
1

Action Language Verifier: An Infinite-State

Model Checker for Reactive Software

Specifications

Tuba Yavuz-Kahveci* and Tevfik Bultan**

*Computer and Information Sciences and Engineering

University of Florida

Gainesville, FL 32611, USA

tyavuz@cise.ufl.edu

**Department of Computer Science, University of California

Santa Barbara, CA 93106, USA

bultan@cs.ucsb.edu

This work is supported in part by NSF grants CCF-0614002 and CCF-0716095.

DRAFT



2

Abstract

Action Language is a specification language for reactive software systems. In this paper, we present the syntax and

the semantics of the Action Language and we also present an infinite-state symbolic model checker called Action Lan-

guage Verifier (ALV) that verifies (or falsifies) CTL properties of Action Language specifications. ALV is built on top

of the Composite Symbolic Library, which is a symbolic manipulator that combines multiple symbolic representations.

ALV is a polymorphic model checker that can use different combinations of the symbolic representations implemented

in the Composite Symbolic Library. We describe the heuristics implemented in ALV for computing fixpoints using

the composite symbolic representation. Since Action Language specifications allow declaration of unbounded integer

variables and parameterized integer constants, verification of Action Language specifications is undecidable. ALV

uses several heuristics to conservatively approximate thefixpoint computations. ALV also implements an automated

abstraction technique that enables parameterized verification of a concurrent system with an arbitrary number of

identical processes.

Keywords: Symbolic model checking, infinite state model checking, automated abstraction

I. I NTRODUCTION

Computer systems are becoming increasingly pervasive. They are employed in a wide range of industries such as

avionics, energy, and medicine to implement safety critical applications. Correct operation of these systems depends

on the correctness of the underlying software. 21st centuryhas already witnessed failure of several space exploration

missions that were caused by software errors [Low]. These incidents show the importance of software verification,

which can help in finding the errors in software systems before they are deployed.

In this paper, we present the syntax and the semantics of theAction Language[Bul00], a specification language

for reactive software systems. We also present an automatedverification tool called theAction Language Verifier

(ALV) [BYK01], [YKBB05], which can be used to check the correctness properties of infinite-state reactive software

specifications written in Action Language [Bul00].

An Action Language specification includes both the behaviorspecification and the correctness properties of a

system. The correctness properties are described using theComputation Tree Logic (CTL) [CGP99]. The Action

Language can be used to specifydata parameterizedand/orcontrol parameterized systems. Data parameterized sys-

tem specifications contain explicitly declared parameterized integer constants. Such a specification must be verified

for all possible valuations of the parameterized constant,which could be an infinite set. Control parameterized system

specifications contain asynchronous composition of an arbitrary number of identical processes. Such specifications

must be verified for an infinite number of instances, each representing a specific number of processes.

ALV uses a symbolic manipulator, called the Composite Symbolic Library [YKB03], to encode the state space

and the transition system of the input Action Language specification. Using infinite-state symbolic model checking

techniques, ALV checks the symbolic transition system for the specified CTL properties. If ALV is unable to prove

a property, it can search and report counter-example behaviors for ACTL properties.

The contributions of this paper can be summarized as follows:

DRAFT



3

• Formal syntax and semantics of Action Language:The basic operations in Action Language was discussed

in [Bul00]. In this paper we formalize both the syntax and thesemantics of the Action Language. We present

the formal semantics of the Action Language by mapping the syntactic elements of the Action Language to the

three important components of a transition system: the state space, the initial states, and the transition relation.

• Verification heuristics:ALV uses two heuristics, the marking and the dependence heuristics, to improve the

verification performance. The marking heuristic avoids redundant computations in least fixed point computations

by marking a constraint when the pre-image computation is performed on it the first time. This way, in the

upcoming iterations, such constraints can be skipped during image computation. The dependence heuristic, on

the other hand, analyzes the control-flow of the transition system to avoid the redundant pre- and post-image

computations.

• Automatic generation of parameterized transition systems: A reactive software specification typically involves

concurrent processes. Verifying such a specification with acertain number of concurrent processes yields

a validation for that number of concurrent processes only. Using an abstraction technique calledcounting

abstraction[Del03], ALV automatically generates an abstract transition system that is parameterized in the

number of identical concurrent processes and checks the generated system using infinite-state model checking

techniques. CTL properties that are verified on the abstractparameterized system are preserved for the transition

system for any number of concurrent processes.

• Counter-example generation for infinite-state verification We present a witness generation algorithm that can

be used to generate a counter-example for properties that are not satisfied by the given transition system.

Our witness generation algorithm provides witnesses for each subformula in the negated property and targets

infinite state systems.

The rest of the paper is organized as follows. Section II briefly explains the airport ground traffic control simulation

software specification that we use as a case study. Section III presents the Action Language and explains its syntax

and semantics. Section IV presents ALV, explains the symbolic encoding and manipulation techniques, discusses

the heuristics for infinite-state verification and symbolicverification, and introduces the counter-example generation

algorithm for infinite domains. Section V introduces the counting abstraction algorithm for translating a control

parameterized Action Language specification to a data parameterized one. Section VI reports the experimental results

for our case study on the airport ground traffic control simulation software specification. Section VII compares our

work with the related work. Finally, Section VIII concludesthe paper.

II. A N EXAMPLE SPECIFICATION: A IRPORT GROUND TRAFFIC CONTROL

We use an infinite state reactive system specification for an airport ground traffic control system as a case

study. Airport ground traffic control handles allocation ofthe airport ground network resources such as runways,

taxiways, and gates for the arriving and the departing airplanes. Simulations play an important role for the safety

of the airport ground traffic control. Simulations enable early prediction of possible runway incursions, which is

a growing problem at the busy airports throughout the world.[Zho97] presents a concurrent simulation program

DRAFT



4

�����������������������������������������
�����������������������������������������
�����������������������������������������

�����������������������������������������
�����������������������������������������
�����������������������������������������

��������������������������������������������
��������������������������������������������
��������������������������������������������

��������������������������������������������
��������������������������������������������
��������������������������������������������

runway 16R

runway 16L

C3

B2

C6 C8C7C4 C5

B7 B9 B10 B11

Fig. 1. An airport ground network similar to that of the Seattle Tacoma International Airport

for modeling airport ground traffic control using Java threads. As a case study, we model the concurrency control

component of this simulation program in the Action Language[YKB02]. We use the same airport ground network

model used in [Zho97] (shown in Figure 1) similar to that of the Seattle/Tacoma International Airport. There are

two runways: 16R and 16L. The Runway 16R is used by the arriving airplanes during landing. After landing, an

arriving airplane takes one of the exits C3-C8. After taxiing on C3-C8, the arriving airplanes need to cross the

runway 16L. After crossing the runway 16L, they continue on to one of the taxiways B2, B7, B9-B11 and reach

the gates in which they park. The departing airplanes use therunway 16L for takeoff. The control logic for the

ground traffic of this airport must implement the following rules:

1) An airplane can land (takeoff) using the runway 16R (16L) only if no airplane is using the runway 16R (16L)

at the moment.

2) An airplane taxiing on one of the exits C3-C8 can cross the runway 16L only if no airplane is taking off at

the moment.

3) An airplane can start using the runway 16L for taking off only if none of the crossing exits C3-C8 are

occupied at the moment. (The arriving airplanes have priority over the departing airplanes.)

4) Only one airplane can use a taxiway at a time.

In the following sections we show that the above control logic can be specified in the Action Language, and its

properties can be automatically verified using the Action Language Verifier.

III. T HE ACTION LANGUAGE

Formal specification is the first step of the formal reasoningprocess. The goal of formal specification languages is

to ease the task of precise formal modeling of both the systembehavior and the correctness properties. The Action

DRAFT



5

Language has been designed to support specification of infinite state reactive systems in a compact and simple man-

ner. The Action Language supports both synchronous and asynchronous compositions as basic operations [Bul00].

In this paper, we extend the Action Language by introducing amodule hierarchy and the associated scoping rules.

We have also added parameters to modules, which enables renaming of the variables for each instantiation of a

module. We formalize the semantics of the Action Language using denotational semantics.

Currently, the Action Language supports variables with boolean, enumerated, and (unbounded) integer types.

Additionally, one can declare parameterized integer constants, which enables specification of both data parameterized

and control parameterized systems. Parameterized constants can be thought of variables that have unknown initial

values and that do not change their values.

In Section III-A we present the syntax of the Action Languageand in Section III-B we formally define the

semantics of the Action Language.

A. Syntax

An Action Language specification consists of a set of module definitions. Figure 2 shows the Action Language

specification of the control logic for the airport ground traffic control simulation software discussed in Section II.

The specification consists of three modules:main , Departing , andArriving . The modulemain (lines 1-36)

models the airport ground traffic control system, the moduleDeparting (lines 5-13) models a departing airplane,

and the moduleArriving (partially shown in lines 14-30) models an arriving airplane.

The abstract syntax for the Action Language is given in Figure 3. An Action Language module consists of the

formal parameter declarations, the local variable declarations, the initial state and the state space specifications,

the submodule definitions, the action definitions, the transition relation definition, and the temporal property

specifications. In every Action Language specification the top level module is namedmain and main module

does not have any formal parameters.

A module definition starts with the variable declarations. The variable declarations consist of type definitions of

the formal parameters, the local variable declarations, and the parameterized constants. The local variables, formal

parameters and parameterized constants of a module are onlyvisible to that module and the submodules of that

module, i.e., lexical scoping is used. When an identifier fora variable (which is either a local variable or a formal

parameter) is used in a formula, it denotes the value of that variable in the current state. One can refer to the

value of a variable in the next state using a primed identifier, i.e., by appending a “’ ” character at the end of the

identifier. We distinguish the two by calling the formercurrent state variableand the latternext state variable.

In Action Language, a parameterized integer constant can take any integer value (however the value it takes

does not change during the execution). When Action LanguageVerifier successfully verifies a specification with a

parameterized constant, it means that the verified propertyholds for any possible valuation of that parameterized

constant.

In the specification shown in Figure 2, integer variables model the shared resources of the airport ground traffic

control, which are runways and taxiways. For example, variables numRW16Rand numC3 (line 2) denote the

DRAFT



6

1 module main()

2 integer numRW16R, numRW16L, numC3 ...;

3 initial: numRW16R=0 and numRW16L=0 numC3=0 ...;

4 restrict: numRW16R>=0 and numRW16L>=0 and numC3>=0...;

5 module Departing()

6 enumerated pc {parked, depFlow,takeOff};

7 initial: pc=parked;

8 reqTakeOff: pc=parked and numRW16L=0 and numC3+numC4+nu mC5+

9 numC6+numC7+numC8=0 and pc’=takeOff and

10 numRW16L’=numRW16L+1;

11 leave: pc=takeOff and pc’=depFlow and numRW16L’=numRW1 6L-1;

12 Departing: reqTakeOff | leave;

13 endmodule

14 module Arriving()

15 enumerated pc {arFlow, touchDown, taxiTo16LC3, taxiTo1 6LC4,

16 taxiTo16LC5, taxiTo16LC6, taxiTo16LC7, taxiTo16LC8,

17 taxiFr16LB2, taxiFr16LB7, taxiFr16LB9, taxiFr16LB10,

18 taxiFr16LB11};

19 initial: pc=arFlow;

20 reqLand: pc=arFlow and numRW16R=0 and pc’=touchDown and

21 numRW16R’=numRW16R+1;

22 exitRW3: pc=touchDown and numC3=0 and numC3’=numC3+1 an d

23 numRW16R’=numRW16R-1 and pc’=taxiTo16LC3;

24 crossRW3: pc=taxiTo16LC3 and numRW16L=0 and numB2A’=nu mB2A+1

25 and pc’=taxiFr16LB2 and numC3’=numC3-1 and numB2A=0;

26 park2: pc=taxiFr16LB2 and pc’=parked and numB2A’=numB2 A-1;

27 . . .

28 Arriving: reqLand | exitRW3 | crossRW3 | park2 | ... ;

29 spec: invariant(pc=arFlow => eventually(pc=parked)) / / P4

30 endmodule

31 main: Arriving() | Departing() ;

32 spec: invariant(numRW16R<=1 and numRW16L<=1) // P1

33 spec: invariant(numC3<=1) // P2

34 spec: invariant((numRW16L=0 and numC3+numC4+numC5+nu mC6+numC7+numC8>0)

35 => next(numRW16L=0)) // P3

36 endmodule

Fig. 2. An airport ground traffic control specification in theAction Language

number of airplanes on the runway 16R and on the taxiway C3, respectively. The enumerated variables (thepc

of the moduleDeparting (line 6) and thepc of the moduleArriving , (lines 15-18) are used to encode

the states of the arriving and the departing airplanes. A departing airplane can be in one of the following states:

parked , takeOff , anddepFlow , where the stateparked denotes that the airplane is parked at the gate, the

statetakeOff denotes that the airplane is taking off from the runway 16L, and the statedepFlow denotes that

DRAFT



7

Module : : = module Id ( IdL ) VarDecl Sys ModuleL Action ModTrans Prop endmodule

ModuleL : : = Module ModuleL | ǫ

VarDecl : : = boolean Id ; | integer Id ; | parameterized integer Id ;

| enumerated Id { IdL } ; | VarDecl VarDecl | ǫ

Sys : : = initial : Form ; | restrict : Form ; | Sys Sys | ǫ

ModInst : : = Id ( IdL )

Comp : : = Id | ModInst | Comp | Comp | Comp & Comp

Action : : = Id : Form ; | Action Action | ǫ

ModTrans : : = Id : Form ; | Id : Comp ;

Prop : : = spec : CtlForm ; | Prop Prop | ǫ

Fig. 3. Syntax of the Action Language

the airplane is in the air departing from the airport. Similarly, an arriving airplane can be in one of the following

states:arFlow , touchDown , taxiToXY , taxiFrXY and parked , where the statearFlow denotes that the

airplane is in the air approaching to the airport, the statetouchDown denotes that the airplane has just landed and

is on the runway 16R, the statetaxiToXY denotes that the airplane is currently in the taxiway Y and isgoing

to cross the runway X, the statetaxiFrXY denotes that the airplane is currently in the taxiway Y and has just

crossed the runway X, and finally, the stateparked denotes that the airplane is parked at the gate.

In an Action Language specification, the initial states and the state space of a system are specified in terms of

composite formulas(Form) based on the syntax given in Figure 4. A composite formula isobtained by combining

boolean and integer formulas with logical connectives. A boolean formula (BoolForm) consists of boolean variables

or constants combined with logical connectives. An integerformula (IntForm) consists of integer variables or

constants combined with arithmetic operators, arithmeticpredicates, logical connectives, and existential or universal

quantifiers. Note that, only multiplication with an integerconstant is allowed (Integer denotes an integer constant).

For the formulas defining the initial states and the state space, we additionally impose the restriction that only the

current state variables appear in the formula. For example,in the specification of Figure 2, a departing airplane is

initially in parked mode (line 7), whereas an arriving airplane is initially inarFlow mode (line 19). Additionally,

the state space of the system is restricted to nonnegative values of the integer variables modeling the runways and

the taxiways (line 4).

In the Action Language, actions model the atomic transitions of a system. A module can have multiple actions. An

action is defined as a composite formula on the current and thenext state variables. For example, in the specification

of Figure 2, the actionreqTakeOff (lines 8-10) models the request of a departing airplane for takeoff: when the

airplane is inparked mode it checks whether all of the exits C3-C8 are empty. If so,it transitions totakeOff

mode and occupies the runway 16L.

Actions and module instantiations can be composed (denotedby Comp in Figure 3) synchronously (&) or

DRAFT



8

Form : : = Form and Form | Form or Form | not Form

| (exists IdL : Form) | (forall IdL : Form)

| BoolForm | EnumForm | IntForm

IntForm : : = IntTerm > IntTerm | IntTerm < IntTerm | IntTerm >= IntTerm

| IntTerm <= IntTerm | IntTerm = IntTerm | IntTerm != IntTerm

IntTerm : : = IntTerm + IntTerm | IntTerm - IntTerm | - IntTerm |

IntTerm * Integer | Id | Id ’ | Integer

BoolForm : : = BoolTerm | BoolTerm = BoolTerm | BoolTerm != BoolTerm

BoolTerm : : = Id | Id ’ | true | false

EnumForm : : = EnumTerm = EnumTerm | EnumTerm != EnumTerm

EnumTerm : : = Id | Id ’

CtlForm : : = Form | EX ( CtlForm ) | AX ( CtlForm ) | EF ( CtlForm )

| AF ( CtlForm ) | EG ( CtlForm ) | AG ( CtlForm )

| EU ( CtlForm , CtlForm ) | AU ( CtlForm , CtlForm )

| CtlForm and CtlForm | CtlForm or CtlForm | not CtlForm

Fig. 4. Syntax of a composite formula

asynchronously (| ). Transition relation of a module is defined in terms of either a composite formula or a

composition of its actions and submodule instantiations (ModTrans). Submodules can be instantiated with different

actual parameters. In each instantiation of a module the formal parameters are replaced with the corresponding

actual parameters and all the local variables are uniquely renamed. For example, in the specification of Figure 2,

the behavior of a departing airplane (moduleDeparting ) is specified in terms asynchronous composition of the

actionsreqTakeOff and leave (line 12) and the behavior of the whole system is specified as asynchronous

composition of instantiations of the moduleDeparting and the moduleArriving (line 28).

The temporal properties of a module are defined in CTL. A CTL formula (CtlForm in Figure 4) consists of

composite formulas combined with the temporal operators (EX, AX, EF, AF, EG, AG, EU, AU) and logical

connectives. For example, in the specification of Figure 2, four temporal properties are specified (lines 29, 32, 33,

and 34). The property at line 29 states that it is always the case that if an arriving airplane is in the flow mode

then it will eventually be in the parked mode. The propertiesgiven in lines 22-34 correspond to the rules listed in

Section II.

B. Semantics

The formal semantics of an Action Language specification is defined by a tuple(M, φ), whereM is a transition

system andφ is a CTL property. Transition systemM is a tuple(I, S, R), whereI, S, andR denote the initial

states, the state space, and the transition relation, respectively. An Action Language specification is called a correct

DRAFT



9

specification iffM |= φ, i.e., M satisfies the propertyφ. Correctness of an Action Language specification can be

checked using the Action Language Verifier as we will discussin the following sections. Below, we describe the

semantics of the Action Language using denotational semantics.

a) Notation: In explaining the Action Language semantics we use the following notational conventions: Given

a functionf : X → Y andx1, x2 ∈ X andy ∈ Y , then the functionf [y/x1] : X → Y is defined as follows

f [y/x1](x2) =







y if x2 = x1

f(x2) otherwise

We use[[]]-type brackets to denote the semantic domains. Depending onthe context,[[Id ]] denotes an identifier

which can be one of the following: an action name, a module name, a variable name, or a parameterized constant;

[[IdL]] denotes a list of identifiers;[[Form]] and [[CtlForm ]] denote a composite formula and a CTL formula,

respectively.

We define several functions that map actions or modules to their attributes.

• An action functionα ∈ Act = [[Id ]]→ [[Form]] maps each action to the composite formula that corresponds to

that action.

• The initial states, the state space, and the transition relation functionsInit ,State,Trans = [[Id ]]→ [[Form ]] map

each module to the composite formulas that characterize itsinitial states, state space, and transition relation,

respectively. Note that, the formulas for the initial states and the states space use only current state variables,

whereas the formula for the transition relation can use boththe current state and the next state variables.

• Functions for the formal parameters, the local variables and the parameterized constantsFormals , Locals ,

Params = [[Id ]]→ [[IdL]] map each module to the set of identifiers that correspond to its formal parameters,

local variables and parameterized constants, respectively.

• The instantiation counter functionInstCount = [[Id ]]→ N maps each module to its instantiation counter,

which keeps track of the number of instantiations.

• The CTL property functionτ ∈ CtlProp = [[Id ]]→ [[CtlForm ]] maps each module to the CTL property

associated with that module.

We define the following tuples based on the functions defined above:

• The variable environment tuple is defined asϑ ∈ VarEnv = Locals × Formals × Params .

• The system environment tuple is defined asǫ ∈ SysEnv = Init × State.

• The current environment tuple is defined as:ρ ∈ CurEnv = Init × State × [[Form ]] × CtlProp × Locals ×

InstCount .

• The environment tuple is defined as:β ∈ Env = Init × State ×CtlProp × InstCount ×Locals ×Formals ×

Params × Act × Trans.

We make use of the following functions:

• RenameF : ([[Form]]∪[[CtlForm ]]) × [[IdL]]×[[IdL]]×N × [[IdL]]→ ([[Form ]]∪[[CtlForm]]) function takes a

formula, the set of actual parameters, the set of formal parameters, the current value of the instantiation

DRAFT



10

counter, and the set of local variables as input and returns the formula in which the formal parameters are

replaced with the corresponding actual parameters and the local variables are renamed uniquely using the value

of the instantiation counter.

• RenameV : [[IdL]]×N → [[IdL]] function takes a set of variables and an instantiation counter as input and

renames the set of input variables uniquely using the value of the instantiation counter.

• NextStateVar : [[Form]]→ [[IdL]] function takes a composite formula as input and returns the set of variables

whose next state versions appear in the composite formula.

• Identity : [[IdL]]→ [[Form ]] function takes a set of variables as input and returns a composite formula that

preserves the current value of every current state variablein the input in the next state. If the input is an empty

set then it returnstrue.

• Guard : [[Form ]]→ [[Form]] function takes a composite formula that denotes a transition relation as input and

returns a composite formula that corresponds to the domain of the transition relation. This can be computed

by existentially quantifying out all the next state variables in the input formula.

Finally, a tuple is denoted by enclosing the list of its components with〈〉. Projections of a tuple are shown using

the subscripts consisting of the first character or the first two characters of the component domains, e.g., given a

tuple ǫ ∈ SysEnv = Init × State, ǫI ∈ Init andǫS ∈ State.

b) Semantic Functions:We define the semantics of the Action Language by mapping an Action Language

specification to a tuple(M, φ) using denotational semantics, whereM is a transition system andφ is the CTL

property of the system. The transition systemM is a tuple(I, S, R) whereI, S, andR denote the initial states, the

state space, and the transition relation, respectively. Each module in an Action Language specification is associated

with a tuple that consists of: a composite formula describing the initial states (true by default), a composite formula

describing the state space (true by default), a CTL formula describing the property, a counter keeping the number

of instantiations, a set of local variables, a set of formal parameters, a set of parameterized integer constants, a

set of action definitions, and a composite formula describing its transition relation. Note that the setEnv defined

above is the set of such tuples.

Below we present the definitions of the semantics functions and their explanations.

1) Ξ : VarDecl → [[Id ]]→ VarEnv → VarEnv

a) Ξ[[boolean Id ]]mϑ =






〈ϑL[[[Id ]]∪ϑL(m)/m], ϑF , ϑP 〉 if [[Id ]] 6∈ ϑF (m)

〈ϑL, ϑF , ϑP 〉 otherwise
b) Ξ[[integer Id ]]mϑ =







〈ϑL[[[Id ]]∪ϑL(m)/m], ϑF , ϑP 〉 if [[Id ]] 6∈ ϑF (m)

〈ϑL, ϑF , ϑP 〉 otherwise
c) Ξ[[enumerated Id {IdL}]]mϑ =







〈ϑL[[[Id ]]∪ϑL(m)/m], ϑF , ϑP 〉 if [[Id ]] 6∈ ϑF (m)

〈ϑL, ϑF , ϑP 〉 otherwise
d) Ξ[[parameterized Id ]]mϑ = 〈ϑL, ϑF , ϑP [[[Id ]]∪ϑP (m)/m]〉.

DRAFT



11

e) Ξ[[VarDecl1 VarDecl2]]mϑ = Ξ[[VarDecl2]]mΞ[[VarDecl1]]mϑ.

A variable becomes the local variable of the module in which it is defined provided that it is not used as a

formal parameter in that module (cases 1.a, 1.b, and 1.c). Since the values of the parameterized variables do

not change, they need to be kept separately and treated in a different way (see 6.a).

2) Γ : Sys → [[Id ]]→ SysEnv → SysEnv

a) Γ[[initial : Form]]mǫ = 〈ǫI [ǫI(m) ∧ [[Form]]/m], ǫS〉.

b) Γ[[restrict : Form]]mǫ = 〈ǫI , ǫS[ǫS(m) ∧ [[Form ]]/m]〉.

c) Γ[[Sys1 Sys2]]mǫ = Γ[[Sys2]]mΓ[[Sys1]]mǫ.

The initial states of a module are described by the conjunction of the composite formulas from the system

definitions inside that module with theinitial keyword (cases 2.a and 2.c) and the composite formulas

describing the initial states of its submodules that are instantiated in the transition relation definition (case 3,

equation 2 below). The state space of a module is described bythe conjunction of the composite formulas in

the system definitions using therestrict keyword inside that module (cases 2.b and 2.c) and the composite

formulas describing the state space of its submodules that are instantiated in the transition relation definition

(case 3, equation 3 below). When the initial states or the state space is not specified (i.e., there are no system

definitions) the default value,true, is used.

3) Θ : ModInst → [[Id ]]→ Env → CurEnv

Θ[[Id ( IdL ) ]]m1β = ρ wherem = [[Id ]], l = [[IdL]] and

ρIC = βIC [βIC(m) + 1/m] (1)

ρI = βI [RenameF (βI(m), l, βF (m), ρIC(m), βL(m)) ∧ βI(m1)/m1] (2)

ρS = βS [RenameF (βS(m), l, βF (m), ρIC(m), βL(m) ∧ βS(m1)/m1] (3)

ρT = RenameF (βT (m), l, βF (m), ρIC(m), βL(m)) (4)

ρC = βC [RenameF (βC(m), l, βF (m), ρIC(m), βL(m)) ∧ βC(m1)/m1] (5)

ρL = βL[RenameV (βL(m), ρIC(m)) ∪ βL(m1)/m1] (6)

The local variables of a module are uniquely renamed for eachinstantiation using the instantiation counter for

that module. Each instantiation causes the instantiation counter to be incremented by one (equation 1). The

environment for a new instantiation of a module is defined by renaming the local variables and by replacing

the formal parameters with the corresponding actual parameters in the composite formulas describing the

initial states and the state space of the module (equations 2and 3), the composite formula describing the

transition relation of the module (equation 4), and the CTL formula describing the property of the module

(equation 5). All these transformations are achieved usingthe RenameF function. Finally, after renaming

(using theRenameV function), the local variables of the instantiated module are added to that of the parent

module in which it is instantiated (equation 6).

4) Λ : Comp → [[Id ]]→ Env → CurEnv

DRAFT



12

a) Λ[[Id ]]mβ = ρ whereρT = βA([[Id ]]) and∀X ∈ {I, S, C, L, IC}, ρX = βX .

b) Λ[[ModInst ]]mβ = Θ[[ModInst ]]mβ.

c) Let ρ′ = Λ[[Comp1]]mβ andρ′′ = Λ[[Comp2]]m〈ρ′I , ρ
′
S , ρ′C , ρ′IC , ρ′L, βF , βP , βA, βT 〉.

Λ[[Comp1 | Comp2]]mβ = ρ′′′ where

ρ′′′T = (ρ′T ∧ Identity(NextStateVar(ρ′′T ) \ NextStateVar(ρ′T ))) ∨

(ρ′′T ∧ Identity(NextStateVar(ρ′T ) \ NextStateVar(ρ′′T )))

and∀X ∈ {I, S, C, L, IC}, ρ′′′X = ρ′′X .

d) Let ρ′ = Λ[[Comp1]]mβ andρ′′ = Λ[[Comp2]]m〈ρ′I , ρ
′
S , ρ′C , ρ′IC , ρ′L, βF , βP , βA, βT 〉.

Λ[[Comp1 & Comp2]]β = ρ′′′ where

ρ′′′T = (ρ′T ∨ ¬Guard(ρ′T ) ∧ Identity(NextStateVar(ρ′T ))) ∧

(ρ′′T ∨ ¬Guard(ρ′′T ) ∧ Identity(NextStateVar(ρ′′T )))

and∀X ∈ {I, S, C, L, IC}, ρ′′′X = ρ′′X .

The Action Language supports both asynchronous and synchronous composition of actions and module

instantiations. Asynchronous composition (denoted by| ) models interleaving semantics of concurrency, which

corresponds to combining the transition relations of individual components using disjunction (case 4.c). In

asynchronous composition, when a transition is executed, the values of the variables that are modified solely by

the other transition are preserved. In synchronous composition (denoted by&) two transitions are executed in

parallel, which corresponds to combining the transition relations of individual components using conjunction

(case 4.d). However, if one of the transitions is disabled then it does not block the other transition.

5) Ω : Action → Act → Act

a) Ω[[Id : Form ]]α = α[[[Form ]]/[[Id ]]].

b) Ω[[Action1 Action2]]α = Ω[[Action2]]Ω[[Action1]]α.

Actions model atomic transitions of the system. Actions arespecified as composite formulas on current and

next state variables.

6) Ψ : ModTrans → Env → Env

a) Ψ[[Id : Form ]]β = β′ where

β′
T = βT [[[Form]] ∧ Identity(βP ([[Id ]]))/[[Id ]]]

and∀X ∈ {I, S, C, IC, L, F, A, T}, β′
X = βX .

b) Ψ[[Id : Comp]]β = β′ where

ρ = Λ[[Comp]][[Id ]]β

β′
T = βT [ρT ∧ Identity(βP ([[Id ]]))/[[Id ]]]

β′
X = ρX , ∀X ∈ {I, S, C, IC, L}

β′
F = βF , β′

P = βP , and β′
A = βA

DRAFT



13

Behavior of a module is defined either as a composite formula on current and next state variables or as a

composition of instantiations of its submodules and its actions.

7) Φ : Prop → [[Id ]]→ CtlProp → CtlProp

a) Φ[[spec : CtlForm ]]mτ = τ [τ(m) ∧ [[CtlForm ]]/m].

b) Φ[[Prop1 Prop2]]mτ = Φ[[Prop2]]mΦ[[Prop1]]mτ .

The CTL property of a module is described by conjunction of the CTL formulas given in all property

specifications of that module (cases 7.a and 7.b) and the CTL formulas describing the CTL properties of its

submodules that are instantiated in that module’s transition relation definition (case 3, equation 5).

8) Υ : Module → Env → Env

a) Υ[[module Id ( IdL ) VarDecl Sys Module Action ModTrans Prop endmodule ]]β = β′′ where

m = [[Id ]]

l = [[IdL]]

ǫ = Γ[[Sys ]]m〈βI , βS〉

β′ = Υ[[Module]]〈ǫI , ǫS , βC , βIC , βL, βF [l/m], βP , βA, βT 〉

α = Ω[[Action]]β′
A

τ = Φ[[Prop]]mβ′
C

β′′ = Ψ[[ModTrans ]]m〈β′
I , β

′
S , τ, β′

IC , β′
L, β′

F , β′
P , α, β′

T 〉

Semantics of a modulem is defined by((I, S, R), φ) where

I = β′′
I (m), S = β′′

S(m), R = β′′
T (m), and φ = β′′

C(m).

Therefore, the transition system((I, S, R), φ) that is defined by an Action Language specification is defined

as

I = β′′
I (main), S = β′′

S(main), R = β′′
T (main), and φ = β′′

C(main).

where the initial environmentβ is defined as

βI = λx.true, βS = λx.true, βC = λx.undefined , βIC = λx.0,

βL = λx.∅, βF = λx.∅, βP = λx.∅, βA = λx.∅, βT = λx.∅.

In Figure 5 we show a small Action Language specification inspired by the case study discussed in Figure 1.

The goal of this example is to demonstrate the semantics of the Action Language composition operators. In this

example specification, there are two submodules of modulemain : runway andenvironment . Variablerw16L

models availability status of the runway 16L andev16L models events that denote either an enter request or an

exit request. Modulerunway models status change of a runway and its behavior is modeled by asynchronous

DRAFT



14

module main()

enumerated ev16L {enter, exit};

boolean rw16L;

module runway(rw, ev)

boolean rw;

enumerated ev {enter, exit};

initial: rw;

r1: rw and ev=enter and !rw’;

r2: !rw and ev=exit and rw’;

runway: r1 | r2;

endmodule

module environment(ev)

enumerated ev {enter,exit};

initial: ev=enter;

e1: ev=enter and ev’=exit;

e2: ev=exit and ev’=enter;

e3: ev=exit and ev’=exit;

environment: e1 | e2 | e3;

endmodule

main: runway(rw16L,ev16L) & environment(ev16L);

spec: AG(!rw16L => AX(rw16L))

endmodule

Fig. 5. A sample Action Language specification modeling status change of runway 16L as the relevant event occurs.

composition of its actionsr1 andr2 . Moduleenvironment models the occurrences of the enter and exit events

for a particular runway. Whenever an enter event occurs, in the next state an exit event occurs (actione1). After the

exit event occurs, either an enter event (action e2 ) or an exit event (action e3 ) occurs nondeterministically.

The behavior of theenvironment module is modeled by the asynchronous composition of its actions e1 , e2 ,

ande3 . The behavior of the whole system is defined by synchronous composition of instantiations of the modules

runway andenvironment usingrw16L andev16L . The correctness property states that whenever the runway

16L is occupied it is emptied in the next state. Table I shows the transition systems that correspond to the modules

runway , environment , andmain .

IV. T HE ACTION LANGUAGE VERIFIER

The Action Language Verifier (ALV) is an automated verification tool for analyzing Action Language specifica-

tions using infinite state model checking techniques. The main challenge in model checking [CGP99] is to alleviate

the state explosionproblem caused by the exponential growth of the state space with the increasing number of

concurrent components and variables. Symbolic model checking [McM93] provides a way to address the state

DRAFT



15

Module I S R

runway rw true (rw ∧ ev = enter ∧ ¬rw′) ∨

(¬rw ∧ ev = exit ∧ rw′)

environment ev = enter true (ev = enter ∧ ev′ = exit) ∨

(ev = exit ∧ ev′ = enter) ∨

(ev = exit ∧ ev′ = exit)

main rw16L ∧ ev16L = enter true ((rw16L ∧ ev16L = enter ∧ ¬rw16L′)

∨ (¬rw16L ∧ ev16L = exit ∧ rw16L′)

∨ ¬(rw16L ∧ ev16L = enter ∨

¬rw16L ∧ ev16L = exit)∧

rw16L′ = rw16L) ∧ ((ev16L = enter∧

ev16L′ = exit) ∨ (ev16L = exit∧

ev16L′ = enter) ∨ (ev16L = exit∧

ev16L′ = exit) ∨ ¬(ev16L = enter ∨

ev16L = exit) ∧ ev16L′ = ev16L)

TABLE I

THE TRANSITION SYSTEMS THAT CORRESPOND TO THE MODULESrunway , environment , AND main OF THE ACTION LANGUAGE

SPECIFICATION INFIGURE 5. I , S , AND R DENOTE THE INITIAL STATES, THE STATE SPACE, AND THE TRANSITION RELATION,

RESPECTIVELY.

explosion problem by encoding the state space symbolically(as, for example, Boolean logic formulas) instead of

explicitly enumerating the states. Since the size of a symbolic representation can be much smaller than the set of

states it represents, symbolic representations enable verification of very large (and even infinite) state systems.

Given a transition systemT = (I, S, R), whereI, S, andR denote theinitial states, the state space, and the

transition relation, respectively, and a CTL propertyφ, model checking problem is to decide whetherM |= φ. Let

[[φ]] denotes the states that satisfyφ, thenM |= φ if and only if I ⇒ [[φ]]. Throughout this paper we assume that the

set of initial states, the state space and the transition relation are symbolically represented as formulas. A symbolic

model checker first computes a formula that characterizes[[φ]] and then checks ifI ⇒ [[φ]] holds.

ALV is a symbolic model checker. Its distinguishing featureis to encode the transition system using the composite

symbolic representation to provide the flexibility and the extensibility required for analyzing software specifications.

Moreover, ALV can be used to analyze infinite-state systems.In general, CTL model checking for infinite-state

systems is undecidable. However, ALV employs several heuristics for speeding up or guaranteeing the termination

of the fixpoint computations required in symbolic model checking. These heuristics are conservative and generate

approximations of the least or greatest fixpoints, i.e., ALVdoes not generate any false positives or false negatives,

however, its analysis may be inconclusive.

ALV uses the composite symbolic representation, as implemented by the Composite Symbolic Library [YKB03],

to encode the sets of states and the transition relation. In the Composite Symbolic Library, different symbolic

representations are combined using thecomposite model checkingapproach [BGL00]. Our current implementation

DRAFT



16

of the Composite Symbolic Library uses two symbolic representations: BDDs for boolean logic formulas and

polyhedral [BGP99] or automata-based [BB03] representations for Presburger arithmetic formulas. We call these

representationsbasic symbolic representations.

The atomic properties (AP ) in ALV are not restricted to propositional properties as infinite state model

checkers [CGP99]. Any property that can be expressed using acombination of Presburger arithmetic and Boolean

logic can be used as an atomic property. These atomic properties combined with the CTL temporal operators and

the Boolean connectives form the property specification language of ALV.

Each variable type in the input Action Language specification is assigned to the corresponding basic symbolic

representation for that variable type. Boolean and enumerated variables in the Action Language specifications are

mapped to BDD representation, and integers are mapped to an arithmetic constraint representation. Currently, the

Composite Symbolic Library uses CUDD package [CUD] for the BDD representation, the Omega Library [Ome]

for the polyhedral representation and an automata encodingof the Presburger arithmetic built on top of the

MONA [HJJ+95] package for the automata-based representation [BB03].We encode the set of states and the

transition relation in Disjunctive Normal Form (DNF), as a disjunction of conjunctions of basic symbolic repre-

sentations (e.g., a disjunct consists of conjunction of a boolean formula stored as a BDD representing the states of

boolean and enumerated variables, and a Presburger arithmetic constraint representing the states of integer variables).

We call this DNF representation acomposite symbolic representationsince it combines different basic symbolic

representations. A composite formula,p, is represented in DNF as

p =

n
∨

i=1

T
∧

t=1

pit

wherepit denotes the formula of basic symbolic representation typet in the ith disjunct, andn andT denote the

number of disjuncts and the number of basic symbolic representation types, respectively.

Heuristics for efficient manipulation of composite symbolic representation, including implementations of the basic

operations such as negation, conjunction, and disjunctionhas been implemented in the Composite Symbolic Library

and discussed in [YKB03]. So, we do not discuss implementations of these basic operations in this paper, rather,

we focus on the verification heuristics implemented in ALV ontop of the functionality provided by the Composite

Symbolic Library.

The rest of this section is organized as follows. Section IV-A discusses the fixpoint computations for symbolic

CTL model checking. Section IV-B presents the heuristics for accelerating or guaranteeing the convergence of

the fixpoint computations and the heuristics for efficient fixpoint computations. Section IV-C explains the counter-

example generation algorithms.

A. Fixpoint Computations

The pre- and post-condition computations are among the basic operations in a symbolic model checker. Given a

set of statesp and a transition relationR, the pre-condition, PRE(p, R), is the set of all states that can reach a state

DRAFT



17

in p with a single transition inR (i.e., the predecessors of all the states inp). The post-condition,POST(p, R), is

defined similarly.

Given statesp and a transition relationR, both represented using the composite symbolic representation as

p =

np
∨

i=1

T
∧

t=1

pit R =

nR
∨

i=1

T
∧

t=1

rit,

the pre-condition can be computed as

PRE(p, R) =

nR
∨

i=1

np
∨

j=1

T
∧

t=1

PRE(pjt, rit).

The above property holds, because existential variable elimination in PRE(p, R) computation distributes over the

disjunctions, and due to the partitioning of the variables based on the basic symbolic types, existential variable

elimination also distributes over the conjunction above for the composite symbolic representation [BGL00]. Since

the pre-condition computation distributes over both the disjunction and the conjunction for the composite sym-

bolic representation, we are able to compute the pre-condition of a composite representation using pre-condition

computations of the basic symbolic representations.

The temporal operator EX corresponds to the pre-condition computation, i.e.,[[EX p]]≡ PRE(p, R). AX can also

be computed as[[AX p]]≡ ¬PRE(¬p, R). The rest of the CTL operators can be computed as least and greatest

fixpoints using EX and AX [CGP99]

[[p EU q]] ≡ µx . q ∨ (p ∧ [[EX x]])

[[p AU q]] ≡ µx . q ∨ (p ∧ [[AX x]])

[[EG p]] ≡ νx . p ∧ [[EX x]]

[[AG p]] ≡ νx . p ∧ [[AX x]]

However, the above characterizations of AU and EG are not complete if we do not restrict the transition relation

to be total. A transition relation is total if every state hasa next state, which is a common assumption in model

checking literature [CGP99]. Since a non-total transitionsystem can have states that do not have any next states,

AX false will be satisfied in such states vacuously. Hence, those states will satisfy AFfalse too. This creates a

problem, since we will have states that satisfy AFp without p being satisfied in any future state. To prevent this,

we alter the fixpoint computation for AU (and similarly for AF) as follows

[[p AU q]]≡ µx . q ∨ (p ∧ [[AX x]] ∧ AtLeastOne)

whereAtLeastOne denotes the states that have at least one successor, and can be computed as:

AtLeastOne ≡ ¬[[AX false]]≡ [[EX true]]≡ PRE(true, R)

Dual of this problem appears in the EG fixpoint. If all the states in a finite path satisfiesp and if that path ends

at a state that does not have any successors, then the states on that path should satisfy EGp. Then, we need to

change the EG fixpoint as:

[[EG p]]≡ νx . p ∧ ([[EX x]] ∨ None)

DRAFT



18

1 EG(p): composite formula

2 p, s, sold , None : composite formula

3 let R denote the transition relation

4 let None denote the states with no successors

5 s← p

6 sold ← false

7 while ¬isEquivalent(s, sold ) do

8 sold ← s

9 s← (PRE(s, R) ∨ None) ∧ sold

10return s

Fig. 6. The algorithm for computing the states that satisfy EGp

1 EU(p, q): composite formula

2 p, q, s, sold : composite formula

3 s← q

4 sold ← false

5 let R denote the transition relation

6 while ¬isEquivalent(s, sold ) do

7 sold ← s

8 s← PRE(s, R) ∧ p ∨ sold

9 return s

Fig. 7. The algorithm for computing the states that satisfyp EU q

whereNone denotes the states that have no successors (i.e.,None ≡ ¬AtLeastOne). Note that, this fixpoint always

considers all the paths that end in a state with no successors. In the Action Language VerifierAtLeastOne and

None are pre-computed and stored with the transition system, so that they are not recomputed in each fixpoint

iteration.

Based on the equivalences among the CTL operators [CGP99], one can show that{EX, EG, EU} forms a basis

for CTL, i.e., all CTL formulas can be expressed using only these temporal operators. Similarly, another basis for

CTL is {EX, EU, AU}. In the Action Language Verifier both basis are implemented and can be chosen by the user.

Another option is to leave the temporal operators as they are. In that case the Action Language Verifier computes

each temporal operator directly using the corresponding fixpoint.

Figures 6, 7 and 8 show the algorithms for computing the states that satisfy the CTL formulas EGp, p EU q, and

p AU q based on the fixpoint characterizations of these temporal operators. Note that, in an infinite state model

checker like ALV termination of these fixpoint computationsis not guaranteed. Although each iteration takes us

closer to the fixpoint, we are not guaranteed to reach it. However, if a fixpoint is reached we are sure that it is the

DRAFT



19

1 AU(p, q): composite formula

2 p, q, s, sold , AtLeastOne: composite formula

3 s← q

4 sold ← false

5 let R denote the transition relation

6 let AtLeastOne denote the states with at least one successor

7 while ¬isEquivalent(s, sold ) do

8 sold ← s

9 s← ¬PRE(¬s, R) ∧ p ∧AtLeastOne ∨ sold

10 return s

Fig. 8. The algorithm for computing the states that satisfyp AU q

least or the greatest fixpoint based on the type of the iteration. In the next section we will discuss heuristics for

computing approximations of least and greatest fixpoints.

B. Heuristics

We use the approximate fixpoint computation approach from [BGP99] to compute approximations of least and

greatest fixpoints. Assume that we wish to compute the statesthat satisfy a temporal propertyφ in a transition

systemM = (S, I, R). If M is an infinite state system the fixpoint computations described above may not converge.

Instead of computing[[φ]], i.e., the set of states that satisfy the temporal propertyφ, assume that we compute a

lower boundfor [[φ]], denoted[[φ]]
−, such that[[φ]]

−⇒ [[φ]]. Note that,I ⇒ [[φ]]
− implies thatI ⇒ [[φ]], i.e., showing

I ⇒ [[φ]]
− means that the transition systemM satisfies the propertyφ. However, ifI 6⇒ [[φ]]

−, we cannot conclude

that the transition system does not satisfy the property since it is possible thatI 6⇒ [[φ]]
− but I ⇒ [[φ]]. In that

case, we can compute a lower bound for the negated property:[[¬φ]]
−. If I ∧ [[¬φ]]

− is satisfiable then we can

conclude that the transition systemM does not satisfy the propertyφ. If both cases fail, i.e., bothI 6⇒ [[φ]]
− and

I ∧ [[¬φ]]
−≡ false, our verification effort will be inconclusive.

Since ALV computes the temporal formulas recursively starting from the innermost temporal operators, in order

to implement this approach in ALV, we have to compute an approximation to a formula by first computing the

approximations for its subformulas. All temporal and logical operators other than “¬” are monotonic. This means that

any lower/upper approximation for a negation free formula can be computed using the corresponding lower/upper

approximation for its subformulas. To compute a lower boundfor a negated property such as¬φ, we can compute

an upper bound[[φ]]
+ for the subformulaφ where [[φ]]⇒ [[φ]]

+, and then let[[¬φ]]
−≡ ¬([[φ]]

+
). Similarly, we can

compute an upper bound for¬φ using a lower bound forφ. Thus, we need to implement algorithms to compute

both lower and upper bounds of temporal formulas.

In this section we explain heuristics for computing lower and upper approximations of least and greatest fixpoint

computations using truncated fixpoint calculations and thewidening and the collapsing operators. We also discuss

DRAFT



20

1 module main()

2 parameterized integer size;

3 integer x,y;

4 enumerated pc {a,b,c};

5 restrict: size>0;

6 initial: x=-size and y=size;

7 a1: pc=a and x<0 and x’=x+1 and pc’=a;

8 a2: pc=a and x=0 and pc’=b;

9 a3: pc=b and y>0 and y’=y-1 and pc’=b;

10 a4: pc=b and y=0 and pc’=c;

11 a5: pc=c and x’=-size and y’=size and pc’=a;

12 main: a1 | a2 | a3 | a4 | a5;

13 spec: AG(x<=y)

14 endmodule

Fig. 9. A sample Action Language specification.

heuristics for accelerating fixpoint computations based onself-loop-closures and restricting the state space to an

over-approximation of the reachable states. We also propose two new heuristics, which are marking and dependency

heuristics, for avoiding the redundant computations during fixpoint computations. We have implemented all these

heuristics in ALV.

We will explain these heuristics using the sample specification given in Figure 9, in which two integer variables

(x andy ) are periodically assigned values that have the same absolute value and are of different signs (x=-size

andy=size , by actiona5). Between two such consecutive assignments the negative value is incremented until it

becomes zero (actionsa1 and a2) and then the positive value is decremented until it becomeszero (actionsa3

anda4). The correctness property is specified asx is always smaller than or equal toy .

Truncated Fixpoint Computations:Each iteration of a least fixpoint computation gives a lower bound for the least

fixpoint. Hence, if we truncate the fixpoint computation after a finite number of iterations we will have a lower

bound for the least fixpoint. Similarly, the result of each iteration of a greatest fixpoint computation gives an upper

bound for the greatest fixpoint. For instance, for the specification in Figure 9, truncating the fixpoint computation of

EF (x > y), given in Figure 10, after two iterations yieldsI2, which is a lower approximation for the least fixpoint.

ALV has a flag that can be set to determine the bound on number offixpoint iterations. If the obtained result is

not precise enough to prove the property of interest, it can be improved by running more fixpoint iterations.

Widening and Collapsing Operators:For computing upper bounds for least-fixpoints we use thewidening

technique [CC77] generalized to the composite symbolic representation [BGL00]. Letp andq denote two composite

formulas such thatp ⇒ q wherep =
∨n

i=1

∧T

t=1 pit and q =
∨m

i=1

∧T

t=1 qit. Then the widening operator for the

composite symbolic representation is defined as:

p ▽ q ≡
∨

1≤i≤n, 1≤j≤m, pi⇒qj

∧

t∈T

pit ▽t qjt ∨
∨

1≤j≤m,∀i,1≤i≤n, pi 6⇒qj

qj ∨
∨

1≤i≤n,∀j,1≤j≤m, pi 6⇒qj

pi

DRAFT



21

pre a4

yxAtomic property:

x

size

−1y

1 pc=a

y

pc=b1

x1

size

x −1

size 1 pc=a

y y

size

x

pc=b1

1

size

2 x+1y

1 pc=b

y−1

size

−2x

1 pc=a

yx
yx yx

I3:

pre a2

size 1 pc=a

x=0

size 1 pc=b

y=0

yx
yx yx

size 1 pc=a

x=0

size 1 pc=b

y=0

x −1y

size 1 pc=a size

1

pc=b1

xy

size 1

x −2y−1

pc=a size

2

pc=b1

x+1y y−2

size

−3x

pc=a1 size

3

pc=b1

x+2y
yx

yx yx

size 1 pc=a

x=0

size 1 pc=b

y=0

pre a3
pre a1, a2, a4, a5

pre a2, a3, a4, a5

pre a1

pre a3pr
e 

a1

pr
e 

a5

pr
e 

a1

pr
e 

a5

pre a1

pre a2, a3, a4, a5

pre a1, a2, a4, a5
pre a3

pre a2, a3, a4, a5

pr
e 

a1
, a

2,
 a

4,
 a

5

pre a1

pre a3

pre a3

pre a1

pre a5

pre a3

falseI1:

pre a4pre a2

falsefalseI2:

pre a2

pre a4

false false false

Fig. 10. The result of the first three iterations of computingEF (x > y) naively for the Action Language specification given in Figure 9. I1, I2, andI3 denote the result of the first, the second,

and the third iteration, respectively.pre ai denotes that the constraint pointed by the arrow is obtainedby performing the pre-condition computation on the source constraint using actionai, where

1 ≤ i ≤ 5. The constraints in each of the dashed rounded boxes are simplified into constraint,x > y, by the Composite Symbolic Library.

D
R

A
F

T



22

yxAtomic property:

x

size

-1y

1 pc=a

y

pc=b1

x1

size
yxI1:

x -1

size 1 pc=a

y
x y

size

2 x+1y

1 pc=b

y

size

x

pc=b1

1y-1

size

-2x

1 pc=a

x y
y-1 -1x y -1

pc=a1size

y-2 -2x y -1

pc=a1size

y x+11 x1

pc=b1size

y x+22 x1

pc=b1size

y-1 -1x y -1

pc=a1size

y x+11 x1

pc=b1size
x y

y-2 -1x y -1

pc=a1size

y x+21 x1

pc=b1size
x y

x y
pc=a1size

x -1 y -1 y1

1size

1 x

pc=b

I2:

I2’:

I3:

I3’:

I3’’:

simplify

simplify simplify

simplify

Fig. 11. The results of the first three iterations of computing EF (x > y) for the Action Language specification given in Figure 9.I1, I2,

and I3 denote the results of the first, the second, and the third iteration, respectively.I′
2

and I′
3

denote the results of the iterations after the

simplification operation andI′′
3

denotes the result of the iteration after the widening operation (▽).

wherepi =
∧T

t=1 pit, qj =
∧T

t=1 qjt, andn, T , pit, and▽t denote the number of basic symbolic representations, the

set of basic symbolic representations, a symbolic representation of typet, and the type-specific widening operator

for type t, respectively. Note that the widening operator for the composite representation simply uses the widening

operators for the basic symbolic representations on pairs of disjuncts fromp andq that satisfy the constraintpi ⇒ qj .

As the widening operator for the boolean representation (▽bool), we simply use the disjunction operation. There

are two widening operators (▽int ) for the integer domain based on the type of symbolic representation used for the

integer domain. For the automata representation we use the widening operator defined in [BB04]. For the polyhedral

representation we use the widening operator defined in [BGP99] that generalizes the convex widening operator in

DRAFT



23

[CH78] to Presburger arithmetic formulas.

A widening operator has to satisfy the following two constraints: 1) For anyp and q, p ∨ q ⇒ p ▽ q, i.e.,

widening operator should provide an upper bound for the disjunction operation. 2) The approximate fixpoint sequence

computed using the widening operator should eventually converge. The widening operator described above satisfies

the first constraint. In order to satisfy the second constraint, we have to bound the number of disjuncts in the

composite symbolic representation. This means that after we reach the bound, we need to merge the disjuncts in

the composite representation. We can merge two disjunctsp1 =
∧T

t=1 p1t andp2

∧T

t=1 p2t as

p1,2 =

T
∧

t=1

(p1t ∨ p2t)

wherep1,2 provides an upper bound forp1∨p2, i.e.,p1∨p2 ⇒ p1,2. Using this merging operation we can limit the

number of disjuncts in the composite symbolic representation and guarantee convergence of the fixpoint iterations

to an upper approximation of the least fixpoint.

Figure 11 shows an example application of the widening operator, which is used for the computation ofEF (x >

y) fixpoint for the specification in Figure 9. In this example ALVwas directed to start applying the widening

operation after the second iteration. For computingI ′2 ▽ I ′3, ALV compares each pair of disjuncts where one of

them comes fromI ′2 and the other comes fromI ′3. For pairs that satisfy the subsumption relation it appliesthe

widening operation. For instance, the disjuncty − 1 ≤ x ≤ −1 ∧ y ≤ −1 ∧ size ≥ 1 ∧ pc = a that comes fromI ′2

is subsumed by the disjuncty − 2 ≤ x ≤ −1 ∧ y ≤ −1 ∧ size ≥ 1 ∧ pc = a that comes fromI ′3. Applying integer

based widening operation on the integer parts of these two disjuncts, i.e.,(y − 1 ≤ x ≤ −1 ∧ y ≤ −1 ∧ size ≥

1) ▽int (y − 2 ≤ x ≤ −1 ∧ y ≤ −1 ∧ size ≥ 1), yieldsx ≤ −1 ∧ y ≤ −1 ∧ size ≥ 1.

To compute lower-bounds for the greatest fixpoint computations we define the dual of the widening operator and

call it the collapsingoperator (and denote it with̄▽). Let p andq denote two composite formulas such thatq ⇒ p.

Thenp▽̄q is defined as

p▽̄q ≡
∨

1≤i≤n, 1≤j≤m, pi⇒qj

∧

t∈T

pit▽̄tqjt ∨
∨

1≤i≤n, ¬∃1≤j≤m, pi⇒qj

pi ∨
∨

1≤j≤m, ¬∃1≤i≤n, pi⇒qj

qj

wherepi =
∧T

t=1 pit, qj =
∧T

t=1 qjt, andn, T , pit, and▽̄t denote the number of basic symbolic representations, the

set of basic symbolic representations, a symbolic representation of typet, and the type-specific collapsing operator

for type t, respectively.

The collapsing operators satisfy the following constraint: p▽̄q ⇒ p∧q. Intuitively, ▽̄ operator finds the decreasing

parts of the fixpoint iterations and removes them to accelerate the fixpoint computation. The greatest fixpoint

computations are modified so that at each iteration the result pi is set topi−1▽̄pi. For the boolean representation

the collapsing operator (̄▽bool) is simply the conjunction operator.

Note that the collapsing operator is different than the narrowing operator [CC77]. The narrowing operator is used

to improve an over approximation of a least fixpoint in finite number of steps. The collapsing operator, on the other

hand, is used to compute a lower approximation of a greatest fixpoint.

DRAFT



24

x y-2 x -2 size 1 x y-2 2 y size 1

x y

size 1

pc=c0 yx y-1

0 yx=0

x y-1 x -1

x y1

size 1
y x 1 y

0y=0 x

yx -1

size 1
x y

size 1

pc=c
pc=a pc=b

I1:

x1
pc=a

-1y
pc=b

None: Atomic property: yx

yx 1 x 0

0 yx y-1

size 1

pc=a

yx 1 x 0

size 1

pc=b

x y

size 1

pc=c

I2:

pc=a pc=b

I2’:

Fig. 12. The results of the first three iterations of computing EG(x ≤ y) for the Action Language specification given in Figure 9.None

denotes the states with no successors.I1 and I2 denote the results of the first and the second iterations, respectively. I′
2

denotes the result of

the iteration after the collapsing operation (▽̄).

In our symbolic representation for integers each Presburger arithmetic formula is represented as a disjunction of

polyhedra. Given two such representationsp andq, our collapsing operator for linear arithmetic constraints (▽̄int)

looks for a polyhedron inp that subsumes and is not equal to a polyhedron inq. When a pair is found the subsumed

polyhedron is removed fromq. The result of the collapsing operation is the union of the polyhedra remaining inq.

For the automata representation we use the widening operator in computing the collapsing operator as follows:

p▽̄intq = ¬(¬p ▽int ¬q). Note that this approach is inefficient for polyhedra representation since computing the

negation is inefficient in polyhedra encoding.

Figure 12 shows an example of the collapsing operator, whichis used for the computation ofEG(x ≤ y) fixpoint

for the specification in Figure 9. In this example ALV was directed to start applying the collapsing operation after

the first iteration. For computingI1▽̄I2, ALV compares each pair of disjuncts where one of them comes from I1

and the other comes fromI2. For pairs that satisfy the subsumption relation it appliesthe collapsing operation.

For instance, the disjunct(x ≤ y − 2 ∧ x ≤ −2 ∨ −1 ≤ x ≤ y ∧ 0 ≤ y) ∧ size ≥ 1 ∧ pc = a that comes from

I2 is subsumed by the disjunct(x ≤ y − 1 ∧ x ≤ −1 ∨ x = 0 ∧ y ≥ 0 ∨ 1 ≤ x ≤ y) ∧ size ≥ 1 ∧ pc = a

DRAFT



25

that comes fromI1. Applying integer based collapsing operation on the integer parts of these two disjuncts, i.e.,

(x ≤ y− 1∧x ≤ −1 ∨ x = 0∧ y ≥ 0 ∨ 1 ≤ x ≤ y ∨ 1 ≤ x ≤ y)∧ size ≥ 1▽̄int (x ≤ y− 2∧x ≤ −2 ∨ −1 ≤

x ≤ y ∧ 0 ≤ y) ∧ size ≥ 1, yields−1 ≤ x ≤ y ∧ y ≥ 0 ∧ size ≥ 1. Note that the disjunctx ≤ y − 2 ∧ x ≤ −2 is

subsumed by and is not equal tox ≤ y − 1 ∧ x ≤ −1, so it does not appear in the result.

Self-Loop-Closures:Another heuristic we use to accelerate convergence is to compute the closures of self-loops

in the specifications. Given a transition system(I, S, R) we can use any relationR′ that satisfies the constraint

∀s ⇒ S, POST(s, R) ⇒ POST(s, R′) ⇒ POST(s, R∗)

(whereR∗ denotes the reflexive-transitive closure ofR) to accelerate the fixpoint computations for temporal operators

EF and EU [BGP99].

To exploit this idea, given a transition relationR in the composite symbolic representationR ≡
∨n

i=1

∧

t∈T rit,

ALV transforms it to

R ≡ R ∨
n
∨

i=1

(ri,int ∧
∧

t∈T,t6=int

IRt)

whereIRt is the identity relation for the variables represented withthe basic symbolic representation typet, and

the subscriptint denotes the symbolic representation for integers. Note that,
∧T

t∈T,t6=int
IRt corresponds to identity

relation for all the variables other than integers. Hence,
∨n

i=1(ri,int ∧
∧

t∈T,t6=int
IRt) denotes the part of the

transition relation where all the variables other than the integer variables stay the same. To computeri,int ’s we

conjunct the transition relationR with
∧

t∈T,t6=int
IRt and collect the resulting disjuncts that are satisfiable. Then,

for eachri,int we compute anr′i,int , where∀s ⇒ S, POST(s, ri,int ) ⇒ POST(s, r′i,int ) ⇒ POST(s, r∗i,int )i [BGP99].

We take the disjunction of the result with the original transition relationR to compute

R′ = R ∨
n
∨

i=1

(r′i,int ∧
T
∧

t∈T,t6=int

IRt)

Then, we useR′ in the fixpoint computations for EF and EU instead ofR to accelerate the fixpoint computations.

Note that we cannot use closure computations for EG or AU fixpoints since they may introduce cycles that do not

exist in the original transition system. Table II shows the transitions that correspond to the actions in Figure 9 for

both cases with and without using the self-loop-closures heuristic. Note that when the self-loop-closures heuristic is

used only the transitions that correspond to the actionsa1 anda3 change, since they are the ones that correspond

to self-loops, they model iterative increment and decrement operations, respectively.

Reachable States:The fixpoint algorithms described thus far arebackwardreachability techniques. They start

with a propertyφ, and then use PRE to determine which states can reachφ. The last step is to determine whether

there are initial statesI that are included in the resulting set of states. Alternatively, it may be useful to start with the

initial statesI, compute an upper approximationRS+ to the reachable state-spaceRS and then useRS+ to help

in the model-checking process. For example we can alter the symbolic model checker to restrict its computations

to the states inRS+. To generate the upper boundRS+, we can use thePOST function. The (exact) reachable

state-space of a transition system is the least fixpointRS ≡ µx . I ∨ POST(x, R), and it can be computed using

DRAFT



26

Action Transition Relation Transition Relation with Loop-Closures

a1 pc = a ∧ x < 0∧ (pc = a ∧ x < 0 ∧ x′ = x + 1 ∧ pc′ = a)∨

x′ = x + 1 ∧ pc′ = a (pc = a ∧ x + 1 ≤ x′ ≤ 0 ∧ pc′ = a)

a2 pc = a ∧ x = 0 ∧ pc′ = b pc = a ∧ x = 0 ∧ pc′ = b

a3 pc = b ∧ y > 0∧ (pc = b ∧ y > 0 ∧ y′ = y − 1 ∧ pc′ = b)∨

y′ = y − 1 ∧ pc′ = b (pc = b ∧ 0 ≤ y′ < y ∧ pc′ = b)

a4 pc = b ∧ y = 0 ∧ pc′ = c pc = b ∧ y = 0 ∧ pc′ = c

a5 pc = c ∧ x′ = −size∧ pc = c ∧ x′ = −size ∧ y′ = −size ∧ pc′ = a

y′ = −size ∧ pc′ = a

TABLE II

THE TRANSITIONS THAT CORRESPOND TO THE ACTIONS OF THEACTION LANGUAGE SPECIFICATION INFIGURE 9.− AND + DENOTE

EXCLUSION AND INCLUSION, RESPECTIVELY.

the techniques we previously developed for EU. Moreover, wecan use the widening method to compute an upper

bound forRS as well. After computingRS+, we restrict the result of every operation in the model checker to

RS+.

Marking Heuristic:The states that satisfy EFφ are characterized by the least fixpointµZ.φ∨PRE(Z). The states

that satisfy EFφ can be computed iteratively such that the result of thekth iteration denotes the states that can

reach a state that satisfiesφ in at mostk transitions. Since composite symbolic representation is adisjunctive

representation, and, since in the least fixpoint computations the result of thekth iteration includes the disjuncts

from the previous iteration (k− 1st iteration), a naive approach that computes the pre-condition on the result of the

k− 1st iteration to obtain the result of thekth iteration would perform redundant computations by recomputing the

pre-condition for the disjuncts coming from the result of the k − 2nd iteration. We can alleviate this problem by

marking the disjuncts from the result of thek−1st iteration after computing the result of thekth iteration. Hence, at

thekth iteration the pre-condition is computed only on the disjuncts that are not marked, i.e., the disjuncts that were

computed at thek − 1st iteration. Table III shows the results of the first 4 iterations for computing EFφ for both

with and without the marking heuristic. At thekth iteration the fixpoint algorithm without the marking heuristic

computesk−1 more pre-condition computation than that computed by the the fixpoint algorithm with the marking

heuristic. Another benefit of marking heuristic is to reducethe number of the widening operations performed when

ALV runs in the approximate fixpoint computation mode. The Marking heuristic can also be used during the least

fixpoint computations for the properties of typepEUq and the reachable statesRS, since these fixpoints are also

characterized as:µZ.φ ∨ F (Z).

Figure 13 shows the results of the first three iterations for computingEF (x > y) using the Marking heuristic

for the specification given in Figure 9. The disjuncts that are enclosed by rounded-corner boxes denote the marked

ones. The Marking heuristic makes sure that the pre-condition computations on the disjunctsx > y, y ≤ x ≤

−1 ∧ size ≥ 1 ∧ pc = a, andy − 1 ≤ x ≤ 2 ∧ size ≥ 1 ∧ pc = a are performed only in the first, the second, and

DRAFT



27

pre a3

yxAtomic property:

x −1

size 1 pc=a

y y

size

x

pc=b1

1

size

2 x+1y

1 pc=b

y−1

size

−2x

1 pc=a
x y falseI2:

x

size

−1y

1 pc=a

y

pc=b1

x1

size
yx falseI1:

x −1y

size 1 pc=a size

1

pc=b1

xy

size 1

x −2y−1

pc=a
yx

size

2

pc=b1

x+1y y−2

size

−3x

pc=a1 size

3

pc=b1

x+2y
falseI3:

pre a3

pre a5

pr
e 

a1

pre a3

pre a1, a2, a4, a5

pre a2, a3, a4, a5

pre a1

pre a1
pre a2, a3, a4, a5

pr
e 

a1
, a

2,
 a

4,
 a

5

Fig. 13. The result of the first three iterations of computingEF (x > y) using the Marking heuristic for the Action Language specification given in Figure 9.I1, I2, andI3 denote the results of

the first, the second, and the third iterations, respectively. pre ai denotes that the constraint pointed by the arrow is obtainedby performing the pre-condition computation on the source constraint

using actionai, where1 ≤ i ≤ 5. The constraints that are marked by the Marking heuristic are enclosed in rounded-corner boxes.

D
R

A
F

T



28

Iter. Fixpoint Iterations New Fixpoint Iterations with Marking

computed computed marked

0 φ none none none

1 φ ∨ PRE(φ) PRE(φ) PRE(φ) φ

2 φ ∨ PRE(φ) PRE(φ), PRE(PRE(φ)) φ,

∨PRE(PRE(φ)) PRE(PRE(φ)) PRE(φ)

3 φ ∨ PRE(φ) PRE(φ), PRE(PRE(PRE(φ))) φ,

∨PRE(PRE(φ))∨ PRE(PRE(φ)), PRE(φ),

PRE(PRE(PRE(φ))) PRE(PRE(PRE(φ))) PRE(PRE(φ))

TABLE III

THE RESULTS OF THE FIRST4 ITERATIONS OF COMPUTINGEF = µZ.φ ∨ PRE(Z) WITH AND WITHOUT THE MARKING HEURISTIC.− AND

+ DENOTE EXCLUSION AND INCLUSION, RESPECTIVELY.

a1

a5

a4 a3

a2

Fig. 14. The dependency graph for the Action Language specification in Figure 9. A directed edge between the nodesai andaj means that the

constraints generated as a result of the pre-condition computation using the actionai may enable the actionaj for computing the pre-condition

computation.

the third iterations, respectively.

In addition to eliminating the redundant pre and post-condition computations, the Marking heuristic eliminates the

redundant simplification operations among the sets that have been computed in the previous iterations. However, we

allow merging an unmarked disjunct with a marked disjunct (resulting in an unmarked disjunct) in order to reduce

the number of disjuncts in the composite representation. Although this reduces the effectiveness of the marking

heuristic, it improves the overall performance by reducingthe composite representation size.

Dependency Heuristic:Given a states and the transition relationR =
∨n

i=1 ri where eachri is an atomic

transition, the pre-condition (post-condition) is computed by distributing the pre-condition (post-condition) operator

over the disjuncts ofR. However, for the case of the pre-condition computation there may be an atomic transition

rk such that there are no states from whichs can be reached by executing the transitionrk and for the case of the

post-condition computation there may be an atomic transition rj that is not enabled at states. Computing the pre-

DRAFT



29

condition or the post-condition for such cases is redundant. Below we show how this kind of redundancies can be

eliminated for the pre-condition computations. This approach can also be used for the post-condition computations.

We first compute a directed graph, which we call thedependency graph, (N, E) whereN = {r1, r2, ..., rn} and

E denotes the set of edges.(ri, rj) ∈ E if and only if the following holds:

PRE(PRE(true, ri), rj) 6= false

The dependency graph, in a way, describes all the feasible interleavings of the atomic transitions. Figure 14 shows

the dependency graph for the Action Language specification given in Figure 9. During the fixpoint computations

that use the pre-condition computation, we associate everystate with theenable backward set, which denotes the

set of transitions that it can enable via the pre-condition computation. For instance, lets2 = PRE(s1, a1) where

s1 and s2 represent states,a1 represents the atomic transition that corresponds to the action a1 given in Figure

9. Theenable backward setfor s2 is {a1, a5}, which consists of the neighbors of the transitiona1 according to

the dependency graph. Before performing the pre-conditioncomputation ons2 using a transitionai, one can first

check whetherai is in the backward enable set ofs2. If it is the case, then we perform the computation, otherwise

we skip the computation. For instance, the pre-condition computation ons2 using the transitiona3 can be skipped

sincea3 is not an element of the set{a1, a5}.

Figure 15 shows the results of the first three iterations for computingEF (x > y) for the specification given

in Figure 9. The disjuncty ≤ x ≤ −1 ∧ size ≥ 1 ∧ pc = a is generated in the first iteration as a result of the

pre-condition computation using thea1. Since the neighbors of nodea1 are a1 and a5, the enable backward set

for this constraint is set to{a1, a5}. As a result, ony ≤ x ≤ −1 ∧ size ≥ 1 ∧ pc = a the pre-condition is not

computed usinga2, a3, anda4, by which we avoid computing some of the pre-condition computations that would

yield unsatisfiable constraints.

In addition to using the dependency information for avoiding the redundant pre-condition computations, ALV

uses this information during the simplification of the results of the fixpoint iterations. Two disjuncts are compared

for equivalence during the simplification phase only if their enable backward sets are the same.

If we compare Figures 13 and 15 with Figure 10, we can see that the Marking heuristic prunes the computation

tree such that the pre-condition computations that are performed on the constraints already generated are eliminated,

whereas the Dependency heuristic prunes the computation tree such that some of the pre-condition computations that

would yield unsatisfiable constraints are eliminated. The effectiveness of the Dependency heuristic highly depends

on the dependency graph, i.e., the number of edges between the nodes. However, since the Dependency heuristic is

sound for both the least fixpoint computations and the greatest fixpoint computations, it can be used for any property

verification, whereas the Marking heuristic can only be usedfor the least fixpoint computations. The Marking and

the Dependency heuristics can be combined to achieve a greater degree of reduction as long as ALV is computing

a least fixpoint.

DRAFT



30

pre a4

yxAtomic property:

x

size

−1y

1 pc=a

y

pc=b1

x1

size

x −1

size 1 pc=a

y y

size

x

pc=b1

1

size

2 x+1y

1 pc=b

y−1

size

−2x

1 pc=a

x −1y

size 1 pc=a size

1

pc=b1

xy

size 1

x −2y−1

pc=a size

2

pc=b1

x+1y y−2

size

−3x

pc=a1 size

3

pc=b1

x+2y

yx
yx yx

pre a4

pre a2

size 1 pc=a size 1 pc=b

x=0 y=0

yx
yx yx

size 1 pc=a size 1 pc=b

x=0 y=0

yx
yx yx

size 1 pc=a size 1 pc=b

x=0 y=0

pre a3pr
e 

a1

pre a3
pre a2

pre a1

pre a3pr
e 

a1

pre a1

pre a5
pre a3

pre a1

pre a3

pre a2

pre a5

pre a5

pr
e 

a2

I1:

pre a2
pre a4

false

false false

I2:

pre a3

pr
e 

a1

I3:

pre a2

Fig. 15. The results of the first three iterations of computing EF (x > y) using the Dependency heuristic for the Action Language specification given in Figure 9.I1, I2, andI3 denote the results

of the first, the second, and the third iterations, respectively. pre ai denotes that the constraint pointed by the arrow is obtainedby performing the pre-condition computation on the source constraint

using actionai, where1 ≤ i ≤ 5. The constraints in each of the dashed rounded boxes are simplified into constraint,x > y, by the Composite Symbolic Library.

D
R

A
F

T



31

C. Counter-Example Generation

An important feature of model checkers is their ability to generate counter-example behaviors. ALV is able

to generate counter-examples for the properties that it falsifies. Generating a counter-example for a propertyφ

corresponds to generating a witness for its negation¬φ. We cannot generate witnesses for universal properties,

since we need to list all the paths in the system to demonstrate that the property holds. This is equivalent to saying

that we cannot generate a counter-example for an existential property. Hence, ALV generates counter-examples

only for ACTL properties. A counter-example for an ACTL property can be represented as a tree-like structure that

starts from the initial states and demonstrates that the property is violated [CJLV02].

When asked to generate a counter-example, ALV negates the input propertyφ, converts it to{EX, EG, EU} basis,

and pushes all the negations inside, i.e., there exists no negation in front of a temporal formula. Then it computes

the states that satisfy the sub formulas bottom-up, starting from the atomic properties. However, it also stores the

intermediate fixpoint computations for EG and EU when it is looking for a counter-example. After the computation

ends it looks for an initial states ⇒ I ∧ [[¬φ]]. If there is no such state, it reports that no counter-example has been

found. (If the computed fixpoints are exact this means that the property is proved.) Otherwise, it starts constructing

a witness for¬φ (i.e., a counter-example forφ) starting froms in a top-down manner, i.e., first it generates the

witness that corresponds to the top-most temporal operatorand then it continues to generate the witnesses for the

sub formulas.

Figure 16 shows a recursive algorithm for computing a witness for a given CTL formula in{EX,EU,EG} basis

starting from a given state. The algorithm accumulates the results in a global list calledwitness. Each call to the

GENERATE WITNESS function adds a new entry to this witness list. Each entry in the witness list is a tuple that

consists of a state, a formula, and a path, where the path forms the basis of a witness for that formula starting from

that state. Note that the path itself may not be enough as a witness, and the later entries in the witness list may

contain paths starting from the states in that path. As discussed in [CJLV02], it is possible to construct a tree-like

structure by combining the paths reported in the witness list.

The GENERATE WITNESSalgorithm first reverses the results of fixpoint iterations for the input CTL formula. The

reason is that fixpoint computations propagate backwards starting from the inner CTL formula, whereas witness

computation propagates forwards starting from an initial state.

To generate a witness for the property EXφ starting from a states that satisfies EXφ, the algorithm savess as the

initial state of the witness path. Then it computesPOST(s, R) and conjoins the result with the states that satisfyφ.

One state chosen from the conjunction is saved as the next state in the witness path. The resulting path is recorded

as the witness for the property EXφ. Then the witness generation algorithm is invoked recursively to generate a

witness forφ starting from the last state of the witness path for EXφ.

To generate a witness for the property EU(φ1, φ2) starting from a states that satisfies EU(φ1, φ2), the algorithm

starts with the result of the last iteration of the fixpoint for EU(φ1, φ2). Since that corresponds to the states that

satisfy EU(φ1, φ2), it is guaranteed thats is in it. If s satisfiesφ2 then the algorithm stops. Otherwise,POST(s, R)

DRAFT



32

witness : List of 〈state, CTL formula, List of states〉

GENERATE WITNESS(s, φ)

s, s1: Symbolic,φ: CtlFormula,path : List of states,iterReverse: List of set of states

if φ.isAtomic() then return

iterReverse ← φ.iterates.reverse()

path .add(s)

caseφ = EXφ1:

path .add(choose(POST(s, R) ∧ iterReverse.get(1)))

witness.add(〈s,φ,path〉)

GENERATE WITNESS(path .getLast(),φ1)

caseφ = φ1EUφ2:

for 0 < i < iterReverse.size() and not path .getLast().isSubsumed (iterReverse.getLast()) do

path .add(choose(POST(path .getLast(), R) ∧ iterReverse.get(i)))

witness.add(〈s,φ,path〉)

for 0 ≤ i < path.size() do

if i = path .size() − 1 then

GENERATE WITNESS(path .get(i),φ2)

else

GENERATE WITNESS(path .get(i),φ1)

caseφ = EGφ1:

cycleNotReached← true

for 1 ≤ i ≤MAX ITER and cycleNotReached do

s1 ← POST(path .getLast(), R)

if not s1.isSatisfiable() then break

path .add(choose(s1 ∧ iterReverse.get(i)))

for 0 ≤ j < i do

if path .getLast().isSubsumed(path .get(j)) then

cycleNotReached← false break

witness.add(〈s,φ,path〉)

for 0 ≤ i < path.size() do

GENERATE WITNESS(path .get(i),φ1)

Fig. 16. The algorithm for generating witness for the CTL formula φ in {EX,EU,EG} basis starting from states.

is conjoined with the next one of the reversed results of the fixpoint iterations. Note that, this conjunction cannot be

false, since, based on the fixpoint computation for EU,s must have a next state in the result of the next iteration.

The algorithm chooses one of the states that satisfy the conjunction as the next state in the witness path. It continues

until a state that satisfiesφ2 is reached. This state is used to generate a witness forφ2. Note that, the algorithm

also generates witnesses for propertyφ1 starting from all the states that were visited before the state satisfyingφ2

was reached. All these witnesses are added to the witness list.

To generate a witness for the property EGφ, the algorithm only needs the last of the reversed results ofthe

fixpoint iterations, which corresponds to the states that satisfy EGφ. It starts from a states that satisfies EGφ. Then,

DRAFT



33

POST(s, R) is computed and conjoined with the states that satisfy EGφ. The algorithm chooses a state that satisfies

the conjunction and continues this iteration until a cycle or a state that does not have any next states is found.

In either of these cases the algorithm returns the generatedpath as the witness path. However, since the Action

Language specifications can be infinite, it is not guaranteedto find a witness that contains a cycle or a finite path. It

is possible that all the witnesses are infinite paths that do not have any repeating states. Hence, the algorithm puts

a bound (MAX ITER) on witness search. When it reaches that bound it adds the path computed so far as the

prefix of a witness path to the output witness list. Then, the algorithm generates witnesses for propertyφ starting

from all the states in the witness path for EGφ and all these witnesses are added to the witness list.

The algorithm in Figure 16 does not show how the logical operators not, and, andor are handled. As we have

stated before, before generating a witness for a CTL formula, ALV pushes all the negations inside the atomic

property. Therefore, the witness generation algorithm does not need to handle thenot operator. It handles theand

operator by generating a witness for each subformula, whereas it handles theor operator by choosing one of the

subformulas that yields a witness.

We have to be careful with counter-example generation when we are using the approximate fixpoint computations.

Assume that we are using the{EX, EG, EU} basis for the CTL and we try to verify the property AGp. Then we

would compute¬(EF¬p). If we are computing the approximate fixpoint computations,then this will require us to

compute an upper bound forEF¬p to get a lower bound for AGp. If we can show thatI ⇒ [[AGp]]− then we are

done. However, ifI 6⇒ [[AG]]
− we cannot use our computations for[[EF¬p]]

+ to generate a counter-example. Since

[[EF¬p]]+ is an upper bound it can include spurious counter-examples.If we want to generate a counter-example,

then we need to compute a lower bound for EF¬p (negation of the original property). If we can generate a counter-

example using[[EF¬p]]
− we are sure that it is a valid counter-example. Because of this issue ALV works in two

phases; 1) the verification phase and 2) the falsification phase. During the verification phase ALV does not try to

generate a counter-example. If ALV is unable to prove the property during the verification phase, it recomputes the

fixpoints and then tries to generate a counter-example. As explained above, these phases will use different types of

approximations if approximate fixpoints are being used. Either of these cases can be skipped by the user using the

input flags of ALV.

V. PARAMETERIZED VERIFICATION

In this section we present the adaptation of an automated abstraction technique calledcounting abstraction

[Del00] to the parameterized verification of specificationsin the Action Language. Using counting abstraction we

can automatically verify the properties of a system with arbitrary number of finite-state processes. The basic idea

is to define an abstract transition system in which the local states of the processes are abstracted away but the

number of processes in each local state is counted by introducing an auxiliary integer variable for each local state.

As we will show below, counting abstraction preserves the CTL properties that do not involve the local states of the

processes. For this abstraction technique to work we need the local states of the submodules to be finite. Each local

state corresponds to a valuation of all the local variables of a submodule, i.e., the set of local states of a submodule

DRAFT



34

Departing Departing *

S pc = parked ∨ pc = depFlow∨ parkedC≥ 0 ∧ depFlowC≥ 0

pc = takeOff ∧ takeOffC≥ 0 ∧ parkedC+

depFlowC+ takeOffC= C

I pc = parked parkedC= C ∧ depFlowC= 0

∧ takeOffC= 0

R

r1 pc = parked ∧ numRW16L= 0 parkedC> 0 ∧ numRW16L= 0

∧ numC3+ numC4+ numC5+ ∧ numC3+ numC4+ numC5+

numC6+ numC7+ numC8= 0 numC6+ numC7+ numC8= 0

∧ pc′ = takeOff ∧ ∧ takeOffC′ = takeOffC+ 1 ∧

numRW16L′ = numRW16L+ 1 numRW16L′ = numRW16L+ 1

∧ parkedC′ = parkedC− 1 ∧

depFlowC′ = depFlowC

r2 pc = takeOff ∧ takeOffC> 0 ∧

pc′ = depFlow∧ depFlowC′ = depFlowC+ 1 ∧

numRW16L′ = numRW16L− 1 numRW16L′ = numRW16L− 1

∧ takeOffC′ = takeOffC− 1 ∧

parkedC′ = parkedC

TABLE IV

TRANSITION SYSTEM INFORMATION FOR AN INSTANTIATION OFDeparting MODULE IN FIGURE 2 AND ARBITRARY NUMBER OF

INSTANTIATIONS OF Departing MODULE USING COUNTING ABSTRACTION. S DENOTES THE STATE SPACE, I DENOTES THE INITIAL

STATES, AND R DENOTES THE TRANSITION RELATION. R1 AND R2 DENOTE THE ATOMIC TRANSITIONS THAT CORRESPOND TO

REQTAKEOFF AND LEAVE, RESPECTIVELY. PARKEDC, DEPFLOWC, AND TAKEOFFC DENOTE THE NUMBER OF AIRPLANES IN PARKED,

DEPFLOW, AND TAKEOFF MODES, RESPECTIVELY. C IS A PARAMETERIZED CONSTANT THAT DENOTES THE NUMBER OF DEPARTING

AIRPLANES.

is the Cartesian product of the domains of the local variables of that submodule. For example, if a submodule has

a local variable that is an unbounded integer, we cannot directly use the counting abstraction.

In the Action Language a module instantiation can be parameterized by appending the ’*’ character to the

module instantiation, e.g.,main: Arriving() | Departing() * indicates that the transition system is an

asynchronous composition of an instantiation of the moduleArriving and an arbitrary number of instantiations

of the moduleDeparting . Table IV shows the components of the transition system withone departing airplane

(Departing ) versus the transition system with arbitrary number of departing airplanes (Departing * ) using

counting abstraction. The only local variable of the moduleDeparting is pc , which is an enumerated variable

and can take one of the valuesparked , depFlow , andtakeOff . Therefore, the local state space of the module

Departing consists ofpc taking one of these values. For the parameterized system, weneed to introduce

DRAFT



35

three counters,parkedC , depFlowC , and takeOffC , which denote the number of the departing airplanes

in parked mode, the number of the departing airplanes indepFlow mode, and the number of the departing

airplanes intakeOff mode, respectively. We introduce an additional parameterized integer constant,C, which

denotes the number of the departing airplanes. The state space for the parameterized system consists of non-

negative values forparkedC , depFlowC , and takeOffC where their sum is restricted to be equal toC. In

the initial state of the transition system for a single departing airplane the airplane is inparked mode. For the

parameterized system, in the initial stateparkedC is equal toC and depFlowC and takeOffC are equal to

zero to denote the fact that all the departing airplanes are initially in the parked mode. A departing airplane

can perform any of the two atomic actions:reqTakeOff or leave . For the transition system for a single

departing airplane,reqTakeOff represents a departing airplane’s transition fromparked mode totakeOff

mode provided that the runway 16L (numRWL=0) is not occupied and there are no airplanes on the taxiways

C3-C8 (numC3+numC4+...+numC8=0 ). For the transition system for arbitrary number of departing airplanes,

reqTakeOff represents transition ofany departing airplane that is in parked mode(parkedC>0 ) to takeOff

mode (parkedC’=parkedC-1 , takeOffC’=takeOffC+1 ). Note that the execution ofreqTakeOff does

not change the status of the departing airplanes indepFlow mode, which is taken care of by keeping the value

of depFlow same in the next state (depFlowC’=depFlowC ).

Section V-A presents the formal definition of counting abstraction and Section V-B explains application of

counting abstraction to a module in an Action Language specification.

A. Formal Definition

Let T be a transition systemT = (I, S, R) that is defined over a set of variablesV . Let D(vi) denote the

domain of variablevi in V . Both the initial statesI and the state spaceS are subsets of the Cartesian product of

the domains of all variables inV , i.e., I, S ⊆
∏

vi∈V D(vi). We partitionV into two nonintersecting sets: the set

of local variables (VL) and the set of global variables (VG). We define the set of local states asL =
∏

vi∈VL
D(vi).

Similarly, the set of global states is defined asG =
∏

vi∈VG
D(vi). We can specifyT by distinguishing the local

and global states as followsT = TL,G = (IL,G, SL,G, RL,G), where

IL,G = {s|s = 〈sL, sG〉 ∧ sL ∈ L ∧ sG ∈ G ∧ s ∈ I}, (7)

SL,G = {s|s = 〈sL, sG〉 ∧ sL ∈ L ∧ sG ∈ G ∧ s ∈ S}, (8)

RL,G = {r|r = (〈sL, sG〉, 〈s
′
L, s′G〉) ∧ sL, s′L ∈ L ∧ sG, s′G ∈ G ∧ r ∈ R}. (9)

Let T N denote the asynchronous composition ofN identical transition systems,Ti = (Ii, Si, Ri), 1 ≤ i ≤ N ,

where eachTi is defined over a separate set of local variables,VLi
, with the same cardinality, and the same set of

global variables. The set of local states,Li, of each transition system,Ti, will be of the same cardinality, which

we denote byM . The transition systemsTi are identical in terms of their initial states, state spacesand transition

relations, i.e.,∀1 ≤ i, j ≤ N. Si = Sj ∧ Ii = Ij ∧ Ri = Rj . The initial states, the state space, and the transition

DRAFT



36

relation of the composed transition systemT N = (IN
L,G, SN

L,G, RN
L,G), whereIN

L,G ⊆ SN
L,G andRN

L,G ⊆ SN
L,G×SN

L,G

are defined as:

IN
L,G = {s|s = 〈s1, s2, . . . , sN , sG〉 ∧ ∀1 ≤ i ≤ N. si ∈ Li ∧ 〈si, sG〉 ∈ Ii}, (10)

SN
L,G = {s|s = 〈s1, s2, . . . , sN , sG〉 ∧ ∀1 ≤ i ≤ N. si ∈ Li ∧ 〈si, sG〉 ∈ Si}, (11)

RN
L,G = {r|r = (〈s1, s2, . . . , sN , sG〉, 〈s

′
1, s

′
2, . . . , s

′
N , s′G〉) ∧ ∃1 ≤ i ≤ N. (〈si, sG〉, 〈s

′
i, s

′
G〉) ∈ Ri

∧ ∀1 ≤ j ≤ N. j 6= i ⇒ sj = s′j}. (12)

Equation 10 (11) states that the initial states (state space) of the composed system is the composition of the local

initial states (local state spaces) of the identical transition systems and the global initial states (global state space)

that are common to all of the individual transition systems.Equation 12 states that when the composed transition

system transitions from one state to another state only one of the individual transition systems changes state based

on its transition system, which follows from the definition of asynchronous composition.

Let us label the local statessL ∈ L = L1 = L2 = . . . = LN with numbers between1 andM , where each state

has a unique label. We denote this labeling withl(sL). We introduce one integer variablevl(sL) for each local state

sL to denote the number of transition systems,Ti, that are currently in the local statesL. Since the cardinality ofL

is M , M integer variables are introduced. Given a countervi the corresponding local state issL wherei = l(sL).

We define an abstraction functionαCA :
∏

1≤i≤N Li →
∏

1≤i≤M Z that maps a state,〈s1, s2, . . . , sN 〉, that is

defined over the local variables ofT N to the valuation of counters〈v1, v2, . . . , vM 〉 such that valuation of eachvi

represents the number of transition systems that are currently in a statesL wherei = l(sL):

αCA(〈s1, s2, . . . , sN〉) = 〈v1 = k1, v2 = k2, . . . , vM = kM 〉

whereki = |{sj |1 ≤ j ≤ N ∧ i = l(sj)}|.

We transform the composed systemT N into an abstract transition systemT N
CA = (IN

CA, SN
CA, RN

CA), where

〈s1, s2, . . . , sN , sG〉 ∈ IN ⇔ 〈αCA(〈s1, s2, . . . , sN 〉), sG〉 ∈ IN
CA, (13)

〈s1, s2, . . . , sN , sG〉 ∈ SN ⇔ 〈αCA(〈s1, s2, . . . , sN 〉), sG〉 ∈ SN
CA, (14)

(〈s1, s2, . . . , sN , sG〉, 〈s
′
1, s

′
2, . . . , s

′
N , s′G〉) ∈ RN ⇒ (〈αCA(〈s1, s2, . . . , sN 〉), sG〉,

〈αCA(〈s′1, s
′
2, . . . , s

′
N 〉), s′G〉) ∈ RN

CA. (15)

Lemma 5.1:T N andT N
CA are bisimulation equivalent with respect to the set of atomic propertiesAPG that are

defined over the global variablesVG.

Proof: We define the following bisimulation relationB ⊆ SN ×SN
CA where, for all〈s1, s2, . . . , sN , sG〉 ∈ SN

and 〈sCA, sG〉 ∈ SN
CA

(〈s1, s2, . . . , sN , sG〉, 〈sCA, sG〉) ∈ B ⇔ sCA = αCA(〈s1, s2, . . . , sN 〉) (16)

DRAFT



37

Given anys = 〈s1, s2, . . . , sN , sG〉 ∈ SN and sA = 〈sCA, sG〉 ∈ SN
CA, where(s, sA) ∈ B, following three

conditions hold:

1) For any propertyφ ∈ APG, s |= φ ⇔ sA |= φ, since the global state is the same fors andsA according to

the definition ofB in 16.

2) For every states′ = 〈s′1, s
′
2, . . . , s

′
N , s′G〉 ∈ SN such that(s, s′) ∈ RN , there exists a states′A = 〈s′CA, s′G〉 ∈

SN
CA, such that(sA, s′A) ∈ RN

CA and(s′, s′A) ∈ B wheres′CA = αCA(〈s′1, s
′
2, . . . , s

′
N〉). This follows directly

from the definition 15.

3) For every states′A = 〈s′CA, s′G〉 ∈ SN
CA such that(sA, s′A) ∈ RN

CA, we want to show that there ex-

ists a states′ = 〈s′1, s
′
2, . . . , s

′
N , s′G〉 ∈ SN such that(s, s′) ∈ RN , and (s′, s′A) ∈ B where s′CA =

αCA(〈s′1, s
′
2, . . . , s

′
N 〉). If there exists a transition(sA, s′A) ∈ RN

CA then there must exist two statess′′ =

〈s′′1 , s′′2 , . . . , s′′N , s′′G〉 ∈ SN and s′′′ = 〈s′′′1 , s′′′2 , . . . , s′′′N , s′′′G 〉 ∈ SN where (s′′, sA) ∈ B, (s′′′, s′A) ∈ B,

(s′′, s′′′) ∈ RN andαCA(〈s′′1 , s′′2 , . . . , s′′N 〉) = αCA(〈s1, s2, . . . , sN 〉) according to 16 and 15. Ifs′′ = s, then

we can chooses′ = s′′′. If s′′ 6= s, consider the transition systemTi that executes the transition froms′′ to

s′′′ (as defined in 12). SinceαCA(〈s′′1 , s′′2 , . . . , s′′N〉) = αCA(〈s1, s2, . . . , sN〉) there must exist a transition

systemTj in s that is in the same state thatTi is in in s′′. If Tj executes the same transition executed byTi

in s′′ in s, then the next state will be a states′ such that(s′, s′A) ∈ B.

Finally, note that, for any initial states = 〈s1, s2, . . . , sN , sG〉 ∈ IN , there exists a statesA = 〈sCA, sG〉 ∈ SN
CA

such that(s, sA) ∈ B wheresCA = αCA(〈s1, s2, . . . , sN〉). And, for any abstract initial statesA = 〈sCA, sG〉 ∈

SN
CA there exists a states = 〈s1, s2, . . . , sN , sG〉 ∈ IN such that(s, sA) ∈ B wheresCA = αCA(〈s1, s2, . . . , sN 〉).

This follows directly from the definition 13. Hence, we conclude thatT N and T N
CA are bisimulation equivalent

with respect to the set of atomic propertiesAPG.

Theorem 5.1:For any CTL formulaφ that is defined over the global atomic propertiesAPG, T N
CA |= φ ⇔

T N |= φ.

Proof: The proof follows from the fact that bisimulation relation preserves CTL properties [CGP99] and

Lemma 5.1.

Finally, we consider theparameterized verification problem: Given a CTL formulaφ over the global atomic

propertiesAPG, check if ∀N, N ≥ 1, T N |= φ. In order to achieve this, we generate a parameterized-abstract

transition systemT P
CA that contains a parameterized integer constant,NP , whereNP ≥ 1. Given a transition system

T N = (IN
L,G, SN

L,G, RN
L,G) and its abstractionT N

CA = (IN
CA, SN

CA, RN
CA) as defined above, the parameterized-abstract

transition systemT P
CA = (IP

CA, SP
CA, RP

CA) has the following property:

IP
CA ∧ (NP = N) ≡ IN

CA SP
CA ∧ (NP = N) ≡ SN

CA RP
CA ∧ (NP = N) ≡ RN

CA

Then, we have the following result:

Theorem 5.2:Given the transition systemT P
CA, and a CTL formulaφ over the global atomic propertiesAPG,

T P
CA |= φ ⇔ ∀N, N ≥ 1, T N |= φ.

DRAFT



38

1 COUNTABS(m)

2 m: module name

3 s: composite formula

4 s←
∑M

i=0
counter i = paramCons ∧

∧M

i=0
counter i ≥ 0 ∧ paramCons > 0

5 State(m)← ∃ Locals(m), State(m) ∧ s

6 Init(m)← COUNTABS STATES(Init(m)) ∧ s

7 for each action a of modulem do

8 Act(a)← COUNTABS TRANSITIONS(Act(a)) ∧ s ∧ s′

9 Locals(m)← ∅

Fig. 17. The algorithm for applying counting abstraction toa modulem of an Action Language specification.s′ represents the constraint that

s represents using the next state version of the variables, e.g., counter ′
i

instead ofcounter i.

Note that, if using ALV we can show thatT P
CA satisfies the propertyφ then this means that the property holdsfor

anyT N , i.e.,T P
CA |= φ ⇒ ∀N, N ≥ 1, T N |= φ. However, if ALV finds a counter-example for the propertyφ for

the transition systemT P
CA demonstrating that the property does not hold, then this means that the property does

not hold for someT N , i.e., T P
CA 6|= φ ⇒ ∃N, N ≥ 1, T N 6|= φ.

B. Implementation

ALV automatically generates the parameterized-abstract transition systemT P
CA whenever the input Action Lan-

guage specification contains a transition formula of the form m() * , wherem is a module name. The algorithm

for parameterization of a module of an Action Language specification using counting abstraction is given in Figure

17. The algorithm accepts a module name,m, as the input and generatesM number of auxiliary integer variables,

whereM denotes the size of the local state space ofm and one parameterized constant that denotes the number of

processes. Each of theM auxiliary variables denotes the number of processes in a particular local state. We call

these auxiliary integer variables thecounters. We distinguish two counters that correspond to two different local

states by assigning an integer value (i.e., an index) to eachlocal state and using this value as the subscript. For

instance, let local states be represented by the integer valuei, thencounter i is the counter that corresponds tos.

The algorithm in Figure 17 changes the state formula, initial formula, and the actions of the input modulem by

replacing the constraints on the local variables with constraints that use the counters and the parameterized constant.

It changes the state formula so that the sum of the counters isequal to the parameterized constant, each counter

is a nonnegative value, and the parameterized constant is a positive value (line 4). It changes the initial formula

by calling the algorithmCOUNTABS STATES and conjoining it with the constraint on the counters (represented

by s) (line 6) given in Figure 18, and it changes the transition formula of each action by calling the algorithm

COUNTABS TRANSITIONS (lines 7-8) given in Figure 19 and conjoining it with the constraints on the current (s)

and next state counter variables (s′). Conjoinings (lines 5, 6, and 8) ands′ (line 8) with the partial constraints

generated for counting abstraction makes sure that the second part of the implication in 14, 13, and 15 are realized

DRAFT



39

1 COUNTABS STATES(m,f ) : composite formula

2 m: module name

3 f , l, s, resultDis , result : composite formula

4 index : integer

5 let Vs be the list of all the boolean variables other thanm’s local boolean variables

6 let Vl be the list ofm’s local boolean variables

7 result ← false

8 for each composite atomd =
∧

t∈T
dt of f do

9 resultTerm ← 0

10 indexSet ← ∅

11 for each minterm e of dbool do

12 l← ∃ Vs, e

13 indexSet ← indexSet ∪ l

14 let index denote an integer value that uniquely representsl

15 resultTerm ← resultTerm + counter index

16 result ← result ∨
∧

t∈T,t 6=bool
dt ∧ resultTerm = paramCons ∧

∧

i6∈indexSet
counter i = 0 ∧ ∃Vl, e

17 return result

Fig. 18. The algorithm for applying counting abstraction toa formulaf .

in the implementation.

The algorithm COUNTABS STATES accepts a module namem and a composite formulaf as the input. It

enumerates all the mintermse of the boolean part of each composite atom1. By existentially quantifying out the

non-local variables, the algorithm extracts a local statel and makes sure that the counter (counter l) that corresponds

to l is included in the summation term (resultTerm) (line 15), which sums up all the counters that correspond to

local states in which a transition system can be. Later (line16) resultTerm is equated to the parameterized constant

paramConst to make sure that all the transition systems are in one of the local states that are extracted from the

minterms. Also, the remaining counters are set to zero indicating that none of the transition systems can be in those

states (line 16). It conjoins this constraint with the non-local part of the minterm (line 16) and the non-boolean

parts of the composite atom. It performs this for all composite atoms (lines 8-16) and computes the disjunction of

the resulting constraints (line 16).

The algorithmCOUNTABS TRANSITIONS accepts a module namem and an action namea as the input. It

enumerates the minterms of the boolean part ofAct(a), which denotes the transition formula that corresponds to

the actiona. Similar to the algorithmCOUNTABS STATES it existentially quantifies out the non-local variables from

the boolean part to obtain an atomic local transition formula on the boolean variables. It obtains the local stateld

1Note that counting abstraction can only be applied on finite local state spaces and in the Action Language finite local state spaces can be

defined by boolean and enumerated variables. Since enumerated variables are converted to boolean variables, in a composite atom, boolean part

is the one that encodes the finite state space.

DRAFT



40

1 COUNTABS TRANSITIONS(m,a): composite formula

2 m: module namea: action name index :integer

3 l, s, result : composite formula

4 result ← false

5 let Vs denote the list of boolean variables other thanm’s local boolean variables

6 let Vsnext denote the list of next state boolean variables other thanm’s local next state

7 boolean variables

8 let Vl denote the list ofm’s local boolean variables

9 let Vlnext denote the list ofm’s local next state boolean variables

10 let Act(a) =
∧

t∈T
rt

11 for each minterm e of rbool do

12 ld ← ∃ Vlnext ,∃ Vsnext ,∃ Vs, e

13 lr ← ∃ Vl,∃ Vsnext , ∃ Vs, e

14 s← ∃ Vlnext ,∃ Vl, e

15 let indexd denote an integer value that uniquely representsld

16 let indexr denote an integer value that uniquely representslr

17 if indexd = indexr then

18 resultAbs ← counter indexd
> 0 ∧ counter ′

indexd
= counter indexd

19 else

20 resultAbs ← counter indexd
> 0 ∧ counter ′

indexd
= counter indexd

− 1 ∧

21 counter ′
indexr

= counter indexr
+ 1

22 for each 0 ≤ i < L ∧ i 6= indexd ∧ i 6= indexr do

23 resultAbs ← resultAbs ∧ counter ′
i
= counter i

24 result ← result ∨ resultAbs ∧ s

25 return
∧

t∈T,t 6=bool
rt ∧ result

Fig. 19. The algorithm for applying counting abstraction toan actiona of modulem.

at which the local transition is enabled by existentially quantifying the next state variables (line 12) and obtains the

local statelr at which one can reach by executing the local transition by existentially quantifying out the current

state variables (line 13). Then, depending on whetherld and lr denote the same state, it generates a constraint. If

ld andlr denote the same state then the constraint states that the counter that corresponds told is greater than zero

and in the next state the counter that corresponds told keeps its value (line 18). Otherwise, the constraint states

that the counter that corresponds told is greater than zero and in the next state the counter that corresponds told is

decremented by one and the counter that corresponds tolr is incremented by one (lines 20-21). In both cases the

constraint states that the other counters keep their value in the next state (lines 22-23). It conjoins the constraint

with the non-local part of the minterm (line 24). It performsthis for all minterms and gets the disjunction of the

resulting constraints (lines 11-24). Finally, it conjoinsthe generated constraint with the non-boolean parts of the

actiona (line 25).

DRAFT



41

Problem Transition Relation Size

Instance Composite Polyhedra EQ, GEQ BDD # int. # bool.

PA2D 22 22 1388 518 29 4

PA4D 26 26 1642 986 29 8

PA8D 34 34 2150 2258 29 16

PA16D 50 50 3166 6146 29 32

PAPD 20 20 1481 326 33 6

TABLE V

SIZES OF THE TRANSITION RELATIONS FOR THE PROBLEM INSTANCES USED IN THE EXPERIMENTS.PAXD DENOTES ARBITRARY NUMBER

(P ) OF ARRIVING (A) AIRPLANES AND X NUMBER OF DEPARTING(D) AIRPLANES.PAPD DENOTES ARBITRARY NUMBER OF DEPARTING

AND ARRIVING AIRPLANES.

VI. EXPERIMENTS WITH THEA IRPORT GROUND TRAFFIC CONTROL SPECIFICATION

This section presents experimental results that are obtained using the airport ground traffic control specification

from Figure 2 discussed earlier. Table V shows the size of thetransition systems used in the experiments. We

used the polyhedra encoding for the integer variables. For each transition system and the corresponding composite

symbolic representation the table shows the number of disjuncts in the composite representation (Composite), the

number of polyhedra (Polyhedra), and the number of equalityand inequality constraints (EQ, GEQ), and the number

of BDD nodes (BDD), the number of integer variables (# int) and the number of Boolean variables (# bool). We have

varied the number of the departing airplanes and kept the number of the arriving airplanes arbitrary (parameterized).

There is also an instance where both the number of the arriving airplanes and the number of the departing airplanes

are both arbitrary (parameterized).

Figure 20 shows performance of the Dependence and the Marking heuristics for the verification of the safety and

liveness properties in terms of the construction time, verification time, and memory usage. We used ALV with the

widening and the approximate reachable states heuristics for this experiment. Results show that the Marking heuristic

performs better than the Dependence heuristic in terms of the construction time, which includes the time spent for

the approximate reachable state computation. Note that theapproximate reachable state computation involves least

fixpoint computation where Marking heuristic is effective.Moreover, the Dependence heuristic incurs a startup cost

due to construction of the dependence graphs. On the other hand, the Dependence heuristic performs better than

the Marking heuristic in terms of the verification time sinceit performs significant savings during the simplification

phase by avoiding redundant equality checks (see Section IV-B) using the dependence information. The Dependence

heuristic uses more memory than that is used by the Marking heuristics since it stores the dependence graph, which

is of sizen2 wheren is the number of atomic transitions, and the dependence information for each composite atom

during the analysis.

The performance of ALV for the verification of the fully parameterized case, where both the number of the

DRAFT



42

0
5

10
15
20
25
30
35
40
45
50

2 4 6 8 10 12 14 16

C
on

st
ru

ct
io

n 
T

im
e 

(s
ec

)

Number of processes

None
Dependence

Marking
Dependence+Marking

(a) Safety Construction Time (sec)

0

10

20

30

40

50

60

2 4 6 8 10 12 14 16

C
on

st
ru

ct
io

n 
T

im
e 

(s
ec

)

Number of processes

None
Dependence

Marking
Dependence+Marking

(b) Liveness Construction Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12 14 16

V
er

ifi
ca

tio
n 

T
im

e 
(s

ec
)

Number of processes

None
Dependence

Marking
Dependence+Marking

(c) Safety Verification Time (sec)

0

10

20

30

40

50

60

2 4 6 8 10 12 14 16

V
er

ifi
ca

tio
n 

T
im

e 
(s

ec
)

Number of processes

None
Dependence

Marking
Dependence+Marking

(d) Liveness Verification Time (sec)

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10 12 14 16

M
em

or
y 

(M
B

)

Number of processes

None
Dependence

Marking
Dependence+Marking

(e) Safety Memory (MB)

40

60

80

100

120

140

160

180

2 4 6 8 10 12 14 16

M
em

or
y 

(M
B

)

Number of processes

None
Dependence

Marking
Dependence+Marking

(f) Liveness Memory (MB)

Fig. 20. Comparison of the Dependence and the Marking Heuristics

arriving and the number of the departing airplanes are parameterized, is as follows: For the safety property, the

transition system construction time is 6.59 seconds, the verification time is 0.02 seconds and the total memory usage

is 6.8 MBytes. For the liveness property, the transition system construction time is 28.15 seconds, the verification

time is 5.98 seconds and the total memory usage is 103.05 MBytes. Our experimental results indicate that the

verification performance for the fully parameterized case is smaller than the partially parameterized case, where

the number of the arriving airplanes is arbitrary and the number of the departing airplanes is a constant, when the

number of the departing airplanes is greater than or equal to16. I.e., in this case, the use of the counting abstraction

DRAFT



43

improves the verification performance.

We have changed the specification in Figure 2 by redefining action reqTakeOff as

reqTakeOff: pc=parked and numRW16L=0 and pc’=takeOff and n umRW16L’=numRW16L+1;

By doing so we have introduced an error, since a departing airplane can start taking off even though there may be

some airplanes at the exits C3-C8. This violates rule 3 givenin Section II. ALV checked this erroneous specification

for the CTL property that corresponds to rule 3, and falsifiedthe property by providing a counter-example path.

The counter-example path is a witness path for the negated property

EF(numRW16L=0 and numC3+numC4+numC5+numC6+numC7+numC8>0 and EX(!numRW16L=0))

and consists of two sub-witness paths:

1) The witness path for the property

EF(numRW16L=0 and numC3+numC4+numC5+numC6+numC7+numC8>0 and EX(!numRW16L=0))

consists of three states. According to the counter-examplepath, initially, the departing airplane, denoted by

Departing.pc , is in the parked state and the arriving airplane, denoted byArriving.pc , is in the arFlow

state. Then the arriving airplane lands and transitions to the touchDown state. Having landed, the arriving

airplane selects exit C3 and starts taxiing on it by transitioning into taxiTo16LC3 state. During this transition

the departing airplane is still inparked state.

2) The witness path for propertyEX(!(numRW16L=0)) consists of two states. It starts from the state where the

departing airplane is still in theparked state and the arriving airplane is in thetaxiTo16LC3 state of the

sub-witness path. Then the departing airplane starts the takeoff and transitions into thetakeOff state. This

violates the property since exit C3 is occupied while the departing airplane is taking off.

VII. RELATED WORK

The initial structure of the Action Language was presented in [Bul00]. An overview of ALV was presented

in [BYK01] and [YKBB05]. The composite symbolic representation used by ALV was discussed in [YKB03].

ALV has been used in verification of various types of specifications including parameterized cache coherence pro-

tocols [DB01], parameterized hierarchical state machines[YKB05], workflow specifications [FBHS01], concurrent

programs [YKB02], [BCB04], requirements specifications [BH08] and implementation of safety critical software

components [BCBL+07].

The main difference between ALV and the well known symbolic model checkers SMV [McM93] and NuSMV

[CCG+02] is the fact that ALV targets infinite state specifications. Another distinguishing feature of ALV is the

use of the composite symbolic representation. To analyze infinite-state spaces with finite state model checkers such

as SMV, NuSMV or SPIN [Hol97]. one needs to first generate an abstraction of the original specification. ALV, on

the other hand, uses various automated heuristics for infinite-state verification. Additionally, the counter-example

DRAFT



44

paths that are generated by ALV is on the concrete system, whereas with the model checkers mentioned above the

generated counter-example paths for the abstraction of an infinite-state system would be on the abstract system and

needs to be mapped backed to the original infinite-state system in order to understand the source of the error.

There have been earlier work on model checking real-time systems (for example, UPPAAL [BBD+02]) or hybrid

systems (for example, Hytech [HHWT97]). UPPAAL focuses on real-time systems and uses the timed automata

model which is too restricted as a computation model for the types of specifications that ALV targets. Hytech uses

a polyhedra based representation for arithmetic constraints, such as the one used in ALV, for analyzing hybrid

systems. However, ALV uses the polyhedra representation oninteger domains. Although the Action Language

Verifier currently focuses on integers, by integrating the linear arithmetic representation for reals to the Composite

Symbolic Library it can be extended to verification of specifications with integer and real variables.

FAST [BFL04] is a verification tool that uses an automata-based representation for unbounded integers and uses

fixpoint acceleration techniques for the automata-based representation that are similar to the loop closure heuristic

of ALV for the composite representation.

LEVER [VV06] is a verification tool that uses learning algorithms to compute the fixpoints required for verifi-

cation. LEVER can be used to verify infinite state specifications and has been used on verification of systems with

integer variables [VV07]. ALV uses a more traditional iterative approach for computing fixpoints, as pioneered by

symbolic model checkers such as SMV. ALV also enables integration of multiple symbolic representations based

on the composite symbolic representation.

[SS07] applies bounded model checking techniques to infinite state systems with unbounded integer variables.

ALV uses truncated fixpoints and widening operations to under and over approximate least fixpoint computations,

respectively. Using these approaches together allows ALV to do sound analysis during verification and look for

concrete counter-examples during a separate falsificationphase.

[YWGI06] uses the frontier concept to avoid redundant computations during reachable state computation. This

technique is similar to the marking heuristic presented in this paper. However, the frontier approach requires

computation of the back edges which incurs a startup cost to the fixpoint computation whereas the marking heuristic

does not incur such an overhead.

[Del03] uses counting abstraction to verify safety properties of parameterized cache coherence protocols. Our

work differs from [Del03] in the following ways: 1) The Action Language Verifier canautomaticallytranslate an

Action Language specification to its parameterized version, whereas [Del03] uses hand translation, 2) The translation

algorithm that the Action Language Verifier employs is more general since it can handle any type of predicate that

can be specified in the Action Language, whereas in [Del03] itis required that the predicates defining the enabling

condition of a transition involve only the number of caches in a local state, 3) The Action Language Verifier can

verify CTL properties of parameterized systems using counting abstraction, whereas the technique that is presented

in [Del03] is specialized for the verification of safety properties of parameterized cache coherence protocols.

DRAFT



45

VIII. C ONCLUSIONS

We presented the formal syntax and the semantics of the Action Language, and we presented ALV, which is an

infinite-state symbolic model checking tool for the Action Language. ALV is built on top of the Composite Symbolic

Library, which is a symbolic manipulator for systems with heterogeneous data domains. ALV is a polymorphic

verification tool. Depending on the type of variables declared in the Action Language specification, ALV may

become a BDD-based model checker, a polyhedra-based model checker or a composite model checker where both

BDDS and polyhedra-based representation are used for symbolic encoding. Since Composite Symbolic Library can

be extended with new symbolic representations, the range ofapplications that can be analyzed with ALV can also

increase in the future.

We discussed the infinite-state verification heuristics implemented in ALV that conservatively approximate the

fixpoints and can be used to both verify or falsify Action Language specifications. We also showed that ALV can

automatically verify parameterized Action Language specifications.

We have performed a case study on Airport Ground Traffic Control to evaluate the effectiveness of ALV for

specifying and verifying a reactive software system. ALV isable to verify many important properties of this case

study including the ones specified in [Zho97] for arbitrary number of arriving and departing airplane processes.

REFERENCES

[BB03] Constantinos Bartzis and Tevfik Bultan. Efficient symbolic representations for arithmetic constraints in verification. Int. J. Found.

Comput. Sci., 14(4):605–624, 2003.

[BB04] C. Bartzis and T. Bultan. Widening arithmetic automata. In R. Alur and D. Peled, editors,Proceedings of the 16th International

Conference on Computer Aided Verification (CAV 2004), volume 3114 ofLecture Notes in Computer Science, pages 321–333.

Springer-Verlag, July 2004.

[BBD+02] Gerd Behrmann, Johan Bengtsson, Alexandre David, Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. Uppaal implementation

secrets. InProceedings of the 7th International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems

(FTRTFT 2002), pages 3–22, 2002.

[BCB04] A. Betin-Can and T. Bultan. Verifiable concurrent programming using concurrency controllers. InProceedings of the 19th IEEE

International Conference on Automated Software Engineering (ASE 2004), pages 248–257, September 2004.

[BCBL+07] Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, and Stefan Topp. Eliminating synchronization faultsin air traffic

control software via design for verification with concurrency controllers.Autom. Softw. Eng., 14(2):129–178, 2007.

[BFL04] Sébastien Bardin, Alain Finkel, and Jérôme Leroux. Faster acceleration of counter automata in practice. InTACAS, pages 576–590,

2004.

[BGL00] T. Bultan, R. Gerber., and C. League. Composite model checking: Verification with type-specific symbolic representations.ACM

Transactions of Software Engineering and Methodology, 9(1):3–50, January 2000.

[BGP99] T. Bultan, R. Gerber, and W. Pugh. Model-checking concurrent systems with unbounded integer variables: Symbolic representations,

approximations, and experimental results.ACM Transactions on Programming Languages and Systems, 21(4):747–789, July 1999.

[BH08] Tevfik Bultan and Connie Heitmeyer. Applying infinitestate model checking and other analysis techniques to tabular requirements

specifications of safety-critical systems.Design Automation for Embedded Systems, 12(1-2):97–137, 2008.

[Bul00] T. Bultan. Action Language: A specification language for model checking reactive systems. InProceedings of the 22nd International

Conference on Software Engineering (ICSE 2000), pages 335–344, June 2000.

[BYK01] T. Bultan and T. Yavuz-Kahveci. Action Language Verifier. In Proceedings of the 16th IEEE International Conference on

Automated Software Engineering, 2001.

DRAFT



46

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by construction or

approximation of fixpoints. InProceedings of the 4th Annual ACM Symposium on Principles ofProgramming Languages, pages

238–252, 1977.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella. NuSMVVersion

2: An OpenSource Tool for Symbolic Model Checking. InProc. International Conference on Computer-Aided Verification (CAV

2002), volume 2404 ofLNCS, Copenhagen, Denmark, July 2002. Springer.

[CGP99] E. Clarke, O. Grumberg, and D.A. Peled.Model checking. MIT PRess, 1999.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. InProceedings of the 5th

Annual ACM Symposium on Principles of Programming, pages 84–97, 1978.

[CJLV02] Edmund M. Clarke, Somesh Jha, Yuan Lu, and Helmut Veith. Tree-like counterexamples in model checking. InProceedings of

the 17th IEEE Symposium on Logic in Computer Science (LICS 2002), pages 19–29, 2002.

[CUD] CUDD: CU decision diagram package.http://vlsi.colorado.edu/˜fabio/CUDD/

[DB01] G. Delzanno and T. Bultan. Constraint-based verification of client-server protocols. In T. Walsh, editor,Proceedings of the 7th

International Conference on Principles and Practice of Constraint Programming (CP 2001), volume 2239 ofLecture Notes in

Computer Science, pages 286–301. Springer-Verlag, December 2001.

[Del00] G. Delzanno. Automatic verification of parameterized cache coherence protocols. InProceedings of the 12th International

Conference on Computer Aided Verification, volume 1855 ofLecture Notes in Computer Science, pages 53–68, 2000.

[Del03] G. Delzanno. Constraint-based verification of parameterized cache-coherence protocols.Formal Methods in System Design,

23:257–301, 2003.

[FBHS01] X. Fu, T. Bultan, R. Hull, and J. Su. Verification of Vortex workflows. In T. Margaria and W. Yi, editors,Proceedings of the 7th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2001), volume 2031 of

Lecture Notes in Computer Science, pages 143–157. Springer-Verlag, April 2001.

[HHWT97] T. A. Henzinger, P. Ho, and H. Wong-Toi. Hytech: a model checker for hybrid systems.Software Tools for Technology Transfer,

1:110–122, 1997.

[HJJ+95] J. G. Henriksen, J. Jensen, M. Jorgensen, N. Klarlund, R.Paige, T. Rauhe, and A. Sandholm. Mona: Monadic second-order logic

in practice. InProc. TACAS 1995, 1995.

[Hol97] G. J. Holzmann. The model checker SPIN.IEEE Transactions on Software Engineering, 23(5):279–295, May 1997.

[Low] Michael Lowry. Software construction and software analysis tools for future space missions. InProceedings of the Eighth

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2002).

[McM93] K. L. McMillan. Symbolic model checking. Kluwer Academic Publishers, Massachusetts, 1993.

[Ome] The Omega project.http://www.cs.umd.edu/projects/omega/

[SS07] Tobias Schüle and Klaus Schneider. Bounded model checking of infinite state systems.Formal Methods in System Design,

30(1):51–81, 2007.

[VV06] Abhay Vardhan and Mahesh Viswanathan. Lever: A tool for learning based verification. InProceedings of the 18th International

Conference on Computer Aided Verification (CAV 2006), pages 471–474, 2006.

[VV07] Abhay Vardhan and Mahesh Viswanathan. Learning to verify branching time properties.Formal Methods in System Design,

31(1):35–61, 2007.

[YKB02] T. Yavuz-Kahveci and T. Bultan. Specification, verification, and synthesis of concurrency control components.In Proc. of

International Symposium on Software Testing And Analysis, 2002.

[YKB03] T. Yavuz-Kahveci and T. Bultan. A symbolic manipulator for automated verification of reactive systems with heterogeneous data

types. International Journal on Software Tools for Technology Transfer (STTT), 5(1):15–33, November 2003.

[YKB05] T. Yavuz-Kahveci and T. Bultan. Verification of parameterized hierarchical state machines using action language verifier. In

Proceedings of the 3rd ACM-IEEE International Conference on Formal Methods and Models for Codesign (MEMOCODE 2005),

July 2005.

[YKBB05] Tuba Yavuz-Kahveci, Constantinos Bartzis, and Tevfik Bultan. Action language verifier, extended. In Kousha Etessami and

Sriram K. Rajamani, editors,Proceedings of the 17th International Conference on Computer Aided Verification (CAV 2005),

volume 3576 ofLecture Notes in Computer Science, pages 413–417, 2005.

DRAFT



47

[YWGI06] Zijiang Yang, Chao Wang, Aarti Gupta, and Franjo Ivancic. Mixed symbolic representations for model checking software programs.

In MEMOCODE, pages 17–26, 2006.

[Zho97] C. Zhong.Modeling of Airport Operations Using An Object-Oriented Approach. PhD thesis, Virginia Polytechnic Institute and

State University, 1997.

DRAFT


