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Abstract

We introduce an efficient and dynamic resource allocation mechanism within the frame-

work of a cooperative game with fuzzy coalitions. A fuzzy coalition in a resource allocation

problem can be so defined that membership grades of the players in it, are proportional to

the fractions of their total resources. We call any distribution of the resources possessed by

the players, among a prescribed number of coalitions, a fuzzy coalition structure and every

membership grade (equivalently fraction of the total resource), a resource investment. It is

shown that this resource investment is influenced by satisfaction of the players in regards to

better performance under a cooperative setup. Our model is based on the real life situations,

where possibly one or more players compromise on their resource investments in order to help

forming a coalition.

AMS Subject Classifications[2000]: 91A12, 91A99,03E72

Keywords: fuzzy coalitions; rational player; exact resource allocation; cooperative game.

1 Introduction

Theory of cooperative games, since its inception by Neumann and Morgenstern [30] in 1953, has

been successfully explaining many complex decision making situations. Physically, the idea re-

volves around situations where self interested players- representing companies or individuals can
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achieve more by forming coalitions than participating individually. Here, humane characteristics

viz: players’ satisfaction, efficiency, conflicts, capacity to work in a group or as individuals etc.

have so far been given little consideration. Nevertheless, it is observed that those factors con-

tribute to a great deal of effecting the output of a joint endeavor. It is further interesting to note

that, satisfaction is an intrinsic ingredient to all those factors.(Interested reader may look at [6],

where we have developed a model to show how satisfaction of players can be incorporated in payoff

allocation).

In this paper, we have considered the problem of obtaining a suitable resource investment

allocation matrix (fuzzy coalition structure) in an n-person cooperative game with fuzzy coali-

tions. The goal of our study is to provide a systematic treatment of satisfaction level as a basis

for negotiation among rational agents, capable of participating in different fuzzy coalitions with

possibly varied rate of memberships simultaneously. The negotiation among the players, is carried

out through a consensus mediator. We assume that the worth of (or profit from) a fuzzy coalition

is evolved dynamically as opposed to its static behavior considered in most of the literature so far.

Let N = {1, 2, ..., n} be the set of players or agents. Any subset of N is called a crisp coalition. In

a crisp coalition, participation of a player is full or nil i.e. either a player invests her full resource

(or puts her full power) to a coalition or she does not give it at all. The set of all crisp coalitions

of N is denoted by 2N . A cooperative game is defined as a real valued function v : 2N → R
+∪{0}

such that v(∅) = 0. For each crisp coalition c ∈ 2N the real number v(c) is known as the worth of

the coalition c (or profit incurred from c). However, if a player, with her resource (or power) in

hand, wants to participate in various coalitions simultaneously, it would be practically impossible

for her to provide full resource(power) to all of them. This leads to the notion of fuzzy coalitions

and fuzzy coalition structures. A fuzzy coalition is defined as a fuzzy set of N , and represented

by an n-tuple, where its ith component represents the degree of participation (or fraction of the

resource) of player i in it. Thus a fuzzy coalition is formed when the participating players invest

fractions of their total resources. Resource investment can therefore be made synonymous with the

formation of a fuzzy coalition. Similarly a fuzzy coalition structure may be defined as a resource

investment matrix, in which the (i, j)th entry represents the fraction of resource of the ith player

in the jth fuzzy coalition. Formally, a fuzzy coalition structure is a class of fuzzy coalitions formed

simultaneously by the players providing their partial participations. Therefore, from a player’s

perspective, fuzzy coalitions (in a fuzzy coalition structure) may be termed as “investment av-

enues”. Aubin[1], Butnariu[8], Branzei et al. [7] contributed to a great deal of the theory of fuzzy

cooperative games and thereby justified the fuzzification in terms of the players’ participation in

a coalition. In both crisp or fuzzy environment, the challenge in the study of cooperative games

rests in finding a suitable resource investment matrix for the players and a suitable distribution

of the worth or profit to its players thereafter. Shapley values, core, minimum norm solutions,
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compromise values etc. are some of the solution concepts hitherto found in the literature those

deal with distribution of worth [1, 8, 20, 21, 22, 29, 7].

In [6], we have mentioned that behavioral psychologists often advocate for various means for

ensuring collective and efficient coordination among the agents/players. It is seen that, satisfac-

tion of the participating players, as an efficient mean, can enhance the overall performance of a

coalitional activity. It has the ability to increase the worth of (profit from) a coalition by encour-

aging group performance so that the players would end up with getting more from it. Moreover,

all players in a cooperative game do not possess capacities at par(by capacity, here, we mean a

quantification of the resources owned by a player). Therefore, satisfaction of a player in forming a

coalition is indicative of her capacity in terms of her resources. When a coalition is formed with a

fraction of the player’s resource, it would be a matter of her primary concern to notice whether she

is satisfied with it, up to a desired level. Moreover, players with fractional resources and multiple

assignments usually find it difficult to put their efforts individually in a single assignment and

rather would search for some companions to form a coalition. For them, it is somewhat beneficial

to compromise with the resources they provide for the sake of forming a coalition. Furthermore,

players’ investment preferences, if allowed to choose of their own, range from getting involved in

a large number of coalitions with smaller rates of participations (small fragments of resources) to

accumulating them for a fewer ones. In game theoretic terminologies, this means that some play-

ers are inclined to have a large number of fuzzy coalitions with smaller membership grades, while

others like fewer ones with larger membership grades. This idea is well explained by the notion of

risk analysis in investment problems, where the members in the former group of investors (players)

are less interested in taking risk (return is small but probability is high) and the later ones are

risk takers (return may be large but probability is small). Therefore, negotiation and compromise

among the players in forming coalitions is highly relevant in a cooperative game theoretic setup.

This motivates us to model a mediator imposed identification of an efficient allocation of resource

investments for our game. Existing literature, to the best of our knowledge, has not considered

such inter-coalitional strategies in regards to forming a coalition structure.

In what follows, formation of coalition for cooperative games is broadly divided into two cate-

gories, namely static and dynamic. The static coalitions do not, in general reflect the cooperations

among the players explicitly. In crisp cooperative games, Dieckmann et al[11], Ray et al[25, 26, 27]

have contributed a lot to the dynamic coalition formation. However, in fuzzy environment,a lit-

tle work has been carried out in this direction. In [4, 5, 6], some mathematical models (both

probabilistic and deterministic) are proposed for allocation of payoffs among the players assuming

that each provides the membership value of satisfaction upon receiving a proposal offered by a

mediator.

As already mentioned, along with a dynamic payoff allocation procedure among the members
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of a fuzzy coalition, it is equally (or at least not less) important to devise a mechanism in allo-

cating resource investments of players in different coalitions to form a fuzzy coalition structure.

For a meaningful coalition, the members need to be supportive to one another. However, every

player desires to invest more to gain more. Therefore, it is natural to expect all the players to be

satisfied at par with a resource investment allocation matrix in a cooperative environment. Thus

an aggregated satisfaction value over a particular resource investment allocation to an individual

player within the coalition can be derived to meet the requirements. A solution in this paradigm

should be such that every player is almost equally satisfied with it.

An example

The state of Assam in India has been known to the world by her tea industries and other natural

resources such as coal, petroleum, limestones etc. It is the home to the world famous one horn

rhinoceros. The Kaziranga National Park has been declared a world heritage site by the UNESCO

for providing natural shelter to the one horn rhinoceros. The area lies in the terrain of Himalayan

range on the north and eastern side and the Barail range on the south and western part. The region

attracts many migratory birds during the winter. A number of tourists flock to the various tourist

places scattered in the region, however the tourism industry is still in the neonatal stage. There

is little government initiatives and therefore, scope of initiations by private firms towards tourism

industry is enormous. Tea industry in the state, on the other hand, has witnessed a paradigm shift

from big corporate houses functioning from outside the state to the small tea growers, who are

mainly local enthusiasts. However, it is observed that the small tea planters (who do not have tea

factories) are not getting proper value of their raw products (green tea) due to the dominance of

big tea industries (who have tea factories). Furthermore, the region is equally famous for its wide

varieties of flora and fauna. Hundreds of species of wild Orchids are found in the nearby forests.

Mass level cultivation of orchids can also be a promising industry in the state. Nevertheless, most

of these ventures get disturbed by occasional as well as frequently occurring natural and man made

hazards. As the area is influenced by a number of subtropical phenomena, such as heavy rainfall,

flood, landslides along with other natural and man made disasters like earthquakes, insurgency

and social unrest etc., it is more natural to put resources in different endeavours (to form fuzzy

coalitions) by distributing risk of loss and carry out the tasks all together rather than sticking to

a particular industry. Suppose, three persons P1 , P2 and P3 together took a collective decision

to-

(a) set up a tea factory for the small tea planters of the area.

(b) cultivate orchids on commercial basis in order to cater to the needs of the local and global

markets.
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(c) set up an agency for venturing organized tourism in the area including tea tourism.

It is important to note that all the above three possible enterprises have interlinks, so that

each is expected to grow hand in hand along with the remaining two. We may further assume

that the players are unevenly skilled to these three endeavors. They finally have to submit their

proposals to the concerned departments of the state government(Department of Industry, Tourism

and Agriculture etc.) for necessary approval and other legalities. The problem now rests on how

much resource of each player can be judiciously allocated to each such enterprise so that the total

resource is exhausted. In game theoretic terminology, this would resort to finding that how we

can make three simultaneous fuzzy coalitions with the membership grades provided by the three

players. Ordinary static solution concepts can be employed to have one, nevertheless for creating

a better work environment producing optimum synergy, we may incorporate the satisfaction levels

of each of the players in the solution searching procedure as mentioned above.

The two fold allocation process

Initially all the players would inform the mediator about their available resources for investment

and would jointly fix a number of possible coalitions for the game. Consequently the players

would announce the total resources for each coalition to work with. Indeed each coalition can

have different resource options (depending on the same announced by the players) with different

levels of risk. We accept that the risk level of a coalition to work with large resource is less than the

one with small resource. The mediator will then find the optimal fuzzy coalition structure and the

corresponding optimal total resource allocation in such a way that the sum of the total resources

allocated for all coalitions is equal to the total resource in her hand. The resource allocations at

each coalition for the optimal coalition structure is then offered by the mediator. Upon receiving

such proposal, the players will provide their degrees of satisfactions in each coalition according to

their inherent satisfaction functions. Hereafter, we call this as “investment satisfaction” as the

fraction of resources of a player to be allocated to a fuzzy coalition refers to her investments in the

coalition. On the basis of this information the mediator will update her belief and propose the next

resource allocations and the process continues until a stopping condition is met. Thus the mediator

would offer successive proposals of resource allocations to the players judging on their reactions to

the previous offers. We have developed a stopping rule and proposed the process of updating the

belief of the mediator by use of a suitable function towards the possible reactions of the players

upon different offers of resource allocations. We call this function the approximate investment

satisfaction function. Furthermore, a variance function is defined to measure the closeness among

the investment satisfaction levels of the individual players in a coalition over a single proposal.

Variance would determine acceptability of a particular resource investment allocation. If the

variance of the investment satisfactions associated with a resource investment allocation (possibly
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with an abuse of terminology, we can call this as the variance of a resource investment allocation) is

below certain threshold to be determined by all the players collectively, then it would be considered

as a possible trade-off resource investment allocation to the problem. When the variance becomes

static at some stage and is still greater than the threshold, the corresponding resource investment

allocation will be accepted as an optimal resource investment allocation. Our method is based

on the assumption that the mediator proposes successive resource investment allocations with

variance getting smaller at every successive stage while keeping the following two conditions in

mind throughout the negotiation process:

(a) there should exist at least one coalition where investment satisfaction of a player is greater

than the aggregated investment satisfaction of all players in that coalition

(b) there should exist at least one coalition where investment satisfaction of a player is less than

the aggregated investment satisfaction of all players in that coalition.

A mathematical expression of the above two conditions is provided in the beginning of subsection

3.1.2.

An exact resource investment allocation is one for which variance is zero. Thus, for an exact

resource investment allocation, all the investment satisfactions are equal. We will show that

under conditions (a) and (b), the negotiation process converges to an exact resource investment

allocation. In general, every player keeps her investment satisfaction function secret from the

others. If a player discloses it before negotiation, we say that she facilitates “arbitration” by

providing incentives to the others. The negotiation strategy is so designed that the mediator

would propose only offers for which the variance would be minimum at each stage of the negotiation

process. What we have also kept in mind is that, in the negotiation process, each of the players

has a single motive: maximizing her individual payoffs by investing maximum of her resources.

This is well represented by some monotonic increasing functions characterizing the fuzzy sets of

their satisfactions. However, negotiation appeals a player to accommodate the desires and views

of all the other players. This suggests that an appropriate negotiation process should discourage

the players from insisting on illogical and abnormal coalition structures while it should reward

those who are more open in forming coalitions.

The remaining part of the paper is organized as follows. Section 2 introduces the preliminary

ideas required to formulate our model. In section 3, we develop the theoretical background of

our model and prove the existence of a better efficient offer. An iterative method for obtaining a

coalition structure for the n-person cooperative game with fuzzy coalitions is also described here.

Examples pertaining to the model and the existence of optimal resource investment allocation are

presented in section 4. Section 5 includes the concluding remarks.
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2 Preliminaries

This section reviews the concept of a cooperative game with fuzzy coalitions and the related

properties. A fuzzy set is characterized by a membership function from the universal set to [0, 1].

Thus, without loss of generality, we denote the fuzzy sets here by their membership functions.

We consider the class of fuzzy games defined by Azrieli and Lehrer [2]. This class seems to be

more general than the other existing classes and includes the class of crisp games as a subclass.

Its interpretation, however, is rather different. A fuzzy subset of a crisp set X is a function from

X to [0, 1], assigning every element of X a membership between 0 and 1. Let N be a finite set

representing the types of agents in a large population. There is a continuum of agents of each

type and Qi ≥ 0 is the size of type i (i = 1, 2, ..., n) agents. The entire population is, therefore,

represented by a non negative vector Q = (Q1, ..., Qn), and possible coalitions are identified with

the vectors that are (coordinate-wise) smaller than Q. By what is called an abuse of notation we

shall represent the sum
∑n

i=1 Qi by Q here.

Thus formalizing the notion, we have the following:

For every non-negative vector Q ∈ R
n, let F (Q) be the box given by

F (Q) = {x ∈ R
n : 0 ≤ x ≤ Q} .

The point Q is interpreted as the “grand coalition” in fuzzy sense, and every x ∈ F (Q) is a

possible fuzzy coalition while 0 ∈ F (Q) is the zero vector signifying 0-size of all types of players.

For every Q ≥ 0 : Q ∈ R
n, a cooperative fuzzy game is a pair (Q, v) such that

(i) Q ∈ R
n and Q ≥ 0.

(ii) v : F (Q) → R
+ ∪ 0 is bounded and satisfies v(0) = 0.

Thus if xi represents the amount of agents of type i (i = 1, 2, ..., n) that participate in a coalition

x, then the total profit from x = (x1, x2, ..., xn) is given by the real number v(x)[see [2] for more

details]. Thus the worth of a fuzzy coalition is identified with the profit it incurs due to its

formation.

This model has another interpretation due to Azrieli et al [2]. Assume that for every i (i =

1, 2, 3, ..., n), the amount of resources available for agent i is Qi ≥ 0 (this can be time, money, etc.).

Each agent can choose to invest any fraction of his resources xi ≤ Qi in a joint project. Note that

a fuzzy coalition in Aubin’s [1] sense is given by a membership function from N to [0, 1], however

the two approaches are equivalent in the following sense:

If for every x = (x1, x2, ..., xn) ∈ F (Q), xi (0 ≤ xi ≤ Qi) is the amount of resources that agent i

invests, then we can uniquely define a function SQ
x : N → [0, 1] as follows

SQ
x (i) =







xi

Qi

if Qi 6= 0 and xi 6= 0

0 otherwise
(1)
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The function SQ
x can be interpreted as the membership function for a possible fuzzy coalition

in Aubin’s sense pertaining to x in F (Q). Thus under this interpretation, every x ∈ F (Q)

corresponds to a unique fuzzy coalition SQ
x in membership function form and vice versa. The

support of x denoted by Supp( x) is the set {i ∈ N | xi > 0}. Note that F (Q) is a lattice under

ordinary inclusion of fuzzy sets. Let us denote respectively by ∨ and ∧, the maximum and minimum

operators in F (Q). A fuzzy game (Q, v) is said to be superadditive if v(x ∨ y) ≥ v(x) + v(y)

for every x,y ∈ F (Q) : x ∧ y = 0. Let us denote by GF (Q), the class of superadditive

cooperative fuzzy games with respect to a grand coalition Q. Hereafter, we shall consider the

members of GF (Q) only for our study and to simplify our notations, denote by v , any member

(Q, v) ∈ GF (Q). The following are few important excerpts from our previous paper [6] for a ready

reference:

Definition 1. A vector of payoffs y = (y1, y2, ..., yn) ∈ R
n, one for each player is called a profit

allocation. A profit allocation y is efficient for coalition x ∈ F (Q) if
∑n

i=1 yi = v(x).

Definition 2. The minimum deal index of a fuzzy game v ∈ GF (Q) with respect to a fuzzy

coalition x is the vector y(i,x) ∈ R
n such that

y(i,x) =







v(xi) +
xi

∑

xi

[v(x) −
∑

i v(xi)] if i ∈ Supp x

0 otherwise
(2)

where xi = (0, ...0, xi, 0, ...0) ∈ F (Q), and v(x).xi may be interpreted as the proportion of

resource of the ith component in v(x).

Remark 1. The minimum deal index is an efficient allocation.

Note that if the cooperative game v : Rn → R
+ ∪ {0} is continuous and all the resources of

the players are of same kind, then v depends on the total resource Q of the coalition s, rather

on different distributions, i.e. v is constant on each set {(x1, x2, ..., xn) :
∑n

i=1 xi = Q} for each

Q ∈ R. For example if resources are considered in monetary units, then v being symmetric in all

variables, generates a unique function F : R → R
+ ∪ {0} such that v = FoS, where S : R

n → R

defined for every x = (x1, x2, ..., xn) ∈ R
n, by S(x) =

∑n

i=1 xi. Therefore, F and v can be

used alternatively in finding the optimal fuzzy coalition structure {s1, s2, ...sm} such that their

resource allocation vector (Q1, Q2, ...Qm) maximizes
∑m

i=1 v(Qj). We illustrate this by means of

the following example:

Example 1. Take a cooperative fuzzy game v with 3 players, where v : R
3 → R is defined as

v(x1, x2, x3) = (x1+x2+x3)
2

9 . Here v is symmetric with respect to x1,x2 and x3. Hence we can find

the function F : R → R
+ ∪ {0} by F (x) = x2

9 , such that v = FoS, where S : Rn → R is the sum

function given by S(x1, x2, x3) =
∑3

i=1 xi.
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3 Our Model

Here we assume that only a finite number of fuzzy coalitions (where resource will be invested)

exists for finite number of players. This may be the case when the resources are measured in finite

denominations or when arbitrarily small fractions of resources have no practical utility. At first

all players i = 1, 2, ..., n would submit their available resources R1 ,R2 , ... , Rn to the mediator

which, she will allocate in the fuzzy coalitions. Let m be the maximum possible size of the fuzzy

coalition structure to be accrued by the players in presence of the mediator. Each player i would

estimate the total budget for each of the m coalitions . We assume that for the jth coalition sj , the

total budget vector estimated by the players be (Qj1, Qj2, ..., Qjn). We further assume that sj can

work with budget aj = min{Qj1, Qj2, ..., Qjn} at high risk while with bj = max{Qj1, Qj2, ..., Qjn}

at low risk. This assumption is due to the fact that each coalition requires a sufficient amount

of budgets to work with and we can expect that risk level will vary according to the investment.

Let the set of possible coalitions be s = {s1, s2, ..., sm}. The mediator will then find an optimal

coalition structure s∗ = {s1, s2, ..., sm∗} and a corresponding budget vector (Q1, Q2, ..., Qm∗) such

that (with regards to the cooperative game v),
∑m∗

j=1 v(Qj) is maximum and
∑m∗

j=1 Qj = Q. This

task would be performed in the following three steps:

Step 1: Find all the regions of the form {aj ≤ Qj ≤ bj , j = 1, 2, ...,m′}, where m′ ≤ n and
∑m′

j=1 aj ≤
∑n

i=1 Ri ≤
∑m′

j=1 bj .

Step 2: Solve the following problem for each region obtained in Step 1,

arg(Q1,Q2,...Q
m

′ )



max





m′

∑

j=1

v(Qj) : aj ≤ Qj ≤ bj







 . (3)

Step 3: Select those solutions (Q1, Q2, ...Qm∗) obtained in Step 2 , for which
∑m∗

j=1 v(Qj) is max-

imum.

Let (Q∗

1, Q
∗

2, ...Q
∗

m∗) be one such solution and s∗ = (s1, s2, ...sm∗), the corresponding coalition

structure. To illustrate this process, let us take the same cooperative fuzzy game v considered in

example 1.

Example 2. Let the budgets of the players submitted be R1 = 5, R2 = 10, R3 = 15 units

respectively. The players accept that there must be at the most five possible coalitions s1, s2, s3,

s4 and s5. Let their announced expected total budgets for those coalitions be given by the matrix:

Q = [Qij ] =























3 4 5

2 3 4

4 5 7

6 9 10

15 17 20






















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Therefore, a1 = 3, b1 = 5, a2 = 2, b2 = 4, a3 = 4, b3 = 7, a4 = 6, b4 = 10, a5 = 15, b5 = 20.

Step 1: Here the mediator finds the regions

{aj ≤ Qj ≤ bj , j = 1, 2, ...,m′}, where m′ ≤ 3 and
∑m′

j=1 aj ≤
∑n

i=1 Ri ≤
∑m′

j=1 bj .

Accordingly, she obtains the following :

region 1 : {3 ≤ Q1 ≤ 5, 6 ≤ Q4 ≤ 10, 15 ≤ Q5 ≤ 20}

region 2 : {2 ≤ Q2 ≤ 5, 4 ≤ Q3 ≤ 7, 15 ≤ Q5 ≤ 20}

region 3 : {3 ≤ Q1 ≤ 5, 4 ≤ Q3 ≤ 7, 15 ≤ Q5 ≤ 20}

region 4 : {2 ≤ Q2 ≤ 4, 6 ≤ Q4 ≤ 10, 15 ≤ Q5 ≤ 20}

region 5 : {4 ≤ Q3 ≤ 7, 6 ≤ Q4 ≤ 10, 15 ≤ Q5 ≤ 20}

region 6 : {6 ≤ Q4 ≤ 10, 15 ≤ Q5 ≤ 20}

Step 2: The mediator solves the optimization problem

arg(Q1,Q2,...Q
m

′ )



max





m′

∑

j=1

v(Qj) : aj ≤ Qj ≤ bj









for each region obtained in Step 1 as follows,

(a) for region 1, she obtains one of the solutions as (Q1 = 3, Q4 = 7, Q5 = 20) for which v(Q1) +

v(Q4) + v(Q5) = 50.8889.

(b) for region 2, she obtains one of the solutions as (Q2 = 3, Q3 = 7, Q5 = 20) for which v(Q2) +

v(Q3) + v(Q5) = 50.8889.

(c) for region 3, she obtains one of the solutions as (Q1 = 3, Q3 = 7, Q5 = 20) for which v(Q1) +

v(Q3) + v(Q5) = 50.8889.

(d) for region 4, one of the solutions would be (Q2 = 2, Q4 = 8, Q5 = 20) for which v(Q2)+v(Q4)+

v(Q5)) = 52.

(e) for region 5, one of the solutions would be (Q3 = 4, Q4 = 6, Q5 = 20) for which v(Q3)+v(Q4)+

v(Q5) = 50.2222.

(f) for region 6, one of the solutions would be (Q4 = 10, Q5 = 20) for which v(Q4) + v(Q5) =

55.5556.

Step 3: Thus, in this step, from the above solutions, the mediator picks up those solutions

for which
∑

v(Qj) is maximum. Here (Q4 = 10, Q5 = 20) gives the maximum value as v(Q4) +

v(Q5)) = 55.5556. So, the optimal coalition structure is {s4, s5} and the corresponding budget

vector is (Q4 = 10, Q5 = 20).

Once an optimal coalition structure s∗ = (s1, s2, ..., sm∗) is evolved, the mediator would initiate

for the resource allocation process to these coalitions. A resource investment allocation matrix
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x = (xij)
n,m∗

i=1,j=1 is one whose rows and columns signify respectively, the number of players and the

number of fuzzy coalitions (investment avenues) as decided by the mediator and the (i, j)th entry

xij represents the fraction of the ith player’s resource, allocated for investment in the jth coalition.

Moreover, a resource investment allocation matrix x can be expressed as an array (x1, · · · ,xm∗)

of column vectors, where each xj is a fuzzy coalition (i.e xj ∈ F (Q), 1 ≤ j ≤ m∗). Here after we

call a “resource investment allocation matrix” as “resource allocation” in short. Let xij be the

fraction of resource offered by player i for v in the jth coalition from her total resource Ri. Hence,

we must have Ri =
∑m∗

j=1 xij .

In our model, we associate a satisfaction function of player i for its resource allocation in the jth

coalition and call it the ”Investment satisfaction function” denoted by ISi
j : R → [0, 1]. We accept

the following assumptions with regards to the investment satisfaction function:

Assumption (1) ISi
j(v)(x) = 0 , when x ≤ 0.

Assumption (2) ISi
j(v)(x) = 1, when x ≥ Ri.

Assumption (3) ISi
j(v) is continuously differentiable and also strictly monotonic increasing in

[0, Ri].

A possible physical significance of the above assumptions is that each player i is keen to invest

her whole resource (Ri). Her degree of satisfaction is therefore zero if she has no investment at

all and one if she has full investment there. Moreover, it is natural to expect that satisfaction of

any player increases continuously with respect to her investment. Furthermore, every player tries

to increase her resource investment in a coalition. So, the derivatives of investment satisfaction

functions are monotonic increasing.

Thus to summarize, a “resource allocation” x = (xij)
n,m∗

i=1,j=1 to a cooperative fuzzy game v is a

distribution of resources of the players among all fuzzy coalitions such that
∑m∗

ji=1 xij = Ri and
∑n

i=1 xij = Qj . Following definitions are important.

Definition 3. A resource allocation x = (xij)
n,m∗

i=1,j=1 is said to be an exact resource allocation if

all the players in a fuzzy coalition are equally satisfied with their resource investments i.e. ∃λj ∈ R

with j = 1, 2, ...,m∗ such that ISi
j(v)(xij) = λj , i = 1, 2, ...n.

Definition 4. A resource allocation x = (xij)
n,m∗

i=1,j=1 is said to be an approximate resource

allocation if there exist at least two players i, k(i 6= k), ISi
j(v)(xij) 6= ISk

j (v)(xkj) for some

j : 1 ≤ j ≤ m∗.

In order to obtain a better resource allocation from the previous one, we define the variance

function as follows:

11



Definition 5. The function var : R
n × R

m∗

→ R, given by

var(x) =

√

√

√

√

m∗

∑

j=1

n
∑

i=1

(

ISi
j(v)(xij) − ISv(xj)

)2

(4)

is called the variance function of the resource allocation x = (xij)
n,m∗

i=1,j=1, where, ISv(xj) =
∑n

i=1 ISi
j(v)(xij)

n
is the mean satisfaction of the players over the jth coalition.

Definition 6. A resource allocation x′ = (x′

ij)
n,m∗

i=1,j=1 is said to be better approximate resource

allocation than the resource allocation x = (xij)
n,m∗

i=1,j=1 if var(x′) < var(x).

Note that every resource allocation is Pareto Optimal in the sense that a betterment to a single

player in the next stage is not possible without decreasing the amount of resource to at least one

of the remaining players in each coalition.

3.1 Allocation Strategies

The process of negotiation is governed by the negotiation strategies adopted by the mediator for

an equitable benefit of each of the players. These strategies determine how the mediator generates

and consequently how the players evaluate resource investment to reach an agreement that is

most in their self interest [15]. The mediator would propose resource allocation throughout the

negotiation process. Whenever a resource allocation is not accepted by the players with equal

satisfactions within a coalition, she would either adopt a trade-off strategy or make further offers

using an exact resource allocation searching strategy.

3.1.1 Trade-off strategy

A trade-off strategy is an approach by which the mediator generates a resource allocation without

reducing the corresponding aggregated satisfaction value. Here, if the variance is below or equal to

certain collectively accepted threshold, the players would agree to the current resource allocation

instead of continuing the process further. Thus by this approach, one can search for an agreement

that benefits all the players at an acceptable threshold.

Suppose that, Si(x
t) = {xt

j ∈ F (Q) : ISi
j(v)(xt

ij) > ISv(xt
i)} , S′

i(x
t) = {xt

j ∈ F (Q) :

ISi
j(v)(xt

ij) < ISv(xt
j)} and S′′

i (xt) = {xt
j ∈ F (Q) : ISi

j(v)(xt
ij) = ISv(xt

j)} for every i, represent

respectively, the sets of all coalitions in which the investment satisfaction degrees of i exceed the

aggregated investment satisfaction value, the investment satisfaction degrees precede the aggre-

gated investment satisfaction value and finally the set of all coalitions in which the investment

satisfaction degrees of i are equal to the aggregated value at stage t. If either St
i or S

′t
i is empty,

the mediator adopts a trade-off strategy. If both St
i and S

′t
i are non-empty, at each stage t, an

exact resource allocation searching strategy will be adopted as described in the following.

12



3.1.2 Exact allocation searching strategy

Let at stage t+1, the proposed allocation be xt = (xt
ij) and Si(x

t) 6= ∅ and S′

i(x
t) 6= ∅. As already

mentioned that the mediator is unaware of the investment satisfaction functions of the players, she

would update her belief on each player at each stage by assessing the lower and upper bounds of

the satisfactions. At stage t of the negotiation process, we obtain these bounds for player i ∈ N in

the coalition xt
j by defining an approximate function namely µt

ij . This function is indeed a linear

approximation (from below) of player i’s actual investment satisfaction function for the next offer

at stage t + 1 and is obtained by joining the pair
[

(0, 0) , (xt
ij , ISi

j(v)(xt
ij))

]

of points. Thus we

have,

µt
ij (x) =

ISi
j(v)

(

xt
ij

)

xt
ij

x, ∀i ∈ N, 1 ≤ j ≤ m∗ (5)

The idea of searching for the exact resource allocation depends on how every investment satisfac-

tion ISi
j(v)(xt

ij) for the player i in the coalition xt
j at stage t converges to the mean investment

satisfaction ISv(xt
j). So, at stage t, for obtaining the bounds of the actual investment satisfaction

degree of player i, towards a resource allocation, to be proposed in the next stage t + 1, we need

to find those values of z ∈ R for which µt
ij(z) = ISv(xt

j) . We shall denote these values by either

at
ij or bt

ij keeping in mind that if z is denoted by at
ij then xt

ij = bt
ij and if z is denoted by bt

ij then

xt
ij = at

ij . A geometric representation of the idea is shown in figure 1 and 2.

Thus at
ij and bt

ij for xt
j in Si(x

t) , S′

i(x
t) and S′′

i (xt) are given separately by,

at
ij = ISv(xt

j) ×
xt

ij

ISi
j(v)(xt

ij)
and bt

ij = xt
ij . (6)

where xt
j ∈ Si(x

t). Similarly for xt
j ∈ S′

i(x
t), we have,

at
ij = xt

ij and bt
ij = ISv(xt

j) ×
xt

ij

ISi
j(v)(xt

ij)
. (7)

Finally, we have, for xt
j ∈ S′′

i (xt),

at
ij = xt

ij and bt
ij = xt

ij .

Thus the expected proposal x∗, is defined as follows:

Definition 7. Assuming that the mediator puts a resource allocation xt to the players at stage t

and that all the players subsequently announce their investment satisfaction degrees, the expected

better resource allocation x∗ for the proposal at stage t + 1 is defined as :

x∗ = argx











min

√

√

√

√

√

√

m∗

∑

j=1

n
∑

i=1
i<k
k∈N

(

µt
ij (xij) − µt

kj (xkj)
)2

: A











(8)
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where

A :=







n
∑

i=1

xij = Qj ,

m∗

∑

j=1

xij = Ri, at
ij ≤ xij ≤ bt

ij , i = 1, 2, ...n, j = 1, 2, ...,m∗







.

Note that, if at stage t + 1, the proposed allocation x = (xij)
n,m∗

i=1,j=1 be such that for some

player i either Si(x
t) = φ or S′

i(x
t) = φ, then the mediator would seek for a resource allocation

xt+1 which minimizes

var(x) =

√

√

√

√

m∗

∑

j=1

n
∑

i=1

(

ISi
j(v)(xij) − ISv(xj)

)2

(9)

Let D denote the mutually accepted trade-off threshold to a proposal x, at some stage. Then

if var(x) ≤ D, the mediator would resort to a trade-off strategy and we call the corresponding

allocation x an optimal resource allocation.

3.2 The Negotiation Process

In our model, we take a combination of the two allocation strategies to carry out the process of

negotiations. Thus, what follows is:

The mediator offers resource allocation at stage t = 0 and expects that it is the exact resource

allocation. If it is so, the process terminates and we get the required resource allocation. If not, she

would check for non-emptiness of the sets Si(x
t) and S′

i(x
t) for every i ∈ N . If there exist at least

one player for which either of them is empty, then the mediator will pickup the trade-off strategy.

If there is no trade-off among players, the process would terminate with conflicts. Otherwise,

the mediator would adopt the exact resource allocation searching strategy and obtain the upper

and lower bounds of the next investment satisfaction degrees of all the players. Subsequently, she

approximates the investment satisfaction function possessed by player i, at stage t for stage t+1 by

µt
ij which is a linear approximation of the investment satisfaction function ISi

j(v) for the next offer

from below the aggregated investment satisfaction degree. Thus a better approximate resource

allocation (due to the approximate investment satisfaction) would be obtained and announced as

the next offer.

The following lemma is important:

Lemma 1. Let the resource allocation at the stage t be xt =
(

xt
ij

)

, such that for every player i,

Si(x
t) 6= φ and S′

i(x
t) 6= φ. If the corresponding degrees of investment satisfactions given by the

14



players are ISi
j(v)(xt

ij), then we must have

∑

xt
ij
∈Si(xt)

xt
ij >

∑

xt
ij
∈Si(xt)

ISv

(

xt
j

)

×
xt

ij

ISi
j(v)

(

xt
ij

) (10)

∑

xt
ij
∈S′

i
(xt)

ISv

(

xt
j

)

×
xt

ij

ISi
j(v)

(

xt
ij

) >
∑

xt
ij
∈S′

i
(xt)

xt
ij (11)

∑

i∈Sj(xt)

xt
ij >

∑

i∈Sj(xt

ISv

(

xt
j

)

×
xt

ij

ISi
j(v)

(

xt
ij

) (12)

and
∑

i∈S′

j
(xt)

ISv

(

xt
j

)

×
xt

ij

ISi
j(v)

(

xt
ij

) >
∑

i∈S′

j
(xt)

xt
ij (13)

where Sj(x
t) = {i ∈ N : ISi

j(v)(xt
ij) > ISv(xt

j)} and S′

j(x
t) = {i ∈ N : ISi

j(v)(xt
ij) < ISv(xt

j)}

represent respectively, the sets of players having satisfaction degrees above and below the aggregated

satisfaction for the resource allocation xt at stage t.

Remark 2. A similar lemma was proved in our previous paper (Lemma 11, [6]) concerning profit

allocation. The proof of lemma 1 goes exactly in the same way and thus we omit the same here.

Theorem 1. Given a superadditive cooperative fuzzy game v : F (Q) → R
+ ∪ {0} and a rational

efficient resource allocation xt at stage t which is not exact, let us assume that Si(x
t) 6= φ and

S′

i(x
t) 6= φ for all player i. Then for stage t + 1, there exists at least one better rational efficient

resource allocation xt+1, such that

at
ij ≤ xt+1

ij ≤ bt
ij .

for xt
j ∈ Si(x

t) where at
ij and bt

ij are given by equation (6) and

at
ij ≤ xt+1

ij ≤ bt
ij .

for xt
j ∈ S′

i(x
t) where at

ij and bt
ij are given by equation (7)

Proof. Here, we have to prove that there exists a rational efficient resource allocation which is

better than the given resource allocation.

Part I: (Existence of a Rational efficient resource allocation)

For the existence of a rational efficient resource allocation x = (xij)
n,m∗

i=1,j=1 at stage t + 1, we need

to show that,
∑m∗

j=1 at
ij ≤

∑m∗

j=1 xij = Ri ≤
∑m∗

j=1 bt
ij for all i = 1, 2, ..., n.

and
∑n

i=1 at
ij < Qj =

∑n

i=1 xij <
∑n

i=1 bt
ij for all j = 1, 2, ...,m∗

From first two inequalities of lemma 1, we have,
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∑

xt
ij
∈Si(xt)

xt
ij >

∑

xt
ij
∈Si(xt)

ISv

(

xt
j

)

×
xt

ij

ISi
j(v)

(

xt
ij

) (14)

∑

xt
ij
∈S′

i
(xt)

ISv

(

xt
j

)

×
xt

ij

ISi
j(v)

(

xt
ij

) >
∑

xt
ij
∈S′

i
(xt)

xt
ij (15)

Adding inequalities (14) and (15) with
∑

xt
j
∈S′′

i
(xt) xt

ij on both sides, we get

∑

xt
j
∈Si(xt)

at
ij +

∑

xt
j
∈S′

i
(xt)

xt
ij +

∑

xt
j
∈S′′

i
(xt)

xt
ij <

∑

xt
j
∈Si(xt)

xt
ij +

∑

xt
j
∈S′

i
(xt)

bt
ij +

∑

xt
j
∈S′′

i
(xt)

xt
ij

Since, xt
ij = at

ij for xt
j ∈ S′

i(x
t) ∪ S′′

i (xt) and xt
ij = bt

ij for xt
j ∈ Si(x

t) ∪ S′′

i (xt), we have

m∗

∑

j=1

at
ij <

m∗

∑

j=1

xt
ij = Ri <

m∗

∑

j=1

bt
ij

for all i. Similarly, since, xt
ij = at

ij for i ∈ Sj(x
t) ∪ S′′

j (xt) and xt
ij = bt

ij for i ∈ Sj(x
t) ∪ S′′

j (xt),

from the remaining two inequalities of lemma 1, we have,

m∗

∑

j=1

at
ij <

n
∑

i=1

xt
ij = Qj <

m∗

∑

j=1

bt
ij

for all xt
j . Now, each investment satisfaction function ISi

j(v) being continuous in the closed

interval
[

at
ij , b

t
ij

]

, and
∑n

i=1 Ri =
∑m∗

j=1 Qj we have, by the “Intermediate Value Theorem” that

there exists x = (xij)
n,m∗

i=1,j=1 such that at
ij ≤ xij ≤ bt

ij for all i and j, along with
∑m∗

j=1 at
ij ≤

∑m∗

j=1 xij = Ri ≤
∑m∗

j=1 bt
ij for all i and

∑n

i=1 at
ij ≤

∑n

i=1 xij = Qj ≤
∑n

i=1 bt
ij for each xt

j .

Part II :(There is a new resource allocation better than the previous resource allocation)

Since for xt
j ∈ Si(x

t),

ISi
j(v)(xt

ij) > ISv(xt
j),

for xt
j ∈ S′

i(x
t),

ISi
j(v)(xt

ij) < ISv(xt
j),

for i ∈ Sj(x
t),

ISi
j(v)(xt

ij) > ISv(xt
j)

and for i ∈ S′

j(x
t),

ISi
j(v)(xt

ij) < ISv(xt
j),

by part I and using the following facts:

(i)
∑n

i=1 Ri =
∑m∗

j=1 Qj ,

(ii) for some player i, ISi
j(v)(xij) < ISi

j(v)(xt
ij) where xt

j ∈ Si(x
t), and finally,
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(iii) for some player i, ISi
j(v)(xij) > ISi

j(v)(xt
ij) where xt

j ∈ S′

i(x
t),

we can select a resource allocation x = (xij)
n,m∗

i=1,j=1 such that,

(a) at
ij ≤ xij ≤ bt

ij for all i and j,

(b)
∑m∗

j=1 at
ij ≤

∑m∗

j=1 xij = Ri ≤
∑m∗

j=1 bt
ij for all i and,

(c)
∑n

i=1 at
ij ≤

∑n

i=1 xij = Qj ≤
∑n

i=1 bt
ij for all j,

Since, for all player i, Si(x
t) 6= φ and S′

i(x
t) 6= φ and since each investment satisfaction function

ISi
j(v) is continuous in the closed interval

[

at
ij , b

t
ij

]

, thus,

m∗

∑

j=1

n
∑

i=1
k∈N
i<k

(

ISi
j(v) (xij) − ISk

j (v) (xkj)
)2

<

m∗

∑

j=1

n
∑

i=1
k∈N
i<k

(

ISi
j(v)

(

xt
ij

)

− ISk
j (v)

(

xt
kj

))2

⇒
m∗

∑

j=1

n
∑

i=1
k∈N
i<k

(

ISi
j(v) (xij) − ISv (xj)

)2

<

m∗

∑

j=1

n
∑

i=1
k∈N
i<k

(

ISi
j(v)

(

xt
ij

)

− ISv

(

xt
j

)

)2

⇒ var (x) < var
(

xt
)

.

So, x = (xij)
n,m∗

i=1,j=1 is a better efficient resource allocation than xt. This completes the proof.

3.2.1 The Negotiation Protocol

We now describe the negotiation protocol of the resource allocation process, accepting that an

optimal coalition structure s∗ = (s1, s2, ..., sm∗) has already evolved in the first phase.

Stage1:

The mediator will propose the initial resource allocation x0 = (x0
ij)

n,m∗

i=1,j=1 where x0
ij > 0 ∀i, j

and the players would react to this proposal by announcing their satisfaction degrees ISi
j(v)(x0

ij).

Based on these information, the mediator would approximate her beliefs by defining the function

µ0
ij as follows:(refer to equation (5))

µ0
ij(x) =

ISi
j(v)(x0

ij)

x0
ij

x, ∀i ∈ N, j = 1, 2, ...,m∗ (16)

If the investment satisfactions ISi
j

(

x0
ij

)

are equal in each coalition x0
j =

(

x0
1j , x

0
2j , ..., x

0
nj

)

, 1 ≤

j ≤ m∗ , then the proposal x0 will be the exact resource allocation and the process would ter-

minate there itself. Otherwise, either for all players i, Si(x
0) 6= φ and S′

i(x
0) 6= φ or for some

i one of Si(x
0) or S′

i(x
0) is empty. In the first situation the mediator would adopt “Exact re-

source allocation Searching Strategy” while the second situation will be dealt with a “Trade-off

strategy”. Existence of a better rational efficient resource allocation in the former case is ensured

by theorem 1. However, as the investment satisfaction functions of the players are not known a
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priori, the mediator computes the next resource allocation using only the approximate investment

satisfaction function µ0
ij similar to that given in equation (8):

x1 = argx











min

√

√

√

√

√

√

m∗

∑

j=1

n
∑

i=1
k∈N
i<k

(

µ0
ij (xij) − µ0

kj (xkj)
)2

: A











where,

A =







n
∑

i=1

xij = Qj ,

m∗

∑

j=1

xij = Ri, a
t
ij ≤ xij ≤ bt

ij , j = 1, 2, ...,m∗, i = 1, 2, ...n







.

such that,

a0
ij = ISv(x0

j ) ×
x0

ij

ISi
j
(v)(x0

ij
)

, b0
ij = x0

ij , for x0
j ∈ Si(x

0); a0
ij = x0

ij , b0
ij = ISv(x0

j ) ×
x0

ij

ISi
j
(v)(x0

ij
)
, for

x0
j ∈ S′

i(x
0) ; and finally for x0

j ∈ S′′

i (x0), a0
ij = x0

ij and b0
ij = x0

ij .

Note that, here,

Si(x
0) =

{

x0
j ∈ F (Q) : ISi

j(v)(x0
ij) > ISv(x0

j )
}

, S′

i(x
0) =

{

x0
j ∈ F (Q) : ISi

j(v)(x0
ij) < ISv(x0

j )
}

and S′′

i (x0) =
{

x0
j ∈ F (Q) : ISi

j(v)(x0
ij) = ISv(x0

j )
}

.

Stage t+1:

In the case of xt not being exact, whereas, for each i, Si(x
t) 6= φ and S′

i(x
t) 6= φ, then by theorem 1

a better rational efficient resource allocation can be obtained as follows:

xt+1 = argx











min

√

√

√

√

√

√

m∗

∑

j=1

n
∑

i=1
k∈N
i<k

(

µt
ij (xij) − µt

kj (xkj)
)2

: A











where

A =







n
∑

i=1

xij = Qj ,

m∗

∑

j=1

xij = Ri, a
t
ij ≤ xij ≤ bt

ij , j = 1, 2, ...,m∗, i = 1, 2, ...n







.

and at
ij = ISv(xt

j) ×
xt

ij

ISi
j
(v)(xt

ij
)
, bt

ij = xt
ij , for xt

j ∈ Si(x
t) and for xt

j ∈ S′

i(x
t), we have, at

ij = xt
ij

,bt
ij = ISv(xt

j) ×
xt

ij

ISi
j
(v)(xt

ij
)

for xt
j ∈ S′′

i (xt), at
ij = xt

ij and bt
ij = xt

ij .

We now prove that the process of searching for a better resource allocation described here, leads

to an exact resource allocation.

Theorem 2. The process of obtaining a better efficient resource allocation converges to the exact

resource allocation if at each stage t, it holds that Si(x
t) 6= φ and S′

i(x
t) 6= φ, ∀i ∈ N .

Proof. If at each stage t, Si(x
t) 6= φ and Si(x

t) 6= φ, ∀i ∈ N , we have var
(

xt+1
)

< var (xt) ∀t ∈ H.

Thus, {var (xt) , t ∈ H} is a strictly decreasing sequence of positive real numbers, H being the
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history.

So ,

lim
t→∞

var
(

xt
)

= 0 = var (x) (17)

for some x ∈ R
n×m∗

such that
∑n

i=1 xij = Qj ,
∑m∗

j=1 xij = Ri. This resource allocation x is then

the exact resource allocation. The existence of this exact resource allocation is ensured by theorem

1.

4 Examples

We illustrate here, our model by means of the same example we mentioned in Introduction. We

first deal with a situation where the mediator searches for solutions using exact resource allocation

strategy, followed by a second one which will have bearings of trade-off strategy.

Example 3. In continuation to what we have discussed in the Introduction, let players P1, P2 and

P3 have resources R1 = 10,R2 = 15 and R3 = 20 respectively (in multiples of hundred thousand

rupees). In phase 1, let the mediator find that only coalitions s1 , s2 and s3 with their budgets as

Q1 = 10 , Q2 = 15 and Q3 = 20 respectively can maximize
∑

v(Qj).

Let us assume hypothetically that players’ satisfaction functions are given by,

IS1
j (v) (x) = x2

100

IS2
j (v) (x) = x2

225

IS3
j (v) (x) = x2

400 ,

for every j such that 1 ≤ j ≤ 3.

The negotiation process goes on as follows:

Stage 1: Let,

x0 =











2.22874 3.37124 4.40002

3.45151 4.93382 6.61467

4.31975 6.69494 8.98531











be the first resource allocation matrix proposed by the mediator. The players will announce their

satisfaction degrees using their investment satisfaction functions as:

[ISi
j(v)(x0

ij)] =











0.0496728 0.0505123 0.0484004

0.119129 0.108189 0.109385

0.186602 0.19921 0.201839











so that var
(

x0
)

= 0.356931.

The following table illustrates the iterative steps in obtaining a better rational efficient solution:
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Table 1:

stage t x
t = {(xt

11, x
t

21, x
t

31), (x
t

12, x
t

22, x
t

32), (x
t

13, x
t

23, x
t

33)} var(St)

t = 1 {(2.22874, 3.37124, 4.40002), (3.45151, 4.93382, 6.61467), (4.31975, 6.69494, 8.98531)} 0.0143861

t = 2 {(2.22227, 3.30558, 4.47215), (3.25174, 5.04728, 6.70098), (4.52599, 6.64714, 8.82687)} .0092807

t = 3 {(2.21919, 3.3568, 4.42401), (3.39132, 4.96382, 6.64486), (4.38949, 6.67938, 8.93113)} 0.0067498

t = 4 {(2.22502, 3.31249, 4.46249), (3.29177, 5.02927, 6.67896), (4.48321, 6.65824, 8.85855)} 0.0047768

t = 5 {(2.21809, 3.35228, 4.42963), (3.36388, 4.97582, 6.6603), (4.41803, 6.6719, 8.91007)} 0.00342241

t = 6 {(2.22659, 3.31563, 4.45778), (3.31061, 5.02082, 6.66857), (4.4628, 6.66355, 8.87365)} 0.00301652

t = 7 {(2.21738, 3.3504, 4.43222), (3.35068, 4.98145, 6.66787), (4.43194, 6.66815, 8.89991)} 0.00193378

t = 8 {(2.22719, 3.32024, 4.45257), (3.31982, 5.01231, 6.66787), (4.45299, 6.66745, 8.87956)} 0.00141783

t = 9 {(2.21748, 3.3441, 4.43842), (3.34368, 4.98845, 6.66787), (4.43884, 6.66745, 8.89371)} 0.00108052

t = 10 {(2.22652, 3.32583, 4.44765), (3.3252, 5.00693, 6.66787), (4.44824, 6.66724, 8.88448)} 0.000782514

If all the players agree to a trade-off at var (xt) < 0.0008 then, the corresponding resource al-

location matrix is given by,

S10 =











2.22652 3.32583 4.44765

3.3252 5.00693 6.66787

4.44824 6.66724 8.88448











We take another example but similar to the former, to show that there are situations, where

after certain stage, the exact solution searching strategy would no more be applicable. In such

cases, a trade-off strategy will be adopted. Thus the negotiation protocol becomes a combination

of both the strategies.

Example 4. Consider the same three players P1,P2and P3 who have resources R1 = 10,R2 = 15

and R3 = 20 respectively (in multiples of hundred thousand rupees). Suppose the mediator desires

that the total number of coalitions be 2 (i.e. n = 2). Let these coalitions be s1 and s2 with their

sufficient resources as Q1 = 20 and Q2 = 25 respectively (These may be any two industries we

have proposed in the previous example).

Let us assume hypothetically that players’ satisfaction functions are given by,

IS1
j (v) (x) = x

10

IS2
j (v) (x) = x2

225

IS3
j (v) (x) = x2

400 for j = 1, 2.

The negotiation process goes on as follows:

Stage 1: Let,

x0 =





4 7 4.9

6 8 11




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be the first resource allocation matrix proposed by the mediator. The players would announce

their satisfaction degrees using their investment satisfaction functions as follows:

[ISi
j(v)(x0

ij)] =





0.4 0.217778 0.2025

0.6 0.284444 0.3025





where, ISv (x0
1) = 0.273426 and ISv (x0

2) = 0.395648. Thus S1(x
0) = {x0

1,x
0
2} and S′

1(x
0) = φ.

Therefore, we cannot apply exact resource allocation searching strategy here. So, we can take the

above x0 as a trade-off allocation.

5 conclusion

This paper has presented a dynamic approach to solve the problem of resource allocation among

rational players involved in a joint venture. The problem is treated with fuzzy game theoretic

approach. This work is in sequel to our earlier work on profit allocation [6]. We comment that

a dynamic approach would encourage the players for better performance in anticipation of a

satisfactory resource allocation in a coalition structure. Moreover, if the process of coalition

formation is repeated as the case may be until the players’ resources are exhausted, then intuitively,

they would have sufficient time to learn about each other. Consequently, more synergic gains

would outweigh the one shot expectations which justifies our assumption of rationality regarding

the players’ actual satisfaction functions. This justification is similar to our previous work [6].

Keeping that in mind, here also, we have taken two strategies namely, exact resource allocation

searching and trade-off strategies. Nevertheless, our previous and current works together will

completely describe the dynamics in a cooperative fuzzy game where we have chosen satisfaction

of the players a key ingredient in allocating resource and payoff to a set of players.
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