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Abstract
Theoretical analysis and empirical study results all show that there are situations 
in reality where observed data are not random variables. Thus, decision-making 
criteria based on probability theory are not suitable for people to make decisions. 
This paper proposes an uncertain dominance based on uncertainty theory to offer 
an alternative decision-making criterion for such situations. The paper first defines 
a new criterion of first- and second-order uncertain dominance, then proves some 
necessary conditions of them based on uncertainty theory. Some sufficient and nec-
essary conditions of the first- and second-order uncertain dominance are given when 
uncertain variables are all normal or linear uncertain variables. In addition, the 
paper proves the link between the uncertain dominance criterion and the expected 
utility criterion and shows that the first-order uncertain dominance is suitable for all 
people to make decisions and the second-order uncertain dominance is suitable for 
risk-averse people to make decisions.

Keywords Uncertainty theory · Decision-making · Dominance · Uncertain 
dominance

1 Introduction

In order to choose among alternative choices, decision-making rules are needed. 
When choice results are random numbers, the expected value, the quantile, and 
the stochastic dominance are the three main decision-making criteria. With the 
expected value criterion, the choice with the maximum expected value should 
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be selected, and with the quantile, the choice with the maximum quantile value 
at the predetermined confidence level should be selected. Rather than compar-
ing one characteristic value of the two choices, the stochastic dominance crite-
rion compares the two choices pointwise based on probability distributions. In 
addition, the stochastic dominance criterion is proved to be consistent with the 
expected utility criterion but only employs partial information on the preferences. 
Thus, it is theoretically appealing and the research on it, especially on second-
order stochastic dominance, keeps hot.

These criteria all assume that choice results are random variables and they all 
make rankings based on probability theory. However, numerous empirical stud-
ies have revealed that in real life there are many situations where the distribu-
tions obtained from the observed data are not probability distributions and the 
imprecise parameters are not random variables. Thus, it is unsuitable to use the 
stochastic criteria to make decisions in these situations. For example, Ye and Liu 
(2022a) investigated the observed exchange rate data of US Dollar to Chinese 
Yuan from October 2019 to June 2021 and found that they are not from the same 
population and their residuals are not white noise in the sense of probability the-
ory either. Therefore, the distribution got from these data cannot be a probability 
distribution. The investigations of Liu (2021); Ye and Yang (2021); Liu and Liu 
(2022), and Ye and Liu (2022b) also showed that none of the cumulative num-
bers of COVID-19 infections, Alibaba stock prices, or GDP values are random 
variables.

To model the imprecise quantity that is not random, in 2007, Liu proposed uncer-
tain measure and developed uncertainty theory based on four axioms (Liu, 2007) 
and further refined it (Liu, 2009a). With the development of uncertainty theory, 
uncertain decision-making criteria in the framework of uncertainty theory have 
been proposed. The important ones include the uncertain expected value criterion 
(Liu, 2009b), the uncertain mean-risk criteria (Huang, 2010, 2012a, b), the expected 
uncertain utility criterion (Yao & Ji, 2014) and the utility criterion of the mean and 
variance of the uncertain choices (Huang & Jiang, 2021). As an alternative uncer-
tain decision-making criterion, uncertain dominance was first studied and defined 
by Zuo and Ji (2009) via uncertainty distributions, and later redefined by Yao and 
Ji (2014) and Chen and Park (2017) via expected utility functions. Inspired by the 
advantage of stochastic dominance in handling stochastic decision making prob-
lems, we try to develop an uncertain dominance criterion as an alternative uncer-
tain decision making rule. We propose a revised definition of uncertain dominance 
based on inverse uncertainty distributions and further discuss the properties of the 
rule. The uncertain dominance criterion can be applied to solve various uncertain 
decision-making problems such as uncertain portfolio optimization, project selec-
tion, supply chain management, optimal saving and consumption, etc.

Our main contributions are as follows. First, as an alternative uncertain decision 
making criterion, we propose a revised definition of first- and second-order uncertain 
dominance based on inverse uncertainty distributions. The difference and impor-
tance of our proposal is shown by comparing our definitions with those of Zuo and 
Ji (2009). Second, we discuss and offer the new properties of the proposed uncer-
tain dominance criterion. Third, we prove the link between the proposed uncertain 
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dominance criterion and the expected utility criterion and show that the first-order 
uncertain dominance is suitable for all people to make decisions and the second-
order uncertain dominance is suitable for risk-averse people to make decisions.

The article is organized as follows. We define first- and second-order uncertain 
dominance, compare them with those by Zuo and Ji (2009) and discuss some neces-
sary and sufficient conditions of the first- and second-order uncertain dominance in 
Sects. 2 and 3, respectively. Then we prove the link between the uncertain domi-
nance criterion and the expected utility criterion in Sect. 4. Finally, we conclude in 
Sect. 5.

2  First‑order uncertain dominance

Definition 1 Let � and � denote two uncertain variables with regular uncertainty 
distributions � and � , respectively. We say � dominates � by first-order uncertain 
dominance if �−1(�) ≥ �−1(�) for all � ∈ (0, 1), denoted by � ⪰1 �.

Example 1 Let � and � represent two uncertain choice results and � a zigzag uncer-
tain variable � ∼ Z(3, 5, 8) and � a linear uncertain variable � ∼ L(0, 2) . According 
to Definition 1, we can get � ⪰1 �. Please see Fig. 1.

Theorem  1 Let � and � be two regular uncertain variables. Then E[�] ≥ E[�] if 
� ⪰1 �.

Proof Let � and � denote the uncertainty distributions of � and � , respectively. 
Since � ⪰1 �, we know from Definition 1 that �−1(�) ≥ �−1(�), ∀� ∈ (0, 1). 
According to the theorem of the expected value of the uncertain variable, for a regu-
lar uncertain variable � with inverse uncertainty distribution �−1, its expected value 
can be obtained via

E[�] = ∫
1

0

�−1(�)d�.

Fig. 1  Inverse uncertainty dis-
tributions of � ∼ Z(3, 5, 8) and 
� ∼ L(0, 2)
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Therefore, it follows from �−1(�) ≥ �−1(�), ∀� ∈ (0, 1) that

  ◻

Example 2 Let � and � be two normal uncertain variables � ∼ N(e1, �1) and 
� ∼ N(e2, �2), respectively. Then � ⪰1 � if and only if e1 ≥ e2 and �1 = �2.

Example 3 Let � and � be two linear uncertain variables � ∼ L(a1, b1) and 
� ∼ L(a2, b2), respectively. Then � ⪰1 � if and only if a1 ≥ a2 and b1 ≥ b2.

Theorem 2 Let � and � be two regular uncertain variables, and f a strictly increas-
ing function. Then f (�) ⪰1 f (�) if � ⪰1 �.

Proof Let � and � denote the uncertainty distributions of � and �, respectively. If 
� ⪰1 �, we know from Definition 1 that �−1(�) ≥ �−1(�) for all � ∈ (0, 1). Then we 
get f (�−1(�)) ≥ f (�−1(�)) for all � ∈ (0, 1) because f is a strictly increasing func-
tion. According to the operational law of the uncertain variable, when f is a strictly 
increasing function, the inverse uncertainty distributions of f (�) and f (�) are just 
f (�−1(�)) and f (�−1(�)), respectively. Therefore, we have f (�) ⪰1 f (�).  ◻

Theorem 3 Let � and � be two regular uncertain variables, and f a strictly decreas-
ing function. Then f (�) ⪰1 f (�) if � ⪰1 �.

Proof Let � and � denote the uncertainty distributions of � and �, respectively. If 
� ⪰1 �, we know from Definition 1 that �−1(�) ≥ �−1(�) for all � ∈ (0, 1). Then 
we get f (�−1(�)) ≥ f (�−1(�)) for all � ∈ (0, 1) because f is a strictly decreas-
ing function. According to the operational law of the uncertain variable, when 
f is a strictly decreasing function, the inverse uncertainty distributions of f (�) 
and f (�) are f (�−1(1 − �)) and f (�−1(1 − �)), respectively. It is clear that 
f (�−1(1 − �)) ≥ f (�−1(1 − �)) for all � ∈ (0, 1) if f (�−1(�)) ≥ f (�−1(�)) for all 
� ∈ (0, 1). Therefore, we have f (�) ⪰1 f (�).  ◻

3  Second‑order uncertain dominance

First-order uncertain dominance is a too strong requirement. In real life, it is hard 
that one uncertain choice dominates another by first-order uncertain dominance. 
If in some ranges the distribution of one uncertain choice is below the distribu-
tion of another uncertain choice while in some other ranges the distribution of 
one uncertain choice is up to the distribution of another uncertain choice, which 
choice should we choose? This section answers the question.

E[�] = �
1

0

�−1(�)d� ≥ �
1

0

�−1(�)d� = E[�].
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Definition 2 Let � and � denote two uncertain variables with regular uncertainty dis-
tributions � and � , respectively. We say � dominates � by second-order uncertain 
dominance if

denoted by � ⪰2 �.

Example 4 Let � be a zigzag uncertain variable � ∼ Z(1, 1.5, 5) and � a linear uncer-
tain variable � ∼ L(0, 4) , which represent two choice results. According to Defini-
tion 2, we can get that � ⪰2 �. Please see Fig. 2.

Theorem 4 Let � and � denote two uncertain variables with regular uncertainty dis-
tributions � and � , respectively. Then � ⪰2 � if � ⪰1 �.

Proof It follows from Definitions 1 and 2 directly.  ◻

Example 5 Suppose �1 ∼ L(1, 3), �2 ∼ L(1, 4), �1 ∼ (0.5, 2.5), �2 ∼ (1.5, 4.5) are four 
linear uncertain variables. Then according to the operational law of the uncertain 
variables, we know that the inverse uncertainty distribution �−1 of �1�2 is

where �−1
1
(�) and �−1

2
(�) are inverse uncertainty distributions of �1 and �2, respec-

tively, and the inverse uncertainty distribution �−1 of �1�2 is

where �−1
1
(�) and �−1

2
(�) are inverse uncertainty distributions of �1 and �2, respec-

tively. Since 𝛷−1(𝛼) = 6𝛼2 + 5𝛼 + 1 > 6𝛼2 + 4.5𝛼 + 0.75 = 𝛹−1(𝛼), ∀𝛼 ∈ (0, 1), 
we know

�
�

0

�−1(�)d� ≥ �
�

0

�−1(�)d�, ∀� ∈ (0, 1),

�−1(�) = �−1

1
(�) ⋅�−1

2
(�) = 6�2 + 5� + 1, � ∈ (0, 1)

�−1(�) = �−1

1
(�) ⋅ �−1

2
(�) = 6�2 + 4.5� + 0.75, � ∈ (0, 1)

�1�2 ⪰1 �1�2 and �1�2 ⪰2 �1�2.

Fig. 2  Inverse uncertainty 
distributions of � ∼ Z(1, 1.5, 5) 
and � ∼ L(0, 4)
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In the paper (Zuo & Ji, 2009), first- and second-order uncertain dominance were 
defined based on uncertainty distributions as follows. Let � and � denote two uncer-
tain variables with uncertainty distributions � and � , respectively. Then � domi-
nates � by first-order uncertain dominance if

And � dominates � by second-order uncertain dominance if

Our definitions of first- and second-order uncertain dominance have several advan-
tages over the definitions based on uncertainty distributions (Zuo & Ji, 2009). First, 
inverse uncertainty distributions rather than uncertainty distributions of the uncer-
tain choice results are produced that we need to compare in real life. In real life, it 
is rare that we only compare two individual uncertain variables. Instead, we usually 
need to compare the alternative uncertain choice results produced by several uncer-
tain variables, as illustrated in Example 5. According to the operational law of the 
uncertain variables, it is the inverse uncertainty distributions rather than uncertainty 
distributions that are produced. In Example 5, if �1 and �1 represent the uncertainty 
distributions of the uncertain prices of two new products and �2 and �2 denote the 
uncertainty distributions of the uncertain selling quantity of the two products, we 
can easily produce the inverse uncertainty distributions of the uncertain gross profits 
of the two new products according to the operational law of the uncertain variables. 
Yet it is usually difficult to get the uncertainty distributions of the uncertain gross 
profits of the products. Second, we know from the theorem of the expected value of 
the uncertain variable that E[�] = ∫ 1

0
�−1(�)d� and E[�] = ∫ 1

0
�−1(�)d�. Therefore, 

letting � → 1, we have

which implies that with our Definition 2, for any � ∈ [0, 1] the value of each 
∫ �

0
�−1(�)d� and each ∫ �

0
�−1(�)d� converges to a constant. Therefore, we can 

design an algorithm to make comparison. However, for two uncertain variables � 
and � whose uncertainty distributions are � and � , respectively, if � ⪰2 � is defined 
based on uncertainty distributions, it is seen that

which implies that neither ∫ x

−∞
�(t)dt nor ∫ x

−∞
� (t)dt converges to a definite value as 

x → ∞. Thus, it is impossible to design an algorithm to make comparison because 
no terminal condition can be determined. Third, in our Definitions 1 and 2, the 
formulas all have economic meanings. For example, in Definition 2, the formulas 
∫ �

0
�−1(�)d� and ∫ �

0
�−1(�)d� represent the weighted sum of the values that are 

equal to or smaller than �−1(�) and �−1(�), respectively, while in the definition of 

�(t) ≤ � (t), ∀t ∈ ℜ.

�
x

−∞

�(t)dt ≤ �
x

−∞

� (t)dt, ∀x ∈ ℜ.

lim
�→1∫

�

0

�−1(�)d� = E[�], lim
�→1∫

�

0

�−1(�)d� = E[�],

lim
x→∞∫

x

−∞

�(t)dt = ∞, lim
x→∞∫

x

−∞

� (t)dt = ∞,
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second-order uncertain dominance based on uncertainty distributions, ∫ x

−∞
�(t)dt 

and ∫ x

−∞
� (t)dt have no economic meaning.

Theorem  5 Let � and � be two regular uncertain variables. Then E[�] ≥ E[�] if 
� ⪰2 �.

Proof According to Definition 2, if � ⪰2 �, we have

Since � and � are regular, letting � → 1, we have

  ◻

Example 6 Let � and � be two normal uncertain variables � ∼ N(e1, �1) and 
� ∼ N(e2, �2), respectively. Then � ⪰2 � if and only if e1 ≥ e2 and �1 ≤ �2.

Example 7 Let � and � be two linear uncertain variables � ∼ L(a1, b1) and 
� ∼ L(a2, b2), respectively. Then � ⪰2 � if and only if E[�] ≥ E[�] and a1 ≥ a2.

Example 8 Let � and � be two linear uncertain variables � ∼ L(a1, b1) and 
� ∼ L(a2, b2), respectively. Then � ⪰2 � if E[�] ≥ E[�] and V[�] ≤ V[�].

Please be aware that for two linear uncertain variables � ∼ L(a1, b1) and 
� ∼ L(a2, b2), it is possible that E[�] ≥ E[�],V[�] ≤ V[�] does not hold if � ⪰2 �.

Example 9 Let � be a linear uncertain variable � ∼ L(0, 4) and � another linear 
uncertain variable � ∼ L(0, 2). It is easy to see � ⪰1 � and � ⪰2 �. But we calculate 
that V[𝜉] = 1.33 > V[𝜂] = 0.33. Please see Fig. 3.

�
�

0

�−1(�)d� ≥ �
�

0

�−1(�)d�, ∀� ∈ (0, 1).

E[�] = �
1

0

�−1(�)d� ≥ �
1

0

�−1(�)d� = E[�].

Fig. 3  Inverse uncertainty 
distributions of � ∼ L(0, 4) and 
� ∼ L(0, 2).
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Theorem 6 Let � and � be two regular uncertain variables whose uncertainty distri-
butions are differentiable and f an increasing function with f ′ > 0 and f ′′ < 0. Then 
f (�) ⪰2 f (�) if � ⪰2 �.

Proof The tangent line g(x) to the function f(x) at any point (x0, f (x0)) is

Since f ′ > 0 and f ′′ < 0, we know that g(x) ≥ f (x), ∀x ∈ ℜ, i.e.,

Let �−1 and �−1 denote the inverse uncertainty distributions of the regular uncertain 
variables � and �, respectively. Letting x0 = �−1(�) and x = �−1(�), we get

Therefore, we have that ∀� ∈ (0, 1),

Since �−1(�) is differentiable, integrating by parts yields

Since �−1(�) is increasing and differentiable, we have (𝛷−1)�(𝛼) > 0. Since � ⪰2 �, 
we know from Definition 2 that ∫ �

0
(�−1(�) − �−1(�))d� ≥ 0, ∀� ∈ (0, 1). Together 

with f ′ > 0 and f ′′ < 0 we get

Therefore, f (�) ⪰2 f (�).  ◻

g(x) = f (x0) + f �(x0)(x − x0).

f (x0) + f �(x0)(x − x0) ≥ f (x), ∀x ∈ ℜ.

f (�−1(�)) − f (�−1(�)) ≥ f �(�−1(�))(�−1(�) − �−1(�)), � ∈ (0, 1).

�
�

0

(
f (�−1(�)) − f (�−1(�))

)
d� ≥ �

�

0

f �(�−1(�))

(
�−1(�) − �−1(�)

)
d�.

�
�

0

(
f (�−1(�)) − f (�−1(�))

)
d�

≥ �
�

0

f �(�−1(�))d�
�

0

(�−1(�) − �−1(�))d�

= f �(�−1(�))�
�

0

(�−1(�) − �−1(�))d�
|||
�

0

− �
�

0

f ��(�−1(�))(�−1)�(�)�
�

0

(�−1(�) − �−1(�))d�d�

= f �(�−1(�))�
�

0

(�−1(�) − �−1(�))d�

− �
�

0

f ��(�−1(�))(�−1)�(�)�
�

0

(�−1(�) − �−1(�))d�d�.

�
�

0

(
f (�−1(�)) − f (�−1(�))

)
d� ≥ 0, ∀� ∈ (0, 1).
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Please be aware that in Theorem 6, f ′′ < 0 is required. Otherwise, f (�) ⪰2 f (�) 
may not hold.

Example 10 Let � ∼ L(1, 3) and � ∼ L(0, 4) be two linear uncertain variables and 
f = t2, t ≥ 0. Let � and � denote the uncertainty distributions of � and �, respec-
tively. Then we know �−1(�) = 1 + 2� and �−1(�) = 4� where � ∈ (0, 1). Accord-
ing to Definition 2, we know � ⪰2 �. Let �1 and �1 denote the uncertainty distribu-
tions of f (�) and f (�), respectively. Since f is increasing, according to the operational 
law of the uncertain variables, we get the inverse uncertainty distributions of f (�) 
and f (�) as follows.

where � ∈ (0, 1). Let � = 0.9. We can calculate that

Thus, f (�) ⪰2 f (�) does not hold.

4  Uncertain dominance and expected utility

Utility is used to measure a person’s satisfaction with a choice result. The bigger the 
utility function value is, the more satisfactory the person feels with the choice result. 
Different persons’ utility values on the same choice result can be different, but it is 
believed that all people prefer more payment to less. In this paper, utility function is 
supposed to be a strictly increasing function whose derivative is positive. A person 
without any restriction on utility function is called an unsatisfied person. It is seen 
that all people are unsatisfied. In addition, it is widely accepted that most decision-
makers are risk-averse. In this paper, we say a person is risk averse if his or her util-
ity function U has U′′ < 0. When the result of a choice is random, we have a random 
utility value. In the past, the links between stochastic dominance and expected utility 
have been provided. If the result of a person’s choice is uncertain, the person’s util-
ity on the choice result is uncertain. Then, are there similar links between uncertain 
dominance and expected utility? This section answers the question.

Theorem 7 Let � and � be two regular uncertain variables. Then � ⪰1 � if and only if 
E[U(�)] ≥ E[U(�)] for any utility function U.

Proof (1) Suppose � ⪰1 �. For any utility function U,  since U′ > 0, according to The-
orem 2, we have U(�) ⪰1 U(�). It follows from Theorem 1 that E[U(�)] ≥ E[U(�)].

(2) Suppose E[U(�)] ≥ E[U(�)] for any utility function U. Let � and � denote the 
uncertainty distributions of � and � , respectively. Assume there exists one value �1 

�−1

1
(�) =f (�−1(�)) = (�−1(�))2 = (1 + 2�)2 and

�−1

1
(�) =f (�−1(�)) = (�−1(�))2 = 16�2,

∫
0.9

0

𝛷−1

1
(𝛼)d𝛼 = 3.492 < 3.888 = ∫

0.9

0

𝛹−1

1
(𝛼)d𝛼.
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such that 𝛷−1(𝛼1) < 𝛹−1(𝛼1). Since regular uncertainty distribution is continuous, 
we have

where � is any small enough number.
Choose the utility function below

where t1 = �−1(�1) and t2 = �−1(�1 + �). It is seen that U′
0
≥ 0 except at the values 

t = �−1(�1) and t = �−1(�1 + �). It is clear that we can find a utility function U,  i.e., 
U′ > 0. Since U′

0
≥ 0, according to the operational law of the uncertain variables, the 

inverse uncertainty distributions of U0(�) and U0(�) are U0(�
−1(�)) and U0(�

−1(�)), 
respectively. Then according to the theorem of the expected value of the uncertain 
variable, we have

which is in contradiction to the statement that E[U(�)] ≥ E[U(�)] for any utility 
function U. Thus, the theorem is proved.  ◻

Theorem 8 Let � and � be two regular uncertain variables. Then � ⪰2 � if and only if 
E[U(�)] ≥ E[U(�)] for any utility function U with U′′ < 0.

Proof (1) Suppose � ⪰2 �. Since U′ > 0 and U′′ < 0, according to Theorem 6, we 
have U(�) ⪰2 U(�). Then, it follows from Theorem 5 that E[U(�)] ≥ E[U(�)].

(2) Suppose E[U(�)] ≥ E[U(�)] for any utility function U with U′′ < 0. Assume 
there exists one value �0 such that ∫ 𝛽0

0
(𝛷−1(𝛼) − 𝛹−1(𝛼))d𝛼 < 0.

Choose the utility function below

𝛷−1(𝛼) < 𝛹−1(𝛼) for 𝛼1 ≤ 𝛼 ≤ 𝛼1 + 𝜀,

U0(t) =

⎧
⎪⎨⎪⎩

t1, t < t1
t, t1 ≤ t ≤ t2
t2, t > t2

E[U0(𝜉)] − E[U0(𝜂)]

= ∫
1

0

(
U0(𝛷

−1(𝛼)) − U0(𝛹
−1(𝛼))

)
d𝛼

= ∫
𝛼1

0

(
U0(𝛷

−1(𝛼)) − U0(𝛹
−1(𝛼))

)
d𝛼 + ∫

𝛼1+𝜀

𝛼1

(
U0(𝛷

−1(𝛼)) − U0(𝛹
−1(𝛼))

)
d𝛼

+ ∫
1

𝛼1+𝜀

(
U0(𝛷

−1(𝛼)) − U0(𝛹
−1(𝛼))

)
d𝛼

< ∫
𝛼1

0

(t1 − t1)d𝛼 + ∫
𝛼1+𝜀

𝛼1

(
𝛷−1(𝛼) − 𝛹−1(𝛼)

)
d𝛼 + ∫

1

𝛼1+𝜀

(t2 − t2)d𝛼

< 0,

U0(t) =

{
t, t ≤ t0
t0, t > t0
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where t0 = �−1(�0).

It is seen that U′
0
≥ 0 and U��

0
= 0 except at t = �−1(�0). It is clear that we can find 

a utility function U such that U′′ < 0. Then

When �−1(�0) = �−1(�0) , then

When 𝛷−1(𝛽0) < 𝛹−1(𝛽0),

Then

When 𝛷−1(𝛽0) > 𝛹−1(𝛽0),

Then

E[U0(�)] − E[U0(�)] =∫
1

0

(
U0(�

−1(�)) − U0(�
−1(�))

)
d�

=∫
�0

0

(
U0(�

−1(�)) − U0(�
−1(�))

)
d�

+ ∫
1

�0

(
U0(�

−1(�)) − U0(�
−1(�))

)
d�

E[U0(𝜉)] − E[U0(𝜂)] =∫
𝛽0

0

(
𝛷−1(𝛼) − 𝛹−1(𝛼)

)
d𝛼 + ∫

1

𝛽0

(t0 − t0)d𝛼

=∫
𝛽0

0

(
𝛷−1(𝛼) − 𝛹−1(𝛼)

)
d𝛼 < 0.

∫
𝛽0

0

(
U0(𝛷

−1(𝛼)) − U0(𝛹
−1(𝛼))

)
d𝛼 = ∫

𝛽0

0

(
𝛷−1(𝛼) − 𝛹−1(𝛼)

)
d𝛼,

∫
1

𝛽0

(
U0(𝛷

−1(𝛼)) − U0(𝛹
−1(𝛼))

)
d𝛼 < ∫

1

𝛽0

(t0 − t0)d𝛼.

E[U0(𝜉)] − E[U0(𝜂)] <∫
𝛽0

0

(
𝛷−1(𝛼) − 𝛹−1(𝛼)

)
d𝛼 + ∫

1

𝛽0

(t0 − t0)d𝛼

=∫
𝛽0

0

(
𝛷−1(𝛼) − 𝛹−1(𝛼)

)
d𝛼 < 0.

∫
𝛽0

0

(
U0(𝛷

−1(𝛼)) − U0(𝛹
−1(𝛼))

)
d𝛼 < ∫

𝛽0

0

(
𝛷−1(𝛼) − 𝛹−1(𝛼)

)
d𝛼,

∫
1

𝛽0

(
U0(𝛷

−1(𝛼)) − U0(𝛹
−1(𝛼))

)
d𝛼 = ∫

1

𝛽0

(t0 − t0)d𝛼.
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So E[U0(𝜉)] < E[U0(𝜂)] , which is in contradiction to the statement that 
E[U(�)] ≥ E[U(�)] for any utility function U with U′′ < 0. Thus, the theorem is 
proved.  ◻

5  Conclusion

This paper proposed a new uncertain dominance as an alternative decision-making 
criterion in the framework of uncertainty theory. It defined a new first- and second-
order uncertain dominance based on inverse uncertainty distributions and proved 
some important necessary conditions of them. Some sufficient and necessary condi-
tions of the first- and second-order uncertain dominance were given when uncertain 
variables are all normal or linear uncertain variables. Furthermore, the paper proved 
the link between the uncertain dominance and the expected uncertain utility crite-
rion, which shows that the first-order uncertain dominance is suitable for all people 
to make decisions and the second-order uncertain dominance is suitable for risk-
averse people to make decisions.

Research on uncertain dominance just starts up. There is a lot of work to do. 
Future work can be done in three directions. First direction concerns with theoretical 
research on uncertain dominance. Second direction is about the application of the 
uncertain dominance criterion in solving various decision-making problems such 
as portfolio optimization, project selection, supply chain management, optimal sav-
ing and consumption, etc. The third one is the research on the comparison and con-
sistency of the uncertain dominance criterion and other uncertain decision-making 
criteria.
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