
Form Methods Syst Des (2010) 36: 223–245
DOI 10.1007/s10703-010-0096-7

Context-aware counter abstraction

Gérard Basler · Michele Mazzucchi · Thomas Wahl ·
Daniel Kroening

Published online: 11 June 2010
© Springer Science+Business Media, LLC 2010

Abstract The trend towards multi-core computing has made concurrent software an im-
portant target of computer-aided verification. Unfortunately, Model Checkers for such soft-
ware suffer tremendously from combinatorial state space explosion. We show how to ap-
ply counter abstraction to real-world concurrent programs to factor out redundancy due to
thread replication. The traditional global state representation as a vector of local states is
replaced by a vector of thread counters, one per local state. In practice, straightforward im-
plementations of this idea are unfavorably sensitive to the number of local states. We present
a novel symbolic exploration algorithm that avoids this problem by carefully scheduling
which counters to track at any moment during the search. We have carried out experiments
on Boolean programs, an abstraction promoted by the success of the SLAM project. The ex-
periments give evidence of the applicability of our method to realistic programs, and of the
often huge savings obtained in comparison to plain symbolic state space exploration, and
to exploration optimized by partial-order methods. To our knowledge, our tool marks the
first implementation of counter abstraction to programs with non-trivial local state spaces,
resulting in a Model Checker for concurrent Boolean programs that promises true scalability.

Keywords Symmetry reduction · Boolean programs · Symbolic Model Checking

1 Introduction

Software Model Checking has been a vibrant branch of research in formal methods for sev-
eral years. Predicate abstraction [23, 27] is one of the most prominent approaches in this

This research is supported by the EU FP7 STREP MOGENTES (project ID ICT-216679), and by the
EPSRC project EP/G026254/1. This paper is an extended version of a conference paper that appeared at
CAV 2009 [6].

G. Basler (�) · M. Mazzucchi · T. Wahl · D. Kroening
Computer Systems Institute, ETH Zurich, Zurich, Switzerland
e-mail: gerard.basler@gmail.com

G. Basler · M. Mazzucchi · T. Wahl · D. Kroening
Computing Laboratory, Oxford University, Oxford, UK

mailto:gerard.basler@gmail.com

224 Form Methods Syst Des (2010) 36: 223–245

area, promoted by the success of the SLAM project at Microsoft Research. Instead of track-
ing the actual values of program variables, the abstraction monitors carefully selected pred-
icates over these variables. Predicate abstraction results in a Boolean program [1], which
exclusively uses Boolean variables. Embedded in an automated abstraction-refinement
framework [26], verifiers for Boolean programs have been used successfully to increase
the reliability of system-level software such as Windows device drivers [4].

Recently, there have been attempts to extend these techniques to the verification of con-
current software [37]. The challenge is the classical state space explosion problem: the num-
ber of reachable program states grows exponentially with the number of concurrent threads,
which renders naive exploration impractical. The authors of [37] conclude that none of the
currently available tools is able to handle device drivers of realistic size in the presence of
many threads.

One observation that comes to the rescue is that concurrent components of multi-thread-
ed software are often simply replications of a template program describing the behavior of a
component. The ensuant regularity in the induced system model can be exploited to reduce
the verification complexity. One technique towards this goal is counter abstraction. The
idea is to record the global state of a system as a vector of counters, one for each local state,
tracking how many of the n components currently reside in the local state. This technique
turns a formal model of size exponential in n into one of size polynomial in n, promising a
serious stab at state space explosion.

Emerson and Trefler proposed counter abstraction as a way of achieving symmetry re-
duction for fixed-size systems [17]. In their approach, the template program P is converted
into a local-state transition diagram, by identifying a set of local states a component can
be in, and translating the program statements into local state changes. Such a conversion is
straightforward if there are only few component configurations, such as with certain high-
level communication protocols [15]. For concurrent software, however, P is given in a C-like
language, with assignments to variables, branches, loops, etc. A local state is then defined
as a valuation of all thread-local variables of a thread. As a result, there are exponentially
many local states, measured in the number of thread-local variables. Introducing a counter
variable for each local state is impractical but for tiny programs.

In this paper, we present a strategy to solve these complexity problems. Our solution
is two-fold. First, we interleave the translation of individual program statements with the
Model Checking phase. This has the advantage that our algorithm is context-aware: the
local-state context in which the statement is executed is known; the context determines
which local-state counters need to be updated. If the translation is performed up-front, one
has to embed each statement into all contexts in which the statement is enabled, which is in-
feasible for realistic programs. As a side-effect of the on-demand translation, only counters
for reachable local states are ever introduced. Second, in a global state we keep counters
only for those local states that at least one thread resides in. This idea leverages a sim-
ple counting argument: given n threads with l conceivable local states each, at most n of
the corresponding local state counters are non-zero at any time during execution. Since n

is typically orders of magnitude smaller than l, omitting the zero-valued counters results
in huge savings: the complexity of counter abstraction is reduced from exponential in l to
exponential in min{n, l}.

Contributions We present an efficient algorithm for BDD-based symbolic state space ex-
ploration of Boolean programs executed by a bounded number of possibly dynamically
created parallel threads. This generalizes the traditional setting for symmetry reduction of

Form Methods Syst Des (2010) 36: 223–245 225

systems with a fixed number of components known at modelling time. The algorithm’s pri-
mary accomplishment is to curb the local state space explosion problem, the classical bot-
tleneck in implementations of counter abstraction. We demonstrate the effectiveness of our
approach on a substantial set of Boolean program benchmarks, generated by two very dif-
ferent CEGAR-based toolkits, SATABS [9] and SLAM [2]. Since symmetry reduction, of
which finitary counter abstraction is an instance, has so far been implemented more suc-
cessfully in explicit-state Model Checkers, we also include an experimental comparison of
an explicit-state version of our method against explicit-state symmetry reduction, using the
well-known MURϕ Model Checker [30]. Finally, this paper provides an extensive compari-
son of our counter abstraction method with partial-order reduction, an alternative technique
to curb the verification complexity for programs with interleaved concurrent threads.

We believe our algorithm marks a major step towards the solution of an exigent prob-
lem in verification today, namely that of Model Checking concurrent software. While the
concepts underlying our solution are relatively straightforward, exploiting them in symbolic
Model Checking is not. The succinctness of state space representations that BDDs often
permit is paid for by rather rigid data manipulation mechanisms. To the best of our knowl-
edge, our implementation is the first scalable approach to counter abstraction in symbolic
verification of concurrent software with replicated threads.

2 Related work

While the principal idea of using process counters already appeared in early work by Luba-
chevsky [28], generic representatives were suggested by Emerson and Trefler [17] as a
means of addressing the complexity of symmetry-reducing symbolically represented sys-
tems. The term counter abstraction was coined by Pnueli, Xu, and Zuck in the context
of parameterized verification of liveness properties [31]. The counters are cut off at some
value c, indicating that at least c components currently reside in the corresponding local
state. We emphasize that, in this paper, we use the term counter abstraction in the sense of
exact counters. The method we propose can be seen as an “exact abstraction”, a notion that
is common in symmetry reduction and other bisimulation-preserving reduction methods.

Local state-space explosion was identified by Emerson and Wahl as the major obstacle
to using generic representatives with non-trivial symmetric programs [19]. The paper ame-
liorates this problem using a static live-variable analysis, and using an approximate but in-
expensive local state reachability test. Being heuristic in nature, this work cannot guarantee
a reduced complexity of the abstract program.

We are aware of a few significant works that resulted in tools using counter abstraction
in symbolic Model Checking: by Wei et al. [36], in the context of virtual symmetry [21],
and by Donaldson and Miller [14], for probabilistic models. While valuable in their re-
spective domains, both approaches suffer from a limitation that makes them unsuitable for
general software: they are based on a system model (such as the GSST of [36]) that de-
scribes the process behavior by local state changes and thus require an up-front translation
from whatever input language is used. The examples in [14, 36] include communication and
mutual-exclusion protocols with at most a few dozen local states. Counter abstraction for
infinite-state verification has been applied by Delzanno [12] and Pong and Dubois [32], in
the context of high-level protocol verification, rather than software. The BEACON Model
Checker [3] has been applied to a multi-threaded memory management system with 256
local states. In our benchmarks, threads have millions of local states (see Sect. 7).

Henzinger, Jhala, and Majumdar apply 0-1-∞ counter abstraction to predicate-abstract-
ed concurrent C programs for race detection [24]. The counters monitor the states of context

226 Form Methods Syst Des (2010) 36: 223–245

threads. To avoid local state space explosion, each context thread is simplified to an ab-
stract control flow automaton (ACFA). According to the authors, the ACFA has at most a
few dozen vertices and can thus be explicitly constructed. In contrast, our goal is a general
solution for arbitrary predicate abstractions, where we cannot rely on a small number of
predicates and, thus, local states. Consequently, our work does not require first building a
local state transition diagram.

Compared to canonization-based symmetry reduction methods such as in MURϕ [30]
and SPIN [7, 13] (explicit-state) or SVISS [35] and RULEBASE [5] (symbolic), the Model
Checking overhead that counter abstraction incurs reduces to translating the program state-
ments into local state counter updates. Sorting local state sequences, or other representative
mapping techniques, are implicit in the translation.

Finally, the general problem of symbolically verifying multi-threaded programs has been
tackled in many recent publications [10, 34, and others]. None of these address the symme-
try that concurrent Boolean programs exhibit, although some investigate partial-order meth-
ods [22]. The present paper includes an extensive experimental comparison of our proposed
algorithm to partial-order reduction techniques; see Sect. 7.3.

3 Preliminaries

3.1 Boolean programs

Boolean programs result from applying predicate abstraction to general software. All vari-
ables are of type Boolean, and track values of predicates over (possibly unbounded) vari-
ables of the original program P. To enable sound verification of reachability properties, the
Boolean program is constructed to overapproximate the behavior of P. This may permit
spurious paths, which need to be detected and eliminated, by refining the abstraction us-
ing additional predicates. This process is well-known as counterexample-guided abstraction
refinement (CEGAR) [26].

In a preprocessing step, loops and if statements in the C program are replaced by non-
deterministic gotos and assume statements. Function calls are inlined; the Boolean pro-
grams used in our experiments are assumed to be free of unbounded recursion.1 The result-
ing “goto program” is then translated into a Boolean program. Figure 1 shows the result of
this translation, applied to a fragment of the Apache webserver suite.

We roughly adopt the Boolean program syntax from [1]; Table 1 defines the valid state-
ments and their semantics. The symbol pc represents the program counter, V the set of
program variables. Primes represent the next-state value of variables, and same(Z) abbre-
viates

∧
v∈Z v′ = v, for some set of variables Z. The set of well-formed expressions is the

Boolean closure of constants 0, 1, �, and variable identifiers. The symbol � nondeterminis-
tically evaluates to false or true. For example, an assignment of the form v := expr, where
expr contains an occurrence o of �, is evaluated as v′ = expr|0 ∨ v′ = expr|1 , where expr|0
and expr|1 are obtained from expr by replacing o by 0 and 1, respectively. Multiple oc-
currences of � in one expression may evaluate independently to 0 or 1. Moreover, a single
occurrence of � may evaluate differently every time the containing expression is evaluated.

We use the constructs assume expr and skip as shorthands for v := v constrain
expr (using any variable v) and assume 1, respectively. The start_thread and

1Recursion renders the concurrent verification problem undecidable, even for Boolean programs.

Form Methods Syst Des (2010) 36: 223–245 227

Fig. 1 A C program and a possible translation into a Boolean program

Table 1 Semantics of fundamental Boolean program statements

Syntax Semantics

v1, . . . , vz := expr1, . . . , exprz (exprc ⇒ (pc′ = pc + 1 ∧ ∀i ∈ {1, . . . , z}v′
i
= expri∧

constrain exprc same(V \ {v1, . . . , vz}))) ∧
(¬exprc ⇒ ⊥)

goto l1, . . . , lz (
∨

l∈{l1,...,lz} pc′ = l) ∧ same(V)

start_thread Q pc′ = pc + 1 ∧ same(V) (see main text)

end_thread true (see main text)

228 Form Methods Syst Des (2010) 36: 223–245

end_thread commands are used in Boolean programs that are executed concurrently by
multiple threads; these commands are discussed in the next section. The table only shows
their effects on the executing thread; see the next paragraph for side effects.

We sketch how a Boolean program P induces a concurrent system P
||; a full formaliza-

tion is given by Cook et al. [11]. The set V of program variables is partitioned into two
subsets Vs and Vl of shared and thread-local variables, respectively. A (global) state τ of
P

|| has the form (n,PC,Ω), where n is the number of threads running in state τ , function
PC : {1, . . . , n} → {1, . . . ,pcmax} maps each thread identifier to the program counter location
pointing to the next statement to be executed by that thread, and Ω : Vs ∪({1, . . . , n}×Vl) →
B ∪ {�} is the valuation of the program variables.

The execution model of P
|| is asynchronous. That is, a step of P

|| is performed by a
single thread, say with identifier i ∈ {1, . . . , n}, executing the statement of P at location
PC(i). Changes to the values of pc and the variables in V are reflected in updates to the
state components PC and Ω , as indicated by symbolic constraints in Table 1. The value of n

changes exactly in two circumstances:

– Thread i executes a start_thread Q command. In this case, the state is updated as
follows. Let N be the bound on the number of threads that may be created. If n < N ,
then n′ = n + 1, PC′(i) = PC(i) + 1, PC′(n′) = Q, and for each thread-local variable
vl ∈ Vl , Ω((n′, vl)) = Ω((i, vl)), i.e., thread i is cloned. All other values are unchanged.
If n = N , then n′ = n, PC′(i) = PC(i) + 1, and all other values are unchanged. That is, if
the number of dynamically created threads is exhausted, start_thread behaves like
skip for the executing thread, and is free of side-effects.

– Thread i executes an end_thread command. In this case, n′ = n − 1, and PC and Ω

are unchanged.

Let finally n0 be a natural number with 1 ≤ n0 ≤ N , the initial number of threads. The
set of initial states of P

|| is given by n = n0 and PC(i) = 0; the values Ω(vs) and Ω((i, vl))

are defined according to the initial values of each shared variable vs and each thread-local
variable vl of each thread i ∈ {1, . . . , n0}. A classical concurrent system of a fixed number of
threads is an instance of this formalization with n0 = n = N and a Boolean program without
start_thread or end_thread commands.

When reasoning about the concurrent program P
||, the notation of a state can be sim-

plified by considering the PC simply as a thread-local variable. In that case, a state of P
||

can be described in the form (s, l1, . . . , ln), where vector s is a valuation of the shared vari-
ables Vs , and li stands for the local state of thread i, comprising the value of the program
counter PC(i) and the value Ω((i, vl)), for each thread-local variable vl ∈ Vl . The transla-
tion between the notations (n,PC,Ω) and (s, l1, . . . , ln) is straightforward. The thread state
of thread i is the pair (s, li). Intuitively, for i ∈ {1, . . . , n}, thread i has full access to the
shared variables and to the i-th copy of the thread-local variables. It has neither read nor
write access to the thread-local variables of any other thread.

3.2 Symmetry reduction

Full symmetry is the property of a Kripke model of concurrent components to be invariant
under permutations of these components. This invariance is traditionally formalized using
permutations. A permutation π on {1, . . . , n} is defined to act on a state σ = (s, l1, . . . , ln)

by acting on the thread indices, i.e. π(σ) = (s, lπ(1), . . . , lπ(n)). We extend π to act on a
transition (σ, τ) by acting point-wise on σ and τ .

Form Methods Syst Des (2010) 36: 223–245 229

Definition 1 Structure M with transition relation R is (fully) symmetric if for all r ∈ R and
all permutations π on {1, . . . , n}, π(r) ∈ R.

We observe that a concurrent Boolean program built by replicating a template written
in the syntax given in Sect. 3.1 is (trivially) symmetric: the syntax does not allow thread
identifiers in the program text, which could potentially break symmetry.

From a symmetric structure M , a reduced quotient structure M can be constructed using
standard existential abstraction. The quotient is based on the orbit relation on states, defined
as σ ≡ τ if there exists π such that π(σ) = τ .

Theorem 2 [8, 16] Let f be a μ-calculus formula with atomic propositions that are invari-
ant under thread index permutations. Let further σ be state of M and σ be the equivalence
class of σ under ≡.

M,σ |= f iff M,σ |= f.

Thus, verification over M can be replaced by verification over M , without loss of pre-
cision. This theorem can be proved by a bisimulation argument; the bisimulation relation
between M and M relates states of M and their orbit equivalence classes. In addition, M

is roughly exponentially smaller than M : the equivalence classes of ≡ collapse up to n!
many states of M . Symmetry reduction thus combines two often antagonistic features of
abstractions: precision and compression.

Symmetry reduction in the above formalization has been quite successful as an abstrac-
tion technique in model checkers based on explicit state enumeration; see Sect. 2 for ex-
amples. It has enjoyed much less popularity in BDD-based symbolic Model Checking. The
reason is that the state canonization that is required by symmetry reduction can be expen-
sive to perform using BDDs. In particular, it was shown in [8] that the orbit relation has no
succinct BDD representation, for any variable order. Emerson and Wahl present a symbolic
symmetry reduction technique that avoids the orbit relation but still relies on state canoniza-
tion [18].

Counter abstraction, the topic of this paper, can be viewed as a form of symmetry re-
duction where state canonization is an automatic by-product of the state representation and
thus does not have to be performed during Model Checking. The new representation, if used
naively, has to be paid for with a blow-up of the program text, however, as we demonstrate
in the next section.

4 Classical counter abstraction—merits and problems

Counter abstraction is an alternative formalization of symmetry reduction, namely using
process counters. The idea is that two global states are identical up to permutations of the
local states of the components exactly if, for every local state L, the same number of compo-
nents reside in L. To implement this idea, we introduce a counter for each existing local state
and translate a transition from local state A to local state B as a decrement of the counter
for A and an increment of that for B . With some effort, this translation can actually be per-
formed statically on the text of a symmetric program P, before building a Kripke model.
The resulting counter-abstracted program P̂ gives rise to a Kripke structure M̂ whose reach-
able part is isomorphic to that of the traditional quotient M and that can be model-checked
without further symmetry considerations.

230 Form Methods Syst Des (2010) 36: 223–245

Fig. 2 A model P of a semaphore-based Mutex algorithm (left); its counter-abstracted version P̂ (right)

Let us look at an example. Classical counter abstraction assumes that the behavior of a
single process is given as a local state transition diagram, as the one in Fig. 2 (left). This
abstraction level is often used in descriptions of communication and cache-coherence proto-
cols. The result of counter-abstracting this program is shown in the same figure on the right,
in a guarded-command notation. We see that the reduction happens completely statically,
i.e., on the program text. The new program is single-threaded; thus there are no notions
of shared and thread-local variables. The Kripke structure corresponding to the program
has shrunk from exponential size O(3n) to low-degree polynomial size O(n3). The reduced
structure can be model-checked for hundreds if not thousands of processes.

In general, counter abstraction can be viewed as a translation that turns a state space of
potential size ln (n local states over {1, . . . , l}) to one of potential size (n + 1)l (l counters
over {0, . . . , n}). The abstraction therefore reduces a problem of size exponential in n to one
of size polynomial in n. Since, for any given Boolean program, l is a constant, we appear to
have solved the state-space explosion problem.

This view does not, however, withstand a practical evaluation for concurrent software,
where thread behavior is given in the form of a program that manipulates thread-local vari-
ables. The straightforward definition of a local state as a valuation of all thread-local vari-
ables is incompatible in practice with the idea of counter abstraction: the number of lo-
cal states generated is simply too large. The Boolean program in Fig. 1 declares only four
thread-local Boolean variables and the PC with range {1, . . . ,12}, but already gives rise to
24 ∗12 = 192 local states. In applications of the magnitude we consider, concurrent Boolean
programs routinely have several dozens of thread-local variables and many dozens of pro-
gram lines (even after optimization), resulting in many millions of local states. As a result of
this local state explosion problem, the state space of the counter program is of size Ω(n2|Vl |

),
doubly-exponential in the number of thread-local variables.

Let us apply these observations to the complexity analysis of counter abstraction. As we
have seen, the abstract state space has size high-degree polynomial in n. This means that
only for very large values of n, the classical counter abstraction approach will offer benefits
over a Model Checking strategy that ignores symmetry and stores the local state for each
thread. Even if model checkers of the future are able to explore systems with huge thread
counts, it seems hard to conceive a scenario in which one would care to analyze the behavior
of a system with, say, 2 million threads. The goal of this paper is therefore to reap the benefits
of counter abstraction even for thread counts that are small compared to the number of local
states. Our approach is two-fold:

1. Instead of statically translating each statement s of the input program into counter updates
(which would require enumerating the many possible local states in which s is enabled),
we make the algorithm context-aware, by triggering the translation on the fly. This way
we have to execute s only in the narrow context of a given (and, thus, reachable) local
state.

Form Methods Syst Des (2010) 36: 223–245 231

2. Instead of storing the counter values for all local states in a global state, we store only the
non-zero counters. This (obvious) idea exploits the observation that, if l � n, in every
system state most counters are zero.

As a result, the worst-case size of the Kripke structure of the counter-abstracted program
is reduced from proportional to nl , to proportional to nmin{n,l}, completely eliminating the
sensitivity to the local state space explosion problem. In the rest of this paper, we describe
the state space exploration algorithms that implement this approach.

5 Explicit-state counter abstraction

In the following two sections, we present two algorithms for reachability analysis of con-
current Boolean programs, with on-the-fly symmetry reduction implemented via counter
abstraction. This section covers an explicit-state version and serves mainly to introduce the
fundamental characteristics of the exploration algorithm and the data structures it relies on.
The next section presents the symbolic algorithm, which requires significant modifications
to ensure scalability in practice.

Inputs to the algorithms are a template program P and the initial number of concurrent
threads n0. The algorithms compute, in a variable R, the symmetry-reduced set of states
reachable from a given set of initial states. The algorithms interleave the exploration with
the process of performing counter abstraction, so as to avoid having to build a potentially
unmanageable local state transition diagram of the input program.

5.1 Compact counter-abstracted state representation

Central to our counter abstraction exploration algorithm is the representation used for system
states. In the previous section, we have argued that, for efficiency reasons, we should restrict
the counters stored in a global state to the non-zero ones, representing only local states
occupied by at least one thread. In practice, this means that we cannot adopt the generic rep-
resentatives model used traditionally for counter abstraction, i.e., a vector of fixed length,
where position i contains the counter associated with the ith local state. Instead, the in-
formation on what a counter counts needs to be explicitly attached to the counter. This is
achieved using the following representation:

τ := 〈s, {(l1, n1), . . . , (lk, nk)}〉. (1)

In this notation, s is a valuation of the shared variables Vs , each ni a natural number, and
each li is an element of the set L of (conceivable) local states. That is, li is a valuation of the
program counter and the local variables Vl of a thread. During the exploration, we maintain
the invariants (a) i �= j implies li �= lj , and (b) ni ≥ 1.

The intuition for the semantics of the representation (1) is that ni is the number of threads
in τ that reside in local state li ; unoccupied local states are omitted (ni ≥ 1). The set of
(li , ni) pairs tracks the local state of all threads, but threads in identical local states are
collapsed, and the order of the occurring local states is not interpreted. As a result, each
abstract state τ represents precisely a symmetry equivalence class [τ] of states of the original
model M :

[τ] := {(s, �1, . . . , �n) : n =
k∑

i=1

ni ∧ ∀j ∈ 1..k|{i ∈ 1..n : �i = lj }| = nj }. (2)

232 Form Methods Syst Des (2010) 36: 223–245

Conversely, each symmetry equivalence class can be represented precisely in the form (1).
In practice, an implementation of the set {(l1, n1), . . . , (lk, nk)} will enforce the “un-

orderedness” of the pairs using a canonization routine. The need for canonization may ap-
pear peculiar, since the very purpose of counter abstraction is to remove the requirement to
canonize states. To understand what is going on, let us view the canonization as a two-stage
process: starting from a conventional vector of ordered local states, counter abstraction first
collapses all threads with the same local state into a single one, and attaches a counter to it.
The remaining local state/counter pairs must then still be explicitly canonized. In classical
counter abstraction, this happens by storing the counter for local state number i into posi-
tion i of the counter vector; the local state part of the pair can be dropped. In our approach,
we use the same total order, but omit all zero-valued counters and condense the resulting
vector; we thus have to retain the local state part of each pair.

5.2 Explicit State Space Exploration

Algorithm 1 Explicit-state counter abstraction
1: R := {〈s0, (l0, n0)〉}; insert 〈s0, (l0, n0)〉 into W � n0 threads at local state l0
2: while W �= ∅ do
3: remove τ = 〈s,F 〉, with F = {(l1, n1), . . . , (lk, nk)}, from W
4: for i ∈ {1, . . . , k} do
5: t := (s, li)

6: t ′ := (s ′, l′) := ImageP(t) � compute successor by executing P

7: τ ′ := 〈s ′, UPDATECOUNTERS(F, i, l′)〉 � build new system state
8: if τ ′ �∈ R then
9: R := R ∪ {τ ′} � store τ ′ as reachable state

10: insert τ ′ into W

11: procedure UPDATECOUNTERS(F, i, l′)
12: let (li , ni) be the ith pair in F

13: F ′ := F \ {(li , ni)} ∪ (ni > 1?{(li , ni − 1)} : ∅) � update or eliminate pair (li , ni)

14: if ∃j : (l′, nj) ∈ F then � update or add pair for l′
15: F ′ := F ′ \ {(l′, nj)} ∪ {(l′, nj + 1)}
16: else
17: F ′ := F ′ ∪ {(l′,1)}
18: return F ′

Algorithm 1 expands unexplored system states from a worklist W , initialized to contain
the concrete state in which all threads reside in location 0, and all variables are initialized
to 0. The loop in line 4 iterates over all pairs (li , ni) contained in the popped state τ . To ex-
pand an individual pair, the algorithm first projects it to the ith thread state.

Recall that local state li contains the program counter of thread i. Program P is executed
at that location, on thread state (s, li), to obtain the successor thread state t ′ (line 6). Notice
that, since this expansion is performed only once per pair, irrespective of the value of ni , this
step corresponds to picking one representative thread for each local state li for expansion.

After the successor state has been computed, the algorithm constructs the respective sys-
tem state for it (line 7). The UPDATECOUNTERS function uses the local state part l′ of the
newly computed thread state to determine the new set F ′ of local state/counter pairs. If no

Form Methods Syst Des (2010) 36: 223–245 233

more threads reside in the departed state li , the ith pair is eliminated (line 13). If the new
local state l′ was already present in the system state, its counter nj is incremented, otherwise
the state is inserted with counter value 1 (lines 14–17).

Finally, the algorithm adds any system states encountered for the first time to the set of
reachable states, and to the worklist of states to expand (lines 8–10).

6 Symbolic counter abstraction

In this section, we present a symbolic algorithm for state space exploration of concur-
rent Boolean programs that achieves scalability through counter abstraction. This algorithm
builds upon the explicit-state version presented in the previous section; it receives the same
input and returns the counter-abstracted set of reachable states. We focus in the following
on the differences of the two algorithms.

6.1 A compact symbolic representation

Resulting from predicate abstractions of C code, Boolean programs make heavy use of data-
nondeterminism, in the form of the nondeterministic Boolean value �. An explicit-state rep-
resentation of such states, that requires expansion of all possible values an expression in-
volving � can stand for, is infeasible in practice. A better solution is to interpret the value �

symbolically, as the set {0,1}. Our approach to symbolic counter abstraction is therefore
to count sets of local states, rather than individual ones. For example, consider a Boolean
program with a single thread-local Boolean variable x. A counter value of 3 for the local
state set B := {0,1}, containing valuations of x, represents three threads whose value for x

is nondeterministic.
To this end, we change the representation of (1) into a symbolic version, by storing sets

S and Li of shared and local states, instead of individual shared and local states, as follows:

τ := 〈S, {(L1, n1), . . . , (Lk, nk)}〉 . (3)

In the new notation, S is a set of valuations over Vs , and Li ⊆ L for 1 ≤ i ≤ k. As an example
(without shared variables), the abstract global state 〈(x = 0,3)〉 represents all concrete states
with 3 threads satisfying x = 0. Suppose now one thread executes the statement x := �. This
causes the global state to become 〈(x = 0,2), (x = �,1)〉, indicating that x is nondetermin-
istic for one of the threads. Since the symbolic local state x = 0 is subsumed by the symbolic
local state x = �, one might be tempted to “merge” the former into the latter, resulting in the
global state 〈(x = �,3)〉. This is incorrect, however, as the global state after merging allows,
for example, three threads to satisfy x = 1, while the global state before merging does not.

The formal semantics of this representation is given by the set of concrete states repre-
sented by expression (3), namely the states of the form (s, l1, . . . , ln) such that

(a) s ∈ S,

(b) n = ∑k

i=1ni , and

(c) there exists a partition {I1, . . . , Ik} of {1, . . . , n} such that
for all i ∈ {1, . . . , k}, |Ii | = ni , and for all j ∈ Ii , lj ∈ Li .

(4)

That is, an abstract state of the form (3) represents precisely the concrete states in the Carte-
sian product of valuations of the shared variables in S, and valuations of the thread-local
variables satisfying the constraint (4) (c).

234 Form Methods Syst Des (2010) 36: 223–245

The semantics given in (4) defines a left-total function mapping abstract states of the
form (3) to sets of concrete states of the form (s, l1, . . . , ln). It is key to notice that, differently
to the explicit-state case, this function is now not right-total: there are sets of concrete states
that are not representable by a single abstract state. Consider the set Δ := {(0,0), (1,1)} of
concrete states (s, l), for a single thread, a shared variable s and a thread-local variable l.
This set arises when, starting from state (�, �), the thread executes the statement s := l. This
statement introduces a constraint across the shared and thread-local variables. There is no
single abstract state whose semantics (4) equals Δ. We therefore need to split the set Δ into
the subsets {(0,0)} and {(1,1)}, both of which are trivially representable by an abstract state.
In this simple case, therefore, the abstraction provides no compression over the concrete
domain. Section 6.2 explains why this does not materialize as a problem in practice. We
substantiate this claim later in the experimental evaluation in Sect. 7. Section 7.4 presents
alternative symbolic global state representations, together with a justification as to why they
are inadequate in implementations of counter abstraction.

6.2 Symbolic state space exploration

Algorithm 2 performs reachability analysis of symmetric Boolean programs based on the
symbolic state representation of (3). The exploration procedure follows that of Algorithm 1.
Generally, Algorithm 2 operates on sets of (global, local, thread) states. For example, line 5
extracts from τ the set T := (S,Li) = {(s, li) : s ∈ S ∧ li ∈ Li}.

Algorithm 2 Symbolic counter abstraction
1: R := {〈S0, (L0, n0)〉}; insert 〈S0, (L0, n0)〉 into W � n0 threads with local state in L0

2: while W �= ∅ do
3: remove τ = 〈S,F 〉, with F = {(L1, n1), . . . , (Lk, nk)}, from W
4: for i ∈ {1, . . . , k} do
5: T := (S,Li)

6: for v ∈ valuations of SpliceVariables(T) do
7: T ′ := (S ′,L′) := Image(T |v) � compute one image cofactor
8: τ ′ := 〈S ′, UPDATECOUNTERS(F, i,L′)〉 � build new system state
9: if τ ′ �∈ R then

10: R := R ∪ {τ ′} � store τ ′ as reachable
11: insert τ ′ into W

12: procedure UPDATECOUNTERS(F, i,L′)
13: let (Li, ni) be the ith pair in F

14: F ′ := F \ {(Li, ni)} ∪ (ni > 1?{(Li, ni − 1)} : ∅) � update or eliminate pair
(Li, ni)

15: if ∃j : (L′, nj) ∈ F then � update or add pair for L′
16: F ′ := F ′ \ {(L′, nj)} ∪ {(L′, nj + 1)}
17: else
18: F ′ := F ′ ∪ {(L′,1)}
19: return F ′

The step of computing the successor thread states induced by the Boolean program
(lines 6–7) requires special care in the symbolic case. Recall from Sect. 6.1 that constraints

Form Methods Syst Des (2010) 36: 223–245 235

between shared and thread-local variables cannot be encoded in a single abstract state. The
first step in dealing with this problem is to recognize statements that may introduce such
constraints.

Definition 3 A splice state is a symbolic thread state given as a predicate f over the vari-
ables in Vs ∪ Vl ∪ {pc} such that

(∃Vs.f) ∧ (∃Vl∃pc.f) �≡ f.

A splice statement is a statement ξ such that there exists a thread state u whose PC points
to ξ and that, when executed on u, results in a splice state. A splice variable is a shared
variable dependent on ∃Vs.f .

A splice statement marks a point where a thread communicates data via the shared variables,
in a way that constrains its local state with the values of some splice variables. Fortunately,
statements with the potential to induce such communication can be identified syntactically:

– assignments whose left-hand side is a shared variable and the right-hand side expression
refers to thread-local variables, or vice versa, such as s := l or l := s, and

– constraint assignments with a constrain clause whose expression refers to both shared
and thread-local variables, such as x := y constrain s = l.

The second case also covers statements of the form assume s = l.
Before executing a splice statement, the current thread state is split using Shannon de-

composition. Executing the statement on the separate cofactors yields a symbolic successor
that can be represented precisely in the form (3). That is, if variable v is the splice variable
of the statement in T , denoted by SpliceVariables(T) = {v}, we decompose Image(T) as
follows:

Image(T) = Image(T |v=0) ∨ Image(T |v=1).

The price of this expansion is an explosion worst-case exponential in the number of splice
variables. However, as we observe in our experiments (see Sect. 7),

1. the percentage of splice statements is relatively small,
2. even within a splice statement, the number of splice variables involved is usually very

small (1 or 2),
3. a significant fraction of cofactors encountered during the exploration are actually unsat-

isfiable and do not contribute new states.

As a result, the potential combinatorial explosion does not materialize in our experiments.
After the image has been computed for each cofactor, the algorithm constructs the corre-

sponding system state for it by means of the UPDATECOUNTERS function and adds it to the
set of reachable states and the worklist in the usual way.

Theorem 4 Let R be as computed by Algorithm 2 on termination, and let γ be the con-
cretization function for abstract states defined in (4). The set γ (R) = {γ (r)|r ∈ R} is the set
of reachable states of the concurrent system induced by the Boolean program P.

Proof [sketch]: The proof of termination of Algorithm 2 follows since the explored state
space is finite: the bound N on the number of threads that may be created, and of which the
start_thread command is aware, ensures that there is only a finite number of global

236 Form Methods Syst Des (2010) 36: 223–245

states, whether they are represented in the concrete or abstract form. Algorithm 2 performs
a standard search over this finite state space and thus terminates. The correctness argument
of the algorithm follows from (i) the equivalent theorems for classical state space explo-
ration under symmetry using canonical state representatives, and (ii) the isomorphism of the
structures over such representatives and the counter representation. �

6.3 Error detection and counterexample generation

Errors are program locations containing violated assertions, say of the form assert(Y).
The predicate Y expresses a condition, over the current thread state, that is claimed to be
an invariant. The violation of this invariance condition is checked in Algorithm 2 in line 7,
by testing the new thread state (S ′,L′) against the condition ¬Y : if the BDD for S ′ ∧L′ ∧¬Y

is non-empty, T ′ violates the assertion Y .
In order to embed our exploration method into the CEGAR loop, we now need to obtain a

concrete path from an initial global state to a global state that contains thread state T ′. Such
a path can be presented in the form of a sequence of global states over Boolean program
variables, including the PC. We have omitted a description of the standard back edges and
the mechanisms to trace back a reached state to the initial state. Non-standard is the shape
of the resulting path, namely a sequence U of states of the form 〈S, (L1, n1), . . . , (Lk, nk)〉,
ending in τ ′ (from line 8). This abstract path can be mapped to a concrete path over the
concurrent Boolean program using (4) and standard techniques in symmetry reduction.

7 Experimental evaluation

We have implemented the algorithm presented in this paper in a tool called BOOM. While
our main goal is the symbolic analysis of Boolean programs (Sect. 7.1), we have also built
an explicit-state version of our method. The reason is that symmetry reduction has so far
proven to be more successful in explicit-state than symbolic Model Checking, which begs a
comparison against explicit-state symmetry reduction. As a competitor, we chose the well-
known MURϕ Model Checker [30] (Sect. 7.2).

We applied BOOM to 444 examples from two sources: a set of 208 Boolean programs
generated by SATABS that abstract part of the Linux kernel components, and a set of 236
Boolean programs generated at Microsoft Research using SLAM. Both the tool and our
benchmark set are available on our website at http://www.cprover.org/boom.

Before we discuss our experiments, we describe in detail how we obtained concurrent
benchmarks from the Boolean program source. This step differs for the SLAM-generated
programs and those generated with SATABS. For SLAM, we simply instantiate a sequential
Boolean program once per thread; each thread executes the program’s main procedure.
Variables with global scope become shared variables of the concurrent programs, while
variables with local scope become thread-local variables. Note that this does not restrict
the computational model. Synchronization primitives such as locks and semaphores can be
simulated using shared variables (e.g. lock(s) � s := true constrain !s).

In contrast, the concurrent benchmarks produced by SATABS were generated using
DDVERIFY [37], a harness for Linux device drivers. The resulting concurrent model sup-
ports both synchronization primitives (such as semaphores and spinlocks) and memory-
mapped IO-registers for communication with the underlying hardware. Figure 3 illustrates
how parallel execution is handled. An environment thread models the operating system

http://www.cprover.org/boom

Form Methods Syst Des (2010) 36: 223–245 237

Fig. 3 Concurrent DDVERIFY execution model (’ddverify -model con2’)

threads and parallelism caused by hardware events, e.g., interrupts. These functions are non-
preemptive since interrupt service routines cannot be switched out during execution by the
operating system kernel. The interaction between the driver and a client application is sim-
ulated in an infinite loop that nondeterministically calls the driver’s functions. This loop is
executed by multiple threads, since access to a driver can be shared among clients.

The Boolean program that results from the predicate abstraction process exhibits the
same control structure as the original code. In order to simplify our experiments, we create
only one client thread in the original program and instantiate N copies of this thread in the
Model Checker (the DDVERIFY harness does not exploit the possibility of dynamic thread
creation). We remark that our method does allow different threads to execute different pro-
cedures. Because we do not allow recursion, all procedures can be merged together into
one big procedure that is passed to the Model Checker. There is no message-passing com-
munication between the threads, but they access the same shared data structures within the
driver’s code. The benchmarks feature, on average, 123 program locations, 21 thread-local
variables, and 12 shared variables.

The experimental setup is as follows. For each tool and benchmark, we run full reacha-
bility analysis with n0 = 1 initial threads and a bound of N = 2 on thread creation. We then
increase the bound N until the tool times out. The timeout is set to 720 s and the memory
limit to 12 GB. The experiments are performed on a 3 GHz Intel Xeon machine running the
64-bit variant of Linux 2.6.

7.1 Symbolic experiments

Since other symbolic Model Checkers did not scale to interesting thread counts (including
the few tools with built-in support for symmetry, see Sect. 2), we compare the symbolic
algorithm to a “plain” symbolic reference implementation in BOOM that ignores the sym-

238 Form Methods Syst Des (2010) 36: 223–245

Fig. 4 Running time of symbolic BOOM vs. plain exploration, for various thread counts

metry. On sequential programs, the performance of the reference implementation is similar
to that of the Model Checker that ships with SLAM.

BOOM uses the CUDD BDD library by Fabio Somenzi ([33, version 2.4.1]) as the de-
cision diagram package. Our implementation stores the sets S and Li of shared and thread-
local variable valuations as separate BDDs; the conjunction of S and Li forms the thread-
visible state Ti . As in most symbolic Model Checkers for software, the program counters
are stored in explicit form: this permits partitioning the transition relation and ensures a
minimum number of splice tests.

Figure 4 summarizes the running times of the symbolic counter abstraction implementa-
tion in BOOM and the plain symbolic exploration algorithm. The concentration of entries in
the upper triangle signifies the improvement in scalability due to counter abstraction. Those
runs where traditional Model Checking is faster contain a small number of threads; in fact,
our algorithm can verify many instances for 7 or more threads. Overall, BOOM is faster
on 83% of all tests, and on 96% of those running three or more threads. Among those, the
speed-up is five orders of magnitude and more.

Splice statements amount to less than 12% of all statements. Where they occur, they
do not cause a blow-up, in any of the benchmarks. In fact, the average number of splice
variables they involve is small (in our benchmarks, mean 2.1, median 1), and each such
variable produces two satisfiable cofactors in only 10% of the cases.

State merging Our implementation of the last step of Algorithm 2 (lines 20–21) uses state
merging, an important optimization to compress sets of symbolic states. Two distinct sym-
bolic states can be merged if they are identical except for either (i) the valuation of the
shared variables, or (ii) the local state of exactly one thread. To illustrate the second con-
dition, suppose the states 〈({B},2)〉 and 〈({C},2)〉 (no shared variables) are encountered in
the worklist. Merging them into the state 〈({B,C},2)〉 is incorrect: the merged state illegally
represents, e.g., the concrete state (B,C), which is not a represented by either of the original

Form Methods Syst Des (2010) 36: 223–245 239

two abstract states. The application of our merging rules provided an average speed-up of
83% over exploration without merging.

7.2 Explicit-state experiments

We compare our explicit-state implementation to MURϕ [30], a mature and popular Model
Checker with long-standing support for symmetry reduction, using the benchmarks de-
scribed above. Since MURϕ does not allow data nondeterminism, we first tried to simulate
this feature using two rules per occurrence of a � symbol in a statement: one rule for each of
the two data values. This leads to some blow-up in the program text, especially if there are
several occurrences of � in a statement. More critically, however, this lead to an enormous
blow-up in the number of states being explored, rendering meaningful experimentation im-
possible. This once again confirmed the need for a symbolic analysis of programs with data
nondeterminism.

In order to nevertheless be able to compare counter abstraction to the symmetry imple-
mentation in MURϕ, in a syntactic preprocessing step we replace every occurrence of � in
the input programs randomly by 0 or 1. The resulting programs are converted into MURϕ’s
input language using one MURϕ rule per statement, guarded by the program counter value.
In the explicit-state experiments, we compare the performance of explicit-state BOOM on
each determinized Boolean program against MURϕ on the guarded-rule version of the same
program.

Figure 5 is a scatter plot of the running times of BOOM and of MURϕ with symmetry
reduction. BOOM is faster than MURϕ on 94% of the tests; on 23%, the improvement is
better than one order of magnitude. It completes successfully on a significant number of
problems where MURϕ times out (19%). In seven cases (1.2%), our tool runs out of memory.

Fig. 5 Running time of explicit-state BOOM vs. MURϕ, for various thread counts

240 Form Methods Syst Des (2010) 36: 223–245

Note that removing the data nondeterminism simplifies the programs, which is why the
explicit-state explorations can often handle larger thread counts than the symbolic ones,
reported in the previous subsection.

7.3 Comparison with partial-order methods

In contrast to symmetry reduction, which is based on the interchangeability of states, partial-
order reduction (POR) exploits redundancy of program traces that are identical up to dif-
ferent interleavings of threads [25]. The idea is to identify commutable transitions, and pick
only a representative schedule of those transitions. Deciding what constitutes a represen-
tative schedule, however, may be as hard as the Model Checking problem itself. Instead,
static analysis techniques can be used to approximate the dependencies between transitions,
resulting in suboptimal but affordable POR methods.

We have implemented a POR strategy in our Model Checker. Our approach is to look
for a thread making an invisible transition: one that is independent of any possible future
transitions made by any other thread. Contrast this to the work by Cook et al. [10], which
considers only finite futures to identify collisions of transitions.

Our strategy is based on the set Wt of variables written by thread t , and the set Rt of
variables read by t , in the current state. Analogously, let R∞

t and W∞
t denote the set of

variables read or written at some time in the future (present included). As common in static
analysis, these sets are computed using data-flow equations based on conservative assump-
tions on what constitutes a read or write. In particular, the set Wt contains all variables that
appear in an instruction that could restrict the state space. Such an instruction may disable
some instructions of other threads and must thus be considered a write. Specific to Boolean
programs, the assume statement and constraint assignments belong to this category; see
Example 1 below.

We use these sets in our POR algorithm as follows. If a thread t is found satisfying
Wt ∩ (

⋃
i �=t R

∞
i ∪ W∞

i) = ∅ (no variable written by t is ever used by another thread) and
Rt ∩⋃

i �=t W
∞
i = ∅ (no variable read by t is ever written by another thread), we only explore

the successors generated by executing t , but not by any other thread. Intuitively, t does not
communicate with other threads during this transition. All other transitions are discarded at
the current state. We illustrate this technique with a few examples.

Example 1 Consider the Boolean program in Listing 1. Suppose the assume instruction
counts as a pure read access to the variables in its expression argument (only s in this case).
Then, after the second thread has been created, both threads are about to execute invisible
statements only. If POR picks the thread that continues execution at P1 and runs it until
the end, the second thread cannot reach the assert instruction anymore, and the path that
violates the property will remain undiscovered.

Example 2 Consider the Boolean program in Listing 2, and a state where the threads are
at location P1 and P2, respectively. One thread is about to execute the invisible statement
l := T. The other thread is reading from s and thus does not interfere with the instruction
of the first thread. One might therefore be tempted to regard the assert statement as
invisible, and omit other possible interleavings at this point. The consequence would again
be that the violation of the assertion in the other thread is goes undetected.

The effect of our POR on the plain symbolic algorithm (without using counter abstrac-
tion) is an average speedup of 4.2 and combined runtime improvements of 85% for all

Form Methods Syst Des (2010) 36: 223–245 241

Fig. 6 Running time of symbolic BOOM with partial-order reduction vs. symbolic BOOM with counter
abstraction and partial-order reduction, for various thread counts

benchmarks. We now compare the POR method sketched above to counter abstraction in
various ways. We use the same sets of benchmarks and timing constraints as before.

Figure 6 shows the additional improvement of counter abstraction on an implementation
that is solely based on POR. The combination of both techniques is on average 156 times
faster than POR alone. This indicates that counter abstraction is by no means “subsumed”
by POR.

The scatterplot in Fig. 7 depicts the speedup of employing POR and counter abstraction
versus counter abstraction alone. In total, an average speedup of 140 could be measured.
This indicates conversely that POR is not subsumed by counter abstraction either. Figures 6
and 7 witness once again the often observed complementariness of symmetry based and
partial-order based methods (see, for instance, the work by Emerson et al. [20]).

242 Form Methods Syst Des (2010) 36: 223–245

Fig. 7 Running time of symbolic BOOM with counter abstraction vs. symbolic BOOM with counter abstrac-
tion and partial-order reduction, for various thread counts

Fig. 8 Running time of symbolic BOOM with partial-order reduction vs. symbolic BOOM with counter
abstraction, for various thread counts

Finally, Fig. 8 compares the methods directly against each other: counter abstrac-
tion alone outperforms partial-order reduction alone; the former gave an average speedup
of 4.2.

Form Methods Syst Des (2010) 36: 223–245 243

7.4 Summary of the experimental evaluation

We have conducted extensive experiments to compare our variant of counter abstraction
to alternative means of state space exploration, to traditional symmetry reduction, and to
partial order reduction. Since the reachability problem for finite state spaces is decidable,
progress in verification technology is bound to come from improvements in Model Checker
performance, rather than theoretical advances. Our goal here was therefore to estimate the
performance benefit of counter abstraction when exhaustively exploring system models.

We summarize our findings as follows. Counter abstraction provides tremendous benefits
in both explicit-state and symbolic implementations of state space exploration, albeit for dif-
ferent reasons. In the former case, the technique is easy to implement, since the problem of
splice statements does not arise. In fact, counting has long been known as one way to canon-
ize local state vectors under full symmetry. Our implementation provides the added benefit
that states are in fact stored in counter form; the latter is not only used for canonization
purposes.

For symbolic implementations, the story is different. In serious concurrent software veri-
fication using predicate abstraction, symbolic algorithms are essential. Combining this with
the (obvious) need for symmetry reduction has resulted in a mostly unsolved challenge, due
to the orbit problem. Achieving an equivalent effect using counter abstraction is much more
involved than in the explicit-state case. Our paper fills this gap by pinning down the details
of how an efficient implementation can be realized. A crucial point is the balance between
our state representation with deliberately limited expressiveness (only benign concrete state
sets can be effectively compressed), and the occasional need to respond to this problem
during the exploration, by splitting state sets.

We have also considered global state representations other than (3). In one implementa-
tion, we use a monolithic BDD to represent the shared variables and all thread states, along
with their counters. In another, we keep the counters explicit, but use a monolithic BDD
for all other variables. Both implementations allow us to retain the inter-thread constraints
introduced by splice statements, and thus render the decomposition step unnecessary. The
first implementation has the additional advantage of not requiring state merging techniques
(Sect. 7.1): given a single BDD, merging happens automatically when adding new frontier
states to the BDD.

A technical challenge with these alternative representations is that they require more
complex manipulations for computing successor states, especially in order to update the
counters. The more severe downside, however, is efficiency, as is often the case with mono-
lithic symbolic data structures: the resulting BDD for the set of reachable states is complex,
foiling the scalability advantage inherent in counter abstraction. In fact, the separation of a
global state into thread states and associated counters suggests a natural way of partitioning
the BDD for the reachable states set, which should not be given up lightly. On our bench-
marks, the algorithm proposed in Sect. 6 is at least 30% faster than all alternatives. We
finally remark that the idea to decompose state sets while abstracting away some correla-
tions between the states has also been employed in shape analysis, where the decomposition
is suggested by the heap structure [29].

8 Summary

We have presented an algorithm for BDD-based symbolic state space exploration of concur-
rent Boolean programs, a significant branch of the pressing problem of concurrent software

244 Form Methods Syst Des (2010) 36: 223–245

verification. The algorithm draws its efficiency from counter abstraction as a reduction tech-
nique, without resorting to approximation at any time. It is specifically designed to cope with
large numbers of local states and thus addresses a classical bottleneck in implementations
of counter abstraction. We have shown how to avoid the local state space explosion problem
using a combination of two techniques: (1) achieving context-awareness by interleaving the
translation with the state space exploration, and (2) ensuring that only non-zero counters and
their corresponding local states are kept in memory.

We have presented experimental results both for an explicit-state and, more importantly,
a symbolic implementation. While standard symmetry reduction is employed in tools like
MURϕ, we are not aware of a prior implementation of counter abstraction that is efficient on
programs other than abstract protocols with very few control states. We believe our Model
Checker to be the first with a true potential for scalability in concurrent software verification,
due to its polynomial dependence on the thread count n, while incurring little verification
time overhead.

We have also investigated in detail the relationship between our implementation of
counter abstraction and partial-order methods. Our experiments seem to confirm the folk
wisdom that symmetry and partial-order reduction are, although not independent, certainly
complementary and can be combined for yet more effective compression.

Symmetry reduction, no matter of what flavor, is limited in scope in that it considers
only systems of identically replicated, concurrent components of a number that is a design-
time constant. We have, in this work, extended the technique to software with bounded
dynamic thread creation. An obvious direction for future work is to push the limits further
by considering unbounded dynamic thread creation, or the parameterized version of the
concurrent reachability problem.

Acknowledgements The authors are grateful to Alastair Donaldson for his rigorous review of this paper.

References

1. Ball T, Rajamani SK (2000) Bebop: a symbolic model checker for Boolean programs. In: SPIN, pp 113–
130

2. Ball T, Rajamani SK (2002) The SLAM project: debugging system software via static analysis. In:
POPL, pp 1–3

3. Ball T, Chaki S, Rajamani SK (2001) Parameterized verification of multithreaded software libraries. In:
TACAS, pp 158–173

4. Ball T, Bounimova E, Cook B, Levin V, Lichtenberg J, McGarvey C, Ondrusek B, Rajamani SK, Us-
tuner A (2006) Thorough static analysis of device drivers. In: EuroSys, pp 73–85

5. Barner S, Grumberg O (2005) Combining symmetry reduction and under-approximation for symbolic
Model Checking. Form Methods Syst Des 27(1–2):29–66

6. Basler G, Mazzucchi M, Wahl T, Kroening D (2009) Symbolic counter abstraction for concurrent soft-
ware. In: CAV, pp 64–78

7. Bosnacki D, Dams D, Holenderski L (2002) Symmetric spin. Int J Softw Tools Technol Transf 4(1):92–
106

8. Clarke EM, Jha S, Enders R, Filkorn T (1996) Exploiting symmetry in temporal logic Model Checking.
Form Methods Syst Des 9(1/2):77–104

9. Clarke EM, Kroening D, Sharygina N, Yorav K (2005) SATABS: SAT-based predicate abstraction for
ANSI-C. In: TACAS, pp 570–574

10. Cook B, Kroening D, Sharygina N (2005) Symbolic Model Checking for asynchronous Boolean pro-
grams. In: SPIN, pp 75–90

11. Cook B, Kroening D, Sharygina N (2007) Verification of Boolean programs with unbounded thread
creation. Theor Comput Sci 388(13):227–242

12. Delzanno G (2000) Automatic verification of parameterized cache coherence protocols. In: CAV, pp 53–
68

Form Methods Syst Des (2010) 36: 223–245 245

13. Donaldson AF, Miller A (2006) Exact and approximate strategies for symmetry reduction in model
checking. In: FM, pp 541–556

14. Donaldson AF, Miller A (2006) Symmetry reduction for probabilistic Model Checking using generic
representatives. In: ATVA, pp 9–23

15. Donaldson A, Miller A, Parker D (2009) Language-level symmetry reduction for probabilistic Model
Checking. In: QEST, pp 289–298

16. Emerson EA, Sistla AP (1996) Symmetry and Model Checking. Form Methods Syst Des 9(1/2):105–131
17. Emerson EA, Trefler RJ (1999) From asymmetry to full symmetry: new techniques for symmetry reduc-

tion in Model Checking. In: CHARME, pp 142–156
18. Emerson EA, Wahl T (2005) Dynamic symmetry reduction. In: TACAS, pp 382–396
19. Emerson EA, Wahl T (2005) Efficient reduction techniques for systems with many components. Electron

Notes Theor Comput Sci 130:379–399
20. Emerson EA, Jha S, Peled D (1997) Combining partial order and symmetry reductions. In: TACAS,

pp 19–34
21. Emerson EA, Havlicek J, Trefler RJ (2000) Virtual symmetry reduction. In: LICS, pp 121–131
22. Flanagan C, Godefroid P (2005) Dynamic partial-order reduction for Model Checking software. In:

POPL, pp 110–121
23. Graf S, Saïdi H (1997) Construction of abstract state graphs with PVS. In: CAV, pp 72–83
24. Henzinger TA, Jhala R, Majumdar R (2004) Race checking by context inference. In: PLDI, pp 1–13
25. Holzmann GJ, Peled D (1994) An improvement in formal verification. In: FORTE, pp 197–211
26. Kurshan RP (1994) Computer-aided verification of coordinating processes: the automata-theoretic ap-

proach. Princeton University Press, Princeton
27. Lahiri SK, Bryant RE, Cook B (2003) A symbolic approach to predicate abstraction. In: CAV, pp 141–

153
28. Lubachevsky BD (1984) An approach to automating the verification of compact parallel coordination

programs I. Acta Inform 21:125–169
29. Manevich R, Lev-Ami T, Sagiv M, Ramalingam G, Berdine J (2008) Heap decomposition for concurrent

shape analysis. In: SAS, pp 363–377
30. Melton R, Dill D Murφ annotated reference manual, rel. 3.1. http://verify.stanford.edu/dill/murphi.html
31. Pnueli A, Xu J, Zuck LD (2002) Liveness with (0,1,∞)-counter abstraction. In: CAV, pp 107–122
32. Pong F, Dubois M (1995) A new approach for the verification of cache coherence protocols. IEEE Trans

Parallel Distrib Syst 6(8):773–787
33. Somenzi F The CU decision diagram package, release 2.3.1. University of Colorado at Boulder. http://

vlsi.colorado.edu/~fabio/CUDD/
34. Suwimonteerabuth D, Esparza J, Schwoon S (2008) Symbolic context-bounded analysis of multithreaded

java programs. In: SPIN, pp 270–287
35. Wahl T, Blanc N, Emerson EA (2008) SVISS: symbolic verification of symmetric systems. In: TACAS,

pp 459–462
36. Wei O, Gurfinkel A, Chechik M (2005) Identification and counter abstraction for full virtual symmetry.

In: CHARME, pp 285–300
37. Witkowski T, Blanc N, Kroening D, Weissenbacher G (2007) Model Checking concurrent Linux device

drivers. In: ASE, pp 501–504

http://verify.stanford.edu/dill/murphi.html
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/

	Context-aware counter abstraction
	Abstract
	Introduction
	Contributions

	Related work
	Preliminaries
	Boolean programs
	Symmetry reduction

	Classical counter abstraction-merits and problems
	Explicit-state counter abstraction
	Compact counter-abstracted state representation
	Explicit State Space Exploration

	Symbolic counter abstraction
	A compact symbolic representation
	Symbolic state space exploration
	Error detection and counterexample generation

	Experimental evaluation
	Symbolic experiments
	State merging

	Explicit-state experiments
	Comparison with partial-order methods
	Summary of the experimental evaluation

	Summary
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

