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Abstract
Interval linguistic term (ILT) is highly useful to express decision-makers’ (DMs’) 
uncertain preferences in the decision-making process. This paper proposes a new 
group decision-making (GDM) method with interval linguistic fuzzy preference 
relations (ILFPRs) by integrating ordinal consistency improvement algorithm, 
cooperative game, Data Envelopment Analysis (DEA) cross-efficiency model, and 
stochastic simulation. Firstly, the ordinal consistency of ILFPR is developed. For 
improving the ordinal consistency of an ILFPR, a two-stage integer optimization 
model is presented to derive an ILFPR with ordinal consistency. Then, a weight-
determination method for obtaining DMs’ weights is presented based on cooperative 
games. Moreover, a DEA cross-efficiency model is presented to obtain the priori-
ties of linguistic preference relation derived from ILFPR. Meanwhile, the expected 
ranking vector of ILFPR is obtained based on the DEA cross-efficiency model by 
integrating stochastic preference analysis and Monte Carlo stochastic simulation. 
Finally, a numerical example of emergency logistics selection illustrates the applica-
bility and credibility of the proposed method.
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1 Introduction

In group decision-making (GDM), the decision-maker (DM) gives his/her prefer-
ence information by pairwise comparison of alternatives based on a certain attrib-
ute (or a certain criterion). Based on these preference information, preference 
relation (PR) is constructed (Meng et  al., 2019a). In recent years, the study of 
GDM based on PR has become hotter and published extensive research. Consist-
ency is performed to ensure that PRs are neither random nor illogical in pairwise 
comparisons. The research on PR mainly focuses on consistency, such as additive 
consistency (Meng et al., 2019a; Wu et al., 2020), multiplicative consistency (Wu 
& Tu, 2021), and ordinal consistency (Tanino, 1984; Wu & Tu, 2021; Xu et al., 
2014).

Based on a minimum modification with 0–1 programming, Wu and Tu (2021) 
proposed a transitive linear programming model of multiplicative preference rela-
tion (MPR). Tanino (1984) proposed ordinal consistency, such as weak transi-
tivity of fuzzy preference relation (FPR). Transitivity can be used to check the 
ordinal consistency of DMs’ judgments. If PR is not transitive, the ranking results 
of alternatives may be misleading or unreasonable. Xu et  al. (2014) used the 
score function and accuracy function to compare the interval elements, defined 
the weak transitivity of FPR, and proposed an algorithm to address the three-way 
cycle. Although the existing research has innovated the improved algorithm of 
additive consistency or multiplicative consistency of PRs, the modified PRs still 
contradict the order consistency and cannot achieve greater consistency. There-
fore, it is necessary to propose a new adjustment method to make the modified 
PRs satisfy both additive consistency and ordinal consistency. In the following 
examples, the order inconsistency of PRs will be pointed out, and the order con-
sistency adjustment algorithm will be studied.

For complex and uncertain decision-making problems, DM is more inclined to 
give qualitative decision-making information than quantitative decision informa-
tion. As an effective preference structure, linguistic preference relation (LPR) can 
effectively express the preferences of DMs. In order to improve the consistency of 
LPR, different literature has proposed different consistency adjustment methods. 
Wu et  al. (2020) defined an additive consistency index of LPR and an integer 
optimization model was proposed to derive an acceptably additive consistent LPR 
from one with unacceptably additive consistency.

In actual decision-making problems, due to the limitation of DM’s knowledge 
and the complexity of decision-making, the accuracy of the preferences provided 
by DMs may not be guaranteed. However, the interval linguistic fuzzy preference 
relation (ILFPR), as an expression of preference information, can well express 
DMs’ uncertain preference. In order to ensure the minimum number of adjust-
ments and minimize the number of adjustments of iterative adjusting strategy for 
ILFPR, Meng et al. (2020) introduced a threshold of group consistency index and 
established some acceptable consistent iterative adjusting strategy models. Xu 
et  al. (2019) presented a linear goal programming model to estimate the miss-
ing values of the incomplete uncertain linguistic preference relations (ULPR), 
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introduced a simple consistency level, and developed a consensus reaching pro-
cess. Meng et  al. (2019b) defined a novel additive consistency and group con-
sensus index for ILFPRs, and then proposed a method for solving GDM problem 
with ILFPRs. Meng et al. (2016) built a consistency-based programming model to 
estimate the missing values to cope with the inconsistency ILFPRs. Garcia et al. 
(2012) defined consensus measures to evaluate the consensus of all DMs, and 
defined close measurements to measure the consistency between DMs’ personal 
preferences and group preferences. As we can see, the existing work ignored the 
ordinal consistency of ILFPR. The ordinal consistency of ILFPR is related to the 
ranking of alternatives. However, as one of the important characteristics of PR, 
ordinal consistency is often ignored. Therefore, it is necessary and meaningful to 
study the ordinal consistency of preference relation.

When transitivity is introduced into GDM with ILFPR, the following gaps 
are still existing. Meng et  al. (2020) defined a threshold of group consistency 
index and proposed iterative learning strategy models. However, virtual terms, 
which make problems complex, may occur after consistency adjustment derived 
from Meng et al., (2019b). Virtual terms may be difficult to persuade the DMs to 
change their opinion in this optimal result as their new preference. In addition, lit-
tle research considered the transitivity of intervals as an important part. Although 
some basic consistencies have been achieved in literature (Meng et  al., 2016, 
2019a, 2019b, 2020), ILFPR is modified without ordinal consistency optimiza-
tion. This paper establishes a two-stage integer model to optimize it. In GDM 
process, the weights of DMs are related to the aggregation of individual prefer-
ences. For GDM with ILFPRs, the weights of DMs are obtained by optimization 
models constructed based on acceptable consensus degree (Meng et  al., 2016, 
2019a, 2020) or are given by subjective weighting method (Meng et al., 2019b). 
These ignored the decision-making interests and decision-making psychology of 
DMs. The priority weights are used to rank the alternatives. The existing method 
for deriving priority vector of ILFPR determined the priority vector by using the 
row arithmetic average value of ILFPR. They did not consider the mutual influ-
ence between different alternatives.

The motivations of this paper mainly come from the above shortcomings. The 
main contributions of this paper are as follows:

(1) A two-stage optimization model is established to derive an ILFPR with ordinal 
consistency and acceptably interval additive consistency. The two-stage opti-
mization model contains two integer optimization models and can ensure the 
modified linguistic term(s) are not virtual linguistic term(s).

(2) A weight-determination method is presented based on the cooperative game. 
The advantage of the cooperative game is that it considers the decision-making 
interests and decision-making psychology of DMs.

(3) A data envelopment analysis (DEA) cross-efficiency model is established to 
obtain the final priority vector of LPR derived from ILFPR. Based on the final 
priority vector, the expectation of ranking vector ILFPR is obtained by integrat-
ing stochastic preference analysis and Monte Carlo stochastic simulation method.
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The rest of this paper is organized as follows. Section 2 reviews the relevant con-
cepts about linguistic term set (LTS), LPR, and ILFPR. Section 3 defines the ordinal 
consistency of ILFPR and develops a two-stage optimization model for dealing with 
an ILFPR without ordinal consistency. Based on cooperative game, Sect. 4 develops 
a weight-determination model to calculate the weights of DMs. In Sect. 5, an input-
oriented DEA model is presented to obtain the priority vector of ILFPR, and the 
expected ranking vector and its credibility are calculated by analyzing the randomly 
extracted judgment space based on stochastic preference analysis and Monte Carlo 
stochastic simulation method. Section 6 presents a numerical example to illustrate 
the application of our proposed method. In Sect. 7, we analyze different results of 
the numerical example by different existing methods. Finally, some conclusions are 
summarized in Sect. 8.

2  Preliminaries

In this section, some concepts of LTS, LPR, and ILFPR are reviewed.

2.1  LTS

Definition 2.1 Herrera et al. (1996) Let S =
{
s�
||� = 0, 1, 2, ..., 2�

}
 be considered as 

a subscript symmetric LTS, where � is a positive integer. It satisfies the following 
two properties:

(1) Ordered property: if s� , s� ∈ S and 𝛼 > 𝛽 , then s𝛼 > s𝛽 , max(s� , s�) = s�.
(2) Negation operator: neg(s�) = s2�−�.

In order to expand the range of discrete LTS S , Xu (2004) introduced a continuous 
LTS S� =

{
s�
||� ∈ [0, 2T]

}
 . T(T > 𝜏) represents a sufficiently large positive integer. 

If s� ∈ S , s� is regarded as a simple linguistic term; otherwise, s� is viewed as a vir-
tual linguistic term. For S′ , the subscript function I(s�) = � is mainly adopted.

2.2  LPR

Let X = {x1, x2, ..., xn}(n ≥ 2) be the set of alternatives. According to S and X , LPR 
can be used to express DMs’ qualitative preferences. It is defined as follow:

Definition 2.2 Xu (2005) Let Ã = (ãij)n×n be a LPR, which satisfies ãij ∈ S

,ãij ⊕ ãji = s2𝜏,ãii = s𝜏 , ∀i, j = 1, 2, ..., n.

Definition 2.3 Meng et al. (2019a) Let Ã = (ãij)n×n be as before. Then Ã is a consist-
ent LPR, if it satisfies:

(1)ãij = ãik ⊕ ãkj − s𝜏 , i, j, k = 1, 2, ..., n.
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2.3  ILFPR

Definition 2.4 Garcia et al. (2012) Let A = (aij)n×n be an ILFPR, where aij = [aL
ij
, aU

ij
] 

is interval linguistic variable expressing the degree of preference from alternative xi 
to xj . The A satisfies:

Definition 2.5 Meng et al. (2020) Let A = (aij)n×n be an ILFPR. The interval addi-
tive consistency index ICI(A) of A is defined as follows:

Let ICI ∈ [0, 1] be an interval additive consistency index. If ICI(A) ≤ ICI , then 
ILFPR A is acceptably interval additive consistency. Otherwise, A is unaccept-
ably interval additive consistency. Particularly, when ICI(A) = 0 , A is completely 
interval additive consistency.

3  Ordinal consistency analysis of ILFPR

In this section, the ordinal consistency of ILFPR is defined and a two-stage inte-
ger optimization model is established to derive an ILFPR with ordinal and accept-
ably interval additive consistency from one without the two properties.

3.1  The ordinal consistency of ILFPR

Inspired by Xu et al. (2014), the score function and accuracy function are defined 
to compare interval linguistic variables.

Definition 3.1 Let s = [s� , s�] be an interval linguistic variable. Then the score func-
tion F for s is defined as:

The accuracy function H for s is defined as:

The comparison of two interval linguistic variables is presented according to 
Definition 3.1.

Definition 3.2 Let s1 = [s�1 , s�1],s2 = [s�2 , s�2] be two interval linguistic variables.

(2)

ICI
(
A
)
=

1

�n(n − 1)(n − 2)

n∑
k=1,k≠i,j

n−1∑
i=1

n∑
j=i+1

(||||min

{(
I
(
aL
ij

)
− I

(
aL
ik

)
− I

(
aL
kj

)
+ �

)
, 0

}||||+
||||min

{
I
(
aU
ij

)
− I

(
aU
ik

)
− I

(
aU
kj

)
+ �), 0

}||||
)

(3)F(s) = I(s�) + I(s�) − 2�.

(4)H(s) = I(s�) + � − I(s�).
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(1) If F(s1) > F(s2) , then s1 > s2.
(2) If F(s1) = F(s2) , then:

(a) H(s1) = H(s2) , then s1 = s2;
(b) H(s1) > H(s2) , then s1 > s2;(c) H(s1) < H(s2) , then s1 < s2.

The following Example 1 is conducted to show the feasibility and effectiveness of 
our proposed comparison method.

Example 1. Let s1 = [s3, s5] , s2 = [s4, s4] , s3 = [s3, s4] , s4 = [s2, s3] be four inter-
val linguistic variables. Based on Definition 3.2, we obtain F(s1) = F(s2) = −2

> F(s3) = −3 > F(s4) = −5 , H(s2) = 5 > H(s1) = 3 . Then, we have s2 ≻ s1 ≻ s3 ≻ s4.

In Meng et  al. (2016), the likelihood measure was presented to measure the 
probability that one interval linguistic variable is larger than others. It is used to 
compare the above interval linguistic variables, we obtain the ranking results as 
s2 ≻ s1 ≻ s3 ≻ s4 , which is same as the ranking result obtained by our proposed 
method.

In Garcia et  al. (2012), the dominance degree was developed by summing the 
upper and lower bounds of interval linguistic variable for comparing interval lin-
guistic variables. Now, we utilize it to compare the four interval linguistic variables. 
Then, the ranking results is s1 = s2 ≻ s3 ≻ s4 . It is different from the ranking result 
obtained by our proposed method.

Compared with likelihood measure, our proposed method can directly com-
pare interval linguistic variables and simplify calculation process. Most notably, 
s1 = [s3, s5] and s2 = [s4, s4] , they are not same. It means that the dominance degree 
has shortcoming. Therefore, our proposed comparison method is more effective and 
reasonable.

Inspired by Xu et al. (2014), the ordinal consistency of ILFPR is formally defined 
as follows.

Definition 3.3 Let A = (aij)n×n be an ILFPR, where aij = [aL
ij
, aU

ij
], i, j = 1, 2, ..., n . 

For all i, j, k = 1, 2, ..., n:

(1) if aik > [s𝜏 , s𝜏 ] and akj ≥ [s� , s�] , then we have aij > [s𝜏 , s𝜏].
(2) if aik ≥ [s� , s� ] and akj > [s𝜏 , s𝜏] , then we have aij > [s𝜏 , s𝜏].
(3) if aik = [s� , s� ] and akj = [s� , s�] , then we have aij = [s� , s�].

Then A has ordinal consistency.

Let A =
(
aij
)
n×n

 be as before. According to Definition 3.3, one of the following 
three cases must hold: (a) aij > [s𝜏 , s𝜏] ; (b) aij = [s� , s�] ; (c) aij < [s𝜏 , s𝜏] . It can be 
seen that when comparing the two intervals, we will consider the score value of the 
intervals firstly, which means the priority of score value is higher accuracy degree. 
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In order to describe the relationship between aij and [s� , s�] . The corresponding four 
cases are given as follows:

(1) If F(aij) > 0 , then pij = 1 and qij = 0 , it can prove that aij > [s𝜏 , s𝜏];
(2) If F(aij) = 0 and H(aij) > 0 , then pij = 0, qij = 1, cij = 1 and dij = 0 , it can prove 

that aij > [s𝜏 , s𝜏];
(3) If F(aij) = 0 and H(aij) = 0 , then pij = 0, qij = 1, cij = 0 and dij = 1 , it can prove 

that aij = [s� , s�];
(4) If F(aij) < 0 , then pij = 0 and qij = 0 , it can prove that aij < [s𝜏 , s𝜏].
  where pij and qij are denoted as 0–1 variables to represent three cases of F(aij) , 

cij and dij are denoted as 0–1 variables to represent three cases of H(aij).

For the sake of clarity, the relationships are shown in Table  1, where 
i, j, k = 1, 2, ..., n,i < k < j . The above four cases are called conditions of ordinal 
consistency.

3.2  A two‑stage optimization model for deriving ILFPR with ordinal consistency

Ordinal consistency is the minimum requirement to ensure that there is no contra-
dictory judgment in a given ILFPR. To check whether the original ILFPR is ordinal 
consistency, the requirement of transitivity is added based on the conditions of tran-
sitivity. If one of these conditions is violated, the ILFPR is not ordinal consistency. 
For this situation, a two-stage integer optimization model is developed to derive an 
ILFPR with ordinal consistency.

For A =
(
aij
)
n×n

 be an ILFPR without ordinal consistency, two important mis-
sions are considered to derive an ILFPR A

∗
=
(
a
∗

ij

)
n×n

 with ordinal consistency 
and acceptably interval additive consistency. One is that the score function is 
used to make the ILFPR has ordinal consistency. In this process, the score matrix 
M = (mij)n×n will be obtained based on the original A =

(
aij
)
n×n

 , where 
I(mij) = I(a

L

ij
) + I(a

U

ij
) . It is regarded as a medium to ensure that the amount of 

information in each interval remains unchanged, and lays the foundation for the 
next stage to build a model for calculating the upper and lower bounds of the 
interval under the premise of the same amount of information. The other is that 
the score value derived from the one mission remains unchanged during the pro-
cess and each element of A is adjusted to make the accuracy degree of each ele-
ment of the modified ILFPR A

∗
= (a

∗

ij
)n×n meets the ordinal consistency. Based on 

Table 1  The relationships in 
four cases

Case aij pij qij cij dij

(a) > [s𝜏 , s𝜏 ] 1 0 0 or 1 0 or 1
(b) > [s𝜏 , s𝜏 ] 0 1 1 0
(c) = [s� , s� ] 0 1 0 1
(d) < [s𝜏 , s𝜏 ] 0 0 0 or 1 0 or 1
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the above ideas and inspired by Wu and Tu (2021), a two-stage optimization 
model is obtained as the following. One stage is to achieve the first mission, the 
other is to realize the second mission.

The first stage model (5) is as below:

where I(mij) = I(a
L

ij
) + I(a

U

ij
) , N is represented as a large integer number. The first to 

sixth constraints are to determine the relationship with I(m∗
ij
) , pij and qij , and the sev-

enth to twelfth constraints are to express the transitivity of score matrix. The thir-
teenth constraint condition is to ensure the acceptable consistency of the score 
matrix, which CI is denoted as the threshold of additive consistency index.

Completely additive consistency is a special case of acceptable consistency. 
CI(A

∗
) = 0 means that I(m∗

ik
) + I(m∗

kj
) − I(m∗

ij
) − 2� = 0,∀i < k < j . It turns out that 

to obtain a consistent A
∗
 . It is obvious that model (5) has feasible solutions. For 

example, a matrix A
∗
= (a

∗

ij
)n×n where each I(m∗

ij
) = I(a

L∗

ij
) + I(a

U∗

ij
) = 2� is a feasi-

ble solution. Since the objective function is bounded, we have the following prop-
erty according to Weierstrass’ Theorem (Borwein & Lewis, 2010).

Property 3.1. Model (5) has at least one optimal solution.

After solving model (5), the score matrix M = (m∗
ij
)n×n of the revised ILFPR A

∗
 

is obtained. Then, to calculate its upper and lower bounds, the second stage opti-
mization denoted by the model (6) is established by comparing the accuracy 
under the condition of score determination. The first to sixth constraints are to 
determine the relationship with I(aL∗

ij
) , I(aU∗

ij
) , cij and dij , and the seventh to 

(5)

min J1 =

n�
i=1

n�
j=1

����I
�
m∗

ij

�
− I

�
mij

�����

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I
�
m∗

ij

�
− 2𝜏 + N(1 − pij + qij) > 0, I

�
m∗

ij

�
− 2𝜏 ≤ Npij,

I
�
m∗

ij

�
− 2𝜏 + N(1 + pij − qij) ≥ 0, I

�
m∗

ij

�
− 2𝜏 − N(1 + pij − qij) ≤ 0,

N(pij + qij) + 2𝜏 − I
�
m∗

ij

�
> 0,

1

2𝜏
I
�
m∗

ij

�
− (pij + qij) ≥ 0,

I
�
m∗

ij

�
− 2𝜏 + N(2 − pik − pkj) > 0, I

�
m∗

ij

�
− 2𝜏 + N(2 − qik − qkj) ≥ 0,

I
�
m∗

ij

�
− 2𝜏 − N(2 − qik − qkj) ≤ 0, I

�
m∗

ij

�
− 2𝜏 + N(2 − pik − qkj) > 0,

I
�
m∗

ij

�
− 2𝜏 + N(2 − qik − pkj) > 0, pij + qij ≤ 1,

1

𝜏n(n − 1)(n − 2)

n�
i<k<j

�I
�
m∗

ij

�
+ I

�
m∗

ij

�
− I

�
m∗

ij

�
− 2𝜏� ≤ CI,

pij, qij ∈ {0, 1}, i, j, k = 1, 2, ..., n,
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twelfth constraints are to express the transitivity of accuracy value, The thirteenth 
constraint condition is to ensure the acceptable consistency of the intervals.

where I(m∗
ij
) − (I(a

L∗

ij
) + I(a

U∗

ij
)) = 0.

Complete consistency is a special case of acceptable consistency. ICI(A
∗
) = 0 

means that I(aL
ij
) − I(aL

ik
) − I(aL

kj
) + � = I(aU

ij
) − I(aU

ik
) − I(aU

kj
) + � = 0,∀i < k < j . It 

turns out that to obtain a consistent A
∗
 . It is obvious that model (5) has feasible 

solutions. For example, a matrix A
∗
= (a

∗

ij
)n×n where each I(aL∗

ij
) = I(a

U∗

ij
) = � is a 

feasible solution. Since the objective function is bounded, we have the following 
property according to Weierstrass’ Theorem (Borwein & Lewis, 2010).

Property 3.2. Model (6) has at least one optimal solution.

Remark 1. When there are multiple optimal solutions, the DMs can provide more 
refined suggestions about which changes need to be changed. For instance, if there 
are two optimal solutions for which the preference a∗

ij
 should be modified, then a∗

ij
 

has the priority to be first changed since more than once it appeared in the optimal 
solutions. The above concept is similar to the “core” concept used in the advantage-
based rough set method (Greco et al., 2001). The “core” concept in the multi-opti-
mization solution allows DMs to create recommendations in a new way, which is 
worthy of further study.

Proposition 3.1 The four cases in Table 1 can be described in the model (5) and (6): 
suppose M is a big integer number and A

∗
= (a

∗

ij
)n×n is the modified ILFPR.

Proof In the following, it will show that each of the four cases in Table 1 can be 
obtained by (5) and (6).

Case (a)  Prove that pij = 1, qij = 0 ⇒ aij > [s𝜏 , s𝜏] . Assume it is hold that pij = 1 
and qij = 0 . I(m∗

ij
) − 2𝜏 + N(1 − pij + qij) > 0 leads to I(m∗

ij
) − 2𝜏 > 0 

(6)

min J2 =

n�
i=1

n�
j=1

����I
�
a
L∗
ij

�
− I

�
a
L
ij

����� +
n�
i=1

n�
j=1

����I
�
a
U∗
ij

�
− I

�
a
U
ij

�����

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
+ N(1 − cij + dij) > 0,

I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

� ≤ Ncij, I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
+ N

�
1 + cij − dij

� ≥ 0,

I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
− N

�
1 + cij − dij

� ≤ 0,N
�
cij + dij

�
−
�
I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

��
> 0,

1

2𝜏

�
I
�
a
L∗
ij

�
+ 2𝜏 − I

�
a
U∗
ij

��
− 0.5(cij + dij) ≥ 0, I

�
a
L∗
ij

�
+ 𝜏 − I(a

U∗
ij

) + N
�
2 − cik − ckj

�
> 0,

I(a
L∗
ij
) + 𝜏 − I

�
a
U∗
ij

�
+ N

�
2 − dik − dkj

� ≥ 0, I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
− N(2 − dik − dkj) ≤ 0,

I(a
L∗
ij
) + 𝜏 − I

�
a
U∗
ij

�
+ N

�
2 − cik − dkj

�
> 0, I

�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
+ N

�
2 − dik − ckj

�
> 0,

ICI(A
∗
) ≤ ICI, I

�
a
L∗
ij

�
− I

�
a
U∗
ij

� ≤ 0, cij + dij ≤ 1, cij, dij ∈ {0, 1}, i, j, k = 1, 2,… , n.
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and 1

2�
I(m∗

ij
) − (pij + qij) ≥ 0 leads to I(m∗

ij
) − 2� ≥ 0 . Other constraints 

have no requirement for I(m∗
ij
) . It follows that F(a∗

ij
) = I(m∗

ij
) − 2𝜏 > 0 . 

Therefore, if pij = 1 and qij = 0 , then a∗
ij
> [s𝜏 , s𝜏] according to Definition 

3.2. To sum up, it shows that the series of models can describe Case (a).

Case (b)  Prove that pij = 0, qij = 1, cij = 1, dij = 0 ⇒ aij > [s𝜏 , s𝜏] . Suppose we have 
pij = 0 and qij = 1 . I(m∗

ij
) − 2� ≤ Npij,I(m∗

ij
) − 2� + N(1 + pij − qij) ≥ 0

,I(m∗
ij
) − 2� − N(1 + pij − qij) ≤ 0,

1

2�
I(m∗

ij
) − (pij + qij) ≥ 0 lead to 

I(m∗
ij
) − 2� ≤ 0,I(m∗

ij
) − 2� ≥ 0,I(m∗

ij
) − 2� ≤ 0,I(m∗

ij
) − 2� ≥ 0 respec-

tively. It follows that I(m∗
ij
) − 2� = 0 and other constraints have no requirement 

for I(m∗
ij
) . Therefore, if pij = 0 and qij = 1 , then F(a∗

ij
) = I(m∗

ij
) − 2� = 0 . Then 

suppose we have cij = 1 and dij = 0 . I(aL∗
ij
) + 𝜏 − I(a

U∗
ij

) + N(1 − cij + dij) > 0
 leads 

to I(aL∗
ij
) + 𝜏 − I(a

U∗

ij
) > 0 and 1

2�
(I(a

L∗

ij
) + 2� − I(a

U∗

ij
)) − 0.5(cij + dij) ≥ 0 

leads to I(aL∗
ij
) + � − I(a

U∗

ij
) ≥ 0 . Other constraints have no requirement for 

I(a
L∗

ij
) or I(aU∗

ij
) . It follows that H(a

∗

ij
) = I(a

L∗

ij
) + 𝜏 − I(a

U∗

ij
) > 0 . Therefore, if 

pij = 0, qij = 1, cij = 1, dij = 0 , then a∗
ij
> [s𝜏 , s𝜏] according to Definition 3.2. 

To sum up, it shows that the series of models can describe Case (b).

Case (c)  Prove that pij = 0, qij = 1, cij = 0, dij = 1 ⇒ aij = [s� , s�] . Suppose we have 
pij = 0 and qij = 1 . I(m∗

ij
) − 2� ≤ Npij,I(m∗

ij
) − 2� + N(1 + pij − qij) ≥ 0

,I(m∗
ij
) − 2� − N(1 + pij − qij) ≤ 0,

1

2�
I(m∗

ij
) − (pij + qij) ≥ 0 lead to 

I(m∗
ij
) − 2� ≤ 0,I(m∗

ij
) − 2� ≥ 0,I(m∗

ij
) − 2� ≤ 0,I(m∗

ij
) − 2� ≥ 0 respec-

tively. It follows that I(m∗
ij
) − 2� = 0 and other constraints have no require-

ment for I(m∗
ij
) . Therefore, if pij = 0 and qij = 1 , then F(a∗

ij
) = I(m∗

ij
) − 2� = 0 . 

Then we suppose that cij = 0 and dij = 1,I(aL∗
ij
) + � − I(a

U∗

ij
) ≤ Ncij

,I(aL∗
ij
) + � − I(a

U∗
ij

) + N(1 + cij − dij) ≥ 0
,I(aL∗

ij
) + � − I(a

U∗
ij

) − N(1 + cij − dij) ≤ 0
 and 

(I(a
L∗

ij
) + 2� − I(a

U∗

ij
)) − N(cij + dij) ≥ 0 lead to I(aL∗

ij
) + � − I(a

U∗

ij
) = 0 . 

It follows that H(a
∗

ij
) = I(a

L∗

ij
) + � − I(a

U∗

ij
) = 0 and other constraints have 

no requirement for I(a
L∗

ij
) or I(a

U∗

ij
) . Therefore, if 

pij = 0, qij = 1, cij = 0, dij = 1 , then aij = [s� , s�] according to Definition 
3.2. To sum up, it shows that the series of models can describe Case (c).

Case (d)  Prove that pij = 0, qij = 0 ⇒ aij < [s𝜏 , s𝜏] . When pij = 0 and qij = 0 , 
I(m∗

ij
) − 2� ≤ Npij , N(pij + qij) + 2𝜏 − I(m∗

ij
) > 0 and 1

2�
I(m∗

ij
) − (p

ij
+ q

ij
) ≥ 0 
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lead to I(m∗
ij
) − 2𝜏 < 0 . It follows that H(a

∗

ij
) = I(m∗

ij
) − 2𝜏 < 0 . There-

fore, if pij = 0 and qij = 0 , then aij < [s𝜏 , s𝜏] . To sum up, it shows that the 
series of inequalities can describe Case (d).

By solving model (6), the upper and lower bounds of interval linguistic variable 
can be obtained. Hence, we can obtain the revised ILFPR A

∗
 by solving the two-

stage optimization model.

Example 2. Let A1 be an ILFPR shown as follows:

.

According to Definition 3.3, a23 = [s7, s7] > [s5, s5],a34 = [s5, s6] > [s5, s5] , but 
a24 = [s2, s4] < [s5, s5] . According to Eq.  (2), ICI(A1) = 0.1917 > ICI = 0.1 . It 
means that A1 doesn’t satisfy ordinal consistency and acceptable interval additive 
consistency. By solving the models (5) and (6), we can obtain A

∗

1
:

It can be seen that the revised linguistic terms s5.6367 and s4.3633 don’t belong to 
⌢

S , 
namely, are virtual terms. In actual decision-making problems, it may be hard to 
persuade DMs to adopt these optimization results as their new preferences. Inspired 
by Wu et al. (2020), we hope to add some constraint conditions to ensure the opti-
mal adjusted linguistic terms belong to 

⌢

S , i.e., I(aL∗
ij
) , I(aU∗

ij
) ∈ {0, 1, ..., 2�} to over-

come this drawback.
Based on the model (5) and model (6), some constraint conditions are introduced, 

respectively. Add integer constraints to the model, therefore, model (7) and model 
(8) can be developed as follows:

A1 =

⎡
⎢⎢⎢⎣

[s5, s5] [s5, s6] [s6, s7] [s3, s4]

[s4, s5] [s5, s5] [s7, s7] [s2, s4]

[s3, s4] [s3, s3] [s5, s5] [s5, s6]

[s6, s7] [s6, s8] [s4, s5] [s5, s5]

⎤
⎥⎥⎥⎦

A
∗

1
=

⎡
⎢⎢⎢⎣

[s5, s5] [s5, s6] [s6, s7] [s3, s4]

[s4, s5] [s5, s5] [s5.6367, s7] [s2, s4]

[s3, s4] [s3, s4.3633] [s5, s5] [s4, s6]

[s6, s7] [s6, s8] [s4, s6] [s5, s5]

⎤
⎥⎥⎥⎦
.
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By solving models (7) and (8), we can obtain the revised ILFPR A
∗
 , which satis-

fies ordinal consistency and acceptable interval additive consistency.

Example 3. Let A1 be as before. By solving the model (7) and (8), we can obtain.

(7)

min J3 =

n�
i=1

n�
j=1

�I(m∗
ij
) − I(mij)�

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

I
�
m∗

ij

�
− 2𝜏 + N(1 − pij + qij) > 0,

I
�
m∗

ij

�
− 2𝜏 ≤ Npij, I

�
m∗

ij

�
− 2𝜏 + N(1 + pij − qij) ≥ 0,

I
�
m∗

ij

�
− 2𝜏 − N(1 + pij − qij) ≤ 0,N(pij + qij) + 2𝜏 − I(m∗

ij
) > 0,

1

2𝜏
I
�
m∗

ij

�
− (pij + qij) ≥ 0, I

�
m∗

ij

�
− 2𝜏 + N(2 − pik − pkj) > 0,

I
�
m∗

ij

�
− 2𝜏 + N(2 − qik − qkj) ≥ 0, I

�
m∗

ij

�
− 2𝜏 − N(2 − qik − qkj) ≤ 0,

I(m∗
ij
) − 2𝜏 + N(2 − pik − qkj) > 0, I(m∗

ij
) − 2𝜏 + N(2 − qik − pkj) > 0,

1

𝜏n(n − 1)(n − 2)

n�
i<k<j

�I�m∗
ik

�
+ I

�
m∗

kj

�
− I

�
m∗

ij

�
− 2𝜏� ≤ CI,

m∗
ij
∈ {s0, s1,… , s4𝜏}, pij + qij ≤ 1, pij, qij ∈ {0, 1}, i, j, k = 1, 2,… , n.

(8)

min J4 =

n�
i=1

n�
j=1

����I
�
a
L∗
ij

�
− I

�
a
L
ij

����� +
n�
i=1

n�
j=1

����I
�
a
U∗
ij

�
− I

�
a
U
ij

�����

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
+ N(1 − cij + dij) > 0,

I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

� ≤ Ncij, I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
+ N(1 + cij − dij) ≥ 0,

I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
− N(1 + cij − dij) ≤ 0,N(cij + dij) −

�
I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

��
> 0,

1

2𝜏

�
I
�
a
L∗
ij

�
+ 2𝜏 − I

�
a
U∗
ij

��
− 0.5

�
cij + dij

� ≥ 0, I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
+ N

�
2 − cik − ckj

�
> 0,

I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
+ N

�
2 − dik − dkj

� ≥ 0, I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
− N

�
2 − dik − dkj

� ≤ 0,

I
�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
+ N

�
2 − cik − dkj

�
> 0, I

�
a
L∗
ij

�
+ 𝜏 − I

�
a
U∗
ij

�
+ N

�
2 − dik − ckj

�
> 0,

ICI
�
A
∗
� ≤ ICI, a

L∗
ij
, a

U∗
ij

∈ {s0, s1,… , s2𝜏}, I
�
a
L∗
ij

�
− I

�
a
U∗
ij

� ≤ 0,

cij + dij ≤ 1, cij, dij ∈ {0, 1}, i, j, k = 1, 2,… , n,
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4  Derive the weights of DMs in GDM with ILFPRs via cooperative 
games

In GDM, different group members may represent different decision-making interests 
and have different decision-making psychology, they can be seen as different alli-
ances in a cooperative game. It can be used to calculate the importance of each DM. 
The Shapley value (Kalai & Samet, 1987) provides an objective method to deter-
mine the importance of each player’s contribution in cooperative game. Inspired 
by Tao et al. (2015), this section presents a weight-determination method based on 
cooperative games to derive DMs’ weights in GDM with ILFPRs.

4.1  Description of GDM with ILFPRs

Let X = {x1, x2, ..., xn}(n ≥ 2) be the set of alternatives and all to be evaluated by 
DMs, denoted as D = {d1, d2, ..., dK}(K ≥ 2) . The dk provides judgement by using 
an ILFPR A

(k) (i, j ∈ {1, 2, ..., n}, k ∈ {1, 2, ..,K}) and A
(k)∗

= (a
(k)∗

ij
)n×n is the revised 

ILFPR of A
(k) . Given that W = (w1,w2, ...,wK)

T is a weighting vector of DMs and it 
satisfies 

∑K

k=1
wk = 1 and wk ≥ 0 . The comprehensive ILFPR denoted as 

A
(c)

=
(
a
(c)

ij

)
n×n

=
([

a
L(c)

ij
, a

U(c)

ij

])
n×n

 can be computed by

4.2  The weight‑determination method based on cooperative games

For each xi ∈ X , Liao et al. (2018) defined the interval linguistic distance measure 
based on the symmetric LTS, and the interval linguistic variables in our paper are 
defined based on the asymmetric LTS. Inspired by Liao et al. (2018), we define the 
distance measure of two interval linguistic variables as follows.

Definition 4.1. Let W = (w1,w2, ...,wK)
T and A

(c)
= (a

(c)

ij
)n×n be as before. The devi-

ation function is defined by:

A
∗

1
=

⎡
⎢⎢⎢⎣

[s5, s5] [s5, s6] [s6, s7] [s3, s4]

[s4, s5] [s5, s5] [s7, s7] [s2, s4]

[s3, s4] [s3, s3] [s5, s5] [s2, s6]

[s6, s7] [s6, s8] [s4, s8] [s5, s5]

⎤
⎥⎥⎥⎦
.

(9)A
(c)

=

K∑
k=1

wkA
(k)∗

=
(
wka

(k)∗

ij

)
n×n

=

([
K∑
k=1

wka
L(k)∗

ij
,

K∑
k=1

wka
U(k)∗

ij

])

n×n
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where d(a(k)∗
ij

, a
(c)

ij
) is defined by

It is expected in GDM that DMs’ judgments become consistent as much as pos-
sible. However, the deviation is inevitable existing in the decision-making process. 
Therefore, a cooperative game method is established to distribute DMs’ contribu-
tions and balance the deviation of all DMs’.

According to Eqs. (10–11), the following concepts of GDM with ILFPRs are 
defined.

Definition 4.2. Dev = (devik)n×K is called the absolute deviation matrix of GDM 
with ILFPRs.

Definition 4.3. For a GDM with ILFPRs, E = DevT ⋅ Dev = (ekt)K×K is the group 
decision-making error information matrix.

Proposition 4.1. According to Eq. (11) devik = devki.

Proof. The conclusion that devik = devki will be proved as.

Because A = (aij)n×n and A
(k)∗

= (a
(k)∗

ij
)n×n are complementary, it follows that

which proves the Proposition 4.1.

Proposition 4.2. The group decision-making error information matrix E is 
symmetric.

The element on the original diagonal of E can be provided as decision error 
of the corresponding DM, the cooperative game method is adopted through the 
reciprocal matrix. In order to derive the weighting vector of DMs, the follow-
ing weight-determination method is defined by Algorithm 1, which is provided as 
follows:

(10)devik =

n∑
j=1

d
(
a
(k)∗

ij
, a

(c)

ij

)

(11)

d
(
a
(c)

ij
, a

(k)∗

ij

)
=

√
1

8�2

((
I
(
a
L(c)

ij

)
− I

(
a
L(k)∗

ij

))2

+
(
I
(
a
U(c)

ij

)
− I

(
a
U(k)∗

ij

))2
)

(12)
n∑
j=1

d
(
a
(c)

ij
, a

(k)∗

ij

)
=

n∑
j=1

d
(
a
(c)

ji
, a

(k)∗

ji

)
.

d
(
a
(c)

ij
, a

(k)∗

ij

)
=

√
1

8�2

((
I
(
a
L(c)

ij

)
− I

(
a
L(k)∗

ij

))
2

+
(
I
(
a
U(c)

ij

)
− I

(
a
U(k)∗

ij

))
2

)
= d

(
a
(c)

ji
, a

(k)∗

ji

)
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Algorithm 1 

Step 1  Input ILFPRs A
(k)
(k = 1, 2, ...,K) . Calculating an initial weighting vector 

of DMs, denoted as L = (l1, l2, ..., lK)
T , according to.

where ekk is the k-th diagonal element of the group decision-making error informa-
tion matrix E.

Step 2  There are 2K coalitions. Then, the characteristic functions of coalitions are 
composed of DMs. Based on the initial weighting vector, the cooperative 
result of the characteristic function of a coalition s ∈ 2K is defined by

where Λs = {�p, p ∈ s} and Es = (etk)n×n, t, k ∈ s ( |s| is the cardinality of s).

Step 3  Determining the contribution index of each DM in the group coalition. By 
applying the Shapley value method, the contribution index �k(v) is defined 
as follows:

and further transformed according to Borkotokey and Mesiar (2014):

where s represents the subset in {1, 2, ...,K} that contains {k}.

Step 4  Calculating the updated weighting vector using contribution indices.

Step 5  Determining whether the novel weighting vector meets the stop condi-
tion: If WT

t+1
Et+1Wt+1 −WT

t
EtWt ≤ � where � is a predetermination thresh-

old, then the final weighting vector is derived. Otherwise, the calculation 
returns to Step 1 and Wt = Wt+1.

Step 6  Output the weighting vector W of DMs.

(13)lk =

(
K∑
k=1

e−1
kk

)−1

⋅ e−1
kk
, k = 1, 2,… ,K,

(14)v(s) = −ΛT
s
EsΛs

(15)𝜑k(v) =
1

K!

∑
s⊂2K

[v(s) − v(s − {k})]

(16)�k(v) =
∑
k∈s

(K − |s|)! ⋅ (|s| − 1)!

K!
[v(s) − v(s − {k})]

(17)wk =
1

�k(v)

/
K∑
k=1

�k(v), k = 1, 2, ...,K.
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After the calculation of the above steps, the final weighting vector is obtained. 
Meanwhile, the process of Algorithm  1 is shown in Fig.  1. To clearly explain 
Algorithm 1, Example 4 is provided as follows.

Example 4 Let A1,A2,A3,A4 be four ILFPRs given by four DMs:

Based on Algorithm  1, the initial weighting vector is that W
0

= (0.4064, 0.2434,

0.0578, 0.2923)T . Algorithm 1 reaches the termination condition after 24 iterations and 
the related results are listed in Table 2.

A1 =

⎡
⎢⎢⎣

[s5, s5] [s3, s4] [s6, s7]

[s6, s7] [s5, s5] [s2, s3]

[s3, s4] [s7, s8] [s5, s5]

⎤
⎥⎥⎦
, A2 =

⎡
⎢⎢⎣

[s5, s5] [s5, s6] [s3, s4]

[s4, s5] [s5, s5] [s1, s2]

[s6, s7] [s8, s9] [s5, s5]

⎤
⎥⎥⎦

A3 =

⎡
⎢⎢⎣

[s5, s5] [s7, s9] [s4, s5]

[s1, s3] [s5, s5] [s2, s6]

[s5, s6] [s4, s8] [s5, s5]

⎤
⎥⎥⎦
, A4 =

⎡
⎢⎢⎣

[s5, s5] [s7, s9] [s4, s6]

[s1, s3] [s5, s5] [s2, s3]

[s4, s6] [s7, s8] [s5, s5]

⎤
⎥⎥⎦
.

Fig. 1  The weight-determination method based on cooperative games
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Theorem 4.1. Let E′ be the decision error information matrix corresponding to W , 
then W ′TEW ′ ≥ WTE′W . The sequence of the sum of decision errors WT

t
EtWt is 

convergent.

Proof. Owen (1995) has proved the following conclusion that 
∑K

k=1
�k(v) = v(O) , 

Eq. (16) is being seen as a valid payment plan for v(O) , which satisfying: v(�) = 0 , 
v(O) ≥ ∑K

k=1
v{k} , v̂(O) =

∑K

k=1
�̂�k(v) and T̂(v) = (�̂�1(v),..., �̂�K(v)) , where O is the 

largest coalition. The contribution distribution of the coalition is reset by utiliz-
ing the obtained weighting vector W , and it can be concluded that �̂�k(v) ≥ 𝜐k(v)

,k = 1, 2, ...,K . Otherwise, the redistribution would be ended. Thus, it follows that:

� □

According to v(O) = −ΛTEΛ , v̂(O) = −ΛTE�Λ and Eq. (18), we have

Under the premise of inputting an initial weighting vector W ′ , Eq. (17) determines 
a novel weighting vector W , which can decrease the sum of decision error. Assum-
ing that W � = W0 , E = E0 and W = W1 , E� = E1 , repeating the weighting algorithm 
mentioned above until WT

t+1
Et+1Wt+1 −WT

t
EtWt ≤ � and a series of weighting vec-

tors, denoted as W2,W3, ... , can be obtained. Correspondingly, the sums of decision 
errors are denoted as E2,E3, ... and, respectively, shown as

In addition, we have WT
t
EtWt ≥ 0 . According to the monotone bounded principle, 

Algorithm 1 is convergent. It proves Theorem 4.1.

(18)v̂(O) =

K∑
k=1

�̂�k(v) ≥
K∑
k=1

𝜐k(v) = v(O).

(19)−WTE�W ≥ −ΛTEΛ.

(20)WT
0
E0W0 ≥ WT

1
E1W1 ≥ WT

2
E2W2 ≥ ⋯ ,

Table 2  The related results generated by Algorithm 1

Times Error The weights of DMs

w
1

w
2

w
3

w
4

0 0.4064 0.2434 0.0578 0.2923
1 0.05558665 0.23247124 0.19544231 0.34897377 0.22311268
2 0.02862190 0.35019475 0.24951711 0.22880026 0.17148789
3 0.00354893 0.27423959 0.21065520 0.30197061 0.21313460
4 0.00750106 0.32374011 0.23655531 0.25577997 0.18392461
… … … … … …
23 0.00000104 0.30436015 0.22616558 0.27420140 0.19527287
24 0.00000067 0.30436935 0.22617054 0.27419273 0.19526737
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5  A new novel GDM method with DEA crossing‑efficiency 
and stochastic preference analysis

DEA is a non-parametric programming technique that has been successfully applied 
to evaluate the relative efficiency of a set of decision-making units (DMUs). It has 
been widely studied and applied (Liu  et al., 2019a, 2019b). DEA is a data-oriented 
method, which is used to identify the efficiency production frontier and evaluate the 
relative efficiency of the decision-making unit with a certain amount of output gen-
erated by multiple production factor inputs. It can avoid the interference of subjec-
tive factors, and makes the evaluation results recognized by DMs. The DEA cross-
efficiency model can consider comprehensive evaluation efficiency to avoid the 
generation of multiple optimal self-evaluation efficiencies. In this section, the DEA 
method and stochastic preference analysis will be used to obtain the final decision-
making results, employing a novel benevolent DEA cross-efficiency model to GDM 
with ILFPRs.

5.1  Ranking vector of LPR based on DEA cross‑efficiency

In order to facilitate the construction of the DEA cross-efficiency model, a derived 
function is proposed on the premise of keeping the information of ILFPR unchanged.

Definition 5.1. Let Ã = (ãij)n×n be a LPR on LTS S� = {s�|� ∈ [0, 2�]} . Then.

then � is called the derived function of LPR, where 0 ≤ 𝜙(ãij) ≤ 1 . R=
(
𝜙(ãij)

)
n×n

 
is the derived matrix of Ã = (ãij)n×n.

Theorem  5.1. If LPR Ã = (ãij)n×n satisfies additive consistency, then its derived 
matrix R=

(
𝜙(ãij)

)
n×n

 also satisfies additive consistency.

Proof. Since the LPR Ã = (ãij)n×n satisfies the additive consistency, it has

It is further concluded that:

It means that the derived matrix R =
(
𝜙(ãij)

)
n×n

 is a FPR with additive consist-
ency. □

(21)𝜙
(
ãij
)
= I

(
1

2𝜏
ãij

)
, i, j = 1, 2,… , n,

𝜙
(
ãii
)
= I

(
1

2𝜏
ãii

)
= 0.5,𝜙

(
ãij
)
+ 𝜙

(
ãji
)
= I

(
1

2𝜏

(
ãij + ãji

))
= 1.

𝜙
(
ãik

)
+ 𝜙

(
ãkj

)
= I

(
1

2𝜏

(
ãij + s𝜏

))
= 𝜙

(
ãij
)
+ 0.5, i, j, k = 1, 2,… , n.
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Let � = (�1,�2, ...,�n)
T be the ranking vector of Ã and it satisfies �i ≥ 0

,
∑n

i=1
�i = 1. If Ã has completely additive consistency, then 𝜙(ãij) = 0.5(𝜛i −𝜛j + 1) 

(Xu & Chen, 2008). For the additive consistent LPR Ã , DEA can be used to calculate 
its ranking vector. Let s� be the dummy input variable for all DMUs. Therefore, a DEA 
model established to calculate the efficiency value of alternative xj(j = 1, 2, ..., n) is as 
follows:

where �i implies the contribution ratio in alternative xi to build the composite unit, 
�d represents the efficiency value of alternative xd . The ranking vector of Ã = (ãij)n×n 
can be derived (Liu  et al., 2019b):

where �∗
i
 is the optimal solution of model (22), the efficiency score of xi is 1

/
�∗
i
.

When the LPR is not completely consistent, there could be two or more alternatives 
whose efficiency scores are equal to 1, and some priority weights derived from Eq. (23) 
are equivalent. To resolve this problem, we consider combing self-evaluation efficiency 
and peer evaluation efficiency of each alternative. Thus, a DEA cross-efficiency model 
is developed to obtain the ranking vector of LPR.

Firstly, an input-oriented DEA model is developed as follows:

In model (24), vd and udj represent the weights of inputs and outputs, respectively. 
�dd is the self-evaluated efficiency of xd.

Then, taking the self-evaluation efficiency �∗
dd

 obtained by the model (24) as 
the ideal point, the benevolent DEA cross-efficiency model is adopted on the 
basis of the minimum deviation. Under the condition of keeping the self-evalua-
tion efficiency of DMUd constant, this model makes the evaluation value of other 
DMUs evaluated by DMUd and the self-evaluation efficiency of other DMUs are 
as close as possible, which is more reasonable.

(22)

max 𝛾d

s.t.

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�n

i=1
𝜉i𝜙

�
ãik

� ≥ 𝛾d𝜙(ãdk), k = 1, 2,… , n,

𝜙(s𝜏)

n�
i=1

𝜉i ≤ 𝜙(s𝜏),

𝛾d free, 𝜉i ≥ 0,

i = 1, 2,… , n.

(23)�i =
n + 1

n
−

1

n
max
1≤i≤n

{
�∗
i

} n∑
i=1

1

�∗
i

+

(
max
1≤i≤n

{
�∗
i

}
− �∗

i

)
1

�∗
i

(24)

max 𝜃dd =

N�
j=1

udj𝜙(ãdj)

s.t.

⎧⎪⎨⎪⎩

�n

j=1
udj𝜙(ãdj) − 𝜙(s𝜏) ⋅ 𝜈d ≤ 0, i = 1, 2,… , n

𝜈d ⋅ 𝜙(s𝜏) = 1, 𝜈d ≥ 0,

udj ≥ 0, j, r = 1, 2,… , n.
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Let 𝛿id =
n∑
j=1

𝜔dj𝜙(ãij) − 𝜃∗
ii
𝜈d𝜙(s𝜏) , 𝛿+

id
=

{
𝛿id, 𝛿id ≥ 0

0, 𝛿id < 0
 , 𝛿−

id
=

{
0, 𝛿id ≥ 0

−𝛿id, 𝛿id < 0

,then |�id| = �+
id
+ �−

id
 , �id = �+

id
− �−

id
 . The benevolent DEA cross-efficiency model 

is as follows (Wang & Chin, 2010):

where �(s�) denotes the dummy input of each DMU. vd and �dj (j = 1, 2, ..., n) are 
the weights of inputs and outputs respectively. �+

id
 and �−

id
 are the deviation variable.

According to the optimal weights 
(
�∗
d1
,�∗

d2
,… ,�∗

dn
, �∗

d

)
 of the model (25), we 

can calculate the cross-efficiency of alternative xi:

Furthermore, combined with the self-evaluation value and other evaluation 
values of each alternative, the final cross-efficiency value of xi can be obtained:

Therefore, based on the final cross-efficiency value, we can calculate the final rank-
ing vector of the LPR as follows:

5.2  A GDM method with ILFPRs based on stochastic preference analysis

Based on the DEA cross-efficiency model, a method to calculate the ranking vector 
with LPR is proposed. According to all the possible values of the random variable, 
Monte Carlo simulation is used for statistical analysis to make GDM of ILFPRs.

(25)

min

n�
i=1

�
𝛿+
id
+ 𝛿−

id

�

s.t.

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n�
j=1

𝜔dj

�
n�
i=1

𝜙
�
ãij
��

+ vd

�
n�
i=1

𝜙
�
s𝜏
��

= n

n�
r=1

𝜔dj𝜙
�
ãdj

�
− 𝜃∗

dd
vd𝜙(s𝜏) = 0

n�
j=1

𝜔dj𝜙
�
ãij
�
− 𝜃∗

ii
vd𝜙(s𝜏) − 𝛿+

id
+ 𝛿−

id
= 0,

𝜔dj, vd, 𝛿
+
id
, 𝛿−

id
≥ 0, d, i, j = 1, 2,… , n

(26)𝜃di =

∑n

j=1
𝜔∗
dj
⋅ 𝜙

�
ãij
�

v∗
d
𝜙
�
s𝜏
� , d, i = 1, 2,… , n.

(27)�i =
1

n

N∑
d=1

�di, i = 1, 2,… , n.

(28)

�i =
n + 1

n
−

1

n
max
1≤i≤n

{
1

�i

} n∑
i=1

�i +

(
max
1≤i≤n

{
1

�i

}
−

1

�i

)
�i, i = 1, 2,… , n.
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From Sect. 4, the weights of experts have been derived as W =
(
w1,w2,… ,wz

)T . 
According to Eq.  (9), the comprehensive ILFPR A

(c)
= (a

(c)

ij
)n×n is obtained, where 

a
(c)

ij
=
∑z

k=1
wka

(k)∗

ij
=
�
a
L(c)

ij
, a

U(c)

ij

�
 , aL(c)

ij
 and aU(c)

ij
 are the lower and the upper bounds 

respectively. Assume that the random variable sets Ã = {ãij|i, j = 1, 2, ..., n; i ≤ j} , 

where ãij is uniformly distributed over 
[
a
L(c)

ij
, a

U(c)

ij

]
 , and ãji = neg(ãij) . f (ãij) is  

regarded as probability density function of ãij . For Ã , the ranking vector 
𝜛
(
Ã
)
=
(
𝜛1

(
Ã
)
,𝜛2

(
Ã
)
,… ,𝜛n

(
Ã
))T can be calculated based on the DEA cross-

efficiency model. Then, the rank of the alternative xi is as follows:

where o(true) = 1 , o(false) = 1 . The group preference relation space Pr
i
(𝜛(Ã)) with 

alternative xi that ranks the r-th is as follows:

In addition, by integrating the random vector Ã in the whole preference space A
(c) , 

the expected ranking vector of A
(c) can be obtained:

According to the expected ranking vector, we can know that the expected ranking 
result of the alternative xi is as follows:

Furthermore, by integrating the subspace where the expected ranking result is 
established, the credibility of the expected ranking of alternative xi in the whole 
preference space of GDM is obtained as follows:

In the interval linguistic fuzzy preference space, Monte Carlo simulation is used 
to obtain the expected ranking vector E(𝜛(Ã)) , credibility Te

i
 and the probability of 

other ranking cases.
Then, a novel decision-making method for GDM with ILFPRs is developed, 

which is concluded by Algorithm 2.

ranki
(
𝜛
(
Ã
))

= 1 +

n∑
k=1

o
(
𝜛k

(
Ã
)
> 𝜛i

(
Ã
))

= r,

(29)Pr
i

(
𝜛
(
Ã
))

=
{
Ã ∈ A

(c)|ranki
(
𝜛
(
Ã
))

= r
}

(30)E
(
𝜛
(
Ã
))

= ∫
A
(c)

f
(
Ã
)
𝜛
(
Ã
)
dÃ

(31)ranke
i
= 1 +

n∑
k=1

o
(
E
(
𝜛
(
Ã
))

k
> E

(
𝜛
(
Ã
))

i

)

(32)
Te
i
= ∫
A
(c)
∶ ranki(𝜛(Ã))=ranke

i

f
(
Ã
)
dÃ
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Algorithm 2 

Step 1.  The experts D = {d1, d2, ..., dz} express their ILFPR A
(k)

= (a
(k)

ij
)n×n

(i, j = 1, 2, ..., n;k = 1, 2, ..., z) on the alternative set X = {x1, x2, ..., xn} , 
respectively.

Step 2.  Establishing a threshold ICI and compute the ICI of A
(k)

= (a
(k)

ij
)n×n accord-

ing to Eq. (2). If ICI(A
(k)
) ≤ ICI , then transform into A

(k)∗
= (a

(k)∗

ij
)n×n and 

skip to Step 4; otherwise, go to the next step.

Step 3.  Transforming the A
(k)

= (a
(k)

ij
)n×n , contradict ICI(A

(k)
) ≤ ICI , into 

A
(k)∗

= (a
(k)∗

ij
)n×n that satisfy both ordinal consistency and acceptable addi-

tive consistency according to model (7) and (8).
Step 4  Applying Algorithm1 to compute the weights W = (w1,w2, ...,wz)

T of 
DMs.

Step 5  Building the comprehensive ILFPR A
(c)

= (a
(c)

ij
)n×n according to Eq. (9).

Step 6  Obtaining the LPR Ã = (ãij)n×n , which generated from A
(c)

= (a
(c)

ij
)n×n , 

where ãij obeys randomly generated from the uniform distribution of 
[a

L(c)

ij
, a

U(c)

ij
] and ãji = 2𝜏 − ãij.

Step 7  Calculating the cross-efficiency �1, �2, ..., �n by using models (24) and 
(25) and Eqs. (26–27) if there are equivalent self-efficiency for different 
DMUs.

Step 8  Calculating the ranking vector �1,�2, ...,�n corresponding to the 
alternative.

Step 9  Repeating the Step 6–8 N times and execute stochastic simulation to get 
the outcome of E(𝜛(Ã)) , ranke

i
 and Te

i
.

6  Numerical example

In this section, the proposed GDM method is applied to an example of cold chain logis-
tics selection in response to public emergencies.

The occurrence of public emergencies may cause heavy casualties and property 
losses and endanger social security. However, public emergencies cannot be predicted 
and controlled in advance. In the face of public emergencies, relevant departments 
should take timely and effective measures to minimize losses and maintain national 
security and social stability. When the epidemic virus breaks out, the control of cold 
chain food is very important. With the innovation of transportation mode, the new 
logistics industry often undertakes the distribution of cold chain food, which is called 
cold chain logistics. For example, the outbreak of coronavirus-19 (covid-19) is a pub-
lic health emergency, which has a huge impact on China and even the world. When 
the first outbreak of covid-19 led to the closure of Wuhan, in order to meet the daily 
needs of residents, a large number of cold chain food, including primary agricultural 
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products (vegetables, fruits), processed food (frozen food, cooked food) and special 
drugs, need to be transported to Wuhan as soon as possible. Cold chain logistics can 
provide a strong guarantee for the distribution, transportation, and distribution of these 
cold chain materials. There are some excellent logistics platform enterprises in China, 
including rookie, Shunfeng, Jingdong, etc. These enterprises have a relatively perfect 
cold chain logistics distribution mechanism. They can provide cold chain supplies in 
time. Therefore, in order to minimize the economic and social losses caused by public 
health emergencies and maximize timeliness, it is particularly important to choose an 
excellent cold chain logistics platform company.

Supposing there are four high-quality logistics platform enterprises in possession of 
the cold chain logistics companies 

{
x1, x2,, x3, x4

}
 . To select optimal alternative(s), four 

DMs 
{
d1, d2,, d3, d4

}
 are invited to give their evaluations based on LTS:

The evaluations provided by DMs are respectively presented in the form of four 
ILFPRs A

(k)
= (a

(k)

ij
)4×4(k = 1, 2, 3, 4) as follows:

Step 1  Let ICI = 0.1 . By Eq.  (2), the interval additive consistency indices of 

A
(k) (k = 1, 2, 3, 4) are calculated as: ICI(A

(1)
) = 0.15 , ICI(A

(2)
) = 0.1917 , 

ICI(A
(3)
) = 0.1583 , ICI(A

(4)
) = 0.3 . Obviously, all are unacceptable inter-

val additive consistency. Meanwhile, according to Definition 3.3, it has 
a
(2)

23
= [s7, s7] > [s5, s5] and a(2)

34
= [s5, s6] > [s5, s5] , which means that x2 is 

better than x3 , x3 is better x4 by the second DM. Then x2 is supposed to be 
better than x4 which contradicts with a(2)

24
= [s2, s4] < [s5, s5] in ILFPR A

(2) . 
Since there are matrices with unacceptable interval additive consistency 
and non-transitivity, they need to be revised in Step 2.

Step 2  Based on models (7) and (8), the ILFPR A
(k)∗

= (a
(k)∗

ij
)4×4 with ordinal con-

sistency and interval additive consistency are obtained as follows:

⌢

S =

⎧⎪⎪⎨⎪⎪⎩

s
0

= absolutely low, s
1

= extremely low, s
2

= very low, s
3

= low, s
4

=a little low,

s
5

= medium, s
6

= a little high, s
7

= high, s
8

= very high, s
9

= extremely high,

s
10

= absolutely high

⎫⎪⎪⎬⎪⎪⎭

.

A
(1)

=

⎡
⎢⎢⎢⎣

[s5, s5] [s6, s7] [s6, s7] [s3, s4]

[s3, s4] [s5, s5] [s5, s6] [s2, s3]

[s3, s4] [s4, s5] [s5, s5] [s5, s6]

[s6, s7] [s7, s8] [s4, s5] [s5, s5]

⎤
⎥⎥⎥⎦
, A

(2)
=

⎡
⎢⎢⎢⎣

[s5, s5] [s5, s6] [s6, s7] [s3, s4]

[s4, s5] [s5, s5] [s7, s7] [s2, s4]

[s3, s4] [s3, s3] [s5, s5] [s5, s6]

[s6, s7] [s6, s8] [s4, s5] [s5, s5]

⎤⎥⎥⎥⎦

A
(3)

=

⎡
⎢⎢⎢⎣

[s5, s5] [s5, s7] [s7, s9] [s3, s5]

[s3, s5] [s5, s5] [s5, s7] [s2, s4]

[s1, s3] [s3, s5] [s5, s5] [s5, s6]

[s5, s7] [s6, s8] [s4, s5] [s5, s5]

⎤⎥⎥⎥⎦
, A

(4)
=

⎡
⎢⎢⎢⎣

[s5, s5] [s6, s7] [s7, s8] [s3, s4]

[s3, s4] [s5, s5] [s6, s7] [s2, s3]

[s2, s3] [s3, s4] [s5, s5] [s7, s8]

[s6, s7] [s7, s8] [s2, s3] [s5, s5]

⎤⎥⎥⎥⎦
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Step 3  Calculating the weight of each DM by using Algorithm  1. An initial 
weighting vector is that W0 = (0.4064, 0.2434, 0.0578, 0.2923)T . Accord-
ing to Eqs. (10–11), the dev0 and e0 are obtained. Due to the space limita-
tion, they are omitted. By using Algorithm 1, the final weighting vector is 
W = (0.2953, 0.2502, 0.2538, 0.2008)T.

Step 4  According to Eq. (9), the revised ILFPR A
(k)∗ and weighting vector W , the 

comprehensive ILFPR A(c) is computed. Due to the space limitation, it is 
omitted.

Step 5  In this paper, the LPRs are generated randomly based on the uniform dis-
tribution in ILFPR. In order to establish the DEA cross-efficiency model, 
preprocess the derived function � by Eq. (21).

Step 6  Based on model (24), model (25), Eqs. (26), and (27), the cross-efficiency 
� = {�11, �22, �33, �44} is calculated. Then, calculate each ranking vector 
vi(i = 1, 2, 3, 4) corresponding to the alternative xi.

Step 7  Stochastic preference analysis is used to obtain the final expected ranking 
vector and its confidence level is given. The results are shown in Table 3.

A
(1)∗

=

⎡
⎢⎢⎢⎣

[s5, s5] [s6, s7] [s6, s7] [s3, s4]

[s3, s4] [s5, s5] [s5, s5] [s2, s3]

[s3, s4] [s5, s5] [s5, s5] [s4, s5]

[s6, s7] [s7, s8] [s5, s6] [s5, s5]

⎤
⎥⎥⎥⎦
, A

(2)∗
=

⎡
⎢⎢⎢⎣

[s5, s5] [s5, s6] [s6, s7] [s3, s4]

[s4, s5] [s5, s5] [s7, s7] [s2, s4]

[s3, s4] [s3, s3] [s5, s5] [s2, s6]

[s6, s7] [s6, s8] [s4, s8] [s5, s5]

⎤
⎥⎥⎥⎦

A
(3)∗

=

⎡
⎢⎢⎢⎣

[s5, s5] [s5, s7] [s7, s9] [s3, s5]

[s3, s5] [s5, s5] [s5, s7] [s2, s4]

[s1, s3] [s3, s5] [s5, s5] [s2, s6]

[s5, s7] [s6, s8] [s4, s8] [s5, s5]

⎤⎥⎥⎥⎦
, A

(4)∗
=

⎡
⎢⎢⎢⎣

[s5, s5] [s6, s7] [s7, s8] [s4, s4]

[s3, s4] [s5, s5] [s6, s7] [s2, s3]

[s2, s3] [s3, s4] [s5, s5] [s2, s6]

[s6, s6] [s7, s8] [s4, s8] [s5, s5]

⎤⎥⎥⎥⎦
.

Table 3  Expected ranking 
vector under different simulation 
times

Simulation 
times

Expected ranking vectors

E(�)
1

E(�)
2

E(�)
3

E(�)
4

50 0.3713 0.158 0.1183 0.3524
100 0.367 0.154 0.1278 0.3512
150 0.3704 0.1568 0.122 0.3508
200 0.3685 0.1541 0.13 0.3475
250 0.3699 0.1557 0.1283 0.3461
300 0.3714 0.1561 0.1269 0.3456
350 0.3703 0.1566 0.1267 0.3465
400 0.3700 0.1562 0.1263 0.3475
450 0.3702 0.1559 0.1272 0.3467
500 0.3707 0.155 0.1273 0.347
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It can be seen that when the number of simulations exceeds 350, the expected 
value of the ranking vector tends to be stable, and the variation range is less than 
0.002. When 500 simulation times are selected, the expected ranking vectors of 
alternatives and their confidence level are counted. According to the ranking sta-
tistics of 500 times of random simulation, the frequency distribution statistics 
diagram of ranking is made, as shown in Fig.  2. It can be determined that the 
best alternative in cold chain logistics capability is x1 , and the confidence degree 
of its ranking first is 70.20%. Based on the expected ranking vector, the ranking 
result of cold chain logistics confidence level among five logistics enterprises is 
x1 ≻ x4 ≻ x2 ≻ x3.

7  Comparative analysis

To demonstrate the advantages of our proposed methods, some existing priority 
vector deriving methods (Chen & Zhou, 2011; Liu et al., 2019b) are applied to the 
case study. Then some comparisons between the integrated GDM method and other 
existing methods are presented.

7.1  Comparison between our proposed method and Liu et al. (2019b)

In Liu et al. (2019b), they proposed an approach for GDM based on Monte Carlo 
stochastic simulation method and DEA model. According to Definition 5.1, the 
interval fuzzy preference relations are obtained. By using their method, we can 
obtain the priority vector E = (0.2666, 0.2255, 0.2195, 0.2884)T . Then, the ranking 
order of the alternatives is x4 ≻ x1 ≻ x2 ≻ x3 . This result is slightly different from 
the results provided by our proposed method.

ranking 1
ranking 2

ranking 3
ranking 4

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%

x1 x2 x3 x4

Fig. 2  Frequency distribution of ranking statistics of four companies
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In a comparison between our proposed method and the method proposed by Liu 
et al. (2019b), we observe the following:

• Liu et al. (2019b) proposed a GDM method that involved additive consistency 
based on LPR while our method involves interval additive consistency and 
ordinal consistency on this basis. The former ignores the influence of interval 
additive consistency and order consistency in decision-making process. Ordinal 
consistency is the lowest condition to ensure that DMs will not give some con-
tradictory preferences. The ranking result based on ordinal inconsistent ILFPR 
is unreliable. Based on the interval additivity consistency index, our proposed 
method contains a two-stage optimization model, which ensures the existence of 
transitivity to obtain acceptably interval additive consistent ILFPR. Therefore, 
our proposed method can provide more reliable decision-making results.

• Liu et al. (2019b) proposed a GDM method that introduced a weight model based 
on minimum deviation while our proposed method applies the cooperative game 
method to measure the weights of DMs. The former ignores the decision-making 
interests and decision-making psychology of DMs.

7.2  Comparison between our proposed method and Chen and Zhou (2011)

First, ILFPRs are transformed into interval fuzzy preference relations by using sub-
script function and Eq. (21). Second, we use the GDM method proposed by Chen 
and Zhou (2011) to solve the numerical example. Then, we can obtain the priority 
vector E = (0.2564, 0.2284, 0.2343, 0.2806)T . Finally, the ranking order of the alter-
natives is x4 ≻ x1 ≻ x2 ≻ x3 . This result is slightly different from the results provided 
by our proposed method.

In a comparison between our proposed GDM method and the existing method 
(Chen & Zhou, 2011), we observe the following:

• Chen and Zhou (2011) ignored the ordering problem and the acceptable addi-
tive consistency problem of the interval fuzzy preference relations, which leads to 
inconsistent ranking results. Our proposed model not only defines the ordinal con-
sistency based on the original information of ILFPR, developing a two-stage opti-
mization model to derive the acceptably interval additive consistent ILFPR with 
ordinal consistency.

• Chen and Zhou (2011) applied the consistency indices to obtain the DMs’ weights. 
However, it ignored the decision-making interests and decision-making psychology 
of DMs. Our proposed method uses the cooperative game method to calculate the 
weights of DMs. Therefore, our proposed method is more reliable and reasonable.
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8  Conclusions

This paper mainly concentrates on the ordinal consistency of ILFPR and the method 
for GDM with ILFPRs. This paper first defines the ordinal consistency of ILFPR For 
ILFPR without ordinal consistency, a two-stage optimization model is established to 
obtain revised ILFPR with ordinal consistency and acceptable interval additive con-
sistency. Then, a weight-determination method for solving DMs’ weights in GDM 
with ILFPRs is proposed based on cooperative games. Furthermore, each alternative 
is regarded as a DMU of DEA model, a cross-efficiency DEA model for LFPR is con-
structed. For ILFPR, it can be viewed as composed of several LPRs. Hence, LPR can 
be extracted according to the uniform distribution. Finally, we use Monte Carlo sto-
chastic simulation method to analyze the whole group preference space and obtain the 
expected ranking vector and its credibility of each alternative. The method can address 
the lack of ordinal consistency, calculate each ranking vector, and has strong applicabil-
ity and high confidence level.

The main advantages of this article are: (1) using a two-stage optimization model 
based on interval additive consistency and ordinal consistency to modify unreasonable 
ILFPRs; (2) using cooperative game method based on the decision-making interests 
and decision-making psychology to measure the weights of DMs; (3) developing a 
DEA cross-efficiency model based on Monte Carlo simulation to obtain the expected 
ranking vector of alternatives in GDM. It can consider the mutual influence between 
different alternatives, avoid that the optimal solution of DEA is not unique, and fully 
use the whole decision-making information in ILFPR.
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