘9131000 J10N TR\ I9Y10
QN5 U0 pajsoy
a0y sor1031sodar 726 03 paje[al
-1e[d & spuajxo 10 901A10s opraoxd Ioygie pue suorjeoijdde mopIom a9 aaoxdur oor[djorIew GO9I
ouo[epUR)S JOU dIe S1ONPOIJ 91038 9y} Aq juswaeuewt 09 suorjoe pue suolyediidde -uod ‘ede[djedIeA 10) ‘surerg
z INHA sitoddns pue sediares uorpdrosqns SIogo Uy SIOYO 20D)dI2YUDN qnypy) -1or ‘eoeldjedIe]N qNUIID) pejuatio uorydirosqng
'S9J09S JSOW 10J JUISSIW SMOIADI pU®R SSUIIRI M soge
pojIwI] os[e ale S[oUURYD UoljedIUNUWWO)) ‘sdiysuorje[al ‘safespped -yoed njunq ‘godAT, ‘1dAd
Aouopuadep-1ogur yiim 9[4)s oFexord Ul }soW pue 99.1J oIe dHd 10j A1oyisodax ‘gsi8exped ‘999NN ‘INAN
1 S1ONPOIJ "S9I0)S 9S9Y) 10 POAJOAUL ST WYSAS JUNOIDR ON urewt ayy st 28160yon g ‘spI0gorIN ‘suruef ‘anoly Je3eur]y oSedoed
1jerodeug
*90anos uado Ajrrofew are syonpord ay) ‘a109s uoryeordde proupuy ‘proiquAzz] ‘L1031s0day]
pue Ajunuwwiod oY) wolj A[)sowl aIe $9103s 9y} I0J SIoje ATuo aremijos 9doInos joalorg ueIpIens) Sred
. -01)) "A[uo sjonpoid 991] sUO[RPUR])S UIRIUOD SOI0IS 9SAYT, uoado pue 9a1] ® ST prou(]-4 -1e[q ‘pProig-g ‘Aeje[oooy) Ajrunwmo))
21098
ddy o1ddy ‘e101g Axeren
‘suo1ydo uoIjezijeuoul }sout ‘wrrojye[d smopuim unsureg ‘wrealg ‘doyge
Burjproddns sjonpoad [eursjul Iopuea I9fo pue jygoid 10j oy} 10 suorjeoijdde opusjuIN ‘91015 IJOSOIDIN
] uni Koy J, "‘AepAioss 10junoous ojdoad Auewr sa109s [eordL T, SIOPO 94028 fogouorpy ‘e103g Aeld o[8005H ‘SMV [erorswiwo))
[elouer)
"I9Y10 ore Wol] juepuadapul ale pue dULIpNE ssoxdpIopy
OlIoUSST © 90®] $9.109S 91} Ul patajjo sponpoid ‘(sdde Surfress ‘wrrojge[d sseadpiom oy} ‘ewiour) ‘SUO-ppy XOJoIrg
-ur “-3'9) uorjelsidor pedu jou op suorjerado [RIJUASSH 3ursn s1osn 10J suolsua)xo ‘ode[djesre]y osdipy ‘010318
¥ ‘urrojye[d 9y} 0} SUOISUI)XD SISO S2I0)S 9SaY) Ul S10NpoIJ 991] SI9JO §524dpPUOA| COA\ PWOIYD ‘oandydy pozifeoads-uou Ajunuwwo))
ooe[djeyIeIN
‘19U JUSWIUIRIISIUS 2P0y SPODSA ‘UOIUIN ‘IPOY ‘109
‘urewrop oyroods ® 0} I0[IR} OS[® S9I0}G "SI9SN 09 Ss3oN o1} 0} SUOISU)XO SIOPO -oW[‘Jue)sIsSy owoH ‘qnyg
¢ -poid 991j SI9JO Jel} $910)S PASNOO0] AJTUNUWITIOD 9IR 9SAY T, sjyuouoduIod uo-ppe 1poy -I900(] ‘©98I10J9sIn)) ‘png pazifeoads Ajunuwwo))
HeDH-SO
‘uoryeonyojeyg ‘doyg ejseag
‘SMOTADI USYIIM PUR SUIDY ‘urrojyerd ‘enbiinog usnid ‘q0dg
-sAs SuIjel SI9JJO JUOIJ 9109S I} PUR SSOUISN(A[)}sOU oIe UOTIIN[OS 9OIDWWI0DD 9Y) 0} -qny ‘Hor) ‘edrowrmro)3rg
9 s109eal1)) 'OYIdads UTRWIOP AIDA oI S9I09S 91} Ul S}ONPOIJ suoppe siofgo doyg p3said ‘Msooiny ‘ojusle]y oqopy pazijeroads [eIDIOWIWIO))
suolsuayxXy
xXopuf uorydrIoso(q 199sny) 2103g ordurexy 19)SN[D Ul S910)§ odAT,

PIOIIUSD I9ISN[D 0F J89SO0[D ST ety 910%s o[durexs oYy YHM ‘193snd> Aq suorydrsep pue s0103s JO ST F°F O[(E],

24 Wenhan Zhu et al.

5 Discussion

In this section, we discuss our findings regarding what we consider app stores
to be based on our clustering results, and we describe various research oppor-
tunities involving the influence of app stores on software engineering practices.

5.1 What Is an App Store?

The term app store became popular largely through Apple’s App Store, which
launched in 2008 along with the iPhone 3G [73]. Other online software stores
have also appeared and have had the term applied to them. Originally, the
term usually referred to stores of applications for mobile devices, but we have
found that today there is ample diversity of the type of applications that app
stores offer and in the features they provide to app developers and users. App
Stores are also dynamic: features are continually being added, removed, and
altered by store owners in response to changes in their goals and feedback
from their socio-technical environments. For example, the CuromMeE WEB STORE
initially introduced a built-in monetization option that provided a mechanism
for applications to receive payments from its users; however, the store later
decided to deprecate this monetization option [74] and suggested developers
to switch to alternative payment-handling options.

In our work, we have employed a working definition through our inclu-
sion/exclusion criteria for app stores to be included in our research. However,
due to the complexity, diversity, and constantly evolving nature of app stores,
we have decided not to attempt a firm, prescriptive definition of the term.
Instead, in the following paragraphs, we will discuss each of several aspects of
app stores in detail, and hope that in the future, a more robust definition and
operating model can emerge.

5.1.1 Common Features of App Stores

Although we found significant diversity among the example app stores we
studied, we were able to identify a set of three common features that appear
to span the space of app stores.

> Simple installation and updates of apps — An app store facilitates simple
installation of a selected application, and can also enable simple updating. For
some stores, apps are expected to run on the hardware of the client; in others,
the app store provides and manages the hardware where the app runs. In both
cases, the app store frees the user from worrying about the technical details of
installation, including compatibility with their specific hardware and software
configuration, as well as the installation of the app and its dependencies, if
any. Typically, app stores will also automate the installation of updates to the
application, again freeing the user from worrying about if they have the latest
version of the app with the latest features and bug fixes.

What is an App Store? The Software Engineering Perspective 25

> App exploration and discovery — App Stores provide mechanisms that allow
users to find apps they might want to use. In its simple form, this mechanism
might be a search engine that returns a list of apps that match a given set of
keywords (such as nomesrew, PyPI). In the labeled app stores, 73% of stores
provide some kind of aggregated recommendations (e.g., advertisement and
trends in WorpPress), up to personal recommendations that are based on other
apps the user has installed before (e.g., Apple’s Arp Store). User feedback via
reviews (present in 47% of the labeled app stores) and forums (present in 45%
of the labeled app stores) can provide further information to aid other users
in identifying apps of possible interest to them.

> The app store guarantees the runtime environment — In practice, app stores
often execute within a runtime environment (RTE), such as an operating sys-
tem (e.g., GoocLe Pray on Android) or an extensible software application (e.g.,
Firerox App-ons on Firefox). Many app stores simply sit on top of the RTE,
acting primarily as a gatekeeper for adding and deleting apps. However, some
app stores are more tightly integrated with the RTE; in extreme cases, the
app store can extend the RTE with the app store’s own functionality and to-
gether provide an augmented RTE for the applications managed through the
app store. Steam is a good example for extending the RTE with its own fea-
tures; developers can integrate with many services offered by Steam, such as
an achievement system that offers players recognition when they fulfill certain
requirements in the game. Figure 5.1 illustrates the situation where a product
may integrate with additional store-added features to the RTE, which in turn
enriches the user experience of the store users. When Product B is offered in
App Store Y, it will not have the features provided by App Store X.

The app store ensures that apps are installed only when their runtime
requirements are satisfied. The process is often done through running checks
on apps submitted to the app store, which 74% of the labeled app stores
perform specifically. By specifying the runtime requirements, the assumption
for both the developer and the user is that if the application is installed —
implying that the requirements are satisfied — it is expected to run properly.
This is usually achieved by a software layer on top of the RTE, provided
by either the app store or the user. In its simplest form, this software layer
is responsible for installing and updating apps (see “Simple installation and
updates of apps” above). In some cases, this software layer might also include
a set of libraries that the apps can use to provide features specific to the
app store thus forming part of the RTE for the applications. These libraries
might range in purpose (domain specific, common GUI, resource management,
etc.). In extreme cases, this layer includes the operating system, as it is the
case with Apple’s Are Store. However, checks during runtime is a very rare
feature, which only 14% of the labeled app stores provides.

Some hardware platforms have become so tightly integrated to the software
layer of the app store that they can be considered monolithic: the hardware is
rendered unusable without the app store. This is exemplified by the Apple’s

26 Wenhan Zhu et al.

App Store X App Store Y

Product A Product B Product C

A

>
>

e |

I Feature layer provided by App Store X :
\

Runtime Environment

Fig. 5.1 Stores may offer optional extensions to the runtime environment for applications

App Storg, where one cannot use the hardware without first having an account
in the app store; even operating system upgrades are distributed via the store.

This tight level of integration has clear benefits for all three stakeholders:
end users have fewer installation technical details to worry about; app devel-
opers can be assured that users will be able to install their apps without the
need for technical support; and app store owners can strictly manage who has
access to the user’s RTE and how. However, such tight integration is techni-
cally unnecessary and may even be undesirable. From a software engineering
perspective, such tight coupling could be seen as a “design smell”, since the
operating system and the app store layers address fundamentally different con-
cerns. Also, tight integration can create an artificial barrier to competition,
effectively establishing a quasi-monopoly for the store owner; the store owner
may assume the role of gatekeeper not only for streamlining technical issues,
but also for business reasons, requiring a kind of toll to be paid by app develop-
ers for access to the store. A recent initiative in the European Union [75] aims
to enable fair competition by enforcing that ecosystems are opened up, which
will likely also allow the installation of alternative software layers for other
app stores, a term called side-loading. In contrast to the Apple’s tight control
of the operating system as part of its app store, Android allows third-party
app store software (e.g., F-Drom [76]) to be installed in co-existence with the
system default (often GoocLe Pray).

What is an App Store? The Software Engineering Perspective 27

As mentioned above, some stores distribute software that runs on hard-
ware owned by the App Store itself; in these cases, the RTE is fully managed
and controlled by the store. For example GitHus MarkeTpPLACE and ATLASSIAN
Marxerprace offer applications that run on GitHub and Atlassian servers re-
spectively. In most cases, these applications are not deployed to the user’s
computers.

5.1.2 Different Types of App Stores

While some features are broadly shared by all app stores, in Sec. 4, we iden-
tified different groups of app stores based on their features. For stores within
the same group, they often share common features, whereas across different
groups, the stores tend to have less in common. We now discuss the differences
across the groups in detail.

> Diversity in goals — As a platform focusing on delivering products to cus-
tomers, the high-level goal of one app store can be dramatically different from
the other. Even app stores providing software for the same underlying RTE can
have radically different purposes. For example, consider the app stores that
run on Android. Goocre Pray is the de facto store for Android applications.
F-Dromp store, on the other hand, offers only free and open source Android
applications, and APKPure offers multiple versions of the same software so
the user can decide which version they would like to install.

Apple’s app store offers applications for all its RTEs: MacOS (laptop
and desktops), i10S (phones and tables), and the Safari browser. In contrast,
Google has different stores for AndroidOS and for its web browser, Chrome.
The MicrosorT Store sells hardware and apps for Windows and XBox. Arexa
SkiLLs offers skills that enhance the voice agent Alera’s capabilities.

In many program language ecosystems, the core language development (fo-
cusing on the language features) and packaging system (focusing on extend-
ing the functionality of the language) are led by separate organizations (e.g.,
NPM [77] and JavaScript [78]).

> Diversity in business model — Another important difference we observed
is between business-managed and community-managed stores. In business-
managed stores (with few exceptions), a primary goal is to generate a profit.
These stores provide a payment mechanism between the app creator and the
purchaser, with the store keeping a percentage of any sales. These stores have
to solve three key concerns: first, implementing registration and authentica-
tion of users and developers; second, some type of digital rights management,
so only users who have acquired the software can use it; and third, a payment
mechanism e.g., subscription, one-time payment, and advertisement.
Community-managed stores, on the other hand, are often run by volun-
teers, and their features focus on facilitating not-for-profit product delivery
from developer to user. Many community stores offer limited community in-
teractions compared to business stores where customer feedback is important.
For example, in the Ko store, add-ons have a web page (e.g., The Movie

28 Wenhan Zhu et al.

Database Python [79]). This page provides information regarding installation
of the add-on, such as known compatibility concerns, download links, and in-
stallation requirements. Meanwhile, most communication channels about the
add-on are hosted elsewhere; for example, installation and usage instructions,
extended descriptions, and screenshots can be found in the community forum
instead.

It is important to note that the products contained in community-oriented
stores are not limited to open source software; some community-managed app
store policies often permit the distribution of proprietary software. In the nat-
ural groupings we observed, no rights management is enforced from the store
side for Cluster 3; at the same time, most stores in Cluster 8 have some form
of rights management built-in to the store. For example, Homesrew permits
apps that are not open source if the apps are free to use; these apps might
include in-app purchases — such as an upgrade to a full-feature app — that
are handled outside of HomesrEW.

5.2 Implications for the Main Participant Stakeholders

The results of our study includes an evidence-based detailed view of the broad
landscape of app stores. This view can help us improve the understanding of
the realities and potentialities of app stores in general. Meanwhile, the results
of our work can also benefit the different stakeholders involved with app stores,
including app creators, app stores themselves, users, and researchers.

> Application creators — Those who create applications — including those
who design, develop, test, and market apps — benefit from a holistic view of
other stores that will allow them identify potential new markets (stores where
they can offer their software) and to understand changing and emerging fea-
tures that could eventually come to their app store of choice. For new creators,
this research emphasizes that a software store has both technical requirements
— such as the use of a specific software development kit — and non-technical
ones — such as restrictions on what applications can do, approval processes
and timelines — and that these requirements vary significantly from one store
to another.

> App Stores — The overview presented herein provides a framework for
comparison between app stores, particularly those that operate on the same
market, such as Android application stores. It can also help promote wide
adoption of features that are not universal, such as communication channels
between users and developers.

> Users — With the diversity in app stores, especially when multiple app
stores are competing in the same domain, it allows users the chose of where
to acquire their applications. This allows for more diversity for how the apps
are distributed and the user’s choice also affect the competition.

> Researchers — As discussed in Sec. 2, most prior research has focused on
the applications offered in app stores, and there is a need for research that

What is an App Store? The Software Engineering Perspective 29

focuses on studying the store themselves. This emphasis could aid researchers
in considering different points of view when conducting app store-centric stud-
ies, and also suggest avenues of exploration concerning how the development
process is affected by the existence of app stores.

We describe this point in detail in the next sections.

5.3 App Store Features

In this section, we discuss how each of feature groups from Table 4.1 has
been addressed by current SE research and we suggest some possible future
directions.

> Monetization — App development can be affected by their pricing strategy.
For example different software architecture to support a different system of
monetization (e.g., locking functionality behind microtransactions) [80]. Stud-
ies have shown a correlation between app features and pricing [11, 81, 82].
Moreover, in many studies on apps [29, 83], free apps and charged apps are
often considered as different types of applications. Future work could further
explore how different monetization options affect app development.

> Rights management — Digital rights management is still an ongoing chal-
lenge in software engineering. Existing studies have explored the options of
implementing different DRM systems to support developers [84,85]. DRM can
also add challenges in other development activities such as complicating the
testing procedure [86] and affect performance [87]. Often we can observe the
store offering means for providing and enforcing DRM. Because DRM is still
a nascent technology within software engineering, it remains an open area to
explore for future study and how app stores can play a role.

> Account requirement — User identity enables telemetry of user behavior.
An account system is also the prerequisite of a store-wide DRM system as
discussed in the previous paragraph. Existing research has focused on how to
leverage the user identity information to create targeted recommender sys-
tems [88] and also investigated the concerns of privacy-related issues [89]. The
interest of developers (detailed tracing data) and users (privacy) are in con-
flict, app stores that require user identification could prove to be an excellent
study subject for future research in that area.

> Product type — Existing research has already shown different software en-
gineering practices based on the software product. For example, gaming de-
velopment is very different from traditional software development and open
source development [90,91]. Research have shown that different types of soft-
ware can introduce specific challenges unique to them [92,93]. Future research
should better understand how the product type affects user expectations and
development practices, for example, with respect to the delivery of software
or the way creators and users can interact.

> Target audience — When an app developer decides on a specific app store to
sell their app, they are also effectively selecting for a specific type of user [94—

30 Wenhan Zhu et al.

96]. Users of a general-purpose store such as GoocLe Pray are different and
much more diverse than the user population [97] in very specialized stores, such
as the add-on store for a particular game. Research needs to understand better
which features are relevant in each specific context [41], so the experience can
be tailored to the concrete situation.

> Type of product creators — Existing research has shown many differences
between open source and industrial software development [91,98]. Some studies
have touched the aspect of release engineering in open source development [99],
where developers would strategically select which versions to release on the app
store. However, we believe that there is still room for more understanding in
how targeting releases towards app stores affects software development.

> Intent of app store — While in most domains, there exists a dominant app
store, we can also observe situations where multiple app stores compete in the
same domain (e.g., game stores on PC, mobile app stores in China [54]). In
these situations, users have a choice of which app store to use when the same
application is offered. In practice, some studies have explored how the high
level operation of app stores can affect the software delivery process especially
involving security concerns [41,51]. Competition between app stores within
the same domain remains largely unstudied, as does how their operations can
affect both developers and users.

> Role of intermediary — App stores provide a platform for users and devel-
opers. Researchers have explored how it affects software development processes
such as testing and release management [100,101]. There are many opportu-
nities for security [102] and quality assurance [53,103| to be ensured on the
app store side. Future study can explore how the differences between apps
managed through an app store and apps that are not. For example, studying
the difference between open-source web extensions that are in and not in app
stores.

> Composability — Existing research has explored co-installability in the
scope of package manager systems [104, 105]. However, we only have limited
understanding of co-installability for standalone applications in an extension
system. For example, if two standalone extensions were to modify the same
component of the underlying software, a potential incompatibility could oc-
cur. Future research can explore this area by performing empirical studies on
existing systems to understand the issue of conflicts.

> Analytics — App stores as the central hub between developers and users
have access to rich information useful for analytics. Previous studies have
taken advantage of the app store specific information to help software devel-
opers [106-108]. For example, Ullmann et al. [109] leveraged records of rating
statistics and downloaded information to study the factors in developing suc-
cessful video games. Another study leveraged analytic information collected
by the app store to identify incompatible builds of application and physical
devices [110]. Future work can explore what are the possible data to collect and
form analytics, and how can the analytic data be leveraged to help developers
and users.

What is an App Store? The Software Engineering Perspective 31

> Communication channels — Communication channels are the most studied
area of app store features. Specifically, there has been a heavy focus on app
reviews, where researchers have leveraged the information in app reviews to
aid software development in areas such as extracting/locating bug reports [43],
discover feature requests [50] and collect user feedback [52]. However, exist-
ing studies also suggest that the use of communication channels in app stores
are often multi-purpose [18]. Researchers also find that some interaction re-
quirements between interested parties are relegated to other platforms such
as Twitter [111]. Future work can explore different types of communication
channels in their functionality and how they can integrate with app stores.
The corpora from communication channels are also rich information sources
where researchers can leverage to extract information about developer-user
interactions.

5.4 Research Opportunities Involving App Stores

App Stores are becoming the primary channel for software delivery and exert
considerable influence in many aspects of the software development process.
A previous study by Rosen and Shihab [112] on Stack Overflow questions by
mobile developers has shown that app delivery is one of the biggest challenges
developers face. Our results in Sec. 4 demonstrate that there is a wide variety
of types of stores, each with different features and goals. Today, app stores
encompass many kinds of applications, from games running on the hardware
of the user to add-ons for applications that run on corporate servers such as
GitHub. However, existing research often focuses heavily on the applications
offered inside app stores, especially those of the two major mobile app stores.
In the following paragraphs, we discuss several research opportunities to study
how app stores can affect software development.

5.4.1 App Stores as Actors in Software Development

> App Stores affect the software product cycle — Researchers need to con-
sider how and why app stores can affect the software development life cycle.
For example, we know that app stores can constrain and sometimes even dic-
tate software release processes. Some stores go beyond this and exert a kind
of socio-technical environmental pressure on other software development prac-
tices, becoming a de facto stakeholder in app development. Sometimes these
environmental pressures are technical in nature, where the app store might dic-
tate the programming language or deployment platform/OS; some app stores
go further and create RTEs, software development kits (SDKs), and user inter-
face (UI) libraries that must be used by all app developers. Sometimes these
environmental pressures are non-technical in nature, such as when the app
store prescribes the kinds of application that is allowed in the store. For ex-
ample, Microsoft recently announced that it will not permit app developers

32 Wenhan Zhu et al.

to profit from open source applications.> When an app store operates in a
manner such that it has control over what kind of application to include, it
creates a software ecosystem and as such, it faces the same challenges that any
other ecosystem has: how to thrive. In particular, stores need to understand
the needs of their developers and users to retain existing ones and attract
new ones. However, suggested by what we have observed in Sec. 4, app stores
are diverse with a large number of features that characterize and differentiate
between them. While stores are experimenting and evolving, each action is
likely to have an effect on the ecosystems they formed, both positively and
negatively. Thus, the impact of app stores in the economy and their markets
is worthy of further study.

> An app may be offered in several app stores — Developers want to run their
software on the platform that is provided or supported by the store, and as
such they must accept the requirements and limitations that such a store may
impose. This issue is compounded when the app is being offered in more than
one store, as the developers might have to adapt their processes to different
sets of requirements, some of which might be conflicting. For instance, an app
can be both available in F-Drom (in Cluster 7) and Goocre Pray (in Cluster
8). In GoocLe Pray, it is common for applications to collect telemetry data
to better understand typical user behaviour; however, in F-Droip — an open
source and privacy-oriented store — such data collection is highly discouraged.
Furthermore, developers must also adapt to the features and limitations that a
store provides regarding software deployment, communication with users and
— when they exist — the mechanism available to profit from their software
and to use digital rights management. This is particularly interesting if the
targeted app stores are in different natural groupings. This introduces new
areas of studies such as how store policies propagate to applications over time,
and how violations of store policies can be detected automatically. Researchers
have already begun to investigate this topic through qualitative approaches to
identify how applications comply with specific policies that concern accessibil-
ity [29] and human values [45].

> App stores strongly affect the release engineering process — App Stores are
especially important in release engineering. Specifically, the release process
needs to consider how the application is to be packaged, deployed, and up-
dated. The heterogeneity of the platform provided by RTEs might also affect
the number of versions of the application that need to be deployed, e.g., va-
riety of target CPUs, different screen sizes and orientations, and amount of
available memory.

When an application is developed for multiple stores, it must effectively
be managed as a product line; this is because multiple deliverables must be
created, one for each platform-store combination [113]. Multiple deliverables
can also help for telemetry reasons such as tracking the installation source
of the application [114]. The differences between packaged versions might be

3 See Update to 10.8.7 https://docs.microsoft.com/en-us/windows/uwp/publish/
store-policies-change-history

What is an App Store? The Software Engineering Perspective 33

as significant as requiring the source code to be written in different program-
ming languages, using different frameworks; also, each store is likely to require
different deployment processes.

For example, when cross-releasing browser add-ons, developers may have
to rewrite part of the functionality in Swift/ Objective-C for better integration
with Safari (in the Apple’s App Store), while at the same time maintaining a
fully JavaScript version for Curome Wes Store. Also, the scheduling of release
activities is often dictated by the release processes of the stores. A previous
study has showed that taking into consideration of app review times is an
important factor when planning releases [53]. The app store standardizes, and
often simplifies, the release engineering processes for its store; but it also be-
comes a potential roadblock that might delay or even reject a new release.

5.4.2 The Challenge of Transferring Understanding Between Stores

As noted above, prior work has examined many aspects of app stores, yet the
app store itself has rarely been the focus of the research. In many studies, the
app store serves as a convenient collection of apps, and the research focuses
on mobile development concerns such as testing and bug localization. Even
when research focuses on the app store itself, the scope rarely extends beyond
GoocLe Pray and Apple’s Are Store. Based on our observations, the diversity
of app stores in their operational goals, business models, delivery channels, and
feature sets can affect the generalizability of research outcomes. For example,
there have recently been many studies [12,18,43,45,46,50,52| that focus on app
reviews. However, for an app store that does not have reviews (e.g., NinTENDO
eSuor) none of the findings and tools can be leveraged (e.g., stores in Cluster
1,5, and 7).

> App Stores that have the same features may still differ significantly — De-
pending on the problem domain, the details of software development practices
can vary dramatically. For example, game development has been compared to
both more traditional industrial software development [90] and to open source
software development [91]; in both cases, the development processes can differ
greatly. We conjecture that the same may also occur across app stores, where
despite the same feature is being offered in the different stores, the convention
of using them could be different. As mentioned above, one specific observa-
tion has been made between the gaming-focused store Steam and mobile stores
(e.g., GooaLE Pray) in Cluster 8, where Lin et al. [12] found that reviews across
the platforms for the same app were often quite different in tone. Such uncer-
tainly invites future research to validate their findings in one store to another
to improve the generalizability of the results, and also encourages replication
studies to verify existing results on other stores.

> A feature not in the app store does not mean the functionality is missing —
While some app stores aim to provide a complete experience, where all inter-
actions from the developers and users are expected to be performed within the
store, some app stores export part of the work to other platforms. This can

34 Wenhan Zhu et al.

even occur for common features that one might find essential. For instance,
starred reviews are universal in Cluster 2, 4, and 6 where typical users leverage
this information to decide whether an application is good; starred reviews are
uncommon for other stores in Cluster 1, 5, 7. The specialized store may have
some other metric to indicate popularity or quality, such as total number of
downloads, but the focus of the store is often to offer a managed way of instal-
lation. Other features, such as application support, are left to other platforms
such as social media. Research can further explore the integration between
app stores and other platforms.

6 Threats to Validity

> Internal Validity — Our initial seeding of app stores comes from personal
experience of app stores by the authors of the paper. Personal bias could cause
us to miss other types of app stores. However, given the number of authors
on this paper and our initial effort to consider as many stores as possible, we
feel that have created a wide, deep, and collaborative “best effort”. When we
labeled app stores by their dimensions, it is a qualitative process. As with
any qualitative process, the results could be biased by the authors performing
the task. We tackled this issue by first labeling a few stores separately by
all authors and discussing the results until a consensus was achieved; thus,
we started with a set of “gold standard” labels. Then the labeling task was
delegated to two authors who continued to label the stores separately with a
portion of the store overlapping. The overlapping labels are then verified by
the Cohen’s Kappa between the two authors to measure the agreement.

We leveraged the K-means algorithm for the clustering process. We first
applied PCA techniques to reduce the dimensions of the initial labeling and
provide an orthogonal basis to feed the K-means clustering. When using other
clustering algorithms (e.g., Mean-shift, DBSCAN), the clustering result might
change; while K-means is widely adopted for clustering process in SE research,
by nature, determining the proper k value is still a challenge. We followed
common best practice to use metrics (i.e., the Silhouette method) to determine
the best value k. Despite our efforts, the output of the K-means clustering is
not perfect. We mainly leveraged the K-means clustering as the first step to
illustrate that app stores forms natural clusters which are different from each
other. Based on the K-means output, we further grouped the clusters into
types based on our qualitative understanding of the app store space.

> External Validity — During the process of expanding app stores, we relied
on the Google Search Engine to find web results based on keywords. The results
of this step rely on the capability of Google and are subject to change over time
as Google updates its search algorithms. The order may also be affected by SEO
operations. Combining results from other search engines (e.g., DuckDuckGo,
Bing) can help to reduce the bias.

When we applied our inclusion criteria, 1) app stores must contain software
products and 2) should offer an end-to-end experience for users (ordering,

What is an App Store? The Software Engineering Perspective 35

delivery, installation), we excluded stores that focus on digital assets that are
not software, such as a pure assets store that offers cosmetic enhancements to
desktop environments; we also excluded stores that offer software products but
in a way such that installation is completely managed by users. An extreme
example, would be the software section of Amazon where software is sold
as an activation key which users would input to activate the software that
they need to install themselves. A more general inspection of all means of
distribution software can be performed to gain a broader understanding of
software distribution.

We relied on only publicly available information to label each store. So if
some functionality (e.g., analytics information) is not documented publicly, we
were unable to confirm whether the store has such functionality. We also set
a time limit to label each store so in case we were unable to find information
about the store, with each store receives the same amount of attention.

One of the main challenges for reproducibility and replicability is that the
Google Search results and app stores can change overtime. New app stores are
likely to emerge and existing app stores may introduce and remove features.
The focus of our study is not to establish an exhaustive catalog of app stores,
nor to study the historic evolution of a store. Our goal is to establish a frame-
work that can describe app stores and to understand whether the operations
of app stores follow different patterns. Based on the granularity which we ex-
tracted features from app stores, we expect the majority of the feature groups
will remain stable over time. In the future, if researchers would like to repeat
our study, the labeling results may differ due to updates in the app store. To
mitigate this issue, we have included a snapshot of all Google Search results,
and documented how we would perform the labeling. So while the final labels
may differ, by applying the same process, a replication study would be possible
with updated data.

7 Summary

In this paper, we have explored the idea of what an app store is and what
features make app stores unique from each other. We labeled a set of repre-
sentative stores, curated from web search queries, by their features to study
the natural groupings of the stores. Our analysis suggests that app stores can
differ in the type of product offered in the store, and whether the store is busi-
ness oriented or community oriented. These natural groupings of the stores
challenge the manner in which app store research has largely been mobile fo-
cused. Previous studies have already shown empirical differences in activities
in mobile app stores and game stores [12]. Our study further suggests that
in the future, when we study app stores, we will need to consider the gener-
alizability of the results across app stores. Since one type of app store may
operate under different constraints than another kind, results observed in one
app store setting may not generalize to others.

36

Wenhan Zhu et al.

Conflict of Interests

The authors declared that they have no conflict of interest.

Data Availability Statement

A dataset consists of the Google query results and the app store labeling results
are available on Zenodo.*

Acknowledgements We would like to thank the attendees of the Shonan meeting [115]
on “Release Engineering for Mobile Applications”, where the paper’s idea was conceived.

One of the authors has received funding from the European Union’s Horizon 2020 re-

search and innovation programme under grant agreement number 825328 (FASTEN).

References

1.

10.

11.

12.

13.

14.

15.

C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and V. Bahl, “The
home needs an operating system (and an app store),” in SIGCOMM Workshop on Hot
Topics in Networks, ACM, 2010.

. Valve, “Welcome to Steam.” https://store.steampowered.com/, 2022. Accessed: Jun.

22 2022.

. GitHub, “GitHub Marketplace - to improve your workflow - GitHub.” https://github.

com/marketplace?type=, 2022. Accessed: Jun. 06 2022.

. Google, “Chrome Web Store - Extensions.” https://chrome.google.com/webstore/

category/extensions, 2022. Accessed: Jun. 22, 2022.

. WordPress, “WordPress Plugins | WordPress.org.” https://wordpress.org/plugins/,

2022. Accessed: Jun. 22, 2022.

. Autodesk, “Autodesk App Store : Plugins, Add-ons for Autodesk software, AutoCAD,

Revit, Inventor, 3ds Max, Maya” https://apps.autodesk.com/, 2022. Accessed:
Jun. 22, 2022.

. Docker, “Explore Docker’s Container Image Repository | Docker Hub.” https://hub.

docker.com/search?q=, 2022. Accessed: Jun. 22, 2022.

. Amazon, “AWS Marketplace: Homepage.” https://aws.amazon.com/marketplace/,

2022. Accessed: Jun. 22, 2022.

Rémi Prévost, Mike McQuaid, and Danielle Lalonde, “The Missing Package Manager
for macOS (or Linux) — Homebrew.” https://brew.sh/, 2022. Accessed: Jun. 22,
2022.

Canonical, “Ubuntu Software Center in Launchpad.” https://launchpad.net/
software-center, 2009. Accessed: Jun. 22, 2022.

M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: MSR for App
Stores,” in Int. Conf. on Mining Software Repositories, IEEE, 2012.

D. Lin, C.-P. Bezemer, Y. Zou, and A. E. Hassan, “An empirical study of game reviews
on the steam platform,” in Empirical Software Engineering, Springer, 2019.
Wikipedia, “Electronic AppWrapper - Wikipedia.” https://en.wikipedia.org/wiki/
Electronic_AppWrapper, 2022. Accessed: Jun. 22, 2022.

J. MacQueen et al., “Some methods for classification and analysis of multivariate ob-
servations,” in Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, Oakland, CA, USA, 1967.

P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis,” in Journal of computational and applied mathematics, Elsevier, 1987.

4 https://zenodo.org/record/7968192

What is an App Store? The Software Engineering Perspective 37

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

I. J. M. Ruiz, M. Nagappan, B. Adams, and A. E. Hassan, “Understanding reuse in
the android market,” in Int. Conf. on Program Comprehension, IEEE, 2012.

W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app store analysis
for software engineering,” in Transactions on Software Engineering, IEEE, 2016.

J. Dabrowski, E. Letier, A. Perini, and A. Susi, “Analysing app reviews for software en-
gineering: a systematic literature review,” in Empirical Software Engineering, Springer,
2022.

X. Zhan, L. Fan, S. Chen, F. Wu, T. Liu, X. Luo, and Y. Liu, “Atvhunter: Reliable
version detection of third-party libraries for vulnerability identification in android ap-
plications,” in Int. Conf. on Software Engineering, IEEE, 2021.

X. Zhang, X. Wang, R. Slavin, T. Breaux, and J. Niu, “How does misconfiguration of
analytic services compromise mobile privacy?,” in Int. Conf. on Software Engineering,
IEEE, 2020.

S. Rahaman, I. Neamtiu, and X. Yin, “Algebraic-datatype taint tracking, with ap-
plications to understanding Android identifier leaks,” in Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software En-
gineering, ACM, 2021.

T. Nguyen, P. Vu, and T. Nguyen, “Code recommendation for exception handling,” in
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ACM, 2020.

L. Pan, B. Cui, H. Liu, J. Yan, S. Wang, J. Yan, and J. Zhang, “Static asynchronous
component misuse detection for Android applications,” in Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ACM, 2020.

S. Arzt, “Sustainable Solving: Reducing The Memory Footprint of IFDS-Based Data
Flow Analyses Using Intelligent Garbage Collection,” in Int. Conf. on Software Engi-
neering, IEEE, 2021.

S. Yang, Y. Wang, Y. Yao, H. Wang, Y. F. Ye, and X. Xiao, “DescribeCtx: Context-
Aware Description Synthesis for Sensitive Behaviors in Mobile Apps,” in Int. Conf. on
Software Engineering, IEEE, 2022.

Z. Dong, M. Bohme, L. Cojocaru, and A. Roychoudhury, “Time-travel testing of an-
droid apps,” in Int. Conf. on Software Engineering, IEEE, 2020.

S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu, and L. Xu, “An empirical
assessment of security risks of global android banking apps,” in Int. Conf. on Software
Engineering, IEEE, 2020.

S. Almanee, A. Unal, M. Payer, and J. Garcia, “Too Quiet in the Library: An Empirical
Study of Security Updates in Android Apps’ Native Code,” in Int. Conf. on Software
Engineering, IEEE, 2021.

A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in android apps: state of
affairs, sentiments, and ways forward,” in Int. Conf. on Software Engineering, IEEE,
2020.

B. Yang, Z. Xing, X. Xia, C. Chen, D. Ye, and S. Li, “Don’t do that! hunting down
visual design smells in complex uis against design guidelines,” in Int. Conf. on Software
Engineering, IEEE, 2021.

P. Liu, L. Li, Y. Yan, M. Fazzini, and J. Grundy, “Identifying and characterizing
silently-evolved methods in the android API,” in Int. Conf. on Software Engineering:
Software Engineering in Practice, IEEE, 2021.

S. Yu, C. Fang, Y. Yun, and Y. Feng, “Layout and image recognition driving cross-
platform automated mobile testing,” in Int. Conf. on Software Engineering, IEEE,
2021.

J. Ye, K. Chen, X. Xie, L. Ma, R. Huang, Y. Chen, Y. Xue, and J. Zhao, “An em-
pirical study of GUI widget detection for industrial mobile games,” in Joint Meeting
on Furopean Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ACM, 2021.

S. Ma, J. Li, H. Kim, E. Bertino, S. Nepal, D. Ostry, and C. Sun, “Fine with “1234”?7
An Analysis of SMS One-Time Password Randomness in Android Apps,” in Int. Conf.
on Software Engineering, IEEE, 2021.

W. Song, M. Han, and J. Huang, “IMGDroid: Detecting Image Loading Defects in
Android Applications,” in Int. Conf. on Software Engineering, IEEE, 2021.

38

Wenhan Zhu et al.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

T. Zhao, C. Chen, Y. Liu, and X. Zhu, “GUIGAN: Learning to Generate GUI Designs
Using Generative Adversarial Networks,” in Int. Conf. on Software Engineering, IEEE,
2021.

J. Chen, C. Chen, Z. Xing, X. Xu, L. Zhut, G. Li, and J. Wang, “Unblind your apps:
Predicting natural-language labels for mobile gui components by deep learning,” in
Int. Conf. on Software Engineering, IEEE, 2020.

K. Kuznetsov, C. Fu, S. Gao, D. N. Jansen, L. Zhang, and A. Zeller, “Frontmatter:
mining Android user interfaces at scale,” in Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering,
ACM, 2021.

D. Van Der Linden, P. Anthonysamy, B. Nuseibeh, T. T. Tun, M. Petre, M. Levine,
J. Towse, and A. Rashid, “Schrodinger’s security: Opening the box on app developers’
security rationale,” in Int. Conf. on Software Engineering, IEEE, 2020.

V. Murali, E. Yao, U. Mathur, and S. Chandra, “Scalable statistical root cause analysis
on app telemetry,” in Int. Conf. on Software Engineering: Software Engineering in
Practice, IEEE, 2021.

R. Sun, W. Wang, M. Xue, G. Tyson, S. Camtepe, and D. C. Ranasinghe, “An empirical
assessment of global COVID-19 contact tracing applications,” in Int. Conf. on Software
Engineering, IEEE, 2021.

A. Truelove, E. S. de Almeida, and I. Ahmed, “We’ll Fix It in Post: What Do Bug
Fixes in Video Game Update Notes Tell Us?)” in Int. Conf. on Software Engineering,
IEEE, 2021.

M. Haering, C. Stanik, and W. Maalej, “Automatically matching bug reports with
related app reviews,” in Int. Conf. on Software Engineering, IEEE, 2021.

S. Yu, C. Fang, Z. Cao, X. Wang, T. Li, and Z. Chen, “Prioritize crowdsourced test
reports via deep screenshot understanding,” in Int. Conf. on Software Engineering,
IEEE, 2021.

H. O. Obie, W. Hussain, X. Xia, J. Grundy, L. Li, B. Turhan, J. Whittle, and
M. Shahin, “A first look at human values-violation in app reviews,” in Int. Conf.
on Software Engineering: Software Engineering in Society, IEEE, 2021.

R. A.-L. Fischer, R. Walczuch, and E. Guzman, “Does culture matter? impact of
individualism and uncertainty avoidance on app reviews,” in Int. Conf. on Software
Engineering: Software Engineering in Society, IEEE, 2021.

O. Haggag, S. Haggag, J. Grundy, and M. Abdelrazek, “COVID-19 vs social media
apps: does privacy really matter?,” in Int. Conf. on Software Engineering: Software
Engineering in Society, IEEE, 2021.

R. A. Shams, W. Hussain, G. Oliver, A. Nurwidyantoro, H. Perera, and J. Whit-
tle, “Society-oriented applications development: Investigating users’ values from
bangladeshi agriculture mobile applications,” in Int. Conf. on Software Engineering:
Software Engineering in Society, IEEE, 2020.

Z. Zhang, Y. Feng, M. D. Ernst, S. Porst, and I. Dillig, “Checking conformance of
applications against GUI policies,” in Joint Meeting on Furopean Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ACM, 2021.
H. Wu, W. Deng, X. Niu, and C. Nie, “Identifying key features from app user reviews,”
in Int. Conf. on Software Engineering, IEEE, 2021.

Y. Hu, H. Wang, T. Ji, X. Xiao, X. Luo, P. Gao, and Y. Guo, “Champ: Characterizing
undesired app behaviors from user comments based on market policies,” in Int. Conf.
on Software Engineering, IEEE, 2021.

H. Guo and M. P. Singh, “Caspar: extracting and synthesizing user stories of problems
from app reviews,” in Int. Conf. on Software Engineering, IEEE, 2020.

A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, and M. Harman, “App Store Effects
on Software Engineering Practices,” in Transactions on Software Engineering, IEEE,
2021.

H. Wang, Z. Liu, J. Liang, N. Vallina-Rodriguez, Y. Guo, L. Li, J. Tapiador, J. Cao,
and G. Xu, “Beyond google play: A large-scale comparative study of chinese android
app markets,” in Internet Measurement Conference 2018, 2018.

S. Jansen and E. Bloemendal, “Defining app stores: The role of curated marketplaces
in software ecosystems,” in ICSOB, Springer, 2013.

What is an App Store? The Software Engineering Perspective 39

56.

57.
58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.
78.

79.

80.

D. Walker and F. Myrick, “Grounded theory: An exploration of process and procedure,”
in Qualitative health research, Sage, 2006.

A. P. M. Coxon et al., Sorting data: Collection and analysis. Sage, 1999.

S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to study the experience
of software development,” in Empirical Software Engineering, Springer, 2011.

R. Hoda, J. Noble, and S. Marshall, “Developing a grounded theory to explain the
practices of self-organizing Agile teams,” in Empirical Software Engineering, Springer,
2012.

Z. Masood, R. Hoda, and K. Blincoe, “How agile teams make self-assignment work: a
grounded theory study,” in Empirical Software Engineering, Springer, 2020.

C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and A. Zaidman, “How
developers engage with static analysis tools in different contexts,” in Empirical Soft-
ware Engineering, Springer, 2020.

J. Chen, X. Xia, D. Lo, J. Grundy, and X. Yang, “Maintenance-related concerns for
post-deployed Ethereum smart contract development: issues, techniques, and future
challenges,” in Empirical Software Engineering, Springer, 2021.

P. Wang, C. Brown, J. A. Jennings, and K. T. Stolee, “Demystifying regular expression
bugs,” in Empirical Software Engineering, Springer, 2022.

J. Cohen, “A coefficient of agreement for nominal scales,” in Educational and psycho-
logical measurement, Sage, 1960.

J. Pérez, J. Diaz, J. Garcia-Martin, and B. Tabuenca, “Systematic literature reviews
in software engineering—Enhancement of the study selection process using Cohen’s
kappa statistic,” in Journal of Systems and Software, Elsevier, 2020.

C. A. Lantz and E. Nebenzahl, “Behavior and interpretation of the x statistic: Reso-
lution of the two paradoxes,” in Journal of clinical epidemiology, Elsevier, 1996.

P. Pickerill, H. J. Jungen, M. Ochodek, M. Mac¢kowiak, and M. Staron, “Phantom: Cu-
rating github for engineered software projects using time-series clustering,” Empirical
Software Engineering, 2020.

V. Khatibi Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim, and E. Khatibi, “A flexi-
ble method to estimate the software development effort based on the classification of
projects and localization of comparisons,” Empirical Software Engineering, 2014.

A. Al-Subaihin, F. Sarro, S. Black, and L. Capra, “Empirical comparison of text-
based mobile apps similarity measurement techniques,” Empirical Software Engineer-
ing, 2019.

T. Kuchta, T. Lutellier, E. Wong, L. Tan, and C. Cadar, “On the correctness of elec-
tronic documents: studying, finding, and localizing inconsistency bugs in PDF readers
and files,” Empirical Software Engineering, 2018.

D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seeding,” tech.
rep., Stanford, 2006.

S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” in Chemometrics
and intelligent laboratory systems, Elsevier, 1987.

Apple, “Apple Introduces the New iPhone 3G.” https://www.apple.com/ca/newsroom/
2008/06/09Apple-Introduces-the-New-iPhone-3G/, 2008. Accessed: Jul. 17, 2022.
Google, “Chrome Web Store payments deprecation.” https://developer.chrome.com/
docs/webstore/cws-payments-deprecation/, 2022. Accessed: Mar. 16, 2022.

E. Commission, “Digital Markets Act: Commission welcomes political agreement on
rules to ensure fair and open digital markets.” https://ec.europa.eu/commission/
presscorner/detail/en/IP_22_1978, 2022. Accessed: Jul. 13, 2022.

F-Droid, “F-Droid - Free and Open Source Android App Repository.” https://
f-droid.org/, 2022. Accessed: Oct. 02, 2022.

npm, “npm About.” https://www.npmjs.com/about, 2022. Accessed: Oct. 02, 2022.
E. International, “T'C39 - Specifying JavaScript..” https://tc39.es/, 2022. Accessed:
Oct. 02, 2022.

T. Kodi, “The Movie Database Python | Matrix | Addons | Kodi.” https://kodi.tv/
addons/matrix/metadata.themoviedb.org.python, 2022. Accessed: Jul. 13, 2022.

V. V. H. Pham, X. Liu, X. Zheng, M. Fu, S. V. Deshpande, W. Xia, R. Zhou, and
M. Abdelrazek, “PaaS-black or white: an investigation into software development model
for building retail industry SaaS,” in Int. Conf. on Software Engineering Companion
(ICSE-C), IEEE, 2017.

40

Wenhan Zhu et al.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and Y. Zhang, “Investigating
the relationship between price, rating, and popularity in the Blackberry World App
Store,” Information and Software Technology, 2017.

F. Sarro, A. A. Al-Subaihin, M. Harman, Y. Jia, W. Martin, and Y. Zhang, “Feature
lifecycles as they spread, migrate, remain, and die in app stores,” in Int. requirements
engineering conference (RE), IEEE, 2015.

W. Aljedaani, M. Nagappan, B. Adams, and M. Godfrey, “A comparison of bugs across
the ios and android platforms of two open source cross platform browser apps,” in Int.
Conf. on Mobile Software Engineering and Systems, IEEE, 2019.

Z. Lu, Y. Shi, R. Tao, and Z. Zhang, “Blockchain for digital rights management of
design works,” in Int. Conf on Software Engineering and Service Science (ICSESS),
IEEE, 2019.

T. Gaber, A. Ahmed, and A. Mostafa, “Privdrm: A privacy-preserving secure digital
right management system,” in Fwvaluation and Assessment in Software Engineering,
ACM, 2020.

A. Sung, S. Kim, Y. Kim, Y. Jang, and J. Kim, “Test automation and its limitations:
a case study,” in Int. Conf. on Automated Software Engineering (ASE), IEEE, 2019.
M. Lemon, “Two Point Hospital no longer uses Denuvo DRM.” https://www.vg247.
com/two-point-hospital-no-longer-uses-denuvo-drm, 2018. Accessed: Mar. 31,
2023.

X. He, W. Dai, G. Cao, R. Tang, M. Yuan, and Q. Yang, “Mining target users for
online marketing based on app store data,” in Int. Conf. on Big Data (Big Data),
IEEE, 2015.

G. L. Scoccia, M. Autili, G. Stilo, and P. Inverardi, “An empirical study of privacy la-
bels on the Apple iOS mobile app store,” in Int. Conf. on Mobile Software Engineering
and Systems, 2022.

E. Murphy-Hill, T. Zimmermann, and N. Nagappan, “Cowboys, ankle sprains, and
keepers of quality: How is video game development different from software develop-
ment?,” in Int. Conf. on Software Engineering, 2014.

L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli, “How is video game devel-
opment different from software development in open source?,” in Int. Conf. on Mining
Software Repositories, IEEE, 2018.

D. Lee, G. K. Rajbahadur, D. Lin, M. Sayagh, C.-P. Bezemer, and A. E. Hassan, “An
empirical study of the characteristics of popular Minecraft mods,” Empirical Software
Engineering, 2020.

M. H. Ibrahim, M. Sayagh, and A. E. Hassan, “Too many images on dockerhub! how
different are images for the same system?,” Empirical Software Engineering, 2020.

G. H. Subramanian, P. C. Pendharkar, and M. Wallace, “An empirical study of the
effect of complexity, platform, and program type on software development effort of
business applications,” Empirical Software Engineering, 2006.

I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski, L. Pollock,
and J. Clause, “An empirical study of practitioners’ perspectives on green software
engineering,” in Int. Conf. on Software Engineering, 2016.

S. Gholami, H. Khazaei, and C.-P. Bezemer, “Should you upgrade official docker hub
images in production environments?,” in Int. Conf. on Software Engineering: New
Ideas and Emerging Results (ICSE-NIER), IEEE, 2021.

E. Guzman, L. Oliveira, Y. Steiner, L. C. Wagner, and M. Glinz, “User feedback in
the app store: a cross-cultural study,” in Int. Conf. on Software Engineering: Software
Engineering in Society, 2018.

D. Lee, D. Lin, C.-P. Bezemer, and A. E. Hassan, “Building the perfect game—an
empirical study of game modifications,” Empirical Software Engineering, 2020.

M. Nayebi, H. Farahi, and G. Ruhe, “Which version should be released to app store?,”
in Int. Symposium on Empirical Software Engineering and Measurement (ESEM),
IEEE, 2017.

M. Nayebi, B. Adams, and G. Ruhe, “Release Practices for Mobile Apps—What do Users
and Developers Think?)” in Int. Conf. on software analysis, evolution, and reengineer-
ing (saner), IEEE, 2016.

What is an App Store? The Software Engineering Perspective 41

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

S. Shen, X. Lu, Z. Hu, and X. Liu, “Towards release strategy optimization for apps
in Google Play,” in Proceedings of the 9th Asia-Pacific Symposium on Internetware,
2017.

G. Ferreira, L. Jia, J. Sunshine, and C. Késtner, “Containing malicious package updates
in npm with a lightweight permission system,” in Int. Conf. on Software Engineering
(ICSE), IEEE, 2021.

C. Tang, S. Chen, L. Fan, L. Xu, Y. Liu, Z. Tang, and L. Dou, “A large-scale empir-
ical study on industrial fake apps,” in Int. Conf. on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), IEEE, 2019.

J. Vouillon and R. D. Cosmo, “On software component co-installability,” Transactions
on Software Engineering and Methodology (TOSEM), 2013.

M. Claes, T. Mens, R. Di Cosmo, and J. Vouillon, “A historical analysis of Debian
package incompatibilities,” in Int. Conf. on Mining Software Repositories, IEEE, 2015.
C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar software applica-
tions,” in Int. Conf. on Software Engineering (ICSE), IEEE, 2012.

W. Martin, F. Sarro, and M. Harman, “Causal impact analysis for app releases in
google play,” in Int. Symposium on Foundations of software engineering, 2016.

W. Maalej, M. Nayebi, and G. Ruhe, “Data-driven requirements engineering-an up-
date,” in Int. Conf. on Software Engineering: Software Engineering in Practice (ICSE-
SEIP), IEEE, 2019.

G. C. Ullmann, C. Politowski, Y.-G. Guéhéneuc, and F. Petrillo, “What makes a game
high-rated? towards factors of video game success,” in Int. [CSE Workshop on Games
and Software Engineering: Engineering Fun, Inspiration, and Motivation, 2022.

H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Prioritizing the devices to test
your app on: A case study of android game apps,” in Int. Symposium on Foundations
of Software Engineering, 2014.

M. Nayebi, H. Cho, H. Farrahi, and G. Ruhe, “App store mining is not enough,” in
Int. Conf. on Software Engineering Companion (ICSE-C), IEEE, 2017.

C. Rosen and E. Shihab, “What are mobile developers asking about? a large scale
study using stack overflow,” in Empirical Software Engineering, Springer, 2016.

H. Wang, X. Wang, and Y. Guo, “Characterizing the global mobile app developers: a
large-scale empirical study,” in Int. Conf. on Mobile Software Engineering and Sys-
tems, IEEE, 2019.

Y. Y. Ng, H. Zhou, Z. Ji, H. Luo, and Y. Dong, “Which Android app store can be
trusted in China?,” in Computer Software and Applications Conference, IEEE, 2014.
S. McIntosh, Y. Kamei, and M. Nagappan, Release Engineering for Mobile Applica-
tions — Communications of NII Shonan Meetings. Springer, 2019.

