
1

Checking Extended CTL properties Using Guarded
Quotient Structures

A. Prasad Sistla, Xiaodong Wang, Min Zhou

Abstract— We extend CTL logic to a logic called COUNT CTL
(CCTL) for specifying properties of concurrent programs with
large number of processes. We present a model checking algo-
rithm for symmetric or partially symmetric systems when their
correctness specification is given in CCTL. The model-checking
algorithm employs Guarded Quotient Structures introduced in
[9]. The GQS structures can be succinct representations for the
reachability graphs of partially symmetric or even asymmetric
systems. Our algorithm exploits state symmetries for fast eval-
uation. The algorithm is top down in nature, and automatically
incorporates formula decomposition and sub-formula tracking.

I. INTRODUCTION

Recently there has been much interest in symmetry based
methods for containing the state explosion problem in model
checking. The early symmetry based methods, introduced in
[1], [8], [3], exploit the symmetries in the system to identify
states that are equivalent under symmetry and construct a
quotient structure. The model checking is carried out on the
quotient structure. This method can primarily be used for
verifying symmetric properties specified in temporal logic,
i.e. properties in which the atomic propositions have same
truth values on equivalent states. A later approach introduced
in [4] constructs an Annotated Quotient Structure (AQS) and
unwinds it partially to verify a temporal property. This method
can be used for checking both symmetric and asymmetric
properties under various notions of fairness. In [7] the AQS
method is further extended to check correctness under fairness
on-the-fly. These methods have been implemented in the SMC
model checker [10].

In [5], [6], the method based on quotient structures is
extended to verify symmetric properties of partially symmetric
and asymmetric systems also. In [9], the AQS based method
is extended to verify symmetric and asymmetric properties
of partially symmetric and asymmetric systems as well. This
method is based on constructing a Guarded Quotient Structure
(GQS). It can be used to verify asymmetric properties of such
systems as well. This method works as follow. In order to
model check a property for a program K, another program K′

is considered so that the later program has lot more symme-
tries. Usually, K′ is obtained from K by simple transformations
(such as ignoring process priorities, etc.). Formally, if G and
H are the global state graphs of K,K′ respectively, then they
have the same set of states, but H has more edges. Further, the
set of symmetries of H is a super set of the set of symmetries
of G. The GQS is constructed by first constructing the AQS of

This paper is supported in part by the NSF grants CCR-9988884, CCR-
0205365.

H and by adding edge conditions to the AQS. By unwinding
GQS with respect to its edge conditions, we can get G from
GQS. In [9], a model checking method for CTL∗ employing
the GQS is presented. In that work, two optimization methods
called formula decomposition and sub formula tracking were
introduced.

In this paper, we extend the branching time temporal logic
CTL to a new logic called COUNT CTL (CCTL) for
specifying properties of concurrent programs. CCTL has
all the path quantifiers and temporal operators of CTL and
the fair path quantifiers of Fair CTL [11] and allows an
additional construct, called COUNT , which is a function
that returns the number of processes that satisfy a given
property in a given state. For example, if C(i) is an atomic
proposition denoting that process i is in critical section and
M is a set of processes, then COUNT (i, M, C(i)) gives the
number of processes in M that are in the critical section in
the state. COUNT can be nested with temporal operators.
With COUNT , CCTL can specify that a property should
hold for some processes (or for all processes) belonging to a
class; that is, it can express process quantifiers. CCTL is more
expressive than the logic ICTL considered in earlier papers
[2]. For example, it can express uniformly the property that the
number of processes satisfying property P equals the number
of processes satisfying property Q. This property cannot be
expressed in ICTL uniformly.

We consider the model checking problem for partially
symmetric and asymmetric systems when the correctness
specification is given in CCTL. We employ GQS for the
model checking purpose. We assume that the GQS has already
been constructed from the concurrent program. Our model
checking algorithm exploits state symmetries of a particular
state to evaluate the COUNT (i, M, φ(i)). It first partitions
the set of processes M over which i ranges into equivalence
classes. Instead of checking φ(i) with every i in M , we
check φ(i) for those i that corresponds to representatives of
equivalence classes. The evaluation is returned by summing
up the cardinalities of the equivalence classes when φ(i) holds
with i instantiated with its representative.

Our model-checking algorithm employs lazy evaluation.
That is, we invoke the algorithm on the main formula, which
invokes on its sub-formulas only if and when it is needed
to evaluate their truth values. For example, when invoked to
check a formula of the form g∧h at a state s, it invokes on g ;
the sub-formula h is checked at state s only if g is determined
to be satisfied at s.

Our model-checking algorithm is top-down in its approach.
The algorithm works inductively over the structure of CCTL

formula and thus employs formula decomposition in a seam-
less manner. With formula decomposition, the algorithm can
minimize the GQS unwinding. GQS is unwound with respect
to the process ids in sub-formulas instead of all those process
ids in the main formula; This reduces the complexity of the
algorithm. Formula decomposition was introduced earlier in
[9] to check CTL∗ properties. Unlike in that paper, formula
decomposition is naturally incorporated into our algorithm.

The algorithm described in the paper has been implemented
by employing the GQS constructed from the SMC model-
checker. Experimental results giving the effectiveness of our
method are given.

The rest of the paper is organized as follows. Section
2 introduces the background and notations. Section 3 gives
the definition of CCTL. Section 4 describes the algorithm.
Section 5 describes the implementation and some experimental
results. Section 6 concludes the paper with discussion of
related work.

II. BACKGROUND AND NOTATION

We consider a concurrent program K consisting of n pro-
cesses. We denote the process ids by the integers 0, ..., n− 1
and let I denote the set {0, 1...., n− 1}. The processes in the
concurrent program communicate through variables. We call
these as program variables. The name of a program variable is
given by an identifier subscripted with the names of processes
that share the variable. For example, u1,2, u2,3 are variables
shared by processes 1, 2 and by processes 2, 3 respectively. A
state s of the program is a mapping associating values to the
program variables. Let G = (S, E) be the reachability graph
of the concurrent program.

Let Sym I be the set of all permutations π on I . Sym I
forms a group with functional composition (◦) being the
group operation. Our convention is that πb ◦ πa is evaluated
right-to-left: first apply πa, then πb. Let Id denote the identity
permutation and π−1 the inverse of π. For any indexed object
b, such as a state, a variable, or a formula, whose definition
depends on I , we can define the notion of permutation π acting
on b, by simultaneously replacing each occurrence of index
i ∈ I by π(i) in b to get the result π(b). For a variable ui,j ,
π(ui,j) is uπ(i),π(j). For a state s, π(s) is the state where, for
all program variables x, π(s)(x) = s(π−1(x)). For a set C
of states, let π(C) = {π(s) : s ∈ C}. Similarly, for a set of
edges F , we let π(F) = {(π(s), π(s′)) : (s, s′) ∈ F}.

A permutation π is called an auto morphism of the graph
G = (S, E) if π(G) = G, i.e., π(S) = S and π(E) = E.
The set of all auto morphisms of G forms a group and let G
denote this group. As has been shown in earlier works [1],
[3], [8], G induces an equivalence relation ≡G on the set
of states S given by s ≡G t if there exists a π ∈ G, such
that π(s) = t. The above works also construct a quotient
structure QS(G,G) to model check symmetric properties of
G (i.e. properties specified in CTL∗ or mu-calculus where the
atomic propositions have the same truth values in all equivalent
states). In [4], [7], the authors construct an annotated quotient
structure AQS(G,G) that can be unwound to check any
property specified in CTL∗ (the atomic propositions need not

have the same truth values in equivalent states). The idea of
the later work is to unwind the AQS(G,G) partially to model
check for the required property.

In [5], [6], the method based on the quotient structure is
extended to check symmetric properties of systems with less
symmetry or no symmetry. In [9] the method based on the
AQS is extended to handle systems with less or no symmetry.
The later work is based on constructing a Guarded Quotient
Structure (GQS). This is done by considering another graph
H = (S, F) which has the same set of states as G and satisfies
the following conditions: (i) F ⊇ E, i.e., it has all the edges
of G and possibly more; (ii) its set of automorphisms is a
superset of G. We let H denote the set of automorphisms of
H . Usually we choose H so that H is much larger than G.
The equivalence relation ≡H is extended to the edges in F in
the obvious way, i.e. for e, e′ ∈ F , e ≡H e′ if there exists a
permutation π ∈ H such that e′ = π(e). Let class(e,H) be
the set of edges in the equivalence class of e. The GQS of
H with respect to H is denoted by GQS(H,H, G) and is a
triple (V , F , C) defined as follows: V ⊆ S is a set of states
that contains one representative for each equivalence class of
≡H ; F ⊆ V × V × H is a set of labeled edges such that,
for every s ∈ V and t ∈ S such that (s, t) ∈ F , there exists
an element (s, t, π) ∈ F such that π(t) = t ; C is a function
that associates a condition C(e) with each labeled edge e in
F ; C(e) denotes an edge condition such that the set of edges
in class(e,H) that satisfy C(e) is exactly the set of edges
class(e,H)∩E. The edge conditions C(e) are specified by a
propositional condition on the program variables.

Fig. 1 shows the reachability graph G of a 2-process mutual
exclusion algorithm where process 1 has higher priority.
The nodes of G are elements belonging to {N1, T1, C1} ×
{N2, T2, C2}. We also consider each node of G to be a two
element set. For any such node s, if Ni ∈ s or Ti ∈ s or
Ci ∈ s (for i = 1, 2) this intuitively denotes that process
i is in the non-critical section or in the trying section or in
the critical section, respectively. We add an edge from the
node (T1, T2) to (T1, C2) to make it symmetric and obtain
H . The GQS corresponding to H is shown in Fig. 1. In
the GQS only two edges have non-trivial guards. Here F lip
is the permutation which interchanges processes 1 and 2; it
defines an automorphism on the nodes of H that maps a node
{Di, Ej} (where D, E are any of the symbols N, T, C and
1 ≤ i, j ≤ 2) to the node {DFlip(i), EFlip(j)}. Here id is
the identity permutation defining the identity automorphism.
For any F in {N1, N2, T1, T2, C1, C2}, we let F -nodes denote
the set of nodes in H that contains the element F . The edge
predicate T1 ∧ C ′

1 denotes the set of edges in H from a T1-
node to a C1-node; it is expressed as a formula stating that
the current state satisfies T1 and that the next state satisfies C1

(the clause C ′
1 states that C1 should be satisfied in the next

state). There is only one edge labeled by this predicate: this
edge is from the node (T1, T2) to the node (C1, T2).

In many situations, the GQS(H,H, G) can be constructed
directly from the concurrent program description so that it
is more succinct than AQS(G,G). In [9], the authors devel-
oped a method for checking a property, specified in CTL∗,
of the program by unwinding GQS(H,H, G) appropriately.

2

N1 N2

T 1 N1 T 2N2

C 1 N2 T 1 T 2 N1 C 2

C 1 T 2
T 1 C 2

N1 N2

T 1 N2

C 1 N2

C 1 T 2

T 1 T 2

Flip

id, (T1^C1’)

Flip,(T1^C1’)

Flip

Fig. 1. Glocal Transition Graph and Guarded Annotate Quotient Structure

They also presented optimizing techniques involving formula
decomposition and sub formula tracking. The method given
there was implemented in the system PSMC. The system
only checks properties of the form E(p) where p is a linear
temporal formula. It did not implement the full CTL∗. It
did not implement formula decomposition and sub-formula
tracking. The experiments given in [12] employed a high level
formula decomposition that was manually carried out.

III. CCTL LOGIC

In this section we define the syntax of the CCTL logic.
CCTL formulas use process variables that range over process
ids of the system. They only use program variables in which
all the subscripts are process variables, i.e. no process ids are
used. CCTL formulas also use constants belonging to the
domains of program variables, a function symbol COUNT ,
sets of process ids and comparison operators in {=, <, >, >=
, <=}. In addition to path quantifiers over all paths, CCTL
employs path quantifier Efair which quantifies over fair paths.
We use standard weak process fairness in [11], i.e., a path is
fair if every process is either executed or disabled infinitely
often.

Formally, CCTL formulas are defined as follows:
〈 formula 〉 :: 〈 atomic formula 〉 |

〈 count-term 〉 〈 comp-operator 〉 〈 count-term 〉 |

〈 formula 〉 ∧ 〈 formula 〉 | ¬ 〈 formula 〉 |

EX (〈 formula 〉) | EfairX (〈 formula 〉) |

EG (〈 formula 〉) | EfairG (〈 formula 〉) |

E (〈 formula 〉 U 〈 formula 〉) |

Efair (〈 formula 〉 U 〈 formula 〉)

〈 count-term 〉 :: COUNT (i, M, 〈formula〉) |

〈 constant 〉

The syntax of the formulas is easily understood from the
above BNF notation.

An atomic formula is any of the following: the constant
True; a binary variable x which is also called an atomic

proposition; it is of the form x ρ y where x, y are program
variables or constants and ρ is a comparison operator; it is of
the form i = j where i, j are process variables.

A count-term is a term of the form COUNT (i, M, φ)
where φ is a CCTL formula and M is a set of process
ids and i is a process variable. A count-term can also be
an integer constant. Unless otherwise stated, throughout the
paper, a count term will refer to a non-constant count-term.
The set M of process ids may be either explicitly given or
may be specified by a symbolic name which is bound to a
set of process ids by a separate command. We say that every
occurrence of i in φ is bound.

An occurrence of a process variable i in a formula is said
to be free if it is not a bound occurrence. We assume that
all the occurrences of a process variable are free or all its
occurrences are bound in the same count-term. If this property
is not satisfied, we can obtain another formula, by renaming
the process variables, that satisfies the above condition. For a
formula φ, let free var(φ) denote the set of process variables
appearing free in φ. An evaluation for φ is a partial function
from the free var(φ) to I , the set of process ids. For a count-
term u, we define free var(u) and evaluation for u, exactly
on the same lines as that for a formula. For a count-term u
and evaluation f for u, we let val(s, u, f), as defined below,
denote the value of the term u in the state s with respect to
the evaluation f .

Now we define the semantics of a CCTL formula. The
semantics of a formula φ are defined in a global state graph
G = (S, E) with respect to an evaluation for φ in an inductive
manner. We denote the satisfaction of φ in a state s in G
with respect to an evaluation f by G, s, f |= φ. Since G is
understood here, we simply write s, f |= φ. The satisfaction
relation |= and the function val (i.e., the value of count-
terms) are defined mutually inductively. For a subscripted
program variable x and an appropriate evaluation f , let f(x)
denote the program variable obtained by substituting process
variables as given by f for process ids. For an atomic
formula of the form x ρ y where x, y are subscripted program
variables, s, f |= x ρ y if the values of the program variables
f(x), f(y) in the program state s are related by ρ. For an
atomic formula of the form i = j, s, f |= i = j if
f(i) = f(j). The satisfaction of CCTL formulas of the form
g ∧ h, ¬g, E(gUh), EX(g) and EG(g) are defined in the
standard way as they are defined for CTL formulas. The
satisfaction of Efair(gUh), EfairX(g), EfairG(g) are all
defined naturally by considering only fair paths. For example,
Efair(gUh) is satisfied at a state s if there exists a fair path
from s on which g continues to be satisfied until h is satisfied.
For a formula of the form u ρ v where u, v are count-terms,
s, f |= uρ v if val(s, u, f) and val(s, v, f) are related by the
comparison operator ρ, e.g., the values of the two count-terms
in the state s are equal if ρ is the equality operator.

For any count-term u, state s, evaluation f for u, we define
the value val(s, u, f) as follows. If u is a constant then
val(s, u, f) is the constant itself. Let u be the count-term
COUNT (i, M, g). For any process id c, let fc denote the
evaluation for g such that fc(i) = c and for any j ∈ dom(f)
and j 6= i, fc(j) = f(j). We define val(s, u, f) to be the

3

number of distinct values of c in M such that s, fc |= g.
CCTL can be used to express universal and existential

process quantifiers ranging over a set M of process ids. For
example, the property ∀i ∈ M (h(i)) can be expressed as
COUNT (i, M, h) = COUNT (i, M, True).

Other standard CTL temporal operators such as
A(φ1Uφ2), AG(φ1), AX(φ1), Afair(φ1Uφ2), AfairG(φ1)
and AfairX(φ1) can all be expressed in CCTL. For
example, Afair(φ1Uφ2) ≡ ¬(Efair(¬φ2U(¬φ1 ∧ ¬φ2)) ∨
EfairG(¬φ2)).

IV. ALGORITHM

In this section, we present the algorithm for checking
CCTL formulas using the guarded quotient structure. First,
we need the following definition. Recall that an evaluation,
for a CCTL formula or for a count-term, is a partial function
whose domain is the set of free variables in the formula or
the count-term, respectively.

Recall that H is the reachability graph of the concurrent
program and H is its set of automorphisms. We make the
assumption that the set of process ids in every count term,
appearing in the formula we want to check, is invariant under
the permutations in G. That is, for every count term of the
form COUNT (i, M, g) and for every π ∈ G, π(M) = M .
Here let π(M) be the set {π(c) : c ∈ M}.

Definition 1: Let f , f
′

be evaluations, then f
′

is an exten-
sion of f if dom(f

′

) ⊇ dom(f) and ∀i ∈ dom(f) f
′

(i) =
f(i).

First, we consider the problem of evaluating the value of
a count term COUNT (i, M, φ) in a particular state s. As
indicated in the introduction, we exploit the state symmetries
(see [3], [7]) in G to evaluate the count term efficiently. For a
state s in H , let Aut(s) denote the set of all π ∈ G such that
π(s) = s. We call the permutations in Aut(s) as symmetries
of the state s.

Definition 2: Let u be a count term of the form
COUNT (i, M, φ), s be a state in S and f be an evaluation
for u. We define an equivalence relation among processes in
M as follows:

c1 ≈s,f c2 iff ∃π ∈ Aut(s), ∀v ∈ dom(f)

π(f(v)) = f(v), π(c1) = c2

.
Definition 3: Let u, s and f be as given in definition 2.

For any process c, let fc be an evaluation for φ which is an
extension of f such that fc(i) = c.

Now, we have the following theorem. It states that if c, d
belong to the same equivalence class of ≈s,f then (s, fc)
satisfies φ iff (s, fd) satisfies φ.

Theorem 1: Let u be the count-term COUNT (i, M, φ) and
f be an evaluation for u. Let c and d be process ids in M
such that c ≈s,f d. Then

s, fc |= φ iff s, fd |= φ
Proof: By a simple straightforward induction on the struc-

ture of φ, it is easy to see that for any π ∈ G, π(φ) = φ
(recall that π(φ) is obtained from φ by replacing the range

M of every count term by π(M); since we assumed that for
every such M , π(M) = M , it follows that π(φ) = φ). Since
c ≈s,f d, there exists a π ∈ Aut(s) such that π(c) = d
and for v ∈ dom(f), π(f(v)) = f(v). It is not difficult to
see that π(fc) = fd. Since π ∈ G, it follows that s, fc |= φ
iff π(s), π(fc) |= π(φ). Since π(s) = s, π(φ) = φ and
π(fc) = fd, it follows that s, fc |= φ iff s, fd |= φ. �

We take the following approach, called quantifier elimina-
tion, for evaluating u in the state s with respect to f . From
theorem 1, it is easy to see that for each equivalence class of
≈s,f , it is enough if we pick one representative c, and check if
s, fc |= φ. Let C1, ..., Ck be the equivalence classes of ≈s,f .
Let jr, for 1 ≤ r ≤ k, be a representative from the class Cr.
We compute the value of the term u in s with respect to f
(i.e., the value val(u, s, f)) to be the sum of the cardinalities
of the sets Cr such that s, fjr

|= φ. Thus we need to make
only k different checks for computing the value of u, instead
of n checks in the naive approach.
Description of the Algorithm

In order to check if a formula φ is satisfied at a state in G,
we consider an expanded graph H (as given in section II). We
construct a guarded quotient structure GQS(H,H, G). Here
we assume that this structure is already constructed as given
in [9]. Recall that the edges in GQS(H,H, G) are annotated
with permutations and are also associated with edge conditions
which act as guards.

Consider a path s0, s1, ..., sl in the guarded quotient struc-
ture. Let π1, ..., πl be the permutations labeling the corre-
sponding edges, and e1, ..., el be the edge conditions of the
edges respectively. Let π′

i for i = 1, ..., l be the composition
of the permutations π1, ..., πi from left to right in that order.
Also let t0, ..., tl be a sequence of states such that t0 = s0

and for i = 1, ..., l ti = π′
i(si). From the construction

of the GQS(H,H, G), it is the case that t0, ..., tl is a path
in H but may not be a path in G. If the edge conditions
e1, ..., el are satisfied by the edges (t0, t1), ..., (tl−1, tl) then
the above path is also a path in G. In order to evaluate
if (s0, f) satisfies φ in G, we change the evaluation as we
traverse along a path instead of unwinding GQS directly. For
example, suppose that we want to check AG(cr), where cr

is a subscripted binary variable, with respect to the evaluation
f0 where f0(r) = 1 (here AG is the derived CTL operator
denoting invariance). We traverse along the path by checking
cr at each successive node si with respect to the evaluation
fi where fi(r) = (π′

i)
−1(r). Thus we change the evaluation

instead of unwinding GQS(H,H, G). It is to be noted that
fi = (πi)

−1(fi−1) for i > 0. Thus successive evaluations
can be obtained, from the evaluation at the previous node, by
applying the inverse of the permutation along the edge.

We check the edge conditions as we traverse along a path.
We can traverse an edge only if the corresponding edge
condition is satisfied. This is straightforward if we use the
graph H ; simply evaluate the edge condition on the edge and
traverse it only if it is satisfied. With GQS(H,H, G), we
accomplish it by tracking the process ids that appear in all the
edge conditions by changing it along the path. Suppose all the
edge conditions refer to only process 0. As we traverse along
a path, we change this process according to the permutations

4

along the path. Let ki denote this process when we reach
node si. Initially, k0 is set to 0. When we reach node si, we
set ki to be (π′

i)
−1(0). To determine, if edge (si, si+1) can

be traversed, we replace process 0 with process ki in the edge
condition ei+1 and evaluate this new edge condition. Again
note that ki = (πi)

−1(ki−1). Thus, successive values of k
can be obtained by applying the inverse of the permutation
labeling the edge. We use ~k to denote the vector of the process
ids that appearing in all edge conditions. Each process id in
~k will change along the path in the same way as explained.

The main procedure check(φ, f, ~k, s) checks if s, f |= φ
using the process identities in the vector ~k as the corresponding
process ids in the edge conditions. As indicated above, f
is the evaluation for φ which has been changed all along
from the initial state to s. The procedure associates two
data structures L(s) and marked(s) with each state s in the
GQS(H,H, G). L(s), at the end, contains all triples (φ, f, ~k)
such that s, f |= φ using the process ids in ~k in the edge
conditions. marked(s) contains those triples (f, ~k, φ) such
that EUCheck or EGCheck procedure has been invoked with
φ, f,~k, s as parameters.

As indicated earlier, our model-checking algorithm uses
lazy evaluation and works in top-down fashion. Initially check
is invoked on the main formula at the state where we want to
determine its truth value with an evaluation. The initial values
of the parameter ~k are the process ids that appear in the edge
conditions.

In order to check with fairness, we introduce a new atomic
formula Exists fair path. For a state s and an empty evalua-
tion f , G, s, f |= Exists fair path iff there exists a fair path
in G starting from the state s. Note that a fair path is defined
as in section III. Now it is easy to see that EfairX(φ1) is
equivalent to EX(φ1∧Exists fair path) and Efair(φ1Uφ2)
is equivalent to E(φ1U(φ2∧Exists fair path)). We replace
the sub-formulas of the above form by the corresponding
equivalent formulas and model check for them. To model
check the equivalent sub-formulas, we need to give an al-
gorithm for the procedure check(Exists fair path, f, ~k, s).
For this we give the algorithm efpCheck which adopts the
method for checking existence of fair paths given in [7].
In order to handle sub-formulas of the form EfairG(φ1),
we give the algorithm EfGCheck for the procedure
check(EfairG(φ1), f,~k, s). The same method given in [7] is
adopted for this algorithm.

The check procedure given in table I first verifies if
the state s has already been labeled with (φ, f, ~k) or with
(¬φ, f,~k) where φ, f , ~k are the parameters for this invocation
of check procedure and returns appropriate truth condition.
Subsequently, check works inductively on the structure of φ. If
φ is φ1∧φ2 then check is invoked on φ1 first and, if φ1 holds,
on φ2 using the evaluations f ′, f ′′ respectively; here f ′, f ′′ are
restrictions of f to the free variables of φ1 and φ2 respectively.
The cases when φ = EG(φ1) and φ = E(φ1Uφ2) are
handled by procedure EGCheck and EUCheck respectively.
The case when φ = (COUNT (i, M, φ1) = c) is handled as
explained at the beginning of the section. Formulas, such as
(COUNT (i, M, φ1) = COUNT (i, M, φ2)), can be handled
similarly with evaluation f restricted to f ′ and f ′′ accordingly

Given a GQS and a CTL formula φ, check if s |= φ

TABLE I

CHECK PROCEDURE

Algorithm check (φ, f,~k, s)
1. If (φ, f,~k) ∈ L(s), then return true
2. If (¬φ, f,~k) ∈ L(s), then return false
3. Switch(φ)

case φ is an atomic formula:
if s satisfies φ[f]

then return true,
else return false;

break
case φ = ¬φ1 :

flag ← ¬check(φ1, f,~k, s);
break

case φ = (φ1 ∧ φ2) :
flag ← check(φ1, f ′,~k, s)∧
check(φ2, f ′′,~k, s);
break

case φ = EXφ1 :
if there is at least one edge from s

(s
π,e(~c)
−→ t) such that

(s, π(t)) |= e(~k/~c) and
check(π−1(φ1), π−1(f), π−1(~k), t)
then flag ← true
else flag ← false

break
case φ = EG(φ1) :

flag ← EGcheck(s,EG(φ1), f,~k);
case φ = EfairG(φ1) :

flag ← EfGcheck(s,EG(φ1), f,~k);
break

case φ = E(φ1Uφ2) :
flag ← EUcheck(s,E(φ1Uφ2), f,~k);
break

case φ is (COUNT (i, φ1) = c) :
sum ← 0;
for every equivalence class x of ≈s,f

if ∃j ∈ x such that
(¬φ1, fj ,~k) ∈ L(s)

then continue;
if ∃j ∈ x such that
(φ1, fj ,~k) ∈ L(s),

then sum← sum + |x|,
continue;

choose some j ∈ x
if Check(φ1, fj ,~k, s)

then sum← sum + |x|;
if sum = c

then flag ← True;
else flag ← False;

break;
4. If flag, then add (φ, f,~k) to L(s), return true
5. If ¬flag, then add (¬φ, f,~k) to L(s), return false

as in the case of φ1 ∧ φ2.

In the procedures EUCheck given in table II, the
GQS(H,H, G) is traversed appropriately. In the begin-
ning of EUCheck, a new mark is stored with s to
indicate that EUCheck has been invoked on s with
the input parameters. In the for loop of the procedure
EUCheck, if (π−1(f), π−1(~k), π−1(φ)) ∈ marked(t) but
(π−1(φ), π−1(f), π−1(~k)) /∈ L(t) implies that either there is
a cycle and the eventuality is not fulfilled, or the sub-formula
has been checked and has been found to be not satisfied.
EGCheck given table III is similar as EUCheck and thus

5

can be easily understood.
Procedure efpCheck is given in table IV. It is based on

the standard algorithm which finds out the maximum strongly
connected components in a directed graph. Like EUcheck
procedure, a new mark is created and stored with s when
efpCheck is invoked on s for first time with the parameters.
For each state s on which efpCheck is invoked, it is asso-
ciated with a partition array. After the mark is created, this
array is initialized such that s.partition[i].enabled equals to
True if process i has a transition enabled in s. Otherwise,
s.partition[i].enabled is initialized to False. For all pro-
cesses i, s.partition[i].executed is initialized to False. For

each edge s
π,e(~c)
−→ t from s, it is classified either as a non-tree-

edge or a tree-edge according to the method in [7]. If s
π,e(~c)
−→ t

is a tree-edge, efpCheck is invoked on t and s.partition is

updated accordingly after that. If s
π,e(~c)
−→ t is a non-tree-edge,

s.partition is updated according to the edge. After all edges

s
π,e(~c)
−→ t from s have been checked and there is no fair path

found from t, s.partition is examined to determine if there
is a fair path from s and the procedure returns accordingly.

Algorithm EfGCheck(s, EfG(φ1), f,~k) can be adopted
from efpCheck with some minor changes. It can be looked
as applying efpCheck over a reduced graph of G where
each state satisfies φ1. This reduced graph need not to be
constructed explicitly. Instead, it can be constructed implicitly
by avoiding those states that do not satisfy φ1. This algorithm
is omitted from this paper due to its similarity to efpCheck.

TABLE II

EUCHECK ALGORITHM

Algorithm EUCheck(s,E(φ1Uφ2), f,~k)
φ← E(φ1Uφ2);
add (f,~k, φ) to marked(s);
if check(φ2, f,~k, s), then return true;
if ¬check(φ1, f,~k, s), then return false;

for each edge from s (s
π,e(~c)
−→ t) where

(s, π(t)) |= e(~k/~c)
if (π−1(f), π−1(~k), φ) ∈ marked(t) and
(φ, π−1(f), π−1(~k)) ∈ L(t)

then return true;
if (π−1(f), π−1(~k), φ) /∈ marked(t)

then flag ←
check(φ,π−1(f), π−1(~k), t);
if flag then return true

return false

The worst case complexity of the algorithm can be shown to
be O(N · |f | · cn) where N is the number of nodes plus edges
in GQS(H,H, G), n is the number of processes and c is the
depth of nesting of process quantifiers plus number of distinct
proceed ids appearing in the edge conditions. This worst case
complexity assumes that there is no state symmetry at all. If
there is state symmetry then this would perform much better.

V. EXAMPLE

The mutual exclusion protocol given in table V, as an exam-
ple, will be used to illustrate the concepts and structures in this
paper. The example is given by extending the input language
in [12]. The extension allows multiple priority specifications

TABLE III

EGCHECK ALGORITHM

Algorithm EGCheck(s,EG(φ1), f,~k)
φ← EG(φ1);
add (f,~k, φ) to marked(s) ;
if ¬check(φ1, f,~k, s), then return false;

for each edge from s (s
π,e(~c)
−→ t) where

(s, π(t)) |= e(~k/~c)
if (π−1(f), π−1(~k), φ) ∈ marked(t) and
(φ, π−1(f), π−1(~k)) ∈ L(t)

then return true;
if (π−1(f), π−1(~k), φ) /∈ marked(t)

then flag ←
check(φ,π−1(f), π−1(~k), t);
if flag then return true

return false

TABLE IV

EFPCHECK ALGORITHM

Algorithm efpCheck(s,Exist Fair Path, f, ~k)
add (f,~k,Exist Fair Path) to marked(s) true;
Initialize s.partition;

for each edge from s (s
π,e(~c)
−→ t) where

(s, π(t)) |= e(~k/~c)
if (π−1(f), π−1(~k), Exist Fair Path) ∈ marked(t)

and
(Exist Fair Path, π−1(f), π−1(~k)) ∈ L(t)

then return true;
if (π−1(f), π−1(~k), efp) /∈ marked(t) and

s
π,e(~c)
−→ t is non-tree-edge

Construct partitione for this edge;
Combine s.partition with partition e;
Update s.partition’s execution bits;

if (π−1(f), π−1(~k), Exist Fair Path) /∈ marked(t)
and

s
π,e(~c)
−→ t is tree-edge

if (efpCheck(Exist Fair Path, π−1(f), π−1(~k), t))
return true;

else
Combine t.partition with s.partition;
Update s.partition’s execution bits;

if s.partition indicates there is a fair path from s
return true;

else return false;

to be specified with transitions in the same process module.
The formula to be check is specified with CCTL.

The mutual exclusion protocol consists of a controller
process module and a client process module. The controller
process module in this example has only one controller process
which controls the resource allocation such that only one
client process can hold the resource at a time. The client
process module consists of several client processes. The client
processes request for the resource through request channel (im-
plemented with shared variables request[controller, client]).
The controller process acknowledges one request from the
process with highest priority through reply channel (imple-
mented with shared variables reply[controller, client]) if the
resource is available. The client process to which the resource
is granted changes its status (lk[k] = 2) to hold the resource.
It then releases the resource (buzy[cl] = 0) and changes back
its status (lk[k] = 0).

The CCTL formula given at the end of the input program
asserts that no two client processes can hold the resource at

6

the same time. Note that the universal quantifier used in the
CCTL formula is a short-cut defined in section III.

AQS is constructed first by ignoring the priority specifica-
tions on transitions; it then adds edge conditions to the AQS to
reflect the priorities and obtains the GQS. The CCTL property
is checked inductively against the GQS. During checking
the property, quantifier elimination described in section IV
is employed to evaluate COUNT term. For example, check
procedure is invoked on the initial state s0 to evaluate ∀i ∈
client ∀j ∈ client(i 6= j → AG(lk[i] 6= 2 ∨ lk[j] 6= 2)).
Since no client process has requested for the resource at
s0, Aut(s0) consists of all the permutations over process
ids of client processes. According to the definition 2, all
client processes form an equivalence class. Instead of checking
∀j ∈ client(i 6= j → AG(lk[i] 6= 2 ∨ lk[j] 6= 2)) with i
instantiated to every client process, we choose an arbitrary
client process k as representative for all client processes and
check ∀j ∈ client(i 6= j → AG(lk[i] 6= 2 ∨ lk[j] 6= 2)) with
an evaluation which instantiates i with k.

TABLE V

MUTUAL EXCLUSION PROTOCOL

Program

Module controller = 1;
Module client = 13;

lc[controller]=0;
lk[client]=0;
request[controller, client]=0;
reply[controller, client]=0;
buzy[controller]=0;

i of controller;

PriorityClass pclass1:client = (0);
PriorityClass pclass2:client = (1-12);

cl of controller :
{
lc[cl] == 0 & request[cl, k] == 1 &

ALL(i: reply[i,k] == 0) ->
reply[cl, k] = 1,
buzy[cl] = 1 , lc[cl] = 1

(Priority pclass1:pclass2);

lc[cl] == 1 & buzy[cl] == 0 ->
lc[cl] = 0 ;

}

k of client :
{
lk[k] == 0 ->
ALL(cl: request[cl, k] = 1) , lk[k] = 1;

lk[k] == 1 & reply[cl, k] == 1 ->
lk[k] = 2;

lk[k] == 2 & reply[cl, k] == 1 ->
reply[cl, k] = 0, ALL(i: request[i, k] = 0),
buzy[cl] = 0 , lk[k] = 0;

}

Evaluation

Formula

∀i ∈ client ∀j ∈ client(i 6= j → AG(lk[i] 6= 2 ∨ lk[j] 6= 2))

VI. IMPLEMENTATION

We have implemented the model-checking algorithm as the
extension of the SMC model-checker [10]. This tool has been
applied to the mutual exclusion protocol as well as industry
level protocol such as cache coherency protocol. We observed
significant performance improvement when checking some
useful properties over these protocols.

We check the mutual exclusion property ∀i ∈ client ∀j ∈
client(i 6= j → AG(lk[i] 6= 2 ∨ lk[j] 6= 2)) with mutual
exclusion protocol. Here lk[j] 6= 2 denotes that client j is not
in critical section. For cache coherence protocol, we check
the property ∀i ∈ client∀j ∈ client(i 6= j → AG(cache[i] 6=
exclusive ∨ cache[j] 6= exclusive)) asserting that no two
clients can hold the cache line in exclusive mode simultane-
ously. Here cache[i] 6= exclusive denotes that client i does
not hold the cache line exclusively. The experimental results
are presented in table VI. The column quant elim indicates if
our approach of quantifier elimination through state symmetry
is employed. Without quantifier elimination, the protocols are
checked in the naive approach. mark# gives the number of
marks generated in the experiments. Recall that a mark is
generated when EUCheck or EGCheck is invoked for the
first time on a state with the parameters. The running time
in column time(s) is given by running the experiments on a
Intel Pentium M 1.3G PC. In some experiments, we encounter
stack overflow. This is indicated with * in the table. Our tool
shows performance improvement for both cases. While with
cache coherence protocol of 4 clients, our tool runs 20-30
percentage faster by utilizing quantifier elimination through
state symmetry, we got much more performance improvement
with mutual exclusion protocol of more than 10 clients.
This shows that this tool is especially useful when verifying
properties with quantifiers over a large set of processes.

TABLE VI

EXPERIMENT RESULTS

protocol client# quant elim mark# time(s)

10 yes 208 0.02

Mutual 10 no 3780 1.6

Exclusion 20 yes 448 0.12

20 no * *

Cache 4 yes 96712 5.7

Coherence 4 no 115344 6.9

VII. CONCLUSION AND RELATED WORK

We have presented algorithm to check CCTL formula using
GQS without unwinding it completely. The algorithm exploits
state symmetries. We used state symmetries earlier [7], [3]
to reduce memory requirements. Here, for the first time, we
use them to model-check for complex properties, using the
COUNT functions and process quantifiers, efficiently.

The algorithm uses formula decomposition and sub-formula
tracking naturally and implicitly. The formula decomposition
is used in the sense that when we invoke the check procedure
on a sub-formula φ we only track the process ids required for
it. Similarly sub-formula tracking is used implicitly.

7

REFERENCES

[1] Clarke, E. M., Filkorn, T., Jha, S.: Exploiting Symmetry in
Temporal Logic Model Checking. CAV93, LNCS 697 Springer-
Verlag, 1993.

[2] Browne, M., Clarke, E. M., Grumberg, O, Reasoning about net-
works with many identical finite-state processes, Inf. Comput.,
1989, (Vol. 81), 13–31.

[3] Emerson, E. A., Sistla, A. P.: Symmetry and Model Checking.
CAV93, LNCS 697 Springer-Verlag, 1993; journal version ap-
peared in Formal Methods in System Design, 9(1/2),1996, pp
105-130.

[4] Emerson, E. A., Sistla, A. P.: Utilizing Symmetry when Model
Checking under Fairness Assumptions: An Automata-theoretic
Approach. CAV95, LNCS 939 Springer-Verlag, 1995.

[5] Emerson E. A., Treffler R., From Symmetry to Asymmetry: New
techniques for Symmetry Reduction in Model-checking, Proc. of
CHARME 1999.

[6] Emerson E. A., Havlicek J. W., Virtual Symmetry Reductions,
Proc. of LICS 2000.

[7] Gyuris, V., Sistla, A. P.: On-the-Fly Model Checking under
Fairness that Exploits Symmetry. CAV97, LNCS 1254 Springer-
Verlag, 1997.

[8] Ip, C. N., Dill, D. L.: Better Verification through Symmetry.
Formal Methods in System Design 9 1/2, pp41–75, 1996.

[9] Sistla A. P., Godefroid P.,Symmetry and Reduced Symmetry in
Model Checking,CAV01, LNCS 2102 Springer-Verlag, 2001.

[10] Sistla A. P., Gyuris V., Emerson E. A., SMC: A Symmetry based
Model Checker for Verification of Safety and Liveness Proper-
ties, ACM Transactions on Software Engineering Methodolo-
gies, Vol 9, No 2, pp 133-166, April 2000.

[11] E. Allen Emerson, Chin-Laung Lei, Temporal Reasoning Under
Generalized Fairness Constraints , STACS1986 , pp21-36

[12] Sistla A. P., Godefroid P.,Symmetry and Reduced Symmetry in
Model Checking , To appear in TOPLAS.

8

