
Noname manuscript No.
(will be inserted by the editor)

We Do Not Understand What It Says – Studying
Student Perceptions of Software Modelling

Shalini Chakraborty · Grischa Liebel

Received: date / Accepted: date

Abstract Background: Despite the potential benefits of software modelling,
developers have shown a considerable reluctance towards its application. There
is substantial existing research studying industrial use and technical challenges
of modelling. However, there is a lack of detailed empirical work investigat-
ing how students perceive modelling. Aim: We investigate the perceptions of
students towards modelling in a university environment. Method: We con-
ducted a multiple case study with 5 cases (5 courses from 3 universities) and
two units of analysis (student and instructor). We collected data through 21
semi-structured interviews, which we analysed using in-vivo coding and the-
matic analysis. Results: Students see some benefits of modelling, e.g., using
models for planning and communicating within the group. However, several
factors negatively influence their understanding of modelling, e.g., assignments
with unclear expectations, irregular and insufficient feedback on their models,
and lack of experience with the problem domains. Conclusions: Our findings
help in understanding better why students struggle with software modelling,
and might be reluctant to adopt it later on. This could help to improve edu-
cation and training in software modelling, both at university and in industry.
Specifically, we recommend that educators try to provide feedback beyond
syntactical issues, and to consider using problem domains that students are
knowledgeable about.

Keywords Software Modelling, Case Study, UML, Education

S. Chakraborty
Reykjavik University
Menntavegur 1, 102 Reykjav́ık, Iceland
ORCID: 0000-0002-9466-3766
E-mail: shalini19@ru.is

G. Liebel
Reykjavik University
Menntavegur 1, 102 Reykjav́ık, Iceland
ORCID: 0000-0002-3884-815X
E-mail: grischal@ru.is

ar
X

iv
:2

20
7.

13
82

9v
2 

 [
cs

.S
E

] 
 3

 J
an

 2
02

3



2 Shalini Chakraborty, Grischa Liebel

1 Introduction

Software modelling has the potential to improve on several factors in software
and systems engineering, such as productivity [2] or cost [20]. While these
benefits seem to be appreciated in certain areas of software and systems engi-
neering [26], software modelling is not widely adopted in software and systems
engineering as a whole [14].

The reasons for a lack of adoption and use have been studied in depth,
revealing issues such as poor quality code generation, lack of tool support,
and lack of guidance or training [10,53,52,29,27,26]. Additionally, it has been
put forward that a perceived lack of usefulness or too high effort prevents
engineers from using models [14,48].

In the educational domain, substantial work exists on how to teach mod-
elling in a university curriculum, e.g., [50,6,21,32,51,45,25]. Existing work
typically comes in the form of suggested course designs, e.g., [42,50], experi-
ence reports that discuss challenges or good practices, especially tool-related,,
e.g., [6,21,32,51], or papers that report quantitative studies of student opin-
ions, e.g., [45,25]. This body of work forms a rich source of experience and
inspiration for teaching modelling.

However, there is a lack of in-depth studies that aim to understand how
students perceive modelling and why this is the case. Experience reports com-
monly suffer from various biases, as they rely on individual experiences and
lack rigorous methods of data collection and analysis. Similarly, existing quan-
titative studies aim to provide a broad picture and can, therefore, not provide
detailed explanations [46]. Finally, experience reports by researchers that have
a particular focus on software and systems modelling risk being unrepresenta-
tive of instructors without such a focus. Since students will after graduation
become professionals, it is important to understand their perceptions. Under-
standing existing challenges they face, but also perceived benefits of using
models can help improve modelling education and facilitate an increased up-
take in industry.

To address this gap, this paper aims to investigate students’ perceptions
of modelling, both in terms of benefits of and challenges with modelling. We
pose the following two research questions (RQs) to address our aim:

– RQ1: What are students’ perceptions about modelling?
– RQ2: What are the main challenges students face while modelling?

To answer these questions, we conducted a qualitative case study, inter-
viewing a total of 21 subjects from 5 university courses that cover modelling.
We interviewed both students and instructors, and analysed course assign-
ments.

Our findings show that several of the perceived benefits and challenges
align well with those reported in existing literature. Students find it beneficial
to use models as a means of communication and handling complexity. They
report difficulties such as obtaining good and fast feedback on a model. We
further find that the lack of technical skills and domain knowledge in the



Studying Student Perceptions of Software Modelling 3

student population prevents them from connecting their models and judging
their quality to any known domain. This finding gives a better explanation
of why certain problem domains might be problematic in any given context.
Further, it highlights the importance to carefully tailor modelling courses to
the experience of the audience, and consider the role of modelling courses in
the curriculum.

The rest of the paper is structured as follows. In Section 2 we discuss the
related work on modelling in education and industry, and the importance of
taking students’ perception into account. In Section 3, we present the method
we applied for our case study, followed by the results in Section 4 and a dis-
cussion thereof in Section 5. Finally we conclude the paper in Section 6 with
a summary and plans for future work.

2 Related Work

In the following, we describe related work that investigates the use of models
in industry, and work on modelling education. Finally, we describe work that
aims to connect industry and education.

2.1 Models in Industry

There is substantial work on the adoption and the challenges of software mod-
elling in industry, e.g., [19,17,18,52,26,27,48,28,29,4].

In an early study at Motorola, Baker et al. [4] find that models increase pro-
ductivity and reduce defects. However, they also find that modelling tools are
insufficient and lack interoperability, and that MBE does not scale sufficiently.

Mohagheghi et al. [28,29] highlight the potential of using models for simu-
lation and testing, while also mentioning tool issues and model complexity as
challenges of adopting MBE.

Hutchinson et al. [19,17,18,52] conduct several studies assessing the state
of practice of MBE in industry. The authors confirm that modelling tools and
model complexity are problematic, but also highlight organisational factors.
Among others, they find that a lack of training hinders the adoption of mod-
elling.

In a survey in the Italian software developing industry, Torchiano et al. [48]
find that developers mainly use models for informal sketches and communica-
tion. They further report that inexperience among developers limits the use
of models.

In a survey among systems engineering professionals, we find that models
provide substantial benefits, e.g., in terms of increases in productivity [26].
However, several challenges in technical and non-technical areas remain, e.g.,
lack of training and guidance, tool shortcomings, and a lack of tool interop-
erability. Following up with an in-depth qualitative study at two automotive
companies, we report that models are used primarily for communication and



4 Shalini Chakraborty, Grischa Liebel

to handle complexity. Stakeholders further prefer sketches and informal mod-
els [27]. System models often use in other domains, such as healthcare, for
communication and to provide better organisational support. In [22], authors
discuss the application of event-based models such as Petri nets to capture the
various operations running in a hospital. Although found helpful, the authors
also highlight certain challenges like needing more understanding in adopting
the models from healthcare associations. Considering UML specifically, the
healthcare domain has multiple evidence of using UML models to design the
domains [49,35] and human-centric tasks [5]. However, in the latter, the au-
thors mentioned a need for more explicit representation from the models. In
the healthcare domains where the cognitive behaviour of the actors is highly
involved in the process, software models that are used for designing those
processes should provide the ability to include the behaviours.

2.2 Models in Education

Research on models in education exists primarily in three forms: (i) solution
proposals on how to teach modelling, including tools tailored to an educa-
tional context, (ii) experience reports on modelling education, and (iii) surveys
among students.

An example of the first category is the practical approach to teaching
model-driven software development proposed by Schmidt et al. [42]. In the
proposed course, students develop a code generator using standard software de-
velopment tools. Similarly, Westphal [50] describes the design of an SE course
that focuses heavily on modelling. In [12], authors proposed a course where
they used students both as language designers and its users to evaluate the
usability of software language engineering (SLE). Gonnord et al. [13] try a
reverse approach, and with the students, they journey from low-level C code
to designing modelling language workbench. In all cases, evaluation of the
proposed course design relies on student feedback.

Numerous experience reports exist related to modelling education, e.g., [3,
32,21]. Akayama et al. [3] share their experience and opinion on tool use in
software modelling education. The paper describes different approaches taken
by the individual authors and provides a discussion of factors such as mod-
elling tools vs pen and paper, the conflict between the concepts of design and
programming, and how to measure the quality of models. Paige et al. [32]
discuss what they consider to be bad practices of teaching modelling. They
name bad practices such as covering a too broad range of modelling-related
topics, and focusing on syntax instead of semantics. Similarly, Kolovos and
Cabot [21] present a corpus of use cases for courses teaching MBE. The au-
thors state that modelling courses regularly suffer from the use of uninteresting
or irrelevant examples, and therefore propose a list of use cases suited to teach
modelling. Daniel L. Moody [30] mentions a need for more effort in designing
visual syntax for notations. Therefore, propose a tutorial that defines a ” set
of principles for designing cognitively effective visual notations: ones that are



Studying Student Perceptions of Software Modelling 5

optimised for human communication and problem solving”. Ciccozzi et al. [8]
present a survey among educators on how modelling is taught. The authors
find that educators see the focus on tools critical, as it might prevent students
from understanding the core principles of modelling.

Several empirical studies exist on modelling education, e.g., [36,45,1,24,
15]. Reuter et al. [36] study students’ problems with UML diagrams over two
modelling courses. As a result, the authors present a catalogue of problems
with UML diagrams. In a similar direction, Stikkolorum et al. [45] study stu-
dent problems and modelling strategies in UML Class diagrams by presenting
students with a specialised UML editor that incorporates feedback mecha-
nisms. The results reveal four distinct strategies, and a number of problems
such as choosing the right syntax elements. Agner et al. [1] conduct a survey
on modelling tool use among 117 students. The authors report issues such as
a lack of feedback, difficulties in drawing the diagrams and tool complexity.
Hammouda et al. [15] compare the use of modelling CASE tools to pen and pa-
per use. Using a survey, they evaluate students’ perceptions of the differences,
finding no clear advantage for either approach. In the context of modelling
tools in education, the tool Umple needs to be highlighted [11]. Umple is a
tool that allows to create UML models in a textual concrete syntax close
to object-oriented languages like Java. Furthermore, code in many different
general-purpose programmming languages can generated directly from Umple
models, thus allowing for direct feedback from models. Surveys with students
have shown positive results on the use of Umple [23,24]. Umple is successfully
used by several instructors teaching modelling. However, to our knowledge, it
is currently not widely used on a global scale. Finally, we conducted several
case studies on tool use in modelling education [24,25]. We find that students
can use industrial modelling tools successfully, but require substantial coaching
in how to use the tools, with a dedicated tool champion present in the course.
We further find that the tools’ inability to provide adequate feedback impacts
the tool acceptance. In an attempt to connect industry practice to education,
Whittle and Hutchinson [51] present essential differences between industry
practice and education concerning software modelling. The authors find that
modelling education is more UML-centric, whereas industry is placing more
emphasis on abstract models. Furthermore, in industry it is more common to
use a bottom-up approach to adoption, whereas modelling is typically taught
in a top-down fashion.

3 Research Method

Our goal is to investigate students’ perceptions, especially their challenges
in learning and applying software modelling in a university environment. To
do so, we conducted a multiple-case study. Runeson at al. [39] define a case
study as an “empirical investigation of a software engineering phenomenon
within its real-life context” where evidence can be drawn from multiple sources,
more importantly from real-life experiments involving human participants [54].



6 Shalini Chakraborty, Grischa Liebel

The phenomenon we study is the experience of students learning software
modelling at university. In total, we interviewed 16 students from 3 different
universities and 5 different courses. Additionally, we interviewed instructors
of the 5 courses we considered. Three courses were at bachelor level and two
were from masters level. In addition to the interviews, we consulted assignment
details for the courses.

Whether students can or should be used as study subjects is a long-debated
question in SE [38,41,44,9]. In particular, students can be valid study subjects
under certain conditions, e.g., if novice software engineers are studied [9]. In our
case, we aim to study how students perceive modelling, in contrast to existing
studies that investigate industrial cases. Therefore, the choice of students as
study subjects is valid.

The study setup is described in detail in the following sub-sections.

3.1 Case Study Design

3.1.1 Pilot Study

Before starting the actual study, we conducted a pilot study with three inter-
viewees, two doctoral students and one bachelor student. Of the two doctoral
students, one has prior knowledge and experience of software modelling. The
other student has no experience in software modelling. We selected the com-
bination because we wanted to check how our questions would be received by
different persons with various software modelling background, as we are deal-
ing with students from different countries, courses and backgrounds. Then we
conducted another interview with a bachelor student who had taken a mod-
elling course at our university. Our focus was to check the interview guide.
Also, the pilot study helped us to estimate the overall interview time.

3.1.2 Cases and Recruitment

We designed a multiple embedded case study [39] with five cases, each case is
represented by a course-university pair. Table 1 shows the cases and the in-
terviewees per case (using anonymous identifiers). Initially, we contacted the
instructors of the courses based on our own contacts, and once they agreed,
we advertised the study to students of that course. C1 was selected through
convenience sampling, as it is a course at our home university. It is a typical
“UML course” in the sense that basic UML diagrams are introduced. The
course starts with user interface methods, later students learn about software
modelling, including the UML use case, class, sequence, and activity diagrams.
Assignments related to these diagrams are given. The course has two instruc-
tors, where I2 was responsible for the modelling part. However, both I1 and I2
were in charge of the exams. Therefore, we interviewed both instructors. Nei-
ther of the two instructors is active in modelling research. C2 was selected as a
comparative case, as it was a basic UML course taught by the same instructor



Studying Student Perceptions of Software Modelling 7

I2 as C1, at the same university. C2 concentrates mainly on software mod-
elling, with more focus on UML in the assignments. Similarly, the difficulty
level is higher. C1 and C2 are both bachelor courses. However, C2 is located in
the software engineering program and C1 in computer science. C3 to C5 were
selected as revelatory cases, as they exhibit one or several differences to C1
and C2. One of the main differences is the change of university/country. C2
and C3 are similar in terms of the course syllabus. Both courses teach system
design and UML from scratch. C4 and C5 are courses in the same university
and are master courses. While, in C4, UML is taught from scratch, C5 focuses
on using UML diagrams for architecture and testing. Apart from C1, all four
courses include implementation tasks.

Participation in the interviewees was voluntary and instructors were not
aware of who participated in the interviews. We asked interested students
to contact the researchers via mail, and once students initiated the contact,
we sent them an interview meeting invitation and a consent form. All in-
terviews were online. To appreciate students’ participation, we offered them
movie vouchers or did a donation to charity on their behalf.

Table 1 Case Summary

Code Level Course Description Students Instructors

C1 Bachelor Software analysis and prototype design using
user interviews

C1 (S1, S2, S3,
S4, S5)

I1, I2

C2 Bachelor Software requirement analysis and design C2 (S1, S2, S3) I2
C3 Bachelor Software requirement specification and design C3 (S1, S2) I3
C4 Master System specification, design and testing C4 (S1, S2, S3) I4
C5 Master Software architecture design and quality anal-

ysis
C5 (S1, S2, S3) I5

3.2 Data Collection

Based on the pilot study, we decided to conduct interviews for approximately
40 minutes. The student interviews were divided into two set of questions:
introductory question and model questions. In the introductory ques-
tions, we added questions about a student’s background, previous work experi-
ence with software models. The model questions includes students’ personal
experiences during courses, challenges in learning modelling, completing as-
signments and overall perception of software modelling. The instructor ques-
tionnaire includes details about the course structure, assignments, feedback
from students and the instructor’s challenges with the course. All interviews
conducted remotely through Zoom or Microsoft Teams, and their build-in
recording features. Before recording, we asked permission from each intervie-
wee and received their signed consent form. Interviewees could additionally
give their consent that we would publish their anonymised interview tran-



8 Shalini Chakraborty, Grischa Liebel

Student 
interviews 

(n=16)

Instructor 
interviews 

(n=6)

Assignment 
textsTranscription

Organise into 
Excel sheets

In-vivo coding 
(1st part)

Whiteboard/
offline analysis

In-vivo coding 
(2nd part)

Offline and 
Miro analysis

Initial Themes Final Themes

Fig. 1 Data Analysis Process. Rounded rectangles denote data sources, regular rectangles
denote activities, rectangles with wavy bottom line denote artefacts, and arrows denote
information flow.

script. 13 interviewees consented to publishing. The interview guides and the
transcripts can be found on Zenodo [7].

3.3 Data Analysis

The data analysis process is depicted in Figure 1. After conducting the in-
terviews (steps 1a and 1b in Figure 1), we transcribed the interviews using
transcription services1. In case of automated transcriptions, we post-processed
the transcripts to improve their quality. The two researchers then applied in-
vivo coding separately on each interviewee transcript. We used in-vivo coding
[40], as it helps to highlight participants’ opinions by using the actual spo-
ken words. In our case, interviewees were from different countries and cultural
backgrounds, and thus used varying vocabulary to describe their personal ex-
periences. After conducting the first five interviews (C1 S1, C1 S2, C1 S3,
C1 S4 and C2 S1), we coded and then jointly discussed the resulting codes,
grouping them into initially 10 themes. These themes related to benefits and
challenges of modelling, as well as general categories refering to course feed-
back and concerns. We refined the themes as analysis progressed and more
interviews were added.

Once we finalised the themes based on student data, we coded the instruc-
tor data and compared it with the existing themes. We used the instructor
interviewees for three purposes, namely (a) to understand the course con-
text, (b) to better understand the student perceptions and to check whether
the instructors had the same views and (c) to obtain ideas for potential best
practices. For sorting quotes and themes, we used the online whiteboard tool
Miro4.

As a second data source for our analysis, we used course assignments to
cross-check themes and quotes that related to, e.g., assignments, work load, or
grading. We contacted the instructors after their respective interviews for as-
signment details, which included the assignment structure, time, instructions,
and point distribution. Unfortunately, only three instructors (C1/I1, C3/I3

1 We used Konch2 and Go Transcript3.
4 https://miro.com/



Studying Student Perceptions of Software Modelling 9

and C4/I4) responded. However, these three courses consist of the majority of
the students. For the other two courses, we used the instructor interview data,
and tried to gather as much information about course timing, assignments,
and grading (see questions 3 and 4, in Appendix A2).

We checked the assignments for the problem motivation, the actual tasks,
the required problem domain knowledge, clarity of instructions and the to-
tal time dedicated to modelling tasks. We then compared these aspects to
statements made during the interviews.

The total time of data collection and analysis was approximately one year.
The resulting themes related to modelling benefits are listed in Table 2, with
example quote for each theme. Similarly, Table 3 lists the themes related to
modelling challenges.

Table 2 Final themes related to modelling benefits, with a short description and a sample
quote associated with each theme.

Theme Description Example statement

B: Same Page Benefits of modelling in com-
munication and coordination
within teams.

I think it’s important for documenta-
tion, as well as getting everyone on
the same page

B: Better
Planning

Modelling helps in planning
ahead, for understanding the
requirements, potential design
alternatives, but also to plan
implementation.

But the thing I liked this is when you
feel like you have a plan and you
know what are you gonna do

B: Better Un-
derstanding
of Code

Benefits of modelling to help
understanding a code base
without reading the code in de-
tail.

I really like the idea of seeing it as a
language to talk about code, because
I will never read someone’s code if
they ask for feedback-

B: Main-
tenance/
Documenta-
tion

Benefits of modelling as a way
to help maintaining a system
and to document what it does.

Usually, it’s other people who will
maintain software, so they need to
read what you make if they need to
understand.

B: Personal
Preferences

Benefits related to individual
preferences.

Yeah, yeah we used that because it
was um..prettier, than this is the
whole perfectionism thing with um,
it was prettier than coding

B: Doubtful
Benefits

Doubts regarding any benefits
of modelling.

[..] ]you can’t be mastering every-
thing and [I am] more into im-
plementation rather than modelling
things

3.4 Validity threats

We conducted an exploratory [39] case study, where we primarily collected
data through interviews. For the analysis, we leaned towards interpretivism.
An interpretivist approach means that “humans construct knowledge as they
interpret their experiences of and in the world; rejecting the objectivist no-
tion that knowledge is simply there to be identified and collected” [16,33]. In



10 Shalini Chakraborty, Grischa Liebel

Table 3 Final themes related to modelling challenges, with a short description and a sample
quote associated with each theme.

Theme Description Example statement

C: Unclear
Expectations

Confusion on what the purpose
of modelling is, often as expec-
tations are not clearly commu-
nicated.

At the end it’s like ’Oops, maybe
I should have designed’, but then I
wouldn’t know how to design it.

C: Irregular
and Unclear
Feedback

Feedback is provided too sel-
dom, is not clear, or is re-
stricted to formalities, such as
the diagram syntax.

Writing for hours and then a teacher
be like no this is wrong

C: Lack of
Expertise in
the Problem
Domain

Students are provided with as-
signments in a domain they
are unfamiliar with. Therefore,
they struggle to relate their
learning to something known.

we didn’t have much experience
in programming and designing and
modeling the app, I think the biggest
challenge was in the first week that
we were just flowing with our ideas
how the app should look like without
actually knowing how the end picture
of the class diagrams should look like

C: Time and
Repetition

Modelling consumes time, and
requires repetition to master.
These two factors are often in
conflict in university courses,
and students struggle to see the
value of repeatedly improving
their models..

Later on, we had to fix it at least 10
times. After writing the app, we had
to go back to our diagrams and redo
them how our final vision was

C: Notation Struggles with the complexity
of the UML notation.

One thing that comes up is with the
state diagram and activity diagram,
which one is supposed to do what

C: Tooling Modelling tools can cause nu-
merous difficulties, such as
poor usability.

I hate PlantUML. I can’t read the di-
agram that comes out of it. It’s all
over the place

C: Lack of
Cooperation

Challenges due to difficulties
in collaborating in teams, and
due to lack of professionalism
in students’ attitudes.

[..] one or two would make the model
and the rest maybe don’t understand.
Somehow, I don’t know how to solve
this problem.

our work, adopting to interpretivism is suitable as we seek answers for our
RQs through the interviewees’ perspective, based on their knowledge of the
addressed subject and cultural background. The understanding of our knowl-
edge is therefore relative to the person and their personal experience.

Following the work of Petersen et al. [34], we present the validity threats of
our work and the measures we have taken to mitigate them in the following.

3.4.1 Transferability

Transferability describes to what extent results from the study can be trans-
ferred to cases that resemble the case under study [34]. Cultural differences,
the influence of teachers and their teaching practices, and the course sub-
jects limit transferability in our study. We aim to ensure a substantial level of
transferability by basing our analysis on five cases. Nevertheless, all five cases



Studying Student Perceptions of Software Modelling 11

teach modelling for analysis tasks on a high level of abstraction, i.e., for re-
quirements, architecture and design purposes. Specifically, none of the courses
covers model transformation or other tasks that require formal models. Fur-
thermore, all five courses are located in Northern European Universities, thus
potentially limiting the applicability to other countries. Finally, perceptions
of modelling are tightly connected to perceptions of the course. Specifically,
the quality of teaching and the instructor’s expertise on the topic could pos-
itively or negatively affect the studied perceptions. To avoid this, we selected
both cases where the instructors do and do not have a research background in
software modelling. Pedagogical quality is harder to assess. However, we did
not get the impression from students that individual courses had a low level
of pedagogical quality. Nevertheless, this might be a threat to transferability.

To further allow for transferability, we conducted a substantial number
of interviews (21). We reached a saturation point in our themes after the 16
student interviews, and hence stopped including further cases or interviewees.
That is, in the last batch of interviews (n=6) we analysed, no new themes
emerged that we had not yet included in our analysis.

3.4.2 Credibility

Credibility describes to what extent findings have been distorted by the re-
searchers [34].

We tried to avoid distortion of the reported findings by grounding the
analysis in in-vivo codes directly taken from the verbatim interview transcripts.
Furthermore, we performed member checking to get feedback on the extracted
themes from our interviewees. Only few interviewees answered this call, but
those confirmed the credibility of the found themes.

All interviews were recorded, and data analysis performed on the verba-
tim transcripts. Additionally, we publish the anonymised transcripts of the
13 interviewees who consented to this. This should ensure credibility of the
findings.

3.4.3 Confirmability

Confirmability describes the extent to which conclusions made by researchers
follow from the observed data [34].

To allow for confirmability, we presented the way of coding in depth. Fur-
thermore, we give example quotes for each theme, and publish anonymised
student transcripts. Note that this does not necessarily ensure reliability, i.e.,
that analyses conducted by other researchers would yield precisely the same
results. We discussed themes and codes and aimed to find consensus in our
analyses. Nevertheless, we allowed for some disagreements to account for sub-
jective impressions or opinions, as is common in interpretivist research.



12 Shalini Chakraborty, Grischa Liebel

4 Results

In this section we report and discuss the findings of our case study.

4.1 Student Perception of Software Modelling (RQ1)

Based on the interview data, we observe that students see specific benefits of
modelling, primarily for areas where informal models might be sufficient, such
as obtaining a system overview or conceptual understanding of the problem
domain. However, many are skeptical as to what value modelling has for de-
tailed system design. In the following, we discuss the students’ perceptions and
provide adequate interview quotes that support the categories. An overview of
how many students mentioned the perceived benefits is depicted in Figure 2.

6 (3)

9 (4)

6 (3)

2 (2)

7 (5)
6 (4)

Modelling Benefits According to Students (n=16)

Being on the same page Better planning
Better understanding of code Maintenance/Documentation
Personal Preferences Doubtful benefits

Fig. 2 Benefits as supported by the student interviewees. Numbers over the bars represent
the total amount of students mentioning the benefit, and the number of cases in which
students mentioned the benefit in parenthesis.

4.1.1 Being on the Same Page

Several students find that modelling helps their groups communicate better
with each other. Students mention modelling helps them to express their ideas,
share work and make decisions as a group. For example, students stated:

“I think it’s important for documentation, as well as getting everyone on the same
page” — C2 S1

“It’s a lot easier to work together when you have the diagrams.” — C1 S5

“It helps every group member to know what exactly they want” — C3 S2



Studying Student Perceptions of Software Modelling 13

4.1.2 Better Planning

Students find modelling helpful in planning the development, i.e., designing
systems. Students appreciate that they can visually map the system and plan
the development through modelling.

“But the thing I liked this is when you feel like you have a plan and you know what
are you gonna do” — C1 S2

“Class diagrams are really, really helpful. Before starting your project...because you
can see and have the view of your classes” — C5 S3

4.1.3 Better Understanding of Code

In relation to programming, some students found models helpful to get an
overview of the code on a higher level of abstraction. That is, they stated:

“I really like the idea of seeing it as a language to talk about code, because I will
never read someone’s code if they ask for feedback” — C3 S1

“If you have a diagram for it, we would get a better understanding of the code
itself.” — C2 S3

An aspect of this is a top-down modelling approach, where a better un-
derstanding of the system is obtained through breaking down the system in
steps, as noted by some of our interviewees.

“If you are making a program that has more than 200 lines of code then you probably
gonna have to model it.” — C1 S1

“that was a very nice experience of seeing how you start with a kind of vague idea
and then start to break it down more concrete classes” — C3 S1

4.1.4 Maintenance/Documentation

Students find modelling to be helpful to prepare for future tasks, such as
maintaining and documenting the product. However, in our interview data
only students with industry background expressed this benefit.

“Usually, it’s other people who will maintain software, so they need to read what
you make if they need to understand.” — C1 S3

“Unless you don’t have the documentation, you will end up with just a total mess”
— C4 S2

While looking at the assignment details and interview data regarding that, we
realized none of the courses explicitly mention maintenance/documentation.
The assignments ask for an overview of the diagrams, but there aren’t any
requirements for documentation. The importance of maintaining a document
or how to do that still needs to be clarified for students.



14 Shalini Chakraborty, Grischa Liebel

4.1.5 Personal Preferences

In addition to the benefits stated above, some students use models in terms
of personal preference. For example:

“Yeah, yeah we used that because it was um..prettier, than this is the whole perfec-
tionism thing with um, it was prettier than coding” — C1 S2

“It helps me basically get my idea out there a lot better. Basically, when I’m starting
a project, I like modeling the higher level and just going deeper and deeper and
deeper.” — C2 S1

4.1.6 Doubtful Benefits

Despite experiencing benefits, several students are doubtful whether the ben-
efits of modelling outweigh the issues, and if they will apply models in the
future. We received several statements of students saying they will most likely
not apply models in the future.

“I think it’s a great experience that we can have this now. Not in the future, in our
jobs” — C3 S2

“[..] ]you can’t be mastering everything and [I am] more into implementation rather
than modelling things” — C4 S2

Interestingly, both statements above were made by students with industrial
software development experience. The same students however admitted that
in their experience they were tasked with implementation only, and not with
high-level tasks such as system design or requirements engineering.

One of the instructors confirmed that many of their students would ques-
tion the application of modelling in industry:

“It’s the same experience that I have when people talk about this course, they’re
asking, ’Is anyone using it?”’ — I2

We further discuss the challenges with modelling in the next section.

4.2 Modelling Challenges (RQ2)

Despite benefits observed by the majority of the students, they experience
several challenges related to modelling. These relate, among others, to tooling,
how to choose the right notation, what to express in the models, and how
to apply it to unfamiliar domains. We will discuss these challenges in the
following, focusing on the student lens, and complementing their views with
the instructor perspective. Overall, we extracted 8 types of challenges. The
support by the different interviewees is depicted in Figure 3 and Figure 4.



Studying Student Perceptions of Software Modelling 15

11 (5)

8 (4)

2 (2)

12 (5)

7 (4)

2 (2)

6 (4)

Modelling Challenges According to Students (n=16)

Unclear Expectation Irregular Feedback
Lack of Expertise in Problem Domain Timing and Repetition
Notation Tooling
Lack of Cooperation

Fig. 3 Student challenges as supported by the interviewees. Numbers over the bars represent
the total amount of students mentioning the challenge, and the number of cases in which
students mentioned the challenge in parenthesis.

3 (3) 3 (3)

1 (1)

0 (0)

3 (3)

2 (2)

0 (0)

Modelling Challenges According to Instructors (n=5)

Unclear Expectation Irregular Feedback
Lack of Expertise in Problem Domain Timing and Repetition
Notation Tooling
Lack of Cooperation

Fig. 4 Student challenges as supported by the instructor interviewees. Numbers over the
bars represent the total amount of instructors mentioning the challenge, and the number of
cases in which instructors mentioned the challenge in parenthesis.

4.2.1 Unclear Expectations

In university modelling courses, students typically receive assignments to cre-
ate models. However, they often struggle to understand what is expected of
them, and how to create the models.



16 Shalini Chakraborty, Grischa Liebel

“We started coding and at the end of the day, we didn’t know what we did” —
C4 S3

In particular, this is caused by a lack of knowledge in programming, soft-
ware architecture, and other practical skills necessary to envision a “good”
design:

“At the end it’s like ’Oops, maybe I should have designed’, but then I wouldn’t know
how to design it. ” — C3 S1

Additionally, assignments are often formulated in a way that is in contrast
to how they are assessed, e.g., by asking students to create a prescriptive
model, which is then assessed by how closely it resembles the final code, i.e.,
in a descriptive way. Students quickly pick up this discrepancy in grading
and optimise their efforts towards the grading. That is, they take shortcuts
initially, and simply update the model later to reflect their actual code.

“we had to, we had to basically just create a class diagram out of the code that they
wrote, instead of writing a code out of the class diagram” — C1 S1

4.2.2 Irregular and Unclear Feedback

Students are dissatisfied with the type of feedback they receive. The evalu-
ation criteria often demand ”Diagrams are well structured and provide good
overview”- assignment details from C3, ”Explanation of good design sugges-
tions”-assignment details from C1, which is vague and do not leave space
for constructive, detailed feedbacks. As modelling is often a qualitative task,
teachers often revert to giving feedback on objective things such as the diagram
syntax. However, this is not perceived as useful feedback.

“So no one can say anything to us. It’s good or not. Just we should follow some
rules about the diagram, for example, what is solid line, what is dashed line.” —
C5 S1

Instead, students would like more “holding hands” with regular feedback.

“Maybe because it’s the first year, this is the first introduction to the subject, so
people miss a lot of points, but if it had another level, teach people more, and take
their hand more to do these diagrams themselves, that would be good” — C1 S3

In particular, since there is no automated feedback as, e.g., in program-
ming, students require timely and regular feedback.

“writing for hours and then a teacher be like no this is wrong” — C1 S1

“Reply to emails more than five or six hours” — C4 S1

The regularity and quality of feedback was further complicated by Covid-
19, as all 5 cases used remote teaching.



Studying Student Perceptions of Software Modelling 17

4.2.3 Lack of Expertise in the Problem Domain

Deep knowledge of the problem domain is necessary to perform many software
engineering tasks in a satisfactory manner, e.g., programming [31] or program
understanding [37]. If this domain knowledge is lacking or entirely missing,
software engineering tasks cannot be performed well. Allowing students to
work with a known problem increases their interest and participation. Several
students stated that, in addition to just learning modelling, they were also
lacking domain knowledge and programming experience. Therefore, they were
unable to relate their models to familiar concepts.

“we didn’t have much experience in programming and designing and modeling the
app, I think the biggest challenge was in the first week that we were just flowing
with our ideas how the app should look like without actually knowing how the end
picture of the class diagrams should look like” — C1 S4

Compared to other introductory topics, such as programming, this makes
modelling particularly complex: Students are expected to learn a new concept
(modelling), neither having problem domain nor software design/architecture
experience. In addition, the models used in the courses we studied do not
provide any kind of automated feedback, such as compiler/runtime error mes-
sages in programming. This leads to feelings of “just drawing something” in
students, without an anchor to connect their models to.

In a similar direction, the chosen problem domain might also affect how
representative the learning is for actual systems in industry, or how suited
modelling is for the given problem. For instance, one student noted:

“we got to know all the basics and the whole idea and how it’s supposed to look like,
but not how to use it in the future on the bigger picture and the scale of the app”
— C1 S4

4.2.4 Time and Repetition

Students complain that modelling takes time, and courses are tightly sched-
uled. Students feel pressure due to the bulk of assignments, especially when
they are not fully aware of what is expected from them. Given that pressure,
they try to prioritise and minimise effort where possible. However, arguably,
learning how to model will require the students to make many mistakes and
correct them in iterations. Together with the lack of feedback mentioned above,
students perceive these iterative improvements as a waste of time.

“You run it once and then probably change. It’s just a waste” — C3 S1

“we designed something, it didn’t work, so we needed to change it ” — C2 S1

“Later on, we had to fix it at least 10 times. After writing the app, we had to go
back to our diagrams and redo them how our final vision was” — C1 S4

Interestingly, these students did not perceive that iterative changes helped
them understand the problem domain better, but rather saw it as a burden
with unclear benefit. One of the reasons is courses contain individual assign-
ments without a continuation or connection between themselves for some cases



18 Shalini Chakraborty, Grischa Liebel

(C2 and C3). For each problem students are instructed to draw a specific di-
agram and then move on to something else. An exception we observed for C4
and C5 since, in C5, students are applying what they learned in C4.

4.2.5 Notation

Keng et al. [43] reported different learning challenges with UML over a decade
ago. In our cases, we observe similar challenges. Students find it hard to re-
member the syntax of different diagrams and their purpose, pointing to a lack
of prior knowledge of UML.

“many different types of diagrams to represent the same thing” — C1 S1

“The hardest part about drawing UML diagrams is always remembering what exactly
the syntax is” — C2 S1

Specifically, our interviewees are most often pointing out UML state ma-
chine and activity diagrams as confusing.

“I have this image in my head where the state diagram is not the UI actions. I can’t
wrap my head around it.” — C2 S3

“One thing that comes up is with the state diagram and activity diagram, which
one is supposed to do what. ” — C1 S5

The instructors confirm this view.

“here’s a bit of struggle in between the concepts that they express in a diagram and
the particular diagram types” — I3

“they’ve been mixing those pretty well up [state and activity diagrams]” — I2

One instructor offered the explanation that this relates to a lack of expe-
rience with object-oriented programming in general.

“they don’t have a lot of experience using object-oriented programming.” — I2

This quote reinforces our discussion above, that students are exposed to various
unknown activities when learning how to model, and therefore lack knowledge
they can anchor their modelling experiences to.

4.2.6 Tooling

None of the 5 cases we investigated had any requirements for using a particular
modelling tool. Correspondingly, students did not voice any tool challenges.
Students used multiple tools for their assignments, e.g., Draw.io, PlantUML,
and Lucidchart. Also, some students used plain pen and paper for drawing
and communicating their diagrams. Students appreciate this choice.

“I think actually giving people the freedom to do what they want with the tools is
really nice, because some people actually liked drawing it on an iPad or something”
— C2 S1

In particular, some students also showed initiative at choosing different
tools depending on the situation.



Studying Student Perceptions of Software Modelling 19

“When I did the prototype of my app, I used the Figma app on the internet. It’s
really good to visualize the prototype. Then we used the Lucidchart and draw.io,
I think it’s diagrams.net now. This is for the diagrams. Then we just used the
whiteboard to draw it if we needed to because we just gathered together and we’d
just throw it on the whiteboard and then we just translated it into diagrams or
Lucidchart” — C1 S4

While offering choice in tooling clearly addresses many tool issues, it has the
limitation that it only works if the course and the course assignments do not
rely on specific tool features, such as code generation or simulation capabilities.
This is a limitation in our study, as all our cases introduced UML only as
a means to document, plan, and to communicate, without any automated
processing of models in the form of model transformation or other facilities.

4.2.7 Lack of Cooperation

In all 5 cases, students had to cooperate in teams. In fact, modelling was
in all cases also intended as a way to facilitate communication in the group.
However, in practice they struggled to cooperate and to appreciate the use of
models for communication purposes.

“We are six, for example, but one or two would make the model and the rest maybe
don’t understand. Somehow, I don’t know how to solve this problem.” — C1 S3

“Some people don’t like to draw., but we’re supposed to work together.” — C5 S1

4.2.8 Summary

Overall, we observe that students struggle with various aspects of models (as
depicted in Figures 3 and 4). Apart from classic issues such as learning an
unknown notation (be it modelling or not), we find that students lack a con-
nection to previous knowledge. That is, due to a lack of domain, design and
programming knowledge, and a lack of automated feedback from modelling
tools, they cannot create an anchor. Essentially, they produce a model that
they cannot judge on any other level than notation. One student summarised
this sentiment as follows:

“The diagram is supposed to speak for yourself [sic]. But we didn’t understand what
it was saying” — RU G S1

5 Discussion

Several of our findings that relate both to perceived benefits and challenges of
models are specific to the selection of courses we studied. That is, in all five
courses, models are created for planning, documentation, design, and commu-
nication purposes. In contrast, topics that require formal models, e.g., for code
generation, formal verification, or simulation, are not included. This certainly
limits how general our findings are with respect to software modelling as a
whole. Nevertheless, we believe that a large percentage of computer science



20 Shalini Chakraborty, Grischa Liebel

students worldwide get exposed to software modelling through similar courses,
i.e., the stereotypical “UML courses”. As such, our findings have the potential
to be transferable to many students. Similarly, even if students take more ad-
vanced courses on software modelling, their beliefs and preconceptions about
modelling can be irreversibly shaped by their first exposure to the topic. As
such, we believe our findings are particularly relevant.

In a similar direction, there is a potential threat that challenges perceived
by students might not so much relate to software modelling as a course topic,
but instead by the pedagogical quality of the courses. We did not try to assess
the quality of the individual courses, but at least we cover a variety of exper-
tise in modelling on the lecturers side, ranging from instructors that do not
work on models in research, to instructors that publish in software modelling
venues and have or have had a particular focus on the topic. Therefore, we do
not believe that the students’ experiences can simply be related to issues in
teaching.

Modelling tools have been reported consistently as a concern in studies on
software modelling, both related to industry and education. In contrast, we
did not find much reported challenges with tooling. To some extent, we believe
the reason for this absence of tooling challenges is the focus on “drawing” dia-
grams rather than formal modelling, and the freedom of choosing a modelling
tool of the students’ choice. None of the cases used tools that are specifically
designed for education, such as the Umple modelling tool [11]. Since surveys
with students have shown positive results [23], we believe studying such a
course in depth using qualitative methods could yield further insights that
are complementary to ours. However, we also believe that the use of software
modelling tools tailored towards education is currently not representative.

While this study focused purely on the educational context, it is interesting
to discuss potential similarities and differences to industrial practice.

First, we observe that models are appreciated for communication purposes
and to handle system complexity in our cases, something that is also reported
in industry [14,26,47]. Other benefits reported in industry, such as simulation
or verification capabilities do not apply in our cases, since all five courses used
modelling only on an informal level to express models for planning, communi-
cation, and coordination. Similarly, it is hard to reason about improvements
reported from industry, e.g., in terms of productivity [4,28].

Tooling issues are a frequent topic in industry, e.g., reported in [53,52,19,
17,53,26,27]. In contrast, none of our interviewees raised tool issues. One ex-
planation for this observation is clearly that none of our courses mandated a
CASE tool for modelling, but instead left that choice to the students. Similarly,
while models were often assessed for semantic correctness, the specified pur-
poses of the models did not require syntactically or semantically correct mod-
els. Together with a lack of requirements for interoperability between tools,
this removes most of the issues contemporary modelling CASE tools have.
Nevertheless, it is positive to observe that our interviewees did not finish their
courses on modelling with the perception that modelling tools are bad, as is



Studying Student Perceptions of Software Modelling 21

commonly reported in literature on modelling education, e.g., in [25,3]. Such
a negative perception could lead to a reduced uptake of modelling in industry.

Our interviewees raise several challenges that relate to a lack of guidance,
feedback, and clarity when it comes to modelling. While they primarily per-
ceive this as an issue in how assignments are set up and how the courses are
designed, the challenges resonate with those in industry. For instance, a lack
of training and guidance is raised in several empirical studies on modelling
in industry, e.g., [14,48,26]. Whittle et al. [53] highlight that organisational
and process factors play a major role in the use of MDE. Similar issues are
raised by our interviewees in the educational context, namely that modelling
assignments need suitable processes that allow for iterations and quick feed-
back loops. This is especially important as models were not used for automated
tasks in any of our cases, i.e., there was no automatic feedback generated.

An important difference of the educational setting to industry is that stu-
dents often lack both the technical background, e.g., in terms of programming
experience, and the domain knowledge required for the example domains.
Therefore, they struggle to contextualise the value and the quality of their
models, often leading to a perception of doing a meaningless drawing task.
Publications on modelling education sometimes argue for the use of realistic
examples and caution against toy examples, e.g., [21]. However, also realistic
examples have their pitfalls. While unrealistic domains are just that, unrealis-
tic, they can also expose students to a known domain, or at least a low level of
complexity due to a domain that is artificial and potentially more controlled
and restricted. From this point of view, toy examples can be a suitable tool
for modelling education. Given our findings in this study, we would advise
to use primarily example domains the students have sufficient knowledge of.
Whether or not these domains are then simplified artificially or not should
depend primarily on context factors in the course, e.g., the time dedicated to
understand and work with the domain, the depth of the covered modelling
concepts, and the student level. Another option is to let students choose a do-
main on their own, which can potentially increase their motivation. However,
they run the risk of selecting a domain which is particularly unsuited given
the course assignments.

Finally, we observe that several benefits and challenges voiced by our in-
terviewees are directly reflected in industrial surveys on the use of models,
e.g., the usefulness of models for communication [26,14,48], or the sentiment
that models are not worth the effort [14,48]. While we are not able to answer
this based on our study, we would like to highlight the possibility that these
opinions are shaped during university education and then maintained later
on. That is, addressing these issues while educating modellers could lead to a
higher uptake and appreciation of modelling in industry.



22 Shalini Chakraborty, Grischa Liebel

6 Conclusion

We conducted a case study investigating the perceptions students have of
software modelling. To do so, we conducted 21 interviews with students and
instructors in five courses at 3 universities, and consulted assignment descrip-
tions of three of the five courses. The results offer rich insights into how stu-
dents perceive modelling. While related work on the topic exists, it is usually
in the form of survey studies, opinion and experience papers, and industrial
case studies.

Several findings from related work are confirmed in our study, e.g., that
while seeing the benefit of modelling for planning or communication, many
students perceive modelling as not worth the effort or as an outright waste
of time. They struggle with the fast pace of courses and a lack of repetition
and in-depth feedback that goes beyond the diagram syntax. However, we
additionally find differences to existing literature, or deeper explanations of
phenomena observed in related work. For instance, our interviewees reported
no tooling-related challenges, potentially as they were allowed to choose their
tool of choice in all cases, and as none of the five courses used any model-based
techniques that would require a specific CASE tool. Finally, we find that stu-
dents struggle to understand modelling, as they are often at the same time
lacking knowledge in areas related to the course projects, i.e., the problem
domain, the intended task (such as design or architecture), object orientation,
and programming skills. As there is often no automatic feedback from mod-
elling tools, this means students cannot anchor their models to any known
domain.

Our study is of interest to university researchers, educators and profes-
sionals. Specifically for educators, it confirms many existing beliefs, but also
highlights new details that can be considered when teaching modelling, i.e.,
a more nuanced view on how the choice of a problem domain affects the stu-
dents’ perceptions of modelling. For modelling researchers, it can open up new
directions on how to improve guidance and training in modelling, something
that also professionals regularly report as challenging. Finally, professionals
can use our findings to better understand what experiences university grad-
uates have with modelling, which benefits they perceive, and why this is the
case.

Acknowledgement

We would like to thank the interviewees for participating in the study.

Declarations

Competing Interests

The authors declare that they have no conflict of interest.



Studying Student Perceptions of Software Modelling 23

Data Availability

We publish 13 out of the 21 anonymised interview transcripts on Zenodo,
https://doi.org/10.5281/zenodo.6913780. We did not receive consent to
publish the remaining 8 transcripts.

References

1. Agner, L.T., Lethbridge, T.C., Soares, I.W.: Student experience with software mod-
eling tools. Software and Systems Modeling 18(5), 3025–3047 (2019). DOI 10.1007/
s10270-018-00709-6

2. Agner, L.T.W., Soares, I.W., Stadzisz, P.C., Simão, J.M.: A brazilian survey on UML
and model-driven practices for embedded software development. Journal of Systems and
Software 86(4), 997–1005 (2013). SI : Software Engineering in Brazil: Retrospective and
Prospective Views

3. Akayama, S., Demuth, B., Lethbridge, T.C., Scholz, M., Stevens, P., Stikkolorum, D.R.:
Tool use in software modelling education. In: EduSymp@ MoDELS (2013)

4. Baker, P., Loh, S., Weil, F.: Model-driven engineering in a large industrial con-
text—motorola case study. In: International Conference on Model Driven Engineering
Languages and Systems, pp. 476–491. Springer (2005)

5. Bernonville, S., Kolski, C., Beuscart-Zephir, M.C.: Contribution and limits of uml mod-
els for task modelling in a complex organizational context: case study in the healthcare
domain. In: Internet and Information Technology in Modern Organizations: Challenges
& Answers, Proceedings of The 5th International Business Information Management
Association Conference, pp. 119–127. IBIMA (2005)

6. Burgueño, L., Vallecillo, A., Gogolla, M.: Teaching uml and ocl models and their vali-
dation to software engineering students: an experience report. Computer Science Edu-
cation pp. 1–19 (2018). DOI 10.1080/08993408.2018.1462000

7. Chakraborty, S., Liebel, G.: Dataset: We Do Not Understand What It Says – Studying
Student Perceptions of Software Modelling (2022). DOI 10.5281/zenodo.6913780. URL
https://doi.org/10.5281/zenodo.6913780

8. Ciccozzi, F., Taentzer, G., Vallecillo, A., Wimmer, M., Famelis, M., Lambers, L., Mosser,
S., Paige, R., Pierantonio, A., Rensink, A., Salay, R.: How do we teach modelling and
model-driven engineering? a survey. In: Proceedings of the 21st ACM/IEEE inter-
national conference on model driven engineering languages and systems: Companion
proceedings, pp. 122–129 (2018)

9. Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Münch, J., Jedlitschka, A., Oivo, M.:
Empirical software engineering experts on the use of students and professionals in ex-
periments. Empirical Software Engineering 23 (2018). DOI 10.1007/s10664-017-9523-3

10. Forward, A., Badreddin, O., Lethbridge, T.C.: Perceptions of software modeling: a sur-
vey of software practitioners. In: 5th workshop from code centric to model centric:
evaluating the effectiveness of MDD (C2M: EEMDD) (2010)

11. Garzón, M.A., Aljamaan, H., Lethbridge, T.C.: Umple: A framework for model driven
development of object-oriented systems. In: 2015 ieee 22nd international conference on
software analysis, evolution, and reengineering (saner), pp. 494–498. IEEE (2015)

12. Gilson, F.: Teaching software language engineering and usability through students peer
reviews. In: Proceedings of the 21st ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings, pp. 98–105 (2018)

13. Gonnord, L., Mosser, S.: Practicing domain-specific languages: from code to models. In:
Proceedings of the 21st ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems: Companion Proceedings, pp. 106–113 (2018)

14. Gorschek, T., Tempero, E., Angelis, L.: On the use of software design models in software
development practice: An empirical investigation. Journal of Systems and Software 95,
176–193 (2014)

https://doi.org/10.5281/zenodo.6913780
https://doi.org/10.5281/zenodo.6913780


24 Shalini Chakraborty, Grischa Liebel

15. Hammouda, I., Burden, H., Heldal, R., Chaudron, M.R.: Case tools versus pencil and
paper. In: ACM/IEEE 17th Int. Conf. on Model Driven Engineering Languages and
Systems–Educators Symposium (2014)

16. Hiller, J.: Epistemological foundations of objectivist and interpretivist research.
Barcelona Publishers (2016)

17. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices in in-
dustry. In: 2011 33rd International Conference on Software Engineering (ICSE), pp.
633–642 (2011). DOI 10.1145/1985793.1985882

18. Hutchinson, J., Whittle, J., Rouncefield, M.: Model-driven engineering practices in in-
dustry: Social, organizational and managerial factors that lead to success or failure.
Science of Computer Programming 89, 144–161 (2014). DOI https://doi.org/10.1016/
j.scico.2013.03.017. Special issue on Success Stories in Model Driven Engineering

19. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment
of mde in industry. In: 2011 33rd International Conference on Software Engineering
(ICSE), pp. 471–480 (2011). DOI 10.1145/1985793.1985858

20. Kirstan, S., Zimmermann, J.: Evaluating costs and benefits of model-based develop-
ment of embedded software systems in the car industry–results of a qualitative case
study. In: Workshop C2M: EEMDD ”From code centric to model centric: Evaluating
the effectiveness of MDD” (2010)

21. Kolovos, D.S., Cabot, J.: Towards a corpus of use-cases for model-driven engineering
courses. In: EduSymp/OSS4MDE@ MoDELS, pp. 14–18 (2016)

22. Kopach-Konrad, R., Lawley, M., Criswell, M., Hasan, I., Chakraborty, S., Pekny, J.,
Doebbeling, B.N.: Applying systems engineering principles in improving health care
delivery. Journal of general internal medicine 22(3), 431–437 (2007)

23. Lethbridge, T.C., Mussbacher, G., Forward, A., Badreddin, O.: Teaching uml using
umple: Applying model-oriented programming in the classroom. In: 2011 24th IEEE-CS
Conference on Software Engineering Education and Training (CSEE&T), pp. 421–428.
IEEE (2011)

24. Liebel, G., Badreddin, O., Heldal, R.: Model driven software engineering in education:
A multi-case study on perception of tools and uml. In: 2017 IEEE 30th Conference on
Software Engineering Education and Training (CSEE T), pp. 124–133 (2017). DOI
10.1109/CSEET.2017.29

25. Liebel, G., Heldal, R., Steghöfer, J.P.: Impact of the use of industrial modelling tools
on modelling education. In: 2016 IEEE 29th International Conference on Software
Engineering Education and Training (CSEET), pp. 18–27 (2016). DOI 10.1109/CSEET.
2016.18

26. Liebel, G., Marko, N., Tichy, M., Leitner, A., Hansson, J.: Model-based engineering in
the embedded systems domain: an industrial survey on the state-of-practice. Software
and Systems Modeling 17(1), 91–113 (2018). DOI 10.1007/s10270-016-0523-3

27. Liebel, G., Tichy, M., Knauss, E.: Use, potential, and showstoppers of models in au-
tomotive requirements engineering. Software and Systems Modeling (2018). DOI
10.1007/s10270-018-0683-4

28. Mohagheghi, P., Dehlen, V.: Where is the proof? - a review of experiences from applying
mde in industry. In: I. Schieferdecker, A. Hartman (eds.) Model Driven Architecture
- Foundations and Applications, Lecture Notes in Computer Science, vol. 5095, pp.
432–443. Springer Berlin Heidelberg (2008)

29. Mohagheghi, P., Gilani, W., Stefanescu, A., Fernandez, M.A., Nordmoen, B., Fritzsche,
M.: Where does model-driven engineering help? experiences from three industrial cases.
Software and Systems Modeling 12(3), 619–639 (2013)

30. Moody, D.L.: The ”physics” of notations: a scientific approach to designing visual no-
tations in software engineering. In: 2010 ACM/IEEE 32nd International Conference on
Software Engineering, vol. 2, pp. 485–486 (2010). DOI 10.1145/1810295.1810442

31. Oliveira, K., Regina, A., Rocha, C., Travassos, G., Menezes, C.: Using domain-knowledge
in software development environments. Tech. rep., CiteSeerX (2000). URL https:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.2007
32. Paige, R.F., Polack, F.A., Kolovos, D.S., Rose, L.M., Matragkas, N.D., Williams, J.R.:

Bad modelling teaching practices. In: EduSymp@ MoDELS, pp. 1–12 (2014)
33. Pascale, C.M.: Cartographies of knowledge: Exploring qualitative epistemologies. Sage

Publications (2010)

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.2007
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.2007


Studying Student Perceptions of Software Modelling 25

34. Petersen, K., Gencel, C.: Worldviews, research methods, and their relationship to va-
lidity in empirical software engineering research. In: 2013 joint conference of the 23rd
international workshop on software measurement and the 8th international conference
on software process and product measurement, pp. 81–89. IEEE (2013)

35. Raistrick, C.: Applying mda and uml in the development of a healthcare system. In:
International Conference on the Unified Modeling Language, pp. 203–218. Springer
(2004)

36. Reuter, R., Stark, T., Sedelmaier, Y., Landes, D., Mottok, J., Wolff, C.: Insights in
students’ problems during uml modeling. In: 2020 IEEE Global Engineering Educa-
tion Conference (EDUCON), pp. 592–600 (2020). DOI 10.1109/EDUCON45650.2020.
9125110

37. Rugaber, S.: The use of domain knowledge in program understanding. Annals of Soft-
ware Engineering 9(1), 143–192 (2000)

38. Runeson, P.: Using students as experiment subjects - an analysis on graduate and
freshmen student data. Proceedings of the 7th International Conference on Empirical
Assessment in Software Engineering (2003)

39. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering – Guidelines and Examples. John Wiley & Sons Inc. (2012). DOI
10.1002/9781118181034

40. Saldaña, J.: The coding manual for qualitative researchers. SAGE Publications (2015)

41. Salman, I., Mısırlı, A.T., Juristo, N.: Are students representatives of professionals in
software engineering experiments? In: 2015 IEEE/ACM 37th IEEE International Con-
ference on Software Engineering, vol. 1, pp. 666–676 (2015). DOI 10.1109/ICSE.2015.82

42. Schmidt, A., Kimmig, D., Bittner, K., Dickerhof, M.: Teaching model-driven software
development: Revealing the” great miracle” of code generation to students. In: Pro-
ceedings of the Sixteenth Australasian Computing Education Conference-Volume 148,
pp. 97–104 (2014)

43. Siau, K., Loo, P.P.: Identifying difficulties in learning uml. Information Systems Man-
agement 23(3), 43–51 (2006)

44. Sjöberg, D.I., Anda, B., Arisholm, E., Dyba, T., Jorgensen, M., Karahasanovic, A., Ko-
ren, E.F., Vokác, M.: Conducting realistic experiments in software engineering. In: Pro-
ceedings international symposium on empirical software engineering, pp. 17–26. IEEE
(2002)

45. Stikkolorum, D.R., Ho-Quang, T., Chaudron, M.R.: Revealing students’ uml class di-
agram modelling strategies with webuml and logviz. In: 2015 41st Euromicro Confer-
ence on Software Engineering and Advanced Applications, pp. 275–279 (2015). DOI
10.1109/SEAA.2015.77

46. Stol, K.J., Fitzgerald, B.: The abc of software engineering research. ACM Transactions
on Software Engineering and Methodology (TOSEM) 27(3), 1–51 (2018)

47. Störrle, H.: How are conceptual models used in industrial software development? a
descriptive survey. In: Proceedings of the 21st International Conference on Evaluation
and Assessment in Software Engineering, pp. 160–169 (2017)

48. Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., Reggio, G.: Relevance, benefits, and
problems of software modelling and model driven techniques—a survey in the italian
industry. Journal of Systems and Software 86(8), 2110–2126 (2013)

49. Walderhaug, S., Stav, E., Mikalsen, M.: Experiences from model-driven development of
homecare services: Uml profiles and domain models. In: International Conference on
Model Driven Engineering Languages and Systems, pp. 199–212. Springer (2008)

50. Westphal, B.: Teaching software modelling in an undergraduate introduction to software
engineering. In: 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C), pp. 690–699 (2019).
DOI 10.1109/MODELS-C.2019.00105

51. Whittle, J., Hutchinson, J.: Mismatches between industry practice and teaching of
model-driven software development. In: International Conference on Model Driven En-
gineering Languages and Systems, pp. 40–47. Springer (2011)

52. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE Software 31(3), 79–85 (2014). DOI 10.1109/MS.2013.65



26 Shalini Chakraborty, Grischa Liebel

53. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal, R.: Industrial adop-
tion of model-driven engineering: Are the tools really the problem? In: International
Conference on Model Driven Engineering Languages and Systems, pp. 1–17. Springer
(2013)

54. Wohlin, C.: Case study research in software engineering—it is a case, and it is a study,
but is it a case study? Information and Software Technology 133, 106,514 (2021).
DOI https://doi.org/10.1016/j.infsof.2021.106514

A Interview Guides

We present two interview guides in this section used for students and instructors. We sched-
uled 40 minutes for student interviews and 30 minutes for instructor interviews. Interviews
were recorded with permission from the interviewees.

A.1 Student Interview Guide

The interview starts with a small introduction of 5 minutes presented by the interviewer
which consists the following points:

– Asking permission to record the interview.
– Introduction of the interviewer.
– Explain the purpose of the study, the research questions.
– Explain the rules of the interview.

Following the introduction, the interview starts. It has two parts, first the Introductory
Questions. The duration of this part is 10 minutes.

1. I1: Which degree are you currently pursuing? (in which major?)
2. I2: Have you worked in industry? If yes, what role/domain?
3. I3: Do you have any experience with modelling? What kind of experience do you have

with modelling?
4. I4: Go in detail with the experience, ask about syntax, diagrams that they had used

before.

In the second part, Modelling Questions we go in detail with the modelling challenges
and the duration is a maximum of 25 minutes. Before going into the modelling questions, the
interviewer explains software modelling and her research interest in software modelling. The
reason is to make sure that the interviewee has a clear idea and can give concrete answers.

1. M1: What experience do you have in software modelling?
2. M2: What did you like from your experience?
3. M3: What challenges did you face during your experience?
4. M4: In your opinion what are the reasons behind these challenges?
5. (If needed): When you are using a modelling notation what typically troubles you?
6. M5: How was your experience with modelling tools? Tell me about the tools you have

used in the past.
7. M6: What did you like and dislike about each of those tools?
8. M7: For which purposes/in which situations (in SE) do you think modelling is useful?

When is this not the case?
9. M8: In your case can you tell me of an experience where you found modelling useful?

10. M9: What advantages and disadvantages do you see in modelling?
11. M10: Did you get enough knowledge about modelling from the courses you have taken

on the topic?
12. M11: What was missing from those courses?
13. M12: How would the perfect modelling course look like?
14. M13: Do you have any comments or suggestions?



Studying Student Perceptions of Software Modelling 27

A.2 Instructor Interview Guide

1. Could you shortly describe which topics you cover in your course?
2. Regarding modelling, what are you covering in the course?

(a) Are you teaching modelling notation (e.g., UML diagrams)?
(b) Are you teaching how to draw those models (example: identify nouns/verbs in a

text to draw class diagrams)?
(c) Are you teaching how the models relate to code?
(d) Are you teaching semantics of modelling notations?

3. Roughly how much time is spent on modelling in your course?
4. Regarding modelling, what is covered in assignments or exam?
5. How do you think students perceive the modelling part of the course?
6. What do you think are the things that students struggle with (with respect to mod-

elling)?
7. What challenges are you facing when teaching modelling?
8. How do you think this could be improved?


	1 Introduction
	2 Related Work
	3 Research Method
	4 Results
	5 Discussion
	6 Conclusion
	A Interview Guides

