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Abstract
Pairwise comparisons have been a long-standing technique for comparing alterna-
tives/criteria and their role has been pivotal in the development of modern decision-
making methods such as the Analytic Hierarchy/Network Process (AHP/ANP), the 
Best-Worst method (BWM), PROMETHEE and many others. Pairwise comparisons 
can be performed within several frameworks such as multiplicative, additive and 
fuzzy representations of preferences, which are particular instances of a more gen-
eral framework based on Abelian linearly ordered groups. Though multiplicative, 
additive and fuzzy representations of preferences are widely used in practice, it is 
unknown whether decision makers are equally precise in the three aforementioned 
representations when they measure objective data. Therefore, the aim of this paper 
is to design, carry out and analyse an experiment with over 200 respondents (under-
graduate university students) from two countries, Czechia and Italy, to compare pre-
cision of the respondents in all three representations. In the experiment, respondents 
pairwise compared (by approximation) the areas of four geometric figures and then, 
the imprecision of their assessments was measured by computing the distance with 
the exact pairwise comparisons. We grouped the respondents in such a way that each 
participant was allowed to deal with a unique type of representation. The outcomes 
of the experiment indicate that the multiplicative approach is the most precise.
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1  Introduction

Let X = {x1, x2,… , xn} be a set of decision elements, such as alternatives or cri-
teria; the entry of a Pairwise Comparisons Matrix (PCM) G = [gij]n×n quantifies 
the preference intensity of xi over xj . The aggregation of the entries of a PCM 
allows us to obtain a weighted ranking on X; that is a mapping that assigns a real 
value to each xi (Barzilai et  al., 1987). Origins of the PCMs can be dated back 
to the early works of Catalan medieval scholar Llull (1274). The first notable 
work with an application in psychology on pairwise comparisons can be, how-
ever, attributed to Thurstone (1927) and his Law of Comparative Judgments. Cur-
rently, PCMs constitute the core of the Analytic Hierarchy Process (AHP) and the 
Analytic Network Process (ANP) (Saaty, 1977, 1980), and of popular theoreti-
cal frameworks for the Multiple Criteria Decision Making (MCDM). For further 
details about PCMs, the reader can refer to Ramík (2020).

The main advantage in using PCMs is that they allow a Decision Maker (DM) 
to compare two alternatives at a time, thus reducing the complexity of a decision-
making problem; indeed, it is easier to perform pairwise comparisons than to pro-
vide directly a weighted ranking on all the alternatives, especially when the set X 
is large.

In the literature, several types of PCMs are proposed:

•	 if gij ∈]0,+∞[ represents a preference ratio, then G = [gij]n×n is a multipli-
cative PCM (Barzilai and Golany, 1990). In a multiplicative PCM, gij = 1 if 
there is indifference between xi and xj , gij > 1 if xi is strictly preferred to xj , 
whereas gij < 1 expresses the reverse preference;

•	 if gij ∈ ℝ =] −∞,+∞[ represents a preference difference, then G = [gij]n×n is 
an additive PCM (Barzilai, 1997). In an additive PCM, gij = 0 if there is indif-
ference between xi and xj , gij > 0 if xi is strictly preferred to xj , whereas gij < 0 
expresses the reverse preference;

•	 if gij ∈]0, 1[ reflects a preference degree, then G = [gij]n×n is a fuzzy PCM 
(Tanino, 1988). In a fuzzy PCM, gij = 0.5 if there is indifference between xi 
and xj , gij > 0.5 if xi is strictly preferred to xj , whereas gij < 0.5 expresses the 
reverse preference.

Multiplicative, additive and fuzzy PCMs share the same algebraic structure; 
that is, they are PCMs over Abelian linearly ordered (Alo)-groups (Cavallo and 
D’Apuzzo, 2009). Several authors follow this approach based on Alo-groups (e.g. 
Hou, 2016, Koczkodaj et al., 2016, Ramík, 2015 and Xia and Chen, 2015).

The foremost type of PCM, at least with respect to the number of real-world 
applications, is probably the multiplicative representation, used among others by 
Saaty (1980) in the theory of the Analytic Hierarchy Process (AHP) by using the 
finite semantic scale { 1
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Though multiplicative, additive and fuzzy approaches are widely used in prac-
tice, to best of our knowledge, in the literature no study has been conducted in 
order to compare their reliability, with the exclusion of an experiment performed 
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by Cavallo et  al. (2019); the authors compare the DMs’ coherence when they 
express subjective preferences by means of multiplicative, additive and fuzzy 
PCMs. However, no comparative study has been conducted in order to establish 
for which type of PCM, DMs are more precise when they measure objective data. 
This paper aims at filling this gap. We stress that if a DM measures objective 
data then (s)he can be perfectly coherent but not necessarily perfectly precise; 
on the other hand, if (s)he is perfectly precise then (s)he is perfectly coherent, 
too. In particular, we perform an experiment in order to compare the precision 
of these approaches when areas of four geometric figures have to be compared. 
In addition, we provide an appropriate methodology for the comparison of the 
approaches. The experiment is inspired by a validation study conducted by Saaty 
(2008); where, multiplicative pairwise comparisons have been applied to geomet-
ric areas in order to show the effectiveness of the AHP. In this paper, precision of 
additive and fuzzy pairwise comparisons, in addition to multiplicative ones, are 
analyzed.

The remainder of the paper is organized as follows: Sect. 2 provides preliminaries 
about Alo-groups and PCMs defined over Alo-groups. Section 3 describes the prob-
lem, the methodology and the results of the experiment. Section 4 provides conclusions 
and future work.

2 � Preliminaries

In this section, we provide preliminaries about Alo-groups and PCMs defined over 
Alo-groups useful in the sequel; for further details the reader can refer to (Cavallo and 
D’Apuzzo, 2009).

Let G be a non-empty set, ⊙ ∶ G × G → G a binary operation on G, ≤ a weak order 
on G. Then, G = (G,⊙,≤) is an Abelian linearly ordered group, Alo-group for short, if 
(G,⊙) is an Abelian group and, for all g1, g2, g3 ∈ G , it holds:

Let us denote with e the identity element, g(−1) the inverse element of g ∈ G with 
respect to ⊙ , and ÷ the inverse operation defined by g1 ÷ g2 = g1 ⊙ g

(−1)

2
 for all 

g1, g2 ∈ G.
Let n ∈ ℕ ∪ {0} and g ∈ G ; then, the (n)-natural- power g(n) of g ∈ G is:

By definition, an Alo-group G = (G,⊙,≤) is a lattice ordered group (Cavallo and 
D’Apuzzo, 2009), that is, for each g1, g2 ∈ G , there exists a maximal element 
max{g1, g2} . Cavallo and D’Apuzzo (2009) propose the following notions of G-norm 
and G-distance

(1)g1 ≤ g2 ⇒ g1 ⊙ g3 ≤ g2 ⊙ g3.

(2)g(n) =

{
e, if n = 0

g(n−1) ⊙ g, if n ∈ ℕ.

(3)‖. ‖G ∶ g ∈ G → ‖g‖G = max{g, g(−1)} ∈ G,
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the above notions are generalizations to G of the usual concepts of norm and 
distance.

2.1 � Real continuous Alo‑groups

An Alo-group G = (G,⊙,≤) is called continuous if the operation ⊙ is continuous, 
and real if G is a subset of the real line ℝ and ≤ is the weak order on G inherited 
from the usual order on ℝ . From now on, we will assume that G = (G,⊙,≤) is a 
real continuous Alo-group, with G being an open interval. Under these assump-
tions, the equation x(n) = g has a unique solution; thus, it is reasonable to consider 
the notions of (n)-root and G-mean (Cavallo and D’Apuzzo, 2009).

For each n ∈ ℕ and g ∈ G , the (n)-root of g, denoted by g(
1

n
) , is the unique 

solution of the equation x(n) = g , that is:

and the G-mean mG(g1, g2,… , gn) of the elements g1, g2,… , gn of G is expressed as 
follows:

Two real continuous Alo-groups G = (G,⊙,≤) and H = (H, ◦,≤) , with G and H 
being open intervals, are isomorphic (Cavallo and D’Apuzzo, 2009); thus, there 
exists a bijection � ∶ G → H that is both a lattice isomorphism and group isomor-
phism, that is, for all g1, g2 ∈ G , it holds:

Note that, the isomorphisms allows us to pass from an Alo-group to another isomor-
phic Alo-group; as an example, Cavallo and D’Apuzzo (2009) prove that:

with g1,… , gn ∈ G.
Examples of real continuous Alo-groups are the following ones:

Multiplicative Alo-group M = (ℝ+, ⋅,≤) , where ⋅ is the usual multiplication on 
ℝ , e = 1 and the M-mean of m1,m2,… ,mn ∈ ℝ

+ is the geometric mean: 

(4)dG ∶ (g1, g2) ∈ G × G → ‖g1 ÷ g2‖G ∈ G;

(
g
(
1

n
)
)(n)

= g,

(5)mG(g1, g2,… , gn) =

(
n⨀
i=1

gi

)(1∕n)

.

(6)g1 ≤ g2 ⇔ 𝜙(g1) ≤ 𝜙(g2) and 𝜙(g1 ⊙ g2) = 𝜙(g1)◦𝜙(g2).

(7)dG(g1, g2) =�
−1(dH(�(g1),�(g2))),

(8)mG(g1,… , gn) =�
−1(mH(�(g1),… ,�(gn))),
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M-distance between m1 and m2 is dM(m1,m2) = max{
m1

m2

,
m2

m1

}.
Additive Alo-group A = (ℝ,+,≤) , where + is the usual addition on ℝ , e = 0 and 
the A-mean of a1, a2,… , an ∈ ℝ is the arithmetic mean: 

A-distance between a1 and a2 is dA(a1, a2) = max{a1 − a2, a2 − a1} = |a1 − a2|.
Fuzzy Alo-group F = (]0, 1[,⊗,≤) , where ⊗ ∶]0, 1[2→]0, 1[ is the operation 
defined by 

e = 0.5 and the F -mean of f1, f2,… , fn ∈]0, 1[ is the following one: 

F -distance between f1 and f2 is the following one: 

Isomorphisms between multiplicative and additive Alo-groups are the following 
logarithmic and exponential functions:

with a be a real number greater than 1.
Isomorphisms between multiplicative and fuzzy Alo-groups are the following 

ones:

For isomorphisms between further Alo-groups, the reader can refer to Cavallo and 
D’Apuzzo (2009) and Ramík (2015).

2.2 � PCMs over an Alo‑group

Let G = (G,⊙,≤) be a real continuous Alo-group, with G an open interval. A PCM 
over G = (G,⊙,≤) is defined as follows:

(9)mM

(
m1,m2,… ,mn

)
=

n

√√√√ n∏
i=1

mi.

(10)mA(a1, a2,… , an) =

∑n

i=1
ai

n
.

(11)f1 ⊗ f2 =
f1f2

f1f2 + (1 − f1)(1 − f2)
,

(12)mF(f1, f2,… , fn) =

n

�∏n

i=1
fi

n

�∏n

i=1
fi +

n

�∏n

i=1
(1 − fi)

.

(13)dF(f1, f2) = max

{
f1(1 − f2)

f1(1 − f2) + (1 − f1)f2
,

f2(1 − f1)

f2(1 − f1) + (1 − f2)f1

}
.

(14)ha ∶ x ∈ ℝ
+
→ loga x ∈ ℝ h−1

a
∶ y ∈ ℝ → ay ∈ ℝ

+,

(15)g ∶ x ∈ ℝ
+
→

x

x + 1
∈]0, 1[, g−1 ∶ y ∈]0, 1[→

y

1 − y
∈ ℝ

+.
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where gij ∈ G quantifies the preference intensity of xi over xj (Cavallo and D’Apuzzo, 
2009). We assume that each PCM G = [gij]n×n satisfies the following G-reciprocity 
property:

Therefore, a multiplicative PCM is a PCM over the multiplicative Alo-
group M = (ℝ+, ⋅,≤) , an additive PCM is a PCM over the additive Alo-
group A = (ℝ,+,≤) , and a fuzzy PCM is a PCM over the fuzzy Alo-group 
F = (]0, 1[,⊗,≤).

Under the assumption of G-reciprocity, we set:

where xi ≻G
xj and xi ∼G

xj stand for “ xi is strictly preferred to xj ” and “ xi is indif-
ferent to xj ”, respectively, and we denote:

where xi ≿G
xj stands for “ xi is weakly preferred to xj”.

The minimal level of coherence that a G-reciprocal PCM should satisfy is the G
-transitivity. G = [gij]n×n is G-transitive if verifies the following condition:

G-transitivity ensures a rearrangement (i1, i2,… , in) of {1, 2,… , n} such that:

2.2.1 � Distance between PCMs

Let G1 = [g1
ij
]n×n and G2 = [g2

ij
]n×n be PCMs over G = (G,⊙,≤) ; then, Cavallo 

(2019) provides the following G-distance between G1 and G2:

The G-distance in (21) can be interpreted as a G-mean (5) of G-distances dG(g1ij, g
2
ij
) , 

with i < j , and it satisfies the following properties: 

1.	 dG(G
1,G2) ≥ e;

(16)G = [gij]n×n =

⎡
⎢⎢⎢⎣

g11 g12 … g1n
g21 g22 ⋯ g2n
⋮ ⋮ ⋱ ⋮

gn1 gn2 ⋯ gnn

⎤
⎥⎥⎥⎦
;

gji = g
(−1)

ij
∀ i, j ∈ {1, 2,… , n}.

(17)xi ≻G
xj ⇔ gij > e, xi ∼G

xj ⇔ gij = e,

(18)xi ≿G
xj ⇔ (xi ≻G

xj or xi ∼G
xj) ⇔ gij ≥ e,

(19)gij ≥ e, gjk ≥ e ⇒ gik ≥ e.

(20)xi1 ≿G
xi2 ≿G

… ≿
G
xin .

(21)dG(G
1,G2) =

(
n−1⨀
i=1

n⨀
j=i+1

dG(g
1
ij
, g2

ij
)

)(
2

n(n−1)
)

.
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2.	 dG(G
1,G2) = e ⇔ G

1 = G
2;

3.	 dG(G
1,G2) = dG(G

2,G1);
4.	 dG(G

1,G2) ≤ dG(G
1,G3)⊙ dG(G

3,G2).

Example 1  Let us consider the following multiplicative PCMs:

Then, the distance between them is calculated as

where dM(m1
ij
,m2

ij
) = max

{
m1

ij

m2
ij

,
m2

ij

m1
ij

}
.

Example 2  Let us consider the following additive PCMs:

Then, the distance between them is calculated as

where dA(a1ij, a
2
ij
) = |a1

ij
− a2

ij
| . Note that, the distance can also be computed by apply-

ing the isomorphism in (14) as follows:

with h−1
a
(A1) = [h−1

a
(a1

ij
)]4×4 and h−1

a
(A2) = [h−1

a
(a2

ij
)]4×4 be multiplicative PCMs.

M
1 = [m1

ij
]4×4 =

⎡
⎢⎢⎢⎢⎣

1
1

8

1

7

1

5

8 1
1

3

1

6

7 3 1 3

5 6
1

3
1

⎤
⎥⎥⎥⎥⎦
, M

2 = [m2
ij
]4×4 =

⎡
⎢⎢⎢⎢⎣

1
1

9
6

1

6

9 1
1

3
7

1

6
3 1

1

2

6
1

7
2 1

⎤
⎥⎥⎥⎥⎦
.

dM(M1,M2) =
6

√√√√ 3∏
i=1

4∏
j=i+1

dM(m1
ij
,m2

ij
)

= (dM(m1
12
,m2

12
) ⋅ dM(m1

13
,m2

13
) ⋅ dM(m1

14
,m2

14
) ⋅ dM(m1

23
,m2

23
)⋅

⋅ dM(m1
24
,m2

24
) ⋅ dM(m1

34
,m2

34
))

1

6 = 4.926,

A
1 = [a1

ij
]4×4 =

⎡⎢⎢⎢⎣

0 − 8 − 7 − 5

8 0 − 3 − 6

7 3 0 3

5 6 − 3 0

⎤⎥⎥⎥⎦
, A

2 = [a2
ij
]4×4 =

⎡⎢⎢⎢⎣

0 − 9 6 − 6

9 0 − 3 7

−6 3 0 − 2

6 − 7 2 0

⎤⎥⎥⎥⎦
.

dA(A
1,A2) =

∑3

i=1

∑4

j=i+1
dA(a

1
ij
, a2

ij
)

6

=
1

6
(dA(a

1
12
, a2

12
) + dA(a

1
13
, a2

13
) + dA(a

1
14
, a2

14
) + dA(a

1
23
, a2

23
)

+ dA(a
1
24
, a2

24
) + dA(a

1
34
, a2

34
)) = 5.5,

dA(A
1,A2) = ha

(
dM(h−1

a
(A1), h−1

a
(A2))

)
,
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Example 3  Let us consider the following fuzzy PCMs:

Then, the following equality holds:

where dF(f 1ij , f
2
ij
) = max

{
f 1
ij
(1−f 2

ij
)

f 1
ij
(1−f 2

ij
)+(1−f 1

ij
)f 2
ij

;
f 2
ij
(1−f 1

ij
)

f 2
ij
(1−f 1

ij
)+(1−f 2

ij
)f 1
ij

}
 . Note that, the distance 

can also be computed by applying the isomorphism in (15) as follows:

with g−1(F1) = [g−1(f 1
ij
)]4×4 and g−1(F2) = [g−1(f 2

ij
)]4×4 be multiplicative PCMs.

Applications of the G-distance in (21) are provided by Brunelli and Cavallo 
(2020) for measuring incoherence of PCMs and by Cavallo and Ishizaka (2023) for 
computing matching errors in PCMs.

3 � A comparative study

As introduced in Sect. 1, the study has been inspired by a validation study conducted 
by Saaty (2008). The goal is to compare the imprecision of multiplicative, additive 
and fuzzy approaches when the areas of four geometric figures have to be compared. 
It means that the geometric figures have to be pairwise compared by means of area 
ratios on the interval ]0, +∞[ , area differences on the interval ] − ∞, +∞[ and rela-
tives intensities of the areas on the interval ]0, 1[ . The study has been conducted by 
designing an experiment, where a set of respondents pairwise compared (by approx-
imation) the areas of the geometric figures and then, the imprecision of their assess-
ments was measured by computing the distance with the exact pairwise compari-
sons. We grouped the respondents in such a way that each participant was allowed to 
deal with a unique type of approach.

3.1 � Geometric figures and exact PCMs for the experiment

In this section, we provide the geometric figures used in the experiment and the exact 
multiplicative, additive and fuzzy PCMs. Let us consider the circle, the rectangle, 

F
1 = [f 1

ij
]4×4 =

⎡
⎢⎢⎢⎣

0.5 0.1 0.2 0.2

0.9 0.5 0.3 0.1

0.8 0.7 0.5 0.8

0.8 0.9 0.2 0.5

⎤
⎥⎥⎥⎦
, F

2 = [f 2
ij
]4×4 =

⎡
⎢⎢⎢⎣

0.5 0.1 0.9 0.2

0.9 0.5 0.2 0.8

0.1 0.8 0.5 0.3

0.8 0.2 0.7 0.5

⎤
⎥⎥⎥⎦
.

dF(F
1,F2) =

6

�∏3

i=1

∏4

j=i+1
dF(f

1
ij
, f 2
ij
)

6

�∏3

i=1

∏4

j=i+1
dF(f

1
ij
, f 2
ij
) + 6

�∏3

i=1

∏4

j=i+1
(1 − dF(f

1
ij
, f 2
ij
))

= 0.84,

dF(F
1,F2) = g

(
dM(g−1(F1), g−1(F2))

)
,
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the triangle and the square in Figure  1, which areas are A1 = 9.126 , A2 = 2.553 , 
A3 = 4.503 and A4 = 1.3 , respectively.

By pairwise comparing the areas, we obtain the following multiplicative and 
fuzzy PCMs:

M = [mij]4×4 and F = [fij]4×4 represent the area ratios on the interval ]0, +∞[ and 
the relative intensities of the areas on the interval ]0, 1[ , respectively. As an exam-
ple, the fourth columns of the PCMs in (22) and (23) represent the pairwise compar-
isons between the area of each geometric figure in Fig. 1 and the area of the square.

Note that for all real positive numbers c, figures with areas equal to c ⋅ A1 , 
c ⋅ A2 , c ⋅ A3 and c ⋅ A4 generate the PCMs in (22) and (23).

The multiplicative PCM M = [mij]4×4 and the fuzzy PCM F = [fij]4×4 are iso-
morphic; indeed, for each i, j ∈ {1,… , 4} , we have:

where g is the isomorphism in (15).
Let a be a real number greater than 1. Then, the following additive PCM:

is isomorphic to both M and F ; indeed, for each i, j ∈ {1,… , 4} , we have:

(22)M =[mij]4×4 =

�
Ai

Aj

�

4×4

=

⎡⎢⎢⎢⎣

1 3.574 2.027 7.020

0.280 1 0.567 1.964

0.493 1.764 1 3.464

0.142 0.509 0.289 1

⎤⎥⎥⎥⎦
;

(23)F =[fij]4×4 =

�
Ai

Ai + Aj

�

4×4

=

⎡⎢⎢⎢⎣

0.5 0.781 0.670 0.875

0.219 0.5 0.362 0.663

0.330 0.638 0.5 0.776

0.125 0.337 0.224 0.5

⎤⎥⎥⎥⎦
.

(24)fij = g(mij) =
mij

mij + 1
,

A = [aij]4×4 = [loga Ai − loga Aj]4×4

(25)aij = ha(mij) = loga(mij),

Fig. 1   Geometric figures used in the experiment for measuring the imprecision of the multiplicative and 
fuzzy approaches
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and

where ha and g are the isomorphisms in (14) and (15), respectively. Note that, the 
additive PCM with entries equal to Ai − Aj is isomorphic neither to M nor to F.

Let us set a = A4 ; then, we obtain the following additive PCM:

A = [aij]4×4 represents the area differences on the interval ] − ∞, +∞[ of the 
geometric figures in Fig.  2, which areas are logA4

A1 = 8.428 , logA4
A2 = 3.573 , 

logA4
A3 = 5.735 and logA4

A4 = 1 . As an example, the fourth column of the PCM in 

(27) represents the pairwise comparisons between the area of each geometric figure 
in Fig. 2 and the area of the square.

3.2 � The methodology

We applied an opinion survey with a sample of 108 students of master courses in 
economics and management at the School of Business Administration in Karvina 
of the Silesian University, Czech Republic, and 120 students of the Department of 
Architecture of University of Naples Federico II, Italy. The students completed the 
survey during a class period and received instructions to fill it out. On average, the 
experiment lasted twenty minutes.

As done by Cavallo et al. (2019), in the design of the experiment, we created four 
surveys and we grouped the respondents by survey, in such a way that each partici-
pant was allowed to answer only one. Thus, each survey was filled out by N = 57 
participants (i.e., 27 Czech students and 30 Italian students). This “between-subject” 
designed experiment was more appropriate for our purpose than a “within-subject” 
designed experiment, where participants were exposed to more than one survey (i.e., 
all the four surveys). It has been long observed that within-subject cannot be used 
when independence of multiple exposure is not warrant; in fact, the respondents 

(26)aij = ha(g
−1(fij)) = loga

(
fij

1 − fij

)
,

(27)

A = [aij]4×4 = [logA4
Ai − logA4

Aj]4×4 =

⎡
⎢⎢⎢⎣

0 4.855 2.692 7.428

−4.855 0 − 2.163 2.573

−2.692 2.163 0 4.735

−7.428 − 2.573 − 4.735 0

⎤
⎥⎥⎥⎦
.

Fig. 2   Geometric figures used in the experiment for measuring the imprecision of the additive approach
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have a reference point when they are responding the second survey. The reader can 
refer to the literature mentioned by Cavallo et al. (2019).

The survey forms are the following ones: 

QM	� The respondent has to perform 6 pairwise comparisons; that is, for each pair 
of figures in Fig. 1, (s)he has to select the bigger one and to establish the ratio 
between the biggest area and the smallest (i.e., a real number in [1,+∞[ ). 
As an example, if two areas are equal to 5 and 3 then the ratio is equal to 
5

3
= 1.667;

QA	� The respondent has to perform 6 pairwise comparisons; that is, for each pair 
of figures in Figure 2, (s)he has to select the bigger one and to establish the 
difference between the biggest area and the smallest (i.e., a real number in 
[0,+∞[ ), by assuming that area of the square, which represents the measure 
unit, is equal to 1. As an example, if two areas are equal to 5 and 3 then the 
difference is equal to 5 − 3 = 2;

QF	� The respondent has to perform 6 pairwise comparisons; that is, for each pair of 
figures in Fig. 1, (s)he has to select the bigger one and to establish the relative 
intensity of the biggest area on the interval [0.5, 1[ in such a way that the sum 
of the intensities of the two areas is equal to 1. As an example, if two areas are 
equal to 5 and 3 then the biggest intensity is equal to 5

5+3
= 0.625 (the smallest 

is equal to 0.375);

QS	� The respondent has to perform 6 pairwise comparisons; that is, for each pair of 
figures in Fig. 1, (s)he has to select the bigger one and to establish how much 
the biggest figure is bigger than the other one by using a positive integer value 
in Table 1. As an example, if two areas are equal to 5 and 3 then the closest 
value in the Saaty’s scale to the ratio 5

3
 is equal to 2.

 
Note that, although there is not an Alo-group defined on Saaty’s scale, since 

multiplicative PCMs over Saaty’s scale are used in several real world applications, 

Table 1   Saaty’s scale

Value Semantic meaning Inverse value

1 the two figures have the same area 1
3 a figure is weakly bigger than the other one 1

3

5 a figure is strongly bigger than the other one 1

5

7 a figure is very strongly bigger than the other one 1

7

9 a figure is absolutely bigger than the other one 1

9

2, 4, 6, 8 intermediate values 1

2
 , 1
4
,1
6
 , 1
8
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they will be also considered in our experiment; thus, we assume that the exact 
pairwise comparisons are provided by the multiplicative PCM in (22) and we set 
S = [sij]4×4 = M = [mij]4×4.

The survey forms have been developed by means of Google Forms (https://​
www.​google.​it/​intl/​en/​forms/​about/) in such a way that each question is manda-
tory (each PCM is complete); moreover, we added constraints that allows us to 
obtain a suitable range for the entries of the PCMs. As an example, Fig. 3 pro-
vides a question in the multiplicative survey QM.

In order to measure and compare the imprecision of the four types of PCMs 
(i.e., multiplicative, additive, fuzzy, Saaty), we perform the following steps: 

STEP 1.	� By the pairwise comparisons of the areas of circle, rectangle, triangle and 
square in Fig. 1 and in Fig. 2 performed by the students by filling out the 
assigned survey, we obtain the following four sets: 

Fig. 3   Example of multiplicative question

https://www.google.it/intl/en/forms/about/
https://www.google.it/intl/en/forms/about/
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•	 M = {Mk = [mk
ij
]4×4 |k ∈ {1,… ,N}} , with Mk = [mk

ij
]4×4 be a multiplicative 

PCM, approximation of M in (22), obtained by the k-th student who filled out 
QM;

•	 A = {Ak = [ak
ij
]4×4 |k ∈ {1,… ,N}} , with Ak = [ak

ij
]4×4 be an additive PCM, 

approximation of A in (27), obtained by the k-th student who filled out QA;
•	 F = {Fk = [f k

ij
]4×4 |k ∈ {1,… ,N}} , with Fk = [f k

ij
]4×4 be a fuzzy PCM, approxi-

mation of F in (23), obtained by the k-th student who filled out QF;
•	 S = {Sk = [sk

ij
]4×4 |k ∈ {1,… ,N}} , with Sk = [sk

ij
]4×4 be a multiplicative PCM, 

approximation of M in (22) with entries on the Saaty’s scale, obtained by the k-th 
student who filled out QS.

STEP 2.	�For each k ∈ {1,… ,N} , we compute the following multiplicative PCMs: 

 that are isomorphic to Ak and Fk , respectively, and they are approximations of M in 
(22).

STEP 3.	� For each k ∈ {1,… ,N} , by applying the distance (21) between two 
PCMs over the multiplicative Alo-group, we compute the following 
imprecisions of the approximations: 

h−1
A4
(Ak) =[h−1

A4
(ak

ij
)]4×4;

g−1(Fk) =[g−1(f k
ij
)]4×4,

dM(M,Mk) =
n(n−1)

2

√√√√n−1∏
i=1

n∏
j=i+1

dM(mij,m
k
ij
);

dM(M, h−1
A4
(Ak)) =

n(n−1)
2

√√√√n−1∏
i=1

n∏
j=i+1

dM

(
mij, h

−1
A4
(ak

ij
)

)
;

dM(M, g−1(Fk)) =
n(n−1)

2

√√√√n−1∏
i=1

n∏
j=i+1

dM

(
mij, g

−1(f k
ij
)

)
;

dM(M,Sk) =
n(n−1)

2

√√√√n−1∏
i=1

n∏
j=i+1

dM(mij, s
k
ij
).
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STEP 4.	� For each approach, we compute the geometric mean of the imprecisions: 

 They represent the averages (i.e., geometric means) of the imprecisions, computed 
on the multiplicative Alo-group, obtained by the N surveys QM , the N surveys QA , 
the N surveys QF and the N surveys QS , respectively.

Remark 1  The choices done in STEP 2, STEP 3 and STEP 4 to choose the 
multiplicative Alo-group for computing the approximations, the imprecisions 
and the averages of the imprecisions, do not affect the results. Indeed, if, instead 
to compare the geometric means of the imprecisions in STEP 4, we compare the 
isomorphic arithmetic means on the additive Alo-group or the isomorphic fuzzy 
means on the fuzzy Alo-group, then, we obtain equivalent results, because by 
properties of G-distance and G-mean in (7) and (8), by relationships among M , A 
and F in (24), (25) and (26), and isomorphisms in (14) and (15), we have that:

mM

(
dM(M,M1),… , dM(M,MN)

)
=

N

√√√√ N∏
k=1

dM(M,Mk);

mM

(
dM

(
M, h−1

A4
(A1)

)
,… , dM

(
M, h−1

A4
(AN)

))
=

N

√√√√ N∏
k=1

dM

(
M, h−1

A4
(Ak)

)
;

mM

(
dM

(
M, g−1(F1)

)
,… , dM

(
M, g−1(FN)

))
=

N

√√√√ N∏
k=1

dM

(
M, g−1(Fk)

)
;

mM

(
dM(M,S1),… , dM(M,SN)

)
=

N

√√√√ N∏
k=1

dM(M,Sk).

m

(

d(M,M1),… , d(M,MN )
)

= h−1A4

(

m

(

d(A, hA4 (M
1)),… , d(A, hA4 (M

N ))
))

= g−1
(

m

(

d (F, g(M1)),… , d (F, g(MN ))
))

;

m

(

d

(

M, h−1A4 (A
1)
)

,… , d
(

M, h−1A4 (A
N )
))

= h−1A4

(

m

(

d(A,A1),… , d(A,AN )
))

= g−1
(

m

(

d

(

F, g(h−1A4 (A
1))

)

,… , d
(

F, g(h−1A4 (A
N ))

)))

;

m

(

d

(

M, g−1(F1)
)

,… , d
(

M, g−1(FN )
))

= h−1A4

(

m

(

d

(

A, hA4 (g
−1(F1))

)

,… , d
(

A, hA4 (g
−1(FN ))

)))

= g−1
(

m

(

d (F,F1),… , d (F,FN )
))

;

m

(

d(M, S1),… , d(M, SN )
)

= h−1A4

(

m

(

d(A, hA4 (S
1),… , d(A, hA4 (S

N ))
))

= g−1
(

m

(

d (F, g(S1),… , d (F, g(SN ))
))

.
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In particular, since the isomorphisms hA4
 and g are strictly increasing functions, the 

order is preserved by passing from multiplicative approach to arithmetic or fuzzy 
one. Thus, the choice of the approach, among multiplicative, additive and fuzzy, 
to compare the imprecisions could be a measurement option in our methodology; 
indeed, for each choice of approach, we reach the same result on the imprecision. 
However, we stress that our choice (i.e., multiplicative approach) is the most effi-
cient because, in STEP 1, both the PCMs Mk and the PCMs Sk are multiplicative 
PCMs; thus, the multiplicative choice allows us to compute the smallest number of 
isomorphic PCMs in STEP 2.

The following example shows how the above steps are performed in the 
experimentation.

Example 4  Let us suppose that eight students fill out the questionnaires QM , QA , QF 
and QS . 

STEP 1.	� By the questionnaires, we obtain the following multiplicative, additive, 
fuzzy and Saaty PCMs: 

STEP 2.	� We compute the following multiplicative PCMs: 

�
� =

⎡
⎢⎢⎢⎣

1 4 1.9 6.5

0.25 1 0.5 2

0.526 2 1 3

0.154 0.5 0.333 1

⎤
⎥⎥⎥⎦
, �

� =

⎡
⎢⎢⎢⎣

1 3.8 2 6

0.263 1 0.333 1.5

0.5 3 1 3.2

0.167 0.667 0.313 1

⎤
⎥⎥⎥⎦
;

A
1 =

⎡⎢⎢⎢⎣

0 4 3.5 8.3

−4 0 − 2.5 2

−3.5 2.5 0 6

−8.3 − 2 − 6 0

⎤⎥⎥⎥⎦
, A

2 =

⎡⎢⎢⎢⎣

0 3.2 1 7

−3.2 0 − 3 3.5

−1 3 0 4

−7 − 3.5 − 4 0

⎤⎥⎥⎥⎦
;

F
1 =

⎡⎢⎢⎢⎣

0.5 0.8 0.6 0.9

0.2 0.5 0.4 0.6

0.4 0.6 0.5 0.8

0.1 0.4 0.2 0.5

⎤⎥⎥⎥⎦
, F

2 =

⎡⎢⎢⎢⎣

0.5 0.75 0.6 0.85

0.25 0.5 0.35 0.65

0.4 0.65 0.5 0.7

0.15 0.35 0.3 0.5

⎤⎥⎥⎥⎦
;

�
� =

⎡⎢⎢⎢⎢⎣

1 3 2 7
1

3
1

1

3
2

1

2
3 1 3

1

7

1

2

1

3
1

⎤⎥⎥⎥⎥⎦
, �

� =

⎡⎢⎢⎢⎢⎣

1 5 2 6
1

5
1

1

3
3

1

2
3 1 4

1

6

1

3

1

4
1

⎤⎥⎥⎥⎥⎦
.
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STEP 3.	� We compute the following multiplicative imprecisions: 

STEP 4.	� We compute the following geometric means mM of the multiplicative 
imprecisions dM : 

 obtained by surveys QM , QA , QF and QS , respectively.

 By 1.148 < 1.224 < 1.230 < 1.271 , we have that the multiplicative PCMs are on 
average more precise than fuzzy PCMs that are on average more precise than Saaty 
PCMs that are on average more precise than additive PCMs.

As stressed in Remark 1, we would have obtained the same order if we had com-
puted the isomorphic additive imprecisions dA or fuzzy imprecisions dF  and then, 
compared the isomorphic arithmetic means mA or the fuzzy means mF .

3.3 � Results and discussion

In each survey, by selecting the bigger figure for each pair of figures (e.g., see 
Fig. 3), we gave students the possibility to provide an ordinal ranking of the areas 
of the figures even when wrong areas (obtained by wrong entries of the PCMs) were 
provided. Thus, we discarded about 10% of the surveys, i.e., surveys where the stu-
dents were not transitive or provided an incorrect ranking of the figures (see (19) 
and (20)); indeed, the selection of the wrong figure shows incoherence or an error 
that does not depend by the method (multiplicative, additive, fuzzy or Saaty). The 
averages of the imprecisions obtained from the surveys QM , QA , QF and QS , by per-
forming STEP 4 of the our methodology, are shown in Table 2.

h−1
A4
(A1) =

⎡
⎢⎢⎢⎣

1 2.856 2.505 8.825

0.350 1 0.519 1.690

0.399 1.927 1 4.827

0.113 0.592 0.207 1

⎤
⎥⎥⎥⎦
, h−1

A4
(A2) =

⎡
⎢⎢⎢⎣

1 2.315 1.3 6.275

0.432 1 0.455 2.505

0.769 2.197 1 2.856

0.159 0.399 0.350 1

⎤
⎥⎥⎥⎦
;

g−1(F1) =

⎡
⎢⎢⎢⎣

1 4 1.5 9

0.25 1 0.667 1.5

0.667 1.5 1 4

0.111 0.667 0.25 1

⎤⎥⎥⎥⎦
, g−1(F2) =

⎡
⎢⎢⎢⎣

1 3 1.5 5.667

0.333 1 0.538 1.857

0.667 1.857 1 2.333

0.176 0.538 0.429 1

⎤⎥⎥⎥⎦
.

dM(M,M1) = 1.094, dM(M,M2) = 1.203;

dM(M, h−1
A4
(A1)) = 1.229, dM(M, h−1

A4
(A2)) = 1.316;

dM(M, g−1(F1)) = 1.229, dM(M, g−1(F2)) = 1.220;

dM(M,S1) = 1.159, dM(M,S2) = 1.307.

mM(1.094, 1.203) = 1.148;

mM(1.229, 1.316) = 1.271;

mM(1.229, 1.220) = 1.224;

mM(1.159, 1.307) = 1.230;
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Table 2 shows that the multiplicative approach is always the most precise because 
the average of the imprecisions obtained from QM is the smallest for both Italy and 
Czechia. Note that, for Italian respondents, the biggest average of the imprecisions 
is provided by Saaty’s scale and, for Czech respondents, it is provided by the fuzzy 
approach. Of course, as stressed in Remark 1, by applying the isomorphisms in (14), 
with a = 1.3 , and (15), we obtain the same rankings of the averages of the impreci-
sions (see Table 3 and Table 4).

To analyze if the differences among the means are significant, we performed 
ANalysis Of VAriance (ANOVA) tests at a significance level � = 0.05 . A sig-
nificance level of 0.05 indicates a 5% risk of concluding that a difference exists 
when there is no actual difference. An ANOVA test (King, 2010) is a way to find 
out if survey or experiment results are significant. It is a type of statistical test 
used to determine if there is a statistically significant difference between cate-
gorical groups by testing for differences of means using variance. We recall that 
if ANOVA test provides a p-value less than the significance level then the null 
hypothesis is rejected, and we can conclude that not all of the group means are 
equal. The F value is used along with the p-value in deciding whether the results 
are significant enough to reject the null hypothesis. If ANOVA test provides a 
large F value (i.e. one that is bigger than the critical value Fcrit ), it means the dif-
ference is significant. Statistical analyses were conducted using StatPlus (https://​
www.​analy​stsoft.​com/​en/).

ANOVA results are shown in Table 5; thus, we have that:

•	 for Italy, the null hypothesis is rejected and there are highly significant differ-
ences among all the means provided by QM , QA , QF and QS because p-value is 
equal to 0 and F value is higher than the critical value Fcrit;

•	 for Czechia, there are not significant differences among the means provided by 
QM , QA , QF and QS because p-value is greater than the significance level � and F 
value is smaller than the critical value Fcrit.

Since, for Italian respondents, the null hypothesis is rejected, we performed all 
pairwise comparisons in order to determine which differences are statistically sig-
nificant. The results are shown in Table 6. In particular, we stress that the difference 
between the mean provided by QM and each other mean is significant.

Thus, we can conclude that statistically, while for Czech respondents all the 
approaches provide the same imprecision, for Italian respondents the multiplicative 
approach provides the least imprecision. A possible reason for the different results 

Table 2   Averages (i.e., 
geometric means) of 
imprecisions obtained in STEP 
4 for each University

University mM

QM QA QF QS

Italy 1.321 1.485 1.598 1.720
Czechia 1.382 1.416 1.501 1.493

https://www.analystsoft.com/en/
https://www.analystsoft.com/en/
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obtained for the two groups of respondents may be found in different background 
knowledge and former experience concerning pairwise comparisons method. 
Indeed, the students from the Silesian University had some former experience with 
AHP, and so with Saaty’s scale, therefore, they could be more experienced when 
using pairwise comparisons. Saaty’s approach should to be avoided for measuring 
objective data both whenever the additional notion of ratio is not given and whenever 
the exact values of the ratios are not close to the values in the Saaty’s scale.

4 � Conclusions and future work

To best of our knowledge, this paper represents the first comparative study con-
ducted in order to establish for which type of PCM (i.e., multiplicative, additive, 
fuzzy), DMs are more precise when they compare objective data. By following the 
idea proposed by Cavallo et  al. (2019), where the authors compare the coherence 
of multiplicative, additive and fuzzy approaches for subjective preferences, and 
inspired by a validation study conducted by Saaty (1980), where the author shows 
the effectiveness of the multiplicative PCMs for the prioritization of geometric fig-
ures, we performed an experiment in order to compare the precision of these types 
of PCMs when areas of geometric figures have to be pairwise measured.

The experiment involves students from Silesian University and University of 
Naples Federico II, and it shows that the multiplicative approach is the most precise; 
the difference is statistically significant for Italian respondents.

Table 3   Averages (i.e., 
arithmetic means) of 
imprecisions for each University

University mA

QM QA QF QS

Italy 1.061 1.506 1.786 2.066
Czechia 1.233 1.326 1.547 1.528

Table 4   Averages (i.e., fuzzy 
means) of imprecisions for each 
University

University mF

QM QA QF QS

Italy 0.569 0.598 0.615 0.632
Czechia 0.580 0.586 0.6 0.599

Table 5   ANOVA results University Fcrit = 2.694

p-value F

Italy 0 19.099
Czechia 0.092 2.256
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It should be noted that in an experiment setting the order of comparisons and the 
size of the problem cannot be neglected, see (Bozóki et al., 2013), hence our results 
cannot be simply generalized and further research is needed.

We stress that our experimental results are valid in comparisons of areas of sev-
eral geometric figures but no experiment has been performed for establishing which 
type of comparison (i.e. multiplicative, additive, fuzzy or linguistic) is the most pre-
cise in comparison of further objective data, e.g. sizes of objects and weights of 
objects. The application of a specific approach can also depend on the DM’s prob-
lem, his/her personal preferences and views; thus, our future work will be the appli-
cation of our comparative methodology to further real decision making problems 
concerning the measure of objective data, e.g., weights of objects and electricity 
consumption of household appliances (Whitaker, 2007), proposed in validation 
examples of the AHP. Finally, in usual decision making problems, the comparisons 
between alternatives is often different from the comparisons of areas; indeed, in 
these problems there are not exact values to approximate because the decision maker 
has to express subjective preferences between alternatives; indeed, experimental 
results obtained by Cavallo et al. (2019) show that the additive comparisons provide 
the worst results when decision maker expresses subjective preferences.
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Table 6   Italian respondents. 
Pairwise multiple comparisons 
between means. Y= there is 
significant difference. N= there 
is not significant difference

QM QA QF QS

QM – Y Y Y
QA – – N Y
QF – – – N
QS – – – –

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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