
Deciding Global Partial-Order Properties

Rajeev Alur, Ken McMillan and Doron Peled

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

Deciding Global Partial-Order Properties

Rajeev Alur* Ken McMillanM Doron Peled-

Abstract. Model checking of asynchronous systems is traditionally based on
the interleaving model, where an execution is modeled by a total order between
events. Recently, the use of partial order semantics that allows independent events
of concurrent processes to be unordered is becoming popular. Temporal logics that
are interpreted over partial orders allow specifications relating global snapshots,
and permit reduction algorithms to generate only one representative linearization
of every possible partial-order execution during state-space search. This paper
considers the satisfiability and the model checking problems for temporal logics
interpreted over partially ordered sets of global configurations. For such logics,
only undecidability results have been proved previously. In this paper, we present
an EXPSPACE decision procedure for a fragment thal contains an eventuality op-
erator and its dual. We also sharpen previous undecidability results, which used
global predicates over configurations. We show that although our logic allows
only local propositions (over events), it becomes undecidable when adding some
natural until operator.

1 Introduction

The model checking problem is to decide whether a finite-state description of a reactive
system satisfies a temporal-logic specification. The solutions to this problem have been
implemented, and the resulting tools are increasingly being used as debugging aids for
industrial designs. All of these solutions employ the so-called interleaving semantics in
which a single execution of the system is considered to be a totally-ordered sequence of
events. The (linear) semantics of the system is, then, a set of total-order executions that
the system can possibly generate. The specifications are written in the linear temporal
logic LTL. The model checker checks if every execution of the system satisfies the
~ ~ ~ - s ~ e c i f i c a t i o n ~ .

In contrast to the interleaving semantics, the partial order semantics considers a
single execution as a partially ordered set of events. The partial order semantics does
not distinguish among total-order executions that are equivalent up t o reordering of
independent events, thereby, resulting in a more abstract and faithful representation of
concurrency, and has attracted researchers in concurrency theory for many years [a, 121.

* University of Pennsylvania and Bell Laboratories, Email: alur@cis.upenn.edu
** Cadence Berkeley Labs, Email: mcmillan@cadence.com

*** Bell Laboratories and CMU, Email: doron@research.bell-labs.com
In the alternative branching-time paradigm, the semantics of the system is a labeled state-
transition graph, and the specificationis given as a formula of the Computation tree logic (CTL)
[2] . Branching-time versions of partial-order semantics are possible (see, for instance, [4]), but
are not studied in this paper.

Partial-order semantics, unlike the interleaving semantics, distinguishes between non-
determinism and concurrency. Consequently, specification languages over partial orders
can permit a direct representation of properties involving causality and concurrency, for
example, serializability.

Partial order specifications are also interesting due to their compatibility with the
so-called partial order reductions. The partial-order equivalence among sequences can
be exploited to reduce the state-space explosion problem: the cost of generating at
least one representative per equivalence class is typically significantly less than the
cost of generating all interleavings [5, 9, 10, 151. If the specification could distinguish
between two sequences of the same equivalence class, as is the case with LTL, the above
equivalence cannot be used: the same equivalence class may contain both a sequence
that satisfies the specification and a sequence that does not. It is possible to refine the
equivalence relation, providing more representatives at the expense of using a bigger
state space [lo]. The alternative solution is to use a specification logic that is directly
interpreted over partial orders. This latter approach demands study of decision problems
for partial order logics.

How does one define a temporal logic over partial orders? Two approaches have
been proposed to write temporal requirements over a model consisting of a set of
partially ordered events, or local states of processes. In local partial order logics, the
truth of a formula is evaluated at a local state, and the temporal modalities relate causal
precedences among local states. Examples of such logics include TRPTL [13] and TLC
[I]. In global partial order logics, the truth of a formula is evaluated in a global state,
also called a configuration or a slice, which consists of a consistent set of local states.
The temporal modalities of a global logic, such as ISTL [6], relate causal precedences
among configurations. Global partial order logics are strictly more general than the local
ones. In a partial order, unlike in a total order, there are many ways to proceed from
one state to the next, and consequently, the syntax of partial order logics, uses path
quantifiers as in CTL. For example, if p is a global state predicate asserting that states
of all processes are consistent with one another, then the IS=-formula 3 0 p asserts that
p is a possible global snapshot. A system satisfies 3 0 p if every partial-order execution
has some linearization containing ap-state. It should be noted that this property cannot
be specified in LTL or CTL or any local partial-order logic.

Before we consider the model checking for partial order logics, let us briefly review
the solution to the model checking problem for LTL. A system M is viewed as an w-
automaton AM that generates all possible total-order executions of M. To check whether
the system satisfies an L~Lformula p, the model-checking algorithm first constructs an
w-automaton A,, that accepts all the satisfying models of 79, and tests emptiness of the
intersection of the languages of the two automata AM and A,, [16]. For algorithmic
verification of partial order logics, the solution is to construct, given a partial order
specification p, an w-automaton A,, that accepts the linearizations of the partial order
models of i p . To check whether the system M satisfies a partial order formula cp, we
need to test emptiness of the the intersection of A,, and the automaton A M . Since we
know that the automaton A,, does not distinguish among the linearizations of the same
partial order, the above approach yields a correct result even if AM generates only one
linearization of each partial order execution of M.

Thus, the verification problem for partial order logics can be solved if a partial
order specification can be translated to an w-automaton accepting the linearizations of
its models. Consequently, the main challenge in this approach is to translate the modal
operators interpreted over a partial-order to requirements on its linearizations. In other
words, by examining one linearization, the automaton needs to infer a property of all
equivalent linearizations. This goal has already been met for local partial order logics
TRPTL and TLC [13, 11. Unfortunately, the technique used in these constructions does
not lead to similar constructions for global partial order logics. Some simple global
specification formalisms were even shown to be undecidable [I 1, 71.

In this paper, we identify a global partial order logic for which the model checking
problem is decidable by presenting a tableau construction. This logic is ISTL' , a subset
of the logic I s m obtained by retaining the modalities 30 and 30 , and their duals, but
disallowing the modalities 3 0 or 3U. The complexity of verifying that a finite state
program satisfies a specification in 1 s ~ ~ ' is linear in the number of global states of
the program, and doubly exponential in the size of the specification. We also refine the
undecidability result of [l l] by establishing that the modality 3U is sufficient, by itself,
to render undecidability.

Thedecidability f o r l s n O can also beestablished by translating its formulas to afirst-
order language of [3] that has variables ranging over local states, monadic predicates,
and a binary partial-order relation. However, this approach leads to a decision procedure
of nonelementary complexity. Indeed, the translation from requirements on global cuts
to linear sequences of local states is difficult due to various factors. We overcome these
problems by showing that every ISTL' formula can be rewritten to a special form such
that for each of its eventuality subformulas ~, there exists a maximal configuration that
contains exactly those configurations satisfying 4. The decision procedure, then, builds
on this key insight.

It should be noted that, while the decision procedure for local partial-order logics
such as TLC is PSPACE, the decision procedure for the global logic ISTL' is EXPSPACE.
A recent result by Walukiewicz shows a lower bound of EXPSPACE for ISTL' [I 71. The
decidability in presence of the operator 3 0 that is useful in specifying properties such
as serializability, is an open problem.

2 A Global Partial-Order Logic

We begin with a model theory for the logic ISTL. Our models can be viewed in one of
two ways: either as a partially ordered set of local states (states of individualprocesses),
or as a branching structure (a Kripke model). The Kripke model represents all possible
sequences of global states that may be derived from the partial order.

Causal Structures. We will consider first the partially ordered view, which we refer to
as a causal structure, and then define its relation to a Kripkemodel. In a causal structure,
a state is "local", in the sense that it is occupied by some subset of the processes in the
system, which are, in effect, synchronized at that state. All of the states occupied by a
given process are totally ordered, but no further ordering is imposed on the structure.
Each atomic proposition of the logic is associated with a particular process, and may

only label states that are occupied by that process. As an example, the causal structure
in Figure 1 shows two concurrent processes that synchronize at a common state.

Fig. 1. A two-process causal structure, where PI = {a) and P2 = { b) .

To be more precise, let a concurrent alphabet be a set P of propositions that is
partitioned into disjoint sets, P,, for x = 1 . . . n. We use N to denote the set { I . . . n)
of processes. A causal structure r over a concurrent alphabet P consists of:

- State-space: For each process x, a countable infinite set S, of states. These are the
states occupied by x. The set U,S, of all states is denoted S .

- Causality relation: For each process x, a total, well founded order 3, on S,, whose
minimal element is a unique state denoted s' (the global initial state). The relation
(u, d,)*, is denoted 5, and must be a partial order.

- State labeling: For each process x, a mapping v, that assigns each state s E S,, a
set v, (s) C P, of propositions true in s.

Causal structures to Kripke models. Now we define the correspondence between
causal structures and a restricted class of Kripke models. To do this, we use configu-
rations (or slices) as our global states. A configuration is a set of states of the causal
structure that is left-closed under 5. This may be thought of as a "partial run" of the
structure. Any set of states O S can be extended to a configuration pre(@) by simply
taking its left closure under 3. The notion of configuration is illustrated in Figure 2. For

Fig. 2. Two configurations. Each one is a left-closed set of states. The associated cut (dashed line)
comprises the elements maximal w.r.t. each process.

a configuration O, let $no be the set of processes x such that O n S, is finite. For any
nonempty configuration O and any process x in fin@, there is a unique maximal state

under the local order d,, we denote this state by Ox. If O n Sx is infinite, then no such
maximal state exists, and let us define Ox =I in that case. The tuple (O', . . .On) is
called the cut of the configuration O. The notion of a cut is illustrated in Figure 2. We
note that any nonempty configuration (finite or infinite) is uniquely defined by its cut.

Configurations are ordered by the subset relation: if O A then the configuration
A is in the future of the configuration O. The ordering c is a partial order over the set
of configurations, and is called the global partial order. This leads to the definition of
a Kripke model of a causal structure. Given a causal structure r = (S, 3, v) over a
concurrent alphabet P, let the Kripke model = (T, R, L), where

- T, the state set, is the set of finite, nonempty, configurations of T.
- R, the transition relation, is the transitive reduction of the partial order (T, c), that

is, O R A if @ c A and there is no configuration O' such that O C O' C A.
- L, the labeling function, maps any configuration O E T to the set of propositions
u,v,(O"). That is, a local proposition of a process x is true in O iff it is true in the
maximal state Ox.

The left and right configurations in Figure 2 are related by R. Figure 3 shows a causal
structure and the associated Kripke model.

a) Causal structure b) Kripke model

Fig.3. Causal structure and associated Kripke model.

Syntax and Semantics. The formulas of ISTL are defined inductively by the grammar

where p is an atomic proposition. Given a causal structure r , the formulas of ISTL
are interpreted over configurations of T. The interpretation of modalities is as in CTL
interpreted over the Kripke structure Kr .

Let cp be a Ism-formula, T be a causal structure, and O be a configuration of T.
Then, the satisfaction relation (r, 0) cp is defined inductively below

O b p iff p E L(O) for an atomic propositionp;
0 b -p iff 0 p ;
O b p A $ i f f O + c p a n d O b $;

O b 30p iff O C A and A b p for some configuration A ;
O 30 p iff O R A and A b p for some configuration A ;
O p 3U$ iff there exists a finite sequence 0 0 . . .On of configurations such that

(i) Oo = O, (ii) Oi R Oa+l for 0 5 i < n, (iii) On $, and
(iv) Oi p for all 0 5 i < n;

O 3 O p iff there exists an infinite sequence OoOl. . . of configurations such
that (i) Oo = O, (ii) OiROi+l for all i, and (iii) Od b p for all i.

Denote r b p iff (r, { s ' }) b p. As in CTL, we can define a variety of auxiliary log-
ical (e.g. disjunction) and temporal (e.g. VO) operators. We use A k p k to denote the
conjunction of finitely many formulas. We will consider various fragments of ISTL by
restricting the syntax to a subset of the temporal modalities: the fragment 1s-r~' allows
only 30 modality, the fragment ISTLO~O allows 30 and 30 , and the fragment 1 s ~ ~ ~
allows only 3U (note that 30 is definable from 3U). All these fragments are closed
under boolean operations.

A typical 1s~~'-formulais Vo(p -+ 30q) , wherep and q are assertions about global
snapshots. It means that no matter how the system evolves, if p is a possible snapshot
at some time, then q is a possible snapshot at a later time. No formula of LTL or TLC is
equivalent to this formula.

3 Decision Procedure for ISTL'

We now describe a procedure for deciding satisfiability of formulas of ISTL'. The
procedure first rewrites a formula p into a boolean combination of subformulas that
use negation in a restricted way, and the second step is to construct an automaton that
recognizes the set of all linearizations of models of such special formulas.

Normal Form. We consider formulas of a special type, namely, the ones in which
negation is not applied to a conjunction. The set of normal-form ~S~~'- forrnulas is the
least set such that:

(1) Every atomic proposition is a normal-form formula.
(2) 30 Ak p k is a normal-from formula whenever all p k are.
(3) If p is a normal-form formula then so is l p .

For example, the formula 3 0 (a A 4 0 b) is in normal form, whereas the formulas
3 0 (a V 30b) and a A 3 0 b are not.

An eventuality formula of ISTL' is a formula of the form 3 0 p . For an eventuality
formula p = 30Ak p k , the formulas p k are called conjuncts of cp. Next, we establish that
we do not lose any expressive power by restricting ourselves to normal-form formulas:
each ISTL' formula is equivalent to a boolean combination of normal-form formulas.

Proposition 1 For every eventuality-formula p of IsTL', there exists a ~ S ~ ~ O - f o r m u l a
$ such that (1) p and $ are equivalent, (2) 11, is a disjunction of at most 21~1 normal-form

eventuality-formulas, and (3) the number of distinct eventuality-subformulas of $ is at
most 21,I+'.

Proof: The proof is by induction on the size of p. Let p l , . . .cpk be the top-level
eventuality-subformulas of p (i.e. each pi is a subformula of p, and there is no
eventuality-subformula II, of p such that pi is a (strict) subformula of II,). Let m be
the length of p, counting each pi to be of size 1, and let mi be the actual size of pi.
Then, Ip(> m + ml + . . . + mk (assuming that the formula is fully parenthesized).
Rewrite p in disjunctive normal form while treating each pi as a proposition. Since 3 0
distributes over disjunction, we have p equivalent to Vlg1 with at most 2m disjuncts
4,. Each disjunct $1 is of the form 3 0 Aj x j with at most m conjuncts x j . Each such
conjunct xj is either a proposition, a negated proposition, some pi, or some negated
pi. Rewrite each pi as a disjunction of normal-form formulas using induction: each pi
is equivalent to a disjunction of at most 2": normal-form formulas. It follows that l p i
is also equivalent to a disjunction of at most 2mz normal-form formulas. Let us revisit

= 3 0 Aj x j . We need to do additional rewriting to get rid of the newly introduced
disjunctions. It follows that $1 is equivalent to a disjunction of at most 2ml+"'+mk
normal-form formulas. Hence, cp is equivalent to at most 2m2m1+".tmk normal-form
formulas. Using IpJ 5 m + ml + . . . + mk, we have the number of disjuncts bounded
by 21~1.

To count the number of eventuality-subformulas, observe that the number of eventuality-
subformulas after rewriting equals the number of disjuncts at the top-level plus the
number eventuality-subformulas generated by rewriting each pi. This is bounded by
214'1 + 2m1+' + . . . + 2mk+1. Using Ipl > m + ml + . . . + mk, we can bound this
number by 21'+I+'.

Maximal configurations. We now show that every normal form eventuality formula cp
has a maximal configuration max,, such that a configuration satisfies p exactly when
it is contained in max,. Figure 4 shows a formula and its maximal configuration in
two different causal structures. We note that the maximal configuration need not be
finite (and may also be empty, in the case where the formula is false everywhere).
Also, note that such unique maximal configurations may not exist for formulas other
than eventuality formulas in normal form. For instance, for the left causal structure of
Figure 4, there is no unique maximal configuration satisfying the formula 3 0 (a V b).

Fig.4. Maximal configuration for the formula 3 0 (a A b) in two different causal structures. Note
that in one case, the maximal configuration is infinite for process 1.

In the following, we identify every formula cp with the set {O 1 O cp) of
configurations satisfying that formula. We also note that a set of configurations is "G-
closed" if every subset of a member is also in the set, "2-closed" if every superset of a
member is also in the set, and "U-closed" if the union of any two members is also in the
set. First, if p and 11, are U-closed then p A $ is U-closed. Second, for cp = 304, cp is
G-closed, 7 c p is ?-closed, and if $ is U-closed then so is c p .

Lemma 2 If cp is an eventuality formula in normal form then p is U-closed.

Proof: The satisfaction of an atomic proposition depends upon the corresponding local
state. Hence, if p is a proposition or a negated proposition, then p is U-closed. If cp is
a negated eventuality-formula, then cp is ?-closed, and hence, U-closed. Now consider
cp = 30 Ak c p k , with each pk in normal-form. By induction, pk are U-closed. Then so
is Akcpk, and hence, so is cp.

Proposition 3 Let cp be an eventuality-formula in normal form. For every causal struc-
ture, there exists a configuration max, such that O k p iff O C max,.

Tableau constraints. We now transform the problem of satisfiability of a normal form
eventuality formula p by augmenting the causal structure with a set of new atomic
propositions (each labeling the maximal configuration of some subformula) and for-
mulating a set of "tableau" constraints, such that there exists an augmented structure
satisfying the tableau constraints exactly when there exists a structure satisfying c p .

Given a concurrent alphabet P and a normal form formula p, let Pv be P aug-
mented by introducing a special proposition C+ for every eventuality-subformula $.
The propositions c , ~ differ from ordinary propositions in that they are allowed to label
any subset of the state space S, rather than just the states of one process. In particular,
the states labeled with C+ are intended to represent maz+, the maximal configuration
satisfying $. We will say that $ is "correctly labeled" in a given causal structure if c$
labels exactly the states in the maximal configuration of $. If the maximal configuration
max+ contains only finitely many states of a process x, then the maximal local state of
x that is labeled with c , ~ is denoted c;.

We now wish to formulate a set of constraints that guarantee that a formula is
correctly labeled, given that its own subformulas are correctly labeled. Suppose 11, is an
arbitrary eventuality-subformula of c p . It must be of the form $ = 30(11,, A . . . A ll,k).
We note that c* is a correct labeling exactly when the following three conditions hold:

(I) (the set labeled) c , ~ is a configuration (i.e., left-closed),
(2) every finite configuration contained in c+ satisfies $ (if c , ~ is finite, this is

the same as saying that c , ~ satisfies $1 A . . . A ?lk) ,
(3) no finite configuration not contained in c+ satisfies A . . . A ll,k (else c+

is not maximal).

Let condition 1 above be denoted C$. Condition 2, assuming all of the subformulas of
$ are correctly labeled, is equivalent to the following condition, which we denote C$:
If c , ~ is nonempty, then

(i) for all 1. = 1, . . . k, if $i is an eventuality formula, then CII, c c+, ,
(ii) for all i = 1, . . . k, if $ J ~ is a negated eventuality formula, then C$ C Q , ,
(iii) for all i = 1, . . . k, if $i is an atomic (resp. a negated atomic) formula in

P, and x E fin c , then $i E L(c$) (resp. $i $! L(c$)),
(iv) There exists an ~nfinite sequence of configurations 0, C O2 C . . ., such

that for every process x if S, C c$ then S, c UjOj and for every atomic
(or negated atomic) formula Gi in P,, O j $i (resp. O j $i) for all j .

The last condition guarantees that if c$ is infinite, then every configuration contained
in c* is contained in some finite configuration satisfying $1 A . . . A $k. Finally we deal
with condition 3, which guarantees that c~ is in fact maximal. Assuming subformulas
of $ are correctly labeled, it is equivalent to the following, which we denote C;: There
does not exist a finite configuration O c$ such that, for all $i, i = 1 . . . k:

(i) if $a is an eventuality formula, then O c c*, ,
(ii) if $a is an atomic (resp. a negated atomic) proposition in P,, then Gi E

L(O,) (resp. $a G L(O,)).

Observe that, in C;, there is no requirement that O satisfy negated eventuality conjuncts.
Now, let C$ denote the condition that $ and all its subformulas are correctly labeled.
We then have following by induction on the structure of $ and the semantics of the
logic:

Lemma 4 A normal form formula p is satisfiable exactly when there exists a causal
structure over P,, satisfying C,, where c , is true in the initial state.

In the following, we show how to determine satisfiability of p algorithmically, by
coding causal structures as infinite strings, and constructing an w-automaton that exactly
characterizes C,.

Causal structures as w-words. Let C be an alphabet consisting of truth assignments to
the propositions P , U {at I , . . . , at,). The new propositions at, will be used to encode
the set of processes synchronized at a given state. We say that the causal structure r
generates an w-word a E CW iff there exists an enumeration sl sz . . . of the state-space
S such that (1) for all processes x, at, E Zi iff si E S,, (2) for all p E P , p E Zi iff
p E L(si) , and (3) for all k < I , it is not the case that sl 5 sk. That is, the w-words
generated by F are exactly its linearizations, appropriately encoded. Since the partial
order 5 on a causal structure is exactly characterized by the set of total orders on the
process state spaces S,, it follows that:

Lemma 5 For an w-word ii over C, there is at most one (up to isomorphism) causal
structure rz such that rz generates Ti

Thus, for a fixed concurrent alphabet P , causal structures can be represented by w-words
over C. In this sense, we can say that an w-automaton A over C "recognizes" a set
of causal structures, which are exactly those that generate some word accepted by A.
By building a finite recognizer for each "tableau constraint" C i , and constructing the
product of these automata, we obtain a recognizer for C,. Testing satisfiability of p
then reduces to testing non-emptiness of this automaton.

Lemma 6 For any normal form formula p, there exists a nondeterministic Biichi au-
tomaton recognizing C, of 0 (2 ~ (" ~ + " ~ ")) states, where rn is the size of p.

Proof: For any eventuality subformula 4, there exists a deterministic Biichi automaton
recognizing Ci of O(2") states. This is because left-closure of c$ can be tested by a
product of n 2-state automata, each of which tests closure w.r.t. 5,.

Now consider verification of C$ for an eventuality subformula $. Testing contain-
ment of configurations (for the eventuality subformula cases) requires no information to
be remembered about previous states. For each negated eventuality subformula, a two-
state automaton with a Biichi acceptance condition is needed to ensure non-containment.
For the atomic subformulas, the automaton guesses initially for each process whether
CQ contains a finite or infinite number of states. For the finite case, it must guess the
last state in the configuration. For the infinite case it must guess an infinite number of
configurations O. However, only one configuration O need be "remembered" at any
given time. This yields one 4-state machine per process. A Biichi acceptance condition
requires that a new configuration O be completed infinitely often. Hence, there exists
a nondeterministic Biichi automaton recognizing C$ of 0 (4 n 2 k) states, where k is the
number negated eventuality formulas appearing as conjuncts of $.

Now consider the requirement C i for an eventuality subformula $. This condition
states that there does not exist a finite configuration satisfying $(. . . $k, but strictly
containing CQ (ensuring maximality of c$!). The automaton guesses such a configuration.
Verifying that the guess is a configuration requires 2n states. Remaining checks require
no additional state. Complementing this automaton, by the subset construction, increases
the size to 0 (2 ~ ") states.

The automaton recognizing C, is just the product of the above automata for all
eventuality subformulas of p.
Given the automaton for C,, we finally need to determine whether it recognizes any
causal structures where cp is true in the initial state. This requires an automaton to accept
those w-words which are in fact generated by some causal structure.

Lemma 7 There is a Biichi automaton G, accepting exactly those words generated by
some causal structure over P,, of size O(1).

Theorem 8 SatisJiability of any ISTL' formula p can be tested in 0(2~~ ' "+" ') time,
where m is the size of p.

Proof: The formula p can be translated to boolean combination of normal form formulas
containing a total of O(2") eventuality-subformulas. The product of the automata for

O(m+n) C* for each of these subformulas has = 0 (2 2) states. Take
the product of this automaton with G, and a 2-state automaton that checks the boolean
combination at the initial state, and check emptiness of this automaton.
By a standard argument, it is possible to establish that the decision procedure can be
implemented in space exponential in the size of the input, and thus, the problem is in
EXPSPACE. Walukiewicz has recently shown an EXPSPACE lower bound [17].

4 Extensions

Next-time operator. The fragment ISTLO~O contains the modalities 3 0 and 3 0 .
The construction of the previous section for ISTLO relies on (1) it suffices to consider
only boolean combinations of normal form formulas, and (2) the set of configurations
satisfying a normal form formula can be characterized by a maximal configuration. Both
these properties continue to hold even after the introduction of the next-time operator:
satisfiability of an ISTLO? O formula is decidable is EXPSPACE.

Undecidability of I S T L ~ . In [1\] it was shown that I ~ T L is undecidable. We sharpen the
result of [I I] by showing that the until operator 3U is sufficient to prove undecidability,
even in the absence of global propositions.

Theorem 9 The logic 1 s ~ ~ ~ is undecidable.

Proof Sketch: By reduction from the HALTING problem. It is possible to show that
one can encode in 1 s n u two processes which never interact. Each process represents a
sequence of instantaneous descriptions (IDS) of a Turing machine tape. We can assert
that each processes consists of a sequence of IDS, the first ID contains an initial state,
and the last ID contains an accepting state. Next, we can assert that the two sequences
of IDS are the same. To do this, we assert that there exists an interleaving that alternates
between the events of the two processes. Then we can compare each event of the first
process with the one that follows it (and belongs to the other process) on this interleaving
sequence. Finally, we assert that there exists an interleaving that alternates between the
events of the two processes after completing the events corresponding to the first ID
in the first process. Thus, this is an interleaving that differ from the previous one by
shifting the second process by one ID. We can now assert that the transformation from
one ID to its successor follow the execution of a transition of the Turing machine by
comparing adjacent events on the latter interleaving. Alternation is not strict here, to
allow some IDS to be longer than their predecessors.

Relation to monadic first-order logic of partial order. The decidability of the logic
ISTLO~O can be seen directly by the fact that one can encode a formula of the type
30cp and 3 0 cp in first order language with the causal order 5. Specifically, consider
the language C that contains first-order variables, second-order monadic variables (sets
or propositions), logical connectives, quantification over first-order variables, and the
binary relation 5. The formulas of C are interpreted over causal structures. When the
relation 5 is generated by the union of total orders d,, one per each process, the set
of linearizations of causal structures satisfying a formula of C is w-regular, and can be
characterized by a Biichi automaton [3].

While the logic l snO> O can be translated to C , the undecidability of the logic I S T L ~
implies that the until operator 3U is not definable using second order formulas over
partial orders. It is possible to define a different until operator U: O + pUI) iff for
some O C A, A k I) , and for each O C O' C A, 0' k cp. This version is decidable,
but has nonelementary complexity [17].

Model checking. A system M of concurrently executing processes generates a set of

causal structures. The system M satisfies a requirement given as a formula y of ISTL,
if every causal structure generated by A satisfies y. The decision procedure outlined in
the previous section can be employed to obtain an automata-theoretic solution to the
model checking problem of ISTL*. From 44, we first construct an automaton AM that
accepts linearizations of the causal structures of M. Then, we construct the automaton
A,, that accepts the linearizations of the causal structures satisfying l y . The system
M satisfies the specification cp iff the intersection of the languages of the two automata
A M and A,, is empty. Model checking using representatives outlined in [5, 10, 151
can now be used as a heuristic improvement: The automaton Ant need not generate all
linearizations, but at least one linearization of every causal structure.

References

I . R. Alur, W. Penczek, and D. Peled. Model-checking of causality properties. 10th Sympo-
sium on Logic in Computer Science, 90-100, 1995.

2. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. Workshop on Logic of Programs, LNCS 13 1,52-7 1,1981.

3. W. Ebinger. Logical definability of trace languages. In V. Diekert, G. Rozenberg (Eds.)
The Book of Traces, World Scientific, 382-390,1995.

4. J. Esparza. Model checking using net unfolding. Science of Computer Programming 23,
1994.

5. P. Godefroid and P. Wolper. A partial approach to model checking. Information and
Computation 110 (2), 305-326,1994.

6. S. Katz and D. Peled. Interleaving set temporal logic. Theoretical Computer Science 75,
21-43,1992.

7. K. Lodaya, R. Parikh, R. Ramanujam, and P.S. Thiagarajan. A logical study of distributed
transitions systems. Information and Computation 119,9 1-1 18,1985.

8. A. Mazurkiewicz. Trace Theory. In W. Brauer, W. Reisig, G. Rozenberg (eds.), Advances
in Petri Nets 1986, LNCS 255,279-324,1987.

9. K.L. McMillan. Using unfoldings to avoid the state explosion problem in the verification
of asynchronouscircuits. Fourth CAV, LNCS 663, 164-177, 1992.

10. D. Peled. Combining partial order reductions with on-the-fly model checking. Sixth Con-
ferenceon Computer Aided Verijication, LNCS 818,377-390,1994.

11. W. Penczek. On undecidability of propositional temporal logics on trace systems. Infor-
mation Processing Letters 43, 147-153,1992.

12. V.R. Pratt. Modeling concurrency with partial orders. Intl. J. of Parallel Programming 15
(I), 33-71, 1986.

13. P.S. Thiagarajan. A trace based extension of linear time temporal logic. Ninth Symposium
on Logic in Computer Science, 1994.

14. P.S. Thiagarajan and I. Walukiewicz. An expressively complete linear time temporal logic
for Mazurkiewicz traces. 12th Symposium on Logic in Computer Science, 1997.

15. A. Valmari. A Stubborn attack on state explosion. Proc. 2nd Conference on Computer-
Aided Verijication, LNCS 53 1,156-1 65,1990.

16. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifi-
cation. First Symposium on Logic in Computer Science, 332-344,1986.

17. I. Walukiewicz. Difficult configurations - on the complexity of LTrL. 25th international
Colloquium on Automata, Languages, and Programming, 1998.

