
ETH Library

Don’t care words with an
application to the automata-based
approach for real addition

Journal Article

Author(s):
Eisinger, Jochen; Klaedtke, Felix

Publication date:
2008-12

Permanent link:
https://doi.org/10.3929/ethz-b-000001030

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Formal Methods in System Design 33(1-3), https://doi.org/10.1007/s10703-008-0057-6

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000001030
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10703-008-0057-6
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Form Methods Syst Des (2008) 33: 85–115
DOI 10.1007/s10703-008-0057-6

Don’t care words with an application
to the automata-based approach for real addition

Jochen Eisinger · Felix Klaedtke

Published online: 3 October 2008
© Springer Science+Business Media, LLC 2008

Abstract Automata have proved to be a useful tool in infinite-state model checking, since
they can represent infinite sets of integers and reals. However, analogous to the use of binary
decision diagrams (BDDs) to represent finite sets, the sizes of the automata are an obstacle
in the automata-based set representation. In this article, we generalize the notion of “don’t
cares” for BDDs to word languages as a means to reduce the automata sizes. We show that
the minimal weak deterministic Büchi automaton (WDBA) with respect to a given don’t care
set, under certain restrictions, is uniquely determined and can be efficiently constructed. We
apply don’t cares to improve the efficiency of a decision procedure for the first-order logic
over the mixed linear arithmetic over the integers and the reals based on WDBAs.

Keywords Decision procedure · Mixed linear arithmetic over the integers and reals ·
Automata theory · Verification of infinite-state systems

1 Introduction

As Büchi observed almost 50 years ago [18, 19], automata can be used to decide arithmeti-
cal theories, like Presburger arithmetic. Roughly speaking, a Presburger arithmetic formula
defines a regular language, for which one can build an automaton recursively over the struc-
ture of the formula. So, automata are used to represent sets of integers that are definable in
Presburger arithmetic. More recently, model checkers for systems with unbounded integers,
like FAST [3, 4] and ALV [54] have been developed that use such an automata-based set
representation. The use of automata in these model checkers can be compared to the use of
binary decision diagrams (BDDs) in model checkers for finite-state systems, like SMV [44]:

J. Eisinger
Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 051,
79110 Freiburg, Germany
e-mail: eisinger@informatik.uni-freiburg.de

F. Klaedtke (�)
Computer Science Department, ETH Zurich, Haldeneggsteig 4, IFW C 47.2, 8092 Zurich, Switzerland
e-mail: felixkl@inf.ethz.ch

mailto:eisinger@informatik.uni-freiburg.de
mailto:felixkl@inf.ethz.ch

86 Form Methods Syst Des (2008) 33: 85–115

automata describe sets of system states. Moreover, automata constructions can be used for
computing or overapproximating the set of all reachable system states.

Sets of reals can be represented by ω-automata. Boigelot, Jodogne, and Wolper [16] have
shown recently that even weak deterministic Büchi automata (WDBAs) suffice to represent
the first-order definable sets in (R,Z,+,<), where Z is the unary predicate stating whether
a number is an integer. This result paves the way for a more efficient automata-based deci-
sion procedure for the first-order theory over (R,Z,+,<). WDBAs can be handled algorith-
mically almost as efficiently as automata over finite words. For instance, in contrast to Büchi
automata, they can be efficiently minimized [43] and they are easy to complement. WDBAs
and this logic have a wide range of applications, such as the symbolic verification of linear
hybrid automata [12, 13]. The automata library LASH [41] provides implementations of all
the needed operations for implementing a decision procedure for the first-order theory over
(R,Z,+,<) based on WDBAs.

However, analogous to BDDs, it turns out that a limiting factor in the automata-based
representation of potentially infinite sets of integers or reals is the size of the automata. In
fact, our first results of an automata-based decision procedure for the first-order theory over
(R,Z,+,<) were rather discouraging: even for medium sized formulas, it turned out that
the minimal WDBAs are often huge. An analysis of the constructed automata lead to the re-
sults presented in this article. The analysis revealed that an automaton accepting a language
of a first-order definable set in (R,Z,+,<) can contain many redundancies. These redun-
dancies stem from the following two facts. First, a real number can have several ω-word
representations. For instance, the real number 1

10 has the ω-word representations 0.100 . . .

and 0.099 . . . when using the standard decimal number representation. Second, an automa-
ton has either to accept all representations of a real number or reject all of them. We have
observed that usually distinct states are needed to take care of such multiple representa-
tions of a real number. In this article, we solve the problem of the automata sizes caused
by the multiple representations of a real number. In fact, our results do not apply only to
the automata-based representation of sets of real numbers; the presented technique is more
general as a means to reduce the sizes of automata-based representations of languages.

For BDDs, many algorithms and methods have been developed to reduce the BDD sizes,
which have improved the performance BDD-based model-checkers. One of these techniques
is the use of don’t cares [33]. Roughly speaking, don’t cares are inputs of a combinational
circuit for which the circuit output is not specified or irrelevant. The size of the BDD rep-
resentation of a circuit can be reduced by choosing appropriate output values for the don’t
care inputs. In this article, we generalize the notion of don’t cares for BDDs to languages.
In the most general sense, a don’t care set is a language over some alphabet. The set chosen
depends on the application domain. The intuition of a don’t care word is that it is irrelevant
whether this word belongs to a language or not. Adding or removing don’t care words to lan-
guages can result in smaller automata. A trivial example is where the don’t care set consists
of all words. In this case we can either add or remove all words and obtain an automaton
with a single state. However, usually a don’t care set is a proper subset of all words and it is
not obvious which of the words from the given don’t care set must be added or removed to
obtain smaller automata. Furthermore, the order in which we add and remove words might
lead to different (minimal) automata accepting the same language modulo the don’t care set.
We prove that under certain restrictions on the don’t care set, the minimal WDBA is uniquely
determined and can be efficiently constructed.

To demonstrate the effectiveness of don’t cares for automata, we apply it to the approach
for representing and manipulating sets of integers and reals by WDBAs. First, we define a
natural don’t care set when encoding reals by ω-words. Second, we present an automata

Form Methods Syst Des (2008) 33: 85–115 87

construction for handling the existential quantification, which becomes more complicated
when using don’t cares. Third, we show by experiments that don’t care sets can reduce
the automata sizes significantly to represent sets of integers and reals. This reduction of
the automata sizes results also in significant faster running times when constructing the
automata.

The remainder of the text is organized as follows. In Sect. 2, we give preliminaries. In
Sect. 3, we introduce don’t care words. In Sect. 4, we present general operations on automata
that take don’t care sets into account. In Sect. 5, we present an automata construction for
projecting sets of reals that are represented by WDBAs modulo a specific set of don’t cares. In
Sect. 6, we report on experimental results comparing an automata-based decision procedure
with and without don’t care words. In Sect. 7, we discuss related work. Finally, in Sect. 8,
we draw conclusions. The Appendix contains additional proof details.

2 Preliminaries

We assume that the reader is familiar with the basics of automata theory and first-order
logic. The purpose of this section is to recall some background in these areas, and to fix the
notation and terminology that is used in the remainder of the text. For further details, we
refer the reader to [35, 50] and [26].

2.1 Languages and automata

Let � be an alphabet. We denote the set of all finite words over � by �∗ and �+ denotes
the set �∗ \ {ε}, where ε is the empty word. �ω is the set of all ω-words over �. The
concatenation of words is written as juxtaposition. We write |u| for the length of u ∈ �∗.
We often write a word u ∈ �∗ of length � ≥ 0 as u(0) . . . u(� − 1) and an ω-word α ∈ �ω as
α(0)α(1)α(2) . . . , where u(i) and α(i) denote the letter at position i of u and α, respectively.
For a set S, P (S) denotes its power set.

A nondeterministic finite automaton (NFA) A is a tuple (Q,�, δ, qI,F), where Q is a
finite set of states, � is an alphabet, δ : Q × � → P (Q) is the transition function, qI ∈ Q

is the initial state, and F ⊆ Q is the set of accepting states. A state not in F is a rejecting
state. The size of A is the cardinality of Q. We write Aq for the NFA that is identical to A
except that q ∈ Q is the initial state, that means, Aq := (Q,�, δ, q,F). We extend δ to the
function δ̂ : Q × �∗ → P (Q) defined as δ̂(q, ε) := {q} and δ̂(q, bu) := ⋃

p∈δ(q,b) δ̂(p,u),
where q ∈ Q, b ∈ �, and u ∈ �∗. The NFA A defines the language L∗(A) := {w ∈ �∗ :
δ̂(qI,w) ∩ F �= ∅}.

An NFA A is deterministic if |δ(q, b)| = 1, for all states q of A and all b input letters,
where δ is A’s transition function. Note that we assume here that in every state and for
every input letter the automaton has a successor state. This assumption is without loss of
generality, since we can always add a rejecting state and add transitions that lead to this
new state without altering the language of the automaton. In the case where the NFA A
is deterministic, we call A a deterministic finite automaton (DFA). Moreover, we view the
transition function δ of a deterministic automaton as a (total) function δ : Q × � → Q,
where Q are the states of A and � is A’s alphabet. Accordingly, we write δ(p, b) = q and
δ̂(p,w) = q instead of δ(p, b) = {q} and δ̂(p,w) = {q}, respectively.

We can view NFAs as Büchi automata. A run of the Büchi automaton A = (Q,�, δ, qI,F)

on the ω-word α ∈ �ω is an ω-word ϑ ∈ Qω such that ϑ(0) = qI and ϑ(i + 1) ∈
δ(ϑ(i), α(i)), for all i ∈ N. The run ϑ is accepting if Inf(ϑ) ∩ F �= ∅, where Inf(ϑ) is the

88 Form Methods Syst Des (2008) 33: 85–115

set of states that occur infinitely often in ϑ . The Büchi automaton A defines the ω-language
Lω(A) := {α ∈ �ω : there is an accepting run of A on α}. Similarly, we can view NFAs as
co-Büchi automata. Runs of co-Büchi automata are defined as for Büchi automata. A run ϑ

of a co-Büchi automaton C is accepting if Inf(ϑ) ∩ F = ∅, where F is the set of “accepting”
states of C . We define Lω(C) := {α ∈ �ω : there is a run of C on α that is accepting (in the
co-Büchi sense)}.

Let A = (Q,�, δ, qI,F) be an automaton. The state q ∈ Q is reachable from p ∈ Q

if there is a word w ∈ �∗ such that q ∈ δ̂(p,w). In the remainder of the text, we assume
that every state in an automaton is reachable from its initial state. A strongly connected
component (SCC) of A is a set S ⊆ Q such that every p ∈ S is reachable from every q ∈ S

and S is maximal. For q ∈ Q, SCC(q) denotes the SCC S ⊆ Q with q ∈ S. We call an SCC S

accepting if S ⊆ F , and rejecting if S ∩ F = ∅. An automaton A is weak if every SCC of A
is either accepting or rejecting.

In the remainder of the text, we use the following initialisms: DBA for “deterministic
Büchi automaton,” co-DBA for “deterministic co-Büchi automaton,” and WDBA for “weak
deterministic Büchi automaton.”

2.2 Representing sets of reals with automata

Let R be the first-order structure (R,Z,+,<), where + and < are as expected, and Z is
the unary predicate such that Z(x) is true iff x is an integer. For a formula ϕ(x1, . . . , xr)

and a1, . . . , ar ∈ R, we write R |= ϕ[a1, . . . , ar] if ϕ is true in R when the variable xi is
interpreted as ai , for all integers i with 1 ≤ i ≤ r .

Boigelot, Jodogne, and Wolper have shown in [16] that for every first-order definable
set X ⊆ R

r in R, there is a WDBA A that describes X. Moreover, they have shown that A
can be effectively constructed from a formula ϕ(x1, . . . , xr) that defines X, that means,
X = {a ∈ R

r : R |= ϕ[a]}. We recall the precise correspondence between subsets of R
r and

ω-languages from [16]. In the remainder of the text, let
 > 1 and � := {0, . . . ,
 − 1} be
fixed.
 is called the base.

Let us first explain how we represent real numbers as ω-words in binary, that means,
the case where r = 1 and
 = 2. The word representation is similar to the floating point
representation of real numbers, where the integer part and the fractional part of a real number
are separated by a decimal point. Since we are using ω-words, the word representation is
exact and does not approximate the real number. Concretely, a word representation of a
real number has the form v � γ , where v ∈ {0,1}+ is the integer part and γ ∈ {0,1}ω is
the fractional part. Note that to improve readability, we use the symbol � instead of the
decimal point to separate the integer part from the fractional part. We use the 2’s complement
representation by interpreting the bits in big Endian. That means, the word v represents
the integer −2|v|−1 · v(0) + ∑

0<i<|v| 2|v|−i−1 · v(i) and the ω-word γ represents the real
number

∑
i≥0 2−i−1 · γ (i). Note that the first bit v(0) also encodes the sign of the integer.

The following definition generalizes this representation for real numbers to vectors of real
numbers in an arbitrary base
 > 1.

Definition 1 Let r ≥ 1 be an integer.

(i) Vr denotes the set of all ω-words over the alphabet �r ∪ {�} of the form v � γ , where
v ∈ (�r)+ with v(0) ∈ {0,
 − 1}r and γ ∈ (�r)ω .

(ii) An ω-word v � γ ∈ Vr represents the vector of real numbers with r components

〈〈v � γ 〉〉 := −
|v|−1

 − 1
· v(0) +

∑

0<i<|v|

|v|−i−1 · v(i) +

∑

i≥0

−i−1 · γ (i) .

Form Methods Syst Des (2008) 33: 85–115 89

Here, scalar multiplication is as usual and vector addition is componentwise. Note that
we do not distinguish between vectors and tuples.

(iii) For a formula ϕ(x1, . . . , xr), we define L(ϕ) := {α ∈ Vr : R |= ϕ[〈〈α〉〉]}.

Note that every vector in R
r can be represented by an ω-word in Vr . However, the repre-

sentation is not unique. First, we can repeat the first letter arbitrary often without changing
the represented vector, that means, 〈〈α〉〉 = 〈〈α(0)α〉〉, for all α ∈ Vr . Second, a vector that
contains in a component a rational number whose denominator has only prime factors that
are also factors of the base
, has distinct representations. For example, in base
 = 2, we
have that 〈〈0�10ω〉〉 = 〈〈0�01ω〉〉 = 1

2 , where bω denotes the infinite repetition of the letter b.

Additional notation Let r ≥ 1 and s, t ∈ {1, . . . , r} be integers with s ≤ t . We denote the
t th coordinate of b ∈ �r by b�t and b�s,t := (b�s , b�s+1, . . . , b�t). We write α�t for the t th
track of α ∈ (�r ∪ {�})ω, that means, α�t is the ω-word γ ∈ (� ∪ {�})ω defined as γ (i) := �

if α(i) = �, and γ (i) := (α(i))�t otherwise, for i ∈ N. Analogously, α�s,t denotes the ω-
word consisting of the tracks s, s + 1, . . . , t of α. For integers m,n ≥ 1 and ω-words α ∈
(�m ∪ {�})ω and β ∈ (�n ∪ {�})ω , we write (α,β) for the ω-word γ ∈ (�m+n ∪ {�})ω with
γ�1,m = α and γ�m+1,m+n = β . Here, we make the assumption that α(i) = � iff β(i) = �, for
all i ∈ N. We use the same notation for finite words, which is defined analogously.

3 Don’t cares for optimizing automata representations

In this section, we define our optimized representation of the real numbers as ω-words,
which leads us to the general concept of don’t care words. Let us first give a motivating
example.

Example 2 Consider the formula ϕ(x, y) := x �= 0 ∧ x + y = 0. The minimal WDBA ac-
cepting L(ϕ) in base
 = 2 is shown in Fig. 1(a). This WDBA is rather complex as it must
either accept or reject all ω-words that represent the same pair of real numbers. For instance,
the ω-words α := (1,0) � (1,0)ω and β := (0,1) � (0,1)ω represent the pair (0,0) of real
numbers, which does not satisfy ϕ and thus, the WDBA must reject them. In the optimized
encoding we exploit that already the ω-word γ := (0,0) � (0,0)ω takes care of the fact that
the pair (0,0) ∈ R

2 is not in the represented set. That means, we can add α and β to the
ω-language.

More general, an ω-word that has a suffix in which at least one of its tracks is of the form
1ω is treated as a don’t care. We can freely choose whether the automaton should accept
or reject this ω-word. Observe that for every don’t care representing the pair (x, y) of real
numbers, there is an ω-word that also represents (x, y) and is not a don’t care.

Consider again the ω-words α and β , which are don’t cares. When reading these ω-
words, we eventually loop in the states 4 and 5, respectively. Note that all runs that eventually
stay in one of these states are don’t cares. Making the states 4 and 5 accepting clearly alters
the ω-language of the WDBA. However, we only add ω-words that are don’t cares, like α

and β . Note that the ω-word γ , which also represents the pair (0,0) of real numbers, will still
be rejected. If the states 4 and 5 are accepting we can merge them with state 3. Analogously,
we can make state 2 rejecting. Then, we can merge the states 2 and 9 with the rejecting
sink state. We could also make the states 11 or 12 accepting. However, this would not be
beneficial since it will prevent us from merging the states 10, 11, and 12. The resulting
minimized automaton is depicted in Fig. 1(b).

90 Form Methods Syst Des (2008) 33: 85–115

Fig. 1 Minimal WDBAs for the
formula x �= 0 ∧ x + y = 0. For
the sake of readability, we have
omitted the rejecting sink states
and their incoming transitions

(a) straightforward encoding

(b) optimized encoding

In the context of encoding real numbers by ω-words, we use the following don’t cares.

Definition 3 Let r ≥ 1 be an integer. An ω-word α ∈ (�r ∪ {�})ω is a don’t care word if
there are integers t ∈ {1, . . . , r} and k ∈ N such that α(i) ∈ �r and (α(i))�t =
 − 1, for all
integers i ≥ k. DCr denotes the set of all don’t care words in (�r ∪ {�})ω .

As the following examples shows, in comparison to the standard ω-word representation
of sets of real numbers from Definition 1, the use of the sets DCr can result in exponentially
more compact automata-based representation of the same set of vectors of real numbers.

Example 4 For the integer r ≥ 1, we define the formula ϕr(x1, . . . , xr) := ∧
1≤i<r xi = xi+1.

The size of the minimal WDBA for ϕr using the straightforward encoding is exponential in r .
Let us consider the case in more detail, where the base
 is 2. Figure 2(a) shows the minimal
WDBA that accepts the ω-language L(ϕr). One might think that for checking whether an
assignment satisfies ϕr , it is sufficient and necessary that at each position, the digits of the
assigned values in the 2’s complement representation are equal. That means, the automaton
would have to check whether the components in each symbol in �r are equal when reading
an ω-word. For doing this, we need only a constant number of states. However, vectors of
real numbers can be represented by different ω-words. For some vectors of r equal real
numbers, we have 2r different ω-word representations for which we need additional states

Form Methods Syst Des (2008) 33: 85–115 91

Fig. 2 Minimal WDBAs for the
formula

∧
1≤i<r xi = xi+1. For

the sake of readability, we have
omitted the rejecting sink states
and their incoming transitions

(a) straightforward encoding

(b) optimized encoding

in order to accept them as well. Namely, these vectors consist of r equal rational numbers
whose denominators are divisible by 2. Note that we do not count different representations
that only differ by the repetition of the first letter. With the don’t care set DCr the size of the
minimal WDBA for the formula ϕr does not depend on r . Out of the 2r different encodings
for an r-dimensional vector of equal rational numbers whose denominators are divisible
by 2, only one encoding is not in DCr . All these encodings in DCr except the encoding
u(1, . . . ,1)ω with u ∈ (�r ∪ {�})+ can be removed from the ω-language L(ϕr). We obtain
the minimal WDBA B depicted in Fig. 2(b). Note that B represents the set L(ϕ) modulo the
don’t care words in DCr , that means, Lω(B) \ DCr = L(ϕr) \ DCr .

The plan of using the sets DCr in an automata-based decision procedure for R is as
follows. Instead of constructing a WDBA that accepts the ω-language L(ϕ) for a formula ϕ,
we construct a WDBA that accepts an ω-language that coincides on all the ω-words in L(ϕ)

that are not don’t care words. Note that removing or adding all don’t care words to L(ϕ)

does not necessarily result in a smaller automaton. Also note that by removing or adding all
don’t care words we can obtain ω-languages that are not recognizable by WDBAs. However,
before we show how to accomplish the task of algorithmically exploiting the use of the
sets DCr of don’t care words and evaluate it, let us generalize the concept of ω-words for
which we “do not care” if they belong to an ω-language or not.

Definition 5 A don’t care set D is an ω-language over some alphabet �, and an ω-word
in D is a don’t care word. For ω-languages L,L′ ⊆ �ω , we write L ≡D L′ if L\D = L′ \D.

We want to remark that don’t care sets usually depend on the application context, and we
stress that the main purpose of don’t care sets is to obtain a more compact automata-based
representation of a set. For instance, the don’t care sets DCr naturally arise from the encoding
of real numbers in Definition 1, and in the Examples 2 and 4, we have demonstrated that the

92 Form Methods Syst Des (2008) 33: 85–115

don’t care sets DCr are effective as a means of reducing an automata-based representation
for a set of vectors of real numbers. In the remainder of this section, we identify and sketch
further potential applications of don’t care sets.

Remark 6 The first application of using don’t care sets that we discuss in the following is
for improving automata-based decision procedures for automatic structures [8, 37] like R,
Presburger arithmetic, and the weak monadic second-order logic with one successor.

To simplify the exposition, we restrict ourselves to the automata-based decision proce-
dures for R described in [16], which builds for a formula ϕ, by recursion, a WDBA that
accepts the ω-language L(ϕ). For example, for the formula ψ ∨ψ ′, we first build WDBAs A
and A′ that accept the ω-languages L(ψ) and L(ψ ′), respectively. Then, we apply the prod-
uct construction to A and A′ to obtain a WDBA that accepts L(ψ ∨ψ ′). Observe that instead
of constructing a WDBA that accepts L(ψ), it suffices to construct a WDBA B that accepts
L(ψ ′) modulo the don’t care set L(ψ), that means, Lω(B) ≡L(ψ) L(ψ ′).

The benefit of having the don’t care set L(ψ) is that we can use it to reduce the size
of the intermediate WDBAs that occur during the construction of B. Consider the exam-
ple where ψ ′ is the formula ∃xψ ′′. The construction of the automaton for ∃xψ ′′ from the
automaton for ψ ′′ is potentially expensive, since the construction involves a determiniza-
tion construction, which might produce an exponential blow-up in an automaton’s state
space [16]. Reducing the size of the WDBA for ψ ′′ might help to prevent such an expo-
nential blow-up. Similarly, for a conjunction ψ ∧ ψ ′, we can use the complement of L(ψ)

as a don’t care set when constructing the WDBA for ψ ′. Note that this use of don’t care sets
is complementary to the use of the don’t care sets DCr .

The other applications of don’t care sets are in regular model checking [36, 53]. Let us
give some background on regular model checking before we sketch the use of don’t care
sets here. Regular model checking provides a uniform framework for the algorithmic verifi-
cation of several classes of infinite-state system, including parametrized finite-state systems,
systems with unbounded queues, lossy channel systems, and integer counter systems. In a
nutshell, regular model checking utilizes automata to perform a symbolic reachability analy-
sis, where words represent system states, automata describe sets of system states, and word
transducers describe transitions between system states. Various semi-algorithms and heuris-
tics have been developed for carrying out such a reachability analysis. See, for example,
[1, 6, 14, 17]. Note that the reachability problem is undecidable for infinite-state systems
like parametrized finite-state systems [2]. Thus, standard iteration-based methods for com-
puting the set of reachable system states are not guaranteed to terminate. Another obstacle
in regular model checking is the size of the intermediate automata that occur during such
an automata-based reachability analysis. These automata can become large. We remark, that
this obstacle has many similarities with the state-space-explosion problem in BDD-based
model checking for finite-state systems [44].

To describe the use of don’t care sets in regular model checking, we take the follow-
ing abstract and simplified setting, where we iteratively approximate the set of reach-
able system states. That means, we iteratively compute languages R0,R1,R2, . . . with
R0 ⊆ R1 ⊆ R2 ⊆ · · · until Ri+1 = Ri . In our simplified setting, R0 consists of the words
that represent the initial system states, and Ri+1 is computed from Ri and the transition
function of the infinite-state system. Moreover, each Ri is represented by an automaton.

At any point i ∈ N in the computation, we can apply the following heuristic instead pro-
ceeding with Ri+1. We partition Ri into the languages S0 and T0. From S0, we iteratively
compute the sequence S0, S1, This computation is carried out similar to the computation
of the sequence R0,R1, However, we use T0 as a don’t care set. In particular, we have

Form Methods Syst Des (2008) 33: 85–115 93

that Sj \ T0 ⊆ Sj+1 \ T0, for all j ∈ N. Moreover, we terminate the computation as soon
as Sj+1 ≡T0 Sj holds, for some j ∈ N. Analogously, we compute the sequence T0, T1, . . . ,
where we use S0 as the don’t care set. If both computations terminate, we return the language
Sj ∪ Tk , where j, k ∈ N are the minimal integers with Sj+1 ≡T0 Sj and Tk+1 ≡S0 Tk . If the
computation of the sequence S0, S1, . . . terminates, we can do even better: for the computa-
tion of the sequence T0, T1, . . . , we use Sj as the don’t care set, where j ∈ N is the minimal
integer with Sj+1 ≡T0 Sj . Note that we can apply this heuristic also in the computations of
the sequences S0, S1, . . . and T0, T1,

We point out that the use of the don’t care sets is twofold here. First, we use the don’t
care sets to obtain a smaller automata-based representation for a language L that occurs in
the computations. As for the automata-based representation of sets of vectors of reals with
the don’t care sets DCr , we are allowed to add don’t care words to L and remove don’t care
words from L as a means to reduce the size of the automaton that represents L modulo the
given don’t care set. Second, we use the don’t care sets to weaken the termination condition.
For instance, observe that (i) to terminate the computation of the sequence S0, S1, . . . , we
require Sj+1 ≡T0 Sj and (ii) it holds that Sj+1 ≡T0 Sj implies Sj+1 = Sj . This second use
of don’t cares might become useful to foster termination when widening [6] or accelera-
tion [13] techniques are used in the reachability analysis.

4 Automata operations with don’t care sets

In this section, we present general results about ω-languages with respect to a don’t care
set D. We focus on ω-languages that can be described by Büchi automata, in particular
by WDBAs. In Sect. 4.1, we observe that the standard automata constructions carry over to
handle the Boolean operations when using don’t care sets. In Sect. 4.2, we show how to
solve the emptiness problem for Büchi automata with respect to an ω-regular don’t care
set D ⊆ �ω . In Sect. 4.3, we present an efficient minimization algorithm of WDBAs with
respect to don’t care sets D ⊆ �ω that fulfill certain properties. Furthermore, we show that
the minimal WDBA is uniquely determined (up to isomorphism).

4.1 Boolean operations

The automata constructions for Boolean operations, like intersection and complementation
of ω-languages, need not to be changed when using a don’t care set D ⊆ �ω . For instance,
for complementation, if we have that L ≡D L′, for ω-languages L,L′ ⊆ �ω , then we have
that �ω \ L ≡D �ω \ L′. Note that it is irrelevant whether L and L′ differ on D, that means,
L ∩ D �= L′ ∩ D.

In the case of WDBAs, we can use the standard product construction for the inter-
section and union. Let A = (Q,�, δ, qI,F) and B = (Q′,�, δ′, q ′

I,F
′) be WDBAs. For

the intersection, we define D := (Q × Q′,�,η, (qI, q
′
I),F × F ′), where η((q, q ′), b) :=

(δ(q, b), δ′(q ′, b)), for q ∈ Q, q ′ ∈ Q′, and b ∈ �. The construction for the union is sim-
ilar. Complementing WDBAs is done by flipping accepting and rejecting states of a WDBA.
We define C := (Q,�, δ, qI,Q \ F).

Proposition 7

(a) For the WDBA D, it holds that Lω(D) ≡D Lω(A) ∩ Lω(B).
(b) For the WDBA C , it holds that Lω(C) ≡D �ω \ Lω(A).

94 Form Methods Syst Des (2008) 33: 85–115

Note that for constructing a WDBA for a formula ¬ϕ(x1, . . . , xr), we first have to com-
plement the WDBA for ϕ and then intersect this WDBA with a WDBA for the ω-language Vr .

4.2 Emptiness check

The emptiness problem for Büchi automata modulo a don’t care set D is to check whether a
Büchi automaton A accepts an ω-word that is not in D. If D is ω-regular, then we can solve
this problem by constructing the Büchi automaton accepting Lω(A) \ D and check whether
the resulting Büchi automaton accepts an ω-word. The complexity is in O(n), where n is the
number of states of A. Note that D is fixed and hence, the size of the Büchi automaton for
the complement of D is a constant.

4.3 Minimizing WDBAs

Löding describes in [43] an algorithm that minimizes WDBAs in two steps. In the first step,
the given WDBA is put in linear time into a normal form by determining a suitable set of
accepting states. This step does not change the accepted ω-language, since it only alters the
acceptance types of states (rejecting or accepting) that cannot occur infinitely often in a run.
In the second step, the WDBA in normal form is minimized by a standard DFA minimization
algorithm, like that of Hopcroft [34]. We extend Löding’s algorithm to WDBAs such that it
takes a don’t care set D over the alphabet � into account, where we require that (1) D �= �ω

and (2) α ∈ D ⇔ uα ∈ D, for all u ∈ �∗ and α ∈ �ω . In the remainder of this subsection, we
assume that the don’t care set D satisfies the two requirements (1) and (2) stated above.

4.3.1 Normal form of WDBAs with don’t cares

In the following, we define a normal form for WDBAs with respect to the don’t care set D

and show how to determine the normal form in linear time for a given WDBA.

Definition 8 Let A = (Q,�, δ, qI,F) be a WDBA.

(i) A is D-minimal if there is no smaller WDBA B such that Lω(A) ≡D Lω(B).
(ii) A state q ∈ Q is D-recurrent if Lω(A′) \ D �= ∅, where A′ is the WDBA (Q,�, δ, q,

SCC(q)). A state is D-transient if it is not D-recurrent. An SCC is D-recurrent if it
contains a D-recurrent state, otherwise, it is D-transient.

Note that an SCC without loops (i.e., there is no state q in the SCC and no nonempty
word u with δ̂(q, u) = q) is D-transient. Moreover, note that for the ω-words not in D, it
is irrelevant whether a D-transient SCC is accepting or rejecting. Thus, we can make D-
transient SCCs accepting or rejecting without altering the accepted ω-language modulo the
don’t care set D. Later, we make use of the following lemma.

Lemma 9 Let A = (Q,�, δ, qI,F) be a WDBA. For every state p ∈ Q, there is a state q ∈ Q

such that q is D-recurrent and q is reachable from p.

Proof For the sake of contradiction, assume that all states reachable from p are D-transient.
That means, all runs of Ap on any ω-word α ∈ �ω visit only D-transient states. It follows
that all states reachable from qI are D-transient because of the requirement (2). Therefore,
all ω-words α ∈ �ω are in D. This contradicts the requirement (1). �

Form Methods Syst Des (2008) 33: 85–115 95

1: Compute the SCC graph G of A.
2: Tag SCCs that are D-transient.
3: Compute a topological ordering v1, . . . , vm on the vertices of G.
4: Let k be the smallest even integer greater than or equal to m.
5: for i = m downto 1 do /* Compute a k-maximal D-coloring c : Q → N */
6: if vi has no successors and vi is accepting then
7: Define c(q) := k, for all q ∈ vi .
8: else if vi has no successors and vi is rejecting then
9: Define c(q) := k − 1, for all q ∈ vi .

10: else
11: Let � := min{c(q) : vj is a successor of vi and q ∈ vj }.
12: if vi is D-transient then
13: Define c(q) := �, for all q ∈ vi .
14: else if (� is even and vi is accepting) or (� is odd and vi is rejecting) then
15: Define c(q) := �, for all q ∈ vi .
16: else
17: Define c(q) := � − 1, for all q ∈ vi .
18: end if
19: end if
20: end for
21: Return the WDBA A′ := (Q,�, δ, qI,Fc).

Fig. 3 Algorithm for computing the D-normal form of a WDBA A = (Q,�, δ, qI,F)

Similar to Löding’s algorithm, we construct first a suitable set of accepting states by
determining the acceptance types of D-transient states optimal in the sense that applying a
minimization algorithm for DFAs yields the minimal WDBA with respect to the don’t care
set D. We need the following definitions.

Definition 10 Let A = (Q,�, δ, qI,F) be a WDBA.

(i) A mapping c : Q → N is a D-coloring for A if the two conditions hold:

– c(q) is even ⇔ q ∈ F , for every D-recurrent state q ∈ Q, and
– c(p) ≤ c(q), for all p,q ∈ Q and b ∈ � with δ(p, b) = q .

The D-coloring c is k-maximal, where k ∈ N, if c(q) ≤ k and c′(q) ≤ c(q), for every
q ∈ Q and every D-coloring c′ : Q → {0, . . . , k} for A.

(ii) A is in D-normal form if for some even k ∈ N, there is a k-maximal D-coloring c :
Q → N such that F = Fc , where Fc := {q ∈ Q : c(q) is even}.1

The algorithm in Fig. 3 computes the D-normal form of a given WDBA A = (Q,�, δ,

qI,F). The main task of the algorithm is to compute a k-maximal coloring for A, where
k is even and large enough. This is done by looking at the acyclic SCC graph of A, which
the algorithm traverses in a reversed topological ordering. Observe that the states in an SCC

have the same color in a D-coloring. In the following, we explain the algorithm in detail.
In line 1, we determine the SCCs S1, . . . , Sm of A. The SCC graph G of A is defined

as follows. G has the vertex set V := {v1, . . . , vm}, where the vertex vi corresponds to the

1Alternatively, we could require that k has to be odd. We must fix some parity in order to obtain a canonical
form for D-minimal WDBAs in D-normal form.

96 Form Methods Syst Des (2008) 33: 85–115

SCC Si , for 1 ≤ i ≤ m. To simplify notation, we identify a vertex vi with its corresponding
SCC Si ⊆ Q. The set of edges E ⊆ V × V of G is defined as E := {(u, v) : u �= v and
δ(q, b) ∈ v, for some q ∈ u and b ∈ �}. Note that the size of G is bounded by the size of A.
We have that |V | ≤ |Q| and |E| ≤ |�| · |Q|. The graph G can be computed in linear time by
standard SCC algorithms [21].

In line 2, we mark the SCCs of A that are D-transient. For an SCC v ∈ V , this can be
done by checking whether Lω(C) ⊆ D holds, where C is the WDBA (Q,�, δ, q, v) and q

is an arbitrarily chosen state in v. We want to make the following two remarks on such a
check. First, due to the requirement (2), either all the ω-words for which their runs eventually
stay in the SCC v are don’t care words or none of them is. So, the outcome of the check
Lω(C) ⊆ D does not depend on the choice of the state q in v. Second, note that Lω(C) ⊆ D

iff Lω(C) ∩ (�ω \ D) = ∅. Under the assumption that D is ω-regular, it is easy to see that
Lω(C)∩ (�ω \D) = ∅ can be checked in time O(|v|), since D is fixed and we can construct a
Büchi automaton for the ω-language �ω \D in a preprocessing step. In summary, the checks
performed in line 2 take time O(

∑
v∈V |v|) = O(|Q|).

In line 3, we order the vertices of G topologically, that means, we determine a permu-
tation π : {1, . . . ,m} → {1, . . . ,m} such that for all i, j ∈ {1, . . . ,m}, if (vi, vj) ∈ E then
π(i) < π(j). Using a standard algorithm for topological sorting [21], we can compute π

in linear time. Without loss of generality, we assume in the following that π is the identity
function.

In line 4, we choose k as the smallest even integer greater than or equal to m. In the
for-loop (lines 5–20) we determine a k-maximal coloring c : Q → N for A. In the ith tra-
versal of this for-loop, we color the states in the ith SCC vi with respect to the reversed
topological ordering. Note that the states in the successor SCCs of vi are already colored. If
there are no successor SCCs, we assign the maximal color to the states depending on k and
their acceptance type (lines 6–9). From Lemma 9 it follows that an SCC with no successors
cannot be D-transient. If the SCC has successors, the maximal color for the states in this SCC

depends on the minimal color � of the successor SCCs (line 11). If the SCC is D-transient
(lines 12–13) then � is the maximal color we can assign to these states. Depending on �,
the states in the SCC will then be either accepting or rejecting in the resulting WDBA. If the
SCC is D-recurrent, the coloring has to preserve the acceptance type of the states in the SCC.
Depending on �, we assign the maximal possible color to the states in the SCC (lines 14–17).

With this algorithm in Fig. 3, we obtain the following theorem.

Theorem 11 For a given WDBA A = (Q,�, δ, qI,F), there is a set F ′ ⊆ Q such that the
WDBA A′ := (Q,�, δ, qI,F

′) is in D-normal form and Lω(A) ≡D Lω(A′). The set F ′ can
be constructed in time O(|Q|) if D is ω-regular.

4.3.2 Minimization of WDBAs with don’t cares

Our minimization algorithm for WDBAs with the don’t care set D is as follows: First, we put
the given WDBA into D-normal form. Second, we apply to the WDBA in D-normal form the
classical DFA minimization algorithm [34]. The overall complexity is in O(n logn), where n

is the size of A. This algorithm returns the unique minimal WDBA for the don’t care set D.

Theorem 12 For a given WDBA A = (Q,�, δ, qI,F), there is a D-minimal WDBA A′ with
Lω(A) ≡D Lω(A′). A′ can be constructed in time O(|Q| log |Q|) if D is ω-regular. Further-
more, every D-minimal WDBA B in D-normal form with Lω(A) ≡D Lω(B) is isomorphic
to A′.

Form Methods Syst Des (2008) 33: 85–115 97

The proof of Theorem 12 follows the lines of the proof in Löding’s article [43] on mini-
mizing WDBAs. However, there are some subtleties that need to be adjusted and generalized.
We prove Theorem 12 in Appendix A.

We conclude this section by a remark on a don’t care set for the rational numbers and its
use to represent sets of rational numbers by WDBAs.

Remark 13 Similar to Definition 3, we can define for r ≥ 1, the set Ir that consists of the ω-
words over �r ∪{�} that are not periodic in at least one track. Note that such a periodic track,
if it is also in V1, corresponds to an irrational number. Obviously, Ir has the properties (1)
and (2). The decision procedure for the first-order theory over R using WDBAs given in [16]
can be understood as an automata-based decision procedure for the first-order theory over
(Q,Z,+,<) using WDBAs with the don’t care sets Ir . Note that the ω-languages definable
in the first-order logic over (Q,Z,+,<) are in general not ω-regular using the encoding
in Definition 1(ii). From this point of view, we see that WDBAs modulo don’t care sets can
describe non-ω-regular languages and in this case, they even have a canonical minimal form
(Theorem 12). Analogously, WDBAs with the don’t care sets DCr can describe ω-regular
languages that are not in the Borel class Fσ ∩ Gδ , which captures the expressive power of
WDBAs [49]. Furthermore, by Theorem 12, the ω-words in DCr that have to be added to or
removed from the ω-language are uniquely determined in order to obtain the minimal WDBA

for the ω-language modulo the don’t care set DCr .

5 Quantification for the reals

In this section, we give an automata construction for WDBAs that handles the quantification
in the first-order logic over R when using the don’t care sets DCr .

Roughly speaking, for the straightforward encoding, the existential quantification is done
by eliminating the track of the quantified variable in the transitions of the WDBA.2 Intuitively,
the resulting nondeterministic automaton guesses the digits of the quantified variable. As ex-
plained in [16], we can determinize this automaton by using the breakpoint construction for
weak co-Büchi automata (see [40, 45]). The construction for handling the existential quan-
tification that we present in this section for the optimized encoding is more subtle and its
correctness proof is more involved. The reasons are the following. First, the presented con-
struction uses the standard powerset construction for automata over finite words. In fact, we
establish a more general result for determinizing weak Büchi automata that accept WDBA-
recognizable ω-languages modulo a given don’t care set. Second, we have to cope with the
following problem: Assume that A is a WDBA for the formula ϕ(x1, . . . , xr), that means,
Lω(A) ≡DCr L(ϕ). Eliminating the track of the variable x1 results in a nondeterministic
Büchi automaton that might accept ω-words α �∈ DCr−1 for which there is only an ω-word
γ ∈ DC1 such that (γ,α) ∈ Lω(A). A WDBA for ∃x1ϕ must not accept such ω-words α. A
concrete instance of this problem is given in the following example.

Example 14 Consider again the formula ϕ(x, y) := x �= 0 ∧ x + y = 0 and the WDBA in
Fig. 1(b) from Example 2. Eliminating the x-track, that means, the first track, yields a non-
deterministic Büchi automaton that accepts the ω-word 0�0ω , since we can infinitely loop in

2Some additional work is needed for the sign bits, that means, the first letter of an ω-word. See, for exam-
ple, [10, 11] for details.

98 Form Methods Syst Des (2008) 33: 85–115

state q := {3,4,5} by reading the letter 0. However, R �|= ∃xϕ[〈〈0 � 0ω〉〉]. Here, the problem
is that the only ω-word γ such that (γ,0 � 0ω) is accepted by the WDBA in Fig. 1(b) is the
don’t care word 1�1ω . On the one hand, for the ω-word 0�0ω the state q has to be rejecting.
On the other hand, for the ω-word 0 � (10)ω the state q has to be accepting.

Before we present our construction, we remark that removing all don’t care words from
the ω-language of the given WDBA before applying the construction in [16] for handling the
existential quantification does not work. The reason is that the resulting DBA is not neces-
sarily weak and hence, we can no longer apply the breakpoint construction after eliminating
the track of the quantified variable.

In the following, assume that ϕ is a formula with r free variables x1, . . . , xr and A =
(Q,�r ∪ {�}, δ, qI,F) is a WDBA for the formula ϕ, that means, Lω(A) ≡DCr L(ϕ). Our
construction of a WDBA B with Lω(B) ≡DCr−1 L(∃xiϕ) comprises three steps. To simplify
notation, we assume without loss of generality that i = r and Lω(A) ⊆ Vr . In the first step
of the construction, we take care of the ω-words in DCr ∩ L(¬ϕ) that are accepted by the
WDBA A and for which the deletion of the last track yields an ω-word not in DCr−1. In the
second construction step, we handle the sign bits, that means, the first letter. Furthermore,
we delete the last component of the letters in the transitions of the automaton. In the third
construction step, we determinize the automaton and make it weak. The following three
subsections present the details of these three construction steps.

5.1 First construction step: filtering out don’t care words

Before we give the details of the first construction step, we need the following definitions.
Let D be the set {β ∈ Vr : β�t ∈ DC1, for some 1 ≤ t < r} and for α ∈ Vr , we define L(α) :=
{β ∈ Vr : 〈〈β〉〉 = 〈〈α〉〉}. The normalized ω-word β ′ of an ω-word β ∈ (Vr ∩ DCr) \ D is
defined as follows. Let k ≥ 0 be the least integer with (β(i))�r =
−1, for all i ≥ k whenever
β(i) �= �. If k = 0, the ω-word β�r is of the form (
 − 1) . . . (
 − 1) � (
 − 1) We define

β ′ := (
(β(0))�1,r−1

0

)(
(β(1))�1,r−1

0

)
. . . ,

where the letter � occurs in β ′ at the position i with β(i) = �. If k = 1, the ω-word β�r is of
the form 0(
 − 1) . . . (
 − 1) � (
 − 1) We define

β ′ := (
(β(0))�1,r−1

0

)(
(β(0))�1,r−1

1

)(
(β(1))�1,r−1

0

)(
(β(2))�1,r−1

0

)
. . . ,

where the letter � occurs in β ′ at the position i + 1 with β(i) = �. If k > 1, we define

β ′ := β(0) . . . β(k − 2)
((β(k−1))�1,r−1

(β(k−1))�1,r+1

)(
(β(k))�1,r−1

0

)(
(β(k+1))�1,r−1

0

)
. . . ,

where we assume for readability that β(i) = �, for some i ≤ k − 2. The definition of β ′,
where β(i) = � with i > k − 2 is similar. Note that β ′ ∈ Vr \ DCr and 〈〈β ′〉〉 = 〈〈β〉〉.

From the WDBA A, we construct the WDBA C := (Q × Q,�r ∪ {�}, η, (qI, qI),E),
where η and E are defined as follows.

– For a state (p,p′) ∈ Q × Q, we define

η
(
(p,p′), �

) := (
δ(p, �), δ(p′, �)

)
.

Form Methods Syst Des (2008) 33: 85–115 99

– For the initial state (qI, qI), b ∈ �r−1, and c ∈ �, we define

η
(
(qI, qI), (b, c)

) :=
{(

δ(qI, (b, c)), δ̂(qI, (bb,01))
)

if c <
,
(
δ(qI, (b, c)), δ(qI, (b,0))

)
if c =
 − 1.

– For a state (p,p′) ∈ (Q × Q) \ {(qI, qI)}, b ∈ �r−1, and c ∈ �, we define

η
(
(p,p′), (b, c)

) :=
{(

δ(p, (b, c)), δ(p, (b, c + 1))
)

if c <
,
(
δ(p, (b, c)), δ(p′, (b,0))

)
if c =
 − 1.

– A state (p, q) is in E iff p ∈ F and there is a word u ∈ (�r)+ such that uω �∈ DCr and
η̂((p, q), u) = (p, q). Note that by the definition of the set E of accepting states, the states
in an SCC of C are either all accepting or all rejecting. Thus, the automaton C is weak.

Intuitively, the constructed WDBA C works as follows. The first component of the states
of C is used to simulate the run of the WDBA A on an ω-word α. If α ∈ (Vr ∩DCr)\D then the
second components of C ’s states eventually simulate the run of A on the normalized ω-word
β of α. Assume that the run of C on α eventually stays in an SCC S ⊆ Q × Q. C accepts α

iff there is state in S that can occur infinitely often in a run on an ω-word γ ∈ Lω(A) \ DCr .
Note that the ω-words α and γ can be distinct.

Lemma 15 The WDBA C accepts only ω-words in Vr . Moreover, for α ∈ Vr the following
properties hold:

(a) if α ∈ L(ϕ) \ DCr then α ∈ Lω(C);
(b) if α �∈ L(ϕ) then (Lω(C) ∩ L(α)) \ D = ∅.

Proof The proof that Lω(C) ⊆ Vr is straightforward. Recall our assumption Lω(A) ⊆ Vr .
For the remainder of the proof, let α be an ω-word in Vr .
(a) Assume that α ∈ L(ϕ) \ DCr . There is an accepting run ϑ = q0q1 . . . ∈ Qω of A on α.

Hence, there is an integer k ≥ 0 such that qi ∈ F , for all i ≥ k. Let ϑ ′ be the run of C
on α. By definition, the run ϑ ′ has the form ϑ ′ = (q0, q

′
0)(q1, q

′
1) . . . ∈ (Q × Q)ω , for some

q ′
0, q

′
1, . . . ∈ Q. We have to show that ϑ ′ is accepting.

There is an SCC S ⊆ Q × Q and an integer � ≥ k such that (qi, q
′
i) ∈ S, for all i ≥ �.

Let (q, q ′) ∈ S be a state that occurs infinitely often in the run ϑ ′. Note that q ∈ F . Since
α �∈ DCr , there a word u ∈ (�r)+ such that uω �∈ DCr and η̂((q, q ′), u) = (q, q ′). Thus, by
definition of E, the states in S are accepting.

(b) Let ϑ be the run of C on an ω-word β ∈ L(α). Assume that ϑ = (q0, q
′
0)(q1, q

′
1) . . . ∈

(Q × Q)ω . By the definition of C , note that ξ := q0q1 . . . is a run of A on β .
First, assume that the run ξ is rejecting. There is an integer k ≥ 0 such that qi �∈ F , for

all i ≥ k. There is an SCC S ⊆ Q × Q of C and an integer � ≥ k such that (qi, q
′
i) ∈ S and

qi �∈ F , for all i ≥ �. We have to show that the states in S are not accepting. By definition,
the states in S can only be accepting if there is a state (p,p′) ∈ S with p ∈ F . This is not
possible, since A is weak and thus, p and q� cannot be in the same SCC of A.

Second, assume that the run ξ is accepting. Note that β ∈ DCr , since β �∈ L(ϕ) and
β ∈ Lω(A). If β ∈ D then there is nothing to prove. In the following, assume that β �∈ D.
That means, that only the last track of β is a don’t care word. Since the run ξ is accepting,
there is an integer k ≥ 0 such that qi ∈ F , for all i ≥ k. Moreover, there is an SCC S ⊆ Q×Q

of C and an integer � ≥ k such that (qi, q
′
i) ∈ S and qi ∈ F , for all i ≥ �. We show by

contradiction that the states in S are rejecting. Assume that S ⊆ E.

100 Form Methods Syst Des (2008) 33: 85–115

From the definition of E, it follows that there is a state (p,p′) ∈ S and a word u ∈
(�r)+ such that uω �∈ DCr and η̂((p,p′), u) = (p,p′). Let (q, q ′) ∈ S be a state that occurs
infinitely often in the run ϑ . Without loss of generality, we assume that (q�, q

′
�) = (q, q ′) and

that (β(i))�r =
 − 1, for all i ≥ �. Let v, v′ ∈ (�r)∗ be words with η̂((q, q ′), v) = (p,p′)
and η̂((p,p′), v′) = (q, q ′).

Let β ′ ∈ Vr \ DCr be the normalized ω-word of β and let ξ ′ be the run of A on β ′. Note
that ξ ′ is rejecting, since β ′ �∈ L(ϕ) \ DCr . By the definition of C ’s transition function, we
have that

ξ ′ =

⎧
⎪⎨

⎪⎩

(ϑ(0))�2 (ϑ(1))�2 . . . if k = 0,

(ϑ(0))�2 (δ(qI, β
′(0))) (ϑ(1))�2 (ϑ(2))�2 . . . if k = 1,

(ϑ(0))�1 . . . (ϑ(k − 1))�1 (ϑ(k))�2 (ϑ(k + 1))�2 . . . otherwise,

(1)

where k ≥ 0 is the least integer with (β(i))�r =
 − 1, for all i ≥ k whenever β(i) �= �.
Since β ∈ DCr \ D, there is a word u′ ∈ (�r)+ with η̂((q, q ′), u′) = (q, q ′) and u′ω �∈ D.

Moreover, we can require, without loss of generality, that u′
�r ∈ {
 − 1}∗ and that Inf(ϑ) is a

superset of the set V of states that we visit when reading the word u′ from the state (q, q ′).
Together with the equality (1), we conclude that Inf(ξ ′) ⊇ {s ′ : (s, s ′) ∈ V }.

Let A′ = (P,�r ∪ {�},μ,pI,G) be a WDBA with Lω(A′) = L(ϕ). We use A′ to define
an infinite sequence of words w(0),w(1), . . . ∈ (�r ∪{�})∗. Let w(0) := β(0) . . . β(�− 1). For
i > 0, we define w(i) := w(i−1)w, where the definition of the word w ∈ (�r)+ depends on
the state μ̂(pI,w

(i−1)).

– Case 1: μ̂(pI,w
(i−1)) �∈ G. We define w := (vuv′)n, where n ≥ 1 is some integer such that

μ̂(pI,w
(i−1)(vuv′)n) ∈ G. Such an integer n exists, since w(i−1)(vuv′)ω ∈ Lω(A) \ DCr .

Hence, A′ accepts w(i−1)(vuv′)ω . That means, A′ eventually stays in an SCC with only
accepting states.

– Case 2: μ̂(pI,w
(i−1)) ∈ G. We define w := u′n, where n ≥ 1 is some integer such that

μ̂(pI,w
(i−1)u′n) �∈ G. The existence of such an integer n follows from the fact that A

rejects the normalized ω-word β ′′ ∈ Vr \ DCr of w(i−1)u′ω . The run ξ ′′ ∈ Qω of A on β ′′

is rejecting, since Inf(ξ ′) ⊇ Inf(ξ ′′) = {s ′ : (s, s ′) ∈ V }.
Let γ be the ω-word that is the limit of the sequence w(0),w(1), . . . of words. The run

of A′ on γ infinitely alternates between accepting and rejecting states. This contradicts the
weakness of A′. Note that there are only finitely many SCCs in A′. �

An upper bound of the size of the constructed WDBA C is n2, where n is the size of the
WDBA A. It is open whether the quadratic blow-up of this construction really occurs when
the WDBA A represents a definable set in the first-order logic over R. In our experiments
(see Sect. 6), we have not encountered this quadratic worst-case blow-up. We only could
observe that the sizes of the resulting automata increase by a factor 2 to 3 with respect to
the input automata. Note that we only count the states of an automaton that are reachable
from the initial state. Furthermore, minimizing the constructed WDBA results usually in a
WDBA that is only slightly larger than the input automaton. The worst case that we could
observe was that the size of the minimized automaton has doubled. These observations on
the carried out experiments indicate that it might be possible to establish a better worst-case
upper bound of the presented construction and that there might be even a better automata
construction that only doubles the number of states.

Form Methods Syst Des (2008) 33: 85–115 101

5.2 Second construction step: handling the sign bits

Let C = (P,�r ∪ {�}, η,pI,E) be the WDBA that we obtained in the first construction step
discussed in Sect. 5.1 from the WDBA A with Lω(A) ≡DCr L(ϕ). We obtain a weak Büchi
automaton D with Lω(D) ≡DCr L(∃xrϕ) as follows.

1. We eliminate in the WDBA C the last component of the letters in the transitions.
That means, we construct the intermediate weak Büchi automaton D′ := (P,�r−1 ∪
{�}, ξ ′,pI,E) with

ξ ′(p, b) :=
{

η(p, �) if b = �,

{η(q, (b, c)) : c ∈ �} otherwise,

for p ∈ P and b ∈ �r−1 ∪ {�}.
2. In order to obtain an automaton D that accepts the ω-language for L(∃xrϕ) modulo

the don’t care set DCr−1, we have to take care of the sign bits. The reason is that D′

might accept an ω-word bbγ ∈ Vr−1 but not bγ ∈ Vr−1. Recall that 〈〈bbγ 〉〉 = 〈〈bγ 〉〉. This
situation occurs when the shortest integer representation of the “guessed track” for the
variable xr is longer than the shortest integer representation of the tracks of the variables
x1, . . . , xr−1.

We obtain the weak Büchi automaton D := (P,�r−1 ∪ {�}, ξ,pI,E), where the tran-
sition function ξ is defined as follows. For p ∈ P \ {pI} and b ∈ �r−1 ∪ {�}, we define
ξ(p, b) := ξ ′(p, b). For the initial state, we define ξ(pI, �) := ξ ′(p, �) and

ξ(pI, b) := {
η̂(qI, (b

n, u)) : n > 0 and u ∈ �+ with |u| = n
}
,

for b ∈ �r−1.

Note that construction of the automaton D is exponential in r , since we have to determine
the transitions from the initial state for each letter in �r−1. The algorithm described in [10]
for determining the transitions from the initial state of an NFA when handling a quantifier in
Presburger arithmetic, can be adapted to our construction. It works well in practice, although
its exponential worst-case complexity in r .

Lemma 16 It holds that Lω(D) ≡DCr−1 L(∃xrϕ).

Proof We show that Lω(D) \ DCr−1 = L(∃xrϕ) \ DCr−1.
(⊆) Assume that α ∈ Lω(D) \ DCr−1. By construction, there is an ω-word β ∈ Vr such

that β�1,r−1 = α(0) . . . α(0)α and β ∈ Lω(C) \ D. Note that 〈〈α(0) . . . α(0)α〉〉 = 〈〈α〉〉. From
Lemma 15(b), it follows that β ∈ L(ϕ), since (Lω(C) \ D) ∩ L(β) �= ∅. We conclude that
α ∈ L(∃xrϕ).

(⊇) Assume that α ∈ L(∃xrϕ) \ DCr−1. This means, there is an ω-word β ∈ L(ϕ) \ DCr

with 〈〈β�1,r−1〉〉 = 〈〈α〉〉. By Lemma 15(a), we have that β ∈ Lω(C). Let ϑ be an accepting
run of C on β . By construction, ϑ is also an accepting run of D′ on β�1,r−1.

Let i, j > 0 be the lengths of the integer parts of α and β , respectively. Without loss
of generality, we can assume that i ≤ j . If i = j then α = β�1,r−1. Then, obviously, ϑ is
an accepting run on D. If i < j then, by construction, ϑ(0)ϑ(j − i)ϑ(j − i + 1) . . . is an
accepting run of D on α. In both cases, we have that α ∈ Lω(D). �

102 Form Methods Syst Des (2008) 33: 85–115

5.3 Third construction step: determinization

In this construction step, we turn the weak Büchi automaton D from the previous construc-
tion step (see Sect. 5.2) into a WDBA B such that Lω(B) ≡DCr−1 Lω(D). We discuss this
construction step in a more general setting. Let � be an alphabet and let D ⊆ �ω be a don’t
care set. As in Sect. 4.3, we require that (1) D �= �ω and (2) α ∈ D ⇔ uα ∈ D, for all
u ∈ �∗ and α ∈ �ω . We say that an ω-language L ⊆ �ω is WDBA-recognizable modulo D

if there is a WDBA D such that Lω(D) ≡D L. In the following, we show that we can use
the powerset construction to determinize a weak Büchi automaton A whenever Lω(A) is
WDBA-recognizable modulo D.

We need the following lemma. Intuitively, it states that if a co-DBA that accepts a WDBA-
recognizable ω-language modulo D, then for every SCC S of the co-DBA and runs on ω-
words not in D that eventually stay in S are either all accepting or all rejecting.

Lemma 17 Let C = (Q,�, δ, qI,F) be a co-DBA that accepts a WDBA-recognizable ω-
language modulo the don’t care set D, and let S ⊆ Q be an SCC of C . Furthermore, let
ϑ,ϑ ′ ∈ Qω be runs of C on ω-words in �ω \ D with Inf(ϑ), Inf(ϑ ′) ⊆ S. It holds that ϑ is
accepting iff ϑ ′ is accepting.

Proof It suffices to show that if ϑ is accepting then ϑ ′ is accepting. We prove this claim by
contradiction. Assume that ϑ is rejecting and ϑ ′ is accepting. Furthermore, assume that ϑ is
the run on the ω-word α ∈ �ω \ D and ϑ ′ is the run on the ω-word α′ ∈ �ω \ D. Let � ≥ 0
be an integer such that ϑ(�),ϑ ′(�) ∈ S. Finally, let A = (P,�,η,pI,E) be a WDBA with
Lω(A) ≡D Lω(C).

Analogously as in Lemma 15, we define an infinite sequence of words w(0),w(1), . . . ∈
�∗. The sequence of words will have the property that δ̂(qI,w

(i)) ∈ S, for all i ≥ 0. We
define w(0) := α(0) . . . α(�−1). Obviously, we have that δ̂(qI,w

(0)) ∈ S. For i > 0, we define
w(i) := w(i−1)w, where the definition of the word w ∈ �+ depends on the state μ̂(pI,w

(i−1))

and the state δ̂(qI,w
(i−1)).

– Case 1: μ̂(pI,w
(i−1)) �∈ E. By construction, we have that δ̂(qI,w

(i−1)) ∈ S. Hence, there
is a word u ∈ �+ such that δ̂(qI,w

(i−1)u) = ϑ ′(�). Moreover, there is an integer k ≥ 0
such that μ̂(pI,w

(i−1)uα′(�)α′(� + 1) . . . α′(� + k)) ∈ E. The existence of the integer k

follows from the following facts. Let α̃ be the ω-word w(i−1)uα′(�)α′(� + 1) . . . and
let ϑ̃ be the run of C on α̃. From the property (2) on the don’t care set D and α′ �∈ D, it
follows that α̃ �∈ D. Moreover, it holds that ϑ̃ is accepting since Inf(ϑ̃) = Inf(ϑ ′). So, A
accepts the ω-word α̃. We define w as the word uα′(�)α′(� + 1) . . . α′(� + k). Note that
δ̂(qI,w

(i−1)w) ∈ S.
– Case 2: μ̂(pI,w

(i−1)) ∈ E. By construction, we have that δ̂(qI,w
(i−1)) ∈ S. Hence, there

is a word u ∈ �+ such that δ̂(qI,w
(i−1)u) = ϑ(�). Moreover, there is an integer k ≥ 0 such

that μ̂(pI,w
(i−1)uα(�)α(�+1) . . . α(�+k)) �∈ E. Analogous as in Case 1, we can guaran-

tee the existence of such an integer k. We define w as the word uα(�)α(�+1) . . . α(�+k).

Let γ be the ω-words that is the limit of the sequence w(0),w(0), . . . of words. The run
of A on γ infinitely alternates between accepting and rejecting states. This contradicts the
weakness of A. Note that Q is finite. �

In the following, let A = (Q,�, δ, qI,F) be a weak Büchi automaton that accepts a
WDBA-recognizable ω-language modulo the don’t care set D.

Form Methods Syst Des (2008) 33: 85–115 103

Theorem 18 There is a set F ′ ⊆ P (Q) such that the DBA B := (P (Q),�, δ′, {qI},F ′) with
δ′(P, b) := ⋃

q∈P δ(q, b), for P ⊆ Q and b ∈ � is weak and Lω(B) ≡D Lω(A).

Proof Since A is weak, we obtain easily a co-Büchi automaton A′ with Lω(A′) = Lω(A).
We just need to flip the accepting and rejecting states, that means, A′ := (Q,�, δ, qI,Q\F).
Note that a run of A eventually stays in an SCC and the states in this SCC are either all
accepting or all rejecting. By applying the breakpoint construction [40, 45] to A′, we obtain
a co-DBA A′′ = (P (Q) × P (Q),�,η, ({qI,∅),P (Q) × {∅}) with Lω(A′′) = Lω(A). For
details of the breakpoint construction, see Appendix B. By Lemma 17, we can make the
co-DBA A′′ weak and obtain a WDBA A′′′ with Lω(A′′′) ≡D Lω(A′′). Note that the transition
function η of A′′ does not change. Let E be the set of accepting states of A′′′. Without loss
of generality, we assume that A′′′ is in D-normal form.

It holds that Lω(A′′′
(R,S)) ≡D Lω(A′′′

(R,T)), for all R,S,T ⊆ Q. To see this, note that

by Lemma 29, we have that Lω(A′′
(R,S)) = Lω(A′′

(R,T)), for all R,S,T ⊆ Q. We remark
that from Lemma 28, it follows that L∗(A′′′

(R,S)) = L∗(A′′′
(R,T)). Therefore, (R,S) ∈ E iff

(R,T) ∈ E.
We take the quotient of A′′′ with respect to the congruence relation (R,S) ∼ (R′, S ′) iff

R = R′. We identify the equivalence class of (R,S) with the set R. We obtain the determin-
istic automaton B = (P (Q),�, δ′, {qI},F ′), where F ′ = {R : (R,S) ∈ E, for some S ⊆ Q}
and δ′(P, b) = ⋃

q∈P δ(q, b), for P ⊆ Q and b ∈ �. It holds that Lω(B) ≡D Lω(A). More-
over, B is weak, since a loop with accepting and rejecting states in B can only exist if A′′′
contains a cycle with accepting and rejecting states. �

Note that Theorem 18 establishes the existence of a set F ′ of accepting states of the
WDBA B. It is left open how to algorithmically determine F ′. We can compute F ′ as follows.
Observe that it suffices to look at each SCC S ⊆ P (Q) of B separately in order to check
whether the states in S have to be accepting or rejecting. First, we choose some state q ∈ S.
Assume that δ̂′({qI}, u) = q , for some u ∈ �+. Second, we determine a word v ∈ �+ with
δ̂′(q, v) = q such that vω �∈ D. We can determine v by using a breadth-first or depth-first
search. Note that if no such word v exists, the SCC S is D-transient, and it does not matter
whether we make the states in S accepting or rejecting. Otherwise, S is D-recurrent. In this
case, we proceed as follows. We check whether A accepts the ω-word uvω. Note that by
property (2), we have that uvω �∈ D. If uvω ∈ Lω(A) then the states in S are accepting. If
uvω �∈ Lω(A) then the states in S are rejecting.

6 Experimental evaluation of don’t care words

To assess the effectiveness and performance gains when using don’t cares, we carried out
tests on three different classes of problems: (1) randomly generated formulas, (2) formulas
describing continuous state transition relations of infinite-state systems, and (3) the iterative
computation of the reachable states of infinite-state systems. In the following, we describe
our setup and the test cases in more detail, and we report on the outcome of our evaluation.

Setup For all experiments, we used a computer with two AMD Opteron 2.6 GHz CPUs
and with 16 GBytes of main memory. The operating system was Debian GNU/Linux 4.0.
Furthermore, we used our tool LIRA [7], an automata-based decision procedure for the first-
order logic over R. For a given formula, LIRA constructs the corresponding minimal WDBA

recursively over the formula structure. We want to remark that LIRA can build the minimal

104 Form Methods Syst Des (2008) 33: 85–115

Table 1 Peak and final automata sizes, construction times and memory consumption required to build the
minimal WDBAs for the flow relations of linear hybrid automata

with don’t cares without don’t cares

peak final runtime memory peak final runtime memory

Audio 76,833 5,235 16.59 s 258 MB 78,804 5,339 15.58 s 256 MB

Corbett 57,161 18,196 19.75 s 432 MB 1,245,719 196,493 405.15 s 3,595 MB

Plane 33,381 8,462 16.26 s 297 MB 593,721 118,326 223.21 s 2,946 MB

Railroad 412,759 43,962 68.68 s 846 MB 1,275,640 177,289 204.38 s 2,324 MB

Reactor 5,287 273 1.71 s 45 MB 83,998 8,547 16.98 s 459 MB

WDBA without using don’t cares or it can use the don’t care sets DCr (Definition 3). We used
version 1.1.2 of LIRA, which was compiled with the GNU C++ Compiler 4.1.2.

Random formulas We applied LIRA to randomly generated formulas. Our test set consisted
of 100 quantifier-free formulas with 4 variables with about 10 disjunctions and conjunctions
each. In a first test, we built the minimal WDBAs for these formulas. The savings in terms of
automata sizes encountered during the construction are observable when using don’t cares
(on average 8.4%), although moderate. As a second test, we existentially quantified a vari-
able in each of the random formulas and used again LIRA to construct the minimal WDBA

for it. Our construction for the quantification when using don’t cares generated larger au-
tomata (on average 18.9%). However, after normalization and minimization the resulting
automata with don’t care sets were smaller (on average 7.7%). The runtime required for the
quantification was on average the same with and without using don’t care words. As a third
test, we restricted the 4 variables to the integer domain. The savings due to the don’t care
set became more substantial (on average 48.5%), as every integer vector has encodings that
are in the don’t care set. When restricting all variables to the integer domain, one can use
DFAs instead of WDBAs. For the random formulas, the resulting minimal DFAs have approx-
imately the same size as the minimal WDBAs with don’t cares (the DFAs are on average 0.6%
smaller). This indicates that the overhead of using WDBAs with don’t cares is small when
dealing with integer variables.

Continuous state transition relations Many infinite-state systems like linear hybrid au-
tomata [30] can be described by formulas in the first-order logic over R. We formulated the
flow transition relation of such systems, that means, the transitions involving the continu-
ous evolution of system variables as formulas. As test cases, we used several linear hybrid
automata from the model checker HYTECH [32], namely, Audio, Corbett, Plane, Railroad,
and Reactor. A detailed description of the more complex test cases Audio and Corbett can
be found in [31]. We used LIRA to construct the minimal WDBAs for the corresponding
formulas of the systems’ flow transition relations. The results are summarized in Table 1.

In all but one case, significant savings of up to two orders of magnitudes in terms of num-
ber of states and runtime required to construct the automaton were achieved by using don’t
care sets. In the Audio test case, only minor savings with don’t care words were achieved
in terms of number of states. The time needed for constructing the WDBA was even slightly
larger when using don’t care words. This situation can arise when the minimal WDBA A
accepting a language modulo a don’t care set is only slightly smaller compared to the size
of the minimal WDBA B accepting the corresponding language without a don’t care set and
we apply the construction in Sect. 5 to A for handling a quantified variable. Note that this

Form Methods Syst Des (2008) 33: 85–115 105

Table 2 Experimental results of the reachability analysis of different hybrid systems: number of processes,
number of iterations of the naive reachability analysis, peak and final automata sizes, construction times, and
memory consumption

with don’t cares without don’t cares

proc. iter. peak final runtime memory peak final runtime memory

Fischer

2 9 77 53 0.10 s 9 MB 657 182 0.49 s 10 MB

3 15 579 405 1.94 s 12 MB 5,911 2,045 12.34 s 26 MB

4 21 6,701 4,377 57.53 s 78 MB 77,208 27,548 373.24 s 327 MB

5 27 84,949 55,885 1,669.80 s 1,459 MB 1,369,011 430,727 13,231.63 s 7,595 MB

Bakery

2 100 72 – 0.59 s 9 MB 259 – 0.84 s 9 MB

3 100 214 – 2.41 s 10 MB 750 – 7.13 s 10 MB

4 100 654 – 9.45 s 11MB 3,273 – 53.18 s 18 MB

5 100 2,059 – 41.14 s 18 MB 14,985 – 372.53 s 67 MB

Audio 19 45,837 372 70.74 s 244 MB 726,277 6,878 1,239.28 s 3,353 MB

Corbett 19 11,743 6,302 38.01 s 82 MB 326,895 27,051 471.19 s 1,152 MB

Plane 8 82,665 3,937 82.32 s 707 MB – – – >16 GB

Railroad 9 81,143 17,992 122.68 s 1,435 MB 143,848 20,509 207.52 s 2,388 MB

Reactor 7 106,260 20,575 175.78 s 1,011 MB 393,622 40,231 550.15 s 2,563 MB

construction is more complex than the corresponding construction when don’t care words
are not used. We remark that the first construction step in Sect. 5.1 might even result in a
larger intermediate WDBA than B.

Reachability analysis For computing the set of reachable states of an infinite-state system,
we implemented a prototype that iteratively constructs minimal WDBAs that represent sets of
reachable system states. Our prototype starts with the set R0 consisting of the initial system
states. In each iteration i > 0, we obtain the set Ri from the set Ri−1 by adding the system
states to Ri−1 that are reachable via the transition relation of the system from a system state
in Ri−1. The computation halts in iteration i, when no new system states are added to Ri−1.
The sets R0,R1, . . . of system states are represented by minimal WDBAs. Our prototypical
implementation of the reachability computation is not intended to compete with tailored
tools for the verification of certain classes of infinite-state systems. Instead, our intention in
this test is to evaluate the benefit of don’t care sets.

We used our prototype to profile the automata constructions that occur during the compu-
tations of the set of reachable system states. In addition to the hybrid systems that we already
used in the previous test, we used Fischer’s mutual exclusion protocol and the Bakery mu-
tual exclusion protocol with different numbers of processes. Table 2 and Fig. 4 summarize
the outcome of this test on which we comment in the following.

First, we want to make the following remark about the memory consumption. For in-
stance, consider the test case Corbett in Table 1 and Table 2: the memory usage for
building the minimal WDBA for the flow transition relation is higher than for the whole
reachability analysis. The reason is as follows. Assume that the formula ϕ(x̄ ′, t, x̄) de-
scribes the flows of a hybrid system from a system state x̄ ′ to a system state x̄ of dura-
tion t ≥ 0. In our experiments, it turned out that the most expensive construction for the

106 Form Methods Syst Des (2008) 33: 85–115

Fig. 4 Automata sizes encountered during the computation for Fischer’s protocol with 4 processes. The solid
(dashed) lines correspond to the optimized (straightforward) encoding

WDBA for the formula ∃t (t ≥ 0 ∧ ϕ(x̄ ′, t, x̄)) is the construction that handles the exis-
tential quantification of t . So, in our reachability tool, we do not build and use the min-
imal WDBA for ∃t (t ≥ 0 ∧ ϕ(x̄ ′, t, x̄)). Instead, in the ith iteration, we build a formula
∃t (t ≥ 0 ∧ ∃x̄ ′(Ni(x̄

′) ∧ ϕ(x̄ ′, t, x̄))), where Ni describes the set of states that have newly
encountered in the previous iteration i − 1 ≥ 0. Then, we push the quantifiers of the vari-
ables x̄ ′ inwards. For the resulting formula, we build the minimal WDBA. In the experiments
it turned out that this approach uses less memory with and without the use of don’t care
words.

Second, the intermediate construction steps shown in Fig. 4 for the Fischer’s protocol
with 4 processes are the constructions for obtaining the reachable states after a flow tran-
sition and the jump transitions from the current set of reachable sets in each iteration. We
obtained similar charts for the other systems.

Third, note that for the Bakery protocol, the naive reachability analysis implemented in
our prototype does not terminate since new states are encountered in each iteration. We
terminated the computations after 100 iterations.

Finally, we point out that when using don’t care words, the WDBAs constructed during
an iterative computation of the reachable system states became smaller by up to an order of
magnitude. We observed similar savings in terms of runtime. These savings can be explained
by the following two observations. First, the formulas that describe the transitions of a sys-
tem contain many variables (the formulas for Fischer’s protocol with 5 processes have 34
variables). Note that the don’t care sets contain more ω-words if the formula contains many
free variables. Second, the construction of the reachable state set requires a large number
of automata constructions. Although the saving in a single automata construction might be
small, the overall saving grows with the number of automata constructions.

For the Bakery protocol, we additionally carried out the naive reachability analysis by
using DFAs instead of WDBAs to measure the overhead of using WDBAs over DFAs when
one only has to deal with integer values. Note that each process in the Bakery protocol
has only one integer counter. The overhead is moderate for WDBAs with don’t cares. The
encountered WDBAs with don’t cares are at most twice as large as the encountered DFAs.
The running times are smaller by a factor between 2 and 3 when using DFAs in comparison
to the running times when using WDBAs with don’t care words.

7 Comparison to other approaches and tools

In this section, we compare the presented automata-based approach for real addition and our
implementation to related approaches and tools. Furthermore, with a perspective to future

Form Methods Syst Des (2008) 33: 85–115 107

work, we review model-checking approaches and tools that rely on linear arithmetic for
describing state spaces of infinite-state systems.

Satisfiability checking The automata library LASH [41] is most closely related to our
tool LIRA. Similar to LIRA, LASH provides the automata constructions for WDBAs that are
necessary for an automata-based decision procedure for R. However, LASH does not support
don’t care words and even when not using don’t care words, LIRA outperforms LASH [7].
Automata-based decision procedures for other logical theories have been implemented in the
MONA tool [38] and PRESTAF [22]. They provide decision procedures for WS1S, the weak
monadic second-order theory of one successor and Presburger arithmetic. The automata li-
braries of these two tools do not support automata over ω-words and thus cannot handle real
numbers.

Another approach to satisfiability checking of first-order formulas is implemented by so-
called SMT solvers. This approach is more general in the sense that SMT solvers deal with
different background theories and combinations of such background theories like the linear
integer arithmetic with uninterpreted functions. Current SMT solvers predominantly aim at
checking satisfiability of quantifier-free formulas, where they clearly outperform automata-
based decision procedures. Some state-of-the-art SMT solvers like YICES [25], CVC3 [5],
and FX7 [46] also support quantification of variables by quantifier instantiation [24]. To
check whether a formula is unsatisfiable quantifier instantiation replaces universally quan-
tified variables by heuristically selected terms that are derived from patterns that occur in
the formula. This approach is not complete for R, since the first-order theory over R does
not admit quantifier elimination [51]. One has to extend the logical language by constants 0
and 1, the floor function, and divisibility predicates. Note that the theory over this enriched
logical language is not supported by the current SMT solvers. Since SMT solvers support the
combination of theories with the theory of uninterpreted functions, another limiting bound-
ary is given by the undecidability of the decision problem for Presburger arithmetic extended
with a single unary predicate symbol, see [29].

The following experiment shows that current SMT solvers fall short on formulas that
contain quantifiers, in particular when the formulas are satisfiable. We applied LIRA and
different SMT solvers to 500 randomly generated instances. 250 of these instances were
satisfiable and 250 unsatisfiable. Each instance had a ∀∃ quantifier prefix and consisted of
a Boolean combination of about 10 atomic formulas, which were linear constraints over 4
variables or of the form Z(x). Each solver was allowed to use 16 GBytes of main mem-
ory and 10 minutes of CPU time per instance. None of the SMT solvers YICES, CVC3, and
FX7 succeeded on a satisfiable instance. YICES returned “unknown” for all 250 instances
within 3 seconds. FX7 returned “unknown” for all instances within 6 minutes. CVC3 used
over an hour to return on 224 instances “unknown,” and it ran out of memory or CPU time
on the other 26 instances. LIRA succeed on all instances in approximately 50 minutes when
using don’t care words and in 1 hour and 20 minutes without using don’t care words. On
the unsatisfiable instances, YICES and FX7 succeeded quickly (< 15 seconds) on 22 and 11
instances, respectively. For almost all other instances, YICES and FX7 returned quickly “un-
known” (YICES ran out of resources on one instance). CVC3 succeeded on 180 instances
within 10 minutes and returned “unknown” in less than 20 seconds on 38 instances. For the
remaining 32 instances, CVC3 ran out of resources. LIRA succeeded on all 250 instances
within 2 hours without using don’t cares and within 1 hour and 10 minutes when using
don’t cares. We obtained similar results for the 100 random formulas that we already used
in Sect. 6 with a ∀∃ quantifier prefix, where also none of the SMT solvers was able to solve
a satisfiable formula, whereas LIRA succeeded within approximately 10 minutes on all but
one instance when using don’t cares. Without don’t cares, LIRA needed slightly more time.

108 Form Methods Syst Des (2008) 33: 85–115

Another approach of deciding R is based on quantifier-elimination methods. Recall that
one has to extend the logical language by constants 0 and 1, the floor function, and di-
visibility predicates in order to apply quantifier-elimination methods. One such quantifier-
elimination method [51] of the theory over the enriched logical language has been imple-
mented [20] in the interactive theorem prover ISABELLE/HOL [47]. We applied this imple-
mentation to the same benchmark set. The implementation succeeded to automatically prove
192 out of the 250 satisfiable instances in two hours. On the 250 unsatisfiable instance the
implementation succeeded on 52 instances within 47 minutes. For the other instances, IS-
ABELLE/HOL exceeded the available memory. On the 100 formulas from Sect. 6 with a ∀∃
quantifier prefix, ISABELLE/HOL succeeded within approximately half an hour on 41 in-
stances (39 out of these 41 instances were satisfiable). Note that for these 100 formulas the
less involved quantifier-elimination method from [27] was used, since the formulas did not
contain the predicate Z.

Another implementation of a quantifier-elimination method for the less expressive first-
order theory of the structure (R,+,<,0,1) [52] is used in the first-order model checker [23,
48]. This implementation uses a data structure based and-inverter graphs (AIGs for short)
[39] to represent and simplify formulas. We evaluated this implementation by the benchmark
set of the 100 randomly generated formulas presented in Sect. 6 with a quantifier prefix
∀∃. The implementation succeeded on all instances and was about one order of magnitude
faster than our automata-based implementation. The AIG-based data structure currently does
not support mixed linear arithmetic, and it is not clear whether this data structure is well
suited for the more expressive logic R. The simplification of the data structure relies on
SMT solvers for identifying redundant constraints. Currently, there are no SMT solvers that
can cope with mixed linear arithmetic augmented with divisibility predicates and the floor
function. Moreover, quantifier-elimination methods for real addition without the Z predicate
are less involved than quantifier-elimination methods for theories that contain the linear
arithmetic over the integers, for example, compare [27] and [51].

Applications in infinite-state model checking Related to the presented work on don’t care
words is [6] on widening sets of integers that are represented by automata, which has been
used in infinite-state model checking. In order to obtain always an overapproximation of a
set, widening an automaton represented set only adds words to the language. In contrast, we
also allow words to be removed, and adding or removing don’t care words still yields an
exact automata-based representation of a set. We point out that the widening method [6] is
complementary to don’t care words and hence, they can be combined in infinite-state model
checkers that use an automata-based representation for the reachable states of a system.
Analogously, don’t care words are complementary to acceleration techniques like the ones
described in [9, 13] and [15]. However, further work is needed in combining these techniques
with don’t care words, since the automata constructions in [6, 9, 13, 15] for widening and
acceleration might need some adjustment to work also for don’t care words.

Automata-based model checkers for infinite-state systems like FAST [3, 4] and ALV [54]
are currently limited to integer counter systems. This restriction stems from the fact that
these tools use DFAs to represent sets of system states. The use of WDBAs, as already de-
scribed in [12], allows us to represent set of system states of systems that consist of inte-
ger counters and real-valued variables. Our experiments in Sect. 6 show that don’t cares
can reduce the sizes of the automata representations of such sets significantly. Moreover,
even a prototypical tool for carrying out the reachability analysis is capable to handle some
non-trivial examples. More mature regular model checking tools like T(O)RMC [42] can be
improved by utilizing this more compact set representation based on don’t care words.

Form Methods Syst Des (2008) 33: 85–115 109

Model checkers like HYTECH [32] and its successor PHAVER [28] already deal with
infinite-state systems with system variables that range over the reals, namely, so-called hy-
brid automata. These tools use finite unions of convex polyhedra to represent sets of system
states. PHAVER overcomes some of the limitations of HYTECH like numerical rounding er-
rors by using exact arithmetic. However, the problems of handling large discrete state spaces
and handling system variables that only range over the integer remain. A promising approach
to verifying hybrid systems with large discrete state spaces is pursued by the first-order
model checker [23]. This approach utilizes an AIG-based data structure to represent and
manipulate first-order definable sets in (R,+,<). It remains open whether automata-based
decision procedures are competitive to this approach based on AIGs. Further research and
improvements on automata-based set presentations are needed. A stimulating fact of using
automata-based set representations is that the more expressive theory supported by WDBAs,
which include integer variables, allows for model checking richer classes of infinite-state
systems.

8 Conclusion

We generalized the concept of don’t cares for BDDs to automata and demonstrated that don’t
cares are effective in reducing the automata sizes. Moreover, by using don’t cares, we have
increased the performance of an automata-based decision procedure for the first-order theory
over (R,Z,+,<) significantly. On the one hand, we were able to prove rather general results
about don’t cares sets, like the minimization of WDBAs. On the other hand, we presented
an automata construction for the quantification in the first-order logic (R,Z,+,<), which
depends on the used don’t care set.

Besides the application of the don’t care words for automata-based decision procedures
for the first-order theory over (R,Z,+,<), we sketched further promising applications for
don’t care sets (see Sect. 7 and Remark 6 in Sect. 3). Crucial for an effective use of don’t care
sets are efficient algorithms and effective heuristics that minimize automata with respect to
a don’t care set. We presented such an algorithm for WDBAs and a restricted class of don’t
care sets. Developing such algorithms and heuristics for other classes of don’t care sets is
subject of our future work. Overall, we believe that don’t care sets have a large potential for
making automata-based methods more effective.

Acknowledgements We thank Stefan Disch and Florian Pigorsch for providing a custom version of their
AIG-based tool to eliminate quantifiers. This work was supported by the German Research Foundation (DFG)
and the Swiss National Science Foundation (SNF).

Appendix A: Proof details for minimizing with don’t cares

For proving Theorem 12 in Sect. 4.3, we need some technical lemmas. Recall that we require
that the don’t care set D fulfills the two properties: (1) D �= �ω and (2) α ∈ D ⇔ uα ∈ D,
for all u ∈ �∗ and α ∈ �ω. In the following, let A = (Q,�, δ, qI,F) be a WDBA and let
c : Q → N be a k-maximal D-coloring for A. For an ω-word ϑ ∈ Qω , we define c(ϑ) :=
max{c(ϑ(i)) : i ∈ N}.

Lemma 19 Let ϑ ∈ Qω be the run on an ω-word in �ω \ D. It holds that ϑ is accepting iff
c(ϑ) is even.

110 Form Methods Syst Des (2008) 33: 85–115

Proof Note that the states in an SCC have the same color. Since the run ϑ eventually stays in
a D-recurrent SCC of A, the color of the states in this SCC is even. Together with c(ϑ(i)) ≤
c(ϑ(j)), for all i ≤ j we see that the claim is true. �

Lemma 20 For every state p ∈ Q, with c(p) ≤ k − 2 there is a state q ∈ Q such that q is
reachable from p and c(q) = c(p) + 1.

Proof We prove the claim by contradiction: assume that there is a state p ∈ Q not satisfying
the property. We define a new D-coloring c′ : Q → N for A by

c′(q) :=
{

c(q) + 2 if q is reachable from p and c(p) = c(q),

c(q) otherwise.

Because of c′ the D-coloring c is not k-maximal. �

Lemma 21 For every state q ∈ Q, there is an ω-word α ∈ �ω \ D such that c(ϑ) = c(q),
where ϑ ∈ Qω is the run of A on α.

Proof The claim is obviously true when q is D-recurrent. If the claim does not hold when q

is D-transient then there is no D-recurrent state that is reachable from q and that has the
same color as q . Note that because of Lemma 9 there is a D-recurrent state that is reachable
from q and thus, c(q) < k. We define a new D-coloring c′ : Q → N for A by

c′(p) :=
{

c(p) + 1 if p is reachable from q and c(q) = c(p),

c(p) otherwise.

Because of c′ the D-coloring c is not k-maximal. �

Lemma 22 For all states p,q ∈ Q, it holds that if Lω(Ap) ≡D Lω(Aq) then c(p) = c(q).

Proof For the sake of contradiction, assume that there are states p,q ∈ Q such that
Lω(Ap) ≡D Lω(Aq) and c(p) �= c(q). Moreover, we assume that c(p) + c(q) is maximal
and c(p) < c(q).

First, we show that c(q) = c(p)+ 1. If c(p) > k − 2 then c(q) = k. Hence, c(p) = k − 1.
Assume that c(p) ≤ k − 2. By Lemma 20, there is word u ∈ �∗ such that c(δ̂(p,u)) =
c(p) + 1. We have that Lω(Aδ̂(p,u)) ≡D Lω(Aδ̂(q,u)) since Lω(Ap) ≡D Lω(Aq). Moreover,

since c(p) + c(q) is maximal, we conclude that c(δ̂(p,u)) = c(δ̂(q,u)). Also in this case,
we have that c(q) = c(δ̂(p,u)) = c(p) + 1, since c(δ̂(q,u)) ≥ c(q) and c(q) ≥ c(δ̂(p,u)).

Now, let α ∈ �ω \D be an ω-word such that c(ϑ) = c(p), where ϑ ∈ Qω is the run of Ap

on α. Note that such an ω-word α with such a run ϑ always exists because of Lemma 21.
Let ϑ ′ ∈ Qω be the run of Aq on α. If c(ϑ) > c(q) then let v ∈ �∗ be a prefix of α such that
c(δ̂(q, v)) > c(q). We have that Lω(Aδ̂(p,v)) ≡D Lω(Aδ̂(q,v)) and c(δ̂(p, v)) + c(δ̂(q, v)) >

c(p) + c(q). This is a contradiction to the choice of p and q . Note that c(δ̂(p, v)) = c(p)

since v is a prefix of α. Therefore, we have that c(ϑ) = c(p) and c(ϑ ′) = c(q). Since c(q) =
c(p) + 1, it follows from Lemma 19 that α ∈ Lω(Ap) ⇔ α �∈ Lω(Aq). This contradicts the
assumption that Lω(Ap) ≡D Lω(Aq). �

Lemma 23 Under the assumption that F = Fc , it holds that if L∗(Ap) �= L∗(Aq) then
Lω(Ap) �≡D Lω(Aq), for every p,q ∈ Q.

Form Methods Syst Des (2008) 33: 85–115 111

Proof Let p,q ∈ Q with L∗(Ap) �= L∗(Aq). There is a word u ∈ �∗ such that δ̂(p,u) ∈
F ⇔ δ̂(q, u) �∈ F . Since F = Fc , we have that c(δ̂(p,u)) �= c(δ̂(q,u)). From Lemma 22 it
follows that Lω(Aδ̂(p,u)) �≡D Lω(Aδ̂(q,u)), that means, there is an ω-word α ∈ �ω \ D such
that α ∈ Lω(Aδ̂(p,u)) ⇔ α �∈ Lω(Aδ̂(q,u)). We conclude that Lω(Ap) �≡D Lω(Aq), since uα �∈
D and uα ∈ Lω(Ap) ⇔ uα �∈ Lω(Aq). �

Definition 24 For L ⊆ �ω , we define the relation ≈L
D ⊆ �∗ × �∗ by u ≈L

D v iff uα ∈ L ⇔
vα ∈ L, for all α ∈ �ω \ D.

Lemma 25 For L ⊆ �ω , ≈L
D is an equivalence relation and a right congruence.

Proof Obviously, ≈L
D is reflexive and symmetric. For showing that ≈L

D is transitive, assume
that u ≈L

D v and v ≈L
D w, where u,v,w ∈ �∗. For any α ∈ �ω \ D, we have that uα ∈ L ⇔

vα ∈ L ⇔ wα ∈ L and thus, u ≈L
D w.

We now show that ≈L
D is a right congruence. For α ∈ �ω \D, we have that α �∈ D and by

assumption wα �∈ D. It follows that uwα ∈ L ⇔ vwα ∈ L, and thus, uw ≈L
D vw. �

We denote the equivalence class of u ∈ �∗ with respect to ≈L
D by [u]LD .

Lemma 26 Let L ⊆ �ω and let A = (Q,�, δ, qI,F) be a WDBA with L ≡D Lω(A). For
each state q ∈ Q that is reachable from qI there is a word uq ∈ �∗ such that v ∈ [uq]LD , for
all words v ∈ �∗ with δ̂(qI, v) = q .

Proof Let q ∈ Q be a state and uq ∈ �∗ be a word such that δ̂(qI, uq) = q . It suffices to show
that uq ≈L

D v, for every word v ∈ �∗ with δ̂(qI, v) = q . Let v be such a word. For α ∈ �ω ,
it holds that A accepts uqα ∈ Lω(A) ⇔ vα ∈ Lω(A). Note that the runs on uqα and vα

only differ on a finite prefix; the runs are identical on α. Moreover, note that α ∈ �ω \ D ⇔
uqα, vα ∈ �ω \ D. �

Corollary 27 Let A = (Q,�, δ, qI,F) be a WDBA, where every state is reachable from qI.
A is D-minimal if Lω(Ap) �≡D Lω(Aq), for all states p,q ∈ Q with p �= q .

Proof Let L ⊆ �ω be an ω-language with L ≡D Lω(A). Assume that B is a WDBA that
has less than |Q| states and Lω(B) ≡D L. Without loss of generality, we assume that every
state of B is reachable from its initial state. By Lemma 26 and the pigeon hole principle,
there is a state s of B such that up,uq ∈ [us]LD , for some state p,q ∈ Q with p �= q . Note
that us, up,uq ∈ �∗ denote the words from Lemma 26. It follows that [up]LD = [uq]LD . This
contradicts the assumption that Lω(Ap) �≡D Lω(Aq). �

Lemma 28 Let A and B be WDBAs in D-normal form. If Lω(A) ≡D Lω(B) then
L∗(A) = L∗(B).

Proof Assume that A = (Q,�, δ, qI,Fc) and B = (Q′,�, δ′, q ′
I,Fc′), where c : Q → N is

a �-maximal D-coloring for A, c′ : Q′ → N is a �′-maximal D-coloring for B, and �, �′
are even. Without loss of generality, we can assume that c and c′ are k-maximal for some
sufficiently large k by adding appropriate constants to the c and c′ values. In the remainder
of the proof, we make use of the following notation: For a word w ∈ �∗, we write qw for
δ̂(qI,w) and q ′

w for δ̂′(q ′
I,w).

112 Form Methods Syst Des (2008) 33: 85–115

For the sake of contradiction, we assume that there is a w ∈ �∗ such that c(qw) �= c′(q ′
w).

We only consider the case c(qw) < c′(q ′
w). The other case is symmetric. We define a function

d : Q → N by d(qv) := max{c(qv), c
′(q ′

v)}, for v ∈ �∗. Note that d is well-defined because
if q ′

u = q ′
v then c′(q ′

u) = c′(q ′
v), for all u,v ∈ �∗. This fact follows from u ≈Lω(A)

D v and
Lemma 22. In the following, we show that d is a D-coloring for A. This contradicts the k-
maximality of the D-coloring c and hence, c(qw) = c′(q ′

w). Since w was chosen arbitrarily,
we conclude that for all u ∈ �∗, qu ∈ Fc ⇔ q ′

u ∈ Fc′ . We conclude that L∗(A) = L∗(B).
By the definition of d , we have that d(q) ≤ d(δ(q, b)), for all q ∈ Q and b ∈ �. It remains

to show that d(q) is even ⇔ q ∈ Fc , for every D-recurrent state q ∈ Q. So, let q ∈ Q be
a D-recurrent state and let u ∈ �∗ such that q = qu. If d(q) = c(q) there is nothing to
prove. Assume that d(q) �= c(q), that means, d(q) = c′(q ′

u). Since q is D-recurrent, there
is an ω-word α ∈ Lω(A′) \ D, where A′ is the WDBA (Q,�, δ, q,SCC(q)). Without loss
of generality, we assume that the run of A′ on α visits infinitely often the state q . Since
the run of A on uα infinitely often visits q , infinitely many prefixes of uα are ≈Lω(A)

D -
equivalent to u. Thus, the run ϑ ′ of A′ on uα visits infinitely often a state q ′ ∈ Q′ such that
Lω(A′

q ′) ≡D Lω(A′
q ′
u
). From Lemma 22 we know that c′(q ′) = c′(q ′

u). It follows that the
maximal color seen on the run ϑ ′ is d(q), that means, c′(ϑ ′) = c′(q ′

u) = d(q). Since A′ has
to accept uα iff A accepts uα, we conclude that c′(q ′

u) is even iff c(qu) is even. �

Now, we have all the needed ingredients for proving the result about the minimization of
WDBAs with the don’t care set D.

Proof (Theorem 12) By Theorem 11, we can put A into D-normal form in time O(|Q|). In
the following, assume that A is in D-normal form and c : Q → N is a k-maximal D-coloring
for A, where k is even and F = Fc . We apply Hopcroft’s DFA minimization algorithm to A.
The running time is in O(|Q| log |Q|). Let A′ = (Q′,�, δ′, q ′

I,F
′) be the result of Hopcroft’s

algorithm.
Note that there is a homomorphism h from A to A′, that means, h : Q → Q′ is a function

with h(qI) = q ′
I , q ∈ F ⇔ h(q) ∈ F ′ and if δ(p, b) = q then δ′(h(p), b) = h(q), for all

q ∈ Q and b ∈ �.

1. The DBA A′ is weak, since h preserves accepting and rejecting states. A cycle in A′ that
contains accepting and rejecting states would yield a cycle in A that contains accepting
and rejecting states.

2. The mapping c′ : Q′ → N defined by c′(q) := max{c(p) : h(p) = q for p ∈ Q} is a
k-maximal D-coloring for A′. Moreover, it holds that F ′ = Fc′ .

Since the DFA A′ is minimal, we have that L∗(A′
p) �= L∗(A′

q), for all states p,q ∈ Q′ with
p �= q . By Lemma 23, we have that Lω(A′

p) �≡D Lω(A′
q), for all p,q ∈ Q′ with p �= q . By

Corollary 27, we have that the WDBA A′ is D-minimal.
Assume that B is a D-minimal WDBA in D-normal form with Lω(A′) ≡D Lω(B). From

Lemma 28, it follows that L∗(A′) = L∗(B). The WDBAs A′ and B are isomorphic, since A′
and B are minimal DFAs. �

Appendix B: Breakpoint Construction

In Sect. 5.3, we use the breakpoint construction [40, 45] to determinize co-Büchi automata.
For the sake of completeness, we recall the breakpoint construction here. It extends the
standard powerset construction for determinizing automata over finite words. Furthermore,
we prove a lemma, which we also use in Sect. 5.3, about the ω-languages that are accepted
from the states in the constructed automaton.

Form Methods Syst Des (2008) 33: 85–115 113

For a co-Büchi automaton C = (Q,�, δ, qI,F), we define the deterministic co-Büchi au-
tomaton C′ := (P (Q)×P (Q),�, δ′, ({qI},∅),P (Q)×{∅}), where the transition function δ′
is defined as δ′((R,S), b) := (R′, S ′) with

R′ :=
⋃

q∈R

δ(q, b) and S ′ :=
{

R′ \ F if S = ∅,
⋃

q∈S(δ(q, b) \ F)
)

otherwise,

for (R,S) ∈ P (Q) × P (Q) and b ∈ �. It holds that Lω(C) = Lω(C′).

Lemma 29 It holds that Lω(C′
(R,S)) = Lω(C′

(R,T)), for all R,S,T ⊆ Q.

Proof Let ϑ,ϑ ′ ∈ (P (Q) × P (Q))ω be the runs of C′
(R,S) and C′

(R,T) on an ω-word α ∈ �ω ,
respectively. Assume that ϑ(i) = (Ri, Si) and ϑ ′(i) = (R′

i , Ti), for all i ≥ 0. First, we ob-
serve that Ri = R′

i . Second, for every i ≥ 0, if Si = ∅ then Ti+1 ⊆ Si+1, and if Ti = ∅ then
Si+1 ⊆ Ti+1.

Assume that ϑ ′ is accepting. There are only finitely many indices j ≥ 0 with Tj = ∅.
Let j ≥ 0 be maximal. For the sake of contradiction, assume that there are infinitely many
indices i ≥ 0 with Si = ∅. So, there are indices i, i ′ ≥ 0 with j < i < i ′ and Si = Si′ = ∅.
We have that Ti+1 ⊆ Si+1. Since Si′ = ∅ there is an index j ′ ≥ 0 such that i ≤ j ′ ≤ i ′ and
Tj ′ = ∅. This contradicts the assumption that j is maximal.

Analogously, if ϑ is accepting, we conclude that ϑ ′ is accepting. �

References

1. Abdulla P, Jonsson B, Nilsson M, d’Orso J (2003) Algorithmic improvements in regular model checking.
In: Proceedings of the 15th international conference on computer aided verification (CAV’03). Lect notes
comput sci, vol 2725. Springer, New York, pp 236–248

2. Apt K, Kozen D (1986) Limits for automatic verification of finite-state concurrent systems. Inf Process
Lett 22:307–309

3. Bardin S, Finkel A, Leroux J, Petrucci L (2003) FAST: fast acceleration of symbolic transition systems.
In: Proceedings of the 15th international conference on computer aided verification (CAV’03). Lect notes
comput sci, vol 2725. Springer, New York, pp 118–121

4. Bardin S, Leroux J, Point G (2007) FAST extended release. In: Proceedings of the 18th international
conference on computer aided verification (CAV’07). Lect notes comput sci, vol 4144. Springer, New
York, pp 63–66

5. Barrett C, Tinelli C (2007) CVC3. In: Proceedings of the 19th international conference on computer
aided verification (CAV’07). Lect notes comput sci, vol 4590. Springer, New York, pp 298–302

6. Bartzis C, Bultan T (2004) Widening arithmetic automata. In: Proceedings of the 16th international
conference on computer aided verification (CAV’04). Lect notes comput sci, vol 3114. Springer, New
York, pp 321–333

7. Becker B, Dax C, Eisinger J, Klaedtke F (2007) LIRA: handling constraints of linear arithmetics over the
integers and the reals. In: Proceedings of the 19th international conference on computer aided verification
(CAV’07). Lect notes comput sci, vol 4590. Springer, New York, pp 312–315

8. Blumensath A, Grädel E (2004) Finite presentations of infinite structures: automata and interpretations.
Theory Comput Syst 37:641–674

9. Boigelot B, Herbreteau F (2006) The power of hybrid acceleration. In: Proceedings of the 18th interna-
tional conference on computer aided verification (CAV’06). Lect notes comput sci, vol 4144. Springer,
New York, pp 438–451

10. Boigelot B, Latour L (2004) Counting the solutions of Presburger equations without enumerating them.
Theor Comput Sci 313:17–29

11. Boigelot B, Wolper P (2000) On the construction of automata from linear arithmetic constraints. In:
Proceedings of the 6th international conference on tools and algorithms for construction and analysis of
systems (TACAS’00). Lect notes comput sci, vol 1785. Springer, New York, pp 1–19

114 Form Methods Syst Des (2008) 33: 85–115

12. Boigelot B, Bronne L, Rassart S (1997) An improved reachability analysis method for strongly linear
hybrid systems (extended abstract). In: Proceedings of the 9th international conference on computer
aided verification (CAV’97). Lect notes comput sci, vol 1254. Springer, New York, pp 167–178

13. Boigelot B, Herbreteau F, Jodogne S (2003) Hybrid acceleration using real vector automata. In: Proceed-
ings of the 15th international conference on computer aided verification (CAV’03). Lect notes comput
sci, vol 2725. Springer, New York, pp 193–205

14. Boigelot B, Legay A, Wolper P (2003) Iterating transducers in the large (extended abstract). In: Proceed-
ings of the 15th international conference on computer aided verification (CAV’03). Lect notes comput
sci, vol 2725. Springer, New York, pp 223–235

15. Boigelot B, Legay A, Wolper P (2004) Omega-regular model checking. In: Proceedings of the 10th in-
ternational conference on tools and algorithms for the construction and analysis of systems (TACAS’04).
Lect notes comput sci, vol 2988. Springer, New York, pp 561–575

16. Boigelot B, Jodogne S, Wolper P (2005) An effective decision procedure for linear arithmetic over the
integers and reals. ACM Trans Comput Log 6:614–633

17. Bouajjani A, Habermehl P, Vojnar T (2004) Abstract regular model checking. In: Proceedings of the
16th international conference on computer aided verification (CAV’04). Lect notes comput sci, vol 3114.
Springer, New York, pp 372–386

18. Büchi J (1960) Weak second-order arithmetic and finite automata. Z Math Log Grundl Math 6:66–92
19. Büchi J (1962) On a decision method in restricted second order arithmetic. In: Proceedings of the 1960

international congress on logic, methodology and philosophy of science. Stanford University Press, Stan-
ford, pp 1–11

20. Chaieb A (2006) Verifying mixed real-integer quantifier elimination. In: Proceedings of the 3rd interna-
tional joint conference on automated reasoning (IJCAR’06). Lect notes comput sci, vol 4130. Springer,
New York, pp 528–540

21. Cormen T, Leiserson C, Rivest R, Stein C (2001) Introduction to algorithms, 2nd edn. MIT Press and
McGraw-Hill, Cambridge

22. Couvreur J-M (2004) A BDD-like implementation of an automata package. In: Proceedings of the 9th
international conference on implementation and application of automata (CIAA’04). Lect notes comput
sci, vol 3317. Springer, New York, pp 310–311

23. Damm W, Disch S, Hungar H, Jacobs S, Pang J, Pigorsch F, Scholl C, Waldmann U, Wirtz B (2007) Exact
state set representations in the verification of linear hybrid systems with large discrete state spaces. In:
Proceedings of the 5th international symposium on automated technology for verification and analysis
(ATVA’07). Lect notes comput sci, vol 4762. Springer, New York, pp 425–440

24. Detlefs D, Nelson G, Saxe JB (2005) Simplify: a theorem prover for program checking. J ACM 52:365–
473

25. Dutertre B, de Moura L Yices: an SMT solver. http://yices.csl.sri.com/
26. Enderton H (2001) A mathematical introduction to mathematical logic, 2nd edn. Academic, New York
27. Ferrante J, Rackoff C (1975) A decision procedure for the first order theory of real addition with order.

SIAM J Comput 4:69–76
28. Frehse G (2005) PHAVer: algorithmic verification of hybrid systems past HyTech. In: Proceedings of the

8th international workshop on hybrid systems: computation and control (HSCC’05). Lect notes comput
sci, vol 3414. Springer, New York, pp 258–273

29. Halpern JY (1991) Presburger arithmetic with unary predicates is �1
1 complete. J Symb Log 56:637–642

30. Henzinger T (1996) The theory of hybrid automata. In: Proceedings of the 11th annual IEEE symposium
on logic in computer science (LICS’96). IEEE Computer Society Press, Silver Spring, pp 278–292

31. Henzinger T, Ho P-H (1995) HyTech: the cornell HYbrid TECHnology tool. In: Proceedings of the 2nd
international workshop on hybrid systems: computation and control (HSCC’04). Lect notes comput sci,
vol 999. Springer, New York, pp 265–293

32. Henzinger T, Ho P-H, Wong-Toi H (1997) HyTech: a model checker for hybrid systems. Int J Softw
Tools Technol Transf 1:110–122

33. Hong Y, Beerel P, Burch J, McMillan K (1997) Safe BDD minimization using don’t cares. In: Proceed-
ings of the 34th conference on design automation (DAC’97). ACM Press, New York, pp 208–213

34. Hopcroft J (1971) An n logn algorithm for minimizing the states in a finite automaton. In: Kohavi Z, Paz
A (eds) Proceedings of the international symposium on theory of machines and computations. Academic,
New York, pp 189–196

35. Hopcroft J, Ullman J (1979) Introduction to automata theory, languages, and computation. Addison-
Wesley, Reading

36. Kesten Y, Maler O, Marcus M, Pnueli A, Shahar E (2001) Symbolic model checking with rich assertional
languages. Theor Comput Sci 256:93–112

37. Khoussainov B, Nerode A (1995) Automatic presentations of structures. In: Proceedings of the inter-
national workshop on logical and computational complexity (LCC’94). Lect notes comput sci, vol 960.
Springer, New York, pp 367–392

http://yices.csl.sri.com/

Form Methods Syst Des (2008) 33: 85–115 115

38. Klarlund N, Møller A, Schwartzbach M (2002) MONA implementation secrets. Int J Found Comput Sci
13:571–586

39. Kuehlmann A, Ganai MK, Paruthi V (2001) Circuit-based Boolean reasoning. In: Proceedings of the
38th design automation conference (DAC’01). ACM Press, New York, pp 232–237

40. Kupferman O, Vardi M (2001) Weak alternating automata are not that weak. ACM Trans Comput Log
2:408–429

41. LASH, The Liège automata-based symbolic handler. http://www.montefiore.ulg.ac.be/~boigelot/
research/lash/

42. Legay A (2008) T(O)RMC: A tool for (ω-)regular model checking. In: Proceedings of the 20th interna-
tional conference on computer aided verification (CAV’08). Lect notes comput sci, vol 5123. Springer,
New York, pp 548–551

43. Löding C (2001) Efficient minimization of deterministic weak ω-automata. Inf Process Lett 79:105–109
44. McMillan K (1993) Symbolic model checking. Kluwer Academic, Dordrecht
45. Miyano S, Hayashi T (1984) Alternating finite automata on ω-words. Theor Comput Sci 32:321–330
46. Moskal M (2008) Rocket-fast proof checking for SMT solvers. In: Proceedings of the 14th international

conference on tools and algorithms for the construction and analysis of systems (TACAS’08). Lect notes
comput sci, vol 4963. Springer, New York, pp 486–500

47. Nipkow T, Paulson LC, Wenzel M (2002) Isabelle/HOL—a proof assistant for higher-order logic. Lect
notes comput Sci vol 2283, Springer, New York

48. Scholl C, Disch S, Pigorsch F, Kupferschmid S (2008) Using an SMT solver and Craig interpolation to
detect and remove redundant linear constraints in Representations of non-convex polyhedra. In: Informal
proceedings of the 6th international workshop on satisfiability modulo theories (SMT’08), Princeton,
New Jersey, USA, Affiliated workshop with CAV’08

49. Staiger L, Wagner K (1974) Automatentheoretische und automatenfreie Charakterisierungen topologis-
cher Klassen regulärer Folgenmengen. Elektron Inf Kybern 10:379–392

50. Thomas W (1990) Automata on infinite objects. In: van Leeuwen J (ed) Handbook of theoretical com-
puter science, vol B: formal models and semantics. Elsevier, Amsterdam, pp 133–191. Chap 4

51. Weispfenning V (1999) Mixed real-integer linear quantifier elimination. In: Proceedings of the 1999
international symposium on symbolic and algebraic computation (ISSAC’99). ACM Press, New York,
pp 129–136

52. Weispfenning V, Loos R (1993) Applying linear quantifier elimination. Comput J 36:450–462
53. Wolper P, Boigelot B (1998) Verifying systems with infinite but regular state spaces. In: Proceedings

of the 10th international conference on computer aided verification (CAV’98). Lect notes comput sci,
vol 1427. Springer, New York, pp 88–97

54. Yavuz-Kahveci T, Bartzis C, Bultan T (2005) Action language verifier, extended. In: Proceedings of the
17th international conference on computer aided verification (CAV’05). Lect notes comput sci, vol 3576.
Springer, New York, pp 413–417

http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/

