
Timed substitutions for regular signal-event

languages

Béatrice Bérard1, Paul Gastin2 and Antoine Petit2

1 LAMSADE, Université Paris Dauphine & CNRS,
Place du Maréchal de Lattre de Tassigny, F-75775 Paris Cedex 16, France

2 LSV, ENS de Cachan & CNRS,
61 av. du Président Wilson, F-94235 Cachan Cedex, France

Abstract. In the classical framework of formal languages, a refinement
operation is modeled by a substitution and an abstraction by an inverse
substitution. These mechanisms have been widely studied, because they
describe a change in the specification level, from an abstract view to a
more concrete one, or conversely. For timed systems, there is up to now
no uniform notion of substitution. In this paper, we study timed substi-
tutions in the general framework of signal-event languages, where both
signals and events are taken into account. We prove that regular signal-
event languages are closed under substitution and inverse substitution.

To obtain these results, we use in a crucial way a “well known” result:
regular signal-event languages are closed under intersection. In fact, while
this result is indeed easy for languages defined by Alur and Dill’s timed
automata, it turns out that the construction is much more tricky when
considering the most involved model of signal-event automata. We give
here a construction working on finite and infinite signal-event words and
taking into account signal stuttering, unobservability of zero-duration
τ -signals and Zeno runs. Note that if several constructions have been
proposed in particular cases, it is the first time that a general construc-
tion is provided.

1 Introduction

Refinements and abstractions. Operations of refinements and abstractions are
essential tools for the design and study of systems, real-time or not. They allow
to consider a given system at different abstraction levels. For instance, some pro-
cedure or function can simply be viewed at some abstract level as a single action,
and can be later expanded into all its possible behaviours at some more concrete
level. Or conversely, a set of behaviours are merged together and replaced by a
single action, in order to obtain a more abstract description.

These operations can be formally described by substitutions and inverse sub-
stitutions respectively. This is the reason why substitutions have been extensively
studied in the untimed framework, with the underlying idea that interesting
classes of languages have to be closed under these operations.

Timed languages. In order to represent timed observations, the model of timed
automata was first proposed in [1, 2]. It has been widely studied for the last
fifteen years and successfully applied to industrial cases. For this model, an
observation, called a time-event word, may be viewed as an alternating sequence
of waiting times and instantaneous events (actions). A timed automaton is a
finite automaton extended with variables called clocks, designed to recognize
time-event words: time elapses while the control stays in a given node and an
event is observed when a discrete transition occurs.

Another model was introduced in [3], and further studied in [11, 4, 12] with
the aim of describing hardware systems. In this case, an observation is a signal
word, i.e., a sequence of factors ad, where a is a signal and d is its duration. The
original model of timed automata was then modified to fit this setting: a signal
is emitted while the automaton stays in some state and no event is produced
when a discrete transition is fired. In this framework, when a silent transition
occurs between two states with the same signal a, we obtain ad1 followed by ad2 ,
which are merged into ad1+d2 . This phenomenon is called stuttering.

It was noticed in [4] that both approaches are complementary and can be
combined in an algebraic formalism to obtain the so-called signal-event monoid.
Again, timed automata can be easily adapted to take both signals and events into
account, thus yielding signal-event automata: states emit signals and transitions
produce events.

We consider in this paper both finite and infinite behaviors of signal-event
automata and we also include unobservable events (silent transitions, with label
ε) and hidden signals (τ -labeled states). It turns out that these features are very
useful, for instance for handling abstractions. They also allow us to get as special
cases the initial models of timed automata and signal automata.

We also include Zeno runs in our general theory. Examples are given with
automata A2 and A4 in Figure 1, where it can be seen that, with ε-transitions,
open constraints in a timed automaton can lead to a closed constraint in the
corresponding language. Although Zeno behaviours have been studied (see for
instance [13, 10]), it has been sometimes argued that excluding Zeno runs directly
from the semantics of timed automata is a realistic assumption, since they do
not appear in “real” systems. However, experiments with the well known model-
checking tool Uppaal show that Zeno runs are included when forward reacha-
bility analysis is performed. Thus, omitting them from the semantics could lead
to erroneous results for verification. Hence, we think that Zeno runs have to be
taken into account when developping the theory of signal-event automata.

Timed substitutions. When time is added to the picture, the global duration of
a sequence must be taken into account when it replaces a signal. For instance,
considering an operation of connection to a server, the signal ConnectT oServer2

(with a duration of 2 time units) can be replaced by the signal-event word of
same duration Req ·Wait2 · Ack, and ConnectT oServer4.5 (with duration 4.5
t.u.) by Req ·Wait1 ·Nack ·Wait0.5 · Retry ·Wait3 · Ack.

Timed substitutions were studied for regular transfinite time-event languages
in [8] where, although no signal appear explicitely, actions are handled in a way

2

similar (but not identical) to signals, without stuttering. Here we restrict the
study of substitutions to finite and ω-sequences, excluding transfinite sequences,
but we do handle signal stuttering which is a major difficulty. The principal aim
of this paper is to investigate the closure under substitutions and inverse sub-
stitutions of the families SELε and SEL of languages accepted by signal-event
automata, respectively with or without ε-transitions. We prove that the class
SELε is closed under arbitrary substitutions and under arbitrary inverse substi-
tutions. These closure properties do not hold for the class SEL. Nevertheless,
we show that SEL is closed under inverse substitutions acting on events only,
i.e., leaving signals unchanged, and we give a sufficient condition for its closure
under substitution. These results again show the robustness of the class SELε,
which is in favour of signal-event automata including ε-transitions.

Intersection. The proofs of closure under substitution and inverse substitution
relies on the closure under intersection of the class of languages accepted by
signal-event automata.

Surprisingly, it turns out that this closure property is rather difficult to ob-
tain. Usually, the construction for intersection is based on a cartesian product of
automata, where constraints on the transitions are added to enforce some syn-
chronization. In [1], which deals with infinite time-event words only (no signal is
involved), a Büchi-like product is performed. The situation is more complex for
signal words due to the stuttering of signals and the unobservability of hidden
signals with null duration. In [3], a construction is given for the intersection of
signal automata, but neither signal stuttering nor the unobservability of zero-
duration signal are taken into account, and only finite runs are considered. Note
that the full version [4] of [3] deals with the intersection of usual timed automata
only. In [11], in order to obtain a determinization result, a construction is pro-
posed to remove stuttering and zero-duration on signal automata using a single
clock but intersection is not considered directly. In [12], stuttering is handled
but intersection is done for signal automata acting on finite sequences only and
without zero-duration signals. To cope with stuttering, intermediate states and
ε-transitions are added to the automaton, thus introducing all possible ways of
splitting some signal ad into a finite concatenation ad1 . . . adn . When dealing
with ω-sequences, this approach would produce additional Zeno runs leading to
another difficulty arising with the possibility to accept a finite signal-event word
of finite duration with either a finite run or an infinite Zeno run.

We provide a general construction for the intersection of signal-event timed
automata working on finite and infinite signal-event words. We solve the main
difficulties of signal stuttering, unobservability of zero-duration τ -signals and
Zeno runs.

Outline of the paper. We first give in Section 2 precise definitions of finite and
infinite signal-event languages, with the corresponding notion of signal-event
automata. In Section 3, we give a general construction for the intersection of
signal-event automata dealing both with signal stuttering and with finite and

3

infinite sequences. To establish this result in full generality, we show that signal-
event automata can be put in a normal form where no infinite run accepts a
finite word with finite duration and no finite run accepts a word with infinite
duration. In Section 4, we define timed substitutions which are duration pre-
serving mappings. We then study in Section 5 the closure of the classes SEL and
SELε under substitutions and inverse substitutions. Section 6 gives concluding
remarks.

Extended abstracts of this work appeared in [6, 7].

2 Signal-event words and signal-event automata

Let Z be any set. We write Z∗ (respectively Zω) the set of finite (respectively
infinite) sequences of elements in Z, with ε for the empty sequence, and Z∞ =
Z∗ ∪Zω the set of all sequences of elements in Z. The set Z∞ is equipped with
the usual partial concatenation defined from Z∗ × Z∞ to Z∞.

Throughout this paper, we consider a time domain T which can be either the
set N of natural numbers, the set Q+ of non-negative rational numbers or the
set R+ of non-negative real numbers and we set T = T ∪ {∞}.

2.1 Signal-event words

We now describe the most general class of systems where both piecewise-constant
signals and discrete events can occur, based on the signal-event monoid defined
in [4]. We consider two finite alphabets Σe and Σs, with Σ = Σe ∪ (Σs ×T): an
element in Σe is the label of an instantaneous event, while a pair (a, d) ∈ Σs×T,
written ad, associates a duration d with a signal a. Moreover, Σs includes the
special symbol τ for an internal (or hidden) signal, the purpose of which is to
represent a situation where no signal can be observed.

Intuitively, signal-event words (SE-words for short and sometimes called
timed words) correspond to sequences obtained from Σ∞ by merging consec-
utive identical signals and removing internal τ -signals with duration 0. But note
that signals different from τ may have a null duration : we assume that they
can be observed, even if they are instantaneous, while the unobservable signal τ
cannot be observed in this case.

Formally, the partial monoid of signal-event words is the quotient Σ∞/ ≈
where ≈ is the congruence (with respect to the partial concatenation on Σ∞)
generated by

{

τ0 ≈ ε and
∏

i∈I a
di ≈

∏

j∈J a
d′

j if
∑

i∈I di =
∑

j∈J d
′
j

where the index sets I and J above may be finite or infinite. The partial monoid
Σ∞/ ≈ will be denoted SE (Σ,T) or simply SE (Σ) or SE when there is no
ambiguity. We write a∞ for the equivalence class of any sequence of the form
∏

i≥1 a
di , where

∑

i≥1 di = ∞. Note that for two words of the forms uad and

ad′

v with d <∞, the concatenation is uad+d′

v.

4

A finite or infinite sequence in Σ∞∪Σ∗ · (Σs ×{∞}) which does not contain
τ0 and such that two consecutive signals are distinct is said to be in normal form
(NF). Thus, a word in normal form is a particular representant of a SE-word,
which is the whole equivalence class. Therefore, SE-words are often identified
with sequences in normal form. A SE -word is finite if its normal form is a finite
sequence (even if it ends with a∞).

A duration can be associated with each element of Σ by: ‖a‖ = 0 if a ∈ Σe

and ‖ad‖ = d if a ∈ Σs and d ∈ T, so that the duration of a sequence w = s1s2 · · ·
in Σ∞ is ‖w‖ =

∑

i≥1 ‖si‖ ∈ T. Note that the duration restricted to finite SE -
words with finite durations is a morphism from Σ∗ into (T,+). A Zeno word is a
SE -word with finite duration and whose normal form is infinite. A signal-event
language (or timed language) is a set of SE -words.

Example 1. Let Σe = {f, g} and Σs = {a, b}. The SE -word w = a3ffgτ4.5a1b5

can be viewed as the following sequence of observations: first, the signal a during
3 time units, then a sequence of three instantaneous events ffg, then some
unobservable signal during 4.5 time units, again the signal a during 1 time unit
and then the signal b during 5 time units. The total duration of w is 13.5. For
infinite SE -words, we have for instance: a3gfa1

∏

i≥1 a
2 ≈ a1a2gf

∏

i≥1 a
4 and

the normal form is written a3gfa∞. Note also that an infinite timed sequence
in Σω may be a finite SE -word with finite duration:

∏

i≥0 a
1/2i

≈ a2.

2.2 Signal-event (timed) automata

Our model of signal-event automata (also called timed automata in the sequel)
is a variant of the basic models proposed in the literature, integrating both in-
stantaneous and durational semantics: signals are associated with control states,
while instantaneous events occur when the system switches between two states.

Clocks and guards. Let X be a set of variables with values in T, called clocks.
The set C(X) of guards or clock constraints over X consists of conjunctions of
atomic formulas x ⊲⊳ c, for a clock x, a constant c ∈ T and a binary operator ⊲⊳
in {<,≤,=,≥, >}.

A clock valuation v : X → T is a mapping that assigns to each clock x a
time value v(x). The set of all clock valuations is TX . We write v |= g when
the clock valuation v satisfies the clock constraint g. If t is an element of T

and α a subset of X , the valuations v + t and v[α] are defined respectively by
(v + t)(x) = v(x) + t, for each clock x in X and (v[α])(x) = 0 if x ∈ α, and
(v[α])(x) = v(x) otherwise.

Signal-event (timed) automata. A Büchi signal-event automaton over the time
domain T is a tuple A = (Σe, Σs, X,Q,Q0, F,R, I, ℓ,∆), where Σe and Σs are
alphabets of events and signals, X is a finite set of T-valued clocks, Q is a finite
set of control states, Q0 ⊆ Q is a subset of initial states, F ⊆ Q is a subset

5

A1 : p1

a

p2

b

x ≥ 1, ε A2 : q1

a, y < 1
c, {y}

A3 : p1

a

p2

a

x ≥ 1, ε A4 : q1

a, y < 1
ε

Fig. 1. Some signal automata.

of final states and R ⊆ Q corresponds to a Büchi acceptance condition3. The
mapping I : Q → C(X) associates with a state q ∈ Q an invariant I(q) being a
conjunction of constraints of the form x ⊲⊳ c, with ⊲⊳ ∈ {<,≤}, and ℓ : Q→ Σs

associates a signal with each state.
The set of transitions is ∆ ⊆ Q×C(X)×(Σe∪{ε})×P(X)×Q. A transition,

also written q
g,a,α
−−−→ q′, is labeled by a guard g, an instantaneous event in Σe or

the unobservable event ε, and the subset α of clocks to be reset. When a = ε,
it is called an ε-transition or a silent transition. Recall that, contrary to the
untimed case, ε-transitions increase the expressive power of timed automata [5].

Examples of signal-event automata are given in Figure 1 (where double-
circled nodes correspond to Büchi repeated states). The semantics of SE -automa-
ta will be given below. But intuitively,

– A SE -word is accepted by A1 if it is of the form ad1bd2 with d1 ≥ 1.
– A SE -word is accepted by A2 if it is of the form ad1cad2c . . . with di < 1 for

any i.
– Since concatenation merges consecutive identical signals (ad1ad2 = ad1+d2),

the language accepted by A3 consists of the signal a emitted for a duration
d ≥ 1.

– A4 accepts the signal a emitted for a duration d ≤ 1 (note that a1 is ac-
cepted by an infinite run with successive durations 1

2 , 1
4 , 1

8 , . . . for instance).
Note that, due to the ε-transition and Zeno runs, the open constraint of the
invariant y < 1 is changed into a closed constraint for the language.

Semantics. In order to define the semantics of SE -automata, we recall the no-
tions of path and timed run through a path. A path in A is a finite or infinite
sequence of consecutive transitions:

P = q0
g1,a1,α1
−−−−−→ q1

g2,a2,α2
−−−−−→ q2 . . . , where (qi−1, gi, ai, αi, qi) ∈ ∆, ∀i > 0

The path is said to be accepting if it starts in an initial state (q0 ∈ Q0) and
either it is finite and ends in a final state, or it is infinite and visits infinitely

3 We also use freely conjunctions of Büchi conditions and/or conditions on transitions
instead of states. It is well-known how to turn these generalized Büchi conditions
into classical ones [14].

6

often a repeated state q ∈ R. A run of the automaton through the path P is a
sequence of the form:

〈q0, v0〉
d0−→ 〈q0, v0 + d0〉

a1−→ 〈q1, v1〉
d1−→ 〈q1, v1 + d1〉

a2−→ 〈q2, v2〉 . . .

where

– di ∈ T for i ≥ 0 and if P is finite with n transitions then the last step of the

run must be 〈qn, vn〉
dn−→ 〈qn, vn + dn〉, with dn ∈ T,

– (vi)i≥0 are clock valuations such that v0(x) = 0 for all x ∈ X , and for each
i ≥ 0, we have







vi + d |= I(qi), ∀d ∈ [0, di]
vi + di |= gi+1

vi+1 = (vi + di)[αi+1]

Note that if di is finite, the condition about invariant I(qi) can be replaced
simply by vi + di |= I(qi).

Remark 1. The condition about the last step of a finite run fits the semantics
of signal-event automata : it is symmetric with the first step which is always
a duration step. Of course, this condition is not the same as in a time-event
automaton, where the time spent in a state is considered as a waiting time with
respect to the following action.

The signal-event (timed) word generated by this run is simply (the equiva-
lence class of) ℓ(q0)

d0a1ℓ(q1)
d1a2ℓ(q2)

d2 The signal-event (timed) language
accepted by A over the time domain T, written L(A), is the set of SE -words
generated by (finite or infinite) accepting runs of A. Two automata A and B are
equivalent if L(A) = L(B).

The set of all signal-event (timed) automata is denoted by SEAε whereas
SEA is the set of all signal-event automata using transitions with observable
events only, i.e., with labels in Σe instead of Σe ∪ {ε}. The family of signal-
event (timed) languages generated by some signal-event automaton in SEAε

(respectively SEA) is denoted by SELε (respectively SEL).

Remark 2. We believe that the semantics associating signals with control states
and instantaneous events with transitions is natural for timed automata. Of
course, considering only timed words, we could easily identify zero-duration sig-
nals with events. However, this would not be consistent with the semantics chosen
here.

Remark 3. A Zeno run is an infinite run for which the time sequence defined by
ti =

∑

j≤i dj for i ≥ 0, is convergent (keeping the above notations).
As mentioned in the introduction, we did not include the non Zeno condition

for runs, requiring that each infinite accepting run has an infinite duration. Thus,
Zeno runs accepting finite words with finite duration may occur. Again note that
such runs appear in the semantics of a timed model-checking tool like Uppaal,
as can be easily checked on examples.

7

3 Intersection

We present in this section the construction of a timed automaton recognizing
the intersection of the languages accepted by two given timed automata, thus
giving a constructive proof to the following theorem.

Theorem 1. The class SELε is closed under intersection.

This result might seem easy but this is not the case in its full generality. So
we start by explaining informally the natural construction then we turn to the
difficulties that arise with signals and ε-transitions. Let A1 and A2 be two SE -
automata with Aj = (Σe, Σs, Xj , Qj, Q

0
j , Fj , Rj , Ij , ℓj, ∆j) for j = 1, 2. Without

loss of generality, we assume that the set of clocks are disjoint: X1 ∩ X2 = ∅.
In order to recognize the intersection L(A1)∩L(A2) we usually build a product
automaton. This works fine if the automata Aj have no ε-transitions. In this
case, we let Q = {(q1, q2) ∈ Q1 × Q2 | ℓ1(q1) = ℓ2(q2)} and for (q1, q2) ∈
Q we let ℓ((q1, q2)) = ℓ1(q1) = ℓ(q2) and I((q1, q2)) = I1(q1) ∧ I2(q2). The
transitions of A are obtained by synchronizing transitions of Aj . More precisely,
if (p1, p2), (q1, q2) ∈ Q and (pj , gj, e, αj , qj) ∈ ∆j then we introduce in ∆ the
synchronized transition ((p1, p2), g1∧g2, e, α1∪α2, (q1, q2)). We define the initial
states, the final states and the accepting condition of A in such a way that a
path P of A is accepting iff each projections Pj on Aj is accepting (for j = 1, 2).
If an SE -word w is accepted by Aj through some path Pj for j = 1, 2 then the
synchronization of P1 and P2 is an accepting path of A and w admits a run
through this path. Conversely, if w admits a run through some accepting path
P of A then it also admits a run through the projections Pj of P which are
accepting paths of Aj . Therefore, A accepts the intersection L(A1) ∩ L(A2).

B1: p1

a

p2

a

p3

τ

p4

b

ε ε e

B2: q1

τ

q2

a

q3

b

ε e

Fig. 2. Automata B1 and B2

We explain now the difficulties that arise with signal stuttering when the
automata contain ε-transitions. Consider for instance the automata B1 and B2

of Figure 2. We have

L(B1) = {ad1τd2ebd3 | d1, d2, d3 ≥ 0}

L(B2) = {τd1ad2ebd3 | d1, d2, d3 ≥ 0}

8

Recall that in our model, the signal τ0 is equivalent to the empty word ε. Hence,
we have L(B1)∩L(B2) = {ad1ebd3 | d1, d3 ≥ 0}. The word a2eb1 in this intersec-
tion is accepted by B1 and B2 with the runs

〈p1, 0〉
1
−→ 〈p1, 1〉

ε
−→ 〈p2, 1〉

1
−→ 〈p2, 2〉

ε
−→ 〈p3, 2〉

0
−→ 〈p3, 2〉

e
−→ 〈p4, 2〉

1
−→ 〈p4, 3〉

〈q1, 0〉
0
−→ 〈q1, 0〉

ε
−→ 〈q2, 0〉

2
−→ 〈q2, 2〉

e
−→ 〈q3, 2〉

1
−→ 〈q3, 3〉.

Note that the ε-transitions in these runs are not synchronized, whereas the e-
transitions are synchronized. Hence, in order to deal with signal stutttering and
ε-transitions, we have to use asynchronous transitions for blocks of the form ad

and synchronous transitions to switch between blocks. The automaton that we
will build for the intersection L(B1) ∩ L(B2) is shown in Figure 3 where the
synchronous transition is depicted with a strong line. We will explain later the
meaning of the fourth component of a state, which is from the set {0, 1, 2}. Note
that, switching between blocks might involve a visible action like in the example
above but it might also involve an ε-transition. This is the case for instance if
the normal form of a word in the intersection is ad1bd2 . The automata B′

1 and
B′

2 of Figure 6 will provide an example for this situation.

Handling signal a

a, p1, q1, 0
τ, z ≤ 0

a, p2, q1, 0
τ, z ≤ 0

a, p1, q2, 1
a

a, p2, q2, 1
a

a, p3, q1, 0
τ, z ≤ 0

a, p3, q2, 2
τ, z ≤ 0

a, p3, q2, 0
τ, z ≤ 0

ε, {z}

ε, {z}

ε, {z}

ε, {z}

ε, {z}

ε, {z}
ε, {z}

Handling signal bb, p4, q3, 1
b

e

Fig. 3. Automaton B for the intersection of B1 and B2

The next problem arising in the construction of the intersection comes from
the fact that a word can be accepted in one automaton by a finite run and in the
other automaton by an infinite run. For instance, consider the two automata A3

and A4 in Figure 1. We have L(A3) = {ad | d ≥ 1} and L(A4) = {ad | d ≤ 1},
so that L(A3) ∩ L(A4) = {a1}. And this word a1 is accepted in A3 by a finite
run and in A4 by an infinite run. The asynchronous product of A3 and A4 is
given in Figure 4. We have L(A) = ∅ due to the invariant y < 1 and the guard
x ≥ 1. Therefore, this product cannot be used in this case.

Indeed, this problem is linked to Zeno runs and would not occur if Zeno
runs were ruled out by the semantics. But we need not exclude Zeno runs to get

9

A : a, p1, q1, 1
a, y < 1

a, p2, q1, 1
a, y < 1

x ≥ 1, ε, {z}
ε, {z} ε, {z}

Fig. 4. Asynchronous product of A3 and A4

Theorem 1. We show that it is possible to preprocess the automata so that the
above situation does not occur anymore. The problem comes from finite words
with finite durations which are accepted by Zeno runs through infinite paths.

We show how to transform a signal-event automaton into an equivalent one,
in which finite accepting runs correspond exactly to finite words with finite
durations. The result is interesting in itself for implementation issues: when a
finite word with finite duration is accepted by an infinite run, we build instead
a finite accepting run for this word.

Theorem 2. Let A be a SE-automaton. We can effectively construct an equiv-
alent SE-automaton A′ such that:

(†) no infinite run of A′ accepts a finite word with finite duration, and
(‡) no finite run of A′ accepts a word with infinite duration.

Ensuring (‡) is easy. Intuitively this happens when the invariant of some final
state is true. Words of the form wa∞ accepted by finite runs ending in such
states must now be accepted by infinite runs. The idea is to use a new clock
z to measure time intervals of length 1. For each signal a ∈ Σs, we add a new
state ra with label a and invariant z ≤ 1. State ra is both repeated and final.
We also add loops (ra, z = 1, ε, {z}, ra) and for each final state p with label a
and invariant true we add the transition (p, true, ε, {z}, ra) and p is not final
anymore. This gives an automaton satisfying (‡).

The difficulty is therefore to ensure the first condition. Note that, if Zeno
runs are not allowed by the semantics, then all accepting infinite runs have
an infinite duration, hence condition (†) is automatically fulfilled. Similarly, if
the automaton does not have ε-transitions, an accepting infinite run yields an
infinite SE -word and again condition (†) is automatically fulfilled. The proof
for the general case of automata with ε-transitions and where the semantics
allow Zeno runs is postponed to Section 3.1. Note that the transformation only
removes a particular type of Zeno runs, those which contain ultimately only ε-
transitions and a single signal. But it keeps Zeno runs corresponding to infinite
words of finite duration.

We now continue with the proof of Theorem 1. We start with two SE -
automata Aj = (Σe, Σs, Xj , Qj, Q

0
j , Fj , Rj , Ij , ℓj, ∆j) for j = 1, 2 on the same

alphabet. We assume that Q1 and Q2 (respectively X1 and X2) are disjoint and,
when no confusion can arise, we simply write ℓ for both labelling functions ℓ1
and ℓ2. We also assume that the automata A1 and A2 do not contain a trivial
loop of the form (p, true, ε, ∅, p).

10

We define a product automaton A = (Σe, Σs, X,Q,Q
0, F,R, I, ℓ,∆). We will

show that L(A) ⊆ L(A1)∩L(A2) (Lemma 1) and that the converse holds when
the two automata A1 and A2 satisfy conditions (†) and (‡) of Theorem 2.

– We set X = X1 ∪ X2 ∪ {z}, where z is a new clock used to control if the
time elapsed in a state of A is zero or not.

– The set Q ⊆ Σs×Q1×Q2×{0, 1, 2} consists of all tuples (a, p, q, i) satisfying
• ℓ1(p), ℓ2(q) ∈ {a, τ} and
• i = 1 if and only if ℓ1(p) = ℓ2(q) = a.

Note that the conjunction of these two constraints implies that if the first
component is a = τ then the last component must be i = 1.

– For (a, p, q, i) ∈ Q, we set
• ℓ(a, p, q, i) = τ and I(a, p, q, i) = I1(p) ∧ I2(q) ∧ z ≤ 0 if i 6= 1 and
• ℓ(a, p, q, 1) = a and I(a, p, q, 1) = I1(p) ∧ I2(q).

The intuitive idea behind the fourth component of the states of A is the following:

– Value 0 means that one of the automata is ready to perform some signal a 6= τ
and is waiting for the other to reach a state labelled a using ε-transitions
and instantaneous traversings of τ -labelled states. If a synchronization is not
possible on signal a, then we cannot extend the computation to an accepting
run.

– Value 1 means that the two automata emit the same signals,
– Value 2 means that the two automata were producing the same signals but

have “lost” their synchronisation (due to an ε-transition performed by one
of them). As in the case of value 0, they will try to re-synchronize. But the
whole computation can still progress by switching to another block even if
this synchronization is not possible anymore.

The transition relation ∆ consists of synchronous moves where both automata
progress simultaneously and of asynchronous moves where one automaton is idle
while the second one performs an ε-transition.

A synchronous move is not possible in a state of the form (a, p1, p2, 0) since a
synchronization on signal a is expected first. Consider two states (a, p1, p2, i) ∈ Q
and (a′, q1, q2, i

′) ∈ Q with i 6= 0 and i′ 6= 2. Then, for any two transitions
δj = (pj , gj, b, αj , qj) ∈ ∆j (j = 1, 2) with b 6= ε if a = a′, we add in ∆ the
synchronous transition

δ = (a, p1, p2, i)
g1∧g2,b,α1∪α2∪{z}
−−−−−−−−−−−−−→ (a′, q1, q2, i

′)

and we set πj(δ) = δj for j = 1, 2.

Consider now a state (a, p1, p2, i) ∈ Q of A. Then, for any transition δ1 =
(p1, g1, ε, α1, q1) in ∆1 with ℓ1(q1) ∈ {a, τ} we add in ∆ the asynchronous tran-
sition

δ = (a, p1, p2, i)
g1,ε,α1∪{z}
−−−−−−−−→ (a, q1, p2, i

′)

where i′ is updated so that (a, q1, p2, i
′) is a legal state and follows the abstract

description in Figure 5. Formally, if a = τ then i′ = 1 is the only possibility.
Now, if a 6= τ we have the following cases:

11

a,−,−, 1
a, true

a,−,−, 0
τ, z ≤ 0

a,−,−, 2
τ, z ≤ 0

Fig. 5. Handling blocks ad, for a 6= τ

– i′ = 1 if ℓ1(q1) = ℓ2(p2) = a: synchronization on a is active,
– i′ = 0 if i = 0 and ¬(ℓ1(q1) = ℓ2(p2) = a): synchronization on a has not yet

been achieved,
– i′ = 2 if i 6= 0 and ¬(ℓ1(q1) = ℓ2(p2) = a): synchronization on a has been

lost.

We set π1(δ) = δ1 and π2(δ) = ε. We proceed symmetrically for asynchronous
transitions of A2.

In the construction above, the subset of states with first component a is
designed to handle maximal blocks of the form ad. This part of the intersection
is represented for a 6= τ by the abstract automaton in Figure 5. Note that all
the transitions are asynchronous ε-transitions which reset the clock z, but they
may also have guards and other clocks to reset.

Since we have assumed that A1 and A2 do not contain a trivial loop of the
form (p, true, ε, ∅, p), the projections πj(δ) for j = 1, 2 are well-defined. Indeed,
if δ = ((a, p1, p2, i), g, b, α ∪ {z}, (a′, q1, q2, i′)) ∈ ∆ then g is of the form g1 ∧ g2
where gj involves clocks of Aj only. Hence, if we let αj = α∩Xj we get πj(δ) = ε
if (gj = true∧ b = ε∧αj = ∅ ∧ qj = pj) and πj(δ) = (pj , gj , b, αj, qj) otherwise.

A path P of A is a sequence δ1δ2 · · · of transitions in ∆. Clearly, the projec-
tion πj(P) = πj(δ1)πj(δ2) · · · is a path of Aj .

The initial and final states are defined by Q0 = Q∩ (Σs ×Q0
1 ×Q0

2 × {0, 1})
and F = Q ∩ (Σs × F1 × F2 × {1, 2}). We will not define the repeated states R
explicitely. Instead, an infinite run P of A will be accepting if and only if each
projection πj(P) is infinite and accepting in Aj .

Remark 4. Note that the construction would be simpler if we consider a subclass
of the model where we keep ε-transitions, but require that a non-zero duration
is spent in any state. In this case, since no signal can have a null duration, there
is no need for the synchronization part in Figure 5 and the 4th component of the
states could be dropped.

Examples. We have already seen an easy example with the two automata B1

and B2 in Figure 2, which have only finite runs and thus satisfy condition (†). We
could easily ensure that they also satisfy the condition (‡) by adding invariants
in the final states, which is omitted for simplicity. The automaton B constructed
for the intersection is represented in Figure 3.

12

B′

1:
p1

a

p2

a

p3

τ

p4

b

ε
ε

ε

ε

B′

2:
q1

τ

q2

a

q3

b

ε

ε

ε

Fig. 6. Automata B′

1 and B′

2

We now modify automata B1 and B2 into B′
1 and B′

2 by adding loops and
transforming the e-transitions to ε-transitions, as represented in Figure 6. In this
case, we have

L(B′
1) ∩ L(B′

2) = {ad1τd2 . . . τd2nad2n+1bd2n+2 | n ≥ 0 ∧ di ≥ 0}.

The product automaton B′ obtained with our construction is represented in
Figure 7.

a, p1, q1, 0
τ, z ≤ 0

a, p2, q1, 0
τ, z ≤ 0

a, p3, q1, 0
τ, z ≤ 0

a, p3, q2, 0
τ, z ≤ 0

a, p1, q2, 1
a

a, p2, q2, 1
a

a, p1, q1, 2
τ, z ≤ 0

a, p2, q1, 2
τ, z ≤ 0

a, p3, q1, 2
τ, z ≤ 0

a, p3, q2, 2
τ, z ≤ 0

b, p3, q3, 0
τ, z ≤ 0

b, p4, q3, 1
b

b, p4, q1, 0
τ, z ≤ 0

b, p3, q1, 0
τ, z ≤ 0

τ, p3, q1, 1
τ

Fig. 7. Resulting automaton B′

We insist again that the construction relies on condition (†). As explained
above, the construction for the two automata A3, A4 in Figure 1 yields the au-
tomaton A in Figure 4. Condition (†) does not hold for A4. Due to the invariant
y < 1 and the guard x ≥ 1 we have L(A) = ∅ whereas L(A3) ∩ L(A4) = {a1}.

13

Correctness of the construction. We keep of course the notations of the
construction given above. We start with one inclusion which does not need the
conditions (†) and (‡) of Theorem 2.

Lemma 1. We have L(A) ⊆ L(A1) ∩ L(A2).

Proof. Let w ∈ L(A) and let ρ be a run for w through some accepting path P
of A. We write

P = r0
g1,b1,α1
−−−−−→ r1

g2,b2,α2
−−−−−→ r2 · · ·

with rk = (ak, pk, qk, ik) for k ≥ 0 and

ρ = 〈r0, v0〉
d0−→ 〈r0, v0 + d0〉

b1−→ 〈r1, v1〉
d1−→ 〈r1, v1 + d1〉

b2−→ 〈r2, v2〉 · · ·

Let 0 < j1 < j2 < · · · be the indices of the transitions of P whose first projection
are nonempty. We also set j0 = 0. For k ≥ 0, we have pn = pjk

for all jk ≤ n <
jk+1 hence we may write

π1(P) = pj0

g1
j1

,bj1
,α1

j1−−−−−−−→ pj1

g1
j2

,bj2
,α1

j2−−−−−−−→ pj2 · · ·

By definition of A, since P is accepting, we get that π1(P) is accepting, too. We
assume that P is infinite, hence π1(P) is infinite, too. The slight modifications
for the case P finite are left to the reader. For k ≥ 0, let Dk = djk

+ · · ·+djk+1−1

and let v1
k be the restriction of vk to X1. Then define the first projection π1(ρ)

of ρ by

〈pj0 , v
1
j0〉

D0−−→ 〈pj0 , v
1
j0 +D0〉

bj1−−→ 〈pj1 , v
1
j1〉

D1−−→ 〈pj1 , v
1
j1 +D1〉

bj2−−→ 〈pj2 , v
1
j2 〉 · · ·

We claim that π1(ρ) is a run for w through the accepting path π1(P) of A. We
fix some k ≥ 0 and we first show that

(1)







v1
jk

+Dk |= I(pjk
)

v1
jk

+Dk |= g1
jk+1

v1
jk+1

= (v1
jk

+Dk)[α1
jk+1

]

With n = jk+1−1, we have v1
jk

+Dk = v1
n +dn. Since v1

n +dn |= I(rn) we deduce

that v1
jk

+Dk = v1
n +dn |= I(pn) = I(pjk

). Similarly, v1
jk

+Dk = v1
n +dn |= g1

jk+1
.

Finally, v1
jk+1

= (v1
n +dn)[α1

jk+1
] = (vjk

+Dk)[α1
jk+1

] and (1) is shown. We deduce
by induction that π1(ρ) is a run through π1(P).

It remains to prove that this run π1(ρ) generates the word w. For k ≥ 0
and jk < n < jk+1 we have bn = ε, hence w = w0bj1w1bj2w2 · · · where wk =

ℓ(rjk
)djk ℓ(rjk+1)

djk+1 · · · ℓ(rjk+1−1)
djk+1−1 . We have to show that wk = ℓ(pjk

)Dk .
For k ≥ 0 and jk ≤ n < jk+1, we have either in = 1 and ℓ(rn) = ℓ(pn) = ℓ(pjk

) or
in 6= 1 and ℓ(rn) = τ and dn = 0 since z ∈ αn and z ≤ 0 is in the invariant I(rn).
Therefore, wk = ℓ(pjk

)Dk and we deduce that π1(ρ) is a run for w through π1(P).
We have already noticed that π1(P) is accepting in A1 hence we get w ∈ L(A1).

In a symmetric way, w ∈ L(A2) and we have proved the first inclusion L(A) ⊆
L(A1) ∩ L(A2). ⊓⊔

14

We finally come to the converse inclusion. Here we need some hypotheses
which are explicited in the next lemma.

Lemma 2. Let w ∈ L(A1) ∩ L(A2). Assume that w is accepted by Aj through
some accepting path P j for j = 1, 2. If

– either both P 1, P 2 are finite,
– or both P 1, P 2 are infinite and w is either infinite or has infinite duration,

then w ∈ L(A).

Proof. For j = 1, 2, let ρj be a run for w through the accepting path P j of Aj .
We assume in the following that both paths are infinite. The slight modifications
to deal with the case where both paths are finite are left to the reader. Write

P j = pj
0

gj
1
,bj

1
,αj

1−−−−−→ pj
1

gj
2
,bj

2
,αj

2−−−−−→ pj
2 · · ·

and

ρj = 〈pj
0, v

j
0〉

dj
0−→ 〈pj

0, v
j
0 + dj

0〉
bj
1−→ 〈pj

1, v
j
1〉

dj
1−→ 〈pj

1, v
j
1 + dj

1〉
bj
2−→ 〈pj

2, v
j
2〉 · · ·

We will define a block decomposition of the paths. We first introduce a nota-

tion. For i < k, let wj(i, k) = ℓ(pj
i)

dj
i bji+1 · · · b

j
k−1ℓ(p

j
k−1)

dj

k−1 . Now, we define

inductively a sequence of integers. We let nj
0 = 0 and assuming that nj

k has been

defined then we let nj
k+1 = max{i > nj

k | wj(nj
k, i) ∈ Σs×T} ∈ N∪{∞}. We have

wj(nj
k, n

j
k+1) = (aj

k)Dj

k for some signal aj
k ∈ Σs and Dj

k =
∑

nj

k
≤i<nj

k+1

dj
i . Note

that bji = ε for all nj
k < i < nj

k+1 and for nj
k ≤ i < nj

k+1 we have ℓ(pj
i) ∈ {τ, ak}

and dj
i = 0 if ℓ(pj

i) 6= ak. Also, if nj
k+1 = ∞ then w must be finite and from

the hypotheses of Lemma 2 we deduce that w has an infinite duration, which
implies Dj

k = ∞.

To simplify the notation, we let ej
k = bj

nj

k

for k > 0. Since ρj is a run for w

through P j we have

w ≈ (a1
0)

D1
0e11(a

1
1)

D1
1e12(a

1
2)

D1
2e13 · · ·

≈ (a2
0)

D2
0e21(a

2
1)

D2
1e22(a

2
2)

D2
2e23 · · ·

We show by induction that in fact a1
k = a2

k, D1
k = D2

k and e1k+1 = e2k+1 for all
k ≥ 0.

Assume that a1
0 6= a2

0. Since (a1
0)

D1
0 and (a2

0)
D2

0 are both prefixes of w, we
must have for instance a1

0 = τ and D1
0 = 0 and e11 = ε. This is a contradiction

with the definition of n1
1. Therefore, a1

0 = a2
0. Assume now that D1

0 < D2
0. To

simplify the notation, we let m = n1
1. Since (a1

0)
D1

0e11ℓ(p
1
m)d1

m and (a2
0)

D2
0 are

both prefixes of w, we must have e11 = ε and if ℓ(p1
m) 6= a1

0 = a2
0 then ℓ(p1

m) = τ
and d1

m = 0. Again, this is a contradiction with the definition of n1
1. Therefore,

we have also D1
0 = D2

0. Assume finally that e11 6= e21. Again, from the fact

15

that (a1
0)

D1
0e11 and (a2

0)
D2

0e21 are both prefixes of w we deduce that for instance

e11 = ε 6= e21. Then, with m = n1
1 we also have (a1

0)
D1

0 ℓ(p1
m)d1

m prefix of w and
we deduce that d1

m = 0 and either ℓ(p1
m) = a1

0 or ℓ(p1
m) = τ . Again, this is a

contradiction with the definition of n1
1. Therefore, e11 = e21.

Repeating the above arguments, we can prove by induction that a1
k = a2

k =
ak, D1

k = D2
k = Dk and e1k+1 = e2k+1 = ek+1 for all k ≥ 0. Therefore, we have

w ≈ aD0

0 e1a
D1

1 e2a
D2

2 e3 · · ·

which is called the alternating normal form (ANF) of w since it insists on a strict
alternation between events and signals at the expense of keeping some invisible
events (ε) and some invisible signals (τ0). Note that the ANF is different from the
normal form introduced in Section 2. For instance, if Σe = {f, g} and Σs = {a, b}
then we have

– a1fa3ga2.5 is both in ANF and in NF,
– fa3gfa2.5b4 is in NF but not in ANF. Its ANF is τ0fa3gτ0fa2.5εb4,
– τ0fτ0g(a2εb3ε)ω is in ANF but not in NF. Its NF is fg(a2b3)ω .

We build now an accepting path P of A and the corresponding run ρ for w
through P . Intuitively, for each block of the form aDk

k we use an asynchronous
shuffle of the transitions in P 1 and P 2 used for this block. The difficulty is
to choose a correct order for this shuffle. To switch from block aDk

k to block

a
Dk+1

k+1 , we synchronize the transitions n1
k+1 and n2

k+1 of A1 and A2. The formal
construction of P is given below.

The initial state of P is r0 = (a0, p
1
0, p

2
0, i0) with i0 6= 2. Assume now that the

path P has been built up to state rm = (ak, p
1
m1 , p2

m2 , im) which was reached at
time tm with clock valuation vm such that

i) we have used the prefixes of P j of length mj with nj
k ≤ mj < nj

k+1 for
j = 1, 2,

ii) tm = max{dj
0 + · · · + dj

mj−1 | j = 1, 2} ≤ min{dj
0 + · · · + dj

mj | j = 1, 2},

iii) vm(z) = 0 and vm(x) = vj
mj (x) + tm − (dj

0 + · · · + dj
mj−1) for x ∈ Xj.

By convention, an empty sum is 0 so that the above holds for m = 0.
Let δj = dj

0 + · · · + dj
mj . The next transition of P will be taken at time

tm+1 = min(δ1, δ2). We start by checking that the invariant I(rm) is satisfied by
vm + d for 0 ≤ d ≤ tm+1 − tm.

– The conjunct Ij(p
j
mj) of the invariant is satisfied since the restriction of

vm + d to Xj is vj
mj + d′ with 0 ≤ d′ = tm − (dj

0 + · · · + dj
mj−1) + d ≤ dj

mj

and ρj is a run through P j .
– If i 6= 1 then ak 6= τ and either ℓ(p1

m1) = τ or ℓ(p2
m2) = τ (or both). Assume

without loss of generality that ℓ(p1
m1) = τ . Then, by definition of n1

k+1 we
deduce that d1

m1 = 0. It follows that tm+1 = tm and d = 0. Using (iii) we
infer that the conjunct z ≤ 0 of the invariant is also satisfied.

16

Before we continue, note that δj ≤ D0 + · · · + Dk and we have equality if
mj + 1 = nj

k+1.

1. If tm+1 = δ1 < δ2 then from the remark above we must have m1 +1 < n1
k+1.

In this case, we add to the path P the asynchronous transition

(2) rm
g1

m1+1
,ε,α1

m1+1
∪{z}

−−−−−−−−−−−−−→ rm+1 = (ak, p
1
m1+1, p

2
m2 , im+1)

where im+1 is uniquely determined by the transition relation of A. The
restriction of vm + tm+1 − tm to X1 is v1

m1 + d1
m1 hence the guard g1

m1+1

is satisfied when we take this transition and after the transition the clock
valuation vm+1 satisfies (iii). It is also clear that (i) and (ii) are still satisfied.

2. If tm+1 = δ2 < δ1 the situation is symmetric and we add to the path P the
asynchronous transition

(3) rm
g2

m2+1
,ε,α2

m2+1
∪{z}

−−−−−−−−−−−−−→ rm+1 = (ak, p
1
m1 , p2

m2+1, im+1)

where im+1 is uniquely determined by the transition relation of A.
3. We assume now that tm+1 = δ1 = δ2. The difficult case is when im = 0.

In this case, the synchronization between the two paths P 1 and P 2 in order
to generate the signal aDk

k has not yet been achieved. We have ak 6= τ and
either ℓ(p1

m1) = τ or ℓ(p2
m2) = τ (or both).

– If ℓ(p1
m1) = τ 6= ak then w1(n1

k,m
1 + 1) = τ0 6= aDk

k and we deduce that
m1 + 1 < n1

k+1. The automaton A1 still needs to perform ε-transitions
in order to reach a state with signal ak. In this case, we extend P with
the asynchronous transition (2) and we check as above that (i-iii) are
still satisfied.

– If ℓ(p1
m1) = ak then the automaton A1 has reached a state with signal

ak and it is waiting for A2 to do the same. We must have ℓ(p2
m2) = τ

and m2 + 1 < n2
k+1. We extend P with the asynchronous transition (3)

and we check as above that (i-iii) are still satisfied.
4. We assume now that tm+1 = δ1 = δ2 and im 6= 0. Then both automata

have already successfully synchronized on ak and the order in which we take
asynchronous transitions which occured at the same date in P 1 and P 2 is
not important. There are three cases:
– If m1 + 1 < n1

k+1 then extend P with the asynchronous transition (2).
– If m2 + 1 < n2

k+1 then extend P with the asynchronous transition (3).
– If m1+1 = n1

k+1 andm2+1 = n2
k+1 then we have completed the block for

aDk

k in both automata and we extend P with the synchronous transition

rm
g1

m1+1
∧g2

m2+1
,ek+1,α1

m1+1
∪α2

m2+1
∪{z}

−−−−−−−−−−−−−−−−−−−−−−−−−−→ rm+1 = (ak+1, p
1
m1+1, p

2
m2+1, im+1)

with im+1 6= 2 to reach the next block a
Dk+1

k+1 . As above we check that
both guards are satisfied when we take this transition and that (i-iii)
still hold for m+ 1.

17

We have build a path P and simultaneously a run ρ for w through P . By con-
struction of P , for j = 1, 2 the projection πj(P) is a prefix of P j . Actually, we
have πj(P) = P j . Indeed, assume on the contrary that π2(P) is a strict prefix
of P 2 of length m2. Then, we eventually use transition of type (2) only within
some block aDk

k . In particular, w must be finite and its duration must be infinite.
Using transitions of type (2) only implies that d1

0 + · · ·+ d1
m ≤ d2

0 + · · ·+ d2
m2 for

all m, which is a contradiction with the infinite duration of w.

We have proved that πj(P) = P j for j = 1, 2 and we deduce that the path
P of A is accepting. Therefore, w ∈ L(A). ⊓⊔

This concludes also the proof of Theorem 1. Indeed, by Theorem 2 we may
assume that the two automata A1 and A2 satisfy conditions (†) and (‡). We
deduce that the hypotheses of Lemma 2 are automatically fulfiled. Using also
Lemma 1 we get L(A) = L(A1) ∩ L(A2).

3.1 Proof of Theorem 2

We start from an automaton A = (Σe, Σs, X,Q,Q0, F,R, I, ℓ,∆). We have to
construct an automaton satisfying condition (†). Let AF be a copy of A in which
R is replaced by the empty set. Similarly, let AR be a copy of A in which F is
replaced by the empty set. We have L(A) = L(AF)∪L(AR) and the automaton
AF clearly satisfies (†). So we only have to concentrate on infinite runs of A. In
the following, we simply assume that F = ∅ in A.

We first analyse how a finite word with finite duration wad can be accepted
by a Zeno run ρ through some infinite path P . If this is the case then we can
write P = P1P2 where all transitions used in P2 occurs infinitely often in P2.
Then, P2 consists only of ε-transitions and states with label a or τ . The states
labelled τ 6= a must be traversed instantaneously. Now, if a clock x is reset on
some transition of P2 and a constraint of the form x > c or x ≥ c is in the
guard of some transition of P2 then c = 0 (otherwise we would not have d <∞).
Indeed, P2 must also contain at least one accepting state.

The ituitive idea is to replace P2 by a finite loop P ′
2 satisfying the above

conditions. Once the loop P ′
2 is completed we will use an ε-transition to some

new final state with a suitable invariant. The difficulty is to make sure that any
word accepted through the new path could have been accepted with a Zeno run
through some infinite path of A.

It will be convenient to distinguish two cases depending on whether time
progresses infinitely often or not in P2.

First case. For any signal a and subset of clocks Z ⊆ X , we build an automaton
A(a, Z) which accepts a word wad iff this word can be accepted by a run ρ
through an infinite path P of A such that Z is the set of clocks that are reset
infinitely often in P and eventually time does not progress anymore in ρ.

Let z /∈ X be a new clock. The automaton A(a, Z) contains (a copy of) the
states and transitions of A together with some new states and transitions (see

18

A r
ε, {z} r-copy

of A

ε f

z ≤ 0

ε

Fig. 8. The automaton A(a, Z)

Figure 8 for an intuitive view). For each (p, g, ε, α, q) ∈ ∆ with

(4)
ℓ(p), ℓ(q) ∈ {a, τ} and α ⊆ Z and ∀x ∈ Z,
if x ≥ c is a constraint in g then c = 0
and there is no constraint in g of the form x > c

we add the following states and transitions:

(5)
(p, g, ε, α ∪ {z}, q) if ℓ(q) = a,
(p, g, ε, α, (q, p, α, (q ∈ R))) if ℓ(p) = a,
((p, r, β, ϕ), g, ε, α, (q, r, α ∪ β, ϕ ∨ (q ∈ R))) if ℓ(r) = a.

For the new states, we let ℓ(r) = ℓ(r) = a, I(r) = I(r)∧z ≤ 0, ℓ(p, r, β, ϕ) = ℓ(p)
and I(p, r, β, ϕ) = I(p)∧z ≤ 0. These new transitions simulate an instantaneous
loop around some a-labelled state r: just before reaching r, we move into the
copy and reach r instead. We remember r until reaching (r, r, Z, true), where
we know that the loop has been successfully completed and all clocks in Z has
been reset and a repeated state has been visited. Therefore, we also add the
transitions ((r, r, Z, true), ε, fa) where fa is a new state which is the only final
state of A(a, Z), with ℓ(fa) = a and I(fa) = z ≤ 0. The automaton A(a, Z) has
no repeated states and its initial states are those of A. The constraint z ≤ 0
in the invariants ensures that, if a word is accepted by A(a, Z) then it can be
accepted by A with an ω-iteration of the instantaneous loop going from r to
(r, r, Z, true).

Second case. We now build a collection of automata A(a, Y,m,M) which accept
a finite word with finite duration wad iff this word can be accepted through an
infinite path of A by a Zeno run in which time progresses infinitely often (even
though time converges). The construction is more tricky than in the first case. As
explained above, the intuition is that A(a, Y,m,M) detects loops of A that can
be iterated infinitely often using a Zeno run for which time progresses infinitely
often.

Let a ∈ Σs be a signal and Y ⊆ X be a subset of clocks. Intuitively, Y is the
set of clocks that are not reset along the loop. Let m = (my)y∈Y be a tuple of
lower constants for clocks in Y , i.e., for each y, either my = 0 or there exists a
constraint y > my or y ≥ my occuring in some guards of A. Here the intuition
is that my should be the maximal lower constant for y on the loop. Similarly,
let M = (My)y∈Y be a tuple of upper constants for clocks in Y , i.e., for each y,
either My = ∞ or there exists a constraint y < My or y ≤My occuring in some

19

A r

V

y ≥ my , ε, {z} r-copy

of A

z > 0, ε f
V

y ≤ My

ε, {z}

Fig. 9. The automaton A(a, Y, m,M)

guard or invariant of A. Similarly, My should be the minimal upper constant for
y along the loop. Note that the number of such tuples (a, Y,m,M) is finite.

Let z be a new clock. The automaton A(a, Y,m,M) contains (a copy of)
the states and transitions of A together with some new states and transitions
described below (see Figure 9 for an intuitive view). It has no repeated states
and its initial states are those of A. Let (p, g, ε, α, q) ∈ ∆ be a transition of A
satisfying

(6)

ℓ(p), ℓ(q) ∈ {a, τ} and α ∩ Y = ∅,
∀y ∈ Y, if y > c or y ≥ c is a constraint in g then my ≥ c,
∀y ∈ Y, if y < c or y ≤ c is a constraint in g, I(p) or I(q) then My ≤ c,
∀x ∈ X \ Y, if x > c or x ≥ c is a constraint in g then c = 0.

We add the following states and transitions to A(a, Y,m,M):

(7)

(p, g ∧
∧

y∈Y y ≥ my, ε, α ∪ {z}, q) if ℓ(q) = a,

(p, g ∧ z > 0, ε, α ∪ {z}, (q, p, α, (q ∈ R))) if ℓ(p) = a,
((p, r, β, ϕ), g, ε, α ∪ {z}, (q, r, α ∪ β, ϕ ∨ (q ∈ R))) if ℓ(r) = a.

For the new states, we let ℓ(r) = a, I(r) = I(r), ℓ(p, r, β, ϕ) = ℓ(p), I(p, r, β, ϕ) =
I(p) if ℓ(p) = a and I(p, r, β, ϕ) = I(p) ∧ z ≤ 0 if ℓ(p) = τ 6= a. These new
transitions simulate a loop around some a-labelled state r: just before reaching r,
we move into the copy and reach r instead, while satisfying the lower constraints.
We remember r until reaching (r, r,X \ Y, true), where we know that the loop
has successfully terminated because we crossed some repeated state (q ∈ R).
Therefore, we also add the transitions ((r, r,X \ Y, true), true, ε, {z}, f) where
f is a new state which is the only final state of A(a, Y,m,M) and with ℓ(f) = a
and I(f) =

∧

y∈Y y ≤My (with the convention that y ≤ ∞ is true).

Let A1 be the disjoint union of all automata A(a, Z) and A(a, Y,m,M).
We will prove below that A1 accepts precisely all finite words with finite dura-
tions accepted by A with Zeno runs through infinite paths. In order to get the
automaton A′ satisfying (†) we still have to build an automaton A2 accepting
L(A) \ L(A1). This second step is much easier. We have to keep only the infi-
nite runs of A which accept words with either an infinite duration or an infinite
length. For this, we define an automaton B with no final state and which goes
to a repeated state whenever at least one time unit has elapsed or when a visible
event is executed or when a new signal is emitted. The first two conditions are
trivial to deal with. For the last one we need to keep track of the last signal a

20

that has been observed (ad 6= τ0) so that we can enter a repeated state when
a new signal b is observed (bδ 6= τ0 with b 6= a). Let A2 be the product of the
automata A and B as defined for the proof of Theorem 1. By Lemma 1 we have
L(A2) ⊆ L(A) ∩ L(B). Now the accepting runs of A and B are infinite since
these automata have no final states. Moreover, a word is accepted by B iff it is
infinite or has an infinite duration. Hence, we can apply Lemma 2 and we get
the converse inclusion: L(A)∩L(B) ⊆ L(A2). Note that there is no vicious circle
in this proof. We are not using Theorem 1 here, only Lemmas 1 and 2 which
were stated carefully so that they do not depend on Theorem 2.

Correctness of the construction. The most difficult part of the proof takes
place in the second case of the construction above. We thus prove this case in
details. Let wad be some finite word with finite duration ending with signal a
and which is accepted by A with some infinite run ρ through some infinite path
P and such that time progresses infinitely often in ρ. Let also Y be the set of
clocks that are not reset infinitely often on P , and for each y ∈ Y , let my (resp.
My) be the maximal lower constant (resp. the minimal upper constant) for clock
y which is used infinitely often in P .

Lemma 3. wad ∈ L(A(a, Y,m,M)).

Proof. We first show that wad is accepted by A(a, Y,m,M). We may write
P = P0P1P2P3 and ρ = ρ0ρ1ρ2ρ3 accordingly where

– ρ0 is a run through P0 for wad0 and ρi is a run through Pi for adi for
i ∈ {1, 2, 3},

– for each i ∈ {1, 2, 3}, the set of transitions used in Pi is exactly the set of
transitions that are used infinitely often in P ,

– P2 is a loop around some state r and the time spent in state r between P1

and P2 is strictly positive.

Since some time is spent in state r, we have ℓ(r) = a and we can change the last
transition (p, g, ε, α, r) of P1 to (p, g ∧

∧

y∈Y y ≥ my, ε, α ∪ {z}, r) to obtain a
new path P ′

1. We then lift P2 to P ′
2 so that P0P

′
1P

′
2 is a path of A(a, Y,m,M).

The last state of P ′
2 is (r, r,X \ Y, true) hence we obtain an accepting path P ′

of A(a, Y,m,M) by adding the transition ((r, r,X \ Y, true), true, ε, {z}, f).
For i ∈ {0, 1, 2}, let ρ′i be obtained from ρi by adding the valuation of the new

clock z. Then, ρ′0ρ
′
1ρ

′
2 is a run through P0P

′
1P

′
2. Indeed, the additional constraint

∧

y∈Y y ≥ my on the last transition of P ′
1 is satisfied since P1 activates at least

once each transition used infinitely often in P and clocks in Y are not reset in
P1. The additional constraint z > 0 on the first transition of P ′

2 is also satisfied
since the time spent in state r between P1 and P2 is strictly positive. Moreover,
if P2 uses a state with label ℓ(p) = τ 6= a then the time spent by ρ2 in p is 0
since ρ2 is a run for ad2 . Hence, the additional invariants z ≤ 0, if any, are also
satisfied.

Let v ∈ TX be the clock valuations at the end of ρ0ρ1ρ2 (including the time
spent in the last state r of P2). Then, for each y ∈ Y , we have v(y) + d3 ≤ My

21

since if My <∞ then some constraint y < My or y ≤My is activated infinitely
often in P3 and y is never reset. Therefore, we obtain a run ρ′ for wad through

the path P ′: ρ′ = ρ′0ρ
′
1ρ

′
2

ε
−→ (f, v, 0)

d3−→ (f, v + d3, d3) (the last component is
the valuation of the new clock z) and wad is accepted by A(a, Y,m,M). ⊓⊔

Conversely, let (a, Y,m,M) be defined as in case 2. Hence, a ∈ Σs is a signal
and Y ⊆ X is a subset of clocks. For each y ∈ Y , my and My are lower constant
and upper constant for clock y.

Lemma 4. L(A(a, Y,m,M)) ⊆ L(A).

Proof. Let ρ be a run through some accepting path P of A(a, Y,m,M). We
write P = P1P2P3 where the first state of P2 is some r, the last state of P2 is
(r, r,X \ Y, true) and P3 consists of a single transition leading to the state f .
With p0 = pn = r, we may write

ρ = ρ1
ε
−→ (p0, v0, 0)

d0−→ (p0, v0 + d0, d0)

ε
−→ ((p1, r, α1, ϕ1), v1, 0)

d1−→ ((p1, r, α1, ϕ1), v1 + d1, d1)

· · ·

ε
−→ ((pn, r, αn, ϕn), vn, 0)

dn−→ ((pn, r, αn, ϕn), vn + dn, dn)

ε
−→ (f, vn+1, 0)

dn+1

−−−→ (f, vn+1 + dn+1, dn+1)

where the last components of the tuples describe the valuations of z. The timed
word accepted by ρ is of the form w = w1a

δ where w1 is associated with ρ1

through P1 and δ = d0 + · · · + dn+1. Note that d0 > 0.
Let P ′

1P
′
2 be the projection of the path P1P2 (the projection of each added

transition presented in (7) is (p, g, ε, α, q)). Note that P ′
2 is a loop from r to r

containing a repeated state since the flag in the last state of P2 is true. We show
that w = w1a

δ is accepted by some run through the infinite path P ′
1P

′ω
2 .

For this, we first exhibit a sufficient condition under which the path P ′
2 can

be taken. Fix d = d0 + · · · + dn−1 > 0 and assume that v′0 ∈ TX and γ > 0
satisfy

(8)
γd ≤ d0/2
v′0(x) ≤ v0(x) + d0/2 for all x /∈ Y
my ≤ v′0(y) < My − γd for all y ∈ Y .

Define d′i = γdi for 0 ≤ i < n. Then,

ρ′2(v
′
0, γ) = (p0, v

′
0)

d′

0−→ (p0, v
′
0 + d′0)

ε
−→ (p1, v

′
1)

· · ·

d′

n−1

−−−→ (pn−1, v
′
n−1 + d′n−1)

ε
−→ (pn, v

′
n)

is a run through P ′
2 with duration γd.

22

Indeed, for all y ∈ Y and 0 ≤ i < n, we have v′i(y) = v′0(y) + d′0 + . . .+ d′i−1

since y is not reset. Hence my ≤ v′0(y) ≤ v′i(y) and v′i(y)+ d′i ≤ v′0(y)+ γd < My

and all guards or invariants involving y are satisfied. Now, for x ∈ X \ Y , we
show by induction that for all 0 ≤ i < n we have v′i(x) + d′i ≤ vi(x) + di and
v′i(x) + d′i = 0 if and only if vi(x) + di = 0. First, we have 0 < v′0(x) + d′0 ≤
v0(x) + d0/2 + d0/2. Now, for i > 0, using the induction hypothesis we get
v′i−1 + d′i−1 = 0 iff vi−1 + di−1 = 0. Hence, we have either v′i(x) = 0 = vi(x) and
the result follows since 0 < γ < 1 and d′i = γdi, or v′i(x) = v′i−1(x) + d′i−1 >
0 and vi(x) = vi−1(x) + di−1 > 0 and the result follows by induction since
d′i ≤ di. Therefore, all the constraints involving x are satisfied (recall that these
constraints are of the form x < c or x ≤ c or x > 0 or x ≥ 0, see (6)).

Now, we can choose a sequence (γk)k≥0 such that 0 < γkd ≤ d0/2 for all
k ≥ 0 and δ =

∑

k≥0 γkd.

The pair (v0, γ0) satisfies condition (8). Indeed, for all y ∈ Y , we have my ≤
v0(y) since the last transition of P1 carries the constraint my ≤ y. Moreover,
v0(y) + γ0d < v0(y) + δ ≤ My due to the invariant I(f). Hence ρ′2(v0, γ0) is a
run through P ′

2.

Let u1 be the valuation at the end of ρ′2(v0, γ0). Note that all clocks x ∈ X\Y
have been reset in P ′

2 since the last state of P2 is (r, r,X \ Y, true). Hence, we
have u1(x) ≤ γ0(d1 + · · ·+ dn−1) ≤ γ0d ≤ d0/2 ≤ v0(x)+ d0/2 for all x ∈ X \Y .
Also, for all y ∈ Y , we have my < u1(y) and u1(y) + γ1d = v0(y) + γ0d+ γ1d ≤
v0(y) + δ < My. Hence, the pair (u1, γ1) satisfies condition (8) and ρ′2(u1, γ1) is
a run through P ′

2.

By induction, we construct a sequence of valuations (uk)k≥0 (with u0 = v0)
such that the pair (uk, γk) satisfies condition (8) and uk+1 is the valuation at the
end of ρ′2(uk, γk). We obtain a run ρ′ = ρ1ρ

′
2(u0, γ0)ρ

′
2(u1, γ1) · · · for w = w1a

δ

through the accepting infinite path P ′
1P

′ω
2 of A. Therefore, w1a

δ ∈ L(A). ⊓⊔

4 Signal-event (timed) substitutions

Recall that substitutions are a suitable model for refinements. In the untimed
framework, the image of each letter a ∈ Σ is a given language La over another
alphabet Σ′ and a substitution is a morphism extending this mapping.

Dealing with timed words requires to preserve durations. Therefore, an in-
stantaneous event must be replaced by SE -words with null duration, while a
signal a with duration d must be replaced by SE -words of the same duration
d. Formally, the new alphabet is also of the form Σ′ = Σ′

e ∪ (Σ′
s × T) and a

substitution σ is defined by a family of SE -languages (La)a∈Σe∪Σs
such that:

– La ⊆ (Σ′
e ∪ (Σ′

s × {0}))∗ if a ∈ Σe,

– La is a language of non Zeno SE -words over Σ′ if a ∈ Σs \ {τ}.
Using Zeno-words in substitutions may give rise to transfinite sequences,
therefore we have excluded them from the languages La.

– Lτ = {τ} × T: we assume that the internal signal τ is never modified.

23

Then, for each a ∈ Σe, σ(a) = La and for each ad ∈ Σs × T, σ(ad) = {w ∈
La | ‖w‖ = d}. A substitution is thus a duration preserving mapping.

For a SE -word v = v1v2 · · · in normal form over Σ, σ(v) is the set of SE -
words obtained from σ(v1)σ(v2) · · · by merging consecutive identical signals.
Note that w ∈ σ(v) can be written w1w2 · · · with wi ∈ σ(vi) for each i ≥ 1.
However this decomposition of w may not be in normal form. Finally, for a timed
language L over Σ, we set σ(L) = ∪v∈Lσ(v).

Example 2.

– Choosing Lf = {f} for f ∈ Σe and La = {τ0} ∪ {a} × (T \ {0}) for a ∈ Σs

leads to a substitution that removes all signals with a null duration.
– Hiding some signal a is simulated by a substitution where La = {τ} × T.

SE-substitutions and morphisms. It should be noticed that, while substitutions
are morphisms in the untimed framework, this is not the case with our definition.
For instance, assume that a is a signal such that La = {b2}, then σ(a1) = ∅ and
σ(a2) = {b2} 6= σ(a1)σ(a1) while a2 = a1 · a1.

We call m-substitution a SE -substitution which is a morphism with respect
to the partial concatenation. We have the following characterization:

Proposition 1. Let σ be a SE-substitution, given by a family (La)a∈Σe∪Σs
.

Then, σ is a morphism if and only if for each signal a ∈ Σs we have

1. La is closed under concatenation: for all u, v ∈ La with ‖u‖ < ∞, we have
uv ∈ La,

2. La is closed under decomposition: for each v ∈ La with ‖v‖ = d, for all
d1 ∈ T, d2 ∈ T such that d = d1 +d2, there exist vi ∈ La with ‖vi‖ = di such
that v = v1v2.

Remark 5. This proposition is easy to prove and shows that rather restrictive
conditions should be added on the languages La to obtain morphisms. More-
over, considering the questions of closure under substitutions, we can see that
the proofs would be much simpler for m-substitutions. However, morphisms do
not represent natural operations in our framework. Consider for instance the au-
tomaton of Figure 10 in the next Section, which can be used to refine the signal
Connect with some implementation details. Clearly, this substitution is not a
morphism. More generally, substitions that arise naturally to describe abstrac-
tions or refinements are not morphisms. Therefore, it is important to study the
closure of recognizable SE -languages under substitutions that are not necessarily
morphisms.

Inverse substitutions. The notion of abstraction is fundamental in the study
of systems, and in particular in their verification. It consists in replacing a set
of behaviors with a single action in order to obtain a smaller system, simpler
to study and to understand. The abstraction operation is thus the inverse of
refinement. As in the untimed case, inverse substitutions provide a suitable model
for abstractions in our framework.

For a substitution σ, the inverse substitution σ−1 is the operation defined
for a language L′ ⊆ SE (Σ′) by σ−1(L′) = {v ∈ SE (Σ) | σ(v) ∩ L′ 6= ∅}.

24

5 Recognizable substitutions

We now focus on recognizable substitutions, whose associated languages are
defined by SE -automata. Formally, a substitution σ defined by a family of lan-
guages (La)a∈Σe∪Σs

is a SELε-substitution (a SEL-substitution resp.) if La ∈
SELε (resp. La ∈ SEL) for each a ∈ Σe ∪Σs.

For instance, if the automaton of Figure 10 is associated with the signal
Connect, then a connection operation of 14 time units, Connect14, can be re-
placed by the word Idle3 ·Req ·Wait2 ·T imeOut0 ·Req ·Wait1 ·Ack ·Connected8.

Idle
Wait
x ≤ 2

Fail
x ≤ 1

TimeOut
x ≤ 0

Connected
Req, {x} Ack

Nack, {x}

x = 2, ε, {x}

Req, {x}

Req, {x}

Fig. 10. A signal-event automaton to replace signal Connect

The aim of this paper is precisely to investigate the closure of the two classes
of languages SEL and SELε under recognizable SE -substitutions and their in-
verse.

We first consider the special cases of renaming and event-hiding. Formally,
a renaming is simply a substitution such that, for each f ∈ Σe, Lf = {g} for
some g ∈ Σ′

e, and for each a ∈ Σs \ {τ}, La = {b} × T for some b ∈ Σ′
s. An

event-hiding is a substitution such that Lf = {f} or Lf = {ε} for f ∈ Σe and
La = {a} × T for a ∈ Σs. We have:

Proposition 2.

1. The classes SEL and SELε are closed under renaming,
2. The class SELε is closed under event-hiding whereas SEL is not,

Proof. Point 1 is straightforward. For the second point, the closure of SELε

under event-hiding was already noticed in [1] and the result easily extends to
our framework: in order to hide the event a, one replaces a-labelled transitions
by ε-transitions.

25

τ

x = 0, a

x = 2, b, {x}

τ

x = 0, a

x = 2, ε, {x}

Fig. 11. Timed automata for L1 and h(L1).

For the class SEL, recall from [5] that the language Even = ((τ2)∗a)∞ cannot
be accepted by a timed automaton without ε-transitions. Consider the language
L1 = ((τ2b)∗a)ω ∪ ((τ2b)∗a)∗(τ2b)ω accepted by the automaton on the left of
Figure 11, with no final state, where the unique state is labeled τ and is both
initial and repeated. Hiding the b’s in L1 yields the language h(L1) accepted by
the automaton in SEAε on the right of Figure 11. Since h(L1) is the analogous
of Even in our framework, it is not in the class SEL. ⊓⊔

The class SEL is not closed under SEL-substitution. Indeed, take Lf = {b0f}
and Lc = {c0} which are accepted by the automata below and are therefore both
in SEL. Consider also L = {c0f} ∈ SEL. Then σ(L) = {c0b0f} is not in SEL
since it contains a SE -word with two consecutive distinct signals. The next result
gives a sufficient condition on a substitution for the closure property of SEL to
hold.

Lf : b
τ

x ≤ 0

f Lc : c
x ≤ 0

Theorem 3. Let L be a language in SEL and σ a SEL-substitution such that
for each f ∈ Σe the language Lf contains only SE-words starting and ending
with events from Σ′

e. Then σ(L) belongs to SEL.

Proof. We prove the theorem for a substitution acting only on events or act-
ing only on signals. The general case is obtained using compositions of such
elementary substitutions and of renaming.

We first show how to handle substitution of events. So let σ be a SEL-
substitution satisfying the condition of the theorem and which is defined by
a family (La)a∈Σe∪Σs

of SEL-languages. Since σ acts only on events, we have
La = {a} × T for all a ∈ Σs. For f ∈ Σe, the language Lf is accepted by some
SEA-automaton Af with only one clock xf which is never tested or reset, with
no repeated states, where all the guards are true and where all final states carry
the invariant xf ≤ 0 in order to ensure that each accepted SE -word has a null
duration. Moreover, from the hypothesis on σ, we can assume that all initial and
final states are labelled τ and no state is simultaneously initial and final.

26

Now, let L ⊆ SE (Σ) be accepted by a SEA-automaton A. We build from A
a SEA-automaton A′ accepting σ(L) as follows. For each state q, we consider a
new copy Aq

f of Af and we replace any transition (p, g, f, α, q) by the following
set of transitions (see Figure 12):

– for each transition (q0, true, b, ∅, q1) in Aq
f with q0 initial, we add the tran-

sition (p, g, b, α ∪ {xf}, q1) to A′,
– for each transition (q1, true, b, ∅, q2) in Aq

f with q2 final, we add the transition
(q1, xf = 0, b, ∅, q2) to A′,

– for each transition (q0, true, b, ∅, q2) in Aq
f with q0 initial and q2 final, we

add the transition (p, g, b, α, q) to A′,
– all states and transitions of Aq

f are kept unchanged in A′.

p q
g, f, α

τ τ

b

c

a

b

Aq

f

g, b, α ∪ {xf}

g, c, α ∪ {xf}

xf = 0, a, ∅
xf = 0, b, ∅

Fig. 12. Event substitution for SEL

The clock operations on xf ensure an instantaneous traversal of Aq
f . The ini-

tial, final and repeated states remain those of A. Clearly A′ is a SEA-automaton.

Correctness of the construction. We show that A′ accepts σ(L).

First, let w ∈ σ(v) with v ∈ L. Consider an accepting path P = p0
g1,f1,α1
−−−−−→

p1
g2,f2,α2
−−−−−→ p2 · · · for v in the automaton A and let ai = ℓ(pi) for i ≥ 0.

Then we have v = ad0

0 f1a
d1

1 f2 · · · and w = ad0

0 w1a
d1

1 w2 · · · with wi ∈ Lfi
for

i > 0. For each i > 0, consider an accepting path Pi = q0
b1−→ q1 · · ·

bk−→ qk
in Api

fi
(omiting true guards and empty resets) and define the corrresponding

path P ′
i = pi−1

gi,b1,αi∪{xfi
}

−−−−−−−−−→ q1 · · ·
xfi

=0,bk,∅
−−−−−−−→ pi in A′ (if |Pi| = 1 then we let

P ′
i = pi−1

gi,b1,αi
−−−−−→ pi). Then, P ′ = P ′

1P
′
2 · · · is an accepting path of A′ and w

admits a run through P ′. Therefore, w ∈ L(A′).
Conversely, let w ∈ L(A′) be a word accepted through some path P ′. Let

p0, p1, p2, . . . be the sequence of states along P ′ that are also states of A. We
split P ′ = P ′

1P
′
2 · · · accordingly where P ′

i is the subpath of P ′ going from pi−1

to pi. By construction of A′, there is a transition pi−1
gi,fi,αi
−−−−−→ pi in A and an

27

accepting path Pi = q0
b1−→ q1 · · ·

bk−→ qk in Api

fi
such that P ′

i = pi−1

gi,b1,αi∪{xfi
}

−−−−−−−−−→

q1 · · ·
xfi

=0,bk,∅
−−−−−−−→ pi in A′ (or P ′

i = pi−1
gi,b1,αi
−−−−−→ pi if |Pi| = 1). Therefore,

P = p0
g1,f1,α1
−−−−−→ p1

g2,f2,α2
−−−−−→ p2 · · · is an accepting path of A. Moreover, with

ai = ℓ(pi), we have w = ad0

0 w1a
d1

1 w2 · · · for some di and wi accepted through
the path Pi in Api

fi
. Finally, with v = ad0

0 f1a
d1

1 f2 · · · we have w ∈ σ(v) and v is
accepted by A through the path P .

We now handle substitution of signals. Let σ be a SEL-substitution defined by
a family (La)a∈Σe∪Σs

of SEL-languages. We assume that σ acts only on signals,
i.e., Lf = {f} for each f ∈ Σe. For a ∈ Σs, the language La is accepted by some
SEA-automaton Aa = (Σ′

e, Σ
′
s, Xa, Qa, Q

0
a, Fa, Ra, Ia, ℓa, ∆a). We assume that

all the Xa’s are pairwise disjoints.

Let A = (Σe, Σs, X,Q,Q0, F,R, I, ℓ,∆) be a SEA-automaton accepting a
language L ⊆ SE (Σ). We assume that X is disjoint from the Xa’s. We build
from A a SEA-automaton A′ accepting σ(L) as follows. For each state p of A
with label a, we consider a new copy Ap of Aa in which the invariant I(p) is
added to all states: Ip(rp) = Ia(r) ∧ I(p) if rp is the copy in Ap of state r ∈ Qa.
To build A′, we start with the disjoint union of all the Ap’s and we add switching
transitions:

If (p, g, f, α, q) is a transition of A then for each final state rp of Ap and
each initial state sq of Aq we add the transition (rp, g, f, α∪Xℓ(q), sq) to
A′.

The initial states of A′ are the initial states of all Ap such that p ∈ Q0. The
final states of A′ are the final states of all Ap such that p ∈ F . An infinite path
of A′ is accepting if

– either it uses infinitely many switching transitions (rp, g, f, α∪Xℓ(q), sq) with
p ∈ R,

– or else, it stays ultimately in some Ap with p ∈ F and it visits infinitely
often Rp, the copy of Rℓ(p) in Ap.

The construction is illustrated in Figure 13 for the general case where the
original state p is neither initial nor final. The small state on the left of Ap is its
initial state and the two small states on the right of Ap are its final states.

Correctness of the construction. We show that A′ accepts σ(L).

First, let w ∈ σ(v) with v ∈ L accepted through the accepting path

P = p0
g1,f1,α1
−−−−−→ p1

g2,f2,α2
−−−−−→ p2 · · ·

of A. We have v = ad0

0 f1a
d1

1 f2 · · · with ai = ℓ(pi) and di ≥ 0. Since w ∈ σ(v) we
deduce w = w0f1w1f2 · · · with wi ∈ σ(adi

i) for i ≥ 0. Let Pi be an accepting path
for wi in Api

. Note that, since Api
does not use ε-transitions we have wi and

Pi either both finite or both infinite. Moreover, if di <∞ then wi is finite since

28

p

a, I(p)

g, f, α q

b, I(q)

g′, f ′, α′

Ap

I(p)

g, f, α ∪ {Xa}

g, f, α ∪ {Xa}

Aq

g′, f ′, α′ ∪ {Xb}

g′, f ′, α′ ∪ {Xb}

Fig. 13. Signal substitution for SEL

by definition the language Lai
does not contain Zeno words. Adding switching

transitions to the Pi we obtain the path

P ′ = P0
g1,f1,α1∪Xa1−−−−−−−−−→ P1

g2,f2,α2∪Xa2−−−−−−−−−→ P2 · · ·

of A′ and it is easy to check that P ′ is an accepting path of A′ and that w admits
a run through P ′.

Conversely, let w ∈ L(A′) and consider an accepting path P ′ of A′ for w.
Splitting P ′ according to switching transitions we get

P ′ = P0
g1,f1,α1∪Xa1−−−−−−−−−→ P1

g2,f2,α2∪Xa2−−−−−−−−−→ P2 · · ·

where for i ≥ 0, Pi is a path in Api
for some state pi with ai = ℓ(pi). By

definition of A′ and since P ′ is accepting, we deduce that each Pi starts in some
initial state of Api

and either is finite and ends in some final state of Api
or

is infinite and visits infinitely often Rpi
and pi ∈ F . Moreover, there are in A

transitions pi−1
gi,fi,αi
−−−−−→ pi for i > 0 so that

P = p0
g1,f1,α1
−−−−−→ p1

g2,f2,α2
−−−−−→ p2 · · ·

is a path in A. Since P ′ is accepting, we deduce easily that P is also accepting.
The factorization of w associated with the splitting of P ′ is w0f1w1f2w2 · · ·
where each wi is accepted by Api

through the path Pi. We deduce wi ∈ σ(adi

i)

with di = ‖wi‖. Consider v = ad0

0 f1a
d1

1 f2 · · · so that we get w ∈ σ(v). Using the
fact that for each i ≥ 0, the invariant I(pi) has been added to all states in Api

,
it is easy to check that v is accepted by A through the path P . Therefore, v ∈ L
and w ∈ σ(L). ⊓⊔

We will now show that the class SELε is closed under SELε-substitutions. The
construction for the substitution of signals given in the previous proof does not
work. Indeed, by definition, a substitution must be applied to a word in normal
form. The difficulty comes from the fact that in the automaton for L, a factor ad

29

of some normal form may be generated by a path with several a-labelled states
and even τ -labelled states that are crossed instantaneously if all these states are
linked by ε-transitions. An example can be seen on the automaton of Figure 14,
for which a possible run gives :

b2fa0.3a0.6τ0a0.5τ1a0.6τ0a0.5τ0b3 ≈ b2fa1.4τ1a1.1b3.

So we cannot simply replace each a-labelled state by a copy of Aa.

p0

b

p1

a

p2

a

p3

τ

p4

b

f, {x} ε
0 < x ≤ 1, ε

ε, {x}

ε

Fig. 14. The case of SELε

To circumvent this difficulty, we use a proof technique inspired from rational
transductions and that can be applied to establish the closure of the class SELε

both under SELε-substitutions and their inverse. Hence, we state and prove both
results simultaneously. It should be noted that these closure properties hold for
arbitrary substitutions, showing once again the robustness of the class SELε.

Theorem 4. The class SELε is closed under SELε-substitution and inverse
SELε-substitution.

Proof. Let σ be a SELε-substitution from SE (Σ) to SE (Σ′) given by a family
of automata (Aa)a∈Σe∪Σs

, with Aa = (Σ′
e, Σ

′
s, Xa, Qa, Q

0
a, Fa, Ra, Ia, ℓa, ∆a) ∈

SEAε. We assume that these automata satisfy condition (†) of Proposition 2.
We show that σ(L) and σ−1(L) can both be expressed as a projection of the

intersection of a SELε-language with an inverse projection of L. This is in the
spirit of rational transductions for classical word languages.

Consider a new alphabet Σ̂ = Σ̂e ∪ Σ̂s × T with Σ̂e = Σe ⊎ Σ′
e (⊎ is the

disjoint union) and Σ̂s = Σs×Σ′
s (we identify (τ, τ) with the unobservable signal

τ). The projections π1 and π2 are the morphisms defined by:

π1(f) = f and π2(f) = ε if f ∈ Σe,
π1(f) = ε and π2(f) = f if f ∈ Σ′

e,
π1((a, b)

d) = ad and π2((a, b)
d) = bd if (a, b)d ∈ Σs ×Σ′

s × T.

With this definition we have πi((a, b)
d1+d2) = πi((a, b)

d1)πi((a, b)
d2). Note that

projection πi is a composition of an event-hiding and a signal-renaming. By
Proposition 2 we deduce that the projection by πi of a SELε language is again
in the class SELε.

For L ⊆ SE (Σ), we let π−1
1 (L) = {w ∈ SE (Σ̂) | π1(w) ∈ L}. We define

similarly π−1
2 (L) for L ⊆ SE (Σ′). We will show later that if L is recognizable

then so is π−1
i (L). We will also define a recognizable language M ⊆ SE (Σ̂) with

the following properties:

30

1. for each w ∈M , we have π2(w) ∈ σ(π1(w)),
2. for each u ∈ SE (Σ) and v ∈ σ(u), there exists w ∈ M such that u = π1(w)

and v = π2(w).

Then, for L ⊆ SE (Σ), we have σ(L) = π2(π
−1
1 (L)∩M). Indeed, Let v ∈ σ(L) and

let u ∈ L with v ∈ σ(u). Using property 2 of M we find w ∈M with π1(w) = u
and π2(w) = v. Then, w ∈ π−1

1 (L) ∩M and v ∈ π2(π
−1
1 (L) ∩M). Conversely,

let v ∈ π2(π
−1
1 (L) ∩M) and let w ∈ π−1

1 (L)∩M with π2(w) = v. By definition,
we have u = π1(w) ∈ L and using property 1 of M , we get v ∈ σ(u) ⊆ σ(L).

Similarly, for L ⊆ SE (Σ′), we have σ−1(L) = π1(π
−1
2 (L) ∩M). Indeed, Let

u ∈ σ−1(L) and let v ∈ σ(u) ∩ L. Using property 2 of M we find w ∈ M with
π1(w) = u and π2(w) = v. Then, w ∈ π−1

2 (L) ∩M and u ∈ π1(π
−1
2 (L) ∩M).

Conversely, let u ∈ π1(π
−1
2 (L)∩M) and let w ∈ π−1

2 (L)∩M with π1(w) = u. By
definition, we have v = π2(w) ∈ L and using property 1 of M , we get v ∈ σ(u).
Hence, σ(u) ∩ L 6= ∅ and u ∈ σ−1(L).

We already know that SELε-languages are closed under intersection (Theo-
rem 1) and projections πi. To conclude the proof of Theorem 4, it remains to
show that they are also closed under inverse projections π−1

i and to define the
SELε-language M with the properties above.

We show first that SELε-langagues are closed under inverse projections π−1
i .

Let L be recognized by some automaton A = (Σe, Σs, X,Q,Q
0, F,R, I, ℓ,∆) ∈

SEAε. We build an automaton Â accepting π−1
1 (L). Intuitively, we start with

the automaton A where for each state the label has been replaced by τ and z ≤ 0
has been added to the invariant so that no signal can be observed while we are
in the states of A. We also add loops to each states so that events f ′ ∈ Σ′

e can
be inserted and signals in Σs ×Σ′

s can be emitted.

q
τ

I(q) ∧ (z ≤ 0)

(q, b)
(ℓ(q), b)
I(q)

ε ε, {z}

f ′

g1, f1, α1 g2, f2, α2

Formally, the set of states of Â is Q̂ = Q ⊎ (Q ×Σ′
s), with Q̂0 = Q0 for initial

states and F̂ = F for final states. The set of clocks is X ⊎ {z}. The labels and

invariants are defined by ℓ̂(q) = τ and Î(q) = I(q) ∧ (z ≤ 0) for q ∈ Q, and

ℓ̂((q, b)) = (ℓ(q), b) and Î((q, b)) = I(q) for (q, b) ∈ Q×Σ′
s. The set of transitions

∆̂ is defined by:

1. All transitions (p, g, f, α, q) ∈ ∆ are kept in ∆̂.

31

2. For all f ′ ∈ Σ′
e and q ∈ Q, we put (q, true, f ′, ∅, q) in ∆̂.

3. For all (q, b) ∈ Q×Σ′
s, we put (q, true, ε, ∅, (q, b)), ((q, b), true, ε, {z}, q) in

∆̂.

We use a generalized acceptance condition for infinite paths. By transforming
the automaton we can get a classical Büchi condition if needed. An infinite path
is accepting if it uses

– either infinitely many transitions (p, g, f, α, q) of type 1 with q ∈ R,

– or ultimately transitions of type 2 and 3 only around some state q ∈ F .

Correctness of the construction. We show that L(Â) = π−1
1 (L).

Let w be a word over Σ̂ accepted by Â. We consider a run of Â for w through
an accepting path P̂ . Erasing from this path all transitions of type 2 and 3 above,
we obtain a path P of A. If P̂ is finite then it ends in a final state q ∈ F̂ = F and
P is also accepting since it ends in state q. If P̂ uses infinitely many transitions
(p, g, f, α, q) of type 1 with q ∈ R, then P is infinite and visits R infinitely often,
hence it is also accepting. Finally, if P̂ is infinite and uses ultimately transitions
of type 2 and 3 only around some state q ∈ F , then P is finite and accepting
since it ends in state q. In all cases, P is an accepting path of A. Splitting the
paths according to transitions of type 1 we get

P = q0
g1,f1,α1
−−−−−→ q1

g2,f2,α2
−−−−−→ q2 · · ·

P̂ = P̂0
g1,f1,α1
−−−−−→ P̂1

g2,f2,α2
−−−−−→ P̂2 · · ·

where P̂i is a path consisting of transitions of type 2 and 3 only around state
qi. We consider the corresponding factorization w = w0f1w1f2 · · · and for each
i ≥ 0 we let di = ‖wi‖ and ai = ℓ(qi) so that π1(wi) = adi

i . Hence, we have

π1(w) = ad0

0 f1a
d1

1 f2 · · · and it is easy to verify that π1(w) admits a run through
P . Therefore, π1(w) ∈ L.

Conversely, let w ∈ SE (Σ̂) and assume that π1(w) ∈ L is accepted by a run

〈q0, v0〉
d0−→ 〈q0, v0 + d0〉

f1
−→ 〈q1, v1〉

d1−→ 〈q1, v1 + d1〉
f2
−→ 〈q2, v2〉 · · · through an

accepting path P = q0
g1,f1,α1
−−−−−→ q1

g2,f2,α2
−−−−−→ q2 · · · of A. Then, we have π1(w) ≈

ad0

0 f1a
d1

1 f2 · · · with ai = ℓ(qi) for i ≥ 0. We deduce that w ≈ w0f1w1f1w2 · · ·

with π1(wi) = adi

i . Now, if wi is finite with finite duration then we find a path P̂i

following the normal form of wi, starting and ending in qi, and using transitions
of type 2 and 3 only. If wi is infinite or with infinite duration then the path P
must be finite ending in state qi ∈ F since P is accepting. Then, we find an
infinite path P̂i for wi using only transitions of type 2 and 3 around qi. Note
that if wi is finite with infinite duration, then it ends with (ai, b)

∞ for some
b ∈ Σ′

s and we still need an infinite path ultimately alternating between states

qi and (qi, b). Finally, P̂ = P̂0
g1,f1,α1
−−−−−→ P̂1

g2,f2,α2
−−−−−→ P̂2 · · · is a path in Â and it

is easy to see that P̂ is accepting. Moreover, we can show that w admits a run
through P̂ and therefore, w is accepted by Â.

32

We turn now to the definition of M . For f ∈ Σe and a ∈ Σs \ {τ}, we define

Mf = {w ∈ SE (Σ̂) | w = (τ, b0)
0f1(τ, b1)

0f2 · · · (τ, bn)0

with b00f1b
0
1f2 · · · b

0
n ∈ σ(f)} · f

Ma = {w ∈ SE (Σ̂) | w = (a, b0)
d0f1(a, b1)

d1f2 · · ·

with bd0

0 f1b
d1

1 f2 · · · ∈ σ(ad0+d1+···)}

We also let Mτ = {(τ, τ)d | d ∈ T\{0}}. Note that for w ∈Ma with a ∈ Σe ∪Σs

we have π2(w) ∈ σ(π1(w)) as required by property 1 of M . Moreover, if f ∈ Σe

and v ∈ σ(f) then there exists w ∈ Mf such that π1(w) = f and π2(w) = v.
Similarly, if ad ∈ Σs × T (with d > 0 if a = τ) and v ∈ σ(ad) then there exists
w ∈Ma such that π1(w) = ad and π2(w) = v.

Intuitively, M consists of finite or infinite products of words in
⋃

a∈Σe∪Σs
Ma

except that, in order to ensure that the first projection is in normal form, we
should not allow consecutive factors associated with the same signal. Formally,
we define

M = {w1w2 · · · | ∃a1, a2, . . . ∈ Σe∪Σs with wi ∈Mai
and ai ∈ Σs ⇒ ai+1 6= ai}.

We show that M satisfies property 1. Let w = w1w2 · · · ∈M and let a1, a2, . . . ∈
Σe ∪ Σs be such that wi ∈ Mai

and ai ∈ Σs ⇒ ai+1 6= ai. Then, π1(w) =
π1(w1)π1(w2) · · · is in normal form and we have seen above that π2(wi) ∈
σ(π1(wi)) for each i ≥ 1. Therefore, π2(w) ∈ σ(π1(w)) and property 1 is proved.

We show that M satisfies property 2. Let u ∈ SE (Σ) and v ∈ σ(u). Write
u = u1u2 · · · in normal form and v = v1v2 · · · with vi ∈ σ(ui). Let ai = ui if
ui ∈ Σe and ai = a if ui = ad ∈ Σs × T. Since the product u = u1u2 · · · is
in normal form, we have ai ∈ Σs ⇒ ai+1 6= ai and ui = τd ⇒ d > 0. Since
vi ∈ σ(ui), we have seen above that there exists wi ∈Mai

such that π1(wi) = ui

and π2(wi) = vi. Then, w = w1w2 · · · ∈M , π1(w) = u and π2(w) = v as required
by property 2.

It remains to show thatM is recognizable by some SEAε-automaton. For each
a ∈ Σe ∪Σs we first show that Ma is accepted by some automaton Âa ∈ SEAε

derived from Aa. This is clear for a = τ . Note that Âτ needs two states to ensure
the positive duration required by Mτ . For a ∈ Σs \ {τ}, the automaton Âa is
simply a copy of Aa, with new label (a, ℓa(q)) for q ∈ Qa. For f ∈ Σe, the set of
states is Q̂f = Qf ⊎ {qf}, where qf is a new state, which is also the only final
state. The label of q ∈ Qf is (τ, ℓf (q)), the label of qf is (τ, τ) and its invariant
is xf ≤ 0 where xf is the clock ensuring instantaneous traversal of Af . The
transitions are those in Af , to which we add (q, f, qf) for any state q which was

final in Af . Note that, since Aa satisfies (†) for a ∈ Σe ∪Σs, then so does Âa.
Since M is essentially the iteration of the languages Ma, it should be clear

that M ∈ SELε. The SEAε-automaton B recognizing M is the disjoint union
of the automata Âa to which we add ε-transitions allowing to switch between
automata: if p is a final state of Âa and q is an initial state of Âb and a ∈ Σs ⇒
b 6= a then we add the switching ε-transition (p, true, ε,Xb, q). All initial (resp.
final, repeated) states of the Âa’s are initial (resp. final, repeated) in B. But

33

we also need to accept runs that switch infinitely often between the Âa’s, i.e.,
taking infinitely many switching ε-transitions. If needed, it is easy to transform
the automaton so that it uses classical Büchi condition to accept also these runs.

We show that any SE -word w accepted by B is in M . Consider an acceting
path P in B such that w admits a run through P . We split P according to the
switching ε-transitions:

P = P1

ε,Xa2−−−−→ P2

ε,Xa3−−−−→ · · ·

where each Pi is a path in Âai
. Note that, since P is accepting, using the defi-

nition of B we deduce that each Pi must be accepting. Let w = w1w2 · · · be the
corresponding factorization so that each wi is accepted by Âai

through the path
Pi. Hence, we have wi ∈ Mai

and by definition of B we also get that ai ∈ Σs

implies ai+1 6= ai. Therefore, w ∈M .
Condition (†) is needed to prove the converse. Indeed, a finite SE -word v ∈

Ma with ‖v‖ <∞ could appear as an internal factor of some SE -word uvw ∈M
with w 6= ε. If v could only be accepted by an infinite run in Âa, then we
would not be able to build a (non transfinite) run for uvw in B. Formally, let
w = w1w2 · · · ∈M and a1, a2, . . . ∈ Σe∪Σs with wi ∈Mai

and such that ai ∈ Σs

implies ai+1 6= ai. For each i ≥ 1, consider an accepting path Pi for wi in Âai
.

If ‖wi‖ < ∞ then wi must be finite since by definition of a substitution, the
automaton Aai

does not accept any Zeno word, and by construction the same
holds for Âai

. Since Âai
satisfies (†) we deduce that ‖wi‖ <∞ implies Pi finite.

Note that if ‖wi‖ = ∞ then wi must be the last factor of w. From the above, we
can link the paths Pi with switching ε-transitions and we get a path

P = P1

ε,Xa2−−−−→ P2

ε,Xa3−−−−→ · · ·

of B which is clearly accepting. It is now easy to show that w admits a run
through P and we obtain w ∈ L(B). ⊓⊔

The class SEL is not closed under inverse SEL-substitutions. Indeed, assume
Σs = Σ′

s = {a, b}, Σe = Σ′
e = {f} and let σ be the SEL-substitution defined

by La = {a0f}, Lb = {b0} and Lf = {f}. Then the inverse image by σ of the
SEL-language {a0fb0} is the language {a0b0} which is not in the class SEL since
it contains a SE -word with two consecutive and distinct signals. Nevertheless
sufficient conditions on the substitutions can be proposed to ensure the closure
of the class SEL under inverse substitutions.

Theorem 5. The class SEL is closed under inverse SEL-substitutions acting on
events only.

Proof. Let σ be a substitution defined by a family (La)a∈Σe∪Σs
of SEL-languages.

We assume that σ acts only on events, i.e., La = {a}×T for all a ∈ Σs ⊆ Σ′
s. For

f ∈ Σe, let Af = (Σ′
e, Σ

′
s, {xf}, Qf , Q

0
f , Ff , ∅, If , ℓf , ∆f) be an automaton with-

out ε-transitions accepting Lf . Since the guards and resets on the transitions of
Af are always true and ∅ respectively, we write a transition of Af simply (r, f ′, s)

34

to simplify the notation. We consider now a language L ∈ SEL, recognized by
some automaton without ε-transition A2 = (Σ′

e, Σs, X,Q,Q
0, F,R, I, ℓ,∆) ∈

SEA.
We build an automaton A1 in SEA accepting σ−1(L) essentially by changing

the transitions of A2. If there is a path P in A2 from p to q having some instan-
taneous run for some word in σ(f) then we add to A1 a transition (p, g, f, α, q)
with a suitable guard g and reset α. The difficulty is to compute a suitable pair
(g, α) for each triple (p, q, f).

Given a guard g and a subset of clocks α, we define the restriction of g by
α, written g[α], as the guard g where all clocks from α have been replaced by
0. For instance, if g is (x < 3) ∧ (y > 2) and α = {x, z} then g[α] is (equivalent
to) (y > 2) and if g is (x > 3) ∧ (y < 2) and α = {x, z} then g[α] is (equivalent
to) false. We let G be the smallest set of guards including all guards of A2 and
closed under conjunctions and restrictions. Formally G is not a finite set, but
it can be identified with its finite quotient under equivalence of formulae: two
formulae ϕ and ψ are equivalent if v |= ϕ iff v |= ψ for all valuations v. The set
Γ = G ×P(X) is thus a finite monoid, with (True, ∅) as neutral element, for the
associative composition:

(g1, α1) · (g2, α2) = (g1 ∧ g2[α1], α1 ∪ α2).

Finally, we define a morphism γ : ∆∗ 7→ Γ by γ((p, g, f, α, q)) = (g, α). Note
that, for Z ⊆ Γ , the sequence Z≤n =

⋃n
k=0 Z

k is increasing and since Γ is finite
it must be eventually stationary. Moreover, if Z≤n = Z≤n+1 then Z∗ = Zn.
Therefore, we can effectively compute the finite set Z∗ for any Z ⊆ Γ . We deduce
that we can effectively compute the image by γ of any rational expression over
∆. This fact will be used below.

Let P = q0
g1,b1,α1
−−−−−→ q1

g2,b2,α2
−−−−−→ · · ·

gn,bn,αn
−−−−−−→ qn be a path in A2. We define

W(P) = {ε, ℓ(q0)0}b1ℓ(q1)0b2 · · · bn{ε, ℓ(qn)0}. Note that W(P) contains 1, 2 or 4
SE -words depending on the whether the labels of q0 and qn are different from τ or
not. Now, given a triple (p, q, f) ∈ Q2×Σe, we denote by Lf

p,q the set of paths P

from p to q in A2 with W(P)∩σ(f) 6= ∅. We build an automaton Bf
p,q recognizing

the language Lf
p,q ⊆ ∆∗. This is not difficult since we are dealing with automata

without ε-transitions, hence we can perform a simple synchronized product as
follows. The set of states of Bf

p,q is Q′ = {p, q}⊎{(r, s) ∈ Qf ×Q | ℓf(r) = ℓ(s)}.

The only initial state is p and the only final state is q. The transitions of Bf
p,q

are of the three following forms:

1. (p, (p, g, b, α, s2), (r2, s2)) if (p, g, b, α, s2) ∈ ∆ and there exists an initial state
r1 ∈ Qf with ℓ(r1) ∈ {τ, ℓ(p)} and such that (r1, b, r2) ∈ ∆f ,

2. ((r1, s1), (s1, g, b, α, s2), (r2, s2)) if (r1, b, r2) ∈ ∆f and (s1, g, b, α, s2) ∈ ∆,
3. ((r1, s1), (s1, g, b, α, q), q) if (s1, g, b, α, q) ∈ ∆ and there is a final state r2 ∈
Qf with ℓ(r2) ∈ {τ, ℓ(q)} and such that (r1, b, r2) ∈ ∆f .

We show that Lf
p,q ⊆ L(Bf

p,q). Let P = p
g1,b1,α1
−−−−−→ q1 · · · qn−1

gn,bn,αn
−−−−−−→

q ∈ Lf
p,q. Since W(P) ∩ σ(f) 6= ∅, there is in Af an accepting path r0

b1−→

35

r1 · · · rn−1
bn−→ rn for some word in W(P). By definition of W(P), we deduce

that ℓf (ri) = ℓ(qi) for all 0 < i < n. Therefore,

p
(p,g1,b1,α1,q1)
−−−−−−−−−→ (r1, q1) · · · (rn−1, qn−1)

(qn−1,gn,bn,αn,q)
−−−−−−−−−−−→ q

is an accepting path for P in Bf
p,q and we get P ∈ L(Bf

p,q) as desired. The
converse inclusion can be shown similarly.

We let ∆R ⊆ ∆∗ be the set of sequences containing at least a transition
ending in some repeated state of R. From the automaton Bf

p,q, we can effectively

compute a rational expression for the languages Lf
p,q ∩∆R. We deduce that we

can effectively compute the finite set γ(Lf
p,q ∩∆R). Similarly, we can effectively

compute the finite set γ(Lf
p,q \∆R). These two sets are used to define the tran-

sitions of a new automaton A1 = (Σe, Σs, X,Q ⊎ Q,Q0, F ⊎ F ,Q, I, ℓ,∆1) in
SEA. The set Q is a disjoint copy of Q and for q ∈ Q, we let I(q̄) = I(q) and
ℓ(q̄) = ℓ(q). The transitions are defined by:

∆1 = {(p, g, f, α, q), (p, g, f, α, q) | (g, α) ∈ γ(Lf
p,q \∆R)}

∪ {(p, g, f, α, q), (p, g, f, α, q) | (g, α) ∈ γ(Lf
p,q ∩∆R)}.

The automaton A1 can therefore be effectively computed from the automata A2

and (Af)f∈Σe
.

Correctness of the construction. We show that L(A1) = σ−1(L).

Let u ∈ L(A1) be accepted through a path P = q′0
g1,f1,α1
−−−−−→ q′1

g2,f2,α2
−−−−−→ q′2 · · ·

in A1. For each i ≥ 0, let qi ∈ Q such that q′i ∈ {qi, q̄i} and let ai = ℓ(qi). Hence,
we have u = ad0

0 f1a
d1

1 f2 · · · for suitable di ∈ T. We can build from each transition
(q′i−1, gi, fi, αi, q

′
i) of A1 a path Pi ∈ Lfi

qi−1,qi
such that (gi, αi) = γ(Pi) and

Pi ∈ ∆R if q′i = q̄i. This gives a path P ′ = P1P2 · · · in A2. Since P is accepting
in A2, we deduce easily that P ′ is accepting in A1. By definition of Lfi

qi−1,qi
, we

find a word wi ∈ W(Pi) ∩ σ(fi). Note that wi starts either with a0
i−1 or by en

event inΣe and it ends either with a0
i or by an event in Σe. Since the factorization

ad0

0 f1a
d1

1 f2 · · · is the normal form of u, we obtain w = ad0

0 w1a
d1

1 w2 · · · ∈ σ(u).
To prove that w is accepted by A1 through the path P ′, we use the following

Claim. Let r0
h1,e1,β1
−−−−−→ r1

h2,e2,β2
−−−−−→ · · ·

hn,en,βn
−−−−−−→ rn be a path in A2 whose image

by γ is (h, β), and let v0 be a clock valuation such that v0 |= h. Then, there is

an instantaneous run (r0, v0)
e1−→ (r1, v1)

0
−→ (r1, v1)

e2−→ · · ·
en−→ (rn, vn) through

this path and vn = v0[β].

The proof of the claim is based on the following property of restriction: let h
be a guard, β a subset of clocks and v a valuation, then v |= h[β] if and only if
v[β] |= h. Now, for i ≥ 0, we let Yi = β1∪· · ·∪βi (note that Y0 = ∅). By definition
of γ, we have β = Yn and h =

∧n
i=1 hi[Yi−1]. Therefore, v0 |= h1 = h1[Y0]. By

induction, we get vi = vi−1[βi] = v0[Yi] and since v0 |= hi+1[Yi], using the
property above we get vi = v0[Yi] |= hi+1 and the claim is proved.

36

Using this claim, we deduce easily by induction that w admits a run through
P ′. Therefore, w ∈ L and u ∈ σ−1(L).

Conversely, let u ∈ σ−1(L). By definition, we find w ∈ σ(u) ∩ L. In the
normal form of u we cannot have two consecutive signals, otherwise, since the
substitution σ acts on events only, the same would be true in the normal form
of w and w could not be accepted by A2 which has no ε-transitions. Therefore,
we can write u = ad0

0 f1a
d1

1 f2 · · · with fi ∈ Σe and ai ∈ Σs. It follows that
w = ad0

0 w1a
d1

1 w2 · · · with wi ∈ σ(fi).
An accepting path in A2 for w can be written as P = P1P2 · · · , where Pi

is a path such that wi ∈ W(Pi) and if we let q0 be the first state of P (hence
also of P1) and qi be the last state of Pi (which is also the first state of Pi+1)
then ℓ(qi) = ai for all i ≥ 0. Moreover, Pi is a path in A2 from qi−1 to qi and
wi ∈ W(Pi) ∩ σ(fi) 6= ∅, so that Pi ∈ Lfi

qi−1,qi
for all i > 0. Now, we define

inductively a path P ′ of A1. We start with q′0 = q0. Assuming that q′i−1 has
been defined, we let (gi, αi) = γ(Pi) and q′i = qi if Pi /∈ ∆R, or q′i = qi otherwise.
We obtain in this way a transition (q′i−1, gi, fi, αi, q

′
i) in ∆1. Since P is accepting,

the new path P ′ is also accepting. To show that u admits a run through P ′ we
use the following

Claim. Let r0
h1,e1,β1
−−−−−→ r1

h2,e2,β2
−−−−−→ · · ·

hn,en,βn
−−−−−−→ rn be a path in A2 whose image

by γ is (h, β), and let v0, v1, . . . , vn be clock valuations such that vi = vi−1[βi]
and vi−1 |= hi for each 0 < i ≤ n. Then, v0 |= h and vn = v0[β].

For i ≥ 0, we let Yi = β1 ∪ · · · ∪ βi (note that Y0 = ∅) so that we get by
induction vi = v0[Yi]. By definition of γ, we have β = Yn and h =

∧n
i=1 hi[Yi−1].

Therefore, vn = v0[β] and using the property of restriction we get v0[Yi−1] =
vi−1 |= hi hence v0 |= hi[Yi−1] for all i > 0. Therefore, v0 |= h which concludes
the proof of the claim.

Using this claim, we show easily by induction that u admits a run through
P ′. Therefore, u ∈ L(A1) and Theorem 5 is proved. ⊓⊔

6 Conclusion

We have shown in this paper that the class SEL of signal-event languages is not
closed under arbitrary SEL-substitutions and inverse SEL-substitutions but that
natural sufficient conditions ensure closure properties for this class.

But our main contribution is to propose effective constructions to prove the
closure of the larger class SELε under arbitrary SELε-substitutions and inverse
SELε-substitutions. We give these constructions in the general framework of
signal-event automata and languages. The usual cases of event languages [1,
2] or signal languages [3, 11, 4, 12] are particular cases for which the interested
reader will verify that simplified constructions can be given.

Our proofs use a preliminary technical result showing that the intersection
of two signal-event automata can be effectively constructed. While construc-
tions were proposed in the literature for important particular cases, it is the

37

first time, up to our knowledge, that the most general framework - working on
finite and infinite signal-event words and taking into account signal stuttering,
unobservability of zero-duration τ -signals and Zeno runs - is treated. There has
been in the area of timed automata some examples of subtly erroneous construc-
tions (e.g. with respect to forward analysis [9]) which should convince us of the
importance to publish complete and proved constructions.

References

1. R. Alur and D.L. Dill. Automata for modeling real-time systems. In Proceedings

of ICALP’90, number 443 in LNCS, pages 322–335. Springer, 1990.
2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,

126:183–235, 1994.
3. E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata. In

Proceedings of LICS’97, pages 160–171. IEEE Comp. Soc. Press, 1997.
4. E. Asarin, P. Caspi, and O. Maler. Timed regular expressions. Journal of the

ACM, 49(2):172–206, 2002.
5. B. Bérard, V. Diekert, P. Gastin, and A. Petit. Characterization of the expressive

power of silent transitions in timed automata. Fundamenta Informaticae, 36:145–
182, 1998.

6. B. Bérard, P. Gastin, and A. Petit. Intersection of regular signal-event (timed)
languages. In Eugène Asarin and Patricia Bouyer, editors, Proceedings of FOR-

MATS’06, number 4202 in LNCS, pages 52–66. Springer, 2006.
7. B. Bérard, P. Gastin, and A. Petit. Refinements and abstractions of signal-event

(timed) languages. In Eugène Asarin and Patricia Bouyer, editors, Proceedings of

FORMATS’06, number 4202 in LNCS, pages 67–81. Springer, 2006.
8. B. Bérard and C. Picaronny. Accepting Zeno words: a way toward timed refine-

ments. Acta Informatica, 37(1):45–81, 2000.
9. P. Bouyer. Forward analysis of updatable timed automata. Formal Methods in

System Design, 24(3):281–320, May 2004.
10. P.J.L. Cuijpers, M.A. Reniers, and A.G. Engels. Beyond zeno-behaviour. Technical

Report CSR 01-04, Department of Computing Science, University of Technology,
Eindhoven, 2001.

11. C. Dima. Real-Time Automata and the Kleene Algebra of Sets of Real Numbers.
In Proceedings of STACS’2000, number 1770 in LNCS, pages 279–289. Springer,
2000.

12. J. Durand-Lose. A Kleene theorem for splitable signals. Information Processing

Letters, 89:237–245, 2004.
13. M.R. Hansen, P.K. Pandya, and C. Zhou. Finite divergence. Theoretical Computer

Science, 138:113–139, 1995.
14. D. Perrin and J.-E. Pin. Infinite words. Elsevier, 2004.

38

