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Abstract
In recent years, the researches on parameter estimation of uncertain differential 
equations have developed significantly. However, when we deal with some nonpara-
metric uncertain differential equations, the parameter estimation may not be used 
directly. To deal with these uncertain differential equations, it is important to con-
sider the nonparametric estimation with the help of the observations. As an impor-
tant branch of uncertain differential equation, autonomous uncertain differential 
equation may be properly applied to model some uncertain autonomous dynamic 
systems. In this paper, we propose a Legendre polynomial based method for the non-
parametric estimation of autonomous uncertain differential equations. After that, 
some numerical examples are given and the residuals as well as uncertain hypoth-
esis tests are used to prove the acceptability of these estimations. In application, we 
consider an atmospheric carbon dioxide model by the proposed method of nonpara-
metric estimation.
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1 Introduction

Since uncertainty theory was founded by Liu (2007) and perfected by Liu (2009), it 
has been widely applied into many fields, such as physics, engineering and finance. 
As an important part of uncertainty theory, uncertain differential equation driven by 
Liu process was introduced by Liu (2008). After that, uncertain differential equation 
quickly became a good tool to describe uncertain dynamic systems.

With a lot of good properties, uncertain differential equations attracted the atten-
tions of many researchers. In 2010, a sufficient condition for the existence and 
uniqueness of the solution of an uncertain differential equation was proposed by 
Chen and Liu (2010). After that, a crucial Yao-Chen formula was proposed by Yao 
and Chen (2013) to connect uncertain differential equations with ordinary differen-
tial equations. Since the analytic solutions of uncertain differential equations may 
usually be unavailable, based on Yao-Chen formula, many numerical methods for 
uncertain differential equations were proposed, such as Euler method (Yao, 2013) 
and Runge–Kutta method (Yang and Shen, 2015). Uncertain differential equations 
had been widely applied to many fields, such as financial markets (Liu, 2009) and 
optimal control (Zhu, 2010, 2019).

As mentioned above, uncertain differential equations may properly describe 
uncertain dynamic systems. In applications, we usually construct a model based on 
uncertain differential equation to fit the corresponding uncertain dynamic system. 
Thus, it is crucial to work on the parameter estimation of uncertain differential equa-
tions. On that purpose, moment estimation (Yao and Liu, 2020), least squares esti-
mation (Sheng et al., 2020), generalized moment estimation (Liu, 2021), maximum 
likelihood estimation (Liu and Liu, 2022a) and the method of moments with the 
help of residuals (Liu and Liu, 2022b) were proposed. In 2022, Ye and Liu (2022a) 
proposed the concept of uncertain hypothesis test and then applied it to uncertain 
differential equations (Ye and Liu 2022b). In recent years, parameter estimation 
in uncertain differential equations made a contribution to the epidemic model of 
COVID-19 (Chen et al., 2021; Jia and Chen, 2021; Lio and Liu, 2021). Moreover, 
for the sake of coping with uncertain dynamic systems with memory characteristic, 
Zhu (2015) gave the definition of uncertain fractional differential equation. Then, 
He et al. (2022) introduced an algorithm of parameter estimation for uncertain frac-
tional differential equations based on method of moments.

Actually, many uncertain dynamic systems in our lives are autonomous, whose 
states at the next time are only related to the previous states. To cope with this kind 
of autonomous uncertain dynamic systems, we propose the definition of autonomous 
uncertain differential equation. For some cases, the information of an autonomous 
uncertain dynamic system is not enough to construct a parametric model. In this 
situation, only a nonparametric model is available. To solve the problem of nonpara-
metric estimation, we need to obtain a parametric model as the approximation of the 
nonparametric model. Legendre polynomials have many outstanding properties such 
as orthogonality, symmetry and recursiveness. In 2020, Gu et al. (2020) proposed a 
Legendre polynomials based numerical method for the solutions of optimal control 
problems, which suggested that the Legendre polynomials have good property of 
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arbitrary approximation for continuous functions. Thus, we may utilize the Legendre 
polynomials sequence to approximate the nonparametric functions in uncertain dif-
ferential equations. In this paper, we discuss the method of nonparametric estima-
tion for autonomous uncertain differential equations.

The rest of this paper is organized as follows. In Sect.  2, we introduce some 
definitions and properties of Legendre polynomials, uncertainty differential equa-
tions and uncertain hypothesis tests. Then, a method of nonparametric estimation 
for uncertain differential equations is proposed in Sect. 3. In Sect. 4, we give three 
numerical examples to show the effectiveness of our method. Finally in Sect. 5, we 
apply the nonparametric estimation into the atmospheric carbon dioxide model.

2  Preliminaries

Let Ct be a Liu process. Suppose that f , g ∶ [0,+∞) ×ℝ → ℝ are two functions. 
Uncertain differential equation

may be used to describe uncertain dynamic systems. If functions f and g are para-
metric forms, then there are many researches for the estimations of unknown param-
eters. However, in some cases, we may only construct the nonparametric models. To 
cope with these models, we consider to utilize an orthogonal function sequence with 
unknown weights to approximate the nonparametric functions f and g in (1). Then, 
the method of parameter estimation may be used to estimate the weights.

In this paper, with many outstanding properties, the Legendre polynomials are 
used for the approximation of nonparametric function. For x ∈ ℝ , the Legendre pol-
ynomials pn(x) are the polynomial solutions to Legendre’s differential equation

Thus, Legendre polynomials are given in the following form

Based on Eq. (2), we have

The following three properties of Legendre polynomials are useful.

(1)dXt = f (t,Xt)dt + g(t,Xt)dCt, t ∈ [0, T]

d

dx

((
1 − x2

) d

dx
pn(x)

)
+ n(n + 1)pn(x) = 0, n = 0, 1, 2,…

(2)p0(x) = 1, pn(x) =
1

2nn!

dn

dxn

(
x2 − 1

)n
, n = 1, 2,…

p1(x) =
1

2

d

dx

(
x2 − 1

)
= x,

p2(x) =
1

22 × 2!

d2

dx2

(
x2 − 1

)2
=

1

2

(
3x2 − 1

)
,

p3(x) =
1

23 × 3!

d3

dx3

(
x2 − 1

)3
=

1

2

(
5x3 − 3x

)
,

⋯
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Property 1 [Orthogonality (Kashin and Saakian, 1984)] Legendre polynomials are 
orthogonal polynomials with respect to the L2 on the interval [−1, 1] , i.e.,

where �mn denotes the Kronecker symbol

Property 2 [Symmetric and antisymmetric (Kashin and Saakian, 1984)] Each Leg-
endre polynomial is symmetric or antisymmetric on the interval [−1, 1] , i.e.,

Property 3 [Recursiveness (Kashin and Saakian, 1984)] On the interval [−1, 1] , the 
Legendre polynomials follow the three-term recurrence relation, which is known as 
Bonnets recursion formula

and

A continuous function �(x) (x ∈ [−1, 1]) may be expressed in terms of Leg-
endre series as

where ci ∈ ℝ for i = 0, 1, 2,… In calculation, �(x) is approximated by the partial 
sum of Legendre series. Then, we have

where ci ∈ ℝ for i = 0, 1, 2,… ,K and K is an appropriate positive integer.
For some uncertain dynamic systems, the variations of the current states are 

only directly affected by the states of themselves, such as the stock price and the 
atmospheric greenhouse gas. The uncertain dynamic systems with this phenom-
enon are called autonomous uncertain dynamic systems. To cope with this kind 
of systems, we give the definition of autonomous uncertain differential equation.

Definition 1 Let Ct be a Liu process. Suppose that f , g ∶ ℝ → ℝ are two functions. 
Then

∫
1

−1

pm(x)pn(x)dx =
2

2n + 1
�mn,

�mn =

{
1, m = n,

0, m ≠ n.

{
pn(−x) = −pn(x), n is odd,

pn(−x) = pn(x), n is even.

(n + 1)pn+1(x) = (2n + 1)xpn(x) − npn−1(x)

x2 − 1

n

d

dx
pn(x) = xpn(x) − pn−1(x).

�(x) =

∞∑
i=0

cipi(x),

(3)�(x) ≈

K∑
i=0

cipi(x),
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is called an autonomous uncertain differential equation. A solution of (4) is an 
uncertain process Xt such that

holds almost surely.

With the help of the Legendre polynomials, we may obtain an approximation 
of the autonomous uncertain differential Eq. (4) with weights. Then, the unknown 
weights in the approximation may be estimated by the method of parameter estima-
tion. Ye and Liu (2022b) discussed uncertain hypothesis test for uncertain differen-
tial equations, which proposed a standard to test whether the estimated parameters 
are acceptable.

Theorem 1 (Ye and Liu, 2022b) Let � be a population with regular uncertainty dis-
tribution L(a, b) with unknown parameters a and b. Then the test for the hypotheses

at significance level � is

where Φ−1
0
(�) is the inverse uncertainty distribution of L(a0, b0) , i.e.,

Remark 1 For uncertain differential Eq.  (1) with observations xt1 , xt2 ,… , xtn of Xt 
at t1, t2,… , tn , respectively, residuals of the estimation of (1) should be obtained 
as �2, �3,… , �n with the help of Liu and Liu (2022b). According to Liu and Liu 
(2022b), the residual �i may be regraded as a sample of the linear uncertainty distri-
bution L(0, 1) if estimated uncertain differential equation is appropriate.

Based on the conception of uncertain hypothesis test for uncertain differential 
equations proposed by Ye and Liu (2022b), to test whether the estimation may prop-
erly fit the observations xt1 , xt2 , … , xtn , the test at a given significance level � = 0.05 
is

and the reject set is

(4)dXt = f (Xt)dt + g(Xt)dCt

Xt = X0 + ∫
t

0

f (Xs)ds + ∫
t

0

g(Xs)dCs

H0 ∶ a = a0 and b = b0 versus H1 ∶ a ≠ a0 or b ≠ b0

W =

�
(z1, z2,… , zn) ∶ there are at least ⌊𝛽n⌋ + 1 of indexes i’s with

1 ≤ i ≤ n such that zi < Φ−1
0

�
𝛽

2

�
or zi > Φ−1

0

�
1 −

𝛽

2

��
.

Φ−1
0
(�) = (1 − �)a0 + �b0.

H0 ∶ a = 0 and b = 1 versus H1 ∶ a ≠ 0 or b ≠ 1
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If the vector of the n − 1 residuals belongs to the test W, i.e.,

then the estimation of uncertain differential Eq. (1) is not a good fit to the observed 
data xt1 , xt2 ,… , xtn . If

then the estimation of uncertain differential Eq.  (1) is an applicable fit to the 
observed data xt1 , xt2 ,… , xtn.

3  Nonparametric estimation

Consider an autonomous uncertain differential equation in the following form

where f ∶ ℝ → ℝ is an unknown continuous function, g ∶ ℝ → ℝ is a known con-
tinuous function and � is an unknown parameter. Let 0 < t1 < t2 < ⋯ < tn = T  . 
Assume that there are n observations xt1 , xt2 ,… , xtn of solution Xt at the times 
t1, t2,… , tn , respectively.

According to Eq. (3), for a fixed K ∈ ℕ , we have

where ci ∈ ℝ for i = 0, 1, 2,… ,K . According to (6), the approximation of model (5) 
may be obtained in the following form

As suggested by Yao and Liu (2020), for j = 1, 2,… , n − 1 , we have

i.e.,

W =

�
(𝜀2, 𝜀3,… , 𝜀n) ∶ there are at least ⌊0.05(n − 1)⌋ + 1 of indexes i’s

with 2 ≤ i ≤ n such that 𝜀i < 0.025 or 𝜀i > 0.975

�
.

(
�2, �3,… , �n

)
∈ W,

(
�2, �3,… , �n

)
∉ W,

(5)dXt = f (Xt)dt + �g(Xt)dCt, t ∈ [0, T],

(6)f (Xt) ≈

K∑
i=0

cipi(Xt),

(7)dXt =

K∑
i=0

cipi(Xt)dt + �g(Xt)dCt, t ∈ [0, T].

Xtj+1
− Xtj

−

�∑K

i=0
cipi(Xtj

)

��
tj+1 − tj

�

g(Xtj
)(tj+1 − tj)

= �
Ctj+1

− Ctj

tj+1 − tj
,
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According to the definition of Liu process Ct,

are independent identically distributed. Thus, we denote that

is the noise. Denote that cK = (c0, c1,… , cK) . We consider the following uncertain 
linear regression model

where � =
(
�0, �1,… , �K

)
 is a vector of explanatory variables and y is a response 

variable. According to Eq. (8), we may assume that the observations of � and y are

and

respectively. Apparently, the regression model (9) is equivalent to Eq. (8). Suppose 
that c̃K =

(
c∗
0
, c∗

1
, c∗

2
,… , c∗

K

)
 is the estimation of cK and �∗ is the estimation of � . 

Based on the method of uncertain maximum likelihood estimation proposed by Lio 
and Liu (2020), c̃K solves the minimization problem

and �∗ solves the maximization problem

According to Liu and Liu (2022a), we have

(8)
Xtj+1

− Xtj

g(Xtj
)(tj+1 − tj)

=

K∑
i=0

cipi(Xtj
)

g(Xtj
)

+ �
Ctj+1

− Ctj

tj+1 − tj
.

Ctj+1
− Ctj

tj+1 − tj
∼ N(0, 1), j = 1, 2,… , n − 1

�0 = �
Ctj+1

− Ctj

tj+1 − tj
∼ N(0, �)

(9)y = cK�
T + �0,

(10)�j =

(
p0(xtj )

g(xtj )
,
p1(xtj )

g(xtj )
,… ,

pK(xtj )

g(xtj )

)
, j = 1, 2,… , n − 1

(11)yj =
xtj+1 − xtj

g(xtj )(tj+1 − tj)
, j = 1, 2,… , n − 1,

(12)min
cK

n−1⋁
j=1

|yj − cK�
T
j
|

max
𝜎>0

𝜋√
3𝜎

exp

�
𝜋√
3𝜎

n−1�
j=1

�yj − c̃K�
T
j
�
�

�
1 + exp

�
𝜋√
3𝜎

n−1�
j=1

�yj − c̃K�
T
j
�
��2

.
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where � is the root of equation

and may be taken as 1.5434 approximately in numerical solution.
It is important to first find an appropriate estimation of K (denoted as K∗ ). Based on 

the property of Legendre polynomial approximation, the right side of (6) would con-
verge to the left side of (6) with K → +∞ , i.e., for j = 1, 2,… , n − 1 , we have

Since

and

based on the Squeeze theorem, we have

Thus, we have

According to the objective function of optimization problem (12), we denote that

In order to avoid too much computation, we suppose that Δ is the acceptable error 
and the smallest K that satisfies

is the value of K∗ . Then the value of c̃K∗ may be obtained. Now we give the Algo-
rithm 1 to calculate the values of c̃K∗ and K∗.

(13)𝜎∗ =
𝜋√
3𝜆

n−1�
j=1

�yj − c̃K�
T
j
�,

1 + x + exp(x) − x exp(x) = 0

lim
K→+∞

|||f (xtj ) − cK�
T
j

||| = 0.

|||yj − cK�
T
j

||| ≤ |||
(
yj − f (xtj )

)||| +
|||
(
f (xtj ) − cK�

T
j

)|||

|||yj − cK�
T
j

||| ≥ |||
(
yj − f (xtj )

)||| −
|||
(
f (xtj ) − cK�

T
j

)|||,

lim
K→+∞

|||yj − cK�
T
j

||| =
|||yj − f (xtj )

|||.

lim
K→+∞

n−1⋁
j=1

|yj − cK�
T
j
| =

n−1⋁
j=1

|||yj − f (xtj )
|||.

�(K) =

n−1⋁
j=1

||||||

xtj+1 − xtj

g(xtj )(tj+1 − tj)
−

K∑
i=0

c∗
i
pi(xtj )

g(xtj )

||||||
, K ∈ ℕ.

||𝜙(K) − 𝜙(K − 1)|| < Δ
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Remark 2 For uncertain differential Eq. (5), if g ∶ ℝ → ℝ is also an unknown con-
tinuous function, with the help of Legendre polynomials, similar to (7), we have the 
approximation of (5) in the following form

where c0, c1,… , cK1
, d0, d1,… , dK2

∈ ℝ . Then we have

Based on the method of maximum likelihood estimation, the estimations of c0 , c1 , 
… , cK1

 , d0 , d1 , … , dK2
 are the solutions of the following optimization problem

Apparently, the absolute values of d0, d1,… , dK2
 in the solutions of optimization 

problem (16) will be very large. Since the aim of nonparametric estimation is to find 
a properly estimated uncertain differential Eq.  (14) as the estimation of uncertain 
differential Eq. (5), estimations of d0, d1,… , dK2

 with large absolute values will give 
the solution of (14) a strong disturbance, which is obviously unsatisfactory.

In fact, we may easily obtain the estimation of f in a uncertain differential Eq. (5), 
which is the most important thing in nonparametric estimation if g is already 
known. Thus, in application, we tend to define g in a known and acceptable form for 

(14)dXt =

K1∑
i=0

cipi(Xt)dt +

K2∑
i=0

dipi(Xt)(Xt)dCt, t ∈ [0, T],

(15)
Xtj+1

− Xtj�∑K2

i=0
dipi(Xtj

)

�
(tj+1 − tj)

−

∑K1

i=0
cipi(Xtj

)

∑K2

i=0
dipi(Xtj

)
=

Ctj+1
− Ctj

tj+1 − tj
∼ N(0, 1).

(16)min
c0,…,cK1

,d0,…,dK2

n−1�
j=1

�������

xtj+1 − xtj�∑K2

i=0
dipi(xtj )

�
(tj+1 − tj)

−

∑K1

i=0
cipi(xtj )∑K2

i=0
dipi(xtj )

�������
.
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observations. Then Algorithm 1 may be employed for the estimation of this uncer-
tain differential equation.

4  Numerical experiments

Example 1 Consider uncertain differential equation

with some observations of Xt which are shown in Table 1.

Utilizing (6), we have the approximation of uncertain differential Eq. (17) in the fol-
lowing form

With the help of Algorithm 1 (where Δ = 10−4 ), we have K∗ = 2 and

Thus the estimated uncertain differential equation of (17) is

According to Liu and Liu (2022b), the residuals of uncertain differential Eq.  (18) 
may be obtained and given in Table 2. If uncertain differential Eq. (18) does fit the 
observed data in Table 1 well, then the residuals in Table 2 should follow the linear 
uncertainty distribution L(0, 1) , i.e.,

(17)dXt = f (Xt)dt + �dCt

dXt =

K∑
i=0

cipi(Xt)dt + �dCt.

c∗
0
= −0.1073, c∗

1
= 1.7032, c∗

2
= −1.8488, �∗ = 0.6787.

(18)dXt =
(
−0.1073p0(Xt) + 1.7032p1(Xt) − 1.8488p2(Xt)

)
dt + 0.6787dCt.

Table 1  Observed data in 
Example 1

j tj xtj j tj xtj j tj xtj

1 0.04 0.0608 10 0.40 0.3690 19 0.76 0.7343
2 0.08 0.0746 11 0.44 0.3886 20 0.80 0.7700
3 0.12 0.1101 12 0.48 0.4495 21 0.84 0.7824
4 0.16 0.1385 13 0.52 0.4930 22 0.88 0.8097
5 0.20 0.1938 14 0.56 0.5352 23 0.92 0.8281
6 0.24 0.2308 15 0.60 0.5557 24 0.96 0.8516
7 0.28 0.2964 16 0.64 0.6150 25 1.00 0.8789
8 0.32 0.3198 17 0.68 0.6605
9 0.36 0.3485 18 0.72 0.6938
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Apparently, all the residuals are included in [0.025, 0.975], we have

It follows from Remark 1 that the uncertain differential Eq. (18) is an applicable fit 
to the observed data in Table 1.

Example 2 Consider uncertain differential equation

with some observations of Xt which are shown in Table 3.

Similarly to Example 1, we have the estimation of uncertain differential 
Eq. (19) in the following form

�2, �3,… , �25 ∼ L(0, 1).

(
�2, �3,… , �25

)
∉ W.

(19)dXt = f (Xt)dt + �XtdCt

Table 2  Residuals of uncertain 
differential Eq. (18)

j �j j �j j �j

2 0.1800 10 0.1822 18 0.5653
3 0.4728 11 0.1761 19 0.7185
4 0.3332 12 0.7747 20 0.7005
5 0.7354 13 0.5441 21 0.3863
6 0.4211 14 0.5482 22 0.6490
7 0.8239 15 0.2439 23 0.5541
8 0.2113 16 0.8239 24 0.6690
9 0.2758 17 0.7027 25 0.7574

Table 3  Observed data in 
Example 2

j tj xtj j tj xtj j tj xtj

1 0.08 0.1109 10 0.80 0.2901 19 1.52 0.5011
2 0.16 0.1261 11 0.88 0.3137 20 1.60 0.5397
3 0.24 0.1390 12 0.96 0.3281 21 1.68 0.5902
4 0.32 0.1533 13 1.04 0.3514 22 1.76 0.5898
5 0.40 0.1564 14 1.12 0.3651 23 1.84 0.6588
6 0.48 0.1752 15 1.20 0.3665 24 1.92 0.7149
7 0.56 0.1995 16 1.28 0.4180 25 2.00 0.8000
8 0.64 0.2337 17 1.36 0.4437
9 0.72 0.2617 18 1.44 0.4706
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The residuals of uncertain differential Eq. (20) may be obtained and given in Table 4. 
Since all the residuals are included in [0.025, 0.975], it follows from Remark 1 that 
the uncertain differential Eq. (20) is an applicable fit to the observed data in Table 3.

Example 3 Consider the uncertain differential equation with initial value

Let us give the function f(x) by

and the true value of � by � = 1 . Then the corresponding �-path X�
t
 of (21) satisfies

(20)
dXt =

(
−3.8379p0(Xt) + 10.2704p1(Xt) − 6.7872p2(Xt)

+3.7387p3(Xt) + 0.3933p4(Xt)
)
dt + 1.0668XtdCt.

(21)
{

dXt = f (Xt)dt + �XtdCt, t ∈ [0, 1],

X0 = 0.

f (x) = 2 sin 5x + cos 2x.

Table 4  Residuals of uncertain 
differential Eq. (20)

j �j j �j j �j

2 0.7953 10 0.5794 18 0.4793
3 0.6068 11 0.4718 19 0.5050
4 0.5739 12 0.3230 20 0.5669
5 0.1808 13 0.4550 21 0.6341
6 0.6208 14 0.3183 22 0.1786
7 0.6817 15 0.1856 23 0.7051
8 0.7887 16 0.7760 24 0.4936
9 0.6109 17 0.4716 25 0.5630

Table 5  Observed data in 
Example 3

j tj xtj j tj xtj j tj xtj

1 0.04 0.0412 10 0.40 0.6413 19 0.76 0.6795
2 0.08 0.1083 11 0.44 0.6401 20 0.80 0.6789
3 0.12 0.1983 12 0.48 0.6517 21 0.84 0.6352
4 0.16 0.3162 13 0.52 0.6645 22 0.88 0.6162
5 0.20 0.4185 14 0.56 0.6360 23 0.92 0.6086
6 0.24 0.5236 15 0.60 0.6236 24 0.96 0.6455
7 0.28 0.5861 16 0.64 0.6404 25 1.00 0.6806
8 0.32 0.6138 17 0.68 0.6463
9 0.36 0.6030 18 0.72 0.6732
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Note that the inverse uncertainty distribution of solution Xt to (21) is solution X�
t
 

to (22). That is, for � ∈ (0, 1) , X�
t
 is a sample point of Xt at time t. Observed data in 

Table 5 are produced by solving (22) for arbitrary � ∈ (0, 1) at time ti.

Based on the observed data, similarly to Example 1, we have the estimation of 
uncertain differential Eq. (21) in the following form

The residuals of uncertain differential Eq. (23) may be obtained and given in Table 6. 
Since all the residuals are included in [0.025, 0.975], it follows from Remark 1 that 
the uncertain differential Eq. (23) is an applicable fit to the observed data in Table 5.

As may be seen in (23), the estimated function of f(x) is

 Since all the observations of Xt are located in interval [0, 0.8], in Fig. 1, we give the 
image of true function f(x) and its estimation f ∗(x) in x ∈ [0, 0.8] . Obviously, f ∗(x) 
may properly approximate f(x).

All these three numerical examples suggest that the estimated uncertain differ-
ential equations may fit the corresponding observations well.

(22)

�
dX�

t
= (2 sin 5X�

t
+ cos 2X�

t
)dt +

√
3

�
X�
t
ln

�

1−�
dt, t ∈ [0, 1],

X�
0
= 0.

(23)

⎧
⎪⎨⎪⎩

dXt =
�
44.5335p0(Xt) − 111.0393p1(Xt) + 120.2136p2(Xt) − 95.3485p3(Xt)

+44.9572p4(Xt) − 12.4951p5(Xt)
�
dt + 1.3989XtdCt, t ∈ [0, 1],

X0 = 0.

f ∗(x) = 44.5335p
0
(x) − 111.0393p

1
(x) + 120.2136p

2
(x)

− 95.3485p
3
(x) + 44.9572p

4
(x) − 12.4951p

5
(x).

Table 6  Residuals of uncertain 
differential Eq. (23)

j �j j �j j �j

2 0.5885 10 0.6839 18 0.7506
3 0.5638 11 0.4054 19 0.6709
4 0.7247 12 0.5586 20 0.6291
5 0.3625 13 0.6343 21 0.1612
6 0.7267 14 0.2272 22 0.1864
7 0.6057 15 0.2497 23 0.2090
8 0.4671 16 0.5331 24 0.6929
9 0.1721 17 0.4906 25 0.8120
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5  Application to atmospheric carbon dioxide problem

In this section, we apply the method of nonparametric estimation into the mod-
eling of the atmospheric carbon dioxide problem. The data of monthly mean 
atmospheric carbon dioxide measured at Mauna Loa Observatory (Hawaii) from 
February 2018 to September 2022 are shown in Table  7. (All the data may be 
found at https://www.co2.earth/. The unit of these data is parts per million)

Fig. 1  Image of true function f(x) and the estimation f ∗(x)

Table 7  Data of atmospheric carbon dioxide

Time Value Time Value Time Value Time Value

2018.2 408.52 2019.4 413.54 2020.6 416.60 2021.8 414.47
2018.3 409.59 2019.5 414.86 2020.7 414.62 2021.9 413.30
2018.4 410.45 2019.6 414.16 2020.8 412.78 2021.1 413.93
2018.5 411.44 2019.7 411.97 2020.9 411.52 2021.11 415.01
2018.6 410.99 2019.8 410.18 2020.1 411.51 2021.12 416.71
2018.7 408.90 2019.9 408.76 2020.11 413.12 2022.1 418.19
2018.8 407.16 2019.1 408.75 2020.12 414.26 2022.2 419.28
2018.9 405.71 2019.11 410.48 2021.1 415.52 2022.3 418.81
2018.1 406.19 2019.12 411.98 2021.2 416.75 2022.4 420.23
2018.11 408.21 2020.1 413.61 2021.3 417.64 2022.5 420.99
2018.12 409.27 2020.2 414.34 2021.4 419.05 2022.6 420.99
2019.1 411.03 2020.3 414.74 2021.5 419.13 2022.7 418.90
2019.2 411.96 2020.4 416.45 2021.6 418.94 2022.8 417.19
2019.3 412.18 2020.5 417.31 2021.7 416.96 2022.9 415.95
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5.1  Modeling of atmospheric carbon dioxide problem

Denote that the observed times are t1 = 0.1, t2 = 0.2,… , t56 = 5.6 . Assume that z is 
the vector consisting of all values in Table 7. Since the Legendre polynomials may 
only approximate the continuous functions in domain [−1, 1] , we multiply all values 
by 0.8

max z
 , i.e., 0.0019. Then the processed data are denoted as the observed data 

xt1 , xt2 ,… , xt56 at times t1, t2,… , t56 and given in Table 8.
Now we construct the following atmospheric carbon dioxide model based on the 

processed data in Table 8.

where f ∶ ℝ → ℝ is an unknown continuous function and 𝜎 > 0 is an unknown 
parameter. Approximating the uncertain differential Eq. (24) by the following form

Then, Algorithm 1 may be used to obtain K∗ = 2 and

Thus the estimated uncertain differential equation of (24) is

The residuals of the uncertain differential Eq.  (25) may be obtained and given 
in Table 9. Since all the residuals are included in [0.025, 0.975], the uncertain dif-
ferential Eq. (25) is an applicable fit to the observed data in Table 8. Therefore, we 

(24)dXt = f (Xt)dt + �XtdCt,

dXt =

K∑
i=0

cipi(Xt)dt + �XtdCt.

c∗
0
= −19.0413, c∗

1
= 31.6427, c∗

2
= −13.6719, �∗ = 0.0577.

(25)
dXt =

(
−19.0413p0(Xt) + 31.6427p1(Xt) − 13.6719p2(Xt)

)
dt + 0.0577XtdCt.

Table 8  Processed data

1 0.1 0.7763 15 1.5 0.7858 29 2.9 0.7917 43 4.3 0.7876
2 0.2 0.7783 16 1.6 0.7884 30 3 0.7879 44 4.4 0.7854
3 0.3 0.7800 17 1.7 0.7870 31 3.1 0.7844 45 4.5 0.7866
4 0.4 0.7819 18 1.8 0.7829 32 3.2 0.7820 46 4.6 0.7886
5 0.5 0.7810 19 1.9 0.7795 33 3.3 0.7820 47 4.7 0.7919
6 0.6 0.7770 20 2 0.7768 34 3.4 0.7850 48 4.8 0.7947
7 0.7 0.7737 21 2.1 0.7767 35 3.5 0.7872 49 4.9 0.7968
8 0.8 0.7710 22 2.2 0.7800 36 3.6 0.7896 50 5 0.7959
9 0.9 0.7719 23 2.3 0.7829 37 3.7 0.7919 51 5.1 0.7986
10 1 0.7757 24 2.4 0.7860 38 3.8 0.7936 52 5.2 0.8000
11 1.1 0.7777 25 2.5 0.7874 39 3.9 0.7963 53 5.3 0.8000
12 1.2 0.7811 26 2.6 0.7881 40 4 0.7965 54 5.4 0.7960
13 1.3 0.7828 27 2.7 0.7914 41 4.1 0.7961 55 5.5 0.7928
14 1.4 0.7833 28 2.8 0.7930 42 4.2 0.7923 56 5.6 0.7904
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say that the dynamic process of atmospheric carbon dioxide measured at Mauna Loa 
Observatory from February 2018 to September 2022 follows the uncertain differen-
tial Eq. (25).

5.2  Completion of lost data

Due to the unexpected accidents, some data may be lost in management or stor-
age. Let us take this atmospheric carbon dioxide problem for example. Referring 
to Table 7, we assume that the data in March 2018, June 2019 are lost. That is, the 
proceed data at j = 2 and j = 17 in Table 8 are lost. For the parametric form

similarly to Sect. 5.1, the estimated values may be obtained as K∗ = 2 and

Then the estimation of model (24) is

The residuals of uncertain differential Eq.  (26) may be obtained and given in 
Table 10. Since all the residuals are included in [0.025, 0.975], uncertain differential 
Eq. (26) is an applicable fit to the existing observed data in Table 8.

According to the definitions of forecast value and confidence interval given by 
Lio and Liu (2018), we may obtain the forecast value of y in uncertain regression 
model (9) as

dXt =

K∑
i=0

cipi(Xt)dt + �XtdCt,

c∗
0
= −17.8493, c∗

1
= 29.6757, c∗

2
= −12.8425, �∗ = 0.0576.

(26)
dXt =

(
−17.8493p0(Xt) + 29.6757p1(Xt) − 12.8425p2(Xt)

)
+ 0.0576XtdCt.

Table 9  Residuals of uncertain 
differential Eq. (25)

j �j j �j j �j j �j

2 0.6945 16 0.7595 30 0.2340 44 0.3330
3 0.6633 17 0.4215 31 0.2318 45 0.6497
4 0.6892 18 0.1839 32 0.3009 46 0.7282
5 0.4319 19 0.2171 33 0.5162 47 0.8180
6 0.1751 20 0.2578 34 0.7852 48 0.8070
7 0.2082 21 0.4992 35 0.7304 49 0.7744
8 0.2428 22 0.7905 36 0.7569 50 0.5364
9 0.5872 23 0.7659 37 0.7642 51 0.8210
10 0.8228 24 0.7901 38 0.7293 52 0.7575
11 0.6921 25 0.6698 39 0.8078 53 0.6540
12 0.7956 26 0.6203 40 0.6319 54 0.2834
13 0.6826 27 0.8171 41 0.5852 55 0.3065
14 0.5635 28 0.7212 42 0.2656 56 0.3576
15 0.7555 29 0.4558 43 0.1751
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and �-confidence interval (e.g., � = 0.95 ) of y as

For a fixed j, we suppose that the observed value of Xtj+1
 is missing. Thus, we denote 

the forecast value of Xtj+1
 as X̂tj+1

 . According to (10) and (11), we may obtain the j-th 
observations of � as

and the j-th observations of y as

Substituting � = �j and ŷ = yj into (27), we have the forecast value of Xtj+1
 as

Substituting � = �j and ŷ = yj into (28), we have the �-confidence interval of Xtj+1
 as

(27)ŷ = c̃K∗ �
T =

K∗∑
i=0

c∗
i
𝜂i

(28)

�
ŷ −

𝜎∗
√
3

𝜋
ln

1 + 𝛾

1 − 𝛾
, ŷ +

𝜎∗
√
3

𝜋
ln

1 + 𝛾

1 − 𝛾

�
.

�j =

(
p0(xtj )

xtj

,
p1(xtj )

xtj

,… ,
pK(xtj )

xtj

)

yj =
X̂tj+1

− xtj

xtj (tj+1 − tj)
.

(29)X̂tj+1
= xtj +

(
K∗∑
i=0

c∗
i
pi(xtj )

)
(tj+1 − tj).

Table 10  Residuals of uncertain 
differential Eq. (26)

j �j j �j j �j j �j

2 – 16 0.7570 30 0.7232 44 0.2661
3 0.6009 17 – 31 0.4576 45 0.1754
4 0.6639 18 0.7612 32 0.2346 46 0.3341
5 0.6902 19 0.4890 33 0.2325 47 0.6515
6 0.4327 20 0.1842 34 0.3015 48 0.7300
7 0.1749 21 0.2171 35 0.5172 49 0.8197
8 0.2073 22 0.2575 36 0.7865 50 0.8087
9 0.2408 23 0.4986 37 0.7321 51 0.7763
10 0.5846 24 0.7909 38 0.7588 52 0.5379
11 0.8221 25 0.7669 39 0.7661 53 0.8225
12 0.6917 26 0.7916 40 0.7312 54 0.7589
13 0.7961 27 0.6716 41 0.8095 55 0.6551
14 0.6839 28 0.6223 42 0.6337 56 0.2835
15 0.5647 29 0.8189 43 0.5868
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With (29), we have the forecast values of Xt2
 and Xt17

 as X̂t2
= 0.7763 and 

X̂t17
= 0.7878 , respectively. Then with (30), we have the 95%-confidence interval of 

Xt2
 and Xt17

 as [0.7673, 0.7853] and [0.7786, 0.7970], respectively.
Restoring the processed data to the original data, we have the forecast value of 

the lost data in March 2018 as 408.52 with 95%-confidence interval [403.77, 413.27] 
and the forecast value of the lost data in June 2019 as 414.57 with 95%-confidence 
interval [409.74, 419.39]. Referring to Table 7, we may clearly see that the actual 
value in March 2018 is 409.59 which is in the interval [403.77,  413.27] and the 
actual value in June 2019 is 414.16 which is in the interval [409.74, 419.39]. Thus 
we claim that model (26) may complete the lost data well.

In general, the estimated model obtained by nonparametric estimation may prop-
erly fit the observations and complete the lost data. Thus we claim that our method 
of nonparametric estimation is effective for this atmospheric carbon dioxide model.

6  Conclusion

In this paper, we proposed a method of nonparametric estimation for autonomous 
uncertain differential equations. An algorithm was introduced and illustrated with 
three numerical examples. With the help of residuals and uncertain hypothesis test, 
we proved that the estimated uncertain differential equations may fit their observa-
tions well. Finally, we applied the nonparametric estimation into the atmospheric 
carbon dioxide problem. With the data of monthly mean atmospheric carbon diox-
ide from February 2018 to September 2022, we obtained an uncertain differential 
equation based model by using the method of nonparametric estimation. Then, the 
model was proved to be an applicable fit to the observations and an effective tool 
to complete the lost data. In the future, we will further research on the method of 
nonparametric estimation for nonautonomous uncertain differential equations whose 
variations of the current states are directly affected by both the states and the time.
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