Action Language Verifier: An Infinite-State
Model Checker for Reactive Software

Specifications

Tuba Yavuz-Kahveci* and Tevfik Bultan**
*Computer and Information Sciences and Engineering
University of Florida
Gainesville, FL 32611, USA
tyavuz@cise.ufl.edu
**Department of Computer Science, University of Califani
Santa Barbara, CA 93106, USA

bultan@cs.ucsb.edu

This work is supported in part by NSF grants CCF-0614002 aG&-0716095.

DRAFT

Abstract

Action Language is a specification language for reactivensot systems. In this paper, we present the syntax and
the semantics of the Action Language and we also presenfiaitérstate symbolic model checker called Action Lan-
guage Verifier (ALV) that verifies (or falsifies) CTL propes of Action Language specifications. ALV is built on top
of the Composite Symbolic Library, which is a symbolic mangtor that combines multiple symbolic representations.
ALV is a polymorphic model checker that can use different borations of the symbolic representations implemented
in the Composite Symbolic Library. We describe the heuwsstmplemented in ALV for computing fixpoints using
the composite symbolic representation. Since Action Lagguspecifications allow declaration of unbounded integer
variables and parameterized integer constants, verificadf Action Language specifications is undecidable. ALV
uses several heuristics to conservatively approximatdixpeint computations. ALV also implements an automated
abstraction technique that enables parameterized veéidiicaf a concurrent system with an arbitrary number of
identical processes.

Keywords: Symbolic model checking, infinite state model checkingpmadted abstraction

I. INTRODUCTION

Computer systems are becoming increasingly pervasivey ateeemployed in a wide range of industries such as
avionics, energy, and medicine to implement safety ctiqglications. Correct operation of these systems depends
on the correctness of the underlying software. 21st certtasyalready witnessed failure of several space exploration
missions that were caused by software errors [Low]. Theselémts show the importance of software verification,
which can help in finding the errors in software systems hetbey are deployed.

In this paper, we present the syntax and the semantics dhd¢tien LanguaggBul00], a specification language
for reactive software systems. We also present an autonvatéfication tool called théAction Language Verifier
(ALV) [BYKO1], [YKBBO05], which can be used to check the coctaeess properties of infinite-state reactive software
specifications written in Action Language [Bul00].

An Action Language specification includes both the behasfecification and the correctness properties of a
system. The correctness properties are described usinGdh®utation Tree Logic (CTL) [CGP99]. The Action
Language can be used to spedifyta parameterizednd/orcontrol parameterized systeni3ata parameterized sys-
tem specifications contain explicitly declared parameegstiinteger constants. Such a specification must be verified
for all possible valuations of the parameterized constahigh could be an infinite set. Control parameterized system
specifications contain asynchronous composition of artrarginumber of identical processes. Such specifications
must be verified for an infinite number of instances, eachasgmting a specific number of processes.

ALV uses a symbolic manipulator, called the Composite Syimddbrary [YKBO03], to encode the state space
and the transition system of the input Action Language digation. Using infinite-state symbolic model checking
techniques, ALV checks the symbolic transition system ffier $pecified CTL properties. If ALV is unable to prove
a property, it can search and report counter-example betsafor ACTL properties.

The contributions of this paper can be summarized as follows

DRAFT

« Formal syntax and semantics of Action Languagbe basic operations in Action Language was discussed
in [Bul0O]. In this paper we formalize both the syntax and seenantics of the Action Language. We present
the formal semantics of the Action Language by mapping tmeagyic elements of the Action Language to the
three important components of a transition system: the space, the initial states, and the transition relation.

« Vrification heuristics: ALV uses two heuristics, the marking and the dependenceidtmst to improve the
verification performance. The marking heuristic avoidsuredant computations in least fixed point computations
by marking a constraint when the pre-image computation ifopaed on it the first time. This way, in the
upcoming iterations, such constraints can be skipped dunirage computation. The dependence heuristic, on
the other hand, analyzes the control-flow of the transitigstesm to avoid the redundant pre- and post-image
computations.

« Automatic generation of parameterized transition systefngeactive software specification typically involves
concurrent processes. Verifying such a specification witbeetain number of concurrent processes yields
a validation for that number of concurrent processes onkin{y an abstraction technique calledunting
abstraction[Del03], ALV automatically generates an abstract transitsystem that is parameterized in the
number of identical concurrent processes and checks therged system using infinite-state model checking
techniques. CTL properties that are verified on the abspractmeterized system are preserved for the transition
system for any number of concurrent processes.

« Counter-example generation for infinite-state verificatie present a witness generation algorithm that can
be used to generate a counter-example for properties teahatr satisfied by the given transition system.
Our witness generation algorithm provides witnesses feheaibformula in the negated property and targets
infinite state systems.

The rest of the paper is organized as follows. Section Iflgrexplains the airport ground traffic control simulation
software specification that we use as a case study. SectipreBents the Action Language and explains its syntax
and semantics. Section IV presents ALV, explains the syml@icoding and manipulation techniques, discusses
the heuristics for infinite-state verification and symbal@ification, and introduces the counter-example germrati
algorithm for infinite domains. Section V introduces the otinig abstraction algorithm for translating a control
parameterized Action Language specification to a data peteximed one. Section VI reports the experimental results
for our case study on the airport ground traffic control siatigin software specification. Section VII compares our

work with the related work. Finally, Section VIII concludése paper.

II. AN EXAMPLE SPECIFICATION; AIRPORT GROUND TRAFFIC CONTROL

We use an infinite state reactive system specification for igyom ground traffic control system as a case
study. Airport ground traffic control handles allocationtbe airport ground network resources such as runways,
taxiways, and gates for the arriving and the departing amp$. Simulations play an important role for the safety
of the airport ground traffic control. Simulations enablelygrediction of possible runway incursions, which is

a growing problem at the busy airports throughout the wdi#tho97] presents a concurrent simulation program

DRAFT

runway 16R

Fig. 1. An airport ground network similar to that of the Skaffacoma International Airport

for modeling airport ground traffic control using Java tideaAs a case study, we model the concurrency control
component of this simulation program in the Action Langufge€B02]. We use the same airport ground network
model used in [Zho97] (shown in Figure 1) similar to that o tBeattle/Tacoma International Airport. There are
two runways: 16R and 16L. The Runway 16R is used by the agiainplanes during landing. After landing, an
arriving airplane takes one of the exits C3-C8. After tagiion C3-C8, the arriving airplanes need to cross the
runway 16L. After crossing the runway 16L, they continue orohe of the taxiways B2, B7, B9-B11 and reach
the gates in which they park. The departing airplanes useuheay 16L for takeoff. The control logic for the
ground traffic of this airport must implement the followingles:
1) An airplane can land (takeoff) using the runway 16R (16mhlyadf no airplane is using the runway 16R (16L)
at the moment.
2) An airplane taxiing on one of the exits C3-C8 can cross thevay 16L only if no airplane is taking off at
the moment.
3) An airplane can start using the runway 16L for taking offyoif none of the crossing exits C3-C8 are
occupied at the moment. (The arriving airplanes have pyiaver the departing airplanes.)
4) Only one airplane can use a taxiway at a time.
In the following sections we show that the above controldogan be specified in the Action Language, and its

properties can be automatically verified using the Actiomduzage Verifier.

IIl. THE ACTION LANGUAGE

Formal specification is the first step of the formal reasomiragess. The goal of formal specification languages is

to ease the task of precise formal modeling of both the sy$tehavior and the correctness properties. The Action

DRAFT

Language has been designed to support specification oftsftite reactive systems in a compact and simple man-
ner. The Action Language supports both synchronous andcheymous compositions as basic operations [Bul00].
In this paper, we extend the Action Language by introducimgaglule hierarchy and the associated scoping rules.
We have also added parameters to modules, which enablesiirenaf the variables for each instantiation of a
module. We formalize the semantics of the Action Languagdegudenotational semantics.

Currently, the Action Language supports variables with lban, enumerated, and (unbounded) integer types.
Additionally, one can declare parameterized integer @ontst which enables specification of both data parameterize
and control parameterized systems. Parameterized cdsistan be thought of variables that have unknown initial
values and that do not change their values.

In Section IlI-A we present the syntax of the Action Languagel in Section IlI-B we formally define the

semantics of the Action Language.

A. Syntax

An Action Language specification consists of a set of modeféindtions. Figure 2 shows the Action Language
specification of the control logic for the airport groundffi@control simulation software discussed in Section II.
The specification consists of three modulesin , Departing , andArriving . The modulemain (lines 1-36)
models the airport ground traffic control system, the modaéparting (lines 5-13) models a departing airplane,
and the modulérriving (partially shown in lines 14-30) models an arriving airgan

The abstract syntax for the Action Language is given in FégBr An Action Language module consists of the
formal parameter declarations, the local variable detilama, the initial state and the state space specifications,
the submodule definitions, the action definitions, the itams relation definition, and the temporal property
specifications. In every Action Language specification e level module is namechain and main module
does not have any formal parameters.

A module definition starts with the variable declarationeeTvariable declarations consist of type definitions of
the formal parameters, the local variable declarationd,tae parameterized constants. The local variables, formal
parameters and parameterized constants of a module arevigithje to that module and the submodules of that
module, i.e., lexical scoping is used. When an identifierdarariable (which is either a local variable or a formal
parameter) is used in a formula, it denotes the value of thatble in the current state. One can refer to the

value of a variable in the next state using a primed identifier, by appending a’ ' character at the end of the
identifier. We distinguish the two by calling the formeurrent state variableand the lattenext state variable

In Action Language, a parameterized integer constant ciem &ay integer value (however the value it takes
does not change during the execution). When Action LangWagiéier successfully verifies a specification with a
parameterized constant, it means that the verified progestgs for any possible valuation of that parameterized
constant.

In the specification shown in Figure 2, integer variables eldkde shared resources of the airport ground traffic

control, which are runways and taxiways. For example, WemnumRW16Rand numC3 (line 2) denote the

DRAFT

module main()
integer numMRW16R, numRW16L, numC3 ..;;
initial: NuUMRW16R=0 and numRW16L=0 numC3=0 ...;
restrict: numRW16R>=0 and numRW16L>=0 and numC3>=0...;
module Departing()
enumerated pc {parked, depFlow,takeOff};
initial: pc=parked;
reqTakeOff: pc=parked and numRW16L=0 and numC3+numC4+nu mC5+
numC6+numC7+numC8=0 and pc'=takeOff and
numRW16L'=numRW16L+1,;
11 leave: pc=takeOff and pc'=depFlow and numRW16L'=numRW1 6L-1;
12 Departing: reqTakeOff | leave;

© 00 N o o b~ W N B

=
o

13 endmodule

14 module Arriving()

15 enumerated pc {arFlow, touchDown, taxiTol6LC3, taxiTol 6LC4,
16 taxiTol6LC5, taxiTol6LC6, taxiTol6LC7, taxiTo1l6LCS,

17 taxiFrl6LB2, taxiFrl6LB7, taxiFrl6LB9, taxiFr16LB10,

18 taxiFri6LB11};

19 initial: pc=arFlow;

20 regLand: pc=arFlow and numRW16R=0 and pc'=touchDown and

21 NuMRW16R'=numRW16R+1;

22 exitRW3: pc=touchDown and numC3=0 and numC3'=numC3+1 an d

23 numMRW16R’=numRW16R-1 and pc'=taxiTol6LC3;

24 crossRW3: pc=taxiTo1l6LC3 and numRW16L=0 and numB2A’=nu mB2A+1
25 and pc'=taxiFrl6LB2 and numC3'=numC3-1 and numB2A=0;

26 park2: pc=taxiFrl6LB2 and pc'=parked and numB2A'=numB2 A-1;

27

28 Arriving: regLand | exitRW3 | crossRW3 | park2 | ... ;

29 spec: invariant(pc=arFlow => eventually(pc=parked)) / | P4

30 endmodule

31 main: Arriving() | Departing() ;

32 spec: invariant(hnumRW16R<=1 and numRW16L<=1) // P1

33 spec: invariant(hnumC3<=1) // P2

34 spec: invariant(numRW16L=0 and numC3+numC4+numC5+nu mC6+numC7+numC8>0)
35 => next(numRW16L=0)) Il P3

36 endmodule

Fig. 2. An airport ground traffic control specification in thetion Language

number of airplanes on the runway 16R and on the taxiway CGhedively. The enumerated variables (fie

of the moduleDeparting (line 6) and thepc of the moduleArriving , (lines 15-18) are used to encode
the states of the arriving and the departing airplanes. Aadamy airplane can be in one of the following states:
parked , takeOff , anddepFlow , where the statparked denotes that the airplane is parked at the gate, the

statetakeOff denotes that the airplane is taking off from the runway 16id the statelepFlow denotes that

DRAFT

Module ::= module Id (IdL) VarDecl Sys ModuleL Action ModTrans Prop endmodule
ModuleL,. ::= Module ModuleL | €
VarDecl ::= boolean Id; |integer Id ; | parameterized integer 1d ;

| enumerated Id { IdL } ; | VarDecl VarDecl | €

Sys 1= initial : Form ; | restrict : Form ; | Sys Sys | €
ModInst — ::= Id (IdL)
Comp ::= Id | ModInst | Comp | Comp | Comp & Comp
Action ::= Id: Form ; | Action Action | €
ModTrans ::= Id: Form; | Id: Comp ;
Prop ::= spec : CtlForm ; | Prop Prop | e

Fig. 3. Syntax of the Action Language

the airplane is in the air departing from the airport. Simylaan arriving airplane can be in one of the following
states:arFlow , touchDown , taxiToXY , taxiFrXY andparked , where the statarFlow denotes that the
airplane is in the air approaching to the airport, the statehDown denotes that the airplane has just landed and
is on the runway 16R, the stataxiToXY denotes that the airplane is currently in the taxiway Y andasg

to cross the runway X, the stataxiFrXY denotes that the airplane is currently in the taxiway Y and juat
crossed the runway X, and finally, the stat@rked denotes that the airplane is parked at the gate.

In an Action Language specification, the initial states drel dtate space of a system are specified in terms of
composite formulagForm) based on the syntax given in Figure 4. A composite formulabigined by combining
boolean and integer formulas with logical connectives. Alban formula BoolForm) consists of boolean variables
or constants combined with logical connectives. An intefgemula (IntForm) consists of integer variables or
constants combined with arithmetic operators, arithmgtédlicates, logical connectives, and existential or usise
guantifiers. Note that, only multiplication with an integemnstant is allowedI{teger denotes an integer constant).
For the formulas defining the initial states and the stateepae additionally impose the restriction that only the
current state variables appear in the formula. For exaniplthe specification of Figure 2, a departing airplane is
initially in parked mode (line 7), whereas an arriving airplane is initiallyarFlow mode (line 19). Additionally,
the state space of the system is restricted to nonnegativessaf the integer variables modeling the runways and
the taxiways (line 4).

In the Action Language, actions model the atomic transitioina system. A module can have multiple actions. An
action is defined as a composite formula on the current anddRestate variables. For example, in the specification
of Figure 2, the actiomeqTakeOff (lines 8-10) models the request of a departing airplanedkeaff: when the
airplane is inparked mode it checks whether all of the exits C3-C8 are empty. [fistransitions totake Off
mode and occupies the runway 16L.

Actions and module instantiations can be composed (denmyedomp in Figure 3) synchronously&) or

DRAFT

Form ::= Form and Form | Form or Form | not Form
| (exists IdL: Form) | (forall IdL: Form)
| BoolForm | EnumForm | IntForm
IntForm ::= IntTerm > IntTerm | IntTerm < IntTerm | IntTerm >= IntTerm

| IntTerm <= IntTerm | IntTerm = IntTerm | IntTerm = IntTerm

IntTerm = IntTerm + IntTerm | IntTerm - IntTerm | - IntTerm |
IntTerm * Integer | Id | Id’ | Integer
BoolForm ::= BoolTerm | BoolTerm = BoolTerm | BoolTerm != BoolTerm
BoolTerm ::= Id | Id’ |true | false
EnumForm ::= FEnumTerm = EnumTerm | EnumTerm '= EnumTerm
EnumTerm ::= Id | Id’
CtlForm ::= Form | EX (CtlForm) | AX (CtlForm) | EF (CtliForm)

| AF (CtiForm') | EG (CtlForm ') | AG (CtlForm)
| EU (CtiForm, CtlForm') | AU (CtlForm, CtlForm)

| CtlForm and CtlForm | CtlForm or CtlForm | not CtlForm

Fig. 4. Syntax of a composite formula

asynchronously |(). Transition relation of a module is defined in terms of eitlee composite formula or a
composition of its actions and submodule instantiatiaisd7rans). Submodules can be instantiated with different
actual parameters. In each instantiation of a module thmdbparameters are replaced with the corresponding
actual parameters and all the local variables are uniquetgamed. For example, in the specification of Figure 2,
the behavior of a departing airplane (modilleparting) is specified in terms asynchronous composition of the
actionsreqTakeOff andleave (line 12) and the behavior of the whole system is specifiedsgaanronous
composition of instantiations of the moduleparting and the modulrriving (line 28).

The temporal properties of a module are defined in CTL. A CTtmiola (CtlForm in Figure 4) consists of
composite formulas combined with the temporal operators, (BX, EF, AF, EG, AG, EU, AU) and logical
connectives. For example, in the specification of Figureofy temporal properties are specified (lines 29, 32, 33,
and 34). The property at line 29 states that it is always trse ¢hat if an arriving airplane is in the flow mode
then it will eventually be in the parked mode. The propergjia®en in lines 22-34 correspond to the rules listed in

Section Il.

B. Semantics

The formal semantics of an Action Language specificatiorefinéd by a tupld M, ¢), whereM is a transition
system andp is a CTL property. Transition systed/ is a tuple(Z, S, R), wherel, S, and R denote the initial

states, the state space, and the transition relation, ctéaplg. An Action Language specification is called a cotrec

DRAFT

specification iff M = ¢, i.e., M satisfies the property. Correctness of an Action Language specification can be
checked using the Action Language Verifier as we will discasthe following sections. Below, we describe the
semantics of the Action Language using denotational sdosant

a) Notation: In explaining the Action Language semantics we use theuiatig notational conventions: Given

a functionf : X — Y andzy,22 € X andy € Y, then the functionf[y/z1] : X — Y is defined as follows

fyfmlay =] ¥ T
f(z2) otherwise

We use[]-type brackets to denote the semantic domains. Dependirtheonontext,[/d] denotes an identifier

which can be one of the following: an action name, a moduleeavariable name, or a parameterized constant;
[IdL] denotes a list of identifiers]Form] and [CtiForm] denote a composite formula and a CTL formula,
respectively.

We define several functions that map actions or modules to dtteibutes.

« An action functionw € Act = [Id]— [Form] maps each action to the composite formula that correspands t
that action.

« The initial states, the state space, and the transitiotisaléunctionsinit, State, Trans = [Id]— [Form] map
each module to the composite formulas that characteriziaittal states, state space, and transition relation,
respectively. Note that, the formulas for the initial statand the states space use only current state variables,
whereas the formula for the transition relation can use lla¢hcurrent state and the next state variables.

« Functions for the formal parameters, the local variabled #e parameterized constanksrmals, Locals,
Params = [Id]— [IdL] map each module to the set of identifiers that correspondstéoitmal parameters,
local variables and parameterized constants, respegtivel

« The instantiation counter functiofnstCount = [Id]— N maps each module to its instantiation counter,
which keeps track of the number of instantiations.

o The CTL property functionr € CtlProp = [Id]— [CtlForm] maps each module to the CTL property
associated with that module.

We define the following tuples based on the functions defirsx/e

« The variable environment tuple is definedgs VarEnv = Locals X Formals x Params.

o The system environment tuple is definedeas SysEnv = Init x State.

« The current environment tuple is defined ass CurEnv = Init x State x [Form] x CtlProp x Locals x
InstCount.

« The environment tuple is defined a$:c Env = Init x State x CtlProp x InstCount x Locals x Formals x
Params x Act x Trans.

We make use of the following functions:

o Renamep : ([Form]U[CtiForm]) x [IdL]x[IdL]xN x [IdL]— ([Form]U[CtlForm]) function takes a

formula, the set of actual parameters, the set of formalmatars, the current value of the instantiation

DRAFT

10

counter, and the set of local variables as input and retdrasfdrmula in which the formal parameters are
replaced with the corresponding actual parameters andtta Variables are renamed uniquely using the value
of the instantiation counter.

e Renamey : [IdL]xN — [IdL] function takes a set of variables and an instantiation @uas input and
renames the set of input variables uniquely using the vafubeoinstantiation counter.

o NextStateVar : [Form]— [IdL] function takes a composite formula as input and returns ¢hefvariables
whose next state versions appear in the composite formula.

o Identity : [IdL]— [Form] function takes a set of variables as input and returns a ceiteptormula that
preserves the current value of every current state variattiee input in the next state. If the input is an empty
set then it returngrue.

o Guard : [Form]— [Form] function takes a composite formula that denotes a tramsittation as input and
returns a composite formula that corresponds to the domiatheotransition relation. This can be computed

by existentially quantifying out all the next state varedbln the input formula.

Finally, a tuple is denoted by enclosing the list of its comgats with(). Projections of a tuple are shown using
the subscripts consisting of the first character or the fisgt tharacters of the component domains, e.g., given a
tuple e € SysEnv = Init x State, €; € Init andeg € State.

b) Semantic FunctionsWe define the semantics of the Action Language by mapping ammitanguage
specification to a tupléM, ¢) using denotational semantics, whelé is a transition system and is the CTL
property of the system. The transition systéihis a tuple(Z, S, R) wherel, S, and R denote the initial states, the
state space, and the transition relation, respectivelghBaodule in an Action Language specification is associated
with a tuple that consists of: a composite formula descgltive initial statestfrue by default), a composite formula
describing the state spacir(e by default), a CTL formula describing the property, a coutkieping the number
of instantiations, a set of local variables, a set of formalgmeters, a set of parameterized integer constants, a
set of action definitions, and a composite formula desagihis transition relation. Note that the s€kv defined
above is the set of such tuples.

Below we present the definitions of the semantics functionstaeir explanations.
1) E: VarDecl — [Id]— VarEnv — VarEnv

) E[boolean Id]my =

19L,19F,z9p otherwise
mteger Id]md =

19L,19F,z9p otherwise
[enumerated Id {IdL}]]mz? =

19L, 19F, 9p) otherwise
[parameterized Id]Jmd = (¥, 0, Ip[[Id]Udp(m)/m]).

DRAFT

2)

3)

4)

11

e) E[VarDecly VarDecls]md = E[VarDeclaJmZ[VarDecly | md.
A variable becomes the local variable of the module in whicls idefined provided that it is not used as a
formal parameter in that module (cases 1.a, 1.b, and l.eyeShe values of the parameterized variables do

not change, they need to be kept separately and treated fifieeedt way (see 6.a).

I': Sys — [Id]— SysEnv — SysEnv
a) I'[initial : Form]me = (er[e;(m) A [Form]/m],eg).
b) I'[restrict : Form]me = (er,esles(m) A [Form]/m]).

¢) I'[Sys, Sysy]me = L[Sysy]mI[Sys,Jme.
The initial states of a module are described by the conjonabf the composite formulas from the system
definitions inside that module with theitial keyword (cases 2.a and 2.c) and the composite formulas
describing the initial states of its submodules that areamated in the transition relation definition (case 3,
equation 2 below). The state space of a module is describédebgonjunction of the compaosite formulas in
the system definitions using thestrict keyword inside that module (cases 2.b and 2.c) and the cdtepos
formulas describing the state space of its submodules thahsatantiated in the transition relation definition
(case 3, equation 3 below). When the initial states or thte sfaace is not specified (i.e., there are no system
definitions) the default valugrue, is used.
© : ModInst — [Id]— Env — CurEnv
O[Id (IdL) |m1f = p wherem = [Id], | = [IdL] and

pic = PiclBrc(m)+1/m] 1)
pr = Bi[Renamep(Br(m),1, Br(m), prc(m), Br(m)) A Br(m1)/ma])
ps = Ps[Renamer(Bs(m),l, Br(m), prc(m), Br(m) A Bs(m1)/ma] 3)
pr = Renamep(Br(m), 1, Br(m), prc(m), B (m)))
pc = PBclRenamerp(Bc(m),l, Br(m), prc(m), Br(m)) A Be(ma)/ma] (5)
pL = Pr[Renamey (BL(m), prc(m)) U Br(m1)/mi] (6)

The local variables of a module are uniquely renamed for éastlantiation using the instantiation counter for
that module. Each instantiation causes the instantiatiomter to be incremented by one (equation 1). The
environment for a new instantiation of a module is defined daiyaming the local variables and by replacing
the formal parameters with the corresponding actual patenmén the composite formulas describing the
initial states and the state space of the module (equaticasd23), the composite formula describing the
transition relation of the module (equation 4), and the Coinfula describing the property of the module
(equation 5). All these transformations are achieved u#liregRenamer function. Finally, after renaming
(using theRenamey function), the local variables of the instantiated modulke added to that of the parent
module in which it is instantiated (equation 6).

A : Comp — [Id]— Env — CurEnv

DRAFT

12

a) A[Id]mpB = p wherepr = B4([Id]) andVX € {I,S,C,L,IC},px = Bx.
b) A[ModInstlmpS = O[ModInst]mg.
¢) Letp’ = A[Comp,]mf andp” = A[Comp,|m(p}, p's, pe» Pros P> BEs B, Ba, Br).
A[Comp, | Comp,]mp = p"”" where
ot = (plp A Identity(NextState Var(p7) \ NextStateVar(py))) V

(p7 A Identity(NextState Var(p’p) \ NextState Var(pf)))

andvX € {I,S,C,L,IC}, p% = pls.
d) Letp’ = A[Comp,[mp andp” = A[Comp,]|mip}, ps, pos Prcs PLs BF, Brs Ba, Br).
A[Comp, & Comp,] B = p"" where

/1

o = (pp vV —Guard(p'y) A Identity(NextStateVar(pl))) A
(o't vV = Guard(p}) A Identity(NextState Var(pT.)))

andvX € {I,S,C,L,IC}, p% = pls.
The Action Language supports both asynchronous and synchsocomposition of actions and module
instantiations. Asynchronous composition (denotedl pynodels interleaving semantics of concurrency, which
corresponds to combining the transition relations of ifdiial components using disjunction (case 4.c). In
asynchronous composition, when a transition is executedvalues of the variables that are modified solely by
the other transition are preserved. In synchronous cortipngidenoted by&) two transitions are executed in
parallel, which corresponds to combining the transitiolatiens of individual components using conjunction
(case 4.d). However, if one of the transitions is disablezhthh does not block the other transition.
5) Q: Action — Act — Act
a) Q[Id : Form]a = «o[[Form]/[1d]].
b) Q[Action, Actions]a = Q[Actions] Q[Action] .
Actions model atomic transitions of the system. Actions specified as composite formulas on current and
next state variables.
6) ¥ : ModTrans — Env — Env
a) U[Id : Form]B = ' where
Br = Brl[Form] A Identity(Sp([1d]))/[1d]]
andvX € {I,S,C,IC,L,F,A, T}, f% = Bx.
b) ¥[Id : Comp]s = (' where

p = A[Comp][Id]p
Br = Brlpr A Identity(Bp([1d]))/[1d]]
" = px, VX €{I,S,C,IC,L}

Br = Br, Bp=Pp, and B = Ba

DRAFT

7

8)

13

Behavior of a module is defined either as a composite formaol@wrent and next state variables or as a
composition of instantiations of its submodules and itsoast
® : Prop — [Id]— CtlProp — CtlProp

a) ®[spec : CtForm]mt = 7[r(m) A [CtiForm]/m)].

b) ®[Prop, Prop,]|mr = ®[Prop,Jm®[Prop,]mr.
The CTL property of a module is described by conjunction cé tBTL formulas given in all property
specifications of that module (cases 7.a and 7.b) and the Girhulas describing the CTL properties of its
submodules that are instantiated in that module’s tramsitelation definition (case 3, equation 5).
T : Module — Env — Env

a) Y[module Id (IdL) VarDecl Sys Module Action ModTrans Prop endmodule |8 = 5" where

m = [Id]

I = [1dL]

e = T[SysIm(Br,Bs)

B = TY[Module]{er,es, B, Bic, Br, Brll/m], Bp, Ba, Br)

a = Q[Action]s

T = ®[Prop]mpBq
p" = U[ModTrans]m(B;, Bs, 7, Bic: Br, B, Bp: o, Br)

Semantics of a module: is defined by((I, S, R), ¢) where

I= ﬁlll(m)’ S = ﬁg‘(m)v R = ﬁ%(m)a and ¢ = ﬁg‘(m)

Therefore, the transition systefil, S, R), ¢) that is defined by an Action Language specification is defined
as

I = 3] (main), S = B4(main), R = % (main), and ¢ = $}(main).
where the initial environment is defined as

Br = Ax.true, Bs = Azx.true, ¢ = A\r.undefined, Brc = A\z.0,

Br, = x.0, Br = Xx.0, Bp = Xx.0, Ba = Mx.0, Br = \z.0.

In Figure 5 we show a small Action Language specification inesbby the case study discussed in Figure 1.

The goal of this example is to demonstrate the semanticseofAttion Language composition operators. In this

example specification, there are two submodules of moahali® : runway andenvironment . Variablerwl6L

models availability status of the runway 16L aedl6L models events that denote either an enter request or an

exit request. Moduleunway models status change of a runway and its behavior is modsjealsinchronous

DRAFT

14

module main()
enumerated ev16L {enter, exit};
boolean rwl6L;

module runway(rw, ev)
boolean rw;
enumerated ev {enter, exit};
initial: rw;
rl: rw and ev=enter and !rw’;
r2: 'rw and ev=exit and rw’
runway: rl | r2;

endmodule

module environment(ev)
enumerated ev {enter,exit};
initial: ev=enter;
el: ev=enter and ev'=exit;
e2: ev=exit and ev'=enter;
e3: ev=exit and ev'=exit;
environment: el | e2 | e3;

endmodule
main: runway(rwl6L,evl6L) & environment(ev16L);

spec: AG(Irwl6L => AX(rwl6L))
endmodule

Fig. 5. A sample Action Language specification modelingustathange of runway 16L as the relevant event occurs.

composition of its actionsl andr2 . Moduleenvironment models the occurrences of the enter and exit events
for a particular runway. Whenever an enter event occurdiémiext state an exit event occurs (actidn). After the

exit event occurs, either an enter eveattion e2) or an exit eventdgction e3) occurs nondeterministically.
The behavior of theenvironment module is modeled by the asynchronous composition of itereel, e2,
ande3. The behavior of the whole system is defined by synchronoagposition of instantiations of the modules
runway andenvironment usingrwl6L andev16L . The correctness property states that whenever the runway
16L is occupied it is emptied in the next state. Table | shdvesttansition systems that correspond to the modules

runway , environment , andmain.

IV. THE ACTION LANGUAGE VERIFIER

The Action Language Verifier (ALV) is an automated verificatitool for analyzing Action Language specifica-
tions using infinite state model checking techniques. Thimmiaallenge in model checking [CGP99] is to alleviate
the state explosiorproblem caused by the exponential growth of the state spaitethe increasing number of

concurrent components and variables. Symbolic model éhgdiicM93] provides a way to address the state

DRAFT

15

Module 1 S R

runway rw true | (rw A ev = enter A —~rw’) V
(mrw A ev = exit Arw')

environment ev = enter true | (ev = enter A ev’ = exit) V
(ev = exit A ev' = enter) V
(ev = exit A eV’ = ewit)

main rwl6L A evl6L = enter | true | ((rwl6L A evl6L = enter A -rwl6L’)
V (-rwl6L A evl6L = exit A rwl6L’)
V =(rwl6L A evl6L = enter V
—rwl6L A evl6L = exit)A
rwl6L’ = rwl6L) A ((evl6L = enterA
evl6L’ = exit) V (evl6L = exitA
evl6L’ = enter) V (evl6L = exitA
evl6L’ = exit) V —(evl6L = enter V
evl6L = exit) A evl6L’ = evl6L)

TABLE |

THE TRANSITION SYSTEMS THAT CORRESPOND TO THE MODULESINWAY , environment , AND main OF THEACTION LANGUAGE
SPECIFICATION INFIGUREDS. I, S, AND R DENOTE THE INITIAL STATES, THE STATE SPACE AND THE TRANSITION RELATION,

RESPECTIVELY

explosion problem by encoding the state space symboli¢ally for example, Boolean logic formulas) instead of
explicitly enumerating the states. Since the size of a syimbepresentation can be much smaller than the set of
states it represents, symbolic representations enabificadon of very large (and even infinite) state systems.

Given a transition syster’ = (1, .5, R), wherel, S, and R denote theinitial states the state spaceand the
transition relation respectively, and a CTL property;, model checking problem is to decide whettiér= ¢. Let
[¢] denotes the states that satigfythenM = ¢ if and only if I = [¢]. Throughout this paper we assume that the
set of initial states, the state space and the transitiatioal are symbolically represented as formulas. A symbolic
model checker first computes a formula that charactefjgg¢sand then checks if = [¢] holds.

ALV is a symbolic model checker. Its distinguishing featig¢o encode the transition system using the composite
symbolic representation to provide the flexibility and tixeasibility required for analyzing software specificaiso
Moreover, ALV can be used to analyze infinite-state systdmgyeneral, CTL model checking for infinite-state
systems is undecidable. However, ALV employs several kgcsi for speeding up or guaranteeing the termination
of the fixpoint computations required in symbolic model dtirg. These heuristics are conservative and generate
approximations of the least or greatest fixpoints, i.e., Alds not generate any false positives or false negatives,
however, its analysis may be inconclusive.

ALV uses the composite symbolic representation, as impteeteby the Composite Symbolic Library [YKBO3],
to encode the sets of states and the transition relationhénQomposite Symbolic Library, different symbolic

representations are combined using tdoeposite model checkirgpproach [BGLOO]. Our current implementation

DRAFT

16

of the Composite Symbolic Library uses two symbolic repnéations: BDDs for boolean logic formulas and
polyhedral [BGP99] or automata-based [BB03] represematifor Presburger arithmetic formulas. We call these
representationbasic symbolic representations

The atomic propertiesAP) in ALV are not restricted to propositional properties as finite state model
checkers [CGP99]. Any property that can be expressed usoaination of Presburger arithmetic and Boolean
logic can be used as an atomic property. These atomic prepadmbined with the CTL temporal operators and
the Boolean connectives form the property specificatioguage of ALV.

Each variable type in the input Action Language specificat®assigned to the corresponding basic symbolic
representation for that variable type. Boolean and enuteénreariables in the Action Language specifications are
mapped to BDD representation, and integers are mapped toitametic constraint representation. Currently, the
Composite Symbolic Library uses CUDD package [CUD] for theBrepresentation, the Omega Library [Ome]
for the polyhedral representation and an automata encodfnthe Presburger arithmetic built on top of the
MONA [HJJ"95] package for the automata-based representation [BB@8].encode the set of states and the
transition relation in Disjunctive Normal Form (DNF), as &jdnction of conjunctions of basic symbolic repre-
sentations (e.g., a disjunct consists of conjunction of @ldan formula stored as a BDD representing the states of
boolean and enumerated variables, and a Presburger atittooestraint representing the states of integer vargble
We call this DNF representation @mposite symbolic representatisince it combines different basic symbolic

representations. A composite formulg,is represented in DNF as

n
r=\
i=1t

wherep;; denotes the formula of basic symbolic representation typethe ith disjunct, and» andT" denote the

!

Dit
1

number of disjuncts and the number of basic symbolic reptesien types, respectively.

Heuristics for efficient manipulation of composite symbokpresentation, including implementations of the basic
operations such as negation, conjunction, and disjuntiz@been implemented in the Composite Symbolic Library
and discussed in [YKBO03]. So, we do not discuss implemeaariatdf these basic operations in this paper, rather,
we focus on the verification heuristics implemented in ALVtop of the functionality provided by the Composite
Symbolic Library.

The rest of this section is organized as follows. SectiorAldiscusses the fixpoint computations for symbolic
CTL model checking. Section IV-B presents the heuristias docelerating or guaranteeing the convergence of
the fixpoint computations and the heuristics for efficienpfiint computations. Section IV-C explains the counter-

example generation algorithms.

A. Fixpoint Computations

The pre- and post-condition computations are among the logsrations in a symbolic model checker. Given a

set of statep and a transition relatioi®, the pre-condition, Re(p, R), is the set of all states that can reach a state

DRAFT

17

in p with a single transition inR (i.e., the predecessors of all the stateg)nThe post-conditionPosTp, R), is
defined similarly.

Given stateg and a transition relatioi?, both represented using the composite symbolic repretsemtas

nrg T

V Ane 7=V Are

i=1t=1

H
|\'<§

the pre-condition can be computed as

nRr
PRE(p, R \/

The above property holds, because existential variabieimgition in FRE(p, R) computation distributes over the

Pgt, th)

u <$
il >’ﬂ

disjunctions, and due to the partitioning of the variablesdadl on the basic symbolic types, existential variable
elimination also distributes over the conjunction abovetfe composite symbolic representation [BGLOO]. Since
the pre-condition computation distributes over both thgutiction and the conjunction for the composite sym-
bolic representation, we are able to compute the pre-comddf a composite representation using pre-condition
computations of the basic symbolic representations.

The temporal operator EX corresponds to the pre-conditmmputation, i.e.[EX p]= PRE(p, R). AX can also
be computed agAX p]= —PRE(-p, R). The rest of the CTL operators can be computed as least aradegte
fixpoints using EX and AX [CGP99]

[PEUq] = px.qV (p A [EX2])
[PAUg] = pz.q Vv (p A [AX 2])
[EG p] = vx.p A [EX 2]
[AGp] = vz.p A [AX 2]

However, the above characterizations of AU and EG are notpteta if we do not restrict the transition relation

to be total. A transition relation is total if every state tmsext state, which is a common assumption in model
checking literature [CGP99]. Since a non-total transitgystem can have states that do not have any next states,
AX false will be satisfied in such states vacuously. Hence, thosesstatll satisfy AFfalse too. This creates a
problem, since we will have states that satisfy ARvithout p being satisfied in any future state. To prevent this,

we alter the fixpoint computation for AU (and similarly for Alas follows
[p AU ¢]=px . q V (p A [AX z] A AtLeastOne)
where AtLeastOne denotes the states that have at least one successor, and camputed as:
AtLeastOne = —[AX false]= [EX true]= PRE(true, R)

Dual of this problem appears in the EG fixpoint. If all the etain a finite path satisfigs and if that path ends
at a state that does not have any successors, then the stateatgath should satisfy BG Then, we need to
change the EG fixpoint as:

[EGp]=vz .p A ([EX 2] V None)

DRAFT

18

EG(): composite formula

D, S, Soid» None: composite formula

let R denote the transition relation

let None denote the states with no successors

1

2

3

4

5 s«p
6 s,q < false

7 while —isEquivalent(s, sq1q) do

8 Sold < 8

9 s < (PRE(s, R) V None) A Soiq
10return s

Fig. 6. The algorithm for computing the states that satisGpE

EU(p, q): composite formula

D, q, S, Soiq: composite formula

s 4q

So1q < false

let R denote the transition relation

while —isEquivalent(s, s,1q) do
Sold < 8

s < PRE(s, R) ApV So1q

© 0O N o o b~ W N B

return s

Fig. 7. The algorithm for computing the states that satjsfigU ¢

where None denotes the states that have no successorsNwee = —AtLeastOne). Note that, this fixpoint always
considers all the paths that end in a state with no succedsothe Action Language VerifieAtLeastOne and
None are pre-computed and stored with the transition systemhabthey are not recomputed in each fixpoint
iteration.

Based on the equivalences among the CTL operators [CGPA8]can show thafEX, EG,EU} forms a basis
for CTL, i.e., all CTL formulas can be expressed using onlgsehtemporal operators. Similarly, another basis for
CTL is {EX,EU, AU}. In the Action Language Verifier both basis are implemented @n be chosen by the user.
Another option is to leave the temporal operators as theylarthat case the Action Language Verifier computes
each temporal operator directly using the correspondirapfix.

Figures 6, 7 and 8 show the algorithms for computing the stiiat satisfy the CTL formulas EGp EU ¢, and
p AU ¢ based on the fixpoint characterizations of these temporafatprs. Note that, in an infinite state model
checker like ALV termination of these fixpoint computatioissnot guaranteed. Although each iteration takes us

closer to the fixpoint, we are not guaranteed to reach it. Hewef a fixpoint is reached we are sure that it is the

DRAFT

19

AU(p, g): composite formula

Dy Gy S, Soid, AtLeastOne: composite formula

s q

So1q < false

let R denote the transition relation

let AtLeastOne denote the states with at least one successor
while —isEquivalent(s, sy14) dO

Sold < S

© 00 N o o b~ W N B

s < 7PRE(=s, R) Ap A AtLeastOne V sy14
10 return s

Fig. 8. The algorithm for computing the states that satjsf#U ¢

least or the greatest fixpoint based on the type of the iterain the next section we will discuss heuristics for

computing approximations of least and greatest fixpoints.

B. Heuristics

We use the approximate fixpoint computation approach fro@HB9] to compute approximations of least and
greatest fixpoints. Assume that we wish to compute the sthtssatisfy a temporal property in a transition
systemM = (S, I, R). If M is an infinite state system the fixpoint computations desdrétbove may not converge.
Instead of computind¢], i.e., the set of states that satisfy the temporal propertgssume that we compute a
lower boundfor [¢], denoted¢] ~, such thaff¢] = [#]. Note that,l = [¢] " implies that/ = [¢], i.e., showing
I = [¢] means that the transition systeni satisfies the property. However, ifI # [¢] , we cannot conclude
that the transition system does not satisfy the propertgesihis possible thaf # [¢] but I = [¢]. In that
case, we can compute a lower bound for the negated proder®f . If I A [~¢] is satisfiable then we can
conclude that the transition systeld does not satisfy the property. If both cases falil, i.e., bothh % [¢]~ and
I N [—¢] = false, our verification effort will be inconclusive.

Since ALV computes the temporal formulas recursively stgrrom the innermost temporal operators, in order
to implement this approach in ALV, we have to compute an agpration to a formula by first computing the
approximations for its subformulas. All temporal and lagdioperators other thar=" are monotonic. This means that
any lower/upper approximation for a negation free formuda de computed using the corresponding lower/upper
approximation for its subformulas. To compute a lower botorda negated property such ag, we can compute
an upper bound¢]™ for the subformulap where [¢]= [¢]", and then lef-¢] = —([¢]"). Similarly, we can
compute an upper bound fef¢ using a lower bound fot. Thus, we need to implement algorithms to compute
both lower and upper bounds of temporal formulas.

In this section we explain heuristics for computing lowed ampper approximations of least and greatest fixpoint

computations using truncated fixpoint calculations andwidening and the collapsing operators. We also discuss

DRAFT

20

module main()
parameterized integer size;
integer x.y;

enumerated pc {a,b,c};

initial: x=-size and y=size;
al: pc=a and x<0 and x'=x+1 and pc'=a;

1

2

3

4

5 restrict: size>0;
6

7

8 a2: pc=a and x=0 and pc'=b;
9

a3: pc=b and y>0 and y'=y-1 and pc'=b;
10 a4: pc=b and y=0 and pc’=c;
11 ab: pc=c and x'=-size and y'=size and pc'=a;
12 main: al | a2 | a3 | a4 | a5;
13 spec: AG(x<=y)
14 endmodule

Fig. 9. A sample Action Language specification.

heuristics for accelerating fixpoint computations basedself-loop-closures and restricting the state space to an
over-approximation of the reachable states. We also pmpes new heuristics, which are marking and dependency
heuristics, for avoiding the redundant computations dufirpoint computations. We have implemented all these
heuristics in ALV.

We will explain these heuristics using the sample specifioagiven in Figure 9, in which two integer variables
(x andy) are periodically assigned values that have the same a@bsalue and are of different signg=-size
andy=size , by actiona5). Between two such consecutive assignments the negative imincremented until it
becomes zero (actiorssl anda2) and then the positive value is decremented until it beconees (actionsa3
anda4). The correctness property is specifiedxas always smaller than or equal Yo

Truncated Fixpoint Computation&ach iteration of a least fixpoint computation gives a lowaurd for the least
fixpoint. Hence, if we truncate the fixpoint computation aféefinite number of iterations we will have a lower
bound for the least fixpoint. Similarly, the result of eackrdtion of a greatest fixpoint computation gives an upper
bound for the greatest fixpoint. For instance, for the speatifon in Figure 9, truncating the fixpoint computation of
EF(xz > y), given in Figure 10, after two iterations yields, which is a lower approximation for the least fixpoint.
ALV has a flag that can be set to determine the bound on numbxpdint iterations. If the obtained result is
not precise enough to prove the property of interest, it cannfproved by running more fixpoint iterations.

Widening and Collapsing Operatorszor computing upper bounds for least-fixpoints we use widening
technique [CC77] generalized to the composite symbolicasgntation [BGL0O]. Lep andg denote two composite
formulas such thap = ¢ wherep = \//_| A/_, pix andq = \/", A/, ¢ir- Then the widening operator for the
composite symbolic representation is defined as:

PVe= \/ /\ pit Vit Gjt V \/ q Vv \/ Di

1<i<n, 1<j<m, p;=q; teT 1<5<m Vi, 1<i<n, piaq; 1<i<nYj,1<j<m, piFq;

DRAFT

14vyda

Atomic property: x>y

L /x>y A x=0 x>y A y=0 3
11 > _Jv >y Y] Vxoy v VXL A) (ISYSXA)y paise
| \sizex 1\ pe= size I pe=h ~__ 7 i \sizexIppc=a) ' \sizex1ppc=b

x>y Ax=0 x>y A y=0 3 y<x<—1 A 1<y<X A y-1g¢x<—2 A 2<y< X+Ip
1231 .) x>y iV false SUF SO S5 \ N
3\<5'Z%3A PC=QV <SIZ®/JA pc= Vxoy : v <size; iy pc:g v <size;1,\ pc:b> v <size;1/\ pc:a> false <size;1/\ pc:b>
Te}

pre al, a2, a4, a

Lx>y A x=0 x>y A y=0 - - - - =
,3:3< >y _9V< >y Ay _9 V x>y V falsey (Y€ 1A v l;ng A v (¥ 1<x<=20 Vialse v ?sygx+lA v (¥ 2<X<3 A V false v §sysx+2A
: sizexIp pc= sizexIp pc= ! sizex 1\ pc= sizex1 A pc=b size> 1)\ pc=a, sizex1 p pc=b size>1) pc=a, size-1 \ pc=b

Fig. 10. The result of the first three iterations of computifig’(xz > y) naively for the Action Language specification given in Fe@®. I1, I2, and I3 denote the result of the first, the second,
and the third iteration, respectivelyre a; denotes that the constraint pointed by the arrow is obtabyederforming the pre-condition computation on the souroestraint using actiom;, where
1 <14 < 5. The constraints in each of the dashed rounded boxes ardif@hjinto constraint,z > y, by the Composite Symbolic Library.

114

22

Atomic property: x>y
11: x>y Vv y;xg-l A \ 1'sysX A
sizex1A pc= sizex1\ pc=b

12: x>y V y_sxs-l Ay y_-lsxs-Z ANy 1_sysx A v Z_sys X+IA
sizex 1) pc= sizex1 A pc= sizez1A pc=b, sizex1A pc=b
AN simplify / AN simplify /

2 x>y Y Y-lexgl Aysl v 1gygX+1p IS X
' sizes 1 A pc=a sizex1 A pc=b

2 y-1gxg-1 Aygl y-2gXxg2 Aygl Igy<Xx+1A 1sX 2y X+2A 1sX
Py sizex 1 A pc=a v sizex 1 A pc=a sizex1 A\ pc=b v sizex1 A pc=b

AN simplify / AN simplify /
Bixsy v <y-2 <xg1 A ys-1> v <1sys X+2 15 x>

J sizex 1 A pc=a sizex1 A pc=b

3 X<l A yg-l Igy Al1sx
x>y v sizex 1 A pc= v sizex1 A\ pc=

Fig. 11. The results of the first three iterations of comptiF' (z > y) for the Action Language specification given in Figurel9, I,
and I3 denote the results of the first, the second, and the thirdtiter, respectivelyl/, and I/, denote the results of the iterations after the
simplification operation and/’ denotes the result of the iteration after the widening djmna(<7).

wherep; = /\Z;lpit, q; = /\tT:1 g;¢, andn, T', p;;, ands/; denote the number of basic symbolic representations, the
set of basic symbolic representations, a symbolic reptaten of typet, and the type-specific widening operator
for typet, respectively. Note that the widening operator for the cosilg representation simply uses the widening
operators for the basic symbolic representations on palspuncts fromp andq that satisfy the constraipt = ¢;.

As the widening operator for the boolean representatipg,§;), we simply use the disjunction operation. There
are two widening operators/;,:) for the integer domain based on the type of symbolic repita¢ion used for the
integer domain. For the automata representation we useittenimg operator defined in [BB04]. For the polyhedral

representation we use the widening operator defined in [BEEBfit generalizes the convex widening operator in

DRAFT

23

[CH78] to Presburger arithmetic formulas.

A widening operator has to satisfy the following two constts: 1) For anyp andgq, pV ¢ = p v ¢, i.e.,
widening operator should provide an upper bound for thaudigjion operation. 2) The approximate fixpoint sequence
computed using the widening operator should eventuallyeae. The widening operator described above satisfies
the first constraint. In order to satisfy the second constrave have to bound the number of disjuncts in the
composite symbolic representation. This means that afeeramch the bound, we need to merge the disjuncts in

the composite representation. We can merge two disjyncts /\thlplt and ps /\th1th as

T

P12 = /\(plt V pat)
t=1

wherep; » provides an upper bound fex V po, i.e., p1 V p2 = p1,2. Using this merging operation we can limit the
number of disjuncts in the composite symbolic represemmatind guarantee convergence of the fixpoint iterations
to an upper approximation of the least fixpoint.

Figure 11 shows an example application of the widening dpgrevhich is used for the computation &fF (z >
y) fixpoint for the specification in Figure 9. In this example Alwas directed to start applying the widening
operation after the second iteration. For computijgy I}, ALV compares each pair of disjuncts where one of
them comes fron¥} and the other comes frorft,. For pairs that satisfy the subsumption relation it appthes
widening operation. For instance, the disjugct 1 <z < —1 Ay < —1 A size > 1 A pc = a that comes fronT},
is subsumed by the disjungt— 2 <z < -1 Ay < —1 A size > 1 A pc = a that comes froni;. Applying integer
based widening operation on the integer parts of these tsjortits, i.e.(y — 1 <z < -1 Ay < —1 A size >
DV (y—2<z<—-1Ay<-1Asize>1), yieldsz < -1 Ay < —1A size > 1.

To compute lower-bounds for the greatest fixpoint compaortetive define the dual of the widening operator and
call it the collapsingoperator (and denote it witky). Let p andq denote two composite formulas such that- p.
Thenpy/q is defined as

pVg= \V N\ PV v \/ pi V \/ 4
1<i<n, 1<j<m, p;=q; teT 1<i<n, -31<5<m, pi=q; 1<j<m, -31<i<n, p;i=g;
wherep; = /\Lpit, q; = /\;‘F:1 qjt, andn, T, p;;, andsy, denote the number of basic symbolic representations, the
set of basic symbolic representations, a symbolic reptaien of typet, and the type-specific collapsing operator
for type t, respectively.

The collapsing operators satisfy the following constraingg = pAq. Intuitively, iy operator finds the decreasing
parts of the fixpoint iterations and removes them to acctdetiae fixpoint computation. The greatest fixpoint
computations are modified so that at each iteration the tresus set top;_1v/p;. For the boolean representation
the collapsing operatory,,,;) is simply the conjunction operator.

Note that the collapsing operator is different than the maimg operator [CC77]. The narrowing operator is used
to improve an over approximation of a least fixpoint in finitenmber of steps. The collapsing operator, on the other

hand, is used to compute a lower approximation of a greatqsbifit.

DRAFT

24

)) 1gx A y<-1 A
Atomic property: X<y None.< pc=a> \ < pc=b)

X$y-1A xs-1 X A1y) xSy
v sizey ' sizex1 A
—I1: | x=0A0<y A A |V |y=0Axs0 A v [sizex1
pc=a v pc=b A_
1<xgy xsys-1 pc=c
XSy
x<y-2A X$-2 sizes1 x<y-2A 28y sizexl A
12: v A Ay v A AV S'f\ezl
‘1<XSYAOSy pe=a x<y<1A x<0 pc=b pc=c
-1 <xsy A O<y x<y<1A x<0 X<y
V A ’)
12’ sizes 1 v sizex1 v sizex1
A A A
pc=a pc=b pc=c

Fig. 12. The results of the first three iterations of commtiG(x < y) for the Action Language specification given in Figure/done
denotes the states with no successérsand I> denote the results of the first and the second iterationpectigely. I, denotes the result of
the iteration after the collapsing operatioty).

In our symbolic representation for integers each Preshwagtmetic formula is represented as a disjunction of
polyhedra. Given two such representatignand g, our collapsing operator for linear arithmetic constrai(y;,,,)
looks for a polyhedron ip that subsumes and is not equal to a polyhedran When a pair is found the subsumed
polyhedron is removed from. The result of the collapsing operation is the union of thilpedra remaining iny.

For the automata representation we use the widening opeératmmputing the collapsing operator as follows:
PVined = —(—p Vine —¢). Note that this approach is inefficient for polyhedra repreation since computing the
negation is inefficient in polyhedra encoding.

Figure 12 shows an example of the collapsing operator, wikicised for the computation &G (z < y) fixpoint
for the specification in Figure 9. In this example ALV was diexd to start applying the collapsing operation after
the first iteration. For computind; 71>, ALV compares each pair of disjuncts where one of them conms f;
and the other comes fromy. For pairs that satisfy the subsumption relation it appthes collapsing operation.
For instance, the disjundt <y —2A2< -2 vV -1 <2 <yA0<y)Asize > 1A pc=a that comes from
I, is subsumed by the disjunét <y — 1Az < -1V 2=0Ay>0V 1 <z<gy)Asize>1Apc=a

DRAFT

25

that comes from/;. Applying integer based collapsing operation on the intqggets of these two disjuncts, i.e.,
(z<y—1lAz<-1Vz=0Ay>0VvVi<z<yV 1§x§y)/\siz621§int(x§y—2/\x§—2 vV —1<
x<yAN0<y)Asize>1,yields—1 <z <yAy>0Asize > 1. Note that the disjunct <y —2Az < -2 s
subsumed by and is not equalto< y — 1 Az < —1, so it does not appear in the result.
Self-Loop-ClosuresAnother heuristic we use to accelerate convergence is tguatarthe closures of self-loops

in the specifications. Given a transition systém.S, R) we can use any relatioR’ that satisfies the constraint
Vs = S,P0OST(s, R) = POST(s, R') = POST(s, R*)

(whereR* denotes the reflexive-transitive closureR)fto accelerate the fixpoint computations for temporal ojpesa
EF and EU [BGP99].
To exploit this idea, given a transition relatidhin the composite symbolic representatiin= \/;", A, 7t

ALV transforms it to

R=R V \/(Ti,int A /\ IRy)
i=1 teT t#int

where IR, is the identity relation for the variables represented with basic symbolic representation typeand
the subscriptnt denotes the symbolic representation for integers. Notg [@Tﬂt#m IR, corresponds to identity
relation for all the variables other than integers. Heng&. , (ri i A e i I Re) denotes the part of the
transition relation where all the variables other than thieger variables stay the same. To compuytg,:'s we
conjunct the transition relatio® with A\, ., ., /R, and collect the resulting disjuncts that are satisfiableenlTh
for eachr; i, we compute an; ;,,, whereVs = S, POST(s, 7 int) = POST(s, 7} ;,,;) = POST(s, 77,)i [BGPOI].

We take the disjunction of the result with the original trigiog relation R to compute

n T
R=RV \[(m A\ IR)
i=1 teT t#int

Then, we useR’ in the fixpoint computations for EF and EU instead®to accelerate the fixpoint computations.
Note that we cannot use closure computations for EG or AU fixgaince they may introduce cycles that do not
exist in the original transition system. Table Il shows thansitions that correspond to the actions in Figure 9 for
both cases with and without using the self-loop-closuresiktc. Note that when the self-loop-closures heurisic i
used only the transitions that correspond to the actadns&nda3 change, since they are the ones that correspond
to self-loops, they model iterative increment and decrdano@erations, respectively.

Reachable Statesthe fixpoint algorithms described thus far asackwardreachability techniques. They start
with a property¢, and then use ®E to determine which states can reagthThe last step is to determine whether
there are initial states that are included in the resulting set of states. Alterredyivit may be useful to start with the
initial statesI, compute an upper approximatidiiS™* to the reachable state-spaB& and then useRS™ to help
in the model-checking process. For example we can alterytivdgslic model checker to restrict its computations
to the states inRS™. To generate the upper bouridlS™, we can use theosT function. The (exact) reachable

state-space of a transition system is the least fixpBifi= ua . I vV POSTx, R), and it can be computed using

DRAFT

26

Action Transition Relation Transition Relation with Loop-Closures

al pc=a Az <O0A (pc=aANz<O0AZ =xz+1Apd =a)V
' =x+1Apd =a (pc=anz+1<z' <0Apd =a)

a2 pc=aAz=0Apc =b pc=aAz=0Apc =b

a3 pc=bAy>0A (pe=bAy>0NYy =y—1Apcd =b)V
yY=y—1Apd =0b (pec=bA0<y <yApc =b)

a4 pc=bAy=0Apc =c pc=bAy=0Apc =c

ab pc=cAz = —sizeA pc=cAz' = —size Ny = —size Apc' =a
y = —size Apc' =a

TABLE I

THE TRANSITIONS THAT CORRESPOND TO THE ACTIONS OF THACTION LANGUAGE SPECIFICATION INFIGURE 9. — AND + DENOTE

EXCLUSION AND INCLUSION, RESPECTIVELY

the techniques we previously developed for EU. Moreovercasm use the widening method to compute an upper
bound for RS as well. After computingRS™, we restrict the result of every operation in the model cleedk
RST.

Marking Heuristic: The states that satisfy BFare characterized by the least fixpoinf.¢ V PRE(Z). The states
that satisfy EB can be computed iteratively such that the result of ttte iteration denotes the states that can
reach a state that satisfigsin at mostk transitions. Since composite symbolic representation dispunctive
representation, and, since in the least fixpoint computatithe result of thekth iteration includes the disjuncts
from the previous iterationk(— 1st iteration), a naive approach that computes the pre-tiondin the result of the
k — st iteration to obtain the result of thgh iteration would perform redundant computations by repating the
pre-condition for the disjuncts coming from the result o th— 2nd iteration. We can alleviate this problem by
marking the disjuncts from the result of tke- 1st iteration after computing the result of théh iteration. Hence, at
the kth iteration the pre-condition is computed only on the disjis that are not marked, i.e., the disjuncts that were
computed at thé: — 1st iteration. Table 11l shows the results of the first 4 itemas for computing EB for both
with and without the marking heuristic. At thieth iteration the fixpoint algorithm without the marking héstic
computest — 1 more pre-condition computation than that computed by tledfitpoint algorithm with the marking
heuristic. Another benefit of marking heuristic is to redtize number of the widening operations performed when
ALV runs in the approximate fixpoint computation mode. Therkiiag heuristic can also be used during the least
fixpoint computations for the properties of typ&Uq and the reachable statésS, since these fixpoints are also
characterized asiZ.¢ V F(Z).

Figure 13 shows the results of the first three iterations fimputing EF(x > y) using the Marking heuristic
for the specification given in Figure 9. The disjuncts tha enclosed by rounded-corner boxes denote the marked
ones. The Marking heuristic makes sure that the pre-camditomputations on the disjuncis > y, y < x <

—1Asize>1Apc=a,andy — 1 <z <2 Asize > 1A pc=a are performed only in the first, the second, and

DRAFT

14vyda

Atomic property: x>y

0/"@
L5 »o,& W

S ke

11: v <ngg—1 A a> V<1sysx A > vV false

sizex1A pc= sizez1ppc=b

P,
Te ‘32, s

&
. y<X<—1 A 1<y<X A y-1gX<—2 A 2<yg X+1A
|2 X ST SIS SO V SIS
v <size; I pc:; v <size,l/\ pc:b> v <sizcg1/\ pc:a> false V <size;1,\ pc:b>
n

pre al, a2, a4, a

13:

oot Jr
sizex 1\ pc=

Iey<x A v
sizex1 A pc=b

Y=IeX<2A
size> 1) pc=a,

2<y<X+LA v Y=2<X<3 A \ v falsev ?TS Y<Xt2 A
sizes1 5 pc=b)| \size>1) pc=a sizex1 5 pc=h,

Fig. 13. The result of the first three iterations of computiig’(x > y) using the Marking heuristic for the Action Language speatfan given in Figure 911, I2, and I3 denote the results of
the first, the second, and the third iterations, respegtiyete a; denotes that the constraint pointed by the arrow is obtame@erforming the pre-condition computation on the sourgestraint
using actiona;, wherel < ¢ < 5. The constraints that are marked by the Marking heuristicearclosed in rounded-corner boxes.

yx4

28

Iter. Fixpoint Iterations New Fixpoint Iterations with Marking
computed computed marked
0 fol none none none
¢ V PRE(¢) PRE(¢) PRE(¢) ¢
¢ V PRE(¢) PRE(¢), PRE(PRE(¢)) P,
VPRE(PRE(¢)) PRE(PRE(¢)) PRE(¢)
3 ¢ V PRE(¢) PRE(¢), PRE(PRE(PRE(¢))) P,
VPRE(PRE(¢))V PRE(PRE(¢)), PRE(¢),
PRE(PRE(PRE(¢))) | PRE(PRE(PRE(¢))) PRE(PRE(¢))
TABLE Il

THE RESULTS OF THE FIRSH® ITERATIONS OF COMPUTINGEF = puZ.¢ vV PRE(Z) WITH AND WITHOUT THE MARKING HEURISTIC.— AND

+ DENOTE EXCLUSION AND INCLUSION RESPECTIVELY

@/ (=

Fig. 14. The dependency graph for the Action Language spatidin in Figure 9. A directed edge between the nageanda; means that the
constraints generated as a result of the pre-condition atatipn using the action; may enable the actioa; for computing the pre-condition
computation.

the third iterations, respectively.

In addition to eliminating the redundant pre and post-ctiodicomputations, the Marking heuristic eliminates the
redundant simplification operations among the sets that baen computed in the previous iterations. However, we
allow merging an unmarked disjunct with a marked disjunesgiting in an unmarked disjunct) in order to reduce
the number of disjuncts in the composite representatiothodigh this reduces the effectiveness of the marking
heuristic, it improves the overall performance by reduding composite representation size.

Dependency HeuristicGiven a states and the transition relatioR = \/;__, r; where eachr; is an atomic
transition, the pre-condition (post-condition) is comgaliby distributing the pre-condition (post-condition) cgter
over the disjuncts oRR. However, for the case of the pre-condition computatiomeghaay be an atomic transition
r such that there are no states from whichan be reached by executing the transitigrand for the case of the

post-condition computation there may be an atomic traovsitj that is not enabled at state Computing the pre-

DRAFT

29

condition or the post-condition for such cases is redundaelow we show how this kind of redundancies can be

eliminated for the pre-condition computations. This aggtocan also be used for the post-condition computations.
We first compute a directed graph, which we call ttependency grapi{ NV, E) where N = {ry,r9, ..., } and

E denotes the set of edgds;, ;) € E if and only if the following holds:

PRE(PRE(true,r;),r;) # false

The dependency graph, in a way, describes all the feasit#daavings of the atomic transitions. Figure 14 shows
the dependency graph for the Action Language specificatieengn Figure 9. During the fixpoint computations
that use the pre-condition computation, we associate estatg with theenable backward setvhich denotes the
set of transitions that it can enable via the pre-conditiomputation. For instance, leb = PRE(s1,a1) where

s1 and sg represent stateg,; represents the atomic transition that corresponds to ttieraal given in Figure

9. Theenable backward sebr ss is {a1,as}, which consists of the neighbors of the transitionaccording to
the dependency graph. Before performing the pre-condit@mmputation ons, using a transitioru;, one can first
check whether; is in the backward enable set of. If it is the case, then we perform the computation, othegwis
we skip the computation. For instance, the pre-conditiammatation ons, using the transitioms can be skipped
sinceag is not an element of the séti;, as}.

Figure 15 shows the results of the first three iterations fuamputing EF' (z > y) for the specification given
in Figure 9. The disjuncy < 2 < —1 A size > 1 A pc = a is generated in the first iteration as a result of the
pre-condition computation using thg. Since the neighbors of nodg are a; andas, the enable backward set
for this constraint is set tdaj,a5}. As a result, ony < 2z < —1 A size > 1 A pc = a the pre-condition is not
computed usings, a3, anday, by which we avoid computing some of the pre-condition cotapons that would
yield unsatisfiable constraints.

In addition to using the dependency information for avaidthe redundant pre-condition computations, ALV
uses this information during the simplification of the reswdf the fixpoint iterations. Two disjuncts are compared
for equivalence during the simplification phase only if themable backward sets are the same.

If we compare Figures 13 and 15 with Figure 10, we can see ltgalarking heuristic prunes the computation
tree such that the pre-condition computations that areopmed on the constraints already generated are eliminated,
whereas the Dependency heuristic prunes the computagerstrch that some of the pre-condition computations that
would yield unsatisfiable constraints are eliminated. Tfiecéiveness of the Dependency heuristic highly depends
on the dependency graph, i.e., the number of edges betweerottes. However, since the Dependency heuristic is
sound for both the least fixpoint computations and the gs¢éitgpoint computations, it can be used for any property
verification, whereas the Marking heuristic can only be ufsedhe least fixpoint computations. The Marking and
the Dependency heuristics can be combined to achieve aegagree of reduction as long as ALV is computing

a least fixpoint.

DRAFT

14vyda

Atomic property: x>y

Il:i x_>y/\ x=0 v x_>y/\ y=0 v X>y§V y§Xg—lA v J?gng/\
\sizez 1\ pc= sizg A pcs : sizex1\ pc= sizex1ppc=b

x>y A x=0 x>y A y=0
i\sizex1 pc= v sizg A pc3

-1 1 -1gxg—2 2 1,
ysX<sml A v <YSX A y (YTIsXsT2A V false V .SYS X+IpA
b sizex1) pc=b

size> 1\ pc= sizex1p pc= sizes1 A pc=

3 X_>y/\ x=0 v X_>y/\ y=0)y x>y v Y_sxs-l/\ v l_sysx A v y_-lsxs-ZA vfalse v 2§ysX+lA v yf2sxs-3A V false v ?sngZA
\sizex1 pc= sizg A pcs ! sizex 1\ pc= sizex1 A pc=b, size> 1) pc=a, size:1 A pc=b size>1 p pc=a, size:1 p pc=b

Fig. 15. The results of the first three iterations of compwtlAF'(« > y) using the Dependency heuristic for the Action LanguageiBpation given in Figure 91;, 2, and I3 denote the results
of the first, the second, and the third iterations, respelgtipre a; denotes that the constraint pointed by the arrow is obtabyederforming the pre-condition computation on the sour@estraint
using actiona;, wherel < ¢ < 5. The constraints in each of the dashed rounded boxes ardif@hjinto constraint,z > y, by the Composite Symbolic Library.

0€

31

C. Counter-Example Generation

An important feature of model checkers is their ability tongeate counter-example behaviors. ALV is able
to generate counter-examples for the properties that difia$. Generating a counter-example for a property
corresponds to generating a witness for its negatign We cannot generate witnesses for universal properties,
since we need to list all the paths in the system to demoedtnat the property holds. This is equivalent to saying
that we cannot generate a counter-example for an existgmtiperty. Hence, ALV generates counter-examples
only for ACTL properties. A counter-example for an ACTL peapy can be represented as a tree-like structure that
starts from the initial states and demonstrates that thpgty is violated [CILVO02].

When asked to generate a counter-example, ALV negates plé fimopertyg, converts it to{ EX, EG, EU} basis,
and pushes all the negations inside, i.e., there exists gatioa in front of a temporal formula. Then it computes
the states that satisfy the sub formulas bottom-up, staftiom the atomic properties. However, it also stores the
intermediate fixpoint computations for EG and EU when it iskimg for a counter-example. After the computation
ends it looks for an initial state = I A [—¢]. If there is no such state, it reports that no counter-exarhpk been
found. (If the computed fixpoints are exact this means thatptfoperty is proved.) Otherwise, it starts constructing
a witness for—¢ (i.e., a counter-example fat) starting froms in a top-down manner, i.e., first it generates the
witness that corresponds to the top-most temporal opeeatdrthen it continues to generate the witnesses for the
sub formulas.

Figure 16 shows a recursive algorithm for computing a wignies a given CTL formula in{EX,EU,EG} basis
starting from a given state. The algorithm accumulates #sailts in a global list calletvitness Each call to the
GENERATEWITNESS function adds a new entry to this witness list. Each entryhi@ Wwitness list is a tuple that
consists of a state, a formula, and a path, where the pattsftrenbasis of a witness for that formula starting from
that state. Note that the path itself may not be enough asresdt and the later entries in the witness list may
contain paths starting from the states in that path. As dsed in [CJLV02], it is possible to construct a tree-like
structure by combining the paths reported in the witnegs lis

The GENERATE WITNESS algorithm first reverses the results of fixpoint iterationsthe input CTL formula. The
reason is that fixpoint computations propagate backwasmisirey from the inner CTL formula, whereas witness
computation propagates forwards starting from an inittates

To generate a witness for the property &Xtarting from a state that satisfies E¥%, the algorithm saves as the
initial state of the witness path. Then it compukessT(s, R) and conjoins the result with the states that satisfy
One state chosen from the conjunction is saved as the negtistthe witness path. The resulting path is recorded
as the witness for the property X Then the witness generation algorithm is invoked recefgito generate a
witness for¢ starting from the last state of the witness path for¢deX

To generate a witness for the property @4, ¢2) starting from a state that satisfies EUp1, ¢2), the algorithm
starts with the result of the last iteration of the fixpoint 8U(¢1, ¢2). Since that corresponds to the states that

satisfy EU¢1, ¢2), it is guaranteed that is in it. If s satisfiesps then the algorithm stops. OtherwisepsT(s, R)

DRAFT

32

witness: List of (state, CTL formula, List of states
GENERATEWITNESYs, ¢)
s, s1: Symbolic, ¢: CtlIFormula, path: List of states,iterReverse: List of set of states
if ¢.isAtomic() then return
iterReverse «— ¢.iterates.reverse()
path.add(s)
case¢ = EX¢1:
path.add(choose(POST(s, R) A iterReverse.get(1)))
witness.add((s,p,path))
GENERATEWITNESYpath.getLast(),1)
case¢ = ¢1EUga:
for 0 < ¢ < iterReverse.size() and not path.getLast().isSubsumed (iterReverse.getLast()) do
path.add(choose(POST path.getLast(), R) A iterReverse.get(i)))
witness.add({s,p,path))
for 0 < ¢ < path.size() do
if ¢ = path.size() — 1 then
GENERATEWITNESY path.get(i),p2)
else
GENERATEWITNESYpath.get(i),p1)
case¢p = EG¢1:
cycleNotReached «— true
for 1 <i < MAX_ITER and cycleNotReached do
s1 < POST(path.getLast(), R)
if not s1.isSatis fiable() then break
path.add(choose(s1 A iterReverse.get()))
for 0 < j <ido
if path.getLast().isSubsumed(path.get(j)) then
cycleNotReached «— false break
witness.add({s,p,path))
for 0 < i < path.size() do
GENERATEWITNESY path.get(i),p1)

Fig. 16. The algorithm for generating witness for the CTLnfiala ¢ in {EX,EU,EG} basis starting from state.

is conjoined with the next one of the reversed results of th@oint iterations. Note that, this conjunction cannot be
false, since, based on the fixpoint computation for EWnust have a next state in the result of the next iteration.
The algorithm chooses one of the states that satisfy theinotipn as the next state in the witness path. It continues
until a state that satisfies, is reached. This state is used to generate a witnesg-foNote that, the algorithm
also generates witnesses for propeftystarting from all the states that were visited before théessatisfyingeos
was reached. All these witnesses are added to the witnéss lis

To generate a witness for the property £Ghe algorithm only needs the last of the reversed resultthef

fixpoint iterations, which corresponds to the states thtisfyaEGe. It starts from a state that satisfies EG. Then,

DRAFT

33

POST(s, R) is computed and conjoined with the states that satisfyEMhe algorithm chooses a state that satisfies
the conjunction and continues this iteration until a cycteaostate that does not have any next states is found.
In either of these cases the algorithm returns the genegzddd as the witness path. However, since the Action
Language specifications can be infinite, it is not guarantedithd a witness that contains a cycle or a finite path. It
is possible that all the witnesses are infinite paths thatatchave any repeating states. Hence, the algorithm puts
a bound ({ AX_ITER) on witness search. When it reaches that bound it adds theqeaputed so far as the
prefix of a withess path to the output witness list. Then, tlgprithm generates witnesses for propedtystarting
from all the states in the witness path for &@nd all these witnesses are added to the witness list.

The algorithm in Figure 16 does not show how the logical ofmesmot, and andor are handled. As we have
stated before, before generating a witness for a CTL formala/ pushes all the negations inside the atomic
property. Therefore, the witness generation algorithmsdoa need to handle theot operator. It handles thand
operator by generating a witness for each subformula, vetseitehandles th@r operator by choosing one of the
subformulas that yields a witness.

We have to be careful with counter-example generation wheans using the approximate fixpoint computations.
Assume that we are using tH&X, EG, EU} basis for the CTL and we try to verify the property AGThen we
would compute-(EF—p). If we are computing the approximate fixpoint computatighen this will require us to
compute an upper bound f@& F—p to get a lower bound for A@ If we can show thaf = [AGp]~ then we are
done. However, iff # [AG]~ we cannot use our computations fd F—p] ™" to generate a counter-example. Since
[[EFﬁp]]Jr is an upper bound it can include spurious counter-examgfl@ge want to generate a counter-example,
then we need to compute a lower bound for-lpRnegation of the original property). If we can generate anter
example usingEF-p]~ we are sure that it is a valid counter-example. Because efisisue ALV works in two
phases; 1) the verification phase and 2) the falsificatiors@hBuring the verification phase ALV does not try to
generate a counter-example. If ALV is unable to prove theerty during the verification phase, it recomputes the
fixpoints and then tries to generate a counter-example. pfamed above, these phases will use different types of
approximations if approximate fixpoints are being usedhdtiof these cases can be skipped by the user using the

input flags of ALV.

V. PARAMETERIZED VERIFICATION

In this section we present the adaptation of an automatettaghen technique calledounting abstraction
[Del00] to the parameterized verification of specificati@amghe Action Language. Using counting abstraction we
can automatically verify the properties of a system withitaalby number of finite-state processes. The basic idea
is to define an abstract transition system in which the lotates of the processes are abstracted away but the
number of processes in each local state is counted by intiegdwan auxiliary integer variable for each local state.
As we will show below, counting abstraction preserves thé @rioperties that do not involve the local states of the
processes. For this abstraction technique to work we neztbttal states of the submodules to be finite. Each local

state corresponds to a valuation of all the local variabfess submodule, i.e., the set of local states of a submodule

DRAFT

r

pc = parked A numRW16L= 0
A numC3+ numC4+ numC5+
numC6+ numC7+ numC8= 0

A pc = takeOff A

NUMRW16L = numRW16L+ 1

Departing Departing *
S pc = parked vV pc = depFlowVv | parkedC> 0 A depFlowC> 0
pc = takeOff A takeOffC> 0 A parkedG+
depFlowC+ takeOffC= C
| pc = parked parkedC= C A depFlowC= 0
A takeOffC= 0
R

parkedC> 0 A numRW16L= 0
A numC3+ numC4-+ numC5+
numC6+ numC7+ numC8= 0
A takeOffC = takeOffC+ 1 A
NUMRW16L = numRW16L+ 1

34

A parkedC = parkedC— 1 A
depFlowC = depFlowC

takeOffC> 0 A

pc = depFlowA depFlowC = depFlowC+ 1 A

NUMRW16L = numRW16L— 1 | numRW16l = numRW16L— 1
A takeOffC = takeOffC— 1 A

parkedC = parkedC

ro | pc= takeOff A

TABLE IV
TRANSITION SYSTEM INFORMATION FOR AN INSTANTIATION OFDeparting MODULE IN FIGURE 2 AND ARBITRARY NUMBER OF
INSTANTIATIONS OF Departing MODULE USING COUNTING ABSTRACTION SDENOTES THE STATE SPACElI DENOTES THE INITIAL
STATES, AND R DENOTES THE TRANSITION RELATION R; AND R2 DENOTE THE ATOMIC TRANSITIONS THAT CORRESPOND TO
REQTAKEOFF AND LEAVE, RESPECTIVELY PARKEDC, DEPFLOWC, AND TAKE OFFC DENOTE THE NUMBER OF AIRPLANES IN PARKED
DEPFLOW, AND TAKE OFF MODES, RESPECTIVELY C IS A PARAMETERIZED CONSTANT THAT DENOTES THE NUMBER OF DEPARNG

AIRPLANES.

is the Cartesian product of the domains of the local varmblethat submodule. For example, if a submodule has
a local variable that is an unbounded integer, we cannotiiijreise the counting abstraction.

In the Action Language a module instantiation can be paramnzed by appending the *' character to the
module instantiation, e.gmain: Arriving() | Departing() * indicates that the transition system is an
asynchronous composition of an instantiation of the modulé/ing and an arbitrary number of instantiations
of the moduleDeparting . Table IV shows the components of the transition system wite departing airplane
(Departing) versus the transition system with arbitrary number of dipg airplanes Departing *) using
counting abstraction. The only local variable of the modDparting is pc, which is an enumerated variable
and can take one of the valuparked , depFlow , andtakeOff . Therefore, the local state space of the module

Departing consists ofpc taking one of these values. For the parameterized systemnege to introduce

DRAFT

35

three countersparkedC , depFlowC , and takeOffC , which denote the number of the departing airplanes
in parked mode, the number of the departing airplanesdapFlow mode, and the number of the departing
airplanes intakeOff mode, respectively. We introduce an additional paranegdrinteger constant, which
denotes the number of the departing airplanes. The statee sjpa the parameterized system consists of non-
negative values foparkedC , depFlowC , andtakeOffC where their sum is restricted to be equal@oIn
the initial state of the transition system for a single dépgrairplane the airplane is iparked mode. For the
parameterized system, in the initial stggarkedC is equal toC and depFlowC andtakeOffC are equal to
zero to denote the fact that all the departing airplanes w@itally in the parked mode. A departing airplane
can perform any of the two atomic actioneqTakeOff or leave . For the transition system for a single
departing airplanereqTakeOff represents a departing airplane’s transition frparked mode totakeOff
mode provided that the runway 16lnymRWL=J is not occupied and there are no airplanes on the taxiways
C3-C8 pumC3+numC4+...+numC8=0). For the transition system for arbitrary number of depaytairplanes,
reqTakeOff represents transition &ny departing airplane that is in parked mo@@arkedC>0) to takeOff
mode parkedC'=parkedC-1 , takeOffC'=takeOffC+1). Note that the execution akgqTakeOff does
not change the status of the departing airplanedepFlow mode, which is taken care of by keeping the value
of depFlow same in the next statelépFlowC'=depFlowC).

Section V-A presents the formal definition of counting abstion and Section V-B explains application of

counting abstraction to a module in an Action Language $jgation.

A. Formal Definition

Let T' be a transition systerfi’ = (I, S, R) that is defined over a set of variabl®s Let D(v;) denote the
domain of variablev; in V. Both the initial stated and the state space are subsets of the Cartesian product of
the domains of all variables i, i.e., I,.S C [], o D(v;). We partitionV" into two nonintersecting sets: the set

of local variables {7.) and the set of global variable§). We define the set of local states As= [[,, .y, D(vi).

Similarly, the set of global states is defined@s= [] D(v;). We can specifyl’ by distinguishing the local

v, €Va
and global states as follows = T;, ¢ = (I1.¢, St,¢, Rr,c), Where

Ine = {sls=(sr,56) AN sL€L A sc€G N sel}, @)
St = {sls=(s1,s¢) N sL€L AN sgeG A s€ S}, (8)
Rpe = A{rlr=((sL,s6), (s, sa)) A s, €L A sa,s6€G A re€R} 9)

Let 7% denote the asynchronous compositionMfidentical transition systemsl; = (I;,S;, R;), 1 <i < N,
where eacli; is defined over a separate set of local variablgs, with the same cardinality, and the same set of
global variables. The set of local statds, of each transition systenT;;, will be of the same cardinality, which
we denote byM. The transition systems; are identical in terms of their initial states, state spamed transition

relations, i.e.v1 <i,j < N.S;=5; A I, =1; N R, = R;. The initial states, the state space, and the transition

DRAFT

36

relation of the composed transition syst@f = (I}, ST, R}), wherel}', € S7; andR} , € S7 xS ¢

are defined as:

IﬁG = {s|ls={(s1,82,...,8n,8¢) N V1I<i<N.s;€L; N\ {(s;,8G) € I;}, (10)

SJLV,G = {sls={(s1,82,...,8n,8¢) AN V1<i<N.s;€L; N\ (s;,8¢) € S}, (12)

RYa = {rlr=((s1,52,...,5n,5G), (s1. 85, ...,y s6)) A I <i<N. ((s:,80), (s}, s¢)) € Ri
AVISGSN.j#i = s5=s5;} (12)

Equation 10 (11) states that the initial states (state 3pEdbe composed system is the composition of the local
initial states (local state spaces) of the identical tt@msisystems and the global initial states (global stateapa
that are common to all of the individual transition systemquation 12 states that when the composed transition
system transitions from one state to another state only étteecndividual transition systems changes state based
on its transition system, which follows from the definitiohasynchronous composition.

Let us label the local states, € L = Ly = Ly, = ... = Ly with numbers betweem and M, where each state
has a unique label. We denote this labeling Witky,). We introduce one integer variablg,) for each local state
sz, to denote the number of transition systerfig,that are currently in the local statg . Since the cardinality of.
is M, M integer variables are introduced. Given a countethe corresponding local state 43 wherei = I(sz,).

We define an abstraction functionca : [[,c;cn Li — [[1<;<pr Z that maps a state(sq, sz, ..., sn), that is
defined over the local variables @Y to the valuation of counter&, vs, ..., vas) such that valuation of each

represents the number of transition systems that are diyriena states; wherei = I(sy.):
aca((s1,82,...,8n)) = (v1 = k1,v2 = ko, ..., on = k)

wherek; = [{s;|1 <j <N A i=1(s5)}].

We transform the composed systdm’ into an abstract transition systef, = (15,, S5 ,, RS 4), where

(s1,80,...,8Nn,8¢) €IV & {aca((s1,52,...,5N)),5a) eI]CVA, (13)
(51,82,...,8Nn,80) €SN & (aca((s1,52,...,5N)),56) € S4, (14)

((51,82, -+, 8N, 5G), (81, 8y -y Shysa)) € RN = ((aca((s1,82,...,5N)),56),
(aca((s), s, s)), s@)) € Rea- (15)

Lemma 5.1:7" and T}, are bisimulation equivalent with respect to the set of atoptopertiesA P that are
defined over the global variablés;.
Proof: We define the following bisimulation relatioB C SV x S]CVA where, for all(sy, sa, ..., sx,5g) € SN

and <SCA, SG> S SévA

((s1,52,...,8N,5a), (Sca,sa)) € B & sca = aca((s1,52,...,5N)) (16)

DRAFT

37

Given anys = (s1,82,...,sn,8¢) € SV andsa = (sca,sq) € S&,, where(s,s4) € B, following three

conditions hold:

1) For any property) € APq, s |E ¢ < sa = ¢, since the global state is the same foand s, according to
the definition of B in 16.

2) For every state’ = (s}, sh,..., sy, si) € SV such that(s, s’) € RY, there exists a stat€, = (s, 4,s5) €
SH,, such that(s4, s'y) € RN, and(s’,s’y) € B wheres, , = aca((s},sh,...,sN)). This follows directly
from the definition 15.

3) For every states’y, = (s 4,55) € SY, such that(sa,s’) € RY,, we want to show that there ex-
ists a states’ = (s}, sh,...,s,s5) € SV such that(s,s’) € RY, and (s/,s",) € B wheres,, =
aca((sh,sh,...,s\)). If there exists a transitiofs 4, s’y) € RY, then there must exist two state§ =
(s],84, ... 8%, sty € SN and s = (s, sy,..., 8%, sty € SN where(s”,s4) € B, (s",s4) € B,
(s",8") € RN andaca((s],sy,...,s%)) = aca({s1, s2,...,sn)) according to 16 and 15. ¥’ = s, then
we can choosa’ = s”’. If s” # s, consider the transition systei) that executes the transition frosf to
s (as defined in 12). Sincac({s{,s4,...,sx)) = aca({s1,s2,...,sn)) there must exist a transition
systemT}; in s that is in the same state th@} is in in s”. If T; executes the same transition executedby

in s” in s, then the next state will be a statesuch that(s’, s/y) € B.

Finally, note that, for any initial state = (s1, s2,...,sn,sg) € IV, there exists a states = (sca,sq) € S¥4
such that(s,s4) € B wheresca = aca({s1,s2,...,sn)). And, for any abstract initial states = (sca,sg) €
SA , there exists a state= (s1,s2,...,sn,5c) € IV such that(s,s4) € B wheresca = aca({s1,52,...,5n)).

This follows directly from the definition 13. Hence, we camté thatT" and 7Y, are bisimulation equivalent
with respect to the set of atomic propertig$’;.
[|
Theorem 5.1:For any CTL formulag that is defined over the global atomic properti¢®s, 7Y, = ¢ <
TN = ¢.
Proof: The proof follows from the fact that bisimulation relatiomegerves CTL properties [CGP99] and
Lemma 5.1.]
Finally, we consider theparameterized verification problenGiven a CTL formulag over the global atomic
propertiesAPg, check if YN, N > 1,7V = ¢. In order to achieve this, we generate a parameterizedeabst
transition systenT%, that contains a parameterized integer constalipt, whereNp > 1. Given a transition system
TV = (I} o, S o, RY) and its abstractioft, = (15,4, S8 4, RYY 4) as defined above, the parameterized-abstract

transition systen¥ %, = (1£,,SE 4. RE 1) has the following property:
IEsnNp=N)=18, SE,AN(Np=N)=SY, RE,AN(Np=N)=RY,

Then, we have the following result:
Theorem 5.2:Given the transition systerfi’,,, and a CTL formulap over the global atomic propertie4 Pz,

T ¢ & YN,N>1,TV | ¢,

DRAFT

38

COUNTABYm)
m: module name
s: composite formula
S «— ZZ{ZO counter; = paramCons A /\?io counter; > 0 A paramCons > 0
State(m) < 3 Locals(m), State(m) A s
Init(m) < COUNTABS.STATESInit(m)) A s
for each action a of modulem do
Act(a) < COUNTABS_.TRANSITIONY Act(a)) A s A §

© 00 N o 0o~ W N B

Locals(m) — 0

Fig. 17. The algorithm for applying counting abstractionatonodulem of an Action Language specificatior’ represents the constraint that
s represents using the next state version of the variablgs, @unter! instead ofcounter;.

Note that, if using ALV we can show that?, satisfies the property then this means that the property hofds
anyTV,ie,TE, = ¢ = VN,N > 1,TY | ¢. However, if ALV finds a counter-example for the propegtyor
the transition systenf’’, demonstrating that the property does not hold, then thisnsi¢faat the property does
not holdfor someT™, i.e, TE, £ ¢ = IN,N > 1,TV |£ ¢.

B. Implementation

ALV automatically generates the parameterized-abstraassttion systen?}’, whenever the input Action Lan-
guage specification contains a transition formula of thenfon() *, wherem is a module name. The algorithm
for parameterization of a module of an Action Language djmation using counting abstraction is given in Figure
17. The algorithm accepts a module nameg,as the input and generaté$ number of auxiliary integer variables,
where M denotes the size of the local state spacencdind one parameterized constant that denotes the number of
processes. Each of the auxiliary variables denotes the number of processes in tcpkar local state. We call
these auxiliary integer variables tlowunters We distinguish two counters that correspond to two diffiédecal
states by assigning an integer value (i.e., an index) to &adl state and using this value as the subscript. For
instance, let local state be represented by the integer valiyghen counter; is the counter that corresponds 4o
The algorithm in Figure 17 changes the state formula, infbamula, and the actions of the input modute by
replacing the constraints on the local variables with c@irsts that use the counters and the parameterized constant
It changes the state formula so that the sum of the countergual to the parameterized constant, each counter
is a nonnegative value, and the parameterized constant sitive value (line 4). It changes the initial formula
by calling the algorithmcOUNTABS.STATES and conjoining it with the constraint on the counters (repraed
by s) (line 6) given in Figure 18, and it changes the transitiomfola of each action by calling the algorithm
COUNTABS. TRANSITIONS (lines 7-8) given in Figure 19 and conjoining it with the ctrasits on the currents]
and next state counter variableg)(Conjoining s (lines 5, 6, and 8) and’ (line 8) with the partial constraints

generated for counting abstraction makes sure that thendguart of the implication in 14, 13, and 15 are realized

DRAFT

39

COUNTABS_STATEYm, f) : composite formula
m: module name
i 1, s, resultDis, result: composite formula

index: integer

1
2
3
4
5 let V; be the list of all the boolean variables other thars local boolean variables
6 let V; be the list ofm’s local boolean variables

7 result «— false

8 for each composite atomi = /\tET dy of f do

9 resultTerm «— 0

10 indexSet — ()

11 for each minterme of dp,,; do

12 l—3 Vs, e

13 indexSet «— indexSet U [

14 let index denote an integer value that uniquely represénts
15 result Term «— resultTerm —+ counter;ndes

16 result < result V /\teT t£bool de N resultTerm = paramCons A /\ counter; =0 A Ve

iZindexSet
17 return result

Fig. 18. The algorithm for applying counting abstractionatdormula f.

in the implementation.

The algorithm COUNTABS_STATES accepts a module name and a composite formulg as the input. It
enumerates all the mintermsof the boolean part of each composite atofy existentially quantifying out the
non-local variables, the algorithm extracts a local stated makes sure that the countes«(nter;) that corresponds
to [is included in the summation termesult Term) (line 15), which sums up all the counters that correspond to
local states in which a transition system can be. Later (li®eresult Term is equated to the parameterized constant
paramConst to make sure that all the transition systems are in one ofdbal Istates that are extracted from the
minterms. Also, the remaining counters are set to zero atitig that none of the transition systems can be in those
states (line 16). It conjoins this constraint with the nondl part of the minterm (line 16) and the non-boolean
parts of the composite atom. It performs this for all compositoms (lines 8-16) and computes the disjunction of
the resulting constraints (line 16).

The algorithm COUNTABS_.TRANSITIONS accepts a module name and an action name as the input. It
enumerates the minterms of the boolean partief(a), which denotes the transition formula that corresponds to
the actiona. Similar to the algorithnCOUNTABS STATESIt existentially quantifies out the non-local variablesnfro

the boolean part to obtain an atomic local transition folamoih the boolean variables. It obtains the local state

INote that counting abstraction can only be applied on firdtall state spaces and in the Action Language finite locat sfgaces can be
defined by boolean and enumerated variables. Since enwderatiables are converted to boolean variables, in a coitepa®m, boolean part

is the one that encodes the finite state space.

DRAFT

40

COUNTABS_TRANSITIONgm,a): composite formula

m: module namea: action name index:integer

l, s, result: composite formula

result — false

let V5 denote the list of boolean variables other thafs local boolean variables

let Vsnest denote the list of next state boolean variables other #h&nlocal next state
boolean variables

let V; denote the list ofn’'s local boolean variables

© 00 N o o b~ W N B

let Vi,e.t denote the list ofn’s local next state boolean variables
10 let Act(a) = /\tET T

11 for each minterme of 7;,,; do

12 la = 3 Vinest, 3 Voneat, 3 Vs, e

13 lr «— 3V, 3 Vepeat, 3 Vs, e

14 s — 3 Vipewt,3 Vi, e

15 let index4 denote an integer value that uniquely represégts

16 let index, denote an integer value that uniquely represénts

17 if indexy = index, then

18 resultAbs «— counteripgeg, >0 A counter;ndmd = counteTindes,

19 else

20 resultAbs « counteringeg, >0 A counter’m(iezd = counterindez, — 1 N

/
21 countery, ...

22 foreach 0 < i < L Ai # indexg A i # index, do

= counter indes, + 1

23 resultAbs «— resultAbs A counter), = counter;
24 result < result V resultAbs A s

25 return /\tET t£bool Tt A result

Fig. 19. The algorithm for applying counting abstractionato actiona of modulem.

at which the local transition is enabled by existentialhantifying the next state variables (line 12) and obtains the
local statel,. at which one can reach by executing the local transition hgtentially quantifying out the current
state variables (line 13). Then, depending on whethemd!, denote the same state, it generates a constraint. If
lg andl,. denote the same state then the constraint states that theecthat corresponds tQ is greater than zero
and in the next state the counter that corresponds teeeps its value (line 18). Otherwise, the constraint states
that the counter that corresponds/jas greater than zero and in the next state the counter thegsmonds td, is
decremented by one and the counter that correspontjsisoincremented by one (lines 20-21). In both cases the
constraint states that the other counters keep their valuba next state (lines 22-23). It conjoins the constraint
with the non-local part of the minterm (line 24). It perforrtgs for all minterms and gets the disjunction of the
resulting constraints (lines 11-24). Finally, it conjoitiee generated constraint with the non-boolean parts of the

actiona (line 25).

DRAFT

41

Problem Transition Relation Size

Instance || Composite| Polyhedra| EQ, GEQ‘ BDD ‘ # int. ‘ # bool.
PA2D 22 22 1388 518 29 4
PA4D 26 26 1642 | 986 29 8
PA8D 34 34 2150 | 2258 29 16
PA16D 50 50 3166 | 6146 29 32
PAPD 20 20 1481 | 326 33 6

TABLE V

SIZES OF THE TRANSITION RELATIONS FOR THE PROBLEM INSTANCESSED IN THE EXPERIMENTS PA XD DENOTES ARBITRARY NUMBER
(P) OF ARRIVING (A) AIRPLANES AND X NUMBER OF DEPARTING(D) AIRPLANES. PAPD DENOTES ARBITRARY NUMBER OF DEPARTING

AND ARRIVING AIRPLANES.

V1. EXPERIMENTS WITH THEAIRPORT GROUND TRAFFIC CONTROL SPECIFICATION

This section presents experimental results that are adaising the airport ground traffic control specification
from Figure 2 discussed earlier. Table V shows the size oftthesition systems used in the experiments. We
used the polyhedra encoding for the integer variables. Boh éransition system and the corresponding composite
symbolic representation the table shows the number of mtit§uin the composite representation (Composite), the
number of polyhedra (Polyhedra), and the number of equalityinequality constraints (EQ, GEQ), and the number
of BDD nodes (BDD), the number of integer variables (# int)l #me number of Boolean variables (# bool). We have
varied the number of the departing airplanes and kept thebeuwof the arriving airplanes arbitrary (parameterized).
There is also an instance where both the number of the agriiplanes and the number of the departing airplanes
are both arbitrary (parameterized).

Figure 20 shows performance of the Dependence and the Mghlaaristics for the verification of the safety and
liveness properties in terms of the construction time,figaiion time, and memory usage. We used ALV with the
widening and the approximate reachable states heuristi¢hié experiment. Results show that the Marking heuristic
performs better than the Dependence heuristic in termseottimstruction time, which includes the time spent for
the approximate reachable state computation. Note thaappeoximate reachable state computation involves least
fixpoint computation where Marking heuristic is effectiMoreover, the Dependence heuristic incurs a startup cost
due to construction of the dependence graphs. On the othmet, lae Dependence heuristic performs better than
the Marking heuristic in terms of the verification time sinteerforms significant savings during the simplification
phase by avoiding redundant equality checks (see Sectid) Dsing the dependence information. The Dependence
heuristic uses more memory than that is used by the Markingistees since it stores the dependence graph, which
is of sizen? wheren is the number of atomic transitions, and the dependenceniation for each composite atom
during the analysis.

The performance of ALV for the verification of the fully paraterized case, where both the number of the

DRAFT

50 : : ‘ ‘

45 | None ——
Dependence -+

40 | Marking =

35 | Dependence+Marking =

Construction Time (sec)
N
(6]

10 12 14 16
Number of processes

(a) Safety Construction Time (sec)

4 ‘ ‘ ‘ ‘ ‘ ‘

< l2r
(3]
L 1t
g
= 087
-
L2 06t None
8 Dependence ——
£ 04 Marking e
o Dependence+Marking =
02 I
O 1 1 1 1 1 1
2 4 6 8 10 12 14 16
Number of processes
(c) Safety Verification Time (sec)
50 ‘ ‘ : ‘ : ;
None —
45 Dependence ——
40 L Marking =
- Dependence+Marking =
o 35+
=
= 30
o
qE) 25
s 20
15
10

5 ! ! ! ! ! !
2 4 6 8 10 12 14 16
Number of processes

(e) Safety Memory (MB)

Fig. 20. Comparison of the Dependence and the Marking Hegis

arriving and the number of the departing airplanes are patarzed, is as follows: For the safety property, the
transition system construction time is 6.59 seconds, thifécagion time is 0.02 seconds and the total memory usage
is 6.8 MBytes. For the liveness property, the transitiontesysconstruction time is 28.15 seconds, the verification
time is 5.98 seconds and the total memory usage is 103.05 édBy@ur experimental results indicate that the
verification performance for the fully parameterized casesinaller than the partially parameterized case, where
the number of the arriving airplanes is arbitrary and the banof the departing airplanes is a constant, when the

number of the departing airplanes is greater than or equbbtd.e., in this case, the use of the counting abstraction

Construction Time (sec)

Verification Time (sec)

Memory (MB)

42

60 ‘ ‘ ‘
None ———
50 r Dependence ——
Marking e
40 | Dependence+Marking

10 12 14 16
Number of processes
(b) Liveness Construction Time (sec)

60 :
None ——
50 - Dependence
Marking =~/
40 [Dependence+Marking ——
30 +
20 r
10 ¢
0 - L 1 1 1 1 1
2 4 6 8 10 12 14 16
Number of processes
(d) Liveness Verification Time (sec)
180 : : : : : ——
160 |
140 ¢
120
100
80 D None ——
. Dependence -+
60 Marking =+
; Dependence+Marking =
40 : : : : :

2 4 6 8 10 12 14 16

Number of processes
(f) Liveness Memory (MB)

DRAFT

43

improves the verification performance.

We have changed the specification in Figure 2 by redefiningractqTakeOff as

reqTakeOff: pc=parked and numRW16L=0 and pc’'=takeOff and n umRW16L'=numRW16L+1;

By doing so we have introduced an error, since a departineaie can start taking off even though there may be
some airplanes at the exits C3-C8. This violates rule 3 gineSection Il. ALV checked this erroneous specification
for the CTL property that corresponds to rule 3, and falsifiee property by providing a counter-example path.

The counter-example path is a witness path for the negatguepy

EF(humRW16L=0 and numC3+numC4+numC5+numC6+numC7+num&B and EX('numRW16L=0))

and consists of two sub-witness paths:

1) The witness path for the property

EF(numRW16L=0 and numC3+numC4+numC5+numC6+numC7+num&8 and EX(!numRW16L=0))
consists of three states. According to the counter-exaipglle, initially, the departing airplane, denoted by
Departing.pc , IS in theparked state and the arriving airplane, denoted Awving.pc , is in the arFlow
state. Then the arriving airplane lands and transitionsheotduchbown state. Having landed, the arriving
airplane selects exit C3 and starts taxiing on it by traositig intotaxiTo16LC3 state. During this transition
the departing airplane is still iparked state.

2) The witness path for propergx((numrw16L=0)) consists of two states. It starts from the state where the
departing airplane is still in thearked state and the arriving airplane is in tk&iTol6LC3 state of the
sub-witness path. Then the departing airplane starts tkeothand transitions into theakeoff state. This

violates the property since exit C3 is occupied while theadtipg airplane is taking off.

VIl. RELATED WORK

The initial structure of the Action Language was presentedBul00]. An overview of ALV was presented
in [BYKO01] and [YKBBO05]. The composite symbolic represdida used by ALV was discussed in [YKBO3].
ALV has been used in verification of various types of spediifices including parameterized cache coherence pro-
tocols [DB01], parameterized hierarchical state mach[iy&B05], workflow specifications [FBHSO01], concurrent
programs [YKBO02], [BCB04], requirements specificationdH@] and implementation of safety critical software
components [BCBIE07].

The main difference between ALV and the well known symboliodal checkers SMV [McM93] and NuSMV
[CCGT02] is the fact that ALV targets infinite state specificatioAsother distinguishing feature of ALV is the
use of the composite symbolic representation. To analy@tie-state spaces with finite state model checkers such
as SMV, NuSMV or SPIN [Hol97]. one needs to first generate astrabtion of the original specification. ALV, on

the other hand, uses various automated heuristics for tefstate verification. Additionally, the counter-example

DRAFT

44

paths that are generated by ALV is on the concrete systemieabavith the model checkers mentioned above the
generated counter-example paths for the abstraction afifarite-state system would be on the abstract system and
needs to be mapped backed to the original infinite-stateesy#t order to understand the source of the error.

There have been earlier work on model checking real-timeesys (for example, UPPAAL [BBDO02]) or hybrid
systems (for example, Hytech [HHWT97]). UPPAAL focuses ealitime systems and uses the timed automata
model which is too restricted as a computation model for yipe$ of specifications that ALV targets. Hytech uses
a polyhedra based representation for arithmetic conssaguch as the one used in ALV, for analyzing hybrid
systems. However, ALV uses the polyhedra representatiomtayer domains. Although the Action Language
Verifier currently focuses on integers, by integrating timear arithmetic representation for reals to the Composite
Symbolic Library it can be extended to verification of speeifions with integer and real variables.

FAST [BFLO4] is a verification tool that uses an automatacblagpresentation for unbounded integers and uses
fixpoint acceleration techniques for the automata-baspksentation that are similar to the loop closure heuristic
of ALV for the composite representation.

LEVER [VVO06] is a verification tool that uses learning algbrns to compute the fixpoints required for verifi-
cation. LEVER can be used to verify infinite state specifaatiand has been used on verification of systems with
integer variables [VV07]. ALV uses a more traditional itiva approach for computing fixpoints, as pioneered by
symbolic model checkers such as SMV. ALV also enables iategr of multiple symbolic representations based
on the composite symbolic representation.

[SS07] applies bounded model checking techniques to iefistiate systems with unbounded integer variables.
ALV uses truncated fixpoints and widening operations to uradhel over approximate least fixpoint computations,
respectively. Using these approaches together allows Al \d sound analysis during verification and look for
concrete counter-examples during a separate falsificgliase.

[YWGI06] uses the frontier concept to avoid redundant cotapons during reachable state computation. This
technique is similar to the marking heuristic presentedhis paper. However, the frontier approach requires
computation of the back edges which incurs a startup co$tetdixpoint computation whereas the marking heuristic
does not incur such an overhead.

[Del03] uses counting abstraction to verify safety projesriof parameterized cache coherence protocols. Our
work differs from [Del03] in the following ways: 1) The ActioLanguage Verifier caautomaticallytranslate an
Action Language specification to its parameterized versidrereas [Del03] uses hand translation, 2) The translation
algorithm that the Action Language Verifier employs is moemgral since it can handle any type of predicate that
can be specified in the Action Language, whereas in [DelOB] riequired that the predicates defining the enabling
condition of a transition involve only the number of cachesilocal state, 3) The Action Language Verifier can
verify CTL properties of parameterized systems using dograbstraction, whereas the technique that is presented

in [Del03] is specialized for the verification of safety pespes of parameterized cache coherence protocols.

DRAFT

45

VIII. CONCLUSIONS

We presented the formal syntax and the semantics of the Mtmguage, and we presented ALV, which is an
infinite-state symbolic model checking tool for the Actioariguage. ALV is built on top of the Composite Symbolic
Library, which is a symbolic manipulator for systems withtéregeneous data domains. ALV is a polymorphic
verification tool. Depending on the type of variables demtiain the Action Language specification, ALV may
become a BDD-based model checker, a polyhedra-based moeehar or a composite model checker where both
BDDS and polyhedra-based representation are used for dimanzoding. Since Composite Symbolic Library can
be extended with new symbolic representations, the ranggplications that can be analyzed with ALV can also
increase in the future.

We discussed the infinite-state verification heuristicslénmpented in ALV that conservatively approximate the
fixpoints and can be used to both verify or falsify Action Laage specifications. We also showed that ALV can
automatically verify parameterized Action Language sfieations.

We have performed a case study on Airport Ground Traffic Gty evaluate the effectiveness of ALV for
specifying and verifying a reactive software system. AlLValsle to verify many important properties of this case

study including the ones specified in [Zho97] for arbitraggmber of arriving and departing airplane processes.

REFERENCES
[BBO3] Constantinos Bartzis and Tevfik Bultan. Efficient syatic representations for arithmetic constraints in veaifion. Int. J. Found.
Comput. Scj.14(4):605-624, 2003.
[BBO4] C. Bartzis and T. Bultan. Widening arithmetic autdemaln R. Alur and D. Peled, editor®roceedings of the 16th International

Conference on Computer Aided Verification (CAV 20@jume 3114 ofLecture Notes in Computer Sciengeages 321-333.
Springer-Verlag, July 2004.

[BBD1T02] Gerd Behrmann, Johan Bengtsson, Alexandre David, Kitdgtand Larsen, Paul Pettersson, and Wang Yi. Uppaal imgaiéation
secrets. InProceedings of the 7th International Symposium on Formahiigues in Real-Time and Fault-Tolerant Systems
(FTRTFT 2002) pages 3-22, 2002.

[BCBO04] A. Betin-Can and T. Bultan. Verifiable concurrenbgramming using concurrency controllers. Pnoceedings of the 19th IEEE
International Conference on Automated Software Engimee(ASE 2004)pages 248-257, September 2004.

[BCBL107] Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, BenjamLux, and Stefan Topp. Eliminating synchronization fairtsair traffic
control software via design for verification with concuregncontrollers. Autom. Softw. Eng14(2):129-178, 2007.

[BFLOA4] Sébastien Bardin, Alain Finkel, and Jerdome LecoFaster acceleration of counter automata in practicdAGAS pages 576-590,
2004.

[BGLOO] T. Bultan, R. Gerber., and C. League. Composite rhatecking: Verification with type-specific symbolic repeesations. ACM
Transactions of Software Engineering and Methodald#fi1):3-50, January 2000.

[BGP99] T. Bultan, R. Gerber, and W. Pugh. Model-checkingoeorent systems with unbounded integer variables: Syimbepresentations,
approximations, and experimental resuk&CM Transactions on Programming Languages and Syst2i{d):747—-789, July 1999.

[BHO8] Tevfik Bultan and Connie Heitmeyer. Applying infinistate model checking and other analysis techniques toaateduirements
specifications of safety-critical systemBesign Automation for Embedded Systet1-2):97-137, 2008.
[Bul00] T. Bultan. Action Language: A specification langedgr model checking reactive systems Hroceedings of the 22nd International

Conference on Software Engineering (ICSE 20@@ges 335-344, June 2000.
[BYKO1] T. Bultan and T. Yavuz-Kahveci. Action Language Vier. In Proceedings of the 16th IEEE International Conference on
Automated Software Engineering001.

DRAFT

[cC77]

[ccGto2]

[CGP99]

[CH78]

[CILvo2]

[cuD]

[DBO1]

[Del00]

[Del03]

[FBHS01]

[HHWT97]

[HIJ+95]

[Hol97]
[Low]

[McM93]
[Ome]
[SS07]
[VV06]
[vvo07]
[YKBO2]

[YKBO3]

[YKBOS5]

[YKBBO5]

46

P. Cousot and R. Cousot. Abstract interpretation: nified lattice model for static analysis of programs by camdton or
approximation of fixpoints. IfProceedings of the 4th Annual ACM Symposium on Principlé®rejramming Languagegages
238-252, 1977.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, .NPistore, M. Roveri, R. Sebastiani, and A. Tacchella. NuSM/sion
2: An OpenSource Tool for Symbolic Model Checking. Pinoc. International Conference on Computer-Aided Verifara (CAV
2002) volume 2404 ofLNCS Copenhagen, Denmark, July 2002. Springer.

E. Clarke, O. Grumberg, and D.A. Pelédodel checking MIT PRess, 1999.

P. Cousot and N. Halbwachs. Automatic discovery oédir restraints among variables of a program.Plnceedings of the 5th
Annual ACM Symposium on Principles of Programmipages 84-97, 1978.

Edmund M. Clarke, Somesh Jha, Yuan Lu, and HelmuthVeTree-like counterexamples in model checking. Aroceedings of
the 17th IEEE Symposium on Logic in Computer Science (LIQ2)2pages 19-29, 2002.

CUDD: CU decision diagram packagéttp://visi.colorado.edu/fabio/CUDD/

G. Delzanno and T. Bultan. Constraint-based vettfice of client-server protocols. In T. Walsh, editd?roceedings of the 7th
International Conference on Principles and Practice of €maint Programming (CP 2001)volume 2239 ofLecture Notes in
Computer Sciencgpages 286—301. Springer-Verlag, December 2001.

G. Delzanno. Automatic verification of parametedzcache coherence protocols. Pmoceedings of the 12th International
Conference on Computer Aided Verificatiomlume 1855 of_ecture Notes in Computer Sciengages 53-68, 2000.

G. Delzanno. Constraint-based verification of paeterized cache-coherence protocolBormal Methods in System Desjgn
23:257-301, 2003.

X. Fu, T. Bultan, R. Hull, and J. Su. Verification obkex workflows. In T. Margaria and W. Yi, editor®roceedings of the 7th
International Conference on Tools and Algorithms for then§tauction and Analysis of Systems (TACAS 200dlume 2031 of
Lecture Notes in Computer Sciengmges 143-157. Springer-Verlag, April 2001.

T. A. Henzinger, P. Ho, and H. Wong-Toi. Hytech: adebchecker for hybrid system&oftware Tools for Technology Transfer
1:110-122, 1997.

J. G. Henriksen, J. Jensen, M. Jorgensen, N. Klarlund?aRye, T. Rauhe, and A. Sandholm. Mona: Monadic second-todie
in practice. InProc. TACAS 19951995.

G. J. Holzmann. The model checker SPIIREE Transactions on Software Engineerir&B(5):279-295, May 1997.

Michael Lowry. Software construction and softwareadysis tools for future space missions. Rroceedings of the Eighth
International Conference on Tools and Algorithms for then§&tauction and Analysis of Systems (TACAS 2002)

K. L. McMillan. Symbolic model checkindIluwer Academic Publishers, Massachusetts, 1993.

The Omega projectittp://www.cs.umd.edu/projects/omega/

Tobias Schile and Klaus Schneider. Bounded modakahg of infinite state systemsFormal Methods in System Design
30(1):51-81, 2007.

Abhay Vardhan and Mahesh Viswanathan. Lever: A taml learning based verification. IRroceedings of the 18th International
Conference on Computer Aided Verification (CAV 20@@)ges 471-474, 2006.

Abhay Vardhan and Mahesh Viswanathan. Learning tafyebranching time properties.Formal Methods in System Desjgn
31(1):35-61, 2007.

T. Yavuz-Kahveci and T. Bultan. Specification, feration, and synthesis of concurrency control componenits.Proc. of
International Symposium on Software Testing And Angl€i82.

T. Yavuz-Kahveci and T. Bultan. A symbolic maniptda for automated verification of reactive systems with hegeneous data
types. International Journal on Software Tools for Technology r&ter (STTT,)5(1):15-33, November 2003.

T. Yavuz-Kahveci and T. Bultan. Verification of paneterized hierarchical state machines using action laggueerifier. In
Proceedings of the 3rd ACM-IEEE International ConferenceFormal Methods and Models for Codesign (MEMOCODE 2005)
July 2005.

Tuba Yavuz-Kahveci, Constantinos Bartzis, and/fike Bultan. Action language verifier, extended. In Koushadsami and
Sriram K. Rajamani, editorsProceedings of the 17th International Conference on Compéided Verification (CAV 2005)
volume 3576 ofLecture Notes in Computer Sciengmages 413-417, 2005.

DRAFT

47

[YWGI06]

Zijiang Yang, Chao Wang, Aarti Gupta, and Franjaumeic. Mixed symbolic representations for model checkiofjveare programs.
In MEMOCODE pages 17-26, 2006.

[Zho97]

C. Zhong.Modeling of Airport Operations Using An Object-Orientedpigach PhD thesis, Virginia Polytechnic Institute and
State University, 1997.

DRAFT

