
Speci�cation and Analysis of the AER/NCA Active Network

Protocol Suite in Real-Time Maude

Peter Csaba �Olveczky1;2, Jos�e Meseguer1, and Carolyn L. Talcott3

1 Department of Computer Science, University of Illinois at Urbana-Champaign
2 Department of Informatics, University of Oslo

3 Computer Science Laboratory, SRI International

August 1, 2004

Abstract

This paper describes the application of the Real-Time Maude tool and the Maude formal
methodology to the speci�cation and analysis of the AER/NCA suite of active network mul-
ticast protocol components. Because of the time-sensitive and resource-sensitive behavior, the
presence of probabilistic algorithms, and the composability of its components, AER/NCA poses
challenging new problems for its formal speci�cation and analysis. Real-Time Maude is a natu-
ral extension of the Maude rewriting logic language and tool for the speci�cation and analysis of
real-time object-based distributed systems. It supports a wide spectrum of formal methods, in-
cluding: executable speci�cation; symbolic simulation; breadth-�rst search for failures of safety
properties in in�nite-state systems; and linear temporal logic model checking of time-bounded
temporal logic formulas. These methods complement those o�ered by network simulators on the
one hand, and timed-automaton-based tools and general-purpose theorem provers on the other.
Our experience shows that Real-Time Maude is well-suited to meet the AER/NCA modeling
challenges, and that its methods have proved e�ective in uncovering subtle and important errors
in the informal use case speci�cation.

1 Introduction

Formal system speci�cation and analysis requires exercising good judgment in making decisions that
are not themselves amenable to full formalization. Questions such as: what should be formalized?
at what level of abstraction? what are the relevant, perhaps informal, properties and how should
they be formalized? have to be answered. Indeed, the success of the formal modeling enterprise
greatly depends on how well they can be answered within a given formal framework, and on
how the formal analysis tasks can then be supported by tools. Furthermore, as systems become
more complex, their relevant properties tend to also grow in complexity and become more diÆcult
to model and analyze formally, both because the formalization task becomes harder, and because
system complexity tends to give rise to combinatorial explosions that make certain kinds of analyses
unfeasible. Therefore, case studies involving challenging complex systems are enormously useful
for testing the true mettle of a given formal framework and tool, and for extending the range of its
applications. They are also one of the best ways of showing by example how a framework and its
tools can be used to tackle a fairly wide range of similar problems.

1

This paper describes in detail our experience using the real-time rewriting logic formal frame-
work [22] and its associated Real-Time Maude tool [24, 23] in analyzing a quite complex and
sophisticated system, namely the AER/NCA active network protocol suite [9]. AER/NCA is a
suite of four composable active network protocols, each achieving speci�c subgoals within the over-
all goal of making network multicast scalable, fault-tolerant, and congestion-avoidant. Challenges
involved in formally specifying and analyzing the AER/NCA suite include:

1. Modeling time-sensitive behavior, including transmission delays, delay estimation, timers,
and ordering.

2. Modeling resource-sensitive behavior, including link capacity, latency, congestion/cross traÆc,
and bu�ering.

3. Modeling probabilistic behavior, since several of the network algorithms involved are in fact
probabilistic.

4. Both performance and correctness are critical aspects and are in fact inter-related, since
the correct functioning of several protocol components consists precisely in achieving certain
performance goals.

5. Composability is a key feature that must be supported to respect AER/NCA's modular
design, to avoid combinatorial explosions whenever possible, to analyze both individual com-
ponents and their composed behavior, and to facilitate future reuses and extensions.

This is indeed a tall order. The �rst thing to observe is that a suite of protocols of this nature does
not seem amenable to formalization and analysis within the known decidable frameworks for real-
time systems and their associated tools [12, 8, 27]. There is indeed a tension between analytic power
and expressiveness, where more power, sometimes even decidability, is typically purchased at the
price of a more restricted formalism and range of applications. In this regard, Real-Time Maude is
a quite expressive and general formal speci�cation and analysis tool supporting a fairly wide middle
ground between decidable real-time formalisms and tools on the one hand, and simulation tools on
the other.

As we explain in detail in this paper, Real-Time Maude's expressive features have allowed us to
meet all the modeling challenges mentioned above in a satisfactory way. To begin with, we can
easily support a distributed object-oriented formal speci�cation style, which is ideal for modeling
a network system; this is due to rewriting logic's natural support for modeling distributed object
systems [15]. Furthermore, object-oriented features such as inheritance were key in meeting the
composability challenge (5). The modeling of resource-sensitive behavior (challenge (2)) is also a
consequence of our object-oriented speci�cation style: the key idea is to model the di�erent resources
explicitly as additional objects in the distributed object con�guration of the system. In particular,
we explicitly modeled network links, their capacity, their transmission delays, and the dropping
of packets when links are full. Of course, meeting challenge (1) is most natural, since Real-Time
Maude is by design a real-time formal speci�cation and analysis language based on real-time rewrite
theories [22]. In such theories, both 0-time, instantaneous transitions, and time-advancing \tick"
transitions can be naturally speci�ed by rewrite rules. The modeling of probabilistic behavior
(challenge (3)) was also key to our application and deserves some discussion. The appropriate
extension of rewriting logic to model a wide range of probabilistic systems, including probabilistic
distributed algorithms, is the concept of a probabilistic rewrite theory [11]. This is a proper extension

2

of rewriting logic; however, for purposes of simulating the behavior of probabilistic systems using
sampling techniques, one can associate to a probabilistic rewrite theory an ordinary rewrite theory
that does the sampling, and can use Maude to execute its behaviors. This is exactly the approach
taken in our modeling of the probabilistic algorithms in the AER/NCA suite, which we were able
to do without any need for additional extensions to either Real-Time Maude or its underlying
real-time rewriting logic formalism.

This leaves us with challenge (4), and the associated topic of passing from an informal to a formal
speci�cation and then formally analyzing the relevant properties. That is: (i) how was the formal
speci�cation of the AER/NCA system arrived at?; (ii) how well were we able to formally express
the relevant system properties, involving in this case both correctness and performance aspects
in a closely-related way?; (iii) how did we formally analyze such properties in Real-Time Maude;
and (iv) what problems did we uncover as a result of those analyses and what were the practical
advantages of making those discoveries?

Regarding (i), we started with a well-documented informal use-case-based speci�cation of AER/NCA
(available at [18, App. B]), provided to us by the designers and implementers of AER/NCA. We
also bene�ted greatly from extended discussions with Mark Keaton and Steve Zabele, which were
invaluable in making sure that we were correctly capturing the intended meaning of the informal
speci�cations. In a sense this is the most important phase of any formal speci�cation and analysis
e�ort, and, as mentioned above, a phase not itself amenable to full formalization: there is nothing
like an algorithm to pass from the informal to the formal speci�cation.1 As was to be expected, our
interactions with the designers became a fruitful two-way street, in which our initial formalization
attempts, particularly due to the fact that Real-Time Maude speci�cations are executable, required
making explicit many implicit assumptions and uncovered a number of errors in the informal speci-
�cation, even before any serious analysis was performed. An important, unexpected lesson learned
from our extended discussions with some of the AER/NCA designers was the seemingly paradoxical
fact that rewrite rules were much more intuitive and helpful to network engineers than the informal
use-case descriptions. They explained to us that they had found use-cases ill-suited to gain an
understanding of the protocols, and had translated them into state-transition diagrams to gain a
better intuition about protocol behavior. Since rewrite rules are just parametric descriptions of
local state transitions in a distributed system, this provided the level of description that network
engineers were looking for, with the added bonus of executability and formal analysis.

Regarding (ii), the fact that time and resources were explicitly modeled in our speci�cation made
the formalization of relevant system properties |where we also bene�ted much from informal de-
scriptions of such properties provided to us in discussions with Mark Keaton and Steve Zabele|
relatively easy in several ways. First, time and resource utilization dynamics were directly in-
spectable in executions simulating the behavior of the di�erent protocol components and their
compositions. Second, even though we used standard linear time temporal logic (LTL) |which
has no built-in notion of real-time and is in this sense less expressive than the various real-time tem-
poral logics| to express the more sophisticated system properties, the fact that time and resource
utilization was explicitly represented in the states of our model made it possible in practice to ex-
press in LTL all the desired properties |often involving real-time aspects and resource utilization|

1It is however possible to use formal methods and tools to support the passage from informal to formal speci�ca-
tions: a fairly large body of work on the formal underpinnings of UML, as well as work on passing from scenarios to
system speci�cations and code [7] are good examples of work in this direction. But it does not follow from this that a
full formalization of the entire process is possible: just the simple fact that ethical decisions are often involved in the
choice of the relevant properties, particularly for safety-critical systems, seems to us a clear indication that it isn't.

3

by an adequate choice of state predicates, which queried the states for the relevant basic properties.
Regarding (iii), three kinds of formal analysis were performed:

� symbolic simulation, by executing the speci�cation starting from di�erent initial states

� breadth-�rst search analysis, to �nd violations of safety properties, and

� LTL model checking, for time-bounded properties.

Provided the model of time used is discrete, as it was in our AER/NCA speci�cation, breadth-�rst
search analysis becomes a complete semi-decision procedure (if a safety violation exists, it will be
found, although in practice this requires that suÆcient memory is available). Similarly, under the
discrete time assumption and reasonable requirements about our speci�cation, LTL model checking
of time-bounded properties is in fact a decision procedure. However, in the case of AER/NCA this
kind of completeness cannot be claimed about our analyses. This is due to the probabilistic nature of
several of the protocol components, and the corresponding sampling performed in the probabilistic
transitions using a pseudo-random number generator object. As a consequence, the states we
visited were determined by our choice of the pseudo-random number generator function: we would
have visited di�erent states if we had chosen a di�erent such function. In summary, this just means
that all errors we found in our analyses were always genuine errors; but there may be analyses not
showing any errors for which, with a di�erent way of sampling the probabilistic transitions, the
same analysis could have uncovered a genuine error.

Regarding (iv), Real-Time Maude analysis uncovered a series of subtle and signi�cant errors, which
were easily traced to errors in the design of the original protocol suite. In particular, such formal
analysis helped us to discover all design errors which were found independently by the protocol
designers. None of these errors were disclosed to us as known by the designers until after we
had found them. In addition, Real-Time Maude analysis found design errors which were not

found during extensive traditional simulation and testing by the protocol designers. While some of
these additional errors uncovered during Real-Time Maude analysis could be |and were| easily
corrected, others indicated the need for a more thorough redesign of the original protocol. In our
experience, Real-Time Maude analysis, apart from actually discovering more errors, required much
less e�ort than traditional testing, because the executable formal speci�cation can be subjected
to exhaustive mechanical analysis without further work, and because it is easy to de�ne di�erent
network topologies from which the speci�cation can be analyzed in a variety of ways.

This paper is organized as follows. Sections 2 and 3 give a brief overview of, respectively, the
AER/NCA protocol and Real-Time Maude. Section 4 describes how we met the modeling challenges
described above, and how the AER/NCA protocol was speci�ed and analyzed in Real-Time Maude.
It includes parts of the informal speci�cation to compare the two speci�cation styles and to show
how to get from a use-case based speci�cation to a formal Real-Time Maude speci�cation. Section 5
gives some concluding remarks. Finally, the Real-Time Maude tool |together with a user manual
and related papers| and both the original informal use-case speci�cation and the executable Real-
Time Maude speci�cation of the AER/NCA protocol suite are available at http://www.ifi.uio.
no/RealTimeMaude.

4

2 The AER/NCA Protocol Suite

The AER/NCA protocol suite [9] combines several state-of-the-art techniques to achieve adaptive
reliable multicast in active networks2. The protocol suite consists of a collection of composable
protocol components supporting active error recovery (AER) and nominee-based congestion avoid-

ance (NCA) features, and makes use of the possibility of having some processing capabilities at
\active nodes" between the sender and the receivers to achieve scalability and eÆciency. A high-
level overview of the protocol suite, together with architectural requirements and simulation results,
is given in [9]. The protocol itself was originally speci�ed informally as a set of use cases. The
Real-Time Maude formalization and analysis described in this paper led to a new version of the
detailed informal protocol speci�cation.

The goal of reliable multicast is to send a sequence of data packets from a sender to a group of
receivers. Packets may be lost due to congestion in the network, and it must be ensured that each
receiver eventually receives each data packet. Most multicast protocols are either not scalable or
do not guarantee delivery for reasons which include the following [9]:

� To ensure reliability, the sender must be given feedback from the receivers, either by acknowl-
edging the reception of data packets (ACK), or by signaling the lack of an expected packet
(NAK). When there are many receivers, and each one frequently sends (positive or negative)
acknowledgments to the single sender, then the sender |and the links closest to it in the
network| easily become overwhelmed by this traÆc.

� If there are many receivers, then some packet will be lost somewhere most of the time, keeping
the sender busy with retransmissions. Furthermore, the sender has to multicast the repair
packet to all the receivers |even though only a small group may have lost the packet|
thereby increasing congestion in the network, or the sender must unicast the repair packet to
the receivers, which is not desirable either for eÆciency purposes when the losses are high.

The main design goal of the protocol is to minimize as much as possible the number of packet
transmissions to achieve eÆcient, reliable, and scalable multicast. In addition, the protocol should
�nd the appropriate sending rate to ensure that there is some bandwidth left for competing unicast
TCP sessions.

2.1 Repair Servers

To overcome the above problems, Kasera et al. [9] suggested the use of active services at strategic
locations inside the network. These active services can execute application-level programs inside
routers, or, equivalently, on servers co-located with routers along the physical multicast distribution
tree. By caching packets, these active services can subcast lost packets directly to \their" receivers,
thereby localizing loss recovery, making loss recovery more eÆcient while solving the problem of
retransmission scoping. They call such an active service, which may have fairly limited bu�ering
capacity, a repair server . If a repair server does not have the missing packet in its cache, it
aggregates all the negative acknowledgments (NAKs) it receives, and sends only one request for
the lost packet toward the sender, solving the problem of feedback implosion at the sender.

2Active networks allow users to inject programs into the nodes of the network.

5

b

d e

f g

c’

a’

’

’

’

’

’

Figure 1: A multicast distribution tree.

Terminology: In this work, we abstract from routers which do not support active services, so that
we regard the multicast distribution tree as having the sender at its root, the receivers in the
multicast group as its leaf nodes, and the repair servers as its internal nodes. In this tree, the �rst
node on the path from a node n to the root is called the parent of n. The siblings and the children
of a node can be de�ned analogously. The parent is sometimes also denoted the upstream node
of a given node, and children are denoted as the downstream nodes. We use the expression the
(upstream) repair server of a node n to denote the parent of node n, which is therefore a repair
server or the sender. For example, the multicast tree in Fig. 1 has sender 'a, repair servers 'c and
'd, and receivers 'b, 'e, 'f, and 'g. The sibling of node 'c is 'b, and the repair server of node 'c
is 'a.

2.2 Overview of the Protocol

The AER/NCA protocol suite consists of the following four interconnected components:

� The repair service (RS) component deals with packet losses and tries to ensure that each
packet is eventually received by all receivers in the multicast group. To enhance eÆciency,
loss recovery should happen as close as possible to the nodes where the losses were detected.

� The rate control (RC) component of the protocol aims at dynamically adjusting the rate by
which the sender sends (original) data packets, so that the frequency decreases when many
packets are lost (as the loss of a substantial number of packets indicates congestion due to
a too high frequency in the sending of packets), and increases in time intervals when no, or
few, packet losses are detected.

� The sender needs feedback about discovered packet losses to adjust its sending rate. The
nomination (NOM) component aims at �nding the \worst" receiver, based on the loss rates
and the distance to the sender. The sender takes only the losses reported from this nominee
receiver into account when determining the sending rate, instead of letting all receivers report
their loss rates (which would result in too many messages being sent around just to determine
the loss rate).

� The RTT component computes various round trip time values (the time it takes for a packet
to travel from a given node to another given node, and back) in the network. These values

6

are needed for determining the sending rate and the nominee, and to decide how frequently
to check for missing packets.

We give a high-level description below of the behavior of the protocol.

2.2.1 Active Error Recovery

The sender sends a sequence of data packets along the multicast distribution tree to the multicast
group. It handles messages indicating the loss of a packet by resending the packet (the packets are
identi�ed by their sequence numbers), if the desired retransmission has not been done before.

When a data packet reaches a repair server, the repair server caches the packet before subcasting
it downstream in the multicast distribution tree.

When a repair server or a receiver discovers that it has not received a data packet, it signals this
by sending a NAK packet with the sequence number of the missing packet to its upstream repair
server. This NAK -sending may be somewhat delayed, and is repeated at certain retransmission
intervals until the missing data packet is received. The repair server or receiver needs an estimate of
its round trip time to the sender to know how frequently it should resend this NAK packet. When
a repair server discovers a packet loss, it also subcasts a NAK packet downstream to indicate to
its children that it has started the loss recovery process for the missing data packet. Finally, if a
repair server receives a NAK from downstream, it subcasts the missing data packet if it has it.

2.2.2 Nominee-based Congestion Avoidance

The frequency at which the sender sends new data packets was not speci�ed above. The task of
the NCA part of the protocol suite is to �nd a sending rate such that the multicast session does not
overly congest any path from the sender to the receiver. That is, the most congested path should be
identi�ed, and the sending frequency should be adjusted so that this path is not overly congested,
in order to ensure that there is enough bandwidth for competing TCP-sessions, and that the worst
receiver can handle the onslaught of packets. The congestion control part consists of two subtasks,
each of which is treated by a separate protocol component:

� Finding the worst receiver.

� Adjusting the sending rate according to the loss rate at the worst receiver.

Rate control. Whenever the worst receiver, the nominee receiver, receives an original data
packet, it sends a congestion control message (CCM) packet to the sender. The frequency increases
when CCM packets are received by the sender, and decreases when the sender hasn't seen a CCM
packet for a while. The actual computations are sophisticated.

Nominee receiver selection. The nominee receiver is the receiver with the highest value of
rtt �p

lpe, where rtt is the estimated round trip time to the source, and lpe is the loss probability
estimate.

7

Each receiver uses a sliding window to record the sequence of original packets it has received, based
upon which it can compute its estimated loss rate, its lpe. Each receiver sends a congestion status

message (CSM) packet with its current lpe and rtt estimates to its upstream repair server at regular
intervals.

Each repair server receives CSM packets from each of its children, containing the nominee in the
subtree where the child is the root, together with the associated rtt and lpe values. The repair
server computes the nominee in its own subtree based on these received values. Whenever there is
a change in the nominee or its data, the repair server sends a CSM packet to its upstream repair
server with these new data. It also resends this data at regular intervals, and blanks out its data
if its nominee data has not been updated for a while.

The sender chooses the nominee receiver based on the CSM packets from its children. When a
new nominee receiver is found, the sender sends a nominee activation message (NAM) packet to
the old and the new receiver to notify them of their change of status (since (only) the new receiver
should report back acknowledgments). Finally, the sender resends a NAM packet to the nominee
at regular intervals.

3 Real-Time Maude

Real-Time Maude [24, 23] is a language and tool extending Maude [3, 4] to support the formal
speci�cation and analysis of real-time and hybrid systems. The speci�cation formalism is based on
real-time rewrite theories [22] |an extension of rewriting logic [2, 14]| and emphasizes ease and
generality of speci�cation. It is particularly suitable to specify distributed real-time systems in an
object-oriented style.

Real-Time Maude speci�cations are executable under reasonable assumptions, so that a �rst form
of formal analysis consists in simulating the system's progress in time by timed rewriting. This can
be very useful for debugging the speci�cation; but of course, any such execution gives us only one

behavior among the many possible concurrent behaviors of the systems. To gain further assurance
about a system design one can use model checking techniques that explore many di�erent behaviors
from a given initial state of the system. Timed search and time-bounded linear temporal logic model

checking can analyze all behaviors (possibly relative to a chosen treatment of time, in case we have
a dense time domain) from a given initial state up to a certain duration. By restricting search
and model checking to behaviors up to a given duration, the set of reachable states can often be
restricted to a �nite set, which can then be subjected to model checking.

Real-Time Maude o�ers an alternative to informal speci�cations and their testing on simulation
tools and testbeds by:

� providing a precise formal speci�cation of the system which, being executable, can be simu-
lated and tested directly;

� allowing the speci�cation to be analyzed in many di�erent ways, not just by simulating a few
behaviors of the system, but by exhaustively exploring a wide range of di�erent scenarios;
and

� allowing the user to de�ne the appropriate forms of communication at a high level of abstrac-
tion, instead of having to use a �xed set of communication primitives.

8

On the other side of the spectrum, Real-Time Maude complements formal tools such as the
timed/hybrid automaton-based tools Kronos [27], Uppaal [12], and HyTech [8] by providing a more
general speci�cation formalism which supports well the speci�cation and analysis of \in�nite-state"
systems with di�erent communication and interaction models and with advanced object-oriented
and modularity features. Such systems usually fall outside the decidable fragments supported by
the aforementioned tools. Finally, some tools geared toward modeling and analyzing larger real-
time systems, such as, e.g., IF [1], extend timed automaton techniques with explicit UML-inspired
constructions for modeling objects, communication, and some notion of data types. Real-Time
Maude complements such tools not only by the full generality of the speci�cation language, but,
most importantly, by its simplicity and clarity: A simple and intuitive formalism is used to specify
both the data types (by equations) and dynamic and real-time behavior of the system (by rewrite

rules). Furthermore, the operational semantics of a Real-Time Maude speci�cation is clear and
easy to understand.

Real-Time Maude is implemented in Maude as an extension of Full Maude [4, Part II]. The tool
achieves high performance by exploiting as much as possible the underlying Maude engine.

3.1 Preliminaries: Object-Oriented Speci�cation in Maude

Since Real-Time Maude speci�cations extend Maude speci�cations, we �rst recall object-oriented
speci�cation in Maude. A Maude module speci�es a rewrite theory of the form (�;E [A; �;R),
where (�;E [A) is a membership equational logic [16] theory with � a signature, E a set of
conditional equations and memberships, and A a set of equational axioms such as associativity,
commutativity, and identity, so that equational deduction is performed modulo the axioms A. The
theory (�;E [A) speci�es the system's state space as an algebraic data type. � is a function which
associates to each function symbol f 2 � its frozen3 argument positions [4], and R is a collection
of labeled conditional rewrite rules specifying the system's local transitions, each of which has the
form4

[l] : t �! t 0 if

n̂

i=1

ui �! vi ^
m̂

j=1

wj = w 0
j ;

where l is a label. Intuitively, such a rule speci�es a one-step transition from a substitution in-
stance of t to the corresponding substitution instance of t 0, provided the condition holds; that is,
corresponding substitution instances of the ui can be rewritten (possibly in several steps) to those
of the vi , and the substitution instances of the equalities wj = w 0

j follow from E [A. The rules are
implicitly universally quanti�ed by the variables appearing in the �-terms t , t 0, ui , vi , wj , and w 0

j .

The rewrite rules are applied modulo the equations E [A.5

We briey summarize the syntax of Maude. Functional modules and system modules are, respec-
tively, equational theories and rewrite theories, and are declared with respective syntax fmod ...

endfm and mod ... endm. Object-oriented modules provide special syntax to specify concurrent
object-oriented systems, but are entirely reducible to system modules; they are declared with the

3Rewrites cannot take place in a frozen argument position of a function symbol, so that a term f (t1; : : : ; ti ; : : : ; tn)
will not rewrite to f (t1; : : : ; ui ; : : : ; tn) when ti rewrites to ui if i 2 �(f).

4In general, the condition of such rules may not only contain rewrites ui �! vi and equations wj = w 0

j , but also
memberships tk : sk ; however, the speci�cations in this paper do not use this extra generality.

5Operationally, a term is reduced to its E -normal form modulo A before any rewrite rule is applied in Maude.
Under the coherence assumption [26] this is a complete strategy to achieve the e�ect of rewriting in E [A-equivalence
classes.

9

syntax (omod ... endom).6 Immediately after the module's keyword, the name of the module is
given. After this, a list of imported submodules can be added. One can also declare sorts and sub-

sorts and operators. Operators are introduced with the op keyword. They can have user-de�nable
syntax, with underbars `_' marking the argument positions, and are declared with the sorts of
their arguments and the sort of their result. Some operators can have equational attributes, such
as assoc, comm, and id, stating, for example, that the operator is associative and commutative
and has a certain identity element. Such attributes are then used by the Maude engine to match
terms modulo the declared axioms. There are three kinds of logical statements, namely, equations
|introduced with the keywords eq, or, for conditional equations, ceq| memberships |declaring
that a term has a certain sort and introduced with the keywords mb and cmb| and rewrite rules
|introduced with the keywords rl and crl. The mathematical variables in such statements are
either explicitly declared with the keywords var and vars, or can be introduced on the y in a
statement without being declared previously, in which case they must be have the form var:sort .
Finally, a comment is preceded by `***' or `---' and lasts till the end of the line.

In object-oriented Maude modules one can declare classes and subclasses. A class declaration

class C | att1 : s1, ... , attn : sn .

declares an object class C with attributes att1 to attn of sorts s1 to sn . An object of class C in a
given state is represented as a term

<O : C j att1 : val1; :::; attn : valn >;

where O is the object's name or identi�er, and where val1 to valn are the current values of the
attributes att1 to attn and have sorts s1 to sn . Objects can interact with each other in a variety of
ways, including the sending of messages. A message declaration

msg m : p1 : : : pn ! Msg

de�nes the name of the message and the sorts of its parameters. In a concurrent object-oriented
system, the state, which is usually called a con�guration, has typically the structure of a multiset

made up of objects and messages. Multiset union for con�gurations is denoted by a juxtaposition
operator (empty syntax) that is declared associative and commutative and having the nonemultiset
as its identity element, so that order and parentheses do not matter, and so that rewriting ismultiset
rewriting supported directly in Maude. The dynamic behavior of concurrent object systems is
axiomatized by specifying each of its concurrent transition patterns by a rewrite rule. For example,
the rule

rl [l] : m(O,w) < O : C | a1 : x, a2 : y, a3 : z > =>

< O : C | a1 : x + w, a2 : y, a3 : z > m'(y,x)

de�nes a (parameterized family of) transition(s) in which a message m having arguments O and w is
consumed by an object O of class C, with the e�ect of altering the attribute a1 of the object and of
generating a new message m'(y,x). By convention, attributes, such as a3 in our example, whose
values do not change and do not a�ect the next state of other attributes need not be mentioned in

6In Real-Time Maude, being an extension of Full Maude, module declarations and execution commands must be
enclosed by a pair of parentheses.

10

a rule. Attributes like a2 whose values inuence the next state of other attributes or the values in
messages, but are themselves unchanged, may be omitted from right-hand sides of rules. Thus the
above rule could also be written

rl [l] : m(O,w) < O : C | a1 : x, a2 : y > => < O : C | a1 : x + w > m'(y,x) .

A subclass inherits all the attributes and rules of its superclasses.

3.2 Object-Oriented Speci�cation in Real-Time Maude

A Real-Time Maude timed module (syntax (tmod ... endtm)) speci�es a real-time rewrite the-

ory [22, 23], that is, a rewrite theory R = (�;E [A; �;R), such that:

1. (�;E [A) contains an equational subtheory (�TIME ;ETIME) � (�;E [A), satisfying the
TIME axioms in [22], which speci�es a sort Time as the time domain (which may be discrete
or dense). Although a timed module is parametric on the time domain, Real-Time Maude
provides some prede�ned modules specifying useful time domains. For example, the modules
NAT-TIME-DOMAIN-WITH-INF and POSRAT-TIME-DOMAIN-WITH-INF de�ne the time domain to
be, respectively, the natural numbers and the nonnegative rational numbers, and contain the
subsort declarations Nat < Time and PosRat < Time. These modules also add a supersort
TimeInf, which extends the sort Time with an \in�nity" value INF.

2. The sort of the \states" of the system has the designated sort System.

3. The rules in R are decomposed into:

� \ordinary" rewrite rules model instantaneous change which is assumed to take zero time,
and

� tick (rewrite) rules that model the elapse of time in a system. Such tick rules must
be of the form l : ftg ! ft 0g if cond , where t and t 0 are of sort System, f g is a
built-in constructor of a new sort GlobalSystem which takes a term of sort System as
argument, and where we have associated to such a rule a term u of sort Time intuitively
denoting the duration of the rewrite. In Real-Time Maude, tick rules, together with
their durations, are speci�ed with the syntax

crl [l] : ftg => ft 0g in time u if cond .

The initial state of a real-time system so speci�ed must always have the form ft0g (for t0 a ground
term of sort System). The form of the tick rules ensures uniform time elapse in all parts of a
system. We can then describe any �nite computation from the initial state ft0g as a sequence
of one-step R-rewrites ft0g �! ft1g �! � � � �! ftng with the rules in R, some of which may be
instantaneous, and some tick rules. Furthermore, we assume that all the ti are ground terms.
The duration of such a computation is by de�nition the sum �k

i �ij (uij) corresponding to all the
substitution instances of the terms uij in all rewrite steps ftij g �! ftij+1g involving a tick rule
with duration term uij and a substitution �ij [22].

Timed object-oriented modules (syntax (tomod ... endtom)) extend both object-oriented and
timed modules to provide support for object-oriented speci�cation of real-time systems. Timed

11

object-oriented modules include subsorts such as MsgConfiguration, ObjectConfiguration, and
NEConfiguration, denoting, respectively, multisets of messages, multisets of objects, and non-
empty con�gurations. The sort Configuration is declared to be a subsort of the sort System.

3.3 Rapid Prototyping and Formal Analysis in Real-Time Maude

We summarize below the Real-Time Maude analysis commands used in our case study. All Real-
Time Maude analysis commands are described in [20], and their mathematical semantics is given
in [23]. Note that, when the tick rule is time-nondeterministic (as in our case), then all analysis is
performed with respect to the chosen time sampling strategy treatment of the tick rule(s) [24, 23].

3.3.1 Rapid Prototyping: Timed Rewriting

Real-Time Maude's timed rewrite command simulates one behavior of the system up to a certain

duration. It is written with syntax

(trew t in time <= limit .)

where t is the term to be rewritten (\the initial state"), and limit is a ground term of sort Time.
Our tool also provides facilities for tracing the rewrite steps performed in a simulation (see [20]).

3.3.2 Search and Model Checking

Real-Time Maude provides a variety of search and model checking commands for further analyzing
timed modules by exploring all possible behaviors |up to a given number of rewrite steps, duration,
or satisfaction of other conditions| that can be nondeterministically reached from the initial state.

First of all, Real-Time Maude extends Maude's search command |which uses a breadth-�rst
strategy to search for states that are reachable from the initial state which match the search

pattern and satisfy the search condition| to search for states and deadlocks which can be reached
within a given time interval from the initial state. The search command has syntax

(tsearch t arrow pattern such that cond timeInterval .)

where t is the initial state (of sort GlobalSystem), arrow is either =>* (search for states reachable
in zero or more steps) or =>! (search for \deadlocked" states which cannot be further rewritten),
pattern is the search pattern, cond is a semantic condition on the variables in the search pattern, and
timeInterval has either of the forms with no time limit, in time op r , or in time-interval

between op r and op 0 r 0, where each op and op 0 is one of <, <=, >, or >=, and r and r 0 are
terms of sort Time. The command then returns all the states that are solutions of the search,
but can be restricted to search only for at most n solutions by writing (tsearch [n] ...) The
such that-condition may be omitted.

Real-Time Maude provides commands for analyzing all behaviors from the initial state by searching
for the earliest and the latest time when a certain state is reached for the �rst time. The command

(find earliest t =>* pattern such that cond .)

12

�nds the earliest state reachable from t which is matched by pattern and satis�es cond . The
command

(find latest t =>* pattern such that cond timeLimit .)

searches through all behaviors in a breadth-�rst way, and �nds the �rst occurrence of a pattern-state
satisfying cond in each behavior. Among these states, the state which took the longest time to reach
is returned. The execution of this command will loop or return \not found in all computations" if
there is a behavior in which the desired state cannot be reached within the time limit. timeLimit
has either of the forms with no time limit, in time < r , or in time <= r .

Real-Time Maude has also commands for checking some simple temporal properties using breadth-
�rst search techniques.7 An example is the check/untilStable command which has the syntax

(check t |= pattern1 such that cond1 untilStable

pattern2 such that cond2 timeLimit .)

It checks whether, for each behavior, a state matched by pattern2 and satisfying cond2 is found
within the time limit, and each state following a pattern2-state (within the time limit) is itself
a pattern2-state satisfying cond2. In addition, each state in a behavior must be a pattern1-state
satisfying cond1 before a pattern2-state is reached.

Finally, Real-Time Maude extends Maude's linear temporal logic model checker [5, 4] to check
whether each behavior \up to a certain time," as explained in [23], satis�es a temporal logic formula.
Restricting the computations to their time-bounded pre�xes means that properties can be model
checked in speci�cations that do not allow Zeno behavior, since (assuming a certain criterion for
advancing time) only a �nite set of states can be reached from an initial state. Because of the
time-boundedness, liveness properties which hold in a speci�cation may not hold for the time-
bounded computations, and safety properties that do not hold for all computations may hold for
all computations within the given time bound. Temporal logic model checking must be done in
a module which includes both the module TIMED-MODEL-CHECKER and the module to be analyzed.
State propositions, possibly parameterized, should be declared as operators of sort Prop, and their
semantics should be given by (possibly conditional) equations of the form

fstatePatterng |= prop = b

for b a term of sort Bool, which de�nes the state proposition prop to hold in all states ftg where
ftg |= prop evaluates to true. It is not necessary to de�ne explicitly the states in which prop does
not hold. We may also de�ne clocked propositions, which take the elapsed time into account, and
which are de�ned

fstatePatterng in time r |= prop = b

A temporal logic formula is constructed by state propositions and temporal logic operators such as
True, False, ~ (negation), /\, \/, -> (implication), [] (\always"), <> (\eventually"), U (\until"),
and W (\weak until"). The command

7Since the temporal logic model checker uses depth-�rst search techniques, there are cases in which the check

command terminates even without a time limit, and where the temporal logic model checker would loop. One such
example is shown in Section 4.13.

13

(mc t |=t formula timeLimit .)

is the timed model checking command which checks whether the temporal logic formula formula

holds in all behaviors up to duration timeLimit starting from the initial state t . As explained in [23],
timed model checking problems are equivalent to ordinary linear temporal logic (LTL) problems
on a transformed (rewriting logic) theory. The Real-Time Maude system performs internally this
transformation and sends the transformed model checking problem to the underlying Maude LTL
model checker.

4 Formal Speci�cation and Analysis of the AER/NCA Protocol
Suite in Real-Time Maude

We summarize in this section the Real-Time Maude speci�cation of the AER/NCA protocol suite.
The given formal speci�cation is based on version 1.0 of the informal speci�cation of AER/NCA,
as well as on consultations with the protocol developers. The paper [21] briey outlined the
speci�cation and analysis of the AER/NCA protocol suite in version 1.0 of Real-Time Maude, and
the thesis [18] presented that speci�cation in its entirety. This paper describes in more detail the
speci�cation and analysis of the protocol suite in version 2.1 of our tool. This new version o�ers
a simpler way of modeling object-oriented systems, as well as an entirely new set of eÆciently
implemented analysis commands [23]. In particular, all the analyses in [21, 18], for which user-
de�ned strategies were needed, can now be performed directly using Real-Time Maude commands.

The formalization phase helped clarifying ambiguities and forced us to make implicit, but essential,
knowledge explicit. After specifying the protocol, we executed it using Real-Time Maude's default
interpreter, and we found a �rst set of errors this way. The aws detected during the prototyping
of earlier versions of the speci�cation were corrected, leading to a better speci�cation, and more
features, for example in the form of more accurate modeling of communication, were also added.

The speci�cation is given in an object-oriented style, following the speci�cation techniques suggested
in [22, 23]. Although the four protocol components are closely inter-related, it is nevertheless
important to analyze each component separately, as well as in combination. We manage this task
by using object-oriented features such as inheritance.

We start this section by presenting our treatment of time. The time it takes for a packet to travel
through a link between two nodes plays a crucial role in the protocol, since it determines the round
trip between nodes, the retransmission intervals, the nominee receiver, and so on. We therefore
need a fairly detailed model of communication |suggested to us by the protocol developers|
which is presented in Section 4.6. In Section 4.9 we outline the class hierarchy which allows the
analysis of the protocol components in isolation and in combination. Section 4.10 presents, for
comparison purposes, both the informal speci�cation and the Real-Time Maude speci�cation of
the RTT component. Sections 4.12, 4.14, and 4.16 present key aspects of the Real-Time Maude
speci�cation of, respectively, the NOM, RC, and RS components. Section 4.18 outlines how these
components lead to a speci�cation of the combined protocol. Sections 4.11, 4.13, 4.15, 4.17, and 4.18
give some examples of Real-Time Maude analysis of the protocol components and of the composite
protocol.

14

4.1 Modeling the Time Domain

The protocol is parametric on the choice of a concrete time domain. We use the natural numbers
as the time domain8 by just importing into our speci�cation the built-in Real-Time Maude module
NAT-TIME-DOMAIN-WITH-INF, which de�nes the time domain Time to be the natural numbers,
de�nes the subsort NzTime to be set of non-zero natural numbers, and de�nes a supersort TimeInf
of Time with an additional in�nity value INF and extends the standard functions on Time to
TimeInf.

4.2 Modeling Time Elapse

In [22, 23] we suggested some speci�cation techniques which have proved useful for specifying object-
oriented real-time systems. In such systems it is often convenient to use functions delta and mte

to de�ne, respectively, the e�ect of time advance on a con�guration of objects and messages, and
the maximum t ime elapse allowed in a con�guration before some action must be taken, and to let
these functions distribute over the elements in a con�guration. The operators Æ and mte should be
declared to be frozen operators to avoid ill-timed rewrites or rewrites of the time domain [22, 23].

vars NECF NECF' : NEConfiguration . var R : Time .

op delta : Configuration Time -> Configuration [frozen (1)] .

eq delta(none, R) = none .

eq delta(NECF NECF', R) = delta(NECF, R) delta(NECF', R) .

op mte : Configuration -> TimeInf [frozen (1)] .

eq mte(none) = INF .

eq mte(NECF NECF') = min(mte(NECF), mte(NECF')) .

The equations de�ne how the functions distribute over the objects and messages in a con�guration.
To completely specify these functions, they must be de�ned for single objects as illustrated later
in this paper.

Time elapse is modeled by the single tick rule

var OC : NEObjectConfiguration . var R : Time .

crl [tick] : fOCg => fdelta(OC, R)g in time R if R <= mte(OC) [nonexec] .

This tick rule is time-nondeterministic, as time may advance by any amount R less than or equal
to mte(OC), and is nonexecutable until we de�ne a time sampling strategy. Since the time domain
is the natural numbers, we could also cover the entire time domain by having a tick rule which
advances time by one time unit. However, we notice that each instantaneous action in the protocol
is triggered by an event such as the expiration of a timer or the reception of a message. That
is, nothing \interesting" can happen in the time intervals between the \current" time and time
mte(OC) thereafter. For eÆciency purposes, we will therefore choose a time sampling strategy
which always advances time as much as possible, and still \cover" all relevant behaviors.

8We could equally well have used the rational numbers as time domain, but the naturals numbers are suÆcient.

15

The use of the variable OC of sort NEObjectConfiguration requires that the con�guration only
consists of objects when the tick rule is applied, and therefore forces messages which are not being
transmitted over links to be treated without delay, because the above rule will not match, and
therefore time will not advance, when there are messages present in the con�guration.

This tick rule is the only tick rule in our speci�cation; all other rules are instantaneous rules.

4.3 Timers

Many communication protocols, including AER/NCA, use timers to force an action to take place
at a certain time. We model a timer belonging to an object as a class attribute of sort TimeInf,
whose value is a time value r when the timer should expire in time r , and whose value is INF when
the timer is turned o�. For example, a timer xTimer in a class C may be declared

class C | ..., xTimer : TimeInf,

We can force an action to take place when a timer expires by not letting time elapse beyond the
expiration time of the timer, and by turning o� or resetting the timer when the action associated
with the expiration of the timer is performed. The functions mte and delta are typically de�ned
on such classes C as follows:

var O : Oid . var TI : TimeInf . var R : Time .

eq delta(< O : C | ..., xTimer : TI, ... >, R) =

< O : C | ..., xTimer : TI monus R, ... > .

eq mte(< O : C | ..., xTimer : TI, ... >) = TI .

The last equation should be replaced by an equation of the form

eq mte(< O : C | ..., xTimer : TI, ... >) = min(TI, ...) .

when the maximum time elapse depends also on other attributes than xTimer. An object may
have more than one timer attribute, and one attribute could hold many timers.

4.4 Object Identi�ers

We abstract from object addresses and de�ne the set of object identi�ers to be the set of quoted
identi�ers: subsort Qid < Oid . We also de�ne sets of object identi�ers and a supersort DefOid
of object identi�ers with a \default" value noOid (corresponding to a null pointer) as follows:

sorts DefOid OidSet . subsorts Oid < DefOid OidSet .

op noOid : -> DefOid .

op none : -> OidSet .

op __ : OidSet OidSet -> OidSet [assoc comm id: none prec 15] .

16

4.5 A Set of Frequently Used Variables

To avoid repeating the declarations of variables in this exposition, we list below some variables
used frequently in the formal speci�cation. Other variables will be introduced together with the
declarations of their sorts, and are considered to be declared throughout the paper.

var Q : Qid . vars O O' O'' O''' O'''' : Oid .

vars DO DO' DO'' : DefOid . var OS : OidSet .

vars M M' : Msg . vars MC MC' : MsgConfiguration .

vars R R' R'' R''' R'''' R''''' : Time . vars TI TI' TI'' TI''' : TimeInf .

var NZR : NzTime . vars N N' N'' N''' : Nat .

vars NZN NZN' NZN'' NZN''' NZN'''' : NzNat . vars X Y Z X' : Bool .

4.6 Modeling Communication and the Communication Topology

We abstract from the passive nodes in the network, and model the multicast communication topol-
ogy by the multicast distribution tree which has the sender as its root, the receivers in the multicast
group as its leaf nodes, and the repair servers as its internal nodes. The appropriate classes for
these objects are de�ned as follows:

class Sendable | children : OidSet .

class Receivable | repairserver : DefOid .

class Sender . subclass Sender < Sendable .

class Receiver . subclass Receiver < Receivable .

class Repairserver . subclass Repairserver < Sendable Receivable .

For example, in a state representing the topology in Fig. 1 on page 6, the object (with identi�er) 'c
belongs to a subclass of the class Repairserver, and its children attribute has the value 'd 'e.
(Its repairserver attribute should be set (to 'a) by the protocol; it has the value noOid initially.)
The routing table is given implicitly by the multicast tree, which, in turn, is given by the objects
together with the values of their children attributes. A multicast follows this multicast tree.

4.6.1 Links

Network performance and congestion (and the resulting loss of packets) are critical metrics in the
AER/NCA protocol and should be explicitly modeled to faithfully analyze the protocol.

Packets are sent through bidirectional links, which model edges in a multicast distribution tree.
The time it takes for a packet to arrive at a link's target node depends on the size of the packet,
the number of packets in the link, and the link speed and propagation delay of the link, while
the capacity of the link and the number of packets in it determines whether packets are lost. All
these factors a�ect the network performance and the degree of congestion and are modeled by the
following Link class, which is declared as follows:

class Link | up : Oid, down : Oid, bound : NzNat, propDelay : NzTime, linkSpeed : NzNat,

downMsgs : MsgList, downSize : Nat, upMsgs : MsgList, upSize : Nat .

17

where up and down denote the end nodes of the link, bound its capacity, propDelay its propaga-
tion delay, linkSpeed its link speed in megabits per second, and downMsgs is its bu�er of length
downSize of messages being sent downstream along the link. The link bu�ers the packets in lists
which are declared as follows:

sort MsgList . subsort Msg < MsgList .

op nil : -> MsgList .

op _+_ : MsgList MsgList -> MsgList [assoc id: nil] .

A packet is stored in the link as dly(p; r), where r is the time until the packet can be delivered. The
attempt to send a packet p through the link from a to b takes place by the method call/message
send(p; a; b). This send-request is treated by the link by discarding the packet if the link is
full, and by computing the transmission delay and adding the packet to its bu�er otherwise (rule
intoLinkDown). When the packet has been in the link for the time it takes for the packet to
travel through the link (i.e., its delay has reached 0), the link \delivers" the packet p by sending
the message p from a to b to the global con�guration (rule outOfDownLink), where it should be
treated by object b.

vars ML ML' : MsgList .

crl [intoLinkDown] :

send(M, O, O')

< O'' : Link | up : O, down : O', bound : N, propDelay : NZR,

linkSpeed : NZN, downMsgs : ML, downSize : N' >

=>

if N' < N then

< O'' : Link | downMsgs :

ML + dly(M, max(NZR, greatestDly(ML)) + transDelay(M, NZN)),

downSize : N' + 1 >

else < O'' : Link | > fi

if leastDly(ML) =/= 0 .

rl [outOfDownLink] :

< O : Link | down : O', up : O'', downMsgs : dly(M, 0) + ML, downSize : s N >

=>

< O : Link | downMsgs : ML, downSize : N >

(M from O'' to O') .

The treatment of packets from node down to node up is symmetric. The packet wrappers are
declared as follows:

msg send : Msg Oid Oid -> Msg .

msg _from_to_ : Msg Oid Oid -> Msg .

msg dly : Msg Time -> Msg .

The transmission delay of a packet in a link is the packet size divided by the link speed, and the
total delay of a packet entering a link is

max(propagation delay;maxDelayInLink) + transmission delay;

18

where maxDelayInLink is the current delay of the last packet entered in the link, and is 0 if there
are no packets in the link. Data packets are usually around 1500 bytes large, and all other kinds of
packets are 64 bytes large. We declare the sorts Packet (for 64 bytes packets) and LargePacket

(for 1500 bytes packets) as subsorts of the sort Msg, and de�ne a function which computes the
transmission delay of a given packet and link speed (in megabits per second) as follows:

sorts Packet LargePacket . subsorts Packet LargePacket < Msg .

op transDelay : Msg NzNat -> Time .

var SMALLPACKET : Packet . var LARGEPACKET : LargePacket .

eq transDelay(SMALLPACKET, NZN) = (64 * 8 + ((NZN * 1000) monus 1)) quo (NZN * 1000) .

eq transDelay(LARGEPACKET, NZN) = (1500 * 8 + ((NZN * 1000) monus 1)) quo (NZN * 1000) .

The functions leastDly and greatestDly compute the least and greatest delay of a message in a
message list:

op leastDly : MsgList -> TimeInf . op greatestDly : MsgList -> Time .

eq leastDly(nil) = INF . eq greatestDly(nil) = 0 .

eq leastDly(dly(M, R) + ML) = R . eq greatestDly(ML + dly(M, R)) = R .

Packets can be sent to a group of objects using the multiSend operator:

msg multiSend : Msg Oid OidSet -> Configuration .

eq multiSend(M, O, (O' OS)) = send(M, O, O') multiSend(M, O, OS - O') .

eq multiSend(M, O, none) = none .

The \timed" behavior of a link object is de�ned by the mte and delta functions. The delay
associated with each message in the link's bu�er can be seen as a timer (intended to force the
release of the message at the appropriate time), so that time acts on a link by decreasing the delay
of each packet in the link's bu�er according to the time elapsed, and so that time does not advance
beyond the time the �rst packet in the link is ripe for delivery:

eq delta(< Q : Link | downMsgs : ML, upMsgs : ML' >, R) =

< Q : Link | downMsgs : ML minus R, upMsgs : ML' minus R > .

op _minus_ : MsgList Time -> MsgList . --- decrease delay of messages

eq nil minus R = nil .

ceq (ML + ML') minus R = (ML minus R) + (ML' minus R) if ML =/= nil and ML' =/= nil .

eq dly(M, R) minus R' = dly(M, R monus R') .

eq mte(< Q : Link | downMsgs : ML, upMsgs : ML' >) = min(leastDly(ML), leastDly(ML')) .

It may be worth noticing that nothing was said about communication aspects in the informal
speci�cation of the AER/NCA protocol suite. Giving a formal executable speci�cation has the
advantage of making explicit the communication assumptions.

19

4.6.2 The State of the System

The global state of the system will have the form {t}, where t is a con�guration that consists
of: (i) \node" objects, which are instances of subclasses of the classes Sender, Repairserver, or
Receiver, (ii) links, which are objects of class Link, (iii) messages sent to and from the links, and
(iv) unicast packets. The state may also contain some additional objects such as a random number
generator, and/or objects representing a simpli�ed view of the \environment."

4.7 Random Numbers for Probabilistic Features

The AER/NCA protocol suite is a probabilistic protocol suite in that there are many places where
a \randomly varying" value, \uniformly distributed" within a certain interval, is needed. To model
such probabilistic features, we have one object of class RandomNGen with one attribute seed which
carries the global \seed" for the function

op random : Nat -> Nat .

eq random(N) = ((104 * N) + 7921) rem 10609 .

which generates a pseudo-random sequence of natural numbers and which is an instance of a class
of \good" pseudo-random number generators given in [10].

4.8 A Clock Class

Most classes have a clock attribute; they can be de�ned as subclasses of the following class:
class Clock | clock : Time .

4.9 The Class Hierarchy

The protocol components do not operate independently of each other. Some transitions are compos-
ite transitions which involve actions from di�erent components. One such example is the reception
of a data packet by the nominee receiver which involves detecting lost packets (RS component), up-
dating the receiver's lpe (NOM component), and acknowledging the data packet (RC component).
Most transitions, however, are independent transitions, which only involve actions in one protocol
component. Although the informal speci�cation describes the behavior of the components (only)
when all the components are executed together, it is important to be able to execute and analyze
each component in isolation, as well as the protocol with all the components combined together.

The Real-Time Maude speci�cation is designed using multiple class inheritance, so that each of
the four protocol components RTT, NOM, RC, and RS can be executed separately as well as in
combination. Figure 2 shows the class hierarchy for sender objects (with some classes omitted).
Objects of the class RTTsenderAlone should be used in the initial state when the RTT part of
the protocol is analyzed separately, while the sender object in the composite protocol should be
an instance of the class SenderCombined. Since RTTsenderAlone and SenderCombined are sub-
classes of the class RTTsender, rules which model independent transitions should involve objects
of class RTTsender to allow for maximal reuse of these rules. For composite transitions, we have
de�ned their behavior when executed in a single component in rules involving objects of class

20

Sendable

Sender

RTTsender NOMsender RCsender RSsender

RTTsenderAlone NOMsenderAlone RCsenderAlone RSsenderAlone

SenderCombined

Figure 2: The sender class hierarchy.

RTTsenderAlone, and their behavior when executed in the composite protocol in rules involving
objects of class SenderCombined as illustrated in Section 4.18. These techniques could also be used
to specify the composition of two or three of the protocol components. The class hierarchies for
repair servers and receivers are entirely similar.

4.10 The Formal and Informal Speci�cations of the RTT Component

In this section we present in detail both the informal speci�cation and the Real-Time Maude
speci�cation of the RTT component.

The task of the RTT part of the protocol is to �nd, for each repair server and receiver object, the
following values:

� sourceRTT: The round trip time (RTT) from the sender to the object.

� maxUpRTT: The maximal RTT from the object's upstream repair server to any of that repair
server's children.

The round trip time values should be recently estimated values. The informal speci�cation does
not say anything about whether we are interested in the round trip times of large or small packets,
or the time it takes for a small packet to go upstream plus the time it takes for a large packet
to go downstream. The protocol presented in the formal speci�cation below computes the round
trip times of small packets, and can easily be changed by declaring the getRTTRequest and/or
getRTTResponse packets to have sort LargePacket.

4.10.1 Class Declarations

The \state variables" of the nodes are declared as follows in the informal speci�cation:

Sender:

maxDownRTTSetTime: Time that maxDownRTT was last updated.

Initialized to the currentTime in milliseconds.

21

maxDownRTT: Value currently being used as the largest RTT received from a directly

supplied downstream receiver or repair server. Initialized to -1.

maxRecentDownRTT: Largest RTT received from a directly supplied downstream receiver

or repair server since maxDownRTT was last set. Initialized to 0.

sourceRTT: RTT to the sender. Always 0.

Repair servers:

resendInterval: Time between successive Get-RTT requests.

Initialized to the value of initialGetRTTCycleTime.

maxDownRTTSetTime: Time that maxDownRTT was last updated.

Initialized to the currentTime in milliseconds.

maxDownRTT: Value currently being used as the largest RTT received from a directly

supplied downstream receiver or repair server. Initialized to -1.

maxRecentDownRTT: Largest RTT received from a directly supplied downstream receiver

or repair server since maxDownRTT was last set. Initialized to 0.

maxUpRTT: Largest RTT observed by the nearest upstream repair server (or sender).

Value is used to derive the suppression timer value. Initialized to -1.

myUpRTT: RTT observed to the nearest upstream repair server (or sender).

Initialized to -1.

sourceRTT: RTT to the sender. Value is used to derive the retransmit timer value.

Initialized to -1.

Receivers:

resendInterval: Time between successive Get-RTT requests.

Initialized to the value of initialGetRTTCycleTime.

maxUpRTT: Largest RTT observed by the nearest upstream repair server (or

sender). Value is used to derive the suppression timer value. Initialized to -1.

myUpRTT: RTT observed to the nearest upstream repair server (or sender).

Initialized to -1.

sourceRTT: RTT to the sender. Value is used to derive the retransmit timer value.

Initialized to -1.

We use the constant INF as \default" value instead of -1. In the Real-Time Maude speci�ca-
tion, each state variable corresponds to an attribute in the class RTTsender, RTTrepairserver,
or RTTreceiver. In addition, receivers and repair servers have an attribute getRTTResendTimer

corresponding to the timer mentioned in the use cases. Since the repair servers perform many of
the same transitions as the sender and the receivers, we �nd it convenient to de�ne the superclasses
RTTsendable and RTTreceivable, for, respectively, sender and repair servers, and repair servers
and receivers. The class hierarchy and the packets involved in the protocol are given as follows:

*** All RTT objects are subclasses of RTT:

class RTT | sourceRTT : TimeInf .

*** Sender and repairserver:

class RTTsendable | maxDownRTT : TimeInf, maxDownRTTSetTime : Time,

maxRecentDownRTT : Time .

subclass RTTsendable < RTT Sendable Clock .

*** Repair server and receiver:

class RTTreceivable | resendInterval : Time maxUpRTT : TimeInf,

22

myUpRTT : TimeInf, getRTTResendTimer : TimeInf .

subclass RTTreceivable < RTT Receivable Clock .

*** Classes for both stand-alone and combined protocols:

class RTTsender . subclass RTTsender < RTTsendable .

class RTTreceiver . subclass RTTreceiver < RTTreceivable .

class RTTrepairserver . subclass RTTrepairserver < RTTreceivable RTTsendable .

*** Classes for stand-alone protocol only:

class RTTsenderAlone . subclass RTTsenderAlone < RTTsender .

class RTTreceivableAlone . subclass RTTreceivableAlone < RTTreceivable .

class RTTreceiverAlone . subclass RTTreceiverAlone < RTTreceiver RTTreceivableAlone .

class RTTrepairserverAlone .

subclass RTTrepairserverAlone < RTTrepairserver RTTreceivableAlone .

4.10.2 Packet Declarations

Packets used in the RTT component are given as follows in the informal speci�cation:

The algorithm functions via request-response messages exchanged between subscribers

(receivers or repair servers) and their nearest upstream providers

(repair servers or the sender). The Get-RTT request message and the Get-RTT response

message have, respectively, the formats:

-------------------- ---------------------------------------

| xmitTime | upRTT | and | xmitTime | peerGroupRTT | globalRTT |

-------------------- ---------------------------------------

These packets are declared as follows in Real-Time Maude:

msg getRTTRequest : Time TimeInf -> Packet .

*** Usage: getRTTRequest(xmitTime, upRTT).

msg getRTTResponse : Time TimeInf TimeInf -> Packet .

*** Usage: getRTTResponse(xmitTime, peerGroupRTT, globalRTT)

4.10.3 Speci�cation of the Use Cases

We describe in this section the dynamics of the RTT component by presenting each use case in
the informal speci�cation followed by the corresponding rewrite rule(s) in the formal speci�cation.
The use cases can be summarized as follows:

Use Case R.1. in the informal speci�cation de�nes the initial values of the state variables. The
formal speci�cation handles initialization by analyzing the protocol from initial states where
the attributes have the given initial values.

Use Case R.2. A startRTT message initiates the sender, which sends source path message (SPM)
packets downstream. Upon reception of such a packet, a node initiates its timer to a \random"
value between 0 and 30 milliseconds, and subcasts the SPM packet downstream.

23

Use Case R.3. When a timer expires, its node sends a getRTTRequest packet to its (upstream)
repair server with the current time, and the node's current estimate of the RTT to its repair
server.

Use Case R.4. When the upstream repair server receives this getRTTRequest packet, it may need
to update its own maxDownRTT, and sends a getRTTResponse back to the downstream node,
with the timestamp unchanged, and its current sourceRTT and current maxDownRTT values.

Use Case R.5. When the originator of this packet exchange receives the response, it can com-
pute the \latest" RTT to its upstream repair server by just taking the current time minus
the timestamp. Having this 1-step RTT, it adds this to the received sourceRTT value of
its upstream repair server and gets its new sourceRTT estimate. It also compares the re-
ceived maxDownRTT value with its own maxUpRTT estimate. Finally, the timer interval may be
updated.

Use Case R.2. Processing the First Received SPM Packet

This use case begins when the first SPM packet is received at a receiver or repair

server. Each receiver or repair server starts a Get-RTT resend timer with a duration of

a random variate, uniformly distributed between 0 and 1.0, times

implosionSuppressionInterval

This use case ends when the Get-RTT resend timer has been set.

The execution of the composite protocol starts with the sender sending source path message (SPM)
packets to its multicast group. To execute the RTT component in isolation, we use a message
startRTT to start the RTT component, which the sender does by multicasting a SPM packet with
sequence number 0 to the multicast group:

msg startRTT : Oid -> Msg .

rl [startRTT] :

startRTT(O)

< O : RTTsenderAlone | children : OS >

=>

< O : RTTsenderAlone | >

multiSend(SPMPacket(0), O, OS) .

In the RTT component, such SPM packets are used to set the repairserver attributes and to start
the protocol by initializing the timer to a random value between 0 and 30, which is the nominal
value of the constant implosionSuppressionInterval. Upon the reception of the �rst SPM packet
(SPMPacket(0)), a repair server must set its timer and subcast the SPM packet downstream (rule
R2rs), while a receiver just sets its timer (rule R2rcv). The RandomNGen object provides the seed
for computing the new \random" initial value of the timer:

rl [R2rs] :

(SPMPacket(0) from O' to O)

< O'' : RandomNGen | seed : N >

24

< O : RTTrepairserverAlone | children : OS >

=>

< O'' : RandomNGen | seed : random(N) >

< O : RTTrepairserverAlone | repairserver : O', getRTTResendTimer : random(N) rem 31 >

multiSend(SPMPacket(0), O, OS) .

rl [R2rcv] :

(SPMPacket(0) from O' to O)

< O'' : RandomNGen | seed : N >

< O : RTTreceiverAlone | >

=>

< O'' : RandomNGen | seed : random(N) >

< O : RTTreceiverAlone | repairserver : O', getRTTResendTimer : random(N) rem 31 > .

Use Case R.3. Get-RTT Resend Timer Service Routine

This use case begins when the Get-RTT resend timer expires at a receiver or repair

server. Each receiver or repair server resets the Get-RTT resend timer using the current

value of resendInterval, and subsequently sends a Get-RTT request packet to the nearest

upstream repair server (or sender). The Get-RTT request packet fields are set as follows:

xmitTime = currentTime

upRTT = myUpRTT

This use case ends when the Get-RTT request packet has been sent.

This use case, which describes how a node initiates a request/response round when its timer expires,
is modeled formally as follows. (Remember that the clock attribute shows the current time.)

rl [R3] :

< O : RTTreceivable | clock : R, repairserver : O', resendInterval : R',

myUpRTT : TI, getRTTResendTimer : 0 >

=>

< O : RTTreceivable | getRTTResendTimer : R' >

send(getRTTRequest(R, TI), O, O') .

Use Case R.4. Processing a Received Get-RTT Request Packet

This use case begins when a Get-RTT request packet is received at a repair server or

sender. The following processing is performed (xmitTime and upRTT are Get-RTT request

packet fields):

if (upRTT > maxDownRTT) f
maxDownRTT = upRTT

maxDownRTTSetTime = currentTime in milliseconds

maxRecentDownRTT = 0

g

25

else f if (upRTT > maxRecentDownRTT) f maxRecentDownRTT = upRTT g g

A check is then made to determine if maxDownRTT should be updated to the value of

maxRecentRTT by comparing the update time against the current time in milliseconds:

if (currentTime > (maxDownRTTSetTime + updateWindowLength)) f
maxDownRTT = maxRecentDownRTT

maxDownRTTSetTime = currentTime in milliseconds

maxRecentDownRTT = 0

g
The repair server or sender then sends a Get-RTT response packet. The Get-RTT response

packet fields are set as follows:

xmitTime = xmitTime,

peerGroupRTT = maxDownRTT

globalRTT = sourceRTT

This use case ends when the repair server or sender sends a Get-RTT response packet.

This use case describes how Get-RTT request packets are treated. In the formal speci�cation we
split the treatment of getRTTRequest packets according to whether the upRTT value, that is, the
second parameter of the packet, and the value of the attribute maxDownRTT are INF or time values
(we exploit that the variables R, R', . . . range over time values, and TI, TI', . . . range over the sort
TimeInf comprising time values and the value INF):

*** upRTT and maxDownRTT are both time values, and upRTT > maxDownRTT.

crl [R4a] :

(getRTTRequest(R, R') from O to O')

< O' : RTTsendable | clock : R'', sourceRTT : TI, maxDownRTT : R''' >

=>

< O' : RTTsendable | maxDownRTT : R', maxDownRTTSetTime : R'', maxRecentDownRTT : 0 >

send(getRTTResponse(R, R', TI), O', O) if R''' < R' .

*** upRTT is still a time value, but maxDownRTT is now INF.

rl [R4b] :

(getRTTRequest(R, R') from O to O')

< O' : RTTsendable | clock : R'', sourceRTT : TI, maxDownRTT : INF >

=>

< O' : RTTsendable | maxDownRTT : R', maxDownRTTSetTime : R'', maxRecentDownRTT : 0 >

send(getRTTResponse(R, R', TI), O', O) .

The case where upRTT is INF, and the case where both upRTT and maxDownRTT are time values and
upRTT <= maxDownRTT, are modeled by two additional rules in the same style.

Use Case R.5. Processing a Received Get-RTT Response Packet

This use case begins when a Get-RTT response packet is received at a receiver or repair

server. The receiver or repair server computes the local round trip time as:

26

myUpRTT = (currentTime - xmitTime)

Next, if either the value of maxUpRTT is equal to -1 or the value of peerGroupRTT is

equal to -1, it immediately issues another Get-RTT request as follows:

if ((maxUpRTT == -1) || (peerGroupRTT == -1))

f resendInterval = myUpRTT

Cancel the current Get-RTT resend timer

Start the Get-RTT timer with a duration of resendInterval

Send a Get-RTT request packet (xmitTime = currentTime, upRTT = myUpRTT) g

The resend interval is doubled and limited to the value of maxGetRTTCycleTime:

resendInterval = (resendInterval * 2)

if (resendInterval > maxGetRTTCycleTime) f resendInterval = maxGetRTTCycleTime g

maxUpRTT is set to either the value of peerGroupRTT from the packet or the new value

of myUpRTT, whichever is greater:

if (myUpRTT > peerGroupRTT) f maxUpRTT = myUpRTT g
else f maxUpRTT = peerGroupRTT g

Finally, if the value of globalRTT in the response packet is nonnegative, the receiver

or repair server then computes and sets the value of sourceRTT as the sum of the value

of globalRTT and the value of myUpRTT:

if (globalRTT >= 0) f sourceRTT = (globalRTT + myUpRTT) g

The treatment of getRTTResponse packets in the formal speci�cation is divided into two cases,
depending on whether both the maxUpRTT attribute value and the peerGroupRTT value (the second
parameter) in the received packet are time values. In the combined protocol, other actions must
also be taken when new RTT values are found. Therefore, the following rules apply to objects of
class RTTreceivableAlone:

crl [R5a] :

(getRTTResponse(R, TI, TI') from O to O')

< O' : RTTreceivableAlone | clock : R', sourceRTT : TI'',

resendInterval : R'', maxUpRTT : TI''' >

=>

< O' : RTTreceivableAlone | sourceRTT : (if TI' =/= INF then

TI' + (R' monus R) else TI'' fi),

resendInterval : min(2 * (R' monus R), 3000),

maxUpRTT : (if TI =/= INF then

max(R' monus R, TI)

else (R' monus R) fi),

myUpRTT : R' monus R,

getRTTResendTimer : R' monus R >

send(getRTTRequest(R', R' monus R), O', O)

if TI''' == INF or TI == INF .

*** Neither peerGroupRTT nor maxUpRTT has INF value:

27

rl [R5b] :

(getRTTResponse(R, R', TI) from O to O')

< O' : RTTreceivableAlone | clock : R'', sourceRTT : TI',

resendInterval : R''', maxUpRTT : R'''' >

=>

< O' : RTTreceivableAlone | sourceRTT : (if TI =/= INF

then TI + (R'' monus R) else TI' fi),

resendInterval : min(2 * R''', 3000),

maxUpRTT : max(R'' monus R, R'),

myUpRTT : R'' monus R > .

4.10.4 Real-Time Behavior

Finally, we need to specify how time acts on RTT objects in the stand-alone protocol. A repair
server or receiver has a timer attribute on which mte and delta work as described in Section 4.2.
The objects also have a clock attribute which must be updated as time elapses:

eq delta(< O : RTTsenderAlone | clock : R >, R') =

< O : RTTsenderAlone | clock : R + R' > .

eq delta(< O : RTTreceivableAlone | clock : R, getRTTResendTimer : TI >, R')

= < O : RTTreceivableAlone | clock : R + R', getRTTResendTimer : TI monus R' > .

eq mte(< O : RTTsenderAlone | >) = INF .

eq mte(< O : RTTreceivableAlone | getRTTResendTimer : TI >) = TI .

4.11 Formal Analysis of the RTT Component in Real-Time Maude

This section illustrates how the RTT component has been analyzed using the Real-Time Maude
tool.

4.11.1 De�ning a Time Sampling Strategy

Before any analysis can be undertaken, we must select a time sampling strategy to guide the
application of the time-nondeterministic tick rule given in Section 4.2. As mentioned there, even
though a strategy which advances time by one time unit in each tick would cover the time domain,
we use for eÆciency purposes a strategy which increases time by the maximum amount possible,
since no instantaneous rule can be applied before time has advanced \as much as possible." We
declare this time sampling strategy by the command

Maude> (set tick max .)

and note that this strategy will apply to the analysis of all the protocol components.

28

4.11.2 Prototyping the RTT Component

In an object-oriented timed module AER-RTT1 which imports the module AER-RTT specifying the
RTT component, we de�ne the following initial state RTTstate2. This state has the topology given
in Fig. 1 and is parameterized by the initial value of the seed used by the random number generator:

op RTTstate2 : Nat -> GlobalSystem .

eq RTTstate2(N) =

(f startRTT('a)

< 'a : RTTsenderAlone | clock : 0, sourceRTT : 0, children : 'b 'c, maxDownRTT : INF,

maxDownRTTSetTime : 0, maxRecentDownRTT : 0 >

< 'b : RTTreceiverAlone | ATTS-RCVR >

< 'c : RTTrepairserverAlone | children : 'd 'e, ATTS-RS >

< 'd : RTTrepairserverAlone | children : 'f 'g, ATTS-RS >

< 'e : RTTreceiverAlone | ATTS-RCVR >

< 'f : RTTreceiverAlone | ATTS-RCVR >

< 'g : RTTreceiverAlone | ATTS-RCVR >

< 'random : RandomNGen | seed : N >

< 'ab : Link | up : 'a, down : 'b, bound : 5, propDelay : 21, linkSpeed : 1, ATTS-LINK >

< 'ac : Link | up : 'a, down : 'c, bound : 21, propDelay : 28, linkSpeed : 3, ATTS-LINK >

< 'cd : Link | up : 'c, down : 'd, bound : 9, propDelay : 23, linkSpeed : 1, ATTS-LINK >

< 'ce : Link | up : 'c, down : 'e, bound : 4, propDelay : 17, linkSpeed : 1, ATTS-LINK >

< 'df : Link | up : 'd, down : 'f, bound : 12, propDelay : 5, linkSpeed : 10, ATTS-LINK >

< 'dg : Link | up : 'd, down : 'g, bound : 12, propDelay : 5, linkSpeed : 10, ATTS-LINK >g) .

where ATTS-RCVR stands for

clock : 0, sourceRTT : INF, repairserver : noOid, resendInterval : 200,

maxUpRTT : INF, myUpRTT : INF, getRTTResendTimer : INF ,

ATTS-RS stands for the multiset union (juxtaposition) of ATTS-RCVR and

maxDownRTT : INF, maxDownRTTSetTime : 0, maxRecentDownRTT : 0 ,

and ATTS-LINK stands for downMsgs : nil, downSize : 0, upMsgs : nil, upSize : 0.

Fig. 3 shows the multicast distribution tree of RTTstate2, where the number associated with each
link indicates how much time it takes (namely, the propagation delay plus the transmission delay)
for a small packet to travel through the link when the link is otherwise empty. For example,
in otherwise empty links, the round trip time to the source from the nodes 'c, 'd, and 'e is,
respectively, 58, 106, and 94, and the maxUpRTT of these nodes is, respectively, 58, 48, and 48.

Real-Time Maude's timed rewrite command can be used to simulate one behavior of the RTT
protocol up to time 1000: 9

9The output of Real-Time Maude executions will be manually tabulated for readability purposes, and parts of the
output omitted in the exposition will be replaced by `...'

29

a

b c

d e

f g

22

24 18

29

6 6

’

’

’

’ ’

’ ’

Figure 3: The multicast distribution tree corresponding to RTTstate2.

Maude> (trew RTTstate2(1) in time <= 1000 .)

Result ClockedSystem :

f< 'a : RTTsenderAlone | children : 'b 'c, clock : 907, maxDownRTTSetTime : 124,

maxDownRTT : 58, maxRecentDownRTT : 58, sourceRTT : 0 >

< 'b : RTTreceiverAlone | maxUpRTT : 58, sourceRTT : 44, : : : >

< 'c : RTTrepairserverAlone | maxUpRTT : 58, sourceRTT : 58, : : : >

< 'd : RTTrepairserverAlone | maxUpRTT : 48, sourceRTT : 106, : : : >

< 'e : RTTreceiverAlone | maxUpRTT : 48, sourceRTT : 94, : : : >

< 'f : RTTreceiverAlone | maxUpRTT : 12, sourceRTT : 118, : : : >

< 'g : RTTreceiverAlone | maxUpRTT : 12, sourceRTT : 118, : : : >

: : : g in time 907

These sourceRTT and maxUpRTT values are as expected.

4.11.3 Further Formal Analysis of the RTT Component

Although prototyping the RTT component gave the desired result, such execution explores just
one of many possibly behaviors of a system, arbitrarily chosen by Real-Time Maude's default
interpreter. To gain further understanding |and to uncover errors| the speci�cation can be
subjected to further formal analysis using the search and model checking commands of Real-Time
Maude.

The main property the stand-alone RTT protocol should satisfy is that, as long as no more than
one packet travels simultaneously in the same direction in the same link, then:

� each computation will reach a state with the desired sourceRTT and maxUpRTT values within
given time and depth limits (reachability); and

� once the correct values are found, they will not change within the given time limit (stability).

In addition, since a nominee receiver must be found before the whole protocol can start the trans-
mission of data packets, and the RTT values are needed to �nd a nominee receiver, it is useful to
know

30

� how long time it takes (in the worst case) to �nd the RTT values.

The �rst and last of these issues can be checked by Real-Time Maude's find latest command.
The following command checks whether correct sourceRTT and maxUpRTT values of the objects in
the topology given in Fig. 3 will be reached in all behaviors from initial state RTTstate2(1), and
the longest time needed to do so:

Maude> (find latest RTTstate2(1) =>*

f< 'b : RTTreceiverAlone | sourceRTT : 44, maxUpRTT : 58, ATTS1:AttributeSet >

< 'c : RTTrepairserverAlone | sourceRTT : 58, maxUpRTT : 58, ATTS2:AttributeSet >

< 'd : RTTrepairserverAlone | sourceRTT : 106, maxUpRTT : 48, ATTS3:AttributeSet >

< 'e : RTTreceiverAlone | sourceRTT : 94, maxUpRTT : 48, ATTS4:AttributeSet >

< 'f : RTTreceiverAlone | sourceRTT : 118, maxUpRTT : 12, ATTS5:AttributeSet >

< 'g : RTTreceiverAlone | sourceRTT : 118, maxUpRTT : 12, ATTS6:AttributeSet >

C:Configurationg in time < 5000 .)

to which Real-Time Maude answers

Result: f< 'b : RTTreceiverAlone | maxUpRTT : 58, sourceRTT : 44, : : : >

< 'g : RTTreceiverAlone | maxUpRTT : 12, sourceRTT : 118, : : : >

: : : g in time 255

That is, it takes at most time 255 to reach a state with the desired RTT values. (A find earliest

check showed that earliest possible time, in which the desired values can be found, is 181.)

The remaining task is therefore to check whether the correct RTT values can be altered once they
are found. Unbounded model checking cannot check this property, since an in�nite number of
states can be reached from the initial state (the clock attribute, and therefore also other values
such as the time stamps, can assume an in�nite number of values). We can check the property for
each computation \up to a certain time r" in either of the two following ways. The �rst option is
to use Real-Time Maude's built-in checker for untilStable properties:

Maude> (check RTTstate2(1) |= fC:Configurationg untilStable

f< 'b : RTTreceiverAlone | sourceRTT : 44, maxUpRTT : 58, ATTS1:AttributeSet >

< 'c : RTTrepairserverAlone | sourceRTT : 58, maxUpRTT : 58, ATTS2:AttributeSet >

: : :

< 'g : RTTreceiverAlone | sourceRTT : 118, maxUpRTT : 12, ATTS6:AttributeSet >

C:Configurationg in time < 1000 .)

Result: the property holds.

The other way of checking the stability property is to use Real-Time Maude's linear temporal logic
model checker. The following module imports the timed model checker and the module AER-RTT1,
and de�nes a proposition CORRECT-RTT-VALUES:

(tmod MODEL-CHECK-RTT is protecting AER-RTT1 .

including TIMED-MODEL-CHECKER .

op CORRECT-RTT-VALUES : -> Prop .

31

eq f< 'b : RTTreceiverAlone | sourceRTT : 44, maxUpRTT : 58 >

: : :

< 'g : RTTreceiverAlone | sourceRTT : 118, maxUpRTT : 12 >

C:Configurationg
|=

CORRECT-RTT-VALUES = true .

endtm)

We can then model check the temporal property that, within time 1000, the correct values are
found in each behavior (<> CORRECT-RTT-VALUES), and a correct value will not change once it is
found (CORRECT-RTT-VALUES => [] CORRECT-RTT-VALUES)10 :

Maude> (mc RTTstate2(1) |=t (<> CORRECT-RTT-VALUES) /\

(CORRECT-RTT-VALUES => [] CORRECT-RTT-VALUES)

in time < 1000 .)

result Bool :

true

4.12 Formal Speci�cation of the NOM Component

This section introduces the nominee selection component of the protocol and presents the most
crucial parts of its formal speci�cation.

An important goal for the AER/NCA protocol suite is \TCP-friendliness," which mandates that
a multicast session must not receive more bandwidth than competing TCP sessions on any of the
source-to-destination paths in the multicast tree [9]. In order to achieve TCP-friendliness, the worst
path in a multicast tree is determined as the path on which a TCP session will receive the least
bandwidth, namely, the path with the highest value of rtt � plpe , where rtt is the round trip time
from the receiver to the sender, and lpe is the loss probability estimate of the receiver. The protocol
behaves as follows, and determines the worst path and nominates the multicast receiver at the end
of this path to send acknowledgments to the sender:

� Each receiver estimates its end-to-end packet loss probability (its lpe) using a �xed size
sliding window. Each receiver periodically unicasts its lpe value and its current round trip
time estimate rtt in a congestion status message (CSM) to its upstream repair server.

� Based on CSMs from its children, a repair server identi�es the \worst" receiver in its subtree
and unicasts the CSM of this worst receiver to its nearest upstream repair server.

� The sender receives periodic CSMs from its downstream repair servers and receivers, and uses
the same method to select the worst receiver in the entire multicast group.

� Once the sender has identi�ed the worst receiver, it unicasts (with no repair server inter-
vention) a nominee activation message (NAM) to this receiver soliciting acknowledgments
from it, and unicasts a NAM to the previous, if any, nominee receiver, to let the previous
nominee know that it is no longer the nominee receiver. The sender resends a NAM every
seven seconds to the nominee receiver until a di�erent nominee is identi�ed.

10Remember that P => Q is an abbreviation of [] (P -> Q).

32

4.12.1 Sender Protocol

The sender class is declared as follows. NAMTimer is used to periodically send NAM packets to
the current nominee, and csmNominee, csmLPE, csmRTT, and csmSetTime denote, respectively, the
current nominee receiver, its lpe and rtt values, and the last time these values were updated. (The
sort DefRat is a sort which adds an element noRat to the built-in sort Rat of the rational numbers.)

class NOMsender | NAMTimer : TimeInf, csmNominee : DefOid, csmLPE : DefRat,

csmRTT : TimeInf, csmSetTime : Time .

subclass NOMsender < Sender Clock .

class NOMsenderAlone . subclass NOMsenderAlone < NOMsender .

The crucial rule is the following rule, specifying the handling of a CSM packet from one of the
children of the sender:

msg csmPacket : DefNat TimeInf DefOid -> Packet . *** Usage: csmPacket(lpe, rtt, rcvr)

msg NAMPacket : Bool -> Packet . *** Usage: NAMPacket(isNominee)

vars DR DR' : DefRat .

rl [D2D3] :

(csmPacket(DR, TI, DO') from O to O')

< O' : NOMsenderAlone | clock : R, csmNominee : DO, csmLPE : DR',

csmRTT : TI', csmSetTime : R', NAMTimer : TI'' >

=>

if updateNomValues(DR, TI, DO', DO, DR', TI', R, R') then

< O' : NOMsenderAlone | csmNominee : DO', csmLPE : DR,

csmRTT : TI, csmSetTime : R,

NAMTimer : (if DO =/= DO' then 7000 else TI'' fi) >

(if DO =/= DO' and DO' =/= noOid *** Notify new nominee DO'

then (NAMPacket(true) from O' to DO') else none fi)

(if DO =/= DO' and DO =/= noOid *** Notify previous nominee DO

then (NAMPacket(false) from O' to DO) else none fi)

else < O' : NOMsenderAlone | > fi .

The function updateNomValues takes the received and the stored nominee values, as well as the
current time and the last time the nominee-values were updated, and returns true i� the nominee
values should be updated. (See the Real-Time Maude speci�cation for the de�nition of the function
updateNomValues.) The NAMPackets to the new and old nominee receivers should be unicast
without going through the links, and could in a �rst abstraction be seen as having no delay.
Therefore, the NAMPackets already have the \ready-to-read" form.

4.12.2 Repair Server Protocol

A repair server stores the values of the receiver with the most congested path in its subtree in its
attributes csmLPE, csmRTT, and csmAddress. The csmTimer attribute is used to send the current
nominee values to the upstream repair server at regular intervals:

33

class NOMrepairserver | csmLPE : DefRat, csmRTT : TimeInf, csmAddress : DefOid,

csmSetTime : Time, csmTimer : TimeInf .

subclass NOMrepairserver < Repairserver Clock .

class NOMrepairserverAlone . subclass NOMrepairserverAlone < NOMrepairserver .

The crucial rule is the one handling a CSM packet from a child. If the received values indicate that
the subtree has a new nominee, or that the current nominee's rtt and lpe values are changed, then
the new values are sent upstream to the node's repair server:

rl [F2F3] :

(csmPacket(DR, TI, DO') from O to O')

< O' : NOMrepairserver | clock : R, repairserver : O''', csmAddress : DO,

csmLPE : DR', csmRTT : TI', csmSetTime : R' >

=>

if updateNomValues(DR, TI, DO', DO, DR', TI', R, R')

then (< O' : NOMrepairserver | csmAddress : DO', csmLPE : DR, csmRTT : TI,

csmSetTime : R, csmTimer : 7000 >

send(csmPacket(DR, TI, DO'), O', O'''))

else < O' : NOMrepairserver | > fi .

4.12.3 Receiver Protocol

The receiver updates a sliding window with the sequence number of the data packets it receives to
estimate its loss probability. The following declarations de�ne the interface of the sliding window
module WINDOW given in our speci�cation. (Note that windowLPE returns noRat if no elements have
been added to an initWindow.)

sort Window .

op initWindow : NzNat -> Window . *** Empty window with given max size

op size : Window -> Nat . *** No of elements currently in window

op add : NzNat Window -> Window . *** Adds a sequence number to a window

op windowLPE : Window -> DefRat . *** lpe of a window

The msgWindow attribute in the following class is the sliding window for storing message numbers,
and isNominee is a ag which is set (to true) when the receiver is the nominee receiver:

class NOMreceiver | isNominee : Bool, sourceRTT : TimeInf, msgWindow : Window,

csmTimer : TimeInf .

subclass NOMreceiver < Receiver .

class NOMreceiverAlone . subclass NOMreceiverAlone < NOMreceiver .

We use a simpli�ed form dataPacket(seqNo; timeStamp) of data packets in this protocol, and treat
the reception of a data packet by inserting its sequence number into the receiver's sliding window:

34

var W : Window .

rl [E2] :

(dataPacket(NZN, R) from O to O')

< O' : NOMreceiverAlone | msgWindow : W >

=>

< O' : NOMreceiverAlone | msgWindow : add(NZN, W) > .

A receiver sends a csmPacket with its current sourceRTT and lpe values to its repair server
when the csmTimer expires. According to the informal speci�cation, the lpe estimate is considered
unreliable if the size of the window is less than 150, so the default value noRat is sent instead.
However, for more convenient prototyping, we changed the size bound from 150 to 2 below11.

rl [E3] :

< O : NOMreceiver | csmTimer : 0, msgWindow : W, repairserver : O', sourceRTT : TI >

=>

< O : NOMreceiver | csmTimer : 5000 >

send(csmPacket(if (size(W) < 2) then noRat else windowLPE(W) fi, TI, O), O, O') .

The isNominee attribute is updated according to received status in the NAMPacket:

rl [E4] :

(NAMPacket(X) from O' to O)

< O : NOMreceiverAlone | >

=>

< O : NOMreceiverAlone | isNominee : X > .

4.13 Analyzing the NOM Component

The NOM component is supposed to �nd the nominee receiver, which is crucial since only the
nominee receiver acknowledges the reception of data packets, and without such acknowledgments
the rate control part may slow or block the sending of new data packets. Execution of earlier
versions of the combined protocol failed to send more than one data packet, because the �rst
packet was sent before a nominee was chosen. We therefore changed the protocol to wait some
time before sending the �rst packet, so that a nominee would have been found. An important
property the NOM protocol should satisfy is that some receiver must have its isNominee ag set to
true within a reasonable amount of time. A second important property to ensure acknowledgment
of each data packet is that, at any time after a nominee has been found for the �rst time, there
should be some receiver with its isNominee ag set to true. A third important property is that
the correct nominee is chosen.

To be able to analyze the speci�cation of the NOM component in isolation, we add an environment
object which de�nes what original data packets are received by the receivers as well as when these
packets are received. In addition, we �x the RTT values. In the following initial state, the receiver
'f will receive three data packets, with sequence numbers 2, 3, and 4, arriving at times 14996,
14999, and 15031 respectively.

11Although the lpe estimates are then considered less reliable, this avoids having long initial computation segments
that could cause combinatorial explosion when performing formal analysis. Furthermore, the design errors we found
did not depend on the speci�c value chosen for the size bound.

35

op NOMstate2 : Nat -> GlobalSystem .

eq NOMstate2(N) =

(f startNOM('a)

< 'a : NOMsenderAlone | clock : 0, children : 'b 'c, NAMTimer : INF, csmRTT : 0,

csmLPE : noRat, csmSetTime : 0, csmNominee : noOid >

< 'b : NOMreceiverAlone | sourceRTT : 44, repairserver : noOid, isNominee : false,

msgWindow : initWindow(4), csmTimer : INF >

< 'c : NOMrepairserverAlone | clock : 0, children : 'd 'e, repairserver : noOid,

csmLPE : noRat, csmRTT : 0, csmAddress : noOid,

csmSetTime : 0, csmTimer : INF >

< 'd : NOMrepairserverAlone | : : : >

< 'e : NOMreceiverAlone | sourceRTT : 94, msgWindow : initWindow(4), : : : >

< 'f : NOMreceiverAlone | sourceRTT : 118, msgWindow : initWindow(4), : : : >

< 'g : NOMreceiverAlone | sourceRTT : 118, msgWindow : initWindow(4), : : : >

< 'random : RandomNGen | seed : N >

LINKS

< 'env : Env | msgsFromEnv :

dly(dataPacket(1, 1) from 'a to 'b, 5001) dly(dataPacket(4, 1) from 'a to 'b, 5004)

dly(dataPacket(2, 1) from 'd to 'f, 14996) dly(dataPacket(3, 1) from 'd to 'f, 14999)

dly(dataPacket(4, 1) from 'd to 'f, 15031) dly(dataPacket(4, 1) from 'd to 'g, 5002)

dly(dataPacket(5, 1) from 'd to 'g, 15000) dly(dataPacket(6, 1) from 'd to 'g, 15004)

dly(dataPacket(1, 1) from 'c to 'e, 5003) dly(dataPacket(2, 1) from 'c to 'e, 5018)

dly(dataPacket(16, 1) from 'c to 'e, 15001) > g) .

where LINKS stands for the same set of link objects given in the state RTTstate2 above. There are
no lpe values before time 5000 when starting from this initial state, since no data packets have been
received. In that case, the receiver with the largest rtt value, i.e., 'f or 'g, should be the chosen
nominee. The nominee is not changed by the packets arriving around time 5000, since 'f's lpe is
still unde�ned and 'g's lpe is 3=4, while the lpe of 'b and 'e is 1=2. Finally, after the messages
received around time 15000, receiver 'e, with its loss rate of 75% (since only packet 16 �ts in the
window which can store elements within an interval of length 4), should be the nominee.

We can �rst use Real-Time Maude's rewriting command to check the nominees at time 4500, 14500,
and 20000:

Maude> (trew NOMstate2(1) in time <= 5000 .)

Result ClockedSystem :

f< 'a : NOMsenderAlone | csmLPE : noRat, csmNominee : 'f, csmRTT : 118, : : : >

< 'c : NOMrepairserverAlone | csmAddress : 'f, : : : >

< 'f : NOMreceiverAlone | isNominee : true, msgWindow : window(nil,4,0), : : : >

: : : g in time 4764

Maude> (trew NOMstate2(1) in time <= 14500 .)

Result ClockedSystem :

f< 'a : NOMsenderAlone | csmLPE : noRat, csmNominee : 'f, csmRTT : 118, : : : >

< 'c : NOMrepairserverAlone | csmAddress : 'f, : : : >

< 'f : NOMreceiverAlone | isNominee : true, msgWindow : window(nil,4,0), : : : >

: : : g in time 14490

Maude> (trew NOMstate2(1) in time <= 20000 .)

36

result ClockedSystem :

f< 'a : NOMsenderAlone | csmNominee : 'e, : : : >

< 'e : NOMreceiverAlone | isNominee : true, : : : >

: : : g in time 19764

It should also be possible to reach a state where 'g is the nominee instead of 'f within time 5000:

Maude> (tsearch [1] NOMstate2(1) =>*

f< 'g : NOMreceiverAlone | isNominee : true, ATTS:AttributeSet >

C:Configurationg
in time <= 5000 .)

Solution 1

C:Configuration <- < 'a : NOMsenderAlone | csmNominee : 'g, : : : > : : : ;

TIME_ELAPSED:Time <- 490

There can be no other nominee than 'f and 'g before time 15000:

Maude> (tsearch [1] NOMstate2(1) =>*

f< 'a : NOMsenderAlone | csmNominee : O:Oid, ATTS:AttributeSet >

C:Configurationg such that O:Oid =/= 'f /\ O:Oid =/= 'g

in time <= 15000 .)

No solution

The receiver 'e should eventually be the nominee, but not before time 15000:

Maude> (find earliest NOMstate2(1) =>*

f< 'e : NOMreceiverAlone | isNominee : true, ATTS:AttributeSet >

C:Configurationg .)

Result:

f< 'e : NOMreceiverAlone | isNominee : true, : : : > : : : g in time 19504

Sooner or later 'e must be the nominee receiver in all possible behaviors:

Maude> (find latest NOMstate2(1) =>*

f< 'e : NOMreceiverAlone | isNominee : true, ATTS:AttributeSet >

C:Configurationg with no time limit .)

Result:

f< 'e : NOMreceiverAlone | isNominee : true, : : : > : : : g in time 19504

Furthermore, once 'e is the receiver it should remain so:

Maude> (check NOMstate2(1) |=

fC:Configurationg untilStable

f< 'e : NOMreceiverAlone | isNominee : true, ATTS:AttributeSet >

C:Configurationg in time <= 30000 .)

Result: the property holds.

37

The protocol seems to �nd the correct nominees. It remains to check how much time the protocol
needs to �nd a nominee, and that there will always be a nominee once a nominee is found. The
�rst of these properties can be checked as follows:

Maude> (find latest NOMstate2(1) =>* f< O:Oid : NOMreceiverAlone | isNominee : true,

ATTS:AttributeSet >

C:Configurationg with no time limit .)

Result:

f< 'f : NOMreceiverAlone | isNominee : true, : : : > : : : g in time 490

Finally we check whether there is a behavior |after some receiver has been nominated and is aware
of it| in which no receiver has its isNominee ag set to true (and that some packet therefore may
not be acknowledged).

Maude> (check NOMstate2(1) |=

fC:Configurationg untilStable

f< O:Oid : NOMreceiverAlone | isNominee : true, ATTS:AttributeSet >

C:Configurationg with no time limit .)

Result: the property does not hold. Counterexample:

f< 'a : NOMsenderAlone | csmNominee : 'e, : : : >

< 'b : NOMreceiverAlone | isNominee : false, : : : >

< 'e : NOMreceiverAlone | isNominee : false, : : : >

< 'f : NOMreceiverAlone | isNominee : false, : : : >

< 'g : NOMreceiverAlone | isNominee : false, : : : >

(NAMPacket(true) from 'a to 'e) : : :. g in time 19504

This shows one troubling scenario in which no receiver is aware of it being the nominee, and so no
receiver will acknowledge a data packet received at this moment.12

(Some of the above properties can also be expressed in temporal logic. However, the temporal
logic model checker failed, as expected, to terminate when checking the unlimited \until-stable"
property above.) An important aspect of the speci�cation is that once either 'f or 'g is found to
be the nominee receiver, the nominee should not change until 'e becomes the nominee receiver.
This property cannot be expressed using Real-Time Maude's search and until-commands, so we
must use temporal logic to express it. The module

(tomod MODEL-CHECK-NCA is including TIMED-MODEL-CHECKER .

protecting NCA-NOM1 .

op nomineeExists : -> Prop .

eq f< O:Oid : NOMreceiverAlone | isNominee : true > C:Configurationg
|=

nomineeExists = true .

op nomineeIs : Oid -> Prop .

12Because of this problem the informal protocol has since been changed to a version in which each data packet is
equipped with a �eld which says which receiver should be nominee receiver for that packet.

38

eq f< O:Oid : NOMreceiverAlone | isNominee : true > C:Configurationg
|=

nomineeIs(O:Oid) = true .

op becomingNominee : Oid -> Prop .

eq f(NAMPacket(true) from O:Oid to O':Oid) C:Configurationg
|=

becomingNominee(O':Oid) = true .

endtom)

de�nes the properties nomineeExists, which holds if some receiver has its isNominee ag set,
nomineeIs(o), which holds when o's isNominee ag is set, and becomingNominee(o), which
holds when there is a message to receiver o stating that o is the nominee.

The following model checking command checks the whole expected behavior from the given initial
state: First there is no nominee, then either 'f or 'g is the nominee and it stays that way until 'a
sends the NAM packet to 'e, then it stays so until 'e reads the NAM packet and is the nominee,
and then 'e becomes the nominee and remains the nominee:

Maude> (mc NOMstate2(1) |=t

~ nomineeExists U

((nomineeIs('f) \/ nomineeIs('g))

/\

((nomineeIs('f) -> (nomineeIs('f) U

(becomingNominee('e) U ([] nomineeIs('e)))))

/\

(nomineeIs('g) -> (nomineeIs('g) U

(becomingNominee('e) U ([] nomineeIs('e)))))))

in time <= 50000 .)

Result Bool :

true

The above temporal property sums up the desired \untimed" behavior of the system. We should
also check the same behavior in its \timed" version: There is no nominee until either 'f or 'g

becomes the nominee within time 500; then this nominee stays the nominee, but not past time
20000. In the meantime, 'e must become the nominee, but not before time 15300, and 'e remains
the nominee ever after. Real-Time Maude also allows model checking clocked properties, where the
properties may depend on the time elapsed to reach a certain state. In the following module, the
clocked proposition nomineeIsBefore(o, r) holds for all states where o is the nominee receiver
and where the total time elapse is less than or equal to r . This property, and the symmetric
nomineeIsAfter, can be de�ned as follows:

(tomod MODEL-CHECK-CLOCKED-NOM is including MODEL-CHECK-NCA .

ops nomineeIsBefore nomineeIsAfter : Oid Time -> Prop .

eq f< O:Oid : NOMreceiverAlone | isNominee : true > C:Configurationg in time R:Time

|=

nomineeIsBefore(O:Oid, R':Time) = R:Time <= R':Time .

39

eq f< O:Oid : NOMreceiverAlone | isNominee : true > C:Configurationg in time R:Time

|=

nomineeIsAfter(O:Oid, R':Time) = R':Time <= R:Time .

endtom)

We can now check whether all behaviors satisfy the expected timed behavior:

Maude> (mc NOMstate2(1) |=t

~ nomineeExists U

((nomineeIsBefore('f, 500) \/ nomineeIsBefore('g, 500))

/\

((nomineeIsBefore('f, 500) ->

(nomineeIsBefore('f, 20000) U

(becomingNominee('e) U ([] nomineeIsAfter('e, 15300)))))

/\

(nomineeIsBefore('g, 500) ->

(nomineeIsBefore('g, 20000) U

(becomingNominee('e) U ([] nomineeIsAfter('e, 15300)))))))

in time <= 50000 .)

Result Bool :

true

4.14 Speci�cation of the Rate Control Component

The rate control component aims at dynamically adjusting the sending rate of data packets based
on acknowledgments from the nominee receiver. The protocol does not decide when the next packet
can be sent, since the reception of an acknowledgment could alter the earliest time the next packet
could be sent. Instead, the protocol is used to decide whether a packet can be sent at the current
time.

The nominee receiver acknowledges each data packet that it has not seen before by sending a
congestion control message (ccmPacket) with the sequence number of its lowest outstanding data
packet (together with the timestamp and the retransmission ag of the received data packet) to
the sender.

The sender part is fairly complex and we just outline the main ideas. The sender has a \window"
of sequence numbers, de�ning the set of data packets which can be sent, starting with the sequence
number of the lowest outstanding data packet at the nominee receiver (the attribute winLowerSeq
in the class declared below), and containing bwinSizec elements. The other limitation on sending is
that a new packet should not be sent if the maxBurstCount value, denoting the number of original
data packets sent since the last ccmPacket was received, is greater than a certain limit.

Much of the protocol is concerned with increasing and decreasing the winSize value based on
acknowledgments, or lack thereof, from the nominee. Each time a ccmPacket is received (in normal
recovery mode), the value of the winSize attribute increases by one until a threshold is reached,
after which winSize increases by the much smaller amount 1

bwinSizec
. The sender goes into fast

repair mode when it has received three ccmPackets with the same lowest outstanding sequence
number. In fast recovery mode, the number of messages that can be sent is lowered by dividing
winSize by 2.

40

The main rule, which updates the various attributes upon the reception of a CCM packet from the
nominee, is not given here but can be found in [18, p. 183]. (A CCM packet from a receiver which
is not the current nominee is ignored.)

The packets communicated, namely ncarcDataPacket which is used for a data packet in the stand-
alone RC component, and ccmPacket are declared as follows:

msg ncarcDataPacket : NzNat Time Bool -> LargePacket .

*** Usage: ncarcDataPacket(seqNo, timestamp, retransmissionFlag)

msg ccmPacket : Oid Nat Time Bool -> Packet .

*** Usage : ccmPacket(originator, sequenceNo, timestamp, retransmissionFlag)

The Sender Protocol. The sender object has 17 attributes used to determine the sending rate.
We just list a few in the following declaration of the sender:

class RCsender | csmNominee : DefOid, winSize : PosRat, winLowerSeq : Nat,

maxSeqSent : Nat, ccmTimeout : Time, ccmTimer : TimeInf, : : : .

subclass RCsender < Clock Sender .

where csmNominee denotes the current nominee, maxSeqSent denotes the highest sequence number
of packets sent, winLowerSeq denotes the lowest outstanding sequence number at the nominee, and
winSize denotes the window size of sequence numbers that can be sent. The ccmTimer is used to
detect the lack of reception of CCM packets for a period of time.

To make an execution of the stand-alone RC protocol interesting, we add a sending mechanism that
attempts to send a new packet every millisecond. We also add to the sender a list which contains
the times the sender has been allowed to send original data packets. These \extra" attributes
are declared in the following subclass RCsenderAlone, and are therefore not part of the formal
speci�cation of the (combined) protocol.

class RCsenderAlone |

sendDataTimer : TimeInf, *** Attempt to send new data packet upon its expiration.

sentTimes : TimeList . *** Times of sendings of data packets.

subclass RCsenderAlone < RCsender .

The function

op sendAllowed : Nat Nat PosRat : : : -> Bool .

*** Usage: sendAllowed(maxSeqSent, winLowerSeq, winSize, : : :)

decides whether a new packet can be sent. It checks whether the next data packet, having sequence
number maxSeqSent + 1, is in the window of sequence numbers that can be sent, and whether the
maxBurstCount value is suÆciently low.

A new data packet is sent, if possible, by the following rule when the sendDataTimer expires:

41

rl [G12] :

< O : RCsenderAlone | children : OS, clock : R, sendDataTimer : 0, maxSeqSent : N,

winLowerSeq : N', winSize : WS, sentTimes : TL, : : : >

=>

if sendAllowed(N, N', WS, : : :) then

< O : RCsenderAlone | sendDataTimer : 1, maxSeqSent : N + 1, sentTimes : TL ++ R,

ccmTimer : (if N' <= N then : : : else INF fi), : : : >

multiSend(ncarcDataPacket(N + 1, R, false), O, OS)

else < O : RCsenderAlone | sendDataTimer : 1 > fi .

The ccmTimer expires when no CCM packet has been received for a while. The window size is reset
to 1, and the lowest sequence number is set to the next sequence number to be sent, essentially
starting the rate control all over, albeit with some other values (which we don't present here)
changed to reect that no packet has been acknowledged for a while.

rl [G13] :

< O : RCsender | ccmTimer : 0, winSize : WS, winLowerSeq : N, maxSeqSent : N', : : : >

=>

< O : RCsender | ccmTimer : INF, winSize : 1, winLowerSeq : N' + 1, : : : > .

The Repair Server Protocol. A repair server simply subcasts packets from its repair server
downstream and propagates packets from its children upstream. The details can be found in the
Real-Time Maude speci�cation [18, p. 186].

The Receiver Protocol. The receiver stores the sequence numbers of the data packets it has
seen in the attribute msgRcvd of sort OrderedNzNatList of lists of nonzero natural numbers, to be
able to �nd its lowest outstanding sequence number.

class RCreceiver | isNominee : Bool .

class RCreceiverAlone | msgRcvd : OrderedNzNatList .

subclass RCreceiverAlone < RCreceiver .

The nominee receiver acknowledges a data packet it has not seen before by sending a ccmPacket

upstream to the sender by way of the intermediate repair servers:

var NNL : OrderedNzNatList .

rl [H1] :

(ncarcDataPacket(NZN, R, X) from O to O')

< O' : RCreceiverAlone | isNominee : Y, msgRcvd : NNL >

=>

< O' : RCreceiverAlone | msgRcvd : add(NZN, NNL) >

(if (Y and (not (NZN inList NNL)))

then send(ccmPacket(O', lowestOutstanding(add(NZN, NNL)), R, X), O', O)

else none fi) .

42

4.15 Analyzing the Rate Control Component

The rate control protocol is tested by attempting to send a new data packet every millisecond,
and by recording in the state the time stamp of each new data packet sent, and by recording the
messages lost. The list of sending times and packet losses could then be inspected to get a feeling
for the sending rate.

What results do we expect from executing the speci�cation? In the beginning, the sending window
is (1), and packet 1 is sent. When the acknowledgment of packet 1 is received, both the lowest
window number, and the size of the window, are increased. That is, the window is now (2; 3), and
both these data packets are sent. When the acknowledgment of packet 2 is received, the window is
(3; 4; 5), and packets 4 and 5 can be sent. The sequence of sending and responses can be given as

message sent 1 2; 3 4; 5 6; 7 8; 9 10; 11 � � �
response 1 2 3 4 5 � � �

The sending rate would grow exponentially were it not for congestion delays, since acknowledgments
of packets 2 and 3 would come at the same time, allowing packets 4 to 7 to be sent, and upon
reception of the acknowledgment for these latter packets, the sender could send packets 8 to 15,
and so on. The exponential increase should atten out when the window size has reached a certain
threshold, after which the window size should only increase by its inverse. However, increasing
the sending frequency could result in packets getting lost. In the full protocol, the lost packets
would be repaired, but we did not add any repair service to the stand-alone RC protocol. The
system should therefore get stuck when the �rst data packet is lost, as the receiver will require it
but cannot get it. Eventually, the ccmTimer should expire, which will reset winLowerSeq to next
packet to be sent, but will also reset the window size to 1, starting the slow sending once again.

Despite these expectations, a simulation of one behavior of the protocol from a state with one
sender 'a, one repair server 'b, and one receiver 'c gives the following result:

Maude> (trew RCstate1 in time <= 6800 .)

Result ClockedSystem :

f< 'a : RCsenderAlone | clock : 6800, children : 'b, csmNominee : 'c, ccmTimer : 55,

backOffFactor : 1, nextNoToSend : 31, sendDataTimer : 1,

maxSeqSent : 30, winLowerSeq : 28, winSize : 3, sentTimes :

(6000 ++ 6067 ++ 6068 ++ 6134 ++ 6201 ++ 6202 ++ 6268 ++ 6269 ++ 6280 ++

6335 ++ 6347 ++ 6359 ++ 6402 ++ 6414 ++ 6426 ++ 6469 ++ 6481 ++ 6493 ++

6536 ++ 6548 ++ 6560 ++ 6603 ++ 6615 ++ 6627 ++ 6670 ++ 6682 ++ 6694 ++

6737 ++ 6749 ++ 6761), : : : >

< 'b : RCrepairserverAlone | children : 'c, repairserver : 'a >

< 'c : RCreceiverAlone | isNominee : true, msgRcvd :

(1 ++ 2 ++ 3 ++ 4 ++ 5 ++ 6 ++ 7 ++ 8 ++ 9 ++ 10 ++ 11 ++ 12 ++ 13 ++ 14

++ 15 ++ 16 ++ 17 ++ 18 ++ 19 ++ 20 ++ 21 ++ 22 ++ 23 ++ 24 ++ 25 ++ 26

++ 27 ++ 28 ++ 29), : : : >

: : : g in time 6800

The sending rate does not increase exponentially|it is rather the case that four data packets can
be sent every 67 milliseconds. After receiving ccmPacket requesting packet three, both data packet
number four and �ve should be allowed to be sent according to our analysis above. However, only
packet number four is sent, at time 6134. Why cannot packet �ve be sent at time 6135?

43

After using Real-Time Maude's tracing facilities to analyze the rewrite sequence leading to this
state, it turns out that the problem is that the ccmTimer is set to the RTT value when a new
packet is sent, and it expires just when the ccmPacket for number three arrives. (This is not
unnatural, since the timer is set to exactly the RTT.) The system may choose to send either
packet 4 (and then 5) upon the reception of the ccmPacket, and then handle the timer, or it could
handle the timer �rst. In the above execution, the timer was treated �rst, so that the window
was \reinitialized" (with winSize set to one) and then packet four was sent, and then this process
essentially repeats itself over and over. One could also notice that no packets are lost since the
sending rate never increases. If this is not the desired behavior of the protocol, one may want to
change the initialization of the ccmTimer in Use Case G12, especially since backOffFactor is reset
to 1 in Use Case G2 each time a ccmPacket is received.

To further analyze the protocol, we could search for all states reachable in exactly time 6700:

Maude> (tsearch RCstate1 =>* fC:Configurationg
in time-interval between >= 6700 and <= 6700 .)

This search fails to terminate within reasonable time, due to the high degree of nondeterminism
in the speci�cation. Instead, we \split" the search above into searches for states reachable in time
6200, and from there to states reachable in time 6500, and from there to states reachable in time
6700. Out of the many thousand solutions to that chain of searches, one result is the state

f< 'a : RCsenderAlone | sentTimes :

(6000 ++ 6066 ++ 6067 ++ 6132 ++ 6133 ++ 6144 ++ 6145 ++ 6198 ++ 6199 ++

6210 ++ 6211 ++ 6222 ++ 6223 ++ 6234 ++ 6235 ++ 6264 ++ 6265 ++ 6276 ++

6277 ++ 6288 ++ 6289 ++ 6300 ++ 6301 ++ 6312 ++ 6313 ++ 6324 ++ 6325 ++

6336 ++ 6337 ++ 6348 ++ 6349 ++ 6360 ++ 6361 ++ 6372 ++ 6373 ++ 6384 ++

6385 ++ 6548 ++ 6614 ++ 6615 ++ 6680 ++ 6681 ++ 6692 ++ 6693), : : : >

< 'c : RCreceiverAlone | isNominee : true, msgRcvd :

(1 ++ 2 ++ 3 ++ 4 ++ 5 ++ 6 ++ 7 ++ 8 ++ 9 ++ 10 ++ 11 ++ 12 ++ 13 ++ 14

++ 15 ++ 16 ++ 17 ++ 18 ++ 20 ++ 22 ++ 24 ++ 26 ++ 28 ++ 30 ++ 32 ++ 34

++ 36 ++ 38 ++ 39 ++ 40)>

: : : g in time 6700

This result is more in line with the expected behavior of the protocol. The �rst packets are sent
pairwise with (exponentially?) increasing frequency. The �rst packet lost is number 19, so packet
38 cannot be sent. The system therefore gets stuck after packet 37 is sent (time 6385). After quite
a long time (163 milliseconds) the ccmTimer expires and reinitializes the window and the sending
can continue, with slower sending rate. However, packet 19 is still not repaired, and will cause
further problems.

To summarize the analysis e�ort of this admittedly diÆcult protocol component, we see that its
behavior is highly nondeterministic { probably more so than intended. Some of the behaviors
seem undesirable and some are more in line with our expectations. Real-Time Maude's tracing
capabilities allowed us to trace the spurious behavior and to suggest changes in the original protocol
to remedy the problem.

44

4.16 Speci�cation of the Repair Service Component

The repair service component of the AER/NCA protocol suite speci�es a system which receives
variable-sized data blocks from a sender application, places the data in a number of data packets,
and is responsible for transmitting all data packets to a multicast group of receiver applications,
so that the original data blocks can be recovered. The overall goal is to ensure reliability while
transmitting as few packets as possible.

The component exhibits the following behavior: The data packets are multicast by the sender and
are intercepted by the repair servers, which cache the packets before subcasting them downstream.
Each data packet has a sequence number making it possible to detect that packets have been lost.
Upon detection of the loss of data packets, a receiver or repair server waits for some time before
requesting a repair (a retransmission of the lost packet) for each missing packet from its upstream
repair server. If a missing packet is not received within a certain time, the receiver or repair server
retransmits its repair request. A sender or a repair server which has the missing packet in its cache
treats a repair request by trying to estimate whether the packet is currently being repaired, and,
if that is not the case, then it subcasts (a repair for) that packet. If the repair server does not
have the missing packet, then the repair request should be propagated upstream. A subcast repair
packet is also intercepted by the next downstream repair servers and cached but only forwarded
further down the tree if there is a pending repair request for the repair.

In addition, the sender regularly multicasts source path message (SPM) packets with the sequence
number of the last (original) data packet transmitted. These (SPM) packets are used to discover
packet losses and to set up the reverse paths from the each receiver to the sender through repair
servers (that is, to set the correct value of the repairserver attribute).

Again, we present only a small part of the Real-Time Maude speci�cation.

4.16.1 Sender Protocol

To model the interaction with the application layer of the protocol, the sender receives data blocks
of the form dataBlock(content ; sender ; size;�) from the application layer, where content is an
identi�er of the content of the data, sender is the sender object (useful in case there are more than
one multicast group), size is the number of data packets needed to represent the data block, and
� is the interval between each attempt at sending a new (original) data packet13.

The data packets are represented as terms of sort LargePacket of the form

dataPacket(content ; seqNo; timeStamp;�rstSeqFlag ; segFlag ; retransFlag);

where content is the content, or payload, of the data packet14, seqNo is the sequence number of
the data packet, and is one plus the number of original data packets already sent in the current
execution of the protocol, timeStamp is the time the packet is sent, �rstSeqFlag is true i� the packet
is the �rst data packet of a data block, segFlag is true i� the data packet is neither the �rst nor
the last packet of a data block, and retransFlag is true i� the packet is a repair packet.

13� is therefore the actual sending rate when the repair service component is executed independently of the rate
control component. If � is 1, then sending is attempted every time unit.

14In our abstraction, the payload is the identi�er of the data block being transmitted

45

The sender should not necessarily repair a packet when it receives a repair request (in the form of a
NAKPacket). The reason is that a repair for the packet may already have been subcast to its children
as a response to another repair request (and repairing the packet again would be unnecessary and
ineÆcient). However, if a repair is lost, the packet needs to be repaired again. To estimate whether
a repair should be performed, the sender stores for each data packet a NAK count, which estimates
how many \rounds" the packet has been repaired. (The NAK count is also inuenced by a repair
performed by a repair server further down the tree.)

The sender class is declared as follows. The sender stores the parts of the data blocks it has yet
to send in an attribute unsentDataPackets. This attribute is a list (where list concatenation is
denoted by juxtaposition) of elements of the form data(content ;m; size;�), where m � 1 is the
number of data packets already multicast from the data block, and size and � correspond to the
same parameters of the data block. The nextSeq attribute denotes the sequence number of the next
packet to be sent, SPMTimer a timer used to force the sending of SPMPackets every 4000 millisec-
onds., reTransBuf is the retransmission bu�er containing already transmitted data packets together
with their corresponding NAK count in messages of the form MsgAndNak(data packet ;NAKcount).
Finally, sendDataTimer is a timer upon whose expiration the sender sends a new data packet:

class RSsender | nextSeq : NzNat, SPMTimer : TimeInf, reTransBuf : MsgConfiguration,

unsentDataPackets : DataBuffer, sendDataTimer : TimeInf .

subclass RSsender < Sender Clock .

class RSsenderAlone . subclass RSsenderAlone < RSsender .

We omit here the rules modeling the treatment of data blocks from the application layer and the
initialization phase. The following rule models the multicast of SPMPackets with the sequence
number of the last data packet transmitted when the SPMTimer expires:

rl [A2] :

< O : RSsender | nextSeq : s N, children : OS, SPMTimer : 0 >

=>

< O : RSsender | SPMTimer : 4000 >

multiSend(SPMPacket(N), O, OS) .

The data packet with sequence number nextSeq is multicast to the sender's children when
sendDataTimer expires:

var DB : DataBuffer .

rl [A3send] :

< O : RSsenderAlone | children : OS, clock : R, nextSeq : NZN'',

unsentDataPackets : data(O', NZN, NZN', R') DB,

reTransBuf : RTB, sendDataTimer : 0 >

=>

< O : RSsenderAlone | unsentDataPackets : removeFirst(data(O', NZN, NZN', R') DB),

reTransBuf :

RTB MsgAndNAK(dataPacket(O', NZN'', R, NZN == 1,

NZN =/= 1 and NZN =/= NZN', false), 0),

nextSeq : NZN'' + 1,

sendDataTimer : sendRate(removeFirst(data(O', NZN, NZN', R') DB)) >

multiSend(dataPacket(O', NZN'', R, NZN == 1, NZN =/= 1 and NZN =/= NZN', false), O, OS) .

46

(The function removeFirst removes the �rst \data packet" from the data bu�er, and sendRate

�nds the time between consecutive sending attempts.)

When a child has not received a data packet that it should have received, or needs to see the data
packet again (to repair a packet that is no longer in its cache), it requests a retransmission of the
data packet by sending a NAKPacket message containing the sequence number of the missing packet
as well as its NAK count. If the NAK count of the request (denoted by N in the rule below) is
less than or equal to the sender's NAK count for the packet (denoted by N'), then this repair is
considered underway and is not performed:

msg NAKPacket : NzNat Nat Bool -> Packet .

*** Usage: NAKPacket(seqNo, NAKcount, fastRepairFlag)

rl [A4] :

(NAKPacket(NZN, N, X') from O'' to O)

< O : RSsender | children : OS, reTransBuf :

(MC MsgAndNAK(dataPacket(O', NZN, R, X, Y, Z), N')) >

=>

< O : RSsender | reTransBuf :

(MC MsgAndNAK(dataPacket(O', NZN, R, X, Y,

if N' < N then true else Z fi),

max(N, N'))) >

(if N' < N then multiSend(dataPacket(O', NZN, R, X, Y, true), O, OS) else none fi) .

4.16.2 Receiver Protocol

A receiver receives data packets and forwards them to a corresponding receiver application in
increasing order of their sequence numbers. Received data packets that cannot be forwarded to the
application, because some data packets with lower sequence numbers are missing, are stored in the
dataBuffer attribute.

When the receiver detects the loss of a data packet, it suppresses its repair request for a short
time (in case some of its \siblings" or its repair server have also detected the loss) before sending
a NAK-request for the lost packet to its repair server. The receiver retransmits its request for
the missing data packet if it does not receive a response to the repair request within a reasonable
amount of time, which depends on the round trip time to the source (since a repair request may
be propagated all the way up to the source in the worst case).

The receiver class in the RS component is declared as follows. isNominee and fastRepairFlag

are ags which are set to true when the receiver is the nominee receiver; readNextSeq is the se-
quence number of the �rst missing data packet; smoothedRTT is the smoothed sender to receiver
RTT estimate; suppressTO is the time before sending a NAK packet upon detection of a loss;
retransTO is the time between consecutive repair requests for the same packet; dataBuffer con-
tains the packets received but not forwarded to the receiver application; and dataInfo is the repair
information, where the receiver stores, for each missing data packet, the information about the
recovery attempts for the missing data packets in a term

info(seqNo; supprTimer ; retransTimer ;NAKcount);

where seqNo is the sequence number of the data packet, supprTimer is the value of the suppression
timer for the data packet, retransTimer is the value of the retransmission timer of the data packet,

47

and NAKcount is the NAK count of the data packet, denoting how many times a repair for the
data packet has been attempted. Elements of a sort DataInfo are multisets of info terms, where
multiset union is denoted by an associative and commutative juxtaposition operator.

class RSreceiver | isNominee : Bool, fastRepairFlag : Bool, readNextSeq : NzNat,

smoothedRTT : Int, rttVariance : Int, suppressTO : Time,

retransTO : Time, dataBuffer : MsgConfiguration,

dataInfo : DataInfo, SPMread : Bool .

subclass RSreceiver < Receiver .

class RSreceiverAlone . subclass RSreceiverAlone < RSreceiver .

We start our selection of crucial rules with the rule that handles a received data packet which has
not been seen before. That is, the packet has not been delivered to the receiver application (since
the sequence number NZN is greater than or equal to the readNextSeq value NZN'), and it is not in
the dataBuffer of the receiver:

vars DI DI' : DataInfo .

var LAST-SEQNO-DELIVERED-TO-APP : Nat .

crl [B3b] :

(dataPacket(Q, NZN, R, X, Y, Z) from O to O')

< O'' : RandomNGen | seed : N >

< O' : RSreceiverAlone | fastRepairFlag : X' readNextSeq : NZN', suppressTO : R',

dataBuffer : MC, dataInfo : DI >

=>

< O'' : RandomNGen | seed : (if X' then N else ... fi) >

< O' : RSreceiverAlone | readNextSeq : max(NZN', LAST-SEQNO-DELIVERED-TO-APP + 1),

dataBuffer : rmDelivered(MC dataPacket(Q, NZN, R, X, Y, Z),

NZN'),

dataInfo : remove(updateDI(cancelTimers(DI, NZN),

X', max(NZN', highestSeqNo(MC) + 1,

highestNzNAKSeqNo(DI) + 1),

NZN - 1, R', N),

LAST-SEQNO-DELIVERED-TO-APP) >

toApp((dataPacket(Q, NZN, R, X, Y, Z) MC), NZN', O')

if NZN' <= NZN and not (NZN seqNoIn MC)

/\ LAST-SEQNO-DELIVERED-TO-APP :=

lastSeqNo(toApp(MC dataPacket(Q, NZN, R, X, Y, Z), NZN')) .

If the received data packet has sequence number NZN, then all data packets with sequence numbers
less than NZN which have not been received must be considered missing. Upon detection of missing
packets for which loss recovery has not yet started, the receiver initiates loss recovery by adding to
the dataInfo attribute an element info(n 0; r ; INF; 1) for each missing packet n 0. The suppression
time, r , is 0 when the receiver is in fast repair mode, and a random value in the interval 0 to 1:5 times
the value of suppressTO otherwise (all this is done by the function updateDI; the function remove

just removes information about those packets which are delivered to the receiver application).

Furthermore, the message bu�er must be updated when a new data packet is received, and if the re-
ceived data packet is the �rst missing packet, then this, and the following packets until the next miss-
ing data packet, must be sent to the receiver application. The message bu�er and the readNextSeq

48

attribute must be updated accordingly. The test NZN seqNoIn MC holds true if in the message con-
�guration MC there is a data packet with sequence number NZN. The function toApp yields the pack-
ets to transmit to the receiver application, and lastSeqNo computes the highest sequence number
in such a transmission. updateDI(repair info; fastRepairFlag ; lowSeqNo; highSeqNo; suppressTO ;
randomSeed) creates a new repair state for each data packet between lowSeqNo and highSeqNo and
is de�ned as follows:

eq updateDI(DI, X, N, N', R, N'') =

if N' < N then DI

else (info(N, suppr(X, R, N''), INF, 1)

updateDI(removeSeqNo(DI, N), X, N + 1, N', R,

if X then N'' else random(N'') fi))

fi .

where suppr(fastRepairFlag ; suppressTO ; randomSeed) �nds the initial value for the suppression
timer. cancelTimers turns o� the suppression and retransmission timers for the received data
packet, in case they were set.

The treatment of repairs detected by receiving a SPMPacket is similar.

In the following rule, a repair request for a missing data packet with sequence number NZN' is
sent upstream when the suppression timer for the packet expires, and the retransmission timer is
started. The receiver gives up if it has unsuccessfully requested a repair 48 times:

rl [B5] :

< O : RSreceiver | readNextSeq : NZN, fastRepairFlag : X,

dataBuffer : MC, repairserver : O',

dataInfo : (info(NZN', 0, TI, N) DI), retransTO : R >

=>

if (NZN' seqNoIn MC) or (NZN' < NZN)

then < O : RSreceiver | dataInfo : (info(NZN', INF, TI, N) DI) >

else (if 48 < N then

ERROR("Use case B5, too high NAK count for RSreceiver",

(dataInfo : (info(NZN', 0, TI, N) DI)))

else < O : RSreceiver | dataInfo : (info(NZN', INF, R, N) DI) >

send(NAKPacket(NZN', N, X), O, O')

fi)

fi .

op ERROR : String AttributeSet -> Configuration .

When the retransmission timer for a (lost) data packet expires, a new repair session is initiated by
starting the suppression timer and by increasing the NAK count for the packet.

The �nal rule we show here is the treatment of a NAK packet for a packet for which there is no
NAK state. The NAK packet indicates that a repair is underway upstream, and that the receiver
should not request a repair on its own. Therefore, a new NAK state is created for the packet,
with the retransmission timer set (so that a repair is requested later if the \promised" repair is not
successful):

49

crl [B7b] :

(NAKPacket(NZN, N, X) from O to O')

< O' : RSreceiver | readNextSeq : NZN', retransTO : R, dataInfo : DI >

=>

< O' : RSreceiver | dataInfo :

(if NZN' <= NZN then (info(NZN, INF, R, N) DI) else DI fi) >

if not (NZN in DI) .

4.16.3 Repair Server Protocol

A repair server has a (bounded) cache in which it stores some of the data packets it has seen, as
well as information about the repairs it is involved in. When a repair server discovers that some
data packets are missing, it tries to repair lost data packets in the same way that a receiver does.
In addition, a repair server sends NAKPackets to its children notifying them that a repair process
has been initiated.

Original data packets are stored in the cache and are subcast downstream. Repair data packets
are stored and are subcast downstream only if a NAK is pending for the packet. A repair request
from a child is treated by subcasting the requested data packet if it is in the cache (and the packet
is not considered to be under reparation), and by starting its own repair procedure for the packet
otherwise.

A cache is represented by a value bBuf(msgList ; size; bound) of sort BoundedBuffer, where the
data packets are stored in the message list msgList . Our speci�cation is based on the (unstated
but reasonable) assumption that data packets are stored in the bu�er in their order of reception,
and not in order of increasing sequence numbers.

The repair server stores information about repairs in terms of the form

nakState(seqNo;NAKcount ; downNAKcount ;NAKpending ; supprTimer ; retransTimer);

where seqNo is the sequence number of the data packet, NAKcount is the upstream NAK count
(which roughly corresponds to the number of upstream repair requests), downNAKcount is the
downstream NAK count used in communication with the children, NAKpending is true when a
child is waiting for the repair of the packet, and supprTimer and retransTimer are timer values
which are used for upstream repair requests in the same way that they were used in the receiver
protocol. The union of such NAK states is given by juxtaposition.

The repair server classes for the repair service part of the protocol are declared as follows, where
maxSeqRcvd this time denotes the highest sequence number of any received data packet:

class RSrepairserver | SPMread : Bool, maxSeqRcvd : Nat, smoothedRTT : Int,

rttVariance : Int, retransTO : Time, suppressTO : Time,

SPMWaitTimer : TimeInf, NAKStates : NAKstates,

dataBuffer : BoundedBuffer .

subclass RSrepairserver < Repairserver .

class RSrepairserverAlone . subclass RSrepairserverAlone < RSrepairserver .

The following rule treats the reception of a data packet which is not stored in the cache (the
condition not (NZN seqNoIn BB) below). The packet is added to the dataBuffer cache of the

50

repair server, and is subcast to its children if it is an original packet (the condition not Z below),
or if a NAK is pending for the sequence number. In addition, error recovery must be initiated for
each packet that is detected to be lost with the reception of this data packet (namely, those packets
with sequence number lower than the just received packet which have not been received). For each
of these, a new NAK state is added by the function updateNAKstates, and a NAKPacket is sent to
all its children by the function newNAKPackets:

var NS : NAKstates . var BB : BoundedBuffer .

crl [C4b] :

(dataPacket(Q, NZN, R, X, Y, Z) from O' to O'')

< O''' : RandomNGen | seed : N >

< O'' : RSrepairserver | children : OS, maxSeqRcvd : N', dataBuffer : BB,

NAKStates : NS, suppressTO : R' >

=>

< O'' : RSrepairserver | maxSeqRcvd : max(NZN, N'),

dataBuffer : add(BB, dataPacket(Q, NZN, R, X, Y, Z)),

NAKStates :

(if (N' == 0) then cancelTimersAndSetFalse(NZN, NS)

else updateNAKstates(

cancelTimersAndSetFalse(NZN, NS),

N', NZN - 1, N, R)

fi) >

< O''' : RandomNGen | seed : repeatRandom(N, noOfNewNAKs(NS, N', NZN - 1)) >

(if ((not Z) or NAKpending(NS, NZN)) then

multiSend(dataPacket(Q, NZN, R, X, Y, Z), O'', OS) else none fi)

newNAKPackets(NS, N', NZN - 1, O'', OS)

if not (NZN seqNoIn BB) .

In the above rule, newNAKPackets(ns;n;n 0; q ; os) sends NAKPackets to the children os from q for
the sequence numbers in the interval n + 1 to n 0 for which there is no NAK state in ns.
updateNAKstates(ns;n;n 0;n 00; r) updates the NAK state ns with new NAK states for sequence
numbers between n + 1 and n 0 which are not already in ns. n = 0 leaves ns unchanged. n 00 is
the seed to be used by the random number generator, and r is the value of suppressTO. Finally,
NAKpending(nakStates; seqNo) holds when a NAK state exists and a NAK is pending for packet
seqNo.

A NAKPacket with NAK count N for sequence number NZN received from the upstream repair server
indicates that repair number N (for packet NZN) is attempted upstream, and should be forwarded
to the children if their NAK count is estimated to be smaller than N or the NAK state does not
exist. Furthermore, the retransmission timer should be reset for round N+1. The NAKPacket comes
from the upstream repair server of this object if the sender of the packet has the same value as the
object's repairserver attribute:

*** Packet number NZN not in cache; update and forward if higher NAK count received:

crl [C7b] :

(NAKPacket(NZN, N, X) from O to O')

< O' : RSrepairserver | repairserver : O, dataBuffer : BB, retransTO : R,

NAKStates : (nakState(NZN, N', N'', Y, TI, TI') NS),

children : OS >

51

=>

< O' : RSrepairserver | NAKStates : (nakState(NZN, max(N, N'),

if N' < N then N else N'' fi,

Y, INF, R) NS) >

(if N' < N then multiSend(NAKPacket(NZN, N, false), O', OS) else none fi)

if not (NZN seqNoIn BB) .

*** Packet number NZN not in cache, and no NAK state for packet NZN:

crl [C7c] :

(NAKPacket(NZN, N, X) from O to O')

< O' : RSrepairserver | repairserver : O, dataBuffer : BB, retransTO : R,

children : OS, NAKStates : NS >

=>

< O' : RSrepairserver | NAKStates : (nakState(NZN, N, N, true, INF, R) NS) >

multiSend(NAKPacket(NZN, N, false), O', OS)

if not (NZN seqNoIn BB) /\ not (NZN in NS) .

The following rules C8c and C8e are among the �ve rules treating a NAKPacket from a child (that the
packet comes from downstream is seen by the sender O being an element of the object's children
attribute). Essentially, if the data packet exists in the cache, it is subcast to the children. Otherwise,
if the received NAK count is greater than the object's NAK count, it must start a new repair, and
if the received NAK count is greater than the downstream NAK count, the other children should be
aware of this current repair request. Note that if the NAKPacket has the fast repair ag (X) set, the
possible upstream repair should be undertaken with no delay. We show �rst the rule which treats
the case when the data packet is not in the cache, but where a NAK state exists for the packet:

*** Data packet NZN not in buffer, NAK state exists for NZN:

crl [C8c] :

(NAKPacket(NZN, N, X) from O to O')

< O' : RSrepairserver | repairserver : O'', children : O OS,

NAKStates : (nakState(NZN, N', N'', Y, TI, TI') NS),

retransTO : R, dataBuffer : BB >

=>

(if N' < N then

< O' : RSrepairserver | NAKStates : (nakState(NZN, N, N, true,

if X then INF else TI fi,

if X then R else TI' fi) NS) >

multiSend(NAKPacket(NZN, N, false), O', O OS)

(if X then send(NAKPacket(NZN, N, true), O', O'') else none fi)

else

(if N'' < N then

< O' : RSrepairserver | NAKStates : (nakState(NZN, N', N, Y, TI, TI') NS) >

multiSend(NAKPacket(NZN, N, false), O', O OS)

else < O' : RSrepairserver | > fi)

fi)

if not (NZN seqNoIn BB) .

The following rule shows the treatment of a NAKPacket from downstream when the requested packet
NZN is in the repair server's cache, and where the repair server has a NAK state for the packet.
If the NAK count N of the request is greater than the NAK count N' in the NAK state, then the
packet is repaired; otherwise the repair request is ignored:

52

rl [C8e] :

(NAKPacket(NZN, N, X) from O to O')

< O' : RSrepairserver | children : O OS,

dataBuffer :

bBuf(ML + dataPacket(Q, NZN, R, Y, Z, XX) + ML', N''', NZN'),

NAKStates : (nakState(NZN, N', N'', X', TI, TI') NS) >

=>

if N' < N then

< O' : RSrepairserver | NAKStates : (nakState(NZN, N, N, false, TI, TI') NS) >

multiSend(dataPacket(Q, NZN, R, Y, Z, true), O', O OS)

else < O' : RSrepairserver | > fi .

The repair of missing packets is similar to that for receivers. A repair is attempted when a sup-
pression timer expires for a packet with a NAK pending (since a repair is not needed if none of
the repair server's children misses the packet), and is re-attempted when the retransmission timer
expires for such a packet, in which case the NAK packet is also subcast downstream.

4.16.4 Behavior in Time

The function delta increases the clocks and decreases the timers with the elapse of time, and the
function mte makes sure that time progress stops whenever a timer expires. These functions must
be extended to accommodate multiple timers in the dataInfo attribute of the receivers and the
NAKStates attribute of the repair servers. We show their de�nitions for receivers:

eq mte(< O : RSreceiverAlone | dataInfo : DI >) = mte(DI) .

op mte : DataInfo -> TimeInf .

eq mte((none).DataInfo) = INF .

ceq mte(DI DI') = min(mte(DI), mte(DI')) if DI =/= none /\ DI' =/= none .

eq mte(info(NZN, TI, TI', N)) = min(TI, TI') .

eq delta(< O : RSreceiverAlone | dataInfo : DI >, R) =

< O : RSreceiverAlone | dataInfo : delta(DI, R) > .

op delta : DataInfo Time -> DataInfo .

eq delta((none).DataInfo, R) = (none).DataInfo .

ceq delta(DI DI', R) = delta(DI, R) delta(DI', R if DI =/= none /\ DI' =/= none .

eq delta(info(NZN, TI, TI', N), R) = info(NZN, TI monus R, TI' monus R, N) .

4.16.5 The Application Layer

The repair service component and the combined protocol receive data blocks from a sender in
the application layer of the protocol, and should relay packets (in order) to the receivers in the
application layer. For simulation purposes, we have de�ned a simplistic model of the sender and
the receivers at the application level. In that model, the sender application is an object of class
SenderApplication, which stores a list of data blocks, with delays indicating the times each data
block should be transmitted to the protocol layer, and sends the data blocks to the sender object.
Each application-level receiver object of class RcvrApplication stores the concatenation of the
data packets it has received from its associated receiver in the protocol.

53

4.17 Prototyping the Repair Service Component

To execute the repair service protocol we de�ne an initial state RSstate, in which the sender
application object wants to use the protocol to multicast data blocks comprising 21 data packets to
the receiver applications. Rewriting this initial state should have led to a state where all receiver
applications had received all packets. Instead, the execution gave the following result:

Maude> (trew RSstate2(113) in time <= 20000 .)

result ClockedSystem :

fERROR("Use case B5, too high NAK count for RSreceiver",

dataInfo : (info(18,0,INF,49) info(19,INF,INF,1) info(20,INF,INF,1)))

: : : g in time 17559

By using Real-Time Maude's tracing facilities to trace the execution leading to the ERROR-state, we
could easily �nd the errors in the formal and informal speci�cations. The problem is that when a
repair server has repaired a lost packet, and the repair is lost as well, then the repair server will not
try to repair the packet again if the packet is no longer in its cache, thinking that it has already
repaired the packet. (In particular, the fault is in rule C8c above, where a NAKPacket is treated. If
the fast repair ag (X in the rule) is not set, and both timers for the nakState are turned o�, then
they will not be turned on in this rule (and therefore no repair will be initiated by these timers),
and neither will a repair request to the upstream repair server be sent. The execution shows that
we can indeed arrive at a situation where both timers are turned o�.)

In another test con�guration, 35 data packets should be sent from 'a to 'c via 'b. The sending
rate is one new packet every 5 milliseconds, and the propagation delay of 100 milliseconds in the
link from 'a to 'b ensures that many packets will be lost along this link with bound 10. The other
link is much faster and should not lose many packets. An execution gives the following result:

Maude> (trew RSstate3(113) in time < 400000 .)

Result ClockedSystem :

f< 'a : RSsenderAlone | unsentDataPackets : nil, : : : >

< 'b : RSrepairserverAlone | children : 'c, repairserver : 'a,

dataBuffer : bBuf(dataPacket('first, 10, 5145, false, true, true) +

dataPacket('first, 29, 5240, false, true, true) +

dataPacket('first, 20, 5195, false, true, true) +

dataPacket('first, 35, 5270, false, false, true) +

dataPacket('first, 34, 5265, false, true, true) +

dataPacket('first, 33, 5260, false, true, true) +

dataPacket('first, 31, 5250, false, true, true) +

dataPacket('first, 22, 5205, false, true, true) +

dataPacket('first, 26, 5225, false, true, true) +

dataPacket('first, 21, 5200, false, true, true),10,10),

NAKStates : (nakState(10, 1, 1, false, INF, INF)

: : :

nakState(22, 1, 1, false, INF, INF)

nakState(24, 2, 2, false, INF, INF)

nakState(25, 1, 1, false, INF, INF)

: : :), : : : >

54

< 'c : RSreceiverAlone | repairserver : 'b, isNominee : true,

dataInfo : (info(24, INF, INF, 2)

info(25, INF, INF, 1)

: : :

info(35, INF, INF, 1)),

dataBuffer : (dataPacket('first, 24, 5215, false, true, true)

dataPacket('first, 25, 5220, false, true, true)

: : :

dataPacket('first, 35, 5270, false, false, true)),

retransTO : 420, suppressTO : 4, readNextSeq : 23,

fastRepairFlag : true, : : : >

: : : g in time 400000

After time 400000 it would be expected that the receiver application would have received the 35
data packets the sender application wanted to send to the receiver application using the protocol.
Instead, only 22 packets have been relayed to the receiver application.

This execution reveals another serious problem: Packet 23 is missing at both the receiver and the
repair server. Furthermore, neither of them has any repair state for this packet, which is alarming
since all \holes" should be repaired when a received SPM packet or data packet indicates that some
packets are lost. The tracing analysis led to the following understanding of the undesired behavior:

'a sends data packets to 'b. The �rst 9 data packets enter the link, which then becomes full.
However, 'a continues to send packets, so the packets 10{22 are lost, and 23 is the next packet in
the link which is not lost. When 'b reads packet 23 in rule C4b, it discovers the holes 10{22, and
sends NAK packets for these to 'c with NAK count 1. At the same time, it also subcasts packet
23 to 'c. This makes 14 messages sent from 'b to 'c at the same time. Since the link can only
take 10 packets, four packets are lost, among them data packet 23. Back in the link from 'a to
'b packet 24 is lost, and 25 arrives safely at 'b, which then discovers the hole for 24 and sends a
NAK for 24 to 'c, as well as the data packet 25. 'c then reads and stores the NAK packet for 24
(with NAK count 1) in rule B7b, and then reads the packet 25 in rule B3b. This was the golden
opportunity to discover the hole for packet 23, since it will never be discovered by the repair server,
which had the packet. Instead of discovering the hole at 23, there was a NAK state for packet 24,
and therefore 'c only initiates repairs from 24 and up in rule B3b, missing packet 23. Therefore,
no repair will be attempted for packet 23. This same scenario can also be shown to exist in the
informal speci�cation.

4.18 Speci�cation and Analysis of the Combined Protocol

This section briey sketches the speci�cation and execution of the composition of the four protocol
components that make up the AER/NCA suite of protocols. As mentioned in Section 4.9, we use
object-oriented inheritance techniques to de�ne the combined protocol. A sender in the combined
protocol is an object of the following class SenderCombined:

class SenderCombined .

subclass SenderCombined < RTTsender NOMsender RCsender RSsender .

The SenderCombined class inherits all the attributes and rules of its superclasses. The de�nition
of the receivers and the repair servers in the combined protocol is analogous:

55

class RepairserverCombined .

subclass RepairserverCombined < RTTrepairserver NOMrepairserver .

subclass RepairserverCombined < RCrepairserver RSrepairserver .

class ReceiverCombined .

subclass ReceiverCombined < RTTreceiver NOMreceiver RCreceiver RSreceiver .

While a \combined object" can perform all the rules de�ned on its superclasses, there are some
composite transitions in which the di�erent components must synchronize their actions when the
components are combined. For example, the multicast of a new data packet is mainly a concern of
the repair service component, but the rate control component must be consulted to check whether a
new packet can be sent at the current time. In the combined protocol, we have therefore combined
the parts dealing with sending new data packets from these two components into a single rule,
presented below, involving objects of class SenderCombined. Similarly, when a new data packet is
received by a receiver, the repair service component must bu�er the received packet and check for
missing packets, the nominee selection component must update its sliding window used to compute
its loss probability estimate, and the rate control component must acknowledge the packet in case
the receiver is the nominee receiver. There are only �ve such \combined" rules in our speci�cation,
out of a total of 76 rules.

The following rule models the attempt to send a new data packet in the combined protocol when the
sendDataTimer expires. If the rate control part (the sendAllowed test) does not permit sending,
then another attempt will be made one millisecond later. Otherwise, the sendDataTimer is reset
to the sending interval of the data block:

rl [A3sendG11G12] :

< O : SenderCombined | children : OS, clock : R, sendDataTimer : 0,

unsentDataPackets : data(Q, NZN, NZN', R') DB,

reTransBuf : RTB, nextSeq : NZN'', maxSeqSent : N,

winLowerSeq : WLS, csmNominee : DO, winSize : WS, : : : >

=>

if sendAllowed(N, WLS, WS, FRF, MBC)

then

< O : SenderCombined | unsentDataPackets : removeFirst(data(Q, NZN, NZN', R') DB),

reTransBuf :

(RTB MsgAndNAK(dataPacket(Q, NZN'', R, NZN == 1,

NZN =/= 1 and NZN =/= NZN', false), 0)),

nextSeq : NZN'' + 1,

sendDataTimer :

sendRate(removeFirst(data(Q, NZN, NZN', R') DB)),

: : : >

multiSend(dataPacket(Q, NZN'', R, NZN == 1, NZN =/= 1 and NZN =/= NZN', false),

O, OS)

else < O : SenderCombined | sendDataTimer : 1 > fi .

We have executed one behavior of the combined protocol with two initial states, corresponding to
the two initial states which invalidated the repair service component. In contrast to the execution
of that component, all packets were delivered (in order) to each receiver in the single executions
of the combined protocol provided by Real-Time Maude's trew command. This was probably due
to the presence of the rate control component, that adjusted the sending rate according to the

56

packet losses, thereby avoiding the extensive loss of packets which led to the above-described faulty
behavior of the repair service component. The resulting states show that some data packets were
indeed lost, but that they were successfully repaired.

Although the current combined protocol executes as expected, we found a signi�cant aw/omission
in an earlier version of the protocol during execution: Only one data packet could be sent because
the data packet was sent before a nominee was found. No receiver would then acknowledge the
�rst data packet, and the second packet could not be sent before the �rst one was acknowledged.
We solved this problem by changing the rewrite rules, so that the �rst data packet is not sent until
a nominee is found.

4.19 Summary of the Analysis E�orts

We have analyzed the four protocol components and the combined protocols by de�ning some

initial states, and by analyzing, for each such initial state,

� one possible behavior from the initial state using timed rewriting.

For the RTT, NOM, and RC components we could also analyze

� all possible behaviors { up to a certain duration, and w.r.t. the choices of \random" values
for the probabilistic parts of the protocol { from the initial state, using time-bounded search
and temporal logic model checking.

Such analysis of the RTT component showed that the correct RTT values are found reasonably
quickly, and that they are unchanged thereafter.

Timed rewriting analysis of the NOM component indicated that the correct nominee receivers
are found. Using timed model checking we showed that the correct nominees are found at the
appropriate times in all behaviors from the chosen initial states. However, using model checking we
discovered the troubling scenario where, at some stages, no node is aware of it being the nominee.

The situation was somewhat \reversed" for the RC component, where timed rewriting yielded an
unwanted behavior, which could be traced using the tool's tracing capabilities; whereas the use of
timed search showed that there exist behaviors, from the same initial state, which have the desired
properties.

Timed rewriting was suÆcient to �nd aws in the RS component, which were then traced. Timed
rewriting of di�erent initial states gave the desired result where all packets were delivered to the
receiver applications.

Finally, timed rewriting in the combined protocol yielded states where all packets were delivered
to all receivers, even for those topologies for which the stand-alone RS component failed. This
positive result was probably due to the addition of the rate control mechanism, which reduced the
packet losses. Nevertheless, the aws in the RS and NOM components carry over to the combined
protocol; they are just more diÆcult to �nd. The diÆculties have to do with the combinatorial
explosion of states, given the size and degree of nondeterminism of the combined protocol; for these
reasons we could not �nd the errors within reasonable time using timed search and model checking
although we knew they were there. This is in fact one advantage of having modularly decomposed
the protocol and having analyzed each of its components.

57

For all the analyses reported in this paper Real-Time Maude returned an answer within reasonable
times (a few seconds to a few minutes). Therefore, except for the intrinsic combinatorial explosions
alluded to above, we found that in practice the tool was quite usable for analyses of the kind
performed.

4.20 The Updated Informal Speci�cation

Apart from minor changes such as correcting small errors and typos, making the state and commu-
nication assumptions explicit, and modifying the values of some constants used, the version 1.1 of
the informal speci�cation, that incorporated the results of our formal analysis, updates the above
described version 1.0 in the following ways:

1. To solve the problem mentioned in Section 4.13, where there could be states with no nominee
receiver, so that some data packet were not acknowledged even if no packets were lost, the
data packets now have an additional �eld for the current nominee. Each receiver updates its
isNominee ag according to this �eld upon the reception of original data packets. (A slight
modi�cation is that only the reception of original data packets is acknowledged.) Since data
packets may get lost, also SPM packets are equipped with a �eld for nominee receivers. It
is still the case that the sender only treats CCM packets from the current nominee receiver,
and not necessarily from the receiver which was the nominee when the data packet was sent.
Furthermore, in the initial phase there is no nominee, so the previously described deadlock
scenario, where the �rst data packets are not acknowledged, could still happen if the sender
sends data packets before a nominee receiver is found. As mentioned in Section 4.18, we
have tried to avoid this deadlock by waiting for a certain amount of time before sending data
packets. A better solution would be to modify the rule A3sendG11G12 to disallow sending of
data packets until a nominee is found, by adding the condition DO =/= noOid to the if-test.

2. In an attempt to solve the �rst troubling scenario of the repair service component mentioned
in Section 4.17, where a requested packet is not repaired by a repair server because a NAK
state exists for a packet which is no longer in the repair server's cache, the repair server now
deletes the NAK state of a data packet which is removed from the repair server's cache.

5 Conclusions

We have discussed in detail our formalization and analysis in Real-Time Maude of the AER/NCA
active network protocol suite. Being a quite complex distributed system with essential real-time
and probabilistic features, and with performance requirements essential to its design and correct
functioning, the modeling of AER/NCA presented a number of interesting challenges. We have
explained how those challenges were successfully met by Real-Time Maude. As a fruit of this
modeling and analysis work, important errors were found, and valuable insights were gained. First,
all the errors in the use-case informal speci�cation that the designers were familiar with, but
did not tell us about, were independently uncovered by our analysis. Furthermore, several more
subtle design errors not known to the designers, which impaired the intended correct behavior
of AER/NCA and which were not discovered by traditional simulation and testing of an actual
implementation, were found.

58

An important encouraging lesson learned was the intuitive appeal of Real-Time Maude speci�ca-
tions to network engineers, comparing in fact favorably with informal use-case speci�cations, and
the associated low-threshold adoption barrier for rewriting logic based speci�cation languages like
Maude and Real-Time Maude. This agrees with our experience in teaching rewriting logic based
formal methods to undergraduate students at the University of Oslo [19]. Both the simple direct
representation of state transitions by rewrite rules, and the executable nature of the speci�cations
|that allow a user to view them as programs in a programming language, with minimal or no
acquaintance with the formal foundations| seem to be crucial aspects of this low adoption barrier.

More generally, there is by now ample experience on the usefulness and adequacy of rewriting
logic for specifying and analyzing distributed systems in general and network systems in particular
(see the survey [17], and recent advanced case studies such as [25, 6]). The present case study
is a further substantial con�rmation of this general experience for network applications in which
real-time and resource sensitive behavior are crucial aspects to model. A more recent Real-Time
Maude analysis of a new multicast protocol proposed by the IETF [13] further con�rms this ex-
perience. A promising area with several ongoing Real-Time Maude speci�cation e�orts is wireless
communication protocols. A �nal point |indeed quite relevant for wireless communication and
for networked embedded systems| is the natural convergence of real-time and probabilistic speci-
�cations, something already exempli�ed by our AER/NCA case study. This convergence o�ers an
exciting research opportunity to combine the best methods and tools developed so far for real-time
rewrite theories and for probabilistic rewrite theories, and to develop new methods to fruitfully
analyze probabilistic real-time speci�cations.

Acknowledgments

We are grateful to Mark Keaton and Steve Zabele for their invaluable cooperation during the
speci�cation and analysis of a previous version, in Real-Time Maude 1.0, of the AER/NCA protocol
suite. Their explanation of AER/NCA and related issues, their feedback to our speci�cation e�orts,
and their suggestions of suitable initial states for the analysis parts were essential for the modeling
and analysis described in this paper. Partial support of this research by ONR Grant N00014-02-1-
0715, by NSF Grant CCR-0234524, by DARPA through Rome Labs. Contract F30602-97-C-0312,
and by The Norwegian Research Council is gratefully acknowledged.

References

[1] M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm, and L. Mounier. IF: A validation envi-
ronment for timed asynchronous systems. In E. A. Emerson and A. P. Sistla, editors, Proc. Computer
Aided Veri�cation (CAV'2000), volume 1855 of Lecture Notes in Computer Science, pages 543{547.
Springer, 2000.

[2] R. Bruni and J. Meseguer. Generalized rewrite theories. In J. C. M. Baeten, J. K. Lenstra, J. Parrow,
and G. J. Woeginger, editors, Proc. 30th International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2003), volume 2719 of Lecture Notes in Computer Science, pages 252{266. Springer,
2003.

[3] M. Clavel, F. Dur�an, S. Eker, P. Lincoln, N. Mart��-Oliet, J. Meseguer, and J. F. Quesada. Maude:
Speci�cation and programming in rewriting logic. Theoretical Computer Science, 285:187{243, 2002.

[4] M. Clavel, F. D�uran, S. Eker, P. Lincoln, N. Mart��-Oliet, J. Meseguer, and C. Talcott. Maude Manual
(Version 2.1), April 2004. http://maude.cs.uiuc.edu.

59

[5] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model checker. In F. Gadducci
and U. Montanari, editors, Fourth International Workshop on Rewriting Logic and its Applications,
volume 71 of Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

[6] A. Goodloe, C. A. Gunter, M. McDougall, A. Sridharanarayanan, and M.-O. Stehr. Formal speci�cation
of Sectrace: A protocol to set up security associations and policies in IPSec networks. http://formal.
cs.uiuc.edu/stehr/sectrace_eng.html.

[7] D. Harel. From play-in scenarios to code: an achievable dream. In Proc. FASE'00, 3rd Intl. Conf. on
Fundamental Approaches to Software Engineering, volume 1783 of Lecture Notes in Computer Science,
pages 22{34. Springer, 2000.

[8] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model checker for hybrid systems. Software
Tools for Technology Transfer, 1:110{122, 1997. See also HyTech home-page at http://www-cad.eecs.
berkeley.edu/~tah/HyTech/.

[9] S. Kasera, S. Bhattacharyya, M. Keaton, D. Kiwior, J. Kurose, D. Towsley, and S. Zabele. Scalable
fair reliable multicast using active services. IEEE Network Magazine (Special Issue on Multicast),
14(1):48{57, 2000.

[10] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2. Addison-
Wesley, second edition edition, 1981.

[11] Nirman Kumar, Koushik Sen, Jos�e Meseguer, and Gul Agha. A rewriting based model of probabilis-
tic distributed object systems. In Proc. Formal Methods for Open Object-Based Distributed Systems
(FMOODS 2003), volume 2884 of Lecture Notes in Computer Science, pages 32{46. Springer, 2003.

[12] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Software Tools for Technology Transfer,
1(1{2):134{152, October 1997. See also Uppaal home-page at http://www.uppaal.com/.

[13] E. Lien. Formal modelling and analysis of the NORM multicast protocol using Real-Time Maude.
Master's thesis, Department of Linguistics, University of Oslo, 2004.

[14] J. Meseguer. Conditional rewriting logic as a uni�ed model of concurrency. Theoretical Computer
Science, 96:73{155, 1992.

[15] J. Meseguer. A logical theory of concurrent objects and its realization in the Maude language. In
G. Agha, P. Wegner, and A. Yonezawa, editors, Research Directions in Concurrent Object-Oriented
Programming, pages 314{390. MIT Press, 1993.

[16] J. Meseguer. Membership algebra as a logical framework for equational speci�cation. In F. Parisi-
Presicce, editor, Proc. WADT'97, volume 1376 of Lecture Notes in Computer Science, pages 18{61.
Springer, 1998.

[17] J. Meseguer. Rewriting logic and Maude: a wide-spectrum semantic framework for object-based dis-
tributed systems. In S. Smith and C.L. Talcott, editors, Formal Methods for Open Object-based Dis-
tributed Systems, FMOODS 2000, pages 89{117. Kluwer, 2000.

[18] P. C. �Olveczky. Speci�cation and Analysis of Real-Time and Hybrid Systems in Rewriting Logic. PhD
thesis, University of Bergen, 2000. Available at http://maude.cs.uiuc.edu/papers.

[19] P. C. �Olveczky. Formal modeling and analysis of distributed systems in Maude. Course book for
INF3230, Dept. of Informatics, University of Oslo, 2004.

[20] P. C. �Olveczky. Real-Time Maude 2.1 Manual, 2004. http://www.ifi.uio.no/RealTimeMaude/.

[21] P. C. �Olveczky, M. Keaton, J. Meseguer, C. Talcott, and S. Zabele. Speci�cation and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. In H. Hussmann, editor, Fundamental
Approaches to Software Engineering (FASE 2001), volume 2029 of Lecture Notes in Computer Science,
pages 333{347. Springer, 2001.

[22] P. C. �Olveczky and J. Meseguer. Speci�cation of real-time and hybrid systems in rewriting logic.
Theoretical Computer Science, 285:359{405, 2002.

60

[23] P. C. �Olveczky and J. Meseguer. Real-Time Maude 2.1. In N. Mart��-Oliet, editor, Fifth International
Workshop on Rewriting Logic and its Applications, Electronic Notes in Theoretical Computer Science.
Elsevier, 2004. To appear.

[24] P. C. �Olveczky and J. Meseguer. Speci�cation and analysis of real-time systems using Real-Time Maude.
In T. Margaria and M. Wermelinger, editors, Fundamental Approaches to Software Engineering (FASE
2004), volume 2984 of Lecture Notes in Computer Science, pages 354{358. Springer, 2004.

[25] M.-O. Stehr, C. Talcott, and G. Denker. Towards a formal speci�cation of the Spread group communi-
cation system. http://formal.cs.uiuc.edu/stehr/spread_eng.html.

[26] P. Viry. Equational rules for rewriting logic. Theoretical Computer Science, 285:487{517, 2002.

[27] S. Yovine. Kronos: A veri�cation tool for real-time systems. Software Tools for Technology Transfer,
1(1/2), 1997. See also Kronos home-page at http://www-verimag.imag.fr/TEMPORISE/kronos/.

61

