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Abstract
Assume an uncertain process follows an uncertain differential equation, and some
realizations of this process are observed. Parameter estimation for the uncertain dif-
ferential equation that fits the observed data as much as possible is a core problem in
practice. This paper first presents a problem of initial value estimation for uncertain
differential equations and proposes an estimation method. In addition, the method of
moments is recast for estimating the time-varying parameters in uncertain differen-
tial equations. Using those techniques, a COVID-19 spread model based on uncertain
differential equation is derived, and the zero-day of COVID-19 spread in China is
inferred.

Keywords Uncertainty theory · Uncertain statistics · Uncertain differential equation ·
COVID-19

1 Introduction

Based on uncertainty theory (Liu 2007), Liu (2008) initialized uncertain differential
equation as a type of differential equations involving uncertain processes. Under linear
growth and Lipschitz condition, Chen and Liu (2010) proved an existence and unique-
ness theorem of solution of uncertain differential equation. Following that, Gao (2012)
proved the theorem again under local linear growth and Lipschitz condition. Further-
more, an analytic solution to linear uncertain differential equations was derived by
Chen and Liu (2010), and some analytic methods to nonlinear uncertain differential
equations were presented by Liu (2012) and Yao (2013b). Yao and Chen (2013) made
an important contribution for verifying that the solution of an uncertain differential
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equation can be represented by a family of solutions of ordinary differential equations
(this important workwas named asYao–Chen Formula later), and then themethods for
calculating extreme value, first hitting time and time integral of the solution of uncer-
tain differential equation were provided by Yao (2013a). To estimate the unknown
parameters in uncertain differential equation that fits the observed data as much as
possible, several methods were proposed, for example, the method of moments (Yao
and Liu 2020), least squares estimation (Sheng et al. 2019), generalized moment esti-
mation (Liu 2020b), uncertain maximum likelihood (Liu and Liu 2020), andminimum
cover estimation (Yang et al. 2020).

Recently, many scholars applied uncertain statistics to modelling COVID-19 pan-
demic. For instance, Liu (2020a) used uncertain regression analysis to forecast the
cumulative numbers of COVID-19 infections in China, while Ye and Yang (2020)
used uncertain time series. Following that, Chen et al. (2020) presented an uncer-
tain SIR model, and Jia and Chen (2020) proposed an uncertain SEIAR model by
employing high-dimensional uncertain differential equations.

However, there are still two challenges in this topic. The first one is how to esti-
mate the zero-day of COVID-19 spread in China. This is the problem of initial value
estimation for uncertain differential equations. The second one is how to estimate the
parameters of uncertain differential equations based on observed data when the param-
eters are time-varying. This is the problem of time-varying parameter estimation.

The rest of this paper is organized as follows. Section 2 will define a concept of
α-region of solution for uncertain differential equations, and Sect. 3 will present a
problem of initial value estimation for uncertain differential equations and propose an
estimation method. The cumulative numbers of COVID-19 infections in China will
be surveyed in Sect. 4, and a COVID-19 spread model based on uncertain differential
equation will be derived in Sect. 5. In Sect. 6, the method of moments will be recast for
estimating the time-varying parameters of the COVID-19 spreadmodel. Section 7 will
infer the zero-day of COVID-19 spread in China. Section 8 will show that stochastic
COVID-19 spreadmodel is not suitable. Finally, Sect. 9will provide a brief conclusion.

2 The˛-region of solution

The α-region of solution of an uncertain differential equation is defined as the set that
the solutions may fall in.

Definition 1 Let α be given with α ≥ 0.5. Suppose Xα
t and X1−α

t are the α-path and
(1 − α)-path of an uncertain differential equation

dXt = f (t, Xt )dt + g(t, Xt )dCt (1)

with initial value xt0 , respectively. Then the set

Sα(t0, xt0) = {(t, x) ∈ �2| X1−α
t ≤ x ≤ Xα

t , t ≥ t0} (2)

is said to be the α-region of solution with respect to xt0 for the uncertain differential
equation (1).
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Example 1 Let α be given with α ≥ 0.5. For the uncertain differential equation

dXt = adt + bdCt , (3)

with initial value x0 = 0, since its α-path and (1 − α)-path are

Xα
t = at + |b|Φ−1(α)t

and

X1−α
t = at + |b|Φ−1(1 − α)t,

respectively, the α-region of solution with respect to x0 = 0 for the uncertain differ-
ential equation (3) is

Sα(0, 0) = {(t, x) ∈ �2| at + |b|Φ−1(1 − α)t ≤ x ≤ at + |b|Φ−1(α)t, t ≥ 0}

where

Φ−1(α) =
√
3

π
ln

α

1 − α
.

Example 2 Let α be given with α ≥ 0.5. For the uncertain differential equation

dXt = aXtdt + bXtdCt (4)

with initial value x0 = 1, since its α-path and (1 − α)-path are

Xα
t = exp(at + |b|Φ−1(α)t)

and

X1−α
t = exp(at + |b|Φ−1(1 − α)t),

respectively, the α-region of solution with respect to x0 = 1 for the uncertain differ-
ential equation (4) is

Sα(0, 1) = {(t, x) ∈ �2| exp(at + |b|Φ−1(1 − α)t)

≤ x ≤ exp(at + |b|Φ−1(α)t), t ≥ 0}

where

Φ−1(α) =
√
3

π
ln

α

1 − α
.
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To obtain the α-region of solution, the core problem is to compute the α-path
of uncertain differential equation. In order to do it, some numerical methods were
designed, for example, Euler method (Yao and Chen 2013), Runge–Kutta method
(Yang and Shen 2015) and Adams method (Yang and Ralescu 2015).

3 Initial value estimation

Assume an uncertain process follows an uncertain differential equation and some
realizations of this process are observed. How to estimate the initial value of the
process based on the uncertain differential equation and observed data is an interesting
problem for practice.

Definition 2 Suppose an uncertain process Xt follows an uncertain differential equa-
tion

dXt = f (t, Xt )dt + g(t, Xt )dCt , (5)

and xt1 , xt2 , . . . , xtn are the observed data of Xt at the times t1, t2, . . . , tn , respectively.
For any given confidence level α ≥ 0.5, the set

Oα = {(t0, xt0)| (ti , xti ) ∈ Sα(t0, xt0), i = 1, 2, . . . , n} (6)

is said to be the α-region of initial value with respect to the observed data
xt1 , xt2 , . . . , xtn for the uncertain differential equation (5), where Sα(t0, xt0) is the
α-region of solution with respect to xt0 .

The following algorithm provides a way to judge whether (t0, xt0) ∈ Oα or not.
Algorithm 1
Step 1: Compute α-path Xα

t and (1 − α)-path X1−α
t of the uncertain differential

equation (5) by Euler method, Runge-Kutta method or Adams method.
Step 2: Set i = 0.
Step 3: Set i ← i + 1.
Step 4: If Xα

ti < xti or X
1−α
ti > xti , then output (t0, xt0) /∈ Oα and stop.

Step 5: If i < n, then go to Step 3.
Step 6: Output (t0, xt0) ∈ Oα .

4 Cumulative numbers of COVID-19 infections in China

The cumulative numbers of COVID-19 infections in China excluding imported cases
from January 20 to March 15, 2020 were reported by National Health Commission of
China, and summarized by Liu (2020a) and Ye and Yang (2020). See Table 1.

Let 1, 2, . . . , 56 represent the dates (t) from January 20 to March 15. For exam-
ple, t = 1 and t = 56 represent January 20 and March 15, respectively. Also let
x1, x2, . . . , x56 represent the cumulative numbers on dates 1, 2, . . . , 56, respectively.
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Table 1 Cumulative numbers of COVID-19 infections in China excluding imported cases from January 20
to March 15, 2020

291 440 571 830 1,287 1,975 2,744 4,515

5,974 7,711 9,692 11,791 14,380 17,205 20,438 24,324

28,018 31,161 34,546 37,198 40,171 42,638 44,653 59,804

63,851 66,492 68,500 70,548 72,436 74,185 74,576 75,465

76,288 76,936 77,150 77,658 78,064 78,497 78,824 79,251

79,824 80,026 80,151 80,270 80,389 80,516 80,591 80,632

80,668 80,685 80,699 80,708 80,725 80,729 80,733 80,737

For example,

x1 = 291, x56 = 80737.

Based on the observed data of cumulative numbers of COVID-19 infections in
China, Liu (2020a) obtained the fitted logistic growth model

xt = 80858

1 + 22.741 exp(−0.179t)
(7)

where xt is the cumulative number of COVID-19 infections in China on date t .

5 COVID-19 spreadmodel

Effective reproductive rate refers to as the rate of change of cumulative numbers
per unit of time. Let Rt denote the effective reproductive rate and Xt denote the
cumulative number of COVID-19 infections in China at time t . During a small time
interval [t, t + Δt], we should have

Rt = Xt+Δt − Xt

XtΔt
. (8)

Now we assume

Rt = μt + σt · “Noise” (9)

whereμt , σt are real-valued functions with respect to time t , and “Noise” is a standard
normal uncertain variable N(0, 1). Based on uncertainty theory, let us represent the
“Noise” by

Ct+Δt − Ct

Δt
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where Ct is a Liu process (Liu 2009). Then we have

Rt = μt + σt
Ct+Δt − Ct

Δt
. (10)

It follows from (8) and (10) that

Xt+Δt − Xt = Rt XtΔt = μt XtΔt + σt Xt (Ct+Δt − Ct ). (11)

Generally, during a time interval [0, t] with a partition 0 = t0 < t1 < · · · < tn = t ,
we have

Xt − X0 =
n−1∑

i=0

(Xti+1 − Xti )

=
n−1∑

i=0

μti Xti (ti+1 − ti ) +
n−1∑

i=0

σti Xti (Cti+1 − Cti )

→
∫ t

0
μs Xsds +

∫ t

0
σs XsdCs

as

max
0≤i≤n−1

|ti+1 − ti | → 0.

That is,

Xt − X0 =
∫ t

0
μs Xsds +

∫ t

0
σs XsdCs . (12)

Thus we obtain a COVID-19 spread model based on uncertain differential equation,

dXt = μt Xtdt + σt XtdCt (13)

where Xt is the cumulative number of COVID-19 infections in China at time t , Ct is
Liu process, and μt and σt are unknown time-varying parameters at this moment.

6 Time-varying parameter estimation

The cumulative numbers of COVID-19 infections in China before t = 25 (February
13, 2020) are not real-time data due to the capacity limitation of nucleic acid testing.
However, to estimate the time-varying parameters in the COVID-19 spread model, it
is insufficient to only use the observed data of cumulative numbers after February 13,
2020,

x25, x26, . . . , x56.
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Therefore, we have to add data from the date when the isolation policy of Chinese
government became efficient, i.e., from January 30 to February 12, 2020. According
to the fitted logistic growth model (7), we reassign

19369, 22127, 25117, 28316, 31691, 35199, 38789,

42405, 45990, 49487, 52847, 56029, 58998, 61733

to x11, x12, · · · , x24, respectively. By using the data,

x11, x12, . . . , x56,

wewill estimate the time-varying parametersμt and σt in the COVID-19 spreadmodel
(13). For this purpose, the method of moments (Yao and Liu 2020) will be recast as
follows.

First, let us estimate μ11 and σ11 on January 30, 2020 (t = 11) by applying the 10
observed data x11, x12, . . . , x20. The COVID-19 spread model (13) has a difference
form

Xti+1 = Xti + μ̌11Xti (ti+1 − ti ) + σ̌11Xti (Cti+1 − Cti ),

i.e.,

Xti+1 − Xti − μ̌11Xti (ti+1 − ti )

σ̌11Xti (ti+1 − ti )
= Cti+1 − Cti

ti+1 − ti

for i = 11, 12, . . . , 19. Since

Cti+1 − Cti

ti+1 − ti

identically follow a standard normal uncertainty distribution N(0, 1), we get

Xti+1 − Xti − μ̌11Xti (ti+1 − ti )

σ̌11Xti (ti+1 − ti )
∼ N(0, 1)

for i = 11, 12, . . . , 19. Substitute Xti and Xti+1 with the observed data xti and xti+1

in the above equation, and write

hi (μ̌11, σ̌11) = xti+1 − xti − μ̌11xti (ti+1 − ti )

σ̌11xti (ti+1 − ti )
(14)

for i = 11, 12, . . . , 19. It is clear that hi (μ̌11, σ̌11), i = 11, 12, . . . , 19 can be
regarded as 9 samples of the standard normal uncertainty distributionN(0, 1). It is clear
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that the first two sample moments of the samples hi (μ̌11, σ̌11), i = 11, 12, . . . , 19
are

1

9

19∑

i=11

hi (μ̌11, σ̌11) and
1

9

19∑

i=11

h2i (μ̌11, σ̌11),

and the first two population moments of the standard normal uncertainty distribution
N(0, 1) are 0 and 1. Since the number of unknownparameters is 2, themoment estimate
is then obtained by equating the first two sample moments to the corresponding first
two population moments. In other words, the estimate (μ̌11, σ̌11) should solve the
system of equations,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

9

19∑

i=11

xti+1 − xti − μ̌11xti (ti+1 − ti )

σ̌11xti (ti+1 − ti )
= 0

1

9

19∑

i=11

(
xti+1 − xti − μ̌11xti (ti+1 − ti )

σ̌11xti (ti+1 − ti )

)2

= 1

(15)

whose root is (μ̌11, σ̌11) = (0.1101, 0.0216).
Next, let us estimate μ12 and σ12 on the date t = 12 by applying the 10 observed

data x12, x13, . . . , x21. Since

Xti+1 − Xti − μ̌12Xti (ti+1 − ti )

σ̌12Xti (ti+1 − ti )
∼ N(0, 1)

for i = 12, 13, . . . , 20, by the method of moments, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

9

20∑

i=12

xti+1 − xti − μ̌12xti (ti+1 − ti )

σ̌12xti (ti+1 − ti )
= 0

1

9

20∑

i=12

(
xti+1 − xti − μ̌12xti (ti+1 − ti )

σ̌12xti (ti+1 − ti )

)2

= 1

whose root is (μ̌12, σ̌12) = (0.1018, 0.0219).
As an analogy, we can get the estimated values (μ̌13, σ̌13), (μ̌14, σ̌14), . . . , (μ̌47,

σ̌47) shown in Table 2.
Basic reproductive rate refers to as the effective reproductive rate when COVID-

19 started spreading naturally in a completely susceptible population. Since it can be
considered thatCOVID-19naturally spread inChina before January 30, 2020 (t = 11),
we regard

R11 = μ̌11 + σ̌11Ċ11 = 0.1101 + 0.0216Ċ11
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Table 2 Estimated values for μt and σt

t μ̌t σ̌t t μ̌t σ̌t t μ̌t σ̌t

11 0.1101 0.0216 12 0.1018 0.0219 13 0.0935 0.0219

14 0.0852 0.0216 15 0.0771 0.0210 16 0.0686 0.0211

17 0.0619 0.0190 18 0.0549 0.0177 19 0.0488 0.0157

20 0.0433 0.0138 21 0.0385 0.0118 22 0.0324 0.0131

23 0.0278 0.0123 24 0.0239 0.0113 25 0.0210 0.0116

26 0.0167 0.0103 27 0.0141 0.0095 28 0.0113 0.0080

29 0.0090 0.0060 30 0.0068 0.0029 31 0.0068 0.0029

32 0.0063 0.0023 33 0.0053 0.0019 34 0.0046 0.0018

35 0.0044 0.0020 36 0.0038 0.0020 37 0.0034 0.0021

38 0.0029 0.0021 39 0.0025 0.0021 40 0.0020 0.0020

41 0.0012 0.0007 42 0.0009 0.0006 43 0.0008 0.0006

44 0.0006 0.0005 45 0.0005 0.0005 46 0.0003 0.0003

47 0.0002 0.0002

as the basic reproductive rate of COVID-19 spread in China. In order to fit μt and σt ,
we may employ logistic decay models,

μt = 0.1101

1 + β1 exp(β2t)
, σt = 0.0216

1 + β3 exp(β4t)
(16)

where β1, β2, β3 and β4 are unknown parameters. By applying the least square esti-
mate and samples (μ̌i , σ̌i ), i = 11, 12 · · · , 47 in Table 2, we get the time-varying
parameters,

μt = 0.1101

1 + 0.0083 exp(0.2567t)
, σt = 0.0216

1 + 0.0034 exp(0.2312t)
. (17)

It follows from (13) and (17) that the COVID-19 spread model based on uncertain
differential equation is

dXt = 0.1101Xtdt

1 + 0.0083 exp(0.2567t)
+ 0.0216XtdCt

1 + 0.0034 exp(0.2312t)
(18)

where Xt is the cumulative number of COVID-19 infections in China at time t , and
Ct is Liu process.

7 Zero-day of COVID-19 spread in China

Note that the cumulative number Xt ofCOVID-19 infections inChina followsCOVID-
19 spread model (18), and x25, x26, . . . , x56 in Table 1 are observed data of Xt at the
times 25, 26, . . . , 56, respectively. Taking α = 0.95 and applying Algorithm 1, we
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Fig. 1 The 0.95-region of initial value of COVID-19 spread model (shaded area)

obtain the 0.95-region of initial value, Oα , of the COVID-19 spread model that is
shown by the shaded area in Fig. 1.

Zero-day of COVID-19 spread in China is the day when the earliest case (not
earliest confirmed case) of COVID-19 happened in China. Suppose there was only
one infectious case on zero-day, i.e., xt0 = 1. Then the zero-day (t0) of COVID-19
spread in China is the slice of Oα corresponding to xt0 = 1, i.e., the interval

{t0 ∈ �| (t0, 1) ∈ Oα} = −94 ± 36. (19)

That means, the zero-day of COVID-19 spread in China is

October 17, 2019 ± 36 days.

It is concluded that, roughly speaking, COVID-19 started spreading in China from
October 17, 2019.

8 Why is stochastic COVID-19 spreadmodel not suitable?

If Liu processCt in the COVID-19 spread model (18) is replaced withWiener process
Wt , then we obtain a stochastic differential equation

dXt = 0.1101Xtdt

1 + 0.0083 exp(0.2567t)
+ 0.0216XtdWt

1 + 0.0034 exp(0.2312t)
. (20)

Suppose there was only one infectious case on October 17, 2019 (i.e., t0 = −94 and
xt0 = 1). Taking a date, e.g., t = 30 (February 18, 2020), we have

Pr{X30+Δt < X30} ≥ 46.22%
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when Δt = 10−6. That means, the cumulative number of COVID-19 infections in
China decreases with a probability of 46.22%. However, the cumulative number Xt is
always increasing with respect to t . Hence stochastic COVID-19 spread model is not
acceptable.

9 Conclusion

This paper presented a problem of initial value estimation for uncertain differ-
ential equations and proposed an estimation method. Furthermore, the method of
moments was recast for estimating the time-varying parameters in uncertain differen-
tial equations. Using those techniques, a COVID-19 spread model based on uncertain
differential equation was derived, and the zero-day of COVID-19 spread in China was
inferred.
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