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Abstract Verifying whether an w-regular property is satisfied by a finite-state system is a
core problem in model checking. Standard techniques build an automaton with the com-
plementary language, compute its product with the system, and then check for emptiness.
Generalized symbolic trajectory evaluation (GSTE) has been recently proposed as an al-
ternative approach, extending the computationally efficient symbolic trajectory evaluation
(STE) to general w-regular properties. In this paper, we show that the GSTE algorithms are
essentially a partitioned version of standard symbolic model-checking (SMC) algorithms,
where the partitioning is driven by the property under verification. We export this technique
of property-driven partitioning to SMC and show that it typically does speed up SMC algo-
rithms.
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MC Model Checking
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FG Fair Graph
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1 Introduction

Verifying whether an w-regular property is satisfied by a finite-state system is a core problem
in Model Checking (MC) [10, 34, 45]. Standard MC techniques build a complementary
Biichi automaton (BA), whose language contains all violations of the desired property. They
then compute the product of this automaton with the system, and then check for emptiness
[34, 44]. To check emptiness, one has to compute the set of fair states, i.e., those states of
the product automaton that are extensible to a fair path. This computation can be performed
in linear time by using a depth-first search [13]. The main obstacle to this procedure is state-
space explosion, i.e., the product is usually too big to be handled. Symbolic model checking
(SMC) [4] tackles this problem by representing the product automaton symbolically, usually
by means of BDDs. Most symbolic model checkers compute the fair states by means of some
variant of the doubly-nested-fixpoint Emerson-Lei algorithm (EL) [16, 18, 39].

Another approach to formal verification is that of Symbolic Trajectory Evaluation (STE)
[42], in which one tries to show that the system satisfies the desired property by using sym-
bolic simulation and quaternary symbolic abstraction. This often enables quick response
time, but is restricted to very simple properties, constructed from Boolean implication as-
sertions by means of conjunction and the temporal next-time operator [7]. In particular,
STE is limited to bounded properties [32]. Recently, GSTE [49, 51] has been proposed as
an extension of STE that can handle all w-regular properties. In this framework, properties
are specified by means of Assertion Graphs (AG). The GSTE algorithm augments sym-
bolic simulation with a fixpoint iteration. GSTE inherited from STE many techniques such
as quaternary symbolic abstraction, symbolic indexing [49, 51] and functional vectors [48].
Recent work on GSTE [48, 50] has described various case studies and has focused mainly on
abstraction in GSTE. The fundamental relation between GSTE and SMC, however, has not
been completely clarified. The basic relationship between AGs and BAs is sketched in [29],
but the algorithmic relationship between GSTE and SMC has not been studied.

In this work, we analyze the property-specification language and the checking algorithm
used by GSTE and compare them to those used in SMC. (We deal neither with abstraction
nor with the state representation, which are orthogonal issues.) We first fill in the details not
given in [29] to show that assertion graphs are essentially universal w-automata [35], which
require all runs to be accepting. Universal automata enjoy the advantage of easy comple-
mentation; in fact, they can be viewed as nondeterministic automata for the complementary
property (this feature is attained in the COSPAN system by using deterministic automata
[25]). Formally, given a BA, one can easily construct an AG for the complementary lan-
guage, and vice versa. This permits us to do a direct comparison between the algorithms
underlying GSTE and SMC.
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We then point out that the GSTE algorithms are essentially a partitioned version of the
standard SMC algorithms. SMC algorithms operate on subsets of the product state space
S x V, where § is the state space of the system and V is the state space of the complementary
automaton. We show that GSTE operates on partitioned subsets of the product state space.
The partitioning is driven by the automaton state space. The GSTE analog of a subset Q €
S x V is the partition {Q, : v € V}, where Q, = {s : (s, v) € Q}. The GSTE algorithms
are in essence an adaptation of the standard SMC algorithms to the partitioned state space.
Thus, rather than operate on subsets of product state space P, GSTE operates on arrays of
subsets of S, representing a partitioning of P. We refer to such partitioning as property-
driven partitioning.

Finally, we proceed to explore the benefits of property-driven partitioning in the frame-
work of SMC. We use NUSMV [8] as our experimental platform in the context of LTL
model checking. We added to NUSMYV the capability of property-driven partitioned SMC,
both for safety LTL properties and for full LTL properties, and compared the performance
of SMC with partitioned SMC. We find that property-driven partitioning is an effective tech-
nique for SMC, as partitioned SMC is typically faster than SMC. The major factor seems
to be the reduction in the number of BDD variables, which more than compensates for the
additional algorithmic overhead for handling a partitioned state space.

Partitioning techniques have often been proposed in order to tackle the state space ex-
plosion problem. (We refer here to disjunctive partitioning, rather than to the orthogonal
technique of conjunctive partitioning, which is used to represent and/or manipulate large
state spaces [3, 22, 36].) Static partitioning techniques, which require an analysis of the
state space, have been discussed, in [37, 38]. Dynamic partitioning techniques, which are
driven by heuristics to reduce BDD size, have been discussed, in [5, 6, 19, 30]. Partitioning
has been used in [24, 27] to develop a distributed approach to SMC. Wang et al. [46], Wang
and Hachtel [47] decomposes the system into strongly-connected components (SCCs) and
applies a particular language-emptiness procedure to every SCC according to its “strength.”

Property-driven partitioning is orthogonal to previous partitioning techniques. Unlike dy-
namic partitioning techniques, no expensive BDD-splitting heuristics are required. Unlike
previous static partitioning techniques, property-driven partitioning is fully automated and
no analysis of the system state space is needed. The technique is also of interest because
it represents a novel approach to automata-theoretic verification. So far, automata-theoretic
verification means that either both system and property automaton state spaces are rep-
resented explicitly (e.g. in SPIN [28]) or symbolically (in NUSMV [8] or in CADENCE
SMV"). Just like GSTE, property-driven partitioning enables a hybrid approach, in which
the property automaton, whose state space is often quite manageable, is represented explic-
itly, while the system, whose state space is typically exceedingly large is represented sym-
bolically. Another hybrid approach [1, 9] applies a mixed depth-first/breadth-first search to
the powerset automaton. In [9], only reachability is taken into account and the experiments
focus on planning problems. In [1], the search is applied to the product with a tableau corre-
sponding to an LTL formula and it works on-the fly. In this case, the authors manage to keep
the size of product linear with the size of the system (by splitting redundant sets of states),
but no experimental results are provided. Finally, Henzinger et al. [26] translates BAs into
a variant of the equational p-calculus based on the post-image operator. Though it can be
considered as an application of property-driven partitioning, the attention is focused on the
forward nature of the approach.

1See www-cad. eecs. berkeley.edu/~kenmcmil/smv/.

@ Springer



180 Form Methods Syst Des (2007) 31: 177-196

For branching-time logics, symbolic procedures Burch et al. [4] verify a CTL formula
by computing, for every subformula, the states of the system that satisfy it. The automata-
theoretic counterpart of branching-time logics are automata over infinite trees. It is shown
in [33] that, by translating CTL formulas into weak alternating automata, one can achieve
optimal decision procedures. The “weakness” of the automata induces a partitioning on the
state space of the product of the automaton with the system and a partial order on the block
of the partition. The algorithm proceeds up the partial order by computing for each partition
block which states of the product have a non-empty language. Since the translation pro-
duces automata with one state for every subformula, the standard symbolic model-checking
algorithm can be viewed as a partitioned version of this automata-theoretic approach. This,
together with the automata-theoretic treatment of CTL* model checking in [33], suggests
that it would be possible to apply to CTL* model checking a combination of the standard
property-driven partitioning for CTL [4] with the property-driven partitioning for LTL de-
scribed here.

The paper begins with an overview of the basic notions of SMC [12] and GSTE [49] in
Sect. 2: first, BAs and AGs are defined in a new perspective that clarifies the common un-
derlying structure; we then describe SMC and GSTE model checking procedures. In Sect. 3,
first, we prove that AGs and BAs are equivalent; then, we analyze the checking algorithms
of GSTE and show that they are partitioned versions of standard SMC algorithms. In Sect. 4,
we export property-driven partitioning to SMC and we report on the comparison of SMC
with partitioned SMC in the framework of NuSMV. We conclude in Sect. 5 with a discussion
of future research directions.

2 Biichi automata and assertion graphs

In this section, we introduce the specification languages and the checking algorithms used
by SMC [12] and GSTE [49]. In SMC, we can specify properties by means of BAs, while
GSTE uses AGs. Both the languages have a finite and a fair semantics. The finite semantics
is checked with a fixpoint computation, while the fair one requires a doubly-nested fixpoint

computation.
We define a system M as a tuple (S, S;, T), where S is the set of states, S; C § is the set of
initial states, T C S x S is the transition relation. We use capital letters suchas Y, Z, ..., to

denote subsets of S. We define functions post, pre : 25 — 25 such that post(Y) = {s’ € S|
(s,sYeT,seY}and pre(Y)={s' €S| (s',s) € T,s € Y}. A finite (resp., infinite) trace
in M is a finite (resp., infinite) sequence o of states such that o [i + 1] € post(o[i]) for all
Il <i <o (resp., i > 1). A trace o is initial iff o (1) € S;. We define L (M) as the set of
all initial finite traces of M and L(M) as the set of all initial infinite traces. We define S*
(resp. S“) as the set of all finite (resp., infinite) sequences of states in M. (Thus, L (M) C §*
and L(M) C §%.)

In the following, we propose a new representation for BAs and AGs: both can be seen
as an extension of Fair Graphs (FG). This is the structure which AGs and BAs have in
common. As we shall see, while an AG is an FG with two labeling functions, a BA is
an FG with just one labeling function. We use labels on vertices rather than on edges (as
in GSTE [49]). This does not affect the generality of our framework and allows for an
easier comparison between GSTE and SMC as well as an experimental evaluation in the
framework of NuSMV. Moreover, labels are defined as sets of system’s states. (In practice,
labels are given as predicates on system states; a predicate describes the set of states that
satisfy it.)
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2.1 Fair Graphs, Biichi automata and assertion graphs
Fair Graphs are essentially graphs with the addition of a fairness condition.

Definition 1 A Fair Graph G is a tuple (V, V;, E, F) where V is the set of vertices, V; C V
is the set of initial vertices, E C V x V is a total relation representing the set of edges, and
F={Fi,...,F,},with F; CV for 1 < j <n, is the set of fair sets.

A finite (resp., infinite) path in G is a finite (resp., infinite) sequence p of vertices such
that (p[i], p[i + 1]) € E for all 1 <i < |p| (resp., i > 1). p is initial iff p[1] € V;. p is fair
iff it visits every set F' € F infinitely often. If 7 = {F}, we define L ;(G) as the set of all
finite initial paths of G whose last state belongs to F'. We define L(G) as the set of all fair
initial paths. We say that a path of G is accepting if it belongs to L ;(G) or to L(G).

For every v € V we define the set of successor vertices E(v) = {v' € V | (v,v’) € E} and
the set of predecessor vertices E~(v) = {v' € V | v(v,v) € E} . (The operators E and E~
are analogous to post and pre. They are used for clarity of notation.)

A labeling function is a function y : V — 25, Given a set of vertices V' C V, we define
the restriction y; , of y to V' as follows: N, W) =yWifve V’/, and 7, (v) = @ otherwise.
Typically, we use «, §, ¥ to denote labeling functions. Notice that a labeling function y can
be considered and represented as a set of subsets of S: {y(v)},cy. With abuse of notation,
given two labeling functions « and y, we will write @ C y (resp., @ Ny, o U y) to mean,
forallve V,a(v) € y(v) (resp., a(v) Ny (v), a(v) Uy (v)).

Definition 2 Given a finite (resp. infinite) sequence of states o in M, a path p in G of the
same length [ (resp., both infinite) and a function y : V — 25, we say that o satisfies p
under y (denoted o =, p)iff o[i] € y(pli]) forall 1 <i <[ (resp.,i > 1).

A Biichi automaton (BA) is essentially an FG with the addition of a labeling function.
A sequence of states is accepted by a BA iff it satisfies the labeling function along at least
one accepting path of the FG. In the following, BAs express complementary properties, that
is, their language contains all violations of the desired property.

Formally, a Biichi automaton B is a tuple (G, L) where G = (V, V;, E, F) is a fair graph,
and £ : V —> 25 is the labeling function. We define the set L 7(B) (resp., L(B)) as the set
of finite (resp., infinite) sequences of states of M accepted by B:

Definition 3

o Finite semantics: if F = {F}, L ;(B) = {0 € §* | there exists a finite path p € L ;(G) with
lol=lpl =1, plll€ F and o =, p};
e Fair semantics: L(B) = {o € S | there exists a fair path p € L(G) with ¢ =, p}.

Since a BA has the complementary language of the specification, the model checking
problem consists of verifying whether L (M) N L y(B) =, in the case of finite semantics,
L(M)N L(B) =0, in the case of fair semantics.

An Assertion Graph (AG) is essentially an FG with the addition of two labeling functions:
the antecedent and the consequent. An AG accepts a sequence of states iff, along all accept-
ing paths, either the sequence does not satisfy the antecedent or it satisfies the consequent.

Formally, an Assertion Graph A is a tuple (G, ant, cons) where G = (V,V,, E, F) is a
fair graph, ant : V. —> 25 is the antecedent function, and cons : V —> 25 is the consequent
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Fig. 1 true p&!q !

4T

a. FG example b. BA example

true/false p&!q/false !g/false

c. AG example

function. Given a sequence of states o in M and a path p in G of the same length, we say
that o satisfies p in A (denoted o =4 p) iff 0 =4 0 = 0 Econs 0. We define the set L (A)
(resp., L(A)) as the set of finite (resp., infinite) sequences of states of M accepted by A:

Definition 4

o Finite semantics: * if F = {F}, L¢(A) ={o € §* | for every finite path p € L/(G), if
lo| =|p| =1 and p[l] € F for some [, then o |=4 p};
e Fair semantics: L(A) = {o € § | for every fair path p € L(G), o =4 p}.

The model checking problem for an AG consists of verifying whether L ( (M) C L ;(A),
in the case of finite semantics, L(M) C L(A), in the case of fair semantics.

Example 1 An example of FG is depicted in Fig. 1a. The vertices are represented by points,
the edges by arrows. An arrow without the starting vertex points to a vertex to indicate that
it is initial. For simplicity, in the example we have only one fair set. The circle around the
rightmost vertex means that it belongs to this fair set.

Examples of BA and AG are depicted resp. in Figs. 1b and lc. They have the same
underlying FG. In the AG, the labels are represented in the format ant/cons. p and g are
propositional properties. With the fair semantics, the AG corresponds to the LTL property
G(p — Fq), while the BA has the complementary language.

As we will see in Sect. 3, given a BA, one can easily construct an AG for the comple-
mentary language, and vice versa.

2.2 SMC algorithms

Given a system M = (S, S;,T) and a BA B = ((V, V;, E, F), L), SMC first computes the
product P between B and M. Then, in the case of finite semantics, it finds the set of vertices
reachable from the initial vertices and checks if it intersects a certain set of vertices Fp in P;
in the case of fair semantics it finds the set of fair vertices, i.e., those which are extensible to
fair paths, and it checks if it intersects the set of initial vertices.

The product between M and B is a BA defined as follows: P = ({(Vp, Ip, Ep, Fp), Lp)
where Vp = {(s,v) | se M,ve V,s € L)}, Ip ={(s,v) € Vp | se€ S;,veV}, Ep =

2In [29] the finite semantics is called terminal. Moreover, the authors, as in [49], define a third and a fourth
semantics called strong and infinite, which we ignore in this paper.

@ Springer



Form Methods Syst Des (2007) 31: 177-196 183

Fig. 2 Algorithm fraversal(P)
1. R:= Ip
2. N:= Ip
3. repeat
4. Z :=EY[N]
5. N :=Z\R
6. R:=RUZ
7. untilN =0
8. return R
Fig. 3 Algorithm fairstates(P)
1 Y = VP
2. repeat
3 Y =Y
4 for FpeFp
5. Z:=E[YU(Y A Fp)]
6 Y =Y AEX[Z]
7. untilY' =Y
8. returnY

{((s,v), (s", V) | (s,v) € Vp, (s',v) € Vp,(s,8)eT,(v,v) € E}, Fp ={Fpi, ..., Fpy}
where Fp; ={(s,v) € Vp |v e F;}, Lp(s,v) = {s5}.

In the case of finite semantics F = {F}, so that Fp = {Fp}, where Fp = {(s,v) € Vp |
v € F}. Then, it is easy to see that L ;(P) = L (M) N L ;(B). Moreover, every finite path of
P corresponds to a finite trace of M accepted by B. Thus, to verify that L ;(P) =, we can
just compute the set of reachable vertices and check that it does not intersect Fp. Usually,
this set is found with a traversal algorithm like the one described in Fig. 2: starting from the
initial states, it applies the post operation (denoted here with EY) until a fixpoint is reached.

Similarly, in the case of fair semantics, it is easy to see that L(P) = L(M) N L(B).
Moreover, every fair path of P corresponds to an infinite trace of M accepted by B. Thus, to
verify that L(P) = (J we can just compute the set of fair vertices and check that it does not
intersect /p. The standard algorithm to compute the set of fair vertices is the Emerson-Lei
algorithm (EL) described in Fig. 3 [16, 17]: the set is iteratively approximated with the set
of vertices that can reach each fairness condition; this is computed with the pre operator
(denoted here with EX) and a backward traversal (EU). SMC tools typically implement
variants of this doubly-nested fixpoint computation, cf. [18, 39].

2.3 GSTE algorithms

The algorithm used by GSTE to check the AG in the different semantics is described in
Fig. 4. The function GSTE_ fairstates of line 2 is called only in the case of fair semantics
and it is described in Fig. 5. GSTE _ fairstates restricts the antecedent function to the states of
the system that are extensible to fair paths. In the lines 3-9 of Fig. 4, « is defined iteratively
until a fixpoint is reached. First, « is initialized to be the restriction of ant to the set of initial
vertices and to the set of initial states. Then, at every iteration, a state s is added to «(v) iff
s € ant(v) and there exists a state s’ € «(v") such that s is reachable from s’ in one step and
v is reachable from v’ in one step. When the fixpoint is reached, «(v) contains s iff there
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Algorithm GSTE(M, A)
1 if fair semantics

2 then A := GSTE_ fairstates(M, A)

3. a=ant,

4 forveV,aw):=a(w)NS,

5 repeat

6. o =«

7 forveV,a) =o' (v) Uy, post@ () Nant(v)
8 until ¢’ =«

9 if fair semantics

1

1

0. then return o C cons
1. else return o, C cons
Fig. 4
Algorithm GSTE_ fairstates(M, A)
1 repeat
2 ant' = ant
3 for F € F,
4 forveV,a):= Uv,eE(U)qv,EFpre(ant ")) Nant(v)
5. repeat
6. o=«
7 forveV,a) :=ad (v)U Uv,eE(U) pre(o’ (v')) Nant(v)
8 until o’ =«
9 ant == o
10. until ant’ = ant
11. return A
Fig. 5

exists an initial path p of the assertion graph and an initial trace o of the system of the same
length [ such that p[l] = v, o[l] =5 and o =4 p.

With an analogous fixpoint computation (lines 4-8), GSTE _ fairstates finds a function
« such that a(v) contains s iff there exist a path p of the assertion graph and a trace o of
the system of the same length / such that p[l] € F, p[1] =v, o[1] =s and ¢ =, p. This
computation is applied for every F' € F and it is nested in a second fixpoint computation: at
every iteration the antecedent function is updated with « until a fixpoint is reached. At the
end of the outer loop, ant(v) contains s iff there exist a fair path p of the assertion graph and
an infinite trace o of the system such that o =, p.

3 GSTE vs. SMC

In this section, we clarify the relationship between GSTE and SMC. First, we show that
AGs and BAs are equivalent. Then, we show that the GSTE algorithm is essentially a “par-
titioned” version of the SMC algorithm.

We now show that, given a BA B, one can easily find an AG A with the complementary
language and vice versa. This means that, given a specification ¢, one can choose either
GSTE or SMC techniques to check ¢, no matters whether ¢ is an AG or a BA. Moreover,
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since BAs are nondeterministic (i.e., existential) automata, AGs are revealed to be their dual,
which are universal automata.

The following four theorems establish the relationship between AGs and BAs: see
Appendix for the proofs. First, the following two theorems show how to express AGs as
BAs. Intuitively, the state space of an AG is multiplied by a counter: the value O of the
counter corresponds to a finite path that satisfies the antecedent; the value 1 represents a
point in which the antecedent is satisfied but the consequent is violated; the final value 2
corresponds to an accepting suffix that satisfies the antecedent.

Theorem 1 Let A = (G, ant, cons) be an AG where G = (V,V;, E, F) and F = {F}. Let
B be the BA (G', L), where G’ =(V', V|, E', F') s.t.

V' =V x{0,1,2),

Vi=V; x{0, 1},

E' ={((v1, k1), (v2,k2)) | (v1, 1) € E, ko €{0, 1} if ky =0, and k, = 2 otherwise},
F ={F x{1,2}},

L((v,k)) = ant(v) if k € {0,2}, and L((v,k)) = ant(v) N (S\cons(v)) if k = 1. Then
L¢(B)=S*\Ls(A).

Theorem 2 Let A = (G,ant,cons) be an AG where G = (V,V;,E,F) and F =
{Fi,..., Fy}. Let B be the BA (G', L), where G' =(V', V|, E', F') s.t.

V' =V x{0,1,2},

V=V, x{0,1},

E' ={((v1, k1), (v2,k2)) | (v1,v12) € E, kp € {0, 1} if ky =0, and ky = 2 otherwise},
F' ={F, x{2},..., F, x{2}},

L((v,k)) = ant(v) ifk € {0, 2}, and L((v, k)) = ant(v) N (S\cons(v)) ifk = 1.Then L(B) =
SP\L(A).

The following two theorems show how to express BAs as AGs.

Theorem 3 Let B = (G, L) be a BA. Let A be the AG (G, ant, cons), where ant = L,
cons(v) =W forallve V. Then L;(B)=S*\L;(A).

Theorem 4 Let B = (G, L) be a BA. Let A be the AG (G, ant, cons), where ant = L,
cons(v) =@ forallve V. Then L(B) = S®\L(A).

‘We now compare the algorithms used by GSTE and SMC. In particular, we show that the
former is essentially a “partitioned” version of the latter.

In Sect. 2, we saw how SMC solves the model checking problem for a BA B: it builds
the product automaton P between M and B and it verifies that the language of P is empty.
GSTE follows an analogous procedure for checking an AG A: it actually computes the
product between M and B,,, where B, is a BA with the same underlying graph G of
A and the labeling function equal to ant. The only difference between SMC and GSTE is
that the latter operates on partitioned subsets of the product state space. The partitioning
is driven by the automaton state space and we refer to such partitioning as property-driven
partitioning. The GSTE analog of a subset Q € Sp is the partition {Q, : v € V}, where
0, ={s: (s,v) € Sp}. Indeed, every labeling function y can be seen as a division of the
model into sets of states, one for every vertex v of the graph, which is exactly the set y (v).
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If y C ant, then y turns out to represent a set S, € Sp of states in the product defined as
follows: S, = {(s, v)|s € y (V)}.

One can see that the lines 3-9 of the algorithm in Fig. 4 computes the reachable states of
Sp. In fact, we could rewrite lines 67 in terms of CTL formulas as « = o U EY[«]. Thus,
at the end of the loop, a(v) = {s|(s, v) is reachable in Sp}. This computation is actually a
partitioned version of the one of Fig. 2 with the difference that SMC applies the post-image
only to the new states added in the previous iteration, while GSTE applies the post-image to
the whole set of reached states.

In the case of fair semantics the computation of reachable states is preceded by a pruning
of the product: GSTE_ fairstates finds all vertices of Sp such that they are extensible to fair
paths. To compare this procedure with EL, we rewrite the operations of GSTE_ fairstates in
terms of CTL formulas. At the line 4 of the algorithm in Fig. 5, GSTE_ fairstates actually
computes the preimage of ant|, (seen as a set of states in Sp). So, we can rewrite this line as
a = ant N EX[(ant|,)]. Furthermore, the lines 6-7 are the same as @ = o U (ant NEX[(@)])
so that one can see the loop of lines 5-8 as « = E[(anf)U(«)]. This reachability computation
is nested in a second fixpoint computation, so that it becomes evident that GSTE _ fairstates
is a variant of the EL algorithm of Fig. 3.

4 SMC vs. property-driven partitioned SMC

In Sect. 3, we saw that GSTE is a partitioned version of SMC. We can also apply property-
driven partitioning to standard SMC algorithms. In particular, there are two algorithms to
be partitioned: traversal and fairstates (Figs. 2 and 3). We partitioned both of them, by
using NUSMYV as a platform. This choice is motivated by the fact that NUSMV implements
symbolic model checking for LTL, its source is open, and its code is well-documented and
easy to modify.

The “translated” algorithms are shown in Figs. 6 and 7. Both are based on backward
reachability and respect the structure of NUSMV’s implementation (e.g., the order of fair
sets is irrelevant). The difference with the non-partitioned versions is that while traversal and
fairstates operate on a single set of states in the product automaton, partitioned_traversal
and partitioned__ fairstates operate on an array of sets of states of the system (one set for
every vertex of the BA). Thus, every variable in the algorithms of Figs. 6 and 7 can be
considered as a labeling function. For every set Y C § of states and labeling £, we define the
labeling function par ,(Y) such that: par.(Y)(v) =Y N L(v) for all v € V. The initial states
of the product are given by par (S 1)“,1. Given a fair set F of the BA, the correspondent
set in the product is given by par,(S),,. The backward image of a labeling function « is

Fig. 6 Algorithm partitioned_traversal(M, B)
L. a:=par;(S),
2. B=«

3. repeat

4. y = EX[B]
5. B=y\e

6 a:=aUy
7. until =0

8. return o
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Fig. 7 Algorithm partitioned_ fairstates(M, B)
1. o:=T,;
2.  repeat
3. o =a;
4. B:=T;
5. for F e F
6. B :=BNE[aU(a Npar.(S))];
7. a:=aNp;
8. o =a NEX[«a];
9. untilo' =«
10. return o

given by
EX[()](v) = U pre(a(v') N L().

v EE(v)

We investigated if property-driven partitioning is effective for symbolic model checking.
In particular, we applied the technique to LTL model checking. In fact, it is well known that,
given a formula ¢ expressed by an LTL formula, we can find a BA with the same language.
The standard LTL symbolic model checkers translate the negation of the specification into a
B A, they add the latter to the model and check for emptiness. The goal of our experiments
was to compare the performance of partitioned and non-partitioned SMC algorithms. Thus,
we did not try to optimize the algorithms implemented in NUSMYV, but to apply to them
property-driven partitioning. The question we wanted to answer is whether the reduction in
BDD size more than compensates for the algorithmic overhead involved in handling a par-
titioned state-space. This also provides an indirect comparison between GSTE and standard
SMC techniques.

To verify an LTL formula ¢, NUSMYV calls 1t12smv, which translates —¢ into a
symbolically represented BA with fairness constraints F. Then, the function E=Gl[true]
checks if the language of the product is empty. Since NUSMV does not apply any par-
ticular technique when ¢ is a safety formula [31], we enhanced the tool with the option
-safety: when ¢ contains only the temporal connectives X, G, and V, it constructs a
predicate F on the automaton states (representing accepting states for the complementary
property) and calls the function E[trueUF]. In the following, we refer to this procedure and
to the standard NUSMV’s procedure as “NuSMV -safety” and “NuSMV” respectively.
We implemented the partitioned versions of both and we refer to latter ones as “NuSMV
-safety -partitioned” and “NuSMV -partitioned” respectively. The BA is
built automatically by 1t12smv in the case of non-partitioned algorithms while it is con-
structed by hand (in these experiments) in the case of partitioned algorithms.

When NUSMYV builds the product between the property automaton and the system, it
appends the symbolic variables of the property automaton at the bottom of the variable
ordering. We added an option to NUSMYV, “-topencode”, in order to put such variables
at the top. With this change, we obtain a symbolic version of property-driven partitioning:
if indeed you have a BDD that corresponds to a subset Q of the product and you follow an
assignment to the symbolic variables of the property automaton that corresponds to a vertex
v, then the BDD node you obtain is exactly the partition Q, of Q.

We ran our tests on three examples of SMV models (for the SMV code, visit
www.science.unitn.it/~stonetta/partitioning.html). For every exam-
ple, we chose two properties true in the model (one safety and one liveness property, see

@ Springer



188 Form Methods Syst Des (2007) 31: 177-196

Table 1 Satisfied properties

Safety Liveness
Dining G((p AT AX(I) AXX(r) AX3() — XHe) (A1<i<n GFri) = (GFs)
Mutex G((11 A No<i<n i) = Xc) G(A1<i<nti = Fci)
Life G — Xc) G((G'b) — FG(d))

Table 2 Failed properties

Safety Liveness
Dining G((p/\rAX(r)/\XX(r)AX3(r))—>X4(—-e)) (GFr1) — (GFey)
Mutex G((t1 A Na<i<n —ti) = X—c) F(1; — G—cy)
Life G(b— X—c) F((G!'D) AGF(!d))

Table 1) and two properties that failed (again one safety and one liveness property, see Ta-
ble 2). The first example is a dining-philosophers protocol [15]. Concurrency is modeled
with the interleaving semantics. Typically, a philosopher iterates through a sequence of four
states: she thinks, tries to pick up the chopsticks, eats and, finally, she puts down the chop-
sticks. When a deadlock condition happens, a philosopher puts the chopsticks down. The
safety property true in this example is the following: if a philosopher is thinking and both her
chopsticks are free and she is scheduled for 4 steps in a row, then she will start eating. From
this property, we deduce an analogous one which fails: with the same premises, after 4 steps
the philosopher does not eat. The satisfied liveness property states that if every philosopher
is scheduled infinitely often, then somebody eats infinitely often (at least one philosopher
does not starve). In contrast, the following liveness property does not hold in the example:
if a philosopher is scheduled infinitely often, then she eats infinitely often.

The second example is a mutual-exclusion protocol: N processes non-deterministically
try to access the critical session. The access is controlled by the main module, which guar-
antees that a process does not wait forever. The true safety property says that, if a process
is the only one that is waiting, then it accesses the critical session in one step. If we change
this property by writing that the process does not access the critical session in one step, we
obtain the safety property that fails. The satisfied liveness property asserts that, if a process
is trying, sooner or later it will access the critical session. We chose the negation of this
property as an example of liveness property that fails.

Finally, the third example is a variant of the game of life: at the beginning there is only one
creature; every creature has a maximum life set to 100, but it can die non-deterministically
in every moment; when the age is between 15 and 65, a creature can bear a child, which is
born in the next step; at most N creatures can be born; when all the creatures are dead the
game is reset. The true safety property states that, if a creature is bearing a child, then the
number of born creatures increases; the failed property states that the number decreases. The
true liveness property asserts the following: if no creature will be born anymore, then, after
a certain point in the future (likely after a reset), the number of alive creatures will be equal
to one forever. The negation of this property corresponds exactly to the liveness property
which failed.
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Fig. 8 Satisfied properties of Table 1. X axis: number of processes. Y axis: time. Left column: perfor-

mances of “NusSMV -safety”, “NuSMV -safety -topencode” and “NuSMV -safety -par-

titioned” on safety properties. Right column: performances of “NuSMV”, “NuSMV -topencode” and
“NuSMV -partitioned” on liveness properties. /st row: dining-philosophers example. 2nd row: mutex
example. 3rd row: life example

We run NUSMYV on the Rice Terascale Cluster (RTC),> a 1 TeraFLOP Linux cluster
based on Intel Itanium 2 Processors. Timeout was set to 172800 seconds (two days). The
results are shown in Figs. 8—11: Figs. 8 and 9 present the execution time in seconds, while
Figs. 10 and 11 present the number of allocated BDD nodes; both quantities are plotted in
log scale against the number N of processes in the model. Every example takes a row of
plots. We plotted safety property in the first column and liveness properties in the second
column. First compare the partitioned version with the non-partitioned one with regard to

3See www.citi.rice.edu/rtc/.
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Fig. 9 Same pattern as in Fig. 8 but with the failed properties of Table 2

the verification time. As for satisfied properties (Fig. 8), we notice that, in the first two rows
(dining philosophers and mutual exclusion), the former outperforms the latter. Moreover, in
the case of the safety property for dining philosophers and the liveness property for mutual
exclusion, the gap is exponential, i.e. the ratio between the two execution times grows ex-
ponentially with the size of the model. In the third row (life), NUSMV does not seem to get
relevant benefit from the property-driven partitioning (even if you should notice that, in the
last point of the liveness case, “NuSMV” runs out of time). Similarly, in the case of failed
properties, the partitioned version always outperforms the non-partitioned one (see Fig. 9).
Moreover, in the case of liveness properties, the improvement is exponential for all three
examples.

In Figs. 10 and 11, we can compare the amount of memory required by the different
versions of NuSMYV. Again, partitioning generally reduces memory requirement, sometimes
quite significantly.
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Fig. 10 Same pattern as in Fig. 8 but with the number of allocated BDD nodes on the Y axis

Finally, comparing the effect of “~topencode” on NUSMYV, we notice that it usually
worsens (as in Fig. 8) or it does not affect (as in Fig. 9) the execution time. As for space
requirements, only in two cases (bottom right plots of Figs. 10 and 11) we have an evident
improvement.

5 Conclusions

Our contributions in this work are two-fold. First, we elucidate the relationship between
GSTE and SMC. We show that assertion graphs are simply universal automata, or, viewed
dually, are nondeterministic automata for the complementary properties. Furthermore,
GSTE algorithms are essentially a partitioned version of standard SMC algorithms, where
the partitioning is static and is driven by the property under verification. Second, we ex-
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Fig. 11 Same pattern as in Fig. 10 but with the failed properties of Table 2

ported the technique of property-driven partitioning to SMC and showed its effectiveness in
the framework of NUSMV.

This work opens us several directions for future work. First, we have to further inves-
tigate and understand the performance advantage of property-driven partitioning. Second,
we need to combine the tool with an automated generator of explicit BAs for LTL for-
mulas and evaluate property-driven partitioning for more complex LTL properties. Third,
it requires revisiting the issue of translating LTL formulas to BAs. Previous translations
have focused on making the BA smaller (cf. [14, 20, 21, 43]) or more deterministic [41].
The relative merit of the two approaches has to be investigated in the context of property-
partitioned SMC. Fourth, it requires revisiting the issue of symbolic fair-cycle detection.
Previous works have compared various variations of the EL algorithm, as well as non-EL
algorithms, cf. [2, 18, 39]. This has to be re-evaluated for property-partitioned SMC. Finally,
a major topic of research in the last few years has been that of property-driven abstraction
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in model checking [11, 23]. The combination of this technique with property-driven parti-
tioning is also worth of investigation, which could benefit from the study of abstraction in
GSTE [48, 50].
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Appendix Proofs

Proof of Theorem 1 Suppose o € S*\L (A). Then there exists p € L ;(G) s.t. |o| = |p| =1,
plll € F and o {E4 p, 1. 0 Eur p and o Fons p. In particular, o[h] € ant(p[h]) for
all 1 <h <1 and there exists i, 1 <i </, s.t. o[i] & cons(p[i]). Let p’ = (p[1],0),...,
(pll = 11,0), (pll], D if i =1, p" = (p[1],0), ..., (pli — 11,0, (pli], 1), (pli + 11,2), ...,
(pll],2) otherwise. Thus, p’ is a path of B, p'[l] € F x {1,2} and o =, p’, so that
(oS LJ(B)

Suppose now o € L ;(B). Then there exists p’ € L(G) s.t. |[o| = |p'| =1, p’(l) € F x
{1,2} and o =, p. Since p'[1] € V x {0,1} and p'[I] € V x {1, 2}, there must exist i,
1<ic<l st p'lileV x {1}. If p is the projection of p’ on the first component, we have
o[h] € ant(p[h]) forall 1 <h <[ and o[i] ¢ cons(p[l]). Thus, we have that o =,,; p and
0 Fcons P> SO that o [E4 p. O

Proof of Theorem 2 Suppose o € S®\L(A). Then there exists a fair path p € L(G) s.t.
0 FEa p,i.e. 0 Euy p and o Fe s . In particular, o[h] € ant(p[h]) for all & > 0 and there
exists i s.t. a[i] ¢ cons(pli]). If p" = (p[1],0), ..., (pli — 11,0), (p[i], 1), (p[i + 11, 2),
(pli +21,2), ..., then p’ is a path of B, p’ visits infinitely often every F; x {2} € 7’ and
o =, p/,sothat o € L(B).

Suppose now o € L(B). Then there exists a fair path p’ € L(G’) s.t. 0 =, p. Since
o starts from V x {0, 1} and visits V x {2}, there exists i s.t. p’(i) € V x {1}. If p is
the projection of o’ on the first component, we have o [h] € ant(p[h]) for all A > 0 and
oli] ¢ cons(pli]). Thus, we have that o =4, p and o [~..ns p SO that o =4 p. |

Proof of Theorem 3 Suppose o € S*\L s(A). Then there exists p € L ;(G) s.t. |o| = |p| =1,
plile Fand o (=4 p,i.e. 0 [=gu p and 0 Econs . In particular, o =, p. Thus, o € L ¢(B).

Suppose now o € L ;(B). Then there exists p € L;(G) s.t. |o| =|p| =1, p[l] € F and
o = p. Since o[1] ¢ cons(p[1]), o FEcons p- Thus, we have that o =, p and o Fcons o SO
that o (~4 p. 0

Proof of Theorem 4 Suppose o € S“\L(A). Then there exists an initial fair path p € L(G)
S.t.o s p,ie. 0 FEar p and o [ o5 p. In particular, o =, p. Thus, o € L(B).

Suppose now ¢ € L(B). Then there exists an initial fair path p € L(G) s.t. 0 = p. Since
o[1] ¢ cons(p[1]), o Econs p- Thus, we have that o |=,,; p and o Econs p sothat o =y p. U
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