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Abstract
Uncertain hypothesis test is a statistical tool that uses uncertainty theory to determine
whether some hypotheses are correct or not based on observed data. As an application
of uncertain hypothesis test, this paper proposes a method to test whether an uncer-
tain differential equation fits the observed data or not. In order to demonstrate the
test method, some numerical examples are provided. Finally, both uncertain currency
model and stochastic currency model are used to model US Dollar to Chinese Yuan
(USD–CNY) exchange rates. As a result, it is shown that the uncertain currency model
fits the exchange rates well, but the stochastic currency model does not.

Keywords Uncertainty theory · Uncertain statistics · Uncertain hypothesis test ·
Uncertain differential equation · Uncertain currency model

1 Introduction

Uncertainty theory, founded by Liu (2007) and perfected by Liu (2009), has been suc-
cessfully applied to many fields, such as science, engineering, finance, environment,
etc. Among the different applications, uncertain statistics was first introduced by Liu
(2010) as a set of mathematical methods to collect, analyze and interpret data based
on uncertainty theory. As a part of uncertain statistics, uncertain hypothesis test is a
statistical tool based on uncertainty theory to determine whether some hypotheses are
correct or not according to observed data. This work was initialized by Ye and Liu
(2022). Following that, uncertain hypothesis test has been applied to other research
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areas of uncertain statistics, including uncertain regression analysis and uncertain time
series analysis.

Uncertain regression analysis is used to explore the relationship between explana-
tory variables and response variables with uncertainty theory. Yao and Liu (2018) first
proposed that the disturbance term of a regression model is not a random variable but
an uncertain variable, which marks the beginning of the uncertain regression analy-
sis. On this basis, Lio and Liu (2018) explored to estimate the uncertain disturbance
term and obtained an interval estimation for predicting the response variables. In order
to test whether an uncertain regression model is a good fit to observed data, Ye and
Liu (2022) proposed a test method based on uncertain hypothesis test. As applica-
tions of uncertain regression analysis and uncertain hypothesis test, Liu (2021b) used
the uncertain growth model to study the number of COVID-19 infections in China,
and Ye (2022a) used the linear uncertain regression model to explore the relationship
between labour income share and four influence factors, including trade openness,
financial development, government intervention and industrial structure.

Uncertain time series analysis is used to predict future values via the previously
observed values based on uncertainty theory. Yang and Liu (2019) first presented
that the disturbance term of a time series model is an uncertain variable instead of a
random variable, which marks the beginning of the uncertain time series analysis. In
order to test whether an uncertain time series model is a good fit to observed data, Ye
(2022b) proposed a test method based on uncertain hypothesis test. As applications
of uncertain time series analysis and uncertain hypothesis test, Ye and Yang (2021)
studied the number of COVID-19 infections in China, Ye (2022c) discussed the birth
rates in China, and Ye (2022d) investigated the grain yield in China.

As another part of uncertain statistics, uncertain differential equation (Liu 2008) is
used to model the time evolution of a dynamic system.When using uncertain differen-
tial equation in practice, we first need to estimate unknown parameters in an uncertain
differential equation to fit observed data as much as possible based on uncertainty
theory. For that purpose, Yao and Liu (2020) first proposed the moment estimation
based on the difference scheme of uncertain differential equation. Following that,
Yang et al. (2020) presented the minimum cover estimation, Sheng et al. (2020) inves-
tigated the least squares estimation, and Liu and Liu (2022) introduced the maximum
likelihood estimation. However, the above parameter estimation methods of uncertain
differential equation based on difference scheme are not suitable for the case where
the interval times between observations are not short enough. In order to deal with this
problem, Liu and Liu (2022) presented the concept of residual to establish a connec-
tion between uncertain differential equation and observed data, and proposed a new
method of parameter estimation in uncertain differential equation based on residuals.
Up to now, uncertain differential equation has been widely applied in many fields such
as finance (Liu 2013), chemical reaction (Tang and Yang 2021), electric circuit (Liu
2021a), pharmacokinetics (Liu and Yang 2021), software reliability (Liu and Kang
2022), COVID-19 (Lio and Liu 2021), Alibaba stock (Liu and Liu 2022) and so on.

With the help of residuals, this paper employs uncertain hypothesis test to determine
whether an uncertain differential equation is a good fit to the observed data. The rest of
the paper is organized as follows. Section 2 introduces some basic knowledge about
uncertain hypothesis test. After that, uncertain hypothesis test is used to determine
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whether a set of observed data follow a given linear uncertainty distribution in Sect.
3. On this basis, Sect. 4 provides a method to test whether an uncertain differential
equation fits the observed data, and gives two numerical examples to illustrate the test
method. In Sect. 5, uncertain currency model is applied to USD–CNY exchange rates.
Then, some conclusions are made in Sect. 6. Finally, as a comparison with uncertain
currency model in Sect. 5, stochastic currency model is also applied to USD–CNY
exchange rates in the appendix, and the results show that the uncertain currency model
fits the exchange rates well, but the stochastic currency model does not.

2 Preliminaries

This section will introduce some basic knowledge of uncertain hypothesis test. Let
ξ be an uncertain variable with uncertainty distribution �θ where θ is an unknown
parameter. Consider the following hypotheses:

H0 : θ = θ0 versus H1 : θ �= θ0

where H0 is called a null hypothesis, and H1 is called an alternative hypothesis.
Assume

z1, z2, . . . , zn

are a set of observed data of the uncertain variable ξ . A rejection region for the null
hypothesis H0 is a setW ⊂ �n . If the vector of observed data belongs to the rejection
region W , i.e.,

(z1, z2, . . . , zn) ∈ W ,

then we reject H0. Otherwise, we accept H0. A core problem is how to choose a
suitable rejection region W for the given hypothesis H0.

Definition 1 (Ye and Liu 2022) Let ξ be a population with uncertainty distribution�θ

where θ is an unknown parameter. A rejection region W ⊂ �n is said to be a test for
the two-sided hypotheses H0 : θ = θ0 versus H1 : θ �= θ0 at significance level α if

(i) for any (z1, z2, . . . , zn) ∈ W , there are at least α of indexes i’s with 1 ≤ i ≤ n
such that

Mθ0{ξ > zi } ∨ Mθ0{ξ < zi } > 1 − α

2
,

(ii) for some θ �= θ0 and some (z1, z2, . . . , zn) ∈ W , there are more than 1 − α of
indexes i’s with 1 ≤ i ≤ n and at least α of indexes j’s with 1 ≤ j ≤ n such that

Mθ {ξ > zi } ∨ Mθ {ξ < zi } < Mθ0{ξ > z j } ∨ Mθ0{ξ < z j }.
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In order to test whether a normal uncertainty distributionN (e0, σ0) is a good fit to
a set of observed data z1, z2, . . . , zn , Ye and Liu (2022) proved by Definition 1 that a
test at significance level α is

W =
{
(z1, z2, . . . , zn) : there are at least α of indexes i’s with 1 ≤ i ≤ n

such that zi < �−1
0

(α

2

)
or zi > �−1

0

(
1 − α

2

) }

where �−1
0 is the inverse uncertainty distribution of N (e0, σ0), i.e.,

�−1
0 (α) = e0 + σ0

√
3

π
ln

α

1 − α
.

If the vector of observed data belongs to the test W , i.e.,

(z1, z2, . . . , zn) ∈ W ,

then the normal uncertainty distribution N (e0, σ0) is not a good fit to the observed
data. Otherwise, the normal uncertainty distribution N (e0, σ0) is a good fit to the
observed data.

3 Uncertain hypothesis test for linear uncertainty distribution

In this section, we would like to use the uncertain hypothesis test to determine whether
a set of observed data follow a given linear uncertainty distribution.

Theorem 1 Let ξ beanuncertain variable that follows a linear uncertainty distribution
L(a, b) with unknown parameters a and b. Then the test for the hypotheses

H0 : a = a0 and b = b0 versus H1 : a �= a0 or b �= b0

at significance level α is

W =
{
(z1, z2, . . . , zn) : there are at least α of indexes i’s with 1 ≤ i ≤ n

such that zi < �−1
0

(α

2

)
or zi > �−1

0

(
1 − α

2

) }

where �−1
0 is the inverse uncertainty distribution of L(a0, b0), i.e.,

�−1
0 (α) = (1 − α)a0 + αb0.
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Proof In order to prove thatW is a test, we need to verify thatW simultaneously meets
Conditions (i) and (ii) in Definition 1. For any (z1, z2, . . . , zn) ∈ W , it follows from
the definition of W that there are at least α of indexes i’s with 1 ≤ i ≤ n such that

zi < �−1
0

(α

2

)
or zi > �−1

0

(
1 − α

2

)
,

i.e.,

M0{ξ > zi } = 1 − �0(zi ) > 1 − α

2
or M0{ξ < zi } = �0(zi ) > 1 − α

2
.

Thus W meets Condition (i) in Definition 1.
In order to prove Condition (ii), we take

a1 = 3a0 − b0
2

, b1 = a0 + b0
2

and

zi = a0, i = 1, 2, . . . , n.

It is clear that (z1, z2, . . . , zn) ∈ W . Let �1 denote the uncertainty distribution of
L(a1, b1). On the one hand, we have

M1{ξ > zi } = 1 − �1(zi ) = 0.5, M1{ξ < zi } = �1(zi ) = 0.5,

i = 1, 2, . . . , n. Thus

M1{ξ > zi } ∨ M1{ξ < zi } = 0.5 ≤ 1 − α

2
, i = 1, 2, . . . , n.

On the other hand, we have

M0{ξ > z j } = 1 − �0(z j ) = 1 − 0 > 1 − α

2
, j = 1, 2, . . . , n.

Thus

M1{ξ > zi } ∨ M1{ξ < zi } < M0{ξ > zi } ∨ M0{ξ < zi },

i, j = 1, 2, . . . , n. Therefore W meets Condition (ii) in Definition 1. 	

Example 1 Let us use uncertain hypothesis test to determine whether the linear uncer-
tainty distribution L(0, 1) fits the 30 observed data

0.607 0.808 0.909 0.989 0.830 0.938 0.737 0.676 0.838 0.690
0.627 0.652 0.708 0.616 0.379 0.594 0.542 0.079 0.118 0.330
0.156 0.235 0.039 0.052 0.255 0.039 0.365 0.213 0.480 0.500

123



200 T. Ye , B. Liu

Fig. 1 Observed data of the
linear uncertainty distribution
L(0, 1) in chronological order

plotted in Fig. 1.

Suppose �−1 is the inverse uncertainty distribution of L(0, 1), i.e.,

�−1(α) = α.

Given a significance level α = 0.05, we obtain

�−1
(α

2

)
= 0.025, �−1

(
1 − α

2

)
= 0.975.

It follows from α × 30 = 1.5 and Theorem 1 that the test is

W = {(z1, z2, . . . ,z30) : there are at least 2 of indexes i’s with 1 ≤ i ≤ 30

such that zi < 0.025 or zi > 0.975}.
Since only the 4th observed datum 0.989 /∈ [0.025, 0.975], the vector of observed
data does not belong to W . Thus the linear uncertainty distribution L(0, 1) is a good
fit to the observed data.

Example 2 Let us use uncertain hypothesis test to determine whether the linear uncer-
tainty distribution L(5, 6) fits the 30 observed data

5.149 5.307 5.227 5.290 5.203 5.014 5.240 5.104 5.238 5.374
5.322 5.397 5.692 5.311 5.364 5.617 5.351 5.240 5.731 5.472
5.552 5.960 5.834 5.831 5.944 5.985 5.754 5.908 5.909 5.680

plotted in Fig. 2.

Suppose �−1 is the inverse uncertainty distribution of L(5, 6), i.e.,

�−1(α) = α + 5.

Given a significance level α = 0.05, we obtain

�−1
(α

2

)
= 5.025, �−1

(
1 − α

2

)
= 5.975.

123



Uncertain hypothesis test for uncertain... 201

Fig. 2 Observed data of the
linear uncertainty distribution
L(5, 6) in chronological order

It follows from α × 30 = 1.5 and Theorem 1 that the test is

W = {(z1, z2, . . . ,z30) : there are at least 2 of indexes i’s with 1 ≤ i ≤ 30

such that zi < 5.025 or zi > 5.975}.

Since the 6th and 26th observed data 5.014, 5.985 /∈ [5.025, 5.975], the vector of
observed data belongs to W . Thus the linear uncertainty distribution L(5, 6) is not a
good fit to the observed data.

4 Uncertain differential equation

In this section, we would like to employ the uncertain hypothesis test to determine
whether an uncertain differential equation fits the observed data well. Consider an
uncertain differential equation

dXt = f (t, Xt )dt + g(t, Xt )dCt (1)

where f and g are known continuous functions, and Ct is a Liu process. Assume

xt1 , xt2 , . . . , xtn (2)

are observed values of some uncertain process Xt at times t1, t2, . . . , tn with t1 < t2 <

· · · < tn , respectively. For each index i (2 ≤ i ≤ n), let Xti be the solution of the
updated uncertain differential equation

dXt = f (t, Xt )dt + g(t, Xt )dCt , Xti−1 = xti−1 (3)

at time ti . Denote the uncertainty distribution of Xti by �ti . It is clear that

�ti (Xti ) (4)
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202 T. Ye , B. Liu

is a linear uncertain variable L(0, 1) whose uncertainty distribution is

�(x) =

⎧⎪⎨
⎪⎩
0, if x ≤ 0

x, if 0 < x ≤ 1

1, if 1 < x,

and inverse uncertainty distribution is

�−1(α) = α.

Then, Liu and Liu (2022) called

εi = �ti (xti ) (5)

the i th residual of the uncertain differential equation (1) corresponding to the observed
data (2) by substituting Xti with the observed value xti in (4). Thus the residual εi may
be regraded as a sample of the linear uncertainty distribution L(0, 1).

If the uncertain differential equation (1) does fit the observed data (2) well, then the
n−1 residuals ε2, ε3, . . . , εn should follow the linear uncertainty distributionL(0, 1),
i.e.,

ε2, ε3, . . . , εn ∼ L(0, 1).

Thus, to test whether the uncertain differential equation (1) fits the observed data (2)
well, we should test whether the linear uncertainty distributionL(0, 1)fits the residuals
ε2, ε3, . . . , εn defined in (5), i.e.,

ε2, ε3, . . . , εn ∼ L(0, 1).

To do so, it follows from Theorem 1 that the test at a given significance level α (e.g.
0.05) is

W =
{
(z2, z3, . . . ,zn) : there are at least α of indexes i’s with 2 ≤ i ≤ n

such that zi <
α

2
or zi > 1 − α

2

}
.

If the vector of the n − 1 residuals ε2, ε3, . . . , εn belongs to the test W , i.e.,

(ε2, ε3, . . . , εn) ∈ W ,

then the uncertain differential equation (1) is not a good fit to the observed data (2).
If

(ε2, ε3, . . . , εn) /∈ W ,
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Table 1 Observed data in Example 3

t Xt t Xt t Xt t Xt t Xt

0.00 1.00 0.46 1.11 0.94 0.60 1.49 1.18 1.86 3.34

0.04 1.01 0.52 0.97 1.04 0.62 1.54 1.26 1.91 3.70

0.09 1.05 0.61 1.01 1.16 0.56 1.58 1.57 1.98 4.03

0.19 1.12 0.70 1.00 1.27 0.79 1.64 1.69 2.03 4.38

0.29 0.96 0.79 0.82 1.32 0.95 1.70 2.04 2.14 6.34

0.38 1.06 0.84 0.75 1.44 1.10 1.79 2.51 2.19 6.57

then the uncertain differential equation (1) is a good fit to the observed data (2).

Example 3 Let us employ the uncertain hypothesis test to determinewhether the uncer-
tain differential equation

dXt = Xtdt + 2XtdCt (6)

fits the 30 observed data in Table 1 on the time horizon from 0 to 2.19.

In Table 1, denote the observed values of Xt at times t1, t2, . . . , t30 by

xt1 , xt2 , . . . , xt30 ,

respectively. For each index i (2 ≤ i ≤ 30), we solve the updated uncertain differential
equation

dXt = Xtdt + 2XtdCt , Xti−1 = xti−1

and obtain the uncertainty distribution of Xti as follows,

�ti (x) =
(
1 + exp

(
π(ti − ti−1 + ln xti−1 − ln x)

2
√
3(ti − ti−1)

))−1

.

It follows from (5) that the i th residual is

εi =
(
1 + exp

(
π(ti − ti−1 + ln xti−1 − ln xti )

2
√
3(ti − ti−1)

))−1

.

See Fig. 3. In order to test whether the uncertain differential equation (6) fits the
observed data well, we should test whether the linear uncertainty distribution L(0, 1)
fits the 29 residuals ε2, ε3, . . . , ε30. Given a significance level α = 0.05, it follows
from α × 29 = 1.45 and Theorem 1 that the test is

W = {(z2, z3, . . . , z30) : there are at least 2 of indexes i’s with 2 ≤ i ≤ 30

such that zi < 0.025 or zi > 0.975}.
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Fig. 3 Residual plot of uncertain
differential equation (6)

Table 2 Observed data in Example 4

t Xt t Xt t Xt t Xt t Xt

0.00 2.00 1.30 6.63 3.30 14.9 5.40 3.64 7.60 2.49

0.20 2.75 1.60 8.35 3.50 12.7 5.90 3.71 7.90 2.46

0.40 3.59 1.70 8.82 3.80 9.81 6.20 3.12 8.30 2.90

0.60 4.45 2.00 15.3 4.30 7.85 6.50 2.75 8.70 2.99

0.80 5.48 2.30 12.4 4.60 5.27 6.80 3.44 9.20 4.19

1.00 6.97 2.80 14.1 4.90 4.35 7.30 3.16 9.50 4.23

Since only ε21 = 0.983 /∈ [0.025, 0.975], we have (ε2, ε3, . . . , ε30) /∈ W . Thus the
uncertain differential equation (6) is a good fit to the observed data.

Example 4 Let us employ the uncertain hypothesis test to determinewhether the uncer-
tain differential equation

dXt = (5 − Xt )dt + XtdCt (7)

fits the 30 observed data in Table 2 on the time horizon from 0 to 9.5.

In Table 2, denote the observed values of Xt at times t1, t2, . . . , t30 by

xt1 , xt2 , . . . , xt30 ,

respectively. For each i (2 ≤ i ≤ 30), we can calculate the residual εi of the updated
uncertain differential equation

dXt = (5 − Xt )dt + XtdCt , Xti−1 = xti−1

with the help of an algorithm proposed by Liu and Liu (2022). See Fig. 4. In order
to test whether the uncertain differential equation (7) fits the observed data well, we
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Fig. 4 Residual plot of uncertain
differential equation (7)

should test whether the linear uncertainty distribution L(0, 1) fits the 29 residuals

ε2, ε3, . . . , ε30.

Given a significance level α = 0.05, it follows from α × 29 = 1.45 and Theorem 1
that the test is

W = {(z2, z3, . . . , z30) : there are at least 2 of indexes i’s with 2 ≤ i ≤ 30

such that zi < 0.025 or zi > 0.975}.

Since only ε10 = 0.987 /∈ [0.025, 0.975], we have (ε2, ε3, . . . , ε30) /∈ W . Thus the
uncertain differential equation (7) is a good fit to the observed data.

5 Uncertain currencymodel

Example 5 Table 3 shows US Dollar to Chinese Yuan (USD–CNY) exchange rates
(weekly average) in Forex Capital Markets (FXCM) from October 2019 to June 2021,
which are plotted in Fig. 5.

Let i = 1, 2, . . . , 91 represent the weeks from October 1, 2019 to June 30, 2021,
and denote the exchange rates by

x1, x2, . . . , x91.

Assume the exchange rate Xt follows the uncertain differential equation

dXt = (m − aXt )dt + σdCt (8)

where m, a and σ are unknown parameters to be estimated, and Ct is a Liu process.
Then, Liu and Liu (2022) suggested that the moment estimate (m, a, σ ) is the solution
of the system of equations,
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Table 3 USD–CNY exchange rates (weekly average) from October 1, 2019 to June 30, 2021

7.1145 7.0821 7.0679 7.0526 7.0096 7.0188 7.0376 7.0289 7.0441

7.0245 7.0009 6.9990 6.9715 6.9368 6.8804 6.9173 6.9847 6.9975

6.9839 7.0327 7.0169 6.9486 6.9822 7.0573 7.1059 7.1030 7.0757

7.0663 7.0945 7.0969 7.1147 7.1106 7.1327 7.1536 7.1111 7.0721

7.0813 7.0770 7.0725 7.0135 6.9970 7.0075 7.0011 6.9618 6.9473

6.9194 6.8921 6.8422 6.8399 6.7845 6.8071 6.7946 6.7359 6.7253

6.6694 6.7085 6.6473 6.6171 6.5659 6.5726 6.5514 6.5257 6.5221

6.5310 6.5131 6.4592 6.4712 6.4851 6.4759 6.4664 6.4293 6.4434

6.4724 6.4931 6.5084 6.5043 6.5325 6.5756 6.5556 6.5360 6.4977

6.4753 6.4587 6.4413 6.4379 6.3855 6.3890 6.3943 6.4416 6.4716

6.4713

Fig. 5 USD–CNY exchange
rates (weekly average) from
October 1, 2019 to June 30, 2021

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

90

∑91

i=2
εi (m, a, σ ) = 1

2
1

90

∑91

i=2
ε2i (m, a, σ ) = 1

3
1

90

∑91

i=2
ε3i (m, a, σ ) = 1

4

where

εi (m, a, σ ) =
(
1 + exp

(
π((axi−1 − m) exp(−a) + m − axi )√

3σ(1 − exp(−a))

))−1

,

i = 2, 3, . . . , 91 are residuals of the uncertain differential equation (8). Solving the
above system of equations, we get

m = 1.4448, a = 0.2136, σ = 0.0775.
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Fig. 6 Residual plot of the
uncertain currency model (9)
corresponding to USD–CNY
exchange rates

Thus we obtain an uncertain currency model

dXt = (1.4448 − 0.2136Xt )dt + 0.0775dCt (9)

where Xt represents the exchange rate.
Finally, let us test whether the uncertain currency model (9) fits USD–CNY

exchange rates. That is, we should test whether the linear uncertainty distribution
L(0, 1) fits the 90 residuals

εi (1.4448, 0.2136, 0.0775), i = 2, 3, . . . , 91.

See Fig. 6.
Given a significance level α = 0.05, it follows from α × 90 = 4.5 and Theorem 1

that the test is

W = {(z2, z3, . . . , z91) : there are at least 5 of indexes i’s with 2 ≤ i ≤ 91

such that zi < 0.025 or zi > 0.975}.

Since all residuals εi , i = 2, 3, . . . , 91 are between 0.025 and 0.975, we have

(ε2, ε3, . . . , ε91) /∈ W .

Thus the uncertain currency model (9) is a good fit to USD–CNY exchange rates.

6 Conclusion

In order to test whether an uncertain differential equation fits the observed data well,
this paper presented the uncertain hypothesis test to determine whether the uncertain
differential equation is a good fit to the observed data by testing whether the residuals
of the uncertain differential equation follow the linear uncertainty distributionL(0, 1).
Then, some numerical examples were given to demonstrate the test method. Finally,
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208 T. Ye , B. Liu

both uncertain currency model and stochastic currency model were applied to USD–
CNY exchange rates. The results showed that the uncertain currency model fits the
exchange rates well, but the stochastic currency model does not.

Acknowledgements This work was supported by the National Natural Science Foundation of China Grant
Nos.61873329 and 12026225.

Appendix: Stochastic currencymodel

Let us reconsider USD–CNY exchange rates (weekly average) from October 1, 2019
to June 30, 2021 in Example 5. See Table 3. Let i = 1, 2, . . . , 91 represent the weeks
from October 1, 2019 to June 30, 2021, and denote the exchange rates by

x1, x2, . . . , x91.

Assume the exchange rate Xt follows the stochastic differential equation

dXt = (m − aXt )dt + σdWt (10)

where m, a and σ are unknown parameters to be estimated, and Wt is a Wiener
process. For any fixed parameters m, a, σ and index i (2 ≤ i ≤ 91), we solve the
updated stochastic differential equation

dXt = (m − aXt )dt + σdWt , Xi−1 = xi−1

and find that Xi is a normal random variable with expected value

ei = m

a
+

(
xi−1 − m

a

)
exp(−a)

and variance

ν2 = σ 2

2a
(1 − exp(−2a)).

Thus the probability distribution of the normal random variable Xi is

�i (x) = 1

ν
√
2π

∫ x

−∞
exp

(
− (y − ei )2

2ν2

)
dy,

and �i (Xi ) is always a uniform random variable U(0, 1) since

Pr{�i (Xi ) ≤ x} = Pr{Xi ≤ �−1
i (x)} = �i (�

−1
i (x)) = x
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for any x with 0 < x < 1. Substitute Xi with the corresponding observed value xi ,
and write

εi (m, a, σ ) = �i (xi ).

Then εi (m, a, σ ) is always a sample of uniform probability distribution U(0, 1) and
called the i th residual of the stochastic differential equation (10). For each positive
integer k, the kth sample moment of the 90 residuals ε2(m, a, σ ), ε3(m, a, σ ), . . . ,

ε91(m, a, σ ) is

1

90

91∑
i=2

εki (m, a, σ ),

and the k-th population moment of the uniform probability distribution U(0, 1) is

1

k + 1
.

Since the number of unknown parameters in the stochastic differential equation (10) is
3, the moment estimate (m, a, σ ) is obtained by equating the first 3 sample moments
to the corresponding first 3 population moments. In other words, the moment estimate
(m, a, σ ) should solve the system of equations,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

90

∑91

i=2
εi (m, a, σ ) = 1

2
1

90

∑91

i=2
ε2i (m, a, σ ) = 1

3
1

90

∑91

i=2
ε3i (m, a, σ ) = 1

4

whose root is

m = 1.4896, a = 0.2202, σ = 0.0731.

Thus we obtain a stochastic currency model

dXt = (1.4896 − 0.2202Xt )dt + 0.0731dWt (11)

where Xt represents exchange rate.
Does the stochastic currency model (11) fit USD–CNY exchange rates? In order to

answer this question, let us consider the 90 residuals

εi (1.4896, 0.2202, 0.0731), i = 2, 3, . . . , 91.

See Fig. 7. If the stochastic currency model (11) fits USD–CNY exchange rates well,
then the residuals in Fig. 7 should be from the same population in the sense of prob-
ability theory. However, when we try to divide those residuals into two parts, i.e., the
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Fig. 7 Residual plot of
stochastic currency model (11)
corresponding to USD–CNY
exchange rates

first half and the last half, and use two-sample Kolmogorov-Smirnov test to determine
whether the residuals of these two parts are from the same population, we get the
p-value of 5 × 10−16 via the function “kstest2” in Matlab. This means the residuals
neither come from the same population nor are white noise in the sense of proba-
bility theory, let alone follow the uniform probability distribution U(0, 1). Thus the
stochastic currency model (11) does not fit USD–CNY exchange rates. Furthermore,
we cannot find a better stochastic differential equation to fit the USD–CNY exchange
rates. This is the reason why we use uncertain differential equation to model currency
exchange rate rather than stochastic differential equation.
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