
Formalization of Fixed-Point Arithmeti
 inHOLBehzad Akbarpour So��ene TaharAbdelkader DekdoukDept. of Ele
tri
al and Computer Engineering, Con
ordia University1455 de Maisonneuve W., Montreal, Quebe
, H3G 1M8, CanadaEmail: fbehzad,tahar,dekdoukg�e
e.
on
ordia.
aJune 15, 2004Abstra
tThis paper addresses the formalization in higher-order logi
 of�xed-point arithmeti
. We en
oded the �xed-point number systemand spe
i�ed the di�erent quantization modes in �xed-point arith-meti
 su
h as the dire
ted and even quantization modes. We also
onsidered the formalization of ex
eptions dete
tion and their han-dling like over
ow and invalid operation. An error analysis is thenperformed to 
he
k the 
orre
tness of the quantized result after 
ar-rying out basi
 arithmeti
 operations, su
h as addition, subtra
tion,multipli
ation and division against their mathemati
al 
ounterparts.Finally, we showed by an example how this formalization 
an be usedto enable the veri�
ation of the transition from 
oating-point to �xed-point algorithmi
 level in the signal pro
essing design 
ow.Keywords: Fixed-Point Arithmeti
, Floating-Point Arithmeti
, Theorem-Proving, HOL1 Introdu
tionModern signal pro
essing 
hips, su
h as integrated 
able modems and wirelessmultimedia terminals, are des
ribed with algorithms in 
oating-point pre
i-1



1 INTRODUCTION 2sion. Often, the ar
hite
tural style with whi
h these algorithms are imple-mented is pre
ision-limited, and relies on a �xed-point representation. Thisrequires a translation of the spe
i�
ation from 
oating-point to �xed-pointpre
ision. This implementation is optimized following some appli
ation spe-
i�
 trade-o�s su
h as speed, 
ost, area and power 
onsumption of the 
hip.The optimization task is tedious and error prone due to the e�e
ts of quanti-zation noise introdu
ed by the limited pre
ision of �xed-point representation.An overview of a 
onventional digital signal pro
essing (DSP) design 
ow isdepi
ted in Figure 1 [23℄.
Idea

Floating-Point
Algorithm

OK?
No

Yes

Quantization

Fixed-Point
Algorithm

No
OK?

Yes

Code Generation

Architectural
Description

OK?
No

Yes

Target System

Im
pl

em
en

ta
tio

n 
Le

ve
l

Al
go

rit
hm

ic
 L

ev
el

Fi
xe

d-
Po

in
t

Fl
oa

tin
g-

Po
in

t

Figure 1: DSP Design FlowUsually the 
onforman
e of the �xed-point implementation with respe
tto the 
oating-point spe
i�
ation is veri�ed by simulation te
hniques whi
h
annot 
over the entire input spa
e yielded by the 
oating-point represen-tation. The obje
tive of this work is to formalize the �xed-point arithmeti
in higher-order logi
 as a basis for 
he
king the 
orre
tness of the imple-mentation of DSP designs against higher level algorithmi
 des
riptions in
oating-point and �xed-point representations.Unlike 
oating-point arithmeti
 whi
h is standardized in IEEE-754 [18℄and IEEE-854 [19℄, 
urrent �xed-point arithmeti
 does not follow any par-ti
ular standard and depends on the tool and the language used to design



1 INTRODUCTION 3the DSP 
hip. Examples of su
h tools are SPW (Caden
e) [7℄, Matlab-Simulink (Mathworks) [25℄, CoCentri
 (Synopsys) [37℄, and DSP Station(Mentor Graphi
s) [27℄. For instan
e, in SPW (Signal Pro
essing Worksys-tem), a �xed-point number is de�ned as a binary string and a set of at-tributes. Attributes spe
ify how the binary string is interpreted using threearguments for the total number of bits, the number of integer bits, and thesign format. For arithmeti
 operations, it supports three kinds of ex
eptionssu
h as loss-of-sign or over
ow, two over
ow modes, and �ve quantizationmodes. In Matlab Simulink Fixed-Point Blo
kset [26℄, �xed-point numbersare stored in data types that are 
hara
terized by their word size (up to128 bits), a radix point, and whether they are signed or unsigned. The radixpoint is used to support integers, fra
tionals, and generalized �xed-point datatypes. The Matlab Blo
kset provides four quantization modes 
orrespond-ing to those supported by SPW. It also supports saturation and wrappingto deal with over
ow for all �xed-point data types. Another example is theSynopsys CoCentri
 tool, whi
h uses �xed-point as des
ribed in the Sys-temC language [33℄. It supports signed and unsigned �xed-point data types,as well as limited pre
ision (53 bits mantissa) �xed-point, 
alled fast �xed-point to speed up simulation. SystemC supports seven quantization modes,of whi
h four 
orrespond exa
tly to the quantization modes of SPW. Theother three modes are spe
i�
 to SystemC and are not supported by theother tools. SystemC supports �ve over
ow modes 
overing those of SPW.With the obje
tive of providing a general methodology for the formalizationand veri�
ation of �xed-point arithmeti
 using higher-order logi
, we de�nein this paper a 
omplete 
ommon set of �xed-point arithmeti
 as supportedby most of the DSP tools, in parti
ular SPW and SystemC.Based on higher-order logi
, we propose to en
ode a �xed-point numberby a pair 
omposed of a Boolean word, and a triplet indi
ating the wordlength, the length of the integer portion, and the sign format. Then, we for-malize the 
on
epts of valuation and quantization as fun
tions that 
onvertrespe
tively a �xed-point number to a real number and vi
e versa, takinginto a

ount di�erent quantization and over
ow modes. Fixed-point arith-meti
 operations are formalized as fun
tions performing operations on thereal numbers 
orresponding to the �xed-point operands and then applyingthe quantization on the real number result. Finally, we prove various lemmasregarding the error analysis of the �xed-point quantization and 
orre
tness ofthe basi
 operations like addition, multipli
ation, and division. The higher-order logi
 formalization and proof were done using the HOL theorem prover



2 RELATED WORK 4[12℄. They were developed into a full �xed-point arithmeti
 library, whi
hwas re
ently in
luded in the last release of HOL (HOL4, Kananaskis-2).The rest of the paper is organized as follows: Se
tion 2 gives a reviewon work related to the formalization of 
oating-point arithmeti
, some ofwhi
h dire
tly in
uen
ed our work. Se
tion 3 des
ribes the �xed-point arith-meti
 de�nitions adopted in this paper in
luding the format of the �xed-pointnumbers, arithmeti
 operations, ex
eptions dete
tion and their handling, andthe di�erent over
ow and quantization modes. Se
tion 4 des
ribes in detailtheir formalization in HOL. In Se
tion 5, we dis
uss the veri�
ation of ba-si
 �xed-point arithmeti
 operations, su
h as addition and multipli
ation.Se
tion 6 presents an illustrative example on how this formalization 
an beused through the modeling and veri�
ation of an Integrator 
ir
uit. Finally,Se
tion 7 
on
ludes the paper.2 Related WorkThere exist several related work in the open literature on the formalizationand veri�
ation of IEEE standard based 
oating-point arithmeti
. For in-stan
e, Barrett [2℄ spe
i�ed parts of the IEEE-754 standard in Z, and Miner[29℄ formalized the IEEE-854 
oating-point standard in PVS. The latter de-�ned the relation between 
oating-point numbers and real numbers, round-ing, and some arithmeti
 operations on both �nite and in�nite operands.He used this formalization to verify abstra
t mathemati
al des
riptions ofthe main operations and their relation to the 
orresponding 
oating-pointimplementations. His work was one of the earliest on the formalization of
oating-point standards using theorem proving. His formal spe
i�
ation wasthen used by Miner and Leathrum [30℄ to verify in PVS a general 
lass ofIEEE 
ompliant subtra
tive division algorithms.Carreno [8℄ formalized the same IEEE-854 standard in HOL. He inter-preted the lexi
al des
riptions of the standard into mathemati
al 
onditionaldes
riptions and organized them in tables, whi
h were then formalized inHOL. He dis
ussed di�erent standard aspe
ts su
h as pre
isions, ex
eptionsand traps, and many other arithmeti
 operations su
h as addition, multipli-
ation, and square-root of 
oating-point numbers.Harrison [13℄ 
onstru
ted the real numbers in HOL. He then developedin HOL a generi
 
oating-point library [14℄ to de�ne the most fundamentalterms of the IEEE-754 standard and to prove the 
orresponding 
orre
tness



2 RELATED WORK 5analysis lemmas. He used this library to formalize and verify 
oating-pointalgorithms of 
omplex arithmeti
 operations su
h as the square root, theexponential fun
tion [15℄, and the trans
endental fun
tions [16℄ against theirabstra
t mathemati
al 
ounterparts. He also used the 
oating-point libraryfor the veri�
ation of the 
lass of division algorithms used in the Intel IA-64ar
hite
ture [17℄.Moore et al. [31℄ have veri�ed the AMD-K5 
oating-point division algo-rithm using the ACL2 theorem prover. Also, Russino� [35℄ has developeda 
oating-point library for the ACL2 prover and applied it su

essfully toverify the 
oating-point multipli
ation, division, and square root algorithmsof the AMD-K5 and AMD Athlon pro
essors.Aagaard and Seger [1℄ 
ombined BDD-based model-
he
king and theo-rem proving te
hniques in the Voss hardware veri�
ation system to verify theIEEE 
omplian
e of the gate-level implementation of a 
oating-point mul-tiplier. O'Leary et al. [34℄ reported on the spe
i�
ation and veri�
ation ofthe Intel Pentium r
 Pro pro
essor's 
oating-point exe
ution unit at the gatelevel using a 
ombination of model-
he
king and theorem proving. Leeser etal. [24℄ veri�ed a subtra
tive radix-2 square root algorithm and its hardwareimplementation using the higher-order logi
 theorem proving system Nuprl.Chen and Bryant [10℄ used word-level SMV to verify a 
oating-point adder.Cornea-Hasegan [9℄ used iterative approa
hes and mathemati
al proofs toverify the 
orre
tness of the IEEE 
oating-point square root, divide, andremainder algorithms.More re
ently, Daumas et al. [11℄ have presented a generi
 library forreasoning about 
oating-point numbers within the Coq system. This librarywas then used in the veri�
ation of IEEE-
ompliant 
oating-point arithmeti
algorithms [5℄ and hardware units [6℄. Berg et al. [3℄ have formally veri�eda theory of IEEE rounding presented in [32℄ using the theorem prover PVS.They have used a formal de�nition of rounding based on Miner's formaliza-tion of the standard [29℄. This theory was then used to prove the 
orre
tnessof a fully IEEE 
ompliant 
oating-point unit used in the VAMP pro
essor [4℄.Sawada and Gamboa [36℄ formally veri�ed the 
orre
tness of a 
oating-pointsquare root algorithm used in the IBM Power4TM pro
essor. The veri�
ationwas 
arried out with the ACL2(r) theorem prover whi
h is an extension of theACL2 theorem prover that performs reasoning on real numbers using non-standard analysis. The proof required the analysis of the approximation erroron Chebyshev series by proving Taylor's theorem. Kaivola et al. [20, 21, 22℄presented the formal veri�
ation of the 
oating-point multipli
ation, divi-



3 FIXED-POINT ARITHMETIC 6sion, and square root units of the Intel IA-32 Pentium r
 4 mi
ropro
essor.The veri�
ation was 
arried out using the Forte veri�
ation framework, a
ombined model-
he
king and theorem-proving system built on top of theVoss system. Model 
he
king was done via symboli
 traje
tory evaluation(STE), and theorem proving was done in the ThmTa
 proof tool.While all of the above work are 
on
erned with 
oating-point representa-tion and arithmeti
, there is no report in the open literature on any ma
hine-
he
ked formalization of properties of �xed-point arithmeti
. Therefore, theformalization presented in this paper is to our best knowledge, the �rst ofits kind. Our formalization of the �xed-point arithmeti
 has been inspiredmostly by the work done by Harrison [15℄ and Carreno [8℄ on 
oating-point.Harrison's work was more oriented towards veri�
ation purposes. Indeed,we used an analogous set of lemmas to his work, to 
he
k the validity ofoperation results and to 
arry out the error analysis of the quantized �xed-point result. For ex
eption handling whi
h is not 
overed by Harrison [15℄,we followed Carreno [8℄ who formalized 
oating-point ex
eptions and theirhandling in more details.3 Fixed-Point Arithmeti
In this se
tion we des
ribe the �xed-point arithmeti
 de�nitions on whi
h webase our formalization. While we tried to keep these de�nitions as generalas possible, the �xed-point numbers format, arithmeti
 operations, over
owand quantization modes, and ex
eption handling adopted are to some extentin
uen
ed by the �xed-point arithmeti
 de�ned by Caden
e SPW [7℄ andSynopsys SystemC [33℄.3.1 Fixed-Point NumbersA �xed-point number has a �xed number of binary digits and a �xed posi-tion for the de
imal point with respe
t to that sequen
e of digits. Fixed-pointnumbers 
an be either unsigned (always positive) or signed (in two's 
omple-ment representation). For example, 
onsider the 
ase of four bits being usedto represent the �xed-point numbers. If the numbers are unsigned and ifthe de
imal point or, more properly, the binary point is �xed at the positionafter the se
ond digit (XX.XX), the representable real values range from 0:0to 3:75. In two's 
omplement format, the most signi�
ant bit is the sign



3 FIXED-POINT ARITHMETIC 7bit. The remaining bits spe
ify the magnitude. If four bits represent the�xed-point numbers, and the binary point is �xed at the position after these
ond digit following the sign bit (SXX.X), the real values range from �4:0to +3:5.Fixed-point numbers are expressed as a pair 
onsisting of a binary stringand a set of attributes, (Binary String ;Attributes). The attributes spe
ifyhow the binary string is interpreted. Generally, the attributes are spe
i�edin the following format: (wl; iwl; sign) (1)whi
h 
onsists of the following parameters:� wl: Total word length, spe
ifying the total number of bits used torepresent the �xed-point binary string, in
luding integer bits, fra
tionalbits, and sign bit, if any. Word length must be in the range of 1 to 256.� iwl: Integer word length, spe
ifying the number of integer bits (thenumber of bits to the left of the binary point, ex
luding the sign bit, ifany). If this number is negative, repeated leading sign bits or zeros areadded to generate the equivalent binary value. If this number is greaterthan the total word length, trailing zeroes are added to generate theequivalent binary value.� sign: A letter spe
ifying the sign format: \u" for unsigned, and \t"for two's 
omplement.Example: A

ording to the above de�nitions, the real value �0:75 is rep-resented by (111101; (6; 3; t)). If we 
onsider the same bit string with un-signed attributes (111101; (6; 3; u)), then the equivalent number is 111:101or +7:625. On the other hand, (111101; (6;�3; u)) represents the value:000111101 whi
h is +0:119140625.3.2 Fixed-Point OperationsA DSP design tool usually provides a library in
luding basi
 �xed-point sig-nal pro
essing blo
ks su
h as adders, multipliers, delay blo
ks, and ve
torblo
ks. It also supports �xed-point hardware blo
ks su
h as multiplexers,bu�ers, inverters, 
ip-
ops, bit manipulation and general-purpose 
ombina-tional logi
 blo
ks. These blo
ks a

urately model the behavior of �xed-point



3 FIXED-POINT ARITHMETIC 8digital signal pro
essing systems. In this paper, we will fo
us on the arith-meti
 and logi
 operations, but the idea 
an be generalized to the remainingoperations. Operations performed on �xed-point data types are done usingarbitrary and full pre
ision. After the operation is 
omplete, the resultingoperand is 
ast to �t the �xed-point data type obje
t. The 
asting operationapplies the quantization behavior of the target obje
t to the new value andassigns the new value to the target obje
t. Then, the appropriate over
owbehavior is applied to the result of the pro
ess whi
h gives the �nal value.In addition to the parameters 
orresponding to the input operands and out-put result, the arithmeti
 operations take spe
i�
 parameters de�ning theover
ow and quantization (loss of pre
ision) modes. These parameters areas follows:� q mode: Quantization mode. This parameter determines the behaviorof the �xed-point operations when the result generates more pre
isionin the least signi�
ant bits (LSB) than is available.� o mode: Over
ow mode. This parameter determines the behavior ofthe �xed-point operations when the result generates more pre
ision inthe most signi�
ant bits (MSB) than is available.� n bits: Number of saturated bits. This parameter is only used forover
ow mode and spe
i�es how many bits will be saturated if a satu-ration behavior is spe
i�ed and an over
ow o

urs.Example: Consider a blo
k that serves as a primitive �xed-point multiplier,whi
h trun
ates the results when loss of pre
ision o

urs and wraps the resultwhen over
ow o

urs. We 
an make a 
all to the multiplier routine throughthe fun
tion fxpMul (Wrap j Trun
ate; In1 ; In2 ;Out), in whi
h In1 and In2are the input �xed-point operands, Out is a parameter 
orresponding tothe output attributes, and Wrap and Trun
ate indi
ate the over
ow andquantization modes, respe
tively.3.2.1 Fixed-Point Ex
eption HandlingFixed-point arithmeti
 operations that do not 
ompute and return an exa
tresult resort to an ex
eption-handling pro
edure. This pro
edure is 
ontrolledby the ex
eption 
ags. There are three kinds of ex
eptions that 
an be tested[7℄:



3 FIXED-POINT ARITHMETIC 9� Loss of Sign: The result was negative but the result storage area wasunsigned. Zero is stored.� Over
ow: The result was too big to be represented in the result stor-age area. The over
ow mode determines the returned value.� Invalid: No result 
an be meaningfully represented (e.g., divide byzero). This error 
an also o

ur if the �xed-point number itself isinvalid.3.2.2 Fixed-Point Quantization ModesQuantization e�e
ts are used to determine what happens to the LSBs of a�xed-point type when more bits of pre
ision are required than are available.The quantization modes are listed in Table 1.Table 1. Fixed-Point Quantization ModesQuantization Mode NameQuantization to Plus In�nity RNDQuantization to Zero RND ZEROQuantization to Minus In�nity RND MIN INFQuantization to In�nity RND INFConvergent Quantization RND CONVTrun
ation TRNTrun
ation to Zero TRN ZEROFigure 2 shows the behavior of ea
h quantization mode. The X axis isthe result of the previous arithmeti
 operation and the Y axis is the valueafter quantization. The diagonal line represents the ideal number represen-tation given in�nite bits. The small horizontal lines show the e�e
t of thequantization. Any value of the X axis within the range of the line will be
onverted to the value of the Y axis. The symbol q in the �gure refers tothe quantization step, that is, the resolution of the data type. Ea
h noninteger value on the X axis is lo
ated in a quantization interval surroundedby two su

essive integer multiples of q as its 
losest representable quantizednumbers, one greater and one smaller than the original value. If the value isexa
tly in the middle of the quantization interval, then the two 
losest rep-resentable numbers are equally distan
ed apart from the original value. As



3 FIXED-POINT ARITHMETIC 10shown in this �gure modes RND, RND ZERO, RND MIN INF, RND INF,and RND CONV will quantize a value to the 
losest representable number ifthe two nearest representable numbers are not equally distan
ed apart fromthe original value. Otherwise, quantization towards plus in�nity, to zero,towards minus in�nity, towards plus in�nity if positive or minus in�nity ifnegative, and towards nearest even will be performed, respe
tively (Figure2 (a-e)). The TRN mode is the default for �xed-point types and will beused if no other value is spe
i�ed. The result is always quantized towardsminus in�nity (Figure 2 (f)). In other words, the result value is the �rstrepresentable number lower than the original value. Finally, for TRN ZEROthe result is the nearest representable value to zero (Figure 2 (g)) [33℄.
2qq

q
2q
3q
Y

X3q2qq

Y
3q

q
2q

3q

d) RND_INFc) RND_MIN_INFb) RND_ZEROa) RND

X3q2qq

q
2q
3q
Y

X3q2qq

q
2q
3q
Y

X

e) RND_CONV f) TRN g) TRN_ZERO

X3q2qq

q
2q
3q
Y

X3q2qq

q
2q
3q
Y

X3q2qq

q
2q
3q
Y

Figure 2: The Behavior of Fixed-Point Quantization Modes3.2.3 Fixed-Point Over
ow ModesIn addition to quantization modes, we 
an use over
ow modes to approximatea higher range for �xed-point operations. Usually, over
ow o

urs when theresult of an operation is too large or too small for the available bit range.Spe
i�
 over
ow modes 
an then be implemented to redu
e the loss of data.Over
ow modes are spe
i�ed by the o mode and n bits parameters, and arelisted in Table 2.



3 FIXED-POINT ARITHMETIC 11Table 2. Fixed-Point Over
ow ModesOver
ow Mode NameSaturation SATSaturation to Zero SAT ZEROSymmetri
al Saturation SAT SYMWrap-Around WRAPSign Magnitude Wrap-Around WRAP SMFigure 3 shows the behavior of ea
h over
ow mode for a 3 bit �xed-pointdata type. The diagonal line represents the ideal value if in�nite bits areavailable for representation. The dots represent the values of the result. TheX axis is the original value and the Y axis is the result. From this �gure, it
an be seen that MAX = 3 and MIN = �4 for a 3 bit �xed-point data type.The SAT mode will 
onvert the spe
i�ed value to MAX for an over
ow orMIN for an under
ow 
ondition (Figure 3 (a)). The SAT ZERO mode willset the result to 0 for any input value that is outside the representable rangeof the �xed-point type. If the result value is greater than MAX or smallerthan MIN, the result will be 0 (Figure 3 (b)). In the SAT SYM mode, posi-tive over
ow will generate MAX and negative over
ow will generate �MAXfor signed numbers or MIN for unsigned numbers (Figure 3 (
)). With theWRAP mode, the value of an arithmeti
 operand will wrap around fromMAX to MIN as MAX is rea
hed. There are two di�erent 
ases within thismode. The �rst is with the n bits parameter set to 0 or having a defaultvalue of 0. All bits ex
ept for the deleted bits are 
opied to the result num-ber (Figure 3 (d)). The se
ond is when the n bits parameter is a nonzerovalue. In this 
ase the spe
i�ed number of most signi�
ant bits of the resultnumber are saturated with preservation of the original sign, the other bitsare simply 
opied. Positive numbers remain positive and negative numbersremain negative. A graph showing this behavior with n bits = 1 is given inFigure 3 (e). Note that positive numbers wrap around to 0 while negativevalues wrap around to �1. The WRAP SM over
ow mode uses sign magni-tude wrapping. This over
ow mode behaves in two di�erent styles dependingon the value of the n bits parameter. When n bits is 0, no bits are saturated.This mode will �rst delete any MSB bits that are outside the result wordlength. The sign bit of the result is set to the value of the least signi�
antdeleted bit. If the most signi�
ant remaining bit is di�erent from the originalMSB, then all the remaining bits are inverted. If the MSBs are the same,



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 12the other bits are 
opied from the original value to the result value. A graphshowing the result of this over
ow mode is provided in Figure 3 (f). As thevalue of X in
reases, the value of Y in
reases toMAX and then slowly startsto de
rease until MIN is rea
hed. The result is a sawtooth like waveform.With n bits greater than 0, n bits MSB bits are saturated to 1. A graphshowing this behavior with n bits = 1 is given in Figure 3 (g). Note thatwhile the graph looks somewhat like a sawtooth waveform, positive numbersdo not dip below 0 and negative numbers do not 
ross �1 [33℄.

1 2 3 4 5 6 7 8 9 X

Y
5
4
3
2
1

1 2

1

4
3
2
1

1 2 3 4 5 6 8 9 X

Y
5
4
3
2

3

4
3
2
1

1 2 3 4 5 6 X

a) SAT b) SAT_ZERO c) SAT_SYM

d) WRAP, n_bits = 0 e) WRAP, n_bits = 1

f) WRAP_SM, n_bits = 0 g) WRAP_SM, n_bits = 1

5

4 5 6 X

Y
5
4
3
2
1

1 2 3 4 5 6 X

Y

5

X

Y
5
4
3
2
1

1 2 3 4 5 6 7 X98

Y

9

Y
5
4
3
2
1

1 2 3 4 5 6 7

Figure 3: The Behavior of Fixed-Point Over
ow Modes4 Formalizing Fixed-Point Arithmeti
 in HOLIn this se
tion, we present formalization of the �xed-point arithmeti
 inhigher-order logi
, based on the general purpose HOL theorem prover. The



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 13HOL system supports both forward and ba
kward proofs. The forward proofstyle applies inferen
e rules to existing theorems to obtain new theorems andeventually the desired theorem. Ba
kward or goal oriented proofs start withthe goal to be proven. Ta
ti
s are applied to the goal and subgoals until thegoal is de
omposed into simpler existing theorems or axioms. The systembasi
 language in
ludes the natural numbers and Boolean type. It also in-
ludes other spe
i�
 extensions like reals library [13℄, whi
h was proved tobe essential for our �xed-point arithmeti
 formalization. Table 3 summarizessome of the HOL symbols used in this paper and their meanings [12℄.Table 3. HOL SymbolsHOL Symbol Standard Symbol Meaning�x: t "x: t An x su
h that t (x) holds�x: t �x: t Fun
tion that maps x to t (x)& (none) Natural map operator (N ! R): t : t Not t: x � x Unary negation of xinv (x) x�1 Multipli
ative inverse of xabs (x) j x j Absolute value of xx pow n xn Real x raised to natural number power nm EXP n mn Natural number m raised to exponent nThe HOL type system does not support subtypes, so the real numbers(R) have formally a di�erent type from the natural numbers (N). Therefore,the unary operator ampersand (&) is used to map between them. Thus thereal number numerals 
an be written as &0;&1, et
 [15℄.4.1 Fixed-Point Numbers RepresentationThe a
tual �xed-point numbers are represented in HOL by a pair of elementsrepresenting the binary string and the set of attributes. The extra
tors forthe two �elds of a �xed-point number are de�ned as follows:`def string (s,a) = s`def attrib (s,a) = aThe binary string is treated as a Boolean word (type: bool word). Forexample, the bit string 1010 is represented by WORD [T;F;T;F℄. In this way,



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 14we use the de�nitions and theorems already available in the HOL word library [39℄to fa
ilitate the manipulation of binary words. The attributes are represented bya triplet of natural numbers for the total number of bits, the integer bits and thesign format.In HOL, we de�ne fun
tions to extra
t the primitive parameters for arbitraryattributes.`def wordlength (w,iw,s) = w`def intbits (w,iw,s) = iw`def sign (w,iw,s) = sWe also de�ne predi
ates partitioning the �xed-point numbers into signed andunsigned numbers.`def is_signed X = (sign X = 1)`def is_unsigned X = (sign X = 0)The number of digits on the right hand side of the binary point of a �xed-pointnumber is de�ned as fra
bits. It 
an be derived as the di�eren
e between the totalnumber of bits and the number of integer bits, 
onsidering the sign bit in the 
aseof signed numbers.`def fra
bits X =if (is_unsigned X) then (wordlength X � intbits X)else (wordlength X � intbits X � 1)Two useful derived predi
ates test the validity of a set of attributes and a �xed-point number based on the de�nition in Se
tion 3.1. In a valid set of attributes,the wordlength should be in the range of 1 and 256, the sign 
an be either 0 or1, and the number of integer bits is less than or equal to the wordlength. A valid�xed-point number must have a valid set of attributes and the length of its binarystring must be equal to the wordlength.`def validAttr X =wordlength X > 0 ^ wordlength X < 257 ^intbits X < wordlength X + 1 ^ sign X < 2`def is_valid a =validAttr (attrib a) ^ (WORDLEN (string a) = wordlength (attrib a))whereWORDLEN is a prede�ned fun
tion of the HOL word library, whi
h returnsthe size of a word.



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 154.2 Fixed-Point TypeNow we de�ne the a
tual HOL type for the �xed-point numbers. The type isde�ned to be in bije
tion with the appropriate subset of (bool word � N3), withthe bije
tions written in HOL as fxp : (bool word � N3)! fxp, and defxp : fxp!(bool word�N3 ). The bije
tion maps the set of all elements of type (bool word�N3)to the set of valid �xed-point numbers spe
i�ed by the fun
tion is valid as de�nedin the previous se
tion. For this purpose, we make use of built-in fa
ilities in HOLfor de�ning new bije
tion types [38℄. A similar te
hnique was used in [15℄ forde�ning type bije
tions for the 
oating-point numbers (
oat,de
oat) in HOL.fxp_tybij =` (8a. fxp (defxp a) = a) ^ (8r. is_valid r = (defxp (fxp r) = r))We spe
ialize the previous fun
tions and predi
ates to the fxp type, as follows:`def String a = string (defxp a)`def Attrib a = attrib (defxp a)`def Wordlength a = wordlength (Attrib a)`def Intbits a = intbits (Attrib a)`def Fra
bits a = fra
bits (Attrib a)`def Sign a = sign (Attrib a)`def Issigned a = is_signed (Attrib a)`def Isunsigned a = is_unsigned (Attrib a)`def Isvalid a = is_valid (defxp a)Note that we start the name of the fun
tions manipulating �xed-point num-bers by 
apital letters to distinguish them from those taking pairs and triplets asargument.4.3 Fixed-Point ValuationNow we spe
ify the real number valuation of �xed-point numbers. We use twoseparate formulas for signed and unsigned numbers:� Unsigned: (1=2M ) � (N�1Xn=0 2n � vn) (2)� Signed: (1=2M ) � [N�1Xn=0 2n � vn � 2N � vN�1℄ (3)



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 16where vn represents the nth bit of the binary string in the �xed-point number1,and M and N are respe
tively fra
bits and wordlength. In HOL, we de�ne thevaluation fun
tion value that returns the 
orresponding real value of a �xed-pointnumber.`def value a =if (Isunsigned a) then &(BNVAL (String a)) / 2 pow Fra
bits aelse (&(BNVAL (String a)) � &((2 EXP Wordlength a) *BV (MSB (String a)))) / 2 pow Fra
bits awhere BNVAL is a fun
tion whi
h returns the numeri
 value of a Boolean word,BV is a fun
tion for mapping between a single bit and a number, and MSB is a
onstant for the most signi�
ant bit of a word, available in the HOL word library.We also de�ne the real value of the smallest (MIN ) and largest (MAX ) repre-sentable numbers for a given set of attributes. The maximum is de�ned for bothsigned and unsigned numbers using the following formula:MAX = 2a � 2�b (4)where a is the intbits and b the fra
bits. The minimum value for unsigned numbersis zero and for signed numbers is 
omputed using the following formula:MIN = � 2a (5)Thereafter, we obtain the 
orresponding fun
tions in HOL.`def MAX X = 2 pow intbits X � inv (2 pow fra
bits X)`def MIN X = if (is_unsigned X) then 0 else :(2 pow intbits X)The 
onstants for the smallest (bottomfxp) and largest (topfxp) representable�xed-point numbers for a given set of attributes 
an be de�ned as follows:`def topfxp X =if (is_unsigned X) then fxp (WORD (REPLICATE (wordlength X) T),X)else fxp (WCAT (WORD [F℄,WORD (REPLICATE (wordlength X � 1) T)),X)`def bottomfxp X =if (is_unsigned X) then fxp (WORD (REPLICATE (wordlength X) F),X)else fxp (WCAT (WORD [T℄,WORD (REPLICATE (wordlength X � 1) F)),X)where WCAT denotes the 
on
atenation of two words, and REPLICATE makesa list 
onsisting of a value repli
ated a spe
i�ed number of times, whi
h are pre-de�ned fun
tions in HOL.1We adopt the 
onvention that bits are indexed from the right hand side.



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 174.4 Ex
eption HandlingOperations on �xed-point numbers 
an signal ex
eptions as des
ribed in Se
-tion 3.2. These are de
lared as a new HOL data type.`def Ex
eption = no_ex
ept j overflow j invalid j loss_signwhere no ex
ept is reserved for the 
ase without ex
eption.Five over
ow modes are also represented via an enumerated type de�nition.`def overflow_mode = SAT j SAT_ZERO j SAT_SYM j WRAP j WRAP_SMA

ording to the de�nition of over
ow modes in Se
tion 3.2.3 for Saturation, ifthe number is greater thanMAX or less thanMIN, we return topfxp and bottomfxp,as the 
losest representable values to the right result, respe
tively. For Saturationto Zero over
ow, we will return zero in any 
ase. For Symmetri
al Saturation, ifthe number is greater thanMAX, we return topfxp. If the number is less thanMIN,we return the two's 
omplement of the maximum value, de�ned by the fun
tionminustopfxp for signed, and bottomfxp for unsigned numbers, respe
tively. ForWrap-around and Sign magnitude, we must �rst 
onvert the real number to abinary format. Then we dis
ard the extra bits a

ording to the output attributes,and saturate the required bits based on the parameter n bits. The details arede�ned as fun
tions WRAP AROUND and WRAP AROUND SM. Therefore, wede�ne the �xed-point over
ow fun
tion in HOL as follows:`def fxp_overflow X o_mode n_bits x =if (x > MAX X) thenif (o_mode = SAT) then topfxp Xelse if (o_mode = SAT_ZERO) thenfxp (WORD (REPLICATE (wordlength X) F),X)else if (o_mode = SAT_SYM) then topfxp Xelse if (o_mode = WRAP) thenWRAP_AROUND X n_bits xelse WRAP_AROUND_SM X n_bits xelse if (x < MIN X) thenif (o_mode = SAT) then bottomfxp Xelse if (o_mode = SAT_ZERO) thenfxp (WORD (REPLICATE (wordlength X) F),X)else if (o_mode = SAT_SYM) thenif (is_unsigned X) then bottomfxp Xelse minustopfxp Xelse if (o_mode = WRAP) thenWRAP_AROUND X n_bits xelse WRAP_AROUND_SM X n_bits xelse Null



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 18where Null is a 
onstant that represents the result of an invalid operation, de�nedas:`def Null = �a. : (Isvalid a)Note that if the number is in the representable range of the given attributes,i.e. its value is neither greater than MAX nor less than MIN, then the over
ow ismeaningless and Null will be returned as the result.4.5 QuantizationFixed-point quantization takes an in�nitely pre
ise real number and 
onverts itinto a �xed-point number. Seven quantization modes are spe
i�ed in Se
tion 3.2.2,whi
h we formalize using the following data type.`def quantization_mode =RND j RND_ZERO j RND_MIN_INF j RND_INF j RND_CONV j TRN j TRN_ZEROThen we de�ne the �xed-point quantization operation by a fun
tion, whi
h isde�ned 
ase by 
ase on the quantization modes as follows:`def fxp_quantize X q_mode x =if (q_mode = RND) then
losest value (� a. value a � x)fa j (Isvalid a) ^ (Attrib a = X)g xelse if (q_mode = RND_ZERO) then
losest value (� a. abs (value a) � abs x)fa j (Isvalid a) ^ (Attrib a = X)g xelse if (q_mode = RND_MIN_INF) then
losest value (� a. value a � x)fa j (Isvalid a) ^ (Attrib a = X)g xelse if (q_mode = RND_INF) then
losest value(� a. (if 0 � x then value a � x else value a � x))fa j (Isvalid a) ^ (Attrib a = X)g xelse if (q_mode = RND_CONV) then
losest value (� a. LSB (String a) = F)fa j (Isvalid a) ^ (Attrib a = X)g xelse if (q_mode = TRN) then
losest value (� a. T)fa j (Isvalid a) ^ (Attrib a = X) ^ (value a � x)g xelse 
losest value (� a. T)fa j (Isvalid a) ^ (Attrib a = X) ^(abs (value a) � abs x)g x



4 FORMALIZING FIXED-POINT ARITHMETIC IN HOL 19The �xed-point quantization fun
tion takes as arguments a real number, aquantization mode, and an output attributes, and returns the 
orresponding �xed-point number. Similar to the 
oating-point 
ase [15℄, its de�nition is based on thefollowing predi
ate meaning that a is an element of the set s that provides a bestapproximation to x, assuming a valuation fun
tion v :`def is_
losest v s x a =((a IN s) ^ 8b. (b IN s) =) (abs (v a � x) � abs (v b � x)))However, we still need to de�ne a fun
tion that pi
ks out a best approximationin 
ase there are more than one 
losest number, based on a given property likeeven. This 
an be done in HOL as follows:`def 
losest v p s x =�a. ((is_
losest v s x a) ^((9b. (is_
losest v s x b) ^ (p b)) =) (p a)))Finally, we de�ne the a
tual �xed-point rounding fun
tion for an arbitraryoutput attributes.`def fxp_round X o_mode q_mode n_bits x =if (x > MAX X _ x < MIN X) then((fxp_overflow X o_mode n_bits x),overflow)else ((fxp_quantize X q_mode x),no_ex
ept)where fxp over
ow is the �xed-point over
ow fun
tion as de�ned in the previousse
tion and supports all over
ow modes, and fxp quantize is the �xed-point quan-tization fun
tion that supports all quantization modes. The �xed-point roundingfun
tion takes as argument a real number, an output attributes, the quantizationand over
ow modes, and the number of saturated bits. It returns a �xed-pointnumber and an ex
eption 
ag. The fun
tion �rst 
he
ks for over
ow, and in 
ase ofover
ow returns the result based on the over
ow mode, and sets the ex
eption 
agto over
ow. Otherwise, it performs the quantization based on the quantizationmode, and sets the ex
eption 
ag to no ex
ept.4.6 Fixed-Point Arithmeti
 OperationsFixed-point arithmeti
 operations su
h as addition or multipli
ation take two �xed-point input operands and store the result into a third. The attributes of the inputsand output need not mat
h one another. Both unsigned and two's 
omplementinputs and output are allowed. The result is formatted into the output as spe
i�ed



5 VERIFICATION OF FIXED-POINT OPERATIONS 20by the output attributes and by the over
ow and loss of pre
ision mode param-eters. In our formalization, we �rst deal with ex
eptional 
ases su
h as invalidoperation and loss of sign. If any of the input numbers is invalid, then the resultis Null and the ex
eption 
ag invalid is raised. If the result is negative but theoutput is unsigned then zero is returned and the ex
eption 
ag loss sign is raised.Also in the 
ase of division by zero, the output value is for
ed to zero and theinvalid 
ag is raised. Otherwise, we take the real value of the input arguments,perform the operation as in�nite pre
ision, then quantize the result a

ording tothe desired quantization and over
ow modes. Formally, the operations for addi-tion, subtra
tion, multipli
ation, and division are de�ned as follows:`def fxpAdd X o_mode q_mode n_bits a b =if :(Isvalid a ^ Isvalid b) then (Null,invalid)else if (value a + value b < 0 ^ is_unsigned X) then(fxp (WORD (REPLICATE (wordlength X) F),X),loss_sign)else fxp_round X o_mode q_mode n_bits (value a + value b)`def fxpSub X o_mode q_mode n_bits a b =if :(Isvalid a ^ Isvalid b) then (Null,invalid)else if (value a � value b < 0 ^ is_unsigned X) then(fxp (WORD (REPLICATE (wordlength X) F),X),loss_sign)else fxp_round X o_mode q_mode n_bits (value a � value b)`def fxpMul X o_mode q_mode n_bits a b =if :(Isvalid a ^ Isvalid b) then (Null,invalid)else if (value a * value b < 0 ^ is_unsigned X) then(fxp (WORD (REPLICATE (wordlength X) F),X),loss_sign)else fxp_round X o_mode q_mode n_bits (value a * value b)`def fxpDiv X o_mode q_mode n_bits a b =if :(Isvalid a ^ Isvalid b) then (Null,invalid)else if (value b = 0) then(fxp (WORD (REPLICATE (wordlength X) F),X),invalid)else if (value a / value b < 0 ^ is_unsigned X) then(fxp (WORD (REPLICATE (wordlength X) F),X),loss_sign)else fxp_round X o_mode q_mode n_bits (value a / value b)5 Veri�
ation of Fixed-Point OperationsA

ording to the dis
ussion in Se
tion 4.3, ea
h �xed-point number has a 
or-responding real number value. The 
orre
tness of a �xed-point operation 
an bespe
i�ed by 
omparing its output with the true mathemati
al result, using the val-uation fun
tion value that 
onverts a �xed-point to an in�nitely pre
ise number.



5 VERIFICATION OF FIXED-POINT OPERATIONS 21For example, the 
orre
tness of a �xed-point adder fxpAdd is spe
i�ed by 
ompar-ing it with its ideal 
ounterpart +. That is, for ea
h pair of �xed-point numbers(a,b), we 
ompare value (a)+ value (b) and value (fxpAdd (a,b)). In other words,we 
he
k if the diagram in Figure 4 
ommutes.
value

fxpAdd (a,b)

value

value (a) + value (b)
~~ ?

value (fxpAdd (a,b))

+

a , b
fxpAdd

value (a) , value (b)

Figure 4: Corre
tness Criteria for Fixed-Point AdditionFor this purpose we de�ne the error resulting from quantizing a real numberto a �xed-point value as follows:`def fxperror X o_mode q_mode n_bits x =value (FST (fxp_round X o_mode q_mode n_bits x)) � xand then establish the 
orre
tness theorems for all four �xed-point arithmeti
operations.Theorem 1: FXP_ADD_THM` (Isvalid a) ^ (Isvalid b) ^ validAttr (X) =)(Isvalid (FST (fxpAdd (X) o_mode q_mode n_bits a b))) ^(value (FST (fxpAdd (X) o_mode q_mode n_bits a b)) =value (a) + value (b) +(fxperror (X) o_mode q_mode n_bits (value (a) + value (b))))Theorem 2: FXP_SUB_THM` (Isvalid a) ^ (Isvalid b) ^ validAttr (X) =)(Isvalid (FST (fxpSub X o_mode q_mode n_bits a b))) ^(value (FST (fxpSub X o_mode q_mode n_bits a b)) =value (a) � value (b) +(fxperror X o_mode q_mode n_bits (value a � value b)))Theorem 3: FXP_MUL_THM` (Isvalid a) ^ (Isvalid b) ^ validAttr (X) =)(Isvalid (FST (fxpMul X o_mode q_mode n_bits a b))) ^(value (FST (fxpMul X o_mode q_mode n_bits a b)) =(value a * value b) +(fxperror X o_mode q_mode n_bits (value a * value b)))



5 VERIFICATION OF FIXED-POINT OPERATIONS 22Theorem 4: FXP_DIV_THM` (Isvalid a) ^ (Isvalid b) ^ validAttr (X) =)(Isvalid (FST (fxpDiv X o_mode q_mode n_bits a b))) ^(value (FST (fxpDiv X o_mode q_mode n_bits a b)) =(value a / value b) +(fxperror X o_mode q_mode n_bits (value a / value b)))The theorems are 
omposed of two parts. The �rst part is about the validity ofthe �xed-point arithmeti
 operation output and states that if the input �xed-pointnumbers and the output attributes are valid then the result of the �xed-point op-eration is valid. The se
ond part of the theorem relates the result of the �xed-pointarithmeti
 operations to the real result based on the 
orresponding error fun
tion.To prove these main theorems, a number of lemmas have been established. We�rst proved lemmas 
on
erning the approximation of a real number with a �xed-point number. We proved that in a �nite non-empty set of �xed-point numbers,we 
an �nd the best approximation to a real number based on a given valuationfun
tion (Lemma 1 ).Lemma 1: FXP_IS_CLOSEST_EXISTS` FINITE (s) =) :(s = EMPTY) =) 9 (a: fxp). is_
losest v s x aThen, we proved that the 
hosen best approximation to a real number satisfyinga property p from a �nite and non-empty set of �xed-point numbers is unique(Lemma 2 ), and is itself a member of the set (Lemma 3 ), and is itself the bestapproximation of the real number (Lemma 4 ).Lemma 2: FXP_CLOSEST_IS_EVERYTHING` FINITE (s) =) :(s = EMPTY) =)is_
losest v s x (
losest v p s x) ^((9b. is_
losest v s x b ^ p b) =) p (
losest v p s x))Lemma 3: FXP_CLOSEST_IN_SET` FINITE (s) =) :(s = EMPTY) =) (
losest v p s x) IN sLemma 4: FXP_CLOSEST_IS_CLOSEST` FINITE (s) =) :(s = EMPTY) =) is_
losest v s x (
losest v p s x)Finally, we proved that the 
hosen best approximation to a real number sat-isfying a property p from the set of all valid �xed-point numbers with a givenattributes is itself a valid �xed-point number (Lemma 5 ).Lemma 5: IS_VALID_CLOSEST` (validAttr X) =)Isvalid (
losest v p fa j Isvalid a ^ ((Attrib a) = X)g x)



5 VERIFICATION OF FIXED-POINT OPERATIONS 23Besides, we proved that the set of all valid �xed-point numbers with a givenattributes is �nite (Lemma 6 ).Lemma 6: FINITE_VALID_ATTRIB` FINITE fa j Isvalid a ^ (Attrib a = X)gThe proof of this lemma is a bit 
ompli
ated. For this purpose we made use ofsome built-in theorems about �nite sets in the HOL pred sets library [28℄. Amongthese are the two fundamental theorems FINITE EMPTY and FINITE INSERT,whi
h state that the empty set is indeed �nite and the insertion of an elementto a �nite set 
onstru
ts a �nite set. Other theorems state that the union oftwo �nite sets (FINITE UNION ), the image of a fun
tion on a �nite set (IM-AGE FINITE ), a singleton set2 (FINITE SING), the 
ross 
ombination of two�nite sets (FINITE CROSS ), and any subset of a �nite set (SUBSET FINITE )is itself a �nite set. Using these theorems together with the de�nition of a valid�xed-point number helped us to break down the proof of the �niteness of all valid�xed-point numbers to the proof of �niteness of the set of all Boolean words with agiven word length (WORD FINITE ) and the set of all natural numbers less thana given value (FINITE COUNT ). The last lemmas are proved by indu
tion on theword length of the Boolean word and the maximum limit of the natural numbers,respe
tively.We also proved that the set of all valid �xed-point numbers is nonempty(Lemma 7 ).Lemma 7: IS_VALID_NONEMPTY` (validAttr X) =) :(fa j Isvalid a ^ (Attrib a = X)g = EMPTY)Finally, we proved that the result of quantizing a real number, whi
h is inthe range representable by a given valid attributes, is a valid �xed-point number(Lemma 8 ).Lemma 8: IS_VALID_QUANTIZATION` (validAttr X) =) Isvalid (FST (fxp_round X o_mode q_mode n_bits x))The validity of the quantization dire
tly implies validity of the �xed-point op-eration output, and this 
ompletes the proof of the �rst parts of the theorems. These
ond parts of the theorems are proved using the properties of the real arithmeti
in HOL and rewriting with the de�nitions of the fxpAdd, fxpSub, fxpMul, fxpDiv,and fxperror fun
tions.The se
ond main theorem on �xed-point error analysis 
on
erns bounding thequantization error. The error 
an be absolutely quanti�ed as follows:2a set that 
ontains pre
isely one element.



5 VERIFICATION OF FIXED-POINT OPERATIONS 24Theorem 5: FXP_ERROR_BOUND_THM` (validAttr X) ^ :(x > MAX (X)) ^ : (x < MIN (X)) =)abs (fxperror X o_mode q_mode n_bits x) � inv (&2 pow fra
bits X)A

ording to this theorem, the error in quantizing a real number whi
h is inthe range representable by a given set of attributes X is less than the quantity1 = 2fra
bits (X). This theorem is valid for all �xed-point quantization modes.However, for RND, RND ZERO, RND MIN INF, RND INF, and RND CONVmodes, whi
h quantize to the nearest representable value, the error 
an be boundedto 1 = 2(fra
bits (X)+1) by extending the theorem.To explain the theorem, we 
onsider the following fa
t that relates the de�nitionof the �xed-point numbers to the rationals.An N -bit binary word, when interpreted as an unsigned �xed-point number,
an take on values from a subset P of the non-negative rationals given byP = fp=2b j 0 � p � 2N � 1; p 2 Zg (6)Similarly, for signed two's 
omplement representation, we haveP = fp=2b j �2N�1 � p � 2N�1 � 1; p 2 Zg (7)Note that P 
ontains 2N elements and b represents the fra
tional bits in ea
h 
ase.Based on this fa
t, we 
an depi
t the range of values 
overed for ea
h 
ase asshown in Figure 5. MIN
1=2b p=2b (2N � 1)=2b(2N � 2)=2b0 x a MAX

b) Signed�2N�1=2b (2N�1 � 1)=2bp=2b2=2b1=2b (2N�1 � 2)=2b0(�2N�1 + 1)=2b ax MAXMIN a) Unsigned2=2b

Figure 5: Fixed-Point Values on the Real AxisThereafter, the representable range of �xed-point numbers is divided into 2Nequispa
ed quantization steps with the distan
e between two su

essive steps equalto 1 = 2b. Suppose that x 2 R is approximated by a �xed-point number a. Theposition of these values are labeled in Figure 5. The error j x � a j is hen
e lessthan the length of one interval, or 1 = 2b, as mentioned in the se
ond theorem.



5 VERIFICATION OF FIXED-POINT OPERATIONS 25In HOL, we �rst proved that the quantization result is the nearest value toa real number and the 
orresponding error is minimum 
ompared to the other�xed-point numbers (Lemma 9 ).Lemma 9: FXP_ERROR_AT_WORST_LEMMA` (validAttr X) ^ :(x > MAX (X)) ^ :(x < MIN (X)) ^(Isvalid a) ^ (Attrib a = X) =)abs (fxperror X o_mode q_mode n_bits x) � abs (value a � x)Then we proved that ea
h representable real value x 
an be surrounded by twosu

essive rational numbers (Lemma 10 ).Lemma 10: FXP_ERROR_BOUND_LEMMA1` (validAttr X) ^ :(x > MAX (X)) ^ :(x < MIN (X)) =)9k. (k < 2 EXP wordlength X) ^ (&k / (&2 pow fra
bits X) � x) ^(x < (&(SUC k) / (&2 pow fra
bits (X))))Also we proved that the di�eren
e between the real number and the surround-ing rationals is less than 1 = 2fra
bits (X) (Lemma 11 ).Lemma 11: FXP_ERROR_BOUND_LEMMA2` (validAttr X) ^ :(x > MAX (X)) ^ :(x < MIN (X)) =)9k. (k � 2 EXP wordlength X) ^abs (x � &k / (&2 pow (fra
bits (X)))) � inv (&2 pow (fra
bits (X)))Finally, we proved that for ea
h real value we 
an �nd a �xed-point numberwith the required error 
hara
teristi
s (Lemma 12 ).Lemma 12: FXP_ERROR_BOUND_LEMMA3` (validAttr X) ^ :(x > MAX (X)) ^ :(x < MIN (X)) =) 9(w: bool word).abs (value (fxp (w,X)) � x) � inv (&2 pow (fra
bits X)) ^(WORDLEN w = wordlength X)Sin
e the quantization produ
es the minimum error as stated in Lemma 9,the proof of the se
ond main theorem (Theorem 5 ) is a dire
t 
onsequen
e ofLemma 12. In these proofs, we have treated the 
ase of signed and unsignednumbers separately sin
e they have di�erent de�nitions for MAX, MIN, and valuefun
tions. For signed numbers a spe
ial attention needs also to be paid to dealwith negative numbers.



6 APPLICATION WITH SPW 266 Appli
ation with SPWIn this se
tion we demonstrate how to apply the formalization of �xed-point arith-meti
 presented in the previous se
tions for the veri�
ation of the transition from
oating-point to �xed-point algorithmi
 levels. We have 
hosen SPW as appli
a-tion tool and the 
ase of an Integrator as an example 
ir
uit. A digital integratoris a dis
rete time system that transforms a sequen
e of input numbers into anothersequen
e of output, by means of a spe
i�
 
omputational algorithm. To des
ribethe general fun
tionality of a digital integrator, let fxtg, fwtg, and a denote theinput sequen
e, output sequen
e, and 
onstant 
oeÆ
ient of the integrator, respe
-tively. Then the integrator 
an be spe
i�ed by the di�eren
e equation:wt = xt�1 + a wt�1 (8)Thereafter, the output sequen
e at time t is equal to the input sequen
e at timet - 1, added to the output at time t - 1 multiplied by the integrator 
oeÆ
ient.

SIGNAL

a’ = 0.997137

M3
M4

SOURCE

SIGNAL

S2’

OUT’S1’IN’ M5
M1

M2

-1SIGNAL
SINK

(64,31,t)

b) Fixed-Point Design

a) Floating-Point Design

(64,31,t)

(64,31,t)

a’’ = 0.997137

SOURCE SINK

SIGNAL

S2’’

OUT’’S1’’

M1’
IN’’

M5’M3’M4’

M2’

-1 (64,31,t)

Figure 6: SPW Design of an IntegratorFigure 6 shows the SPW design of an integrator. The integrator is �rst de-signed and simulated using the SPW prede�ned 
oating-point blo
ks and param-eters (Figure 6 (a)). The design is 
omposed of an adder (M1), a multiplier by
onstant (M2), and a delay (M3 ) blo
k, together with signal sour
e (M4 ) and sink(M5 ) elements. The input signal, the output signal, and the output of the adder



6 APPLICATION WITH SPW 27and multiplier blo
ks are labeled by IN', OUT', S1', and S2', respe
tively. Figure6 (b) shows the 
onverted �xed-point design in whi
h ea
h blo
k is repla
ed withthe 
orresponding �xed-point blo
k (M1';M2';M3';M4';M5'). Fixed-point blo
ksare shown by double 
ir
les and squares to distinguish them from the 
oating-point blo
ks. The attributes of all �xed-point blo
k outputs are set to (64; 31; t)to ensure that over
ow and quantization do not a�e
t the system operation. The
orresponding �xed-point signals are labeled by IN", OUT", S1", and S2".In HOL, we �rst model the design at ea
h level as predi
ates in higher-orderlogi
. The predi
ates 
orresponding to the 
oating-point design are as follows:`def Float_Gain_Blo
k a0 b0 
0 = (8t. 
0 t = a0 t float_mul b0)`def Float_Delay_Blo
k a0 b0 = (8t. b0 t = a0 (t � 1))`def Float_Add_Blo
k a0 b0 
0 = (8t. 
0 t = a0 t float_add b0 t)`def Float_Integrator_Imp X a0 IN0 OUT0 =9 S10 S20.Float_Add_Blo
k IN0 S20 S10 ^Float_Delay_Blo
k S10 OUT0 ^Float_Gain_Blo
k OUT0 a0 S20where X is the 
oating-point format. In these de�nitions, we have used availableformalization of 
oating-point arithmeti
 in HOL [15℄. Floating-point data typesare stored in SPW in the standard IEEE 64 bit double pre
ision format.The HOL des
ription of the �xed-point implementation is as follows:`def Fxp_Gain_Blo
k a00 b00 
00 = (8t. 
00 t = a00 t fxp_mul b00)`def Fxp_Delay_Blo
k a00 b00 = (8t. b00 t = a00 (t � 1))`def Fxp_Add_Blo
k a00 b00 
00 = (8t. 
00 t = a00 t fxp_add b00 t)`def Fxp_Integrator_Imp X0 o_mode q_mode n_bits a00 IN00 OUT00 =9 S100 S200.Fxp_Add_Blo
k IN00 S200 S100 ^Fxp_Delay_Blo
k S100 OUT00 ^Fxp_Gain_Blo
k OUT00 a00 S200where X' is the �xed-point format, and the fun
tions fxp add and fxp mul arede�ned as follows:`def a00 fxp_add b00 = FST (fxpAdd X0 o_mode q_mode n_bits a00 b00)`def a00 fxp_mul b00 = FST (fxpMul X0 o_mode q_mode n_bits a00 b00)



6 APPLICATION WITH SPW 28In the next step, we des
ribe ea
h design as a di�eren
e equation relating theinput and output samples a

ording to the equation (8).`def FLOAT_Integrator_Spe
 X a0 IN0 OUT0 =8t. OUT0 t = (IN0 (t � 1) float_add (a0 float_mul OUT0 (t � 1)))`def FXP_Integrator_Spe
 X0 o_mode q_mode n_bits a00 IN00 OUT00 =8t. OUT00 t = (IN00 (t � 1) fxp_add (a00 fxp_mul OUT00 (t � 1)))The following lemmas ensure that the implementation at ea
h level satis�esthe 
orresponding spe
i�
ation.Lemma 13: FLOAT_INTEGRATOR_IMP_SPEC` Float_Integrator_Imp X a0 IN0 OUT0 =)Float_Integrator_Spe
 X a0 IN0 OUT0Lemma 14: FXP_INTEGRATOR_IMP_SPEC` Fxp_Integrator_Imp X0 o_mode q_mode n_bits a00 IN00 OUT00 =)Fxp_Integrator_Spe
 X0 o_mode q_mode n_bits a00 IN00 OUT00Now we assume that the 
oating-point and �xed-point input sequen
es are therounded versions of an in�nite pre
ision ideal input IN, and we have`def IN0 t = round X To_nearest (IN t)`def IN00 t = FST (fxp_round X0 o_mode q_mode n_bits (IN t))where round is the 
oating-point rounding fun
tion, and To nearest is the 
orre-sponding mode for rounding to nearest 
oating-point number [15℄. We also makesome other assumptions on �niteness and validity of 
oating-point and �xed-pointinputs, 
oeÆ
ients, and intermediate results, in order to have �nite and valid �naloutputs. Using these assumptions and based on the theorems FXP ADD THMand FXP MUL THM (Se
tion 5) and the 
orresponding ones in 
oating-pointtheory [15℄, we prove the following theorem 
on
erning the error between the realvalues of the 
oating-point and �xed-point pre
ision integrator output samples.Theorem 6: INTEGRATOR_THM` Float_Integrator_Imp X a0 IN0 OUT0 ^Fxp_Integrator_Imp X0 o_mode q_mode n_bits a00 IN00 OUT00=)Val (OUT0 t) � value (OUT00 t) =Val a0 * Val (OUT0 (t � 1)) �value a00 * value (OUT00 (t � 1)) +error (IN (t � 1)) +error (Val a0 * Val (OUT0 (t � 1))) +error (Val (IN0 (t � 1)) + Val (a0 float_mul OUT0 (t � 1))) +fxperror X0 o_mode q_mode n_bits(value (value a00 * OUT00 (t � 1))) +



6 APPLICATION WITH SPW 29fxperror X0 o_mode q_mode n_bits(value (IN00 (t � 1)) + value (a00 fxp_mul OUT00 (t � 1))) �fxperror X0 o_mode q_mode n_bits (IN (t � 1))where Val is the 
oating-point valuation fun
tion, and error is the 
oating-pointrounding error fun
tion [15℄. A

ording to Theorem 6, for a valid and �nite set ofinput and output sequen
es at time (t - 1) to the integrator design at the 
oating-point and �xed-point levels, we 
an have �nite and valid outputs at time t, andthe di�eren
e in the real values 
orresponding to these output samples 
an be ex-pressed as the di�eren
e in input and output values multiplied by the 
orrespond-ing 
oeÆ
ients, taking into a

ount the e�e
ts of �nite pre
ision in 
oeÆ
ients andarithmeti
 operations. To �nd a 
onstant upper bound for the di�eren
e betweenthe outputs, we use Theorem 5 on the �xed-point error quanti�
ation. Similarly,for the 
oating-point error bound analysis we proved the following lemma:Lemma 15: ERROR_BOUND_NORM_STRONG_NORMALIZE` normalizes X x =)9 j. abs (error x) � (2 pow j / 2 pow (bias X + fra
width X))where normalizes de�nes the 
riteria for an arbitrary real number to be in therange of normalized 
oating-point numbers, bias de�nes the exponent bias in the
oating-point format whi
h is a 
onstant used to make the exponent's range non-negative, and fra
width extra
ts the fra
tion width parameter from the 
oating-point format. A

ording to Lemma 15, if the absolute value of a real numberis in the representable range of the normalized 
oating-point numbers with theformat X and lo
ated in the j 'th binade (the 
oating-point numbers between twoadja
ent powers of 2), then the absolute value of the error is less than or equal to2j=2(bias X + fra
width X). The lemma is proved based on the general 
oating-pointabsolute error bound theorem developed in [15℄.Finally, we proved the following theorem (Theorem 7 ) that bounds the outputerror of the integrator design in the transition from the 
oating-point to �xed-pointlevels.Theorem 7: INTEGRATOR_FP_TO_FXP_ERROR_BOUND_THM` Float_Integrator_Imp X a0 IN0 OUT0 ^Fxp_Integrator_Imp X0 o_mode q_mode n_bits a00 IN00 OUT00=)9 j1 j2 j3.abs (Val (OUT0 t) � value (OUT00 t)) �2 * abs (a) * M +(2 pow j1 + 2 pow j2 + 2 pow j3) / 2 pow (bias X + fra
width X) +3 / (2 pow (fra
bits X0))



7 CONCLUSIONS 30In the proof of this theorem, we have assumed that the real values of the
oating-point and �xed-point integrator 
oeÆ
ients are equal (Val a' = value a"= a), hen
e ignoring the e�e
ts of ina

ura
ies in the integrator 
oeÆ
ient. Wehave also assumed that the 
oating-point and �xed-point output values are boundedto a 
onstant value (M ). The parameters j1, j2, and j3 are related to the binadesin whi
h the real valued arguments of the three 
oating-point error expressions inTheorem 6 are lo
ated.7 Con
lusionsIn this paper, we established the formalization of �xed-point arithmeti
 in theHOL theorem prover. Unlike 
oating-point arithmeti
, there is no standard forthe �xed-point 
ounterpart. We hen
e de�ned in this paper a 
omplete 
ommonset of the �xed-point arithmeti
 supported by most DSP tools, in parti
ular SPWand SystemC. We started �rst by en
oding the �xed-point arithmeti
 in HOL 
on-sidering di�erent quantization and over
ow modes, as well as ex
eption handling.We then proved two main theorems stating that the operations on �xed-pointnumbers are 
losely related to the 
orresponding operations on in�nitely pre
isevalues, 
onsidering some error. The error is bounded to a 
ertain absolute valuewhi
h is a fun
tion of the output pre
ision. We have also shown by an example howthese theorems 
an be used as a basis for analysis of the quantization errors in thedesign of �xed-point DSP subsystems. The formalization presented in this paper
an be 
onsidered as a 
omplement to the 
oating-point formalizations whi
h arewidely available in the literature. Based on the proposed �xed-point formalization,our immediate future work will fo
us on the veri�
ation of the transition from the
oating-point algorithmi
 level to hardware implementations for DSP appli
ations.Referen
es[1℄ M. D. Aagaard and C. -J. H. Seger, \The Formal Veri�
ation of a PipelinedDouble-Pre
ision IEEE Floating-Point Multiplier," In Pro
eedings Interna-tional Conferen
e on Computer Aided Design, pp. 7-10, San Jose, California,USA, November 1995.[2℄ G. Barrett, \Formal Methods Applied to a Floating Point Number System,"IEEE Transa
tions on Software Engineering, SE-15 (5): 611-621, May 1989.[3℄ C. Berg and C. Ja
obi, \Formal Veri�
ation of the VAMP Floating Point Unit,"In Corre
t Hardware Design and Veri�
ation Methods, LNCS 2144, pp. 325-339, Springer-Verlag, 2001.



REFERENCES 31[4℄ S. Beyer, C. Ja
obi, D. Kr�oning, D. Leinenba
h, and W. J. Paul, \InstantiatingUninterpreted Fun
tional Units and Memory System: Fun
tional Veri�
ationof the VAMP," In Corre
t Hardware Design and Veri�
ation Methods, LNCS2860, pp. 51-65, Springer-Verlag, 2003.[5℄ S. Boldo, M. Daumas, and L. Th�ery, \Formal Proofs and Computations inFinite Pre
ision Arithmeti
," In Pro
eedings of the 11th Symposium on theIntegration of Symboli
 Computation and Me
hanized Reasoning, pp. 101-111,Rome, Italy, September 2003.[6℄ S. Boldo and M. Daumas, \Properties of Two's Complement Floating PointNotations," Software Tools for Te
hnology Transfer, 5 (2-3): 237-246, Mar
h2004.[7℄ Caden
e Design Systems, In
., \Signal Pro
essing WorkSystem (SPW) User'sGuide," USA, July 1999.[8℄ V. A. Carreno, \Interpretation of IEEE-854 Floating-Point Standard and Def-inition in the HOL System," NASA TM-110189, September 1995.[9℄ M. Cornea-Hasegan, \Proving the IEEE Corre
tness of Iterative Floating-PointSquare Root, Divide, and Remainder Algorithms," Intel Te
hnology Journal,Q2: 1-11, 1998.[10℄ Y. -A. Chen and R. E. Bryant, \Veri�
ation of Floating Point Adders," InComputer Aided Veri�
ation, LNCS 1427, pp. 488-499, Springer-Verlag, 1998.[11℄ M. Daumas, L. Rideau, and L. Th�ery, \A Generi
 Library for Floating-PointNumbers and Its Appli
ation to Exa
t Computing," In Theorem Proving inHigher Order Logi
s, LNCS 2152, pp. 169-184, Springer-Verlag, 2001.[12℄ M. J. C. Gordon and T. F. Melham, \Introdu
tion to HOL: A TheoremProving Environment for Higher-Order Logi
," Cambridge University Press,1993.[13℄ J. R. Harrison, \Constru
ting the Real Numbers in HOL," Formal Methodsin System Design, 5 (1/2): 35-59, 1994.[14℄ J. R. Harrison, \A Ma
hine-Che
ked Theory of Floating-Point Arithmeti
,"In Theorem Proving in Higher Order Logi
s, LNCS 1690, pp. 113-130, Springer-Verlag, 1999.[15℄ J. R. Harrison, \Floating-Point Veri�
ation in HOL Light: The ExponentialFun
tion," Formal Methods in System Design, 16 (3): 271-305, 2000.



REFERENCES 32[16℄ J. R. Harrison, \Formal Veri�
ation of Floating Point Trigonometri
 Fun
-tions," In Formal Methods in Computer-Aided Design, LNCS 1954, pp. 217-233, Springer-Verlag, 2000.[17℄ J. R. Harrison, \Formal Veri�
ation of IA-64 Division Algorithms," In Theo-rem Proving in Higher Order Logi
s, LNCS 1869, pp. 234-251, Springer-Verlag,2000.[18℄ The Institute of Ele
tri
al and Ele
troni
 Engineers, In
., \IEEE, Standardfor Binary Floating-Point Arithmeti
," ANSI/IEEE Standard 754, USA, 1985.[19℄ The Institute of Ele
tri
al and Ele
troni
 Engineers, In
., \IEEE, Standardfor Radix-Independent Floating-Point Arithmeti
," ANSI/IEEE Std 854, USA,1987.[20℄ R. Kaivola and M. D. Aagaard, \Divider Cir
uit Veri�
ation with ModelChe
king and Theorem Proving," In Theorem Proving in Higher Order Logi
s,LNCS 1869, pp. 338-355, Springer-Verlag, 2000.[21℄ R. Kaivola and N. Narasimhan, \Formal Veri�
ation of the Pentium r
 4Floating-Point Multiplier," In Pro
eedings Design Automation and Test inEurope Conferen
e, pp. 20-27, Paris, Fran
e, Mar
h 2002.[22℄ R. Kaivola and K. R. Kohatsu, \Proof Engineering in the Large: Formal Veri-�
ation of Pentium r
 4 Floating-Point Divider," Software Tools for Te
hnologyTransfer, 4 (3): 323-334, 2003.[23℄ H. Keding, M. Willems, M. Coors, and H. Meyr, \FRIDGE: A Fixed-PointDesign and Simulation Environment," In Pro
eedings Design Automation andTest in Europe Conferen
e, pp. 429-435, Paris, Fran
e, February 1998.[24℄ M. Leeser and J. O'Leary, \Veri�
ation of a Subtra
tive Radix-2 Square RootAlgorithm and Implementation," In Pro
eedings International Conferen
e onComputer Design, pp. 526-531, Austin, Texas, USA, O
tober 1995.[25℄ Mathworks, In
., \Simulink Referen
e Manual," USA, 1996.[26℄ Mathworks, In
., \Fixed-Point Blo
kset, For Use with Simulink, User'sGuide," USA, 2004.[27℄ Mentor Graphi
s, In
., \DSP Station User's Manual," USA, 1993.[28℄ T. F. Melham, \The HOL pred sets Library," University of Cambridge, Com-puter Laboratory, February 1992.



REFERENCES 33[29℄ P. S. Miner, \De�ning the IEEE-854 Floating-Point Standard in PVS," NASATM-110167, June 1995.[30℄ P. S. Miner and J. F. Leathrum, \Veri�
ation of IEEE Compliant Subtra
tiveDivision Algorithms," In Formal Methods in Computer-Aided Design, LNCS1166, pp. 64-78, Springer-Verlag, 1996.[31℄ J. S. Moore, T. Lyn
h, and M. Kaufmann, \A Me
hani
ally Che
ked Proofof the Corre
tness of the Kernel of the AMD5K86 Floating-Point DivisionAlgorithm," IEEE Transa
tions on Computers, 47 (9): 913-926, 1998.[32℄ S. M. Mueller and W. J. Paul, \Computer Ar
hite
ture. Complexity andCorre
tness," Springer-Verlag, 2000.[33℄ Open SystemC Initiative, \SystemC Language Referen
e Manual," USA,2004.[34℄ J. O' Leary, X. Zhao, R. Gerth, and C.-J.H. Seger, \Formally Verifying IEEEComplian
e of Floating-Point Hardware," Intel Te
hnology Journal, Q1: 1-14,1999.[35℄ D. M. Russino�, \A Case Study in Formal Veri�
ation of Register-TransferLogi
 with ACL2: The Floating-Point Adder of the AMD Athlon Pro
essor,"In Formal Methods in Computer-Aided Design, LNCS 1954, pp. 3-36, Springer-Verlag, 2000.[36℄ J. Sawada and R. Gamboa, \Me
hani
al Veri�
ation of a Square Root Algo-rithm using Taylor's Theorem," In Formal Methods in Computer-Aided De-sign, LNCS 2517, pp. 274-291, Springer-Verlag, 2002.[37℄ Synopsys, In
., \CoCentri
TM System Studio User's Guide," USA, August2001.[38℄ University of Cambridge, \The HOL System Referen
e," Computer Labora-tory, Cambridge, UK, Mar
h 2004.[39℄ W. Wong, \Modeling Bit Ve
tors in HOL: The Word Library," In HigherOrder Logi
 and Its Appli
ations, LNCS 780, pp. 371-384, Springer-Verlag,1994.


