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Abstract

We present a new approach for reasoning about liveness properties of distributed systems,
represented as automata. Our approach is based on simulation relations, and requires reasoning
only over finite execution fragments. Current simulation-relation based methods for reasoning
about liveness properties of automata require reasoning over entire executions, since they in-
volve a proof obligation of the form: if a concrete and abstract execution “correspond” via the
simulation, and the concrete execution is live, then so is the abstract execution.

Our contribution consists of (1) a formalism for defining liveness properties, (2) a proof
method for liveness properties based on that formalism, and (3) two expressive completeness
results: firstly, our formalism can express any liveness property which satisfies a natural “robust-
ness” condition, and secondly, our formalism can express any liveness property at all, provided
that history variables can be used.

To define liveness, we generalize the notion of a complemented-pairs (Streett) automaton
to an infinite state-space, and an infinite number of complemented-pairs. Our proof method
provides two main techniques: one for refining liveness properties across levels of abstraction,
and the other for refining liveness properties within a level of abstraction. The first is based
on extending simulation relations so that they relate the liveness properties of an abstract (i.e.,
higher level) automaton to those of a concrete (i.e., lower level) automaton. The second is based
on a deductive method for inferring new liveness properties of an automaton from already estab-
lished liveness properties of the same automaton. This deductive method is diagrammatic, and
is based on constructing “lattices” of liveness properties. Thus, it supports proof decomposition
and separation of concerns.

1 Introduction and Overview

One of the major approaches to the construction of correct distributed systems is the use of an
operational specification, e.g., an automaton or a labeled transition system, which is successively
refined, via several intermediate levels of abstraction, into an implementation. The implementation
is considered correct if and only if each of its externally visible behaviors, i.e., traces, is also a trace
of the specification. This “trace inclusion” of the implementation in the specification is usually
established transitively by means of establishing the trace inclusion of the system description at
each level of abstraction in the system description at the next higher level. When reasoning at any
particular level, we call the lower level the concrete level, and the higher level the abstract level.

The correctness properties of a distributed system are classified into safety and liveness [27]:
safety properties state that “nothing bad happens,” for example, that a database system never

1Some of the results in this paper appeared in the eighteenth ACM Symposium on Principles of Distributed
Computing, (PODC’99), under the title “Liveness-preserving Simulation Relations”.
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produces incorrect responses to queries, while liveness properties state that “progress occurs in the
system,” for example, every query sent to a database system is eventually responded to. Safety
properties are characterized by the fact that they are violated in finite time: e.g., once a database
has returned an incorrect response to an external user, there is no way to recover to where the
safety property is satisfied. Liveness properties, on the other hand, are characterized by the fact
that there is always the possibility of satisfying them: the database always has the opportunity
of responding to pending queries. Thus, an operational specification defines the required safety
properties by means of an automaton, or labeled transition system. The reachable states and
transitions of the automaton are the “good” states/transitions, whose occurrence does not violate
safety. Any unreachable states, if present, are “bad,” i.e., they represent a violation of the safety
properties, e.g., due to a fault. The occurrence of such a “bad” state is something that happens
in finite time, and so constitutes the violation of a safety property. The liveness properties are
specified by designating a subset of the executions of the automaton as being the “live” executions,
leading to the notion of live execution property. These are the executions along which eventually,
all the necessary actions are executed, e.g., the actions that respond to pending queries. To express
the idea that there is always the possibility of satisfying a liveness property, this subset of the
executions must have the property that any finite execution can be extended to an execution in
the subset [1].

Distributed systems consist of many sequential processes which execute concurrently. To reason
effectively about such large systems, researchers have proposed the use of compositional reasoning :
global properties of the entire system are inferred by first deducing local properties of the con-
stituent processes or subsystems, and then combining these local properties to establish the global
properties. In particular, we desire that refinement is compositional: when a particular process Pi

is refined to a new process P ′i , we wish to reason only about whether P ′i is a correct refinement of
Pi, without having to engage in global reasoning involving all of the other processes in the system.
The need for compositional reasoning, as well as notions such as behavioral subtyping [30] and
information hiding, motivated the development of the notion of externally visible behavior, e.g.,
the set of traces of an automaton, where a trace is a sequence of “external” actions, visible at the
interface, which the automaton can engage in. Typically, a trace is obtained by taking an execution
and removing all the internal information, i.e., the states and the internal actions.

The notion of externally visible behavior then leads naturally to notions of external safety
and liveness properties, which are specified over the traces of an automaton, rather than over the
(internal) states and executions. The external safety property is the set of all traces, since this is
the external “projection” of all the executions, which define the reachable states and transitions,
which in turn give us the safety properties, as discussed above. The external liveness property is
obtained by taking the traces of all the live executions. These are called the live traces, and the set
of all live traces is a live trace property.

Trace inclusion usually means that every trace of the concrete automaton is a trace of the
abstract automaton. Thus, trace inclusion deals with safety properties: every safety property of
the set of traces of the concrete automaton is also a safety property of the set of traces of the abstract
automaton. Thus, external safety properties are preserved by the refinement from the abstract to
the concrete. Trace inclusion does not address liveness properties, however. The appropriate notion
of inclusion for external liveness properties is live trace inclusion [17, 18]: every live trace of the
concrete automaton is a live trace of the abstract automaton.

Consider again the database example, with the external liveness property that every query
submitted is eventually processed. Let B be a high-level specification of such a system. By using
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state variables that record requests and responses, this property can be easily stated in terms of the
executions of B, which results in a live execution property. The set of traces of the live executions
then gives the corresponding live trace property. Provided that the state variables which record
requests and responses are updated correctly, the live trace property will only contain traces in
which every input of a query to the database (e.g., from an external “user”) is eventually followed
by an output of a response from the database (to the user).

Let A be an implementation of B. The live executions of A are defined by the liveness proper-
ties that typically can be guaranteed by reasonable implementations, e.g., “fair scheduling” [15]—
every continuously enabled action (or process) is eventually executed, and fair polling of message
channels—every message sent is eventually received2. The set of traces of the live executions then
gives the live trace property corresponding to this action/process fairness and reliable message de-
livery in the underlying execution behavior. However, the live trace property that we wish to verify
for A is not this property per se, but the same live trace property which B has, namely that every
input of a query to the database is eventually followed by an appropriate output from the database.
This paper addresses the problem of verifying such liveness properties for an implementation A.

It is clear that verifying that the live traces of A are contained in the live traces of B immediately
yields the desired conclusion, namely that A has the desired live trace property. Thus, live trace
inclusion applied to the above example implies that every trace of an execution of A in which
all messages sent are eventually received, and all continuously enabled actions (processes) are
eventually executed, i.e., a live trace of A, is also a live trace of B, i.e., a trace in which all
queries receive a response. This is exactly what is required, since the liveness properties of A along
executions where, for example, messages sent are not received, are not of interest. Conversely, a
live execution of A, in which all messages sent are received, and scheduling is fair, should produce
an external behavior which has the desired liveness properties: every query receives a response.
More generally, live trace inclusion implies that external liveness properties are preserved by the
refinement from the specification B to the implementation A.

One of the main proof techniques for establishing trace inclusion is that of establishing a simu-
lation [34] or bisimulation [43] between the concrete and the abstract automata. A simulation (or
bisimulation) establishes a certain correspondence (depending on the precise type of simulation)
between the states/transitions of the concrete automaton and the states/transitions of the abstract
automaton, which then implies trace inclusion. An important advantage of the simulation-based
approach is that it only requires reasoning about individual states and finite execution fragments,
rather than reasoning about entire (infinite) executions. Unfortunately, the end-result, namely the
establishment of trace inclusion, does not, as we establish in the sequel, imply live trace inclusion,
since the set of live traces is, in general, a proper subset of the set of traces.

Our contributions. In this paper, we show how to use simulation relations to reason about
liveness. Our approach uses a state-based technique to specify live execution properties: a liveness
condition is given as a (possibly infinite) set of ordered pairs 〈〈〈Redi,Greeni〉〉〉, where Redi, Greeni
are sets of states. An execution is considered to satisfy a single pair 〈〈〈Red,Green〉〉〉 iff whenever
it contains infinitely many states in Red, then it also contains infinitely many states in Green.
An execution is live iff it satisfies all the pairs in the liveness condition. A trace is live iff it
is the trace of some live execution. Our notion of liveness condition is akin to the acceptance
condition of a complemented-pairs (or Streett) automaton [4, 13, 20], except that we allow an

2We do not address fault-tolerance for the time being, thus messages are always received along a live execution.
See Section 7.2 for a discussion of how the techniques presented in this paper can be applied to fault-tolerance.
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infinite number of pairs, and also our automata can have an infinite number of states and transitions.
We then present the notion of liveness-preserving simulation relation, which appropriately relates
the states mentioned in the concrete automaton’s liveness condition to those mentioned in the
abstract automaton’s liveness condition. This is done in two stages. The first stage refines the
liveness condition of the abstract automaton into a “derived” liveness condition of the concrete
automaton. This derived condition may contain complemented-pairs that are not directly specified
in the liveness condition of the concrete automaton. The second stage then proves that the derived
condition is implied by the directly specified liveness condition of the concrete automaton (using a
“lattice” construction). The use of such a derived liveness condition allows us to break down the
refinement problem at each level into two simpler subproblems, since the derived liveness condition
of the concrete automaton can usually be formulated to better match with the liveness condition
of the abstract automaton. Establishing a liveness-preserving simulation relation then allows us
to conclude that every live trace of the concrete automaton is also a live trace of the abstract
automaton. As discussed above, our method can be applied to multiple levels of abstraction,
where the specification is successively refined in stages, producing several intermediate descriptions
of the specified system, until a description that is directly implementable on the desired target
architecture and has adequate performance and fault-tolerance properties is derived. Thus, we
address the problem of preserving liveness properties in the successive refinement of a specification
into an implementation, which contributes to making the method scalable, as our extended example
in Section 6 shows.

We establish two expressive completeness results for complemented-pairs liveness conditions.
The first shows that any live execution property which satisfies a natural “robustness” condition can
be specified by a complemented-pairs liveness condition. The second shows that any live execution
property whatsoever can be specified by a complemented-pairs liveness condition, provided that
history variables can be used.

The paper is organized as follows. Section 2 provides technical background on automata and
simulation relations from [17] and [34]. Section 3 gives our key technical notion of a live automaton,
i.e., an automaton equipped with a liveness condition, and also defines live executions, live traces,
and derived liveness properties. Section 4 presents our definitions for liveness-preserving simulation
relations, and shows that liveness-preserving simulation relations imply live trace inclusion. Sec-
tion 5 shows how a derived liveness condition can be deduced from the directly specified condition.
Together, these two sections give our method for refining liveness properties. Section 6 applies our
results to the eventually-serializable data service of [14, 26]. Section 7 examines some alternative
choices for expressing liveness, shows that our method can also be applied to fault-tolerance proper-
ties, and briefly discusses the mechanization of our method. Section 8 discusses the expressiveness
of complemented-pairs for liveness properties, and presents two relative completeness results. Sec-
tion 9 discusses related work. Finally, Section 10 presents our conclusions and discusses avenues
for further research. Appendix A gives some background on simulation relations, Appendix B gives
some background on temporal logic, and Appendix C presents I/O automaton pseudocode for the
eventually-serializable data service of [14, 26].

2 Technical Background

The definitions and theorems in this section are taken from [17] and [34], to which the reader is
referred for details and proofs.
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2.1 Automata

Definition 1 (Automaton) An automaton A consists of four components:

1. a set states(A) of states,

2. a nonempty set start(A) ⊆ states(A) of start states,

3. an action signature sig(A) = (ext(A), int(A)) where ext(A) and int(A) are disjoint sets of
external and internal actions, respectively (let acts(A) denote the set ext(A) ∪ int(A)), and

4. a transition relation steps(A) ⊆ states(A)× acts(A)× states(A).

Let s, s′, u, u′, . . . range over states and a, b, . . . range over actions. Write s
a

−→A s
′ iff (s, a, s′) ∈

steps(A). We say that a is enabled in s. An execution fragment α of automaton A is an alternating
sequence of states and actions s0a1s1a2s2 . . . such that (si, ai+1, si+1) ∈ steps(A) for all i ≥ 0, i.e.,
α conforms to the transition relation of A. Furthermore, if α is finite then it ends in a state. If α
is an execution fragment, then fstate(α) is the first state along α, and if α is finite, then lstate(α)
is the last state along α. If α1 is a finite execution fragment, α2 is an execution fragment, and
lstate(α1) = fstate(α2), then α1

⌢α2 is the concatenation of α1 and α2 (with lstate(α1) repeated
only once). Let α = s0a1s1a2s2 . . . be an execution fragment. Then the length of α, denoted |α|, is
the number of actions in α. |α| is infinite if α is infinite, and |α| = 0 if α consists of a single state.

Also, α|i
df
== s0a1s1 . . . aisi. If α is a prefix of α′, we write α ≤ α′. We also write α < α′ for α ≤ α′

and α 6= α′.

An execution of A is an execution fragment that begins with a state in start(A). The set of
all executions of A is denoted by execs(A), and the set of all infinite executions of A is denoted
by execsω(A). A state of A is reachable iff it occurs in some execution of A. The trace trace(α)
of execution fragment α is obtained by removing all the states and internal actions from α. The
set of traces of an automaton A is defined as the set of traces β such that β is the trace of some
execution of A. It is denoted by traces(A). If ϕ is a set of executions, then traces(ϕ) is the set
of traces β such that β is the trace of some execution in ϕ. If a is an action, then we define
trace(a) = a if a is external, and trace(a) = λ (the empty sequence) if a is internal. If a1a2 · · · an is
a sequence of actions, then trace(a1 · · · an) = trace(a1)trace(a2) · · · trace(an), where juxtaposition
denotes concatenation.

If R is a relation over S1 × S2 (i.e., R ⊆ S1 × S2) and s1 ∈ S1, then we define R[s1] =
{s2 | (s1, s2) ∈ R}. We use ↾ to denote the restriction of a mapping to a subset of its domain.

2.2 Simulation Relations

We shall study five different simulation relations: forward simulation, refinement mapping, back-
ward simulation, history relation, and prophecy relation. These relations all preserve safety prop-
erties. In Section 4, we extend these simulation relations so that they preserve liveness as well
as safety. A forward simulation requires that (1) each execution of an external action a of A is
matched by a finite execution fragment of B containing a, and all of whose other actions are internal
to B, and (2) each execution of an internal action of A is matched by a finite (possibly empty)
execution fragment of B all of whose actions are internal to B (if the fragment is empty, then we
have u ∈ f [s′], i.e., u and s′ must be related by the simulation). It follows that forward simulation
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implies trace inclusion (also referred to as the safe preorder below), i.e., if there is a forward simu-
lation from A to B, then traces(A) ⊆ traces(B). Likewise, the other simulation relations all imply
trace inclusion (the backward simulation and prophecy relation must be image-finite) for similar
reasons. See Lemma 6.16 in [17] for a formal proof of this result.

We use F,R, iB,H, iP to denote forward simulation, refinement mapping, image-finite backward
simulation, history relation, image-finite prophecy relation, respectively. Thus, when we write
X ∈ {F,R, iB,H, iP}, we mean that X is one of these relations. We write A ≤F B if there exists a
forward simulation fromA toB w.r.t. some invariants, andA ≤F B via f if f is a forward simulation
from A to B w.r.t. some invariants. Similarly for the other simulation relations. Appendix A gives
formal definitions for all of these simulation relations.

2.3 Execution Correspondence

Simulation relations induce a correspondence between the executions of the concrete and the ab-
stract automata. This correspondence is captured by the notion of R-relation. If α′ = u0b1u1b2u2 · · ·
is an execution of automaton B, then define trace(α′, j, k) to be trace(bj · · · bk) if j ≤ k, and to be
λ (the empty sequence) if j > k.

Definition 2 (R-relation and Index Mappings) Let A and B be automata with the same ex-
ternal actions and let R be a relation over states(A) × states(B). Furthermore, let α and α′ be
executions of A and B, respectively:

α = s0a1s1a2s2 · · ·
α′ = u0b1u1b2u2 · · ·

Say that α and α′ are R-related, written (α,α′) ∈ R, if there exists a total, nondecreasing mapping
m : {0, 1, . . . , |α|} 7→ {0, 1, . . . , |α′|} such that:

1. m(0) = 0,

2. (si, um(i)) ∈ R for all i, 0 ≤ i ≤ |α|,

3. trace(α′,m(i− 1) + 1,m(i)) = trace(ai) for all i, 0 < i ≤ |α|, and

4. for all j, 0 ≤ j ≤ |α′|, there exists an i, 0 ≤ i ≤ |α|, such that m(i) ≥ j.

The mapping m is referred to as an index mapping from α to α′ with respect to R. Write (A,B) ∈ R
if for every execution α of A, there exists an execution α′ of B such that (α,α′) ∈ R.

Theorem 1 (Execution Correspondence Theorem) Let A and B be automata with the same
external actions. Suppose A ≤X B via S, where X ∈ {F,R, iB,H, iP}. Then (A,B) ∈ S.

Lemma 2 Let A and B be automata with the same external actions and let R be a relation over
states(A) × states(B). If (α,α′) ∈ R, then trace(α) = trace(α′).

Theorem 1 and Lemma 2 appear in [17] as Theorem 6.11 and Lemma 6.15, respectively.
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2.4 Linear-time Temporal Logic

We use the fragment of linear-time temporal logic consisting of the ✷ (always) and ✸ (eventually)
operators over state assertions [47, 39]. In particular, we use the “infinitary” operators ✷✸ (in-
finitely often) and ✸✷ (eventually always). We specify state assertions as a set of states, the state
in question satisfying the assertion iff it belongs to the set.

For example, if U is a set of states, then α |= ✷✸U means “α contains infinitely many states from
U ,” and α |= ✸✷U means “all but a finite number of states of α are from U .” These operators can
be combined with propositional connectives (¬,∧,∨,⇒) so that, for example, α |= ✷✸U ′ ⇒ ✷✸U ′′

means “if α contains infinitely many states from U ′, then it also contains infinitely many states
from U ′′, and α |= ✸✷¬U means “all but a finite number of states of α are not from U .”

Appendix B provides a formal definition of the syntax and semantics of the temporal logic that
we use.

3 Live Automata

We first formalize the notions of live execution property and live trace property, that discussed in
the introduction.

Definition 3 (Live Execution Property) Let A be an automaton, and ϕ ⊆ execsω(A). Then,
ϕ is a live execution property for A if and only if for every finite execution α of A, there exists an
infinite execution α′ of A such that α < α′ and α′ ∈ ϕ.

In other words, a live execution property is a set of infinite executions of A such that every finite
execution of A can be extended to an infinite execution in the set. This requirement was proposed
in [1], where it is called machine closure.

Note that we do not consider interaction with an environment in this paper. THis is why we
use automata rather than I/O automata, i.e., we have external actions without an input/output
distinction. This issue is treated in detail in [18], where a liveness property is defined as a set of
executions (finite or infinite) such that any finite execution can be extended to an execution in the
set. Thus, an extension may be finite, unlike our approach. This is because requiring extension
to an infinite execution may constrain the environment: an execution ending in a state with no
enabled internal or output action will then require the environment to execute an action that is an
output of the environment and an input of the automaton, so that the execution can be extended
to an infinite one. We defer treating this issue to another occasion.

Definition 4 (Live Trace Property) Let A be an automaton, and ψ ⊆ traces(A). Then, ψ is
a live trace property for A if and only if there exists a live execution property ϕ for A such that
ψ = traces(ϕ).

In [17, 18], the notion of live execution property was the basic liveness notion, and a live
automaton was defined to be an automaton A together with a live execution property. This use of
an arbitrary set of executions as a liveness property, subject only to the machine closure constraint
resulted in a proof method in [17] which requires reasoning over entire executions. Since we wish
to avoid this, we take as our basic liveness notion the complemented-pairs condition of Streett
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automata, with the proviso that we extend it to an infinite state-space and an infinite number of
complemented-pairs. In the next section, we show that this approach to specifying liveness entails
no loss of expressiveness, provided that we can use history variables.

Let A be an automaton. We say that p is a complemented-pair3 over A iff p is an ordered
pair 〈〈〈Red,Green〉〉〉 where Red ⊆ states(A), Green ⊆ states(A). Given p = 〈〈〈Red,Green〉〉〉, we define
the selectors p.R = Red and p.G = Green. Let α be an infinite execution of A. Then, we write
α |= 〈〈〈Red,Green〉〉〉 iff α |= ✷✸Red ⇒ ✷✸Green, i.e., if α contains infinitely many states in Red, then
it also contains infinitely many states in Green. We also write α |= p in this case. Our goal is a
method for refining liveness properties using reasoning over states and finite execution fragments
only, in particular, avoiding reasoning over entire (infinite) executions. We therefore formulate a
liveness condition based on states rather than executions.

Definition 5 (Live Automaton with Complemented-pairs Liveness Condition) A live au-
tomaton is a pair (A,L) where:

1. A is an automaton, and

2. L is a set of pairs {〈〈〈RediA,Green
i
A〉〉〉 | i ∈ η} where RediA ⊆ states(A) and GreeniA ⊆ states(A)

for all i ∈ η, and η is some cardinal, which serves as an index set,

and A, L satisfy the following constraint:

• for every finite execution α of A, there exists an infinite execution α′ of A such that

α < α′ and (∀p ∈ L : α′ |= p).

(A,L) inherits all of the attributes of A, namely the states, start states, action signature, and tran-
sition relation of A. The executions (execution fragments) of (A,L) are the executions (execution
fragments) of A, respectively. We say that L is a complemented-pairs liveness condition over A.
Often we use just “liveness condition” instead of “complemented-pairs liveness condition.”

The constraint in Definition 5 is the machine closure requirement, that every finite execution
can be extended to a live execution.

Definition 6 (Live Execution) Let (A,L) be a live automaton. An execution α of (A,L) is a
live execution iff α is infinite and ∀p ∈ L : α |= p.
We define lexecs(A,L) = {α | α ∈ execsω(A) and (∀p ∈ L : α |= p)}.

Our notion of liveness condition is essentially the acceptance condition for finite-state complemented-
pairs automata on infinite strings [13], with the important difference that we generalize it to an
arbitrary (possibly infinite) state space, and allow a possibly infinite set of pairs. Despite the pos-
sibility that RediA and GreeniA are infinite sets of states, it is nevertheless very convenient to have
an infinite number of complemented-pairs. Using the database example of the introduction, we can
express the liveness property “every query submitted is eventually processed” as the infinite set
of pairs {〈〈〈x ∈ wait , x 6∈ wait〉〉〉 | x is a query}, and where wait is the set of all queries that have
been submitted but not yet processed (x is removed from wait when it is processed). Being able

3When it is clear from context, we just say “pair”.
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to allocate one pair for each query facilitates the very straightforward expression of this liveness
property. Our extended example in Section 6 also uses an infinite number of pairs in this manner.

The above discussion applies to any system in which there are an infinite number of distinguished
operations, e.g., each operation has a unique identifier, as opposed to, for example mutual exclusion
for a fixed finite number of processes,, where there are an infinite number of entries into the critical
section by some process Pi, but these need not be “distinguished,” since the single liveness property
✷(request(Pi) =⇒ ✸critical(Pi)) is sufficient to account for all of these. The key point is that
only a bounded number of outstanding requests must be dealt with (≤ the number of processes) ,
whereas in a system in which there are an infinite number of distinguished operations, an unbounded
number of outstanding requests must be dealt with. We conjecture that the liveness property “every
request is eventually satisfied” cannot even be stated using a finite number of complemented pairs.

The safe preorder, live preorder [17] embody our notions of correct implementation with respect
to safety, liveness, respectively.

Definition 7 (Safe preorder, Live preorder) Let (A,L), (B,M) be live automata with the
same external actions (ext(A) = ext(B)). We define:

Safe preorder: (A,L) ⊑s (B,M) iff traces(A) ⊆ traces(B)

Live preorder: (A,L) ⊑ℓ (B,M) iff traces(lexecs(A,L)) ⊆ traces(lexecs(B,M))

From [34, 17], we have that simulation relations imply the safe preorder, i.e., if A ≤X B where
X ∈ {F,R, iB,H, iP}, then (A,L) ⊑s (B,M).

Returning to the database example of the introduction, if α is some live execution of the
implementation A, then, along α, every continuously enabled action is eventually executed (action
fairness) and every message sent is eventually received (message fairness). The trace β of α is then
an externally visible live behavior of A: β ∈ traces(lexecs(A,L)). If A is a correct implementation,
then we expect that the enforcement of action fairness and message fairness in A then guarantees
the required liveness properties of the specification, namely that every query is eventually processed.
Thus, the externally visible live behavior β of A must satisfy the required liveness properties of the
specification, i.e., β ∈ traces(lexecs(B,M)). This is exactly what the live preorder requires.

Definition 8 (Semantic Closure of a Liveness Condition) Let (A,L) be a live automaton.
The semantic closure L̂ of L in A is given by L̂ = {〈〈〈R,G〉〉〉 | ∀α ∈ lexecs(A,L) : α |= 〈〈〈R,G〉〉〉}.

L̂ is the set of complemented-pairs over A which are “semantically entailed” by the complemented-
pairs in L, with respect to the executions of A. In general, L̂−L is nonempty. Every pair in L̂−L
represents a “derived” liveness property, since it is not directly specified by L, but nevertheless can
be deduced from the pairs in L, when considering only the executions of A.

Definition 9 (Derived Pair) Let (A,L) be a live automaton, and let p ∈ L̂ − L. Then p is a
derived pair of (A,L).

Proposition 3 L ⊆ L̂.

Proof. Let p be any complemented-pair in L. Hence, by definition of lexecs(A,L), we have ∀α ∈
lexecs(A,L) : α |= p. Hence p ∈ L̂. ✷
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Proposition 4 lexecs(A, L̂) = lexecs(A,L).

Proof. lexecs(A, L̂) ⊆ lexecs(A,L) follows immediately from Proposition 3 and the relevant defini-
tions. Suppose α ∈ lexecs(A,L). By Definition 8, ∀p ∈ L̂ : α |= p. Hence, α ∈ lexecs(A, L̂). Hence
lexecs(A,L) ⊆ lexecs(A, L̂). ✷

From Proposition 4, it follows that (A, L̂) is a live automaton.

4 Refining Liveness Properties Across Levels of Abstraction: Liveness-

preserving Simulation Relations

The simulation relations given in Section 2.2 induce a relationship between the concrete automaton
A and abstract automaton B whereby for every execution α of A there exists a corresponding,
in the sense of Definition 2, execution α′ of B. This correspondence between executions does not
however take liveness into account. So, if we were dealing with live automata (A,L) and (B,M) in-
stead of automata A and B, then it would be possible to have α ∈ lexecs(A,L), α′ 6∈ lexecs(B,M),
and (α,α′) ∈ S where S is a simulation relation from A to B. So, β ∈ traces(lexecs(A,L)) and
β /∈ traces(lexecs(B,M)), where β = trace(α), is possible. Hence establishing A ≤X B via S, where
X ∈ {F,R, iB,H, iP} does not allow one to conclude traces(lexecs(A,L)) ⊆ traces(lexecs(B,M)),
as desired, whereas it does allow one to conclude traces(A) ⊆ traces(B), [17, Lemma 6.16]. For
example, consider Figures 1 and 2 which respectively give a specification and a “first level” refine-
ment of the specification, for a toy database system. The database takes input requests of the form
request(x), where x is a query, computes a response for x using a function val (which presumably
also refers to the underlying database state, we do not model this to keep the example simple),
and outputs a response (x, v) where v = val(x). This behavior is dictated by the specification
in Figure 1, where received queries are placed in the set requested , and queries responded to are
placed in the set responded (this prevents multiple responses to the same query). The first-level
refinement of the specification (Figure 2) is identical to the specification except that it can “lose”
pending requests: the request(x) nondeterministically chooses between adding x to requested , or
doing nothing, as represented by []skip in Figure 2. Despite this fault, it is possible to establish a
forward simulation F from DB-Imp to DB-Spec, as follows. A state s of DB-Imp and a state u of
DB-Spec are related by F if and only if s.requested ⊆ u.requested and s.responded = u.responded
(where s.var denotes the value of variable var in state s). Now suppose we add the following live-
ness condition to both DB-Imp and of DB-Spec: {〈〈〈x ∈ requested , x ∈ responded 〉〉〉 | x is a query}.
Thus, an operation x that has been requested must eventually be responded to, since x ∈ requested
is stable; once true, it is always true, and therefore it is true infinitely often. Now let α, α′ be
executions of DB-Imp, DB-Spec, respectively, which are related by F in the sense of Definition 2.
Suppose some query x0 is lost along α, and no other query is lost. Let α be live, i.e., if a query is
placed into requested , and is not lost, then it will eventually be responded to. We now see that α′

cannot be live, since x0 ∈ requested holds along an infinite suffix of α′, but x0 ∈ responded never
holds along α′. Hence, establishing a forward simulation from DB-Imp to DB-Spec is not sufficient
to establish live trace inclusion from DB-Imp to DB-Spec.

This example demonstrates that the simulation relations of Section 2.2 do not imply live trace
inclusion. The problem is that these simulation relations do not reference the liveness conditions
of the concrete and abstract automata. To remedy this, we augment the simulation relations so
that every pair q in the abstract liveness condition M is related to a pair p in the concrete liveness
condition L. The idea is that the simulation relation relates occurrences of states in q.R, q.G in
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Automaton DB-Spec

Signature

External:
request(x), where x is a query
response(x, v), where x is a query and v is a value

State

requested , a set of received queries, initially empty

responded , a set of computed responses to queries, initially empty

Actions

External request(x)
Pre: true

Eff: requested ← requested ∪ {x}

External response(x, v)
Pre: x ∈ requested − responded ∧ v = val(x)
Eff: responded ← responded ∪ {x}

Figure 1: Specification of a simple database system

transitions of the abstract automaton (B,M) with occurrences of states in p.R, p.G in transitions
of the concrete automaton (A,L). The relationship is defined so that the augmented simulation
implies that, in “corresponding” executions α of (A,L), α′ of (B,M), if α satisfies p, then α′ must
satisfy q.

In more detail, an occurrence of a q.R state in an abstract (live) execution α′ must be matched
by at least one p.R state in the corresponding concrete (live) execution α, and an occurrence of a p.G
state in α must be matched by at least one q.G state in α′. Thus, if α′ |= ✷✸q.R, then α |= ✷✸p.R,
and if α |= ✷✸p.G, then α′ |= ✷✸q.G. Assuming α is live, we get α |= ✷✸p.R ⇒ ✷✸p.G. This and
the previous two implications yields α′ |= ✷✸q.R ⇒ ✷✸q.G. Hence α′ is live. Hence we can show
that if an abstract execution α′ and concrete execution α correspond (according to the simulation),
and α is live, then α′ is also live. The matching thus allows us to show that every live execution of
(A,L) has a “corresponding” live execution in (B,M). Live trace inclusion follows immediately.

Since the semantic closure L̂ of L specifies the same set of live executions (Proposition 4), as L
does, we can relax the requirement p ∈ L to p ∈ L̂. Since L̂ is in general a superset of L, this can
be very helpful in refining the abstract liveness condition. In particular, it enables us to split the
refinement task into two subtasks: refinement across abstraction levels (which we address in this
section) and refinement within an abstraction level (which we address in the next section).

Let (A,L) be a live automaton, α be a finite execution fragment of A, and p ∈ L. We abuse
notation and write α ∈ p.R iff there exists a state s along α such that s ∈ p.R. α ∈ p.G is
defined similarly. The above considerations lead to the following definitions of liveness-preserving
simulation relations.

Definition 10 (Liveness-preserving Forward Simulation w.r.t. Invariants) Let (A,L) and
(B,M) be live automata with the same external actions. Let IA, IB be invariants of A, B respec-
tively. Let f = (g, h) where g ⊆ states(A)× states(B) and h :M 7→ L̂ is a total mapping over M4.

4That is, h(q) is defined for all q ∈ M .
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Automaton DB-Imp

Signature

External:
request(x), where x is a query
response(x, v), where x is a query and v is a value

State

requested , a set of received queries, initially empty

responded , a set of computed responses to queries, initially empty

Actions

External request(x)
Pre: true

Eff: (requested ← requested ∪ {x}) [] skip

External response(x, v)
Pre: x ∈ requested − responded ∧ v = val(x)
Eff: responded ← responded ∪ {x}

Figure 2: First level refinement of the specification of a simple database system

Then f is a liveness-preserving forward simulation from (A,L) to (B,M) with respect to IA and
IB iff:

1. If s ∈ start(A), then g[s] ∩ start(B) 6= ∅.

2. If s
a

−→A s
′, s ∈ IA, and u ∈ g[s] ∩ IB, then there exists a finite execution fragment α of

B such that fstate(α) = u, lstate(α) ∈ g[s′], and trace(α) = trace(a). Furthermore, for all
q ∈M ,

(a) if α ∈ q.R then s ∈ p.R or s′ ∈ p.R, and

(b) if s ∈ p.G or s′ ∈ p.G then α ∈ q.G,

where p = h(q).

3. Call a transition s
a

−→A s
′ always-silent iff s ∈ IA and for every finite execution fragment α of

B such that fstate(α) ∈ g[s] ∩ IB, lstate(α) ∈ g[s′], and trace(α) = trace(a), we have |α| = 0,
i.e., α consists of a single state. In other words, the transition s

a
−→A s

′ is matched only by
the empty transition in B. Then, g is such that every live execution of (A,L) contains an
infinite number of transitions that are not always-silent.

Clause 1 is the usual condition of a forward simulation requiring that every start state of (A,L)
be related to at least one start state of (B,M).

Clause 2 is the condition of a forward simulation which requires that every transition s
a

−→A s
′

of (A,L) be “simulated” by an execution fragment α of (B,M) which has the same trace. We also
require that every complemented-pair q ∈ M is matched to a complemented-pair p ∈ L̂ by the
mapping h and that such corresponding pairs impose a constraint on the transition s

a
−→A s

′ of
(A,L) and the simulating execution fragment α of (B,M), as follows. If α contains some q.R state,
then at least one of s, s′ is a p.R state, and if at least one of s, s′ is a p.G state, then α contains

12



some q.G state. This requirement thus enforces the matching discussed at the beginning of this
section, from which live trace inclusion follows.

Clause 3 is needed to ensure that a live execution of (A,L) has at least one corresponding
infinite execution in (B,M). This execution can then be shown, using clause 2, to be live (see
Lemma 8 below). If s

a
−→A s

′ is always-silent, then a must be an internal action. Thus, in practice,
clause 3 holds, since executions with an (infinite) suffix consisting solely of internal actions are not
usually considered to be live. Clause 3 can itself be expressed as a complemented-pair (which is
added to L). Call an action a of A non-always-silent iff no transition arising from its execution is
always-silent. Thus, every transition arising from the execution of a can be matched with respect to
g by some nonempty execution fragment of B. It is also possible that the transition can be matched
by the empty fragment, but what is important is that it is always possible to choose a nonempty
fragment to match with. This means that we can always match a live execution α of (A,L) with
some infinite execution of (B,M), by always matching the non-always-silent transitions in α with
nonempty execution fragments of (B,M).

By definition, any external action of A is non-always-silent. An internal action of A may or may
not be non-always-silent. We introduce an auxiliary boolean variable nonalwayssilent that is set to
true each time a non-always-silent action of A is executed, and is set to false infinitely often by a new
internal action of A whose precondition is true and whose effect is nonalwayssilent := false (every
execution of this new action can be simulated by the empty transition in B, since nonalwayssilent
has no effect on any other state component of A, nor on the execution of other actions in A). Then
the pair 〈〈〈true ,nonalwayssilent 〉〉〉 expresses that a non-always-silent action of A is executed infinitely
often, which implies that each live execution of (A,L) contains an infinite number of non-always-
silent transitions. The pair 〈〈〈true ,nonalwayssilent 〉〉〉 can then be refined at the next lower level of
abstraction in exactly the same way as all the other pairs in L. See Section 6 for an example of
this technique.

It is clear from the definitions that if (g, h) is a liveness-preserving forward simulation from
(A,L) to (B,M) w.r.t. invariants, then g is a forward simulation from A to B w.r.t. the same
invariants. We write (A,L) ≤ℓF (B,M) if there exists a liveness-preserving forward simulation
from (A,L) to (B,M) w.r.t. invariants, and (A,L) ≤ℓF (B,M) via f if f is a liveness-preserving
forward simulation from (A,L) to (B,M) w.r.t. invariants.

Definition 11 (Liveness-preserving Refinement Mapping w.r.t. Invariants) Let (A,L) and
(B,M) be live automata with the same external actions. Let IA, IB be invariants of A, B, respec-
tively. Let r = (g, h) where g : states(A) 7→ states(B) and h : M 7→ L̂ is a total mapping over M .
Then r is a liveness-preserving refinement mapping from (A,L) to (B,M) with respect to IA and
IB iff:

1. If s ∈ start(A), then g(s) ∈ start(B).

2. If s
a

−→A s
′, s ∈ IA, and g(s) ∈ IB, then there exists a finite execution fragment α of B such

that fstate(α) = g(s), lstate(α) = g(s′), and trace(α) = trace(a). Furthermore, for all q ∈M ,

(a) if α ∈ q.R then s ∈ p.R or s′ ∈ p.R, and

(b) if s ∈ p.G or s′ ∈ p.G then α ∈ q.G,

where p = h(q).
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3. Call a transition s
a

−→A s
′ always-silent iff s ∈ IA and for every finite execution fragment α

of B such that fstate(α) = g(s), lstate(α) = g(s′), and trace(α) = trace(a), we have |α| = 0,
i.e., α consists of a single state. In other words, the transition s

a
−→A s

′ is matched only by
the empty transition in B. Then, g is such that every live execution of (A,L) contains an
infinite number of transitions that are not always-silent.

We write A ≤ℓR B if there exists a liveness-preserving refinement mapping from A to B w.r.t.
invariants, and A ≤ℓR B via r if r is a liveness-preserving refinement mapping from A to B w.r.t.
invariants. It is clear from the definitions that a liveness-preserving refinement mapping is a special
case of a liveness-preserving forward simulation. Furthermore, if (g, h) is a liveness-preserving
refinement mapping from (A,L) to (B,M) w.r.t. some invariants, then g is a refinement mapping
from A to B w.r.t. the same invariants.

Definition 12 (Liveness-preserving Backward Simulation w.r.t. Invariants) Let (A,L) and
(B,M) be live automata with the same external actions. Let IA, IB be invariants of A, B respec-
tively. Let b = (g, h) where g ⊆ states(A) × states(B) and h : M 7→ L̂ is a total mapping over M .
Then b is a liveness-preserving backward simulation from (A,L) to (B,M) with respect to IA and
IB iff:

1. If s ∈ IA, then g[s] ∩ IB 6= ∅.

2. If s ∈ start(A), then g[s] ∩ IB ⊆ start(B).

3. If s
a

−→A s
′, s ∈ IA, and u

′ ∈ g[s′] ∩ IB, then there exists a finite execution fragment α of B
such that fstate(α) ∈ g[s] ∩ IB, lstate(α) = u′, and trace(α) = trace(a). Furthermore, for all
q ∈M ,

(a) if α ∈ q.R then s ∈ p.R or s′ ∈ p.R, and

(b) if s ∈ p.G or s′ ∈ p.G then α ∈ q.G,

where p = h(q).

4. Call a transition s
a

−→A s
′ sometimes-silent iff s ∈ IA and for some finite execution fragment

α of B such that fstate(α) ∈ g[s] ∩ IB, lstate(α) ∈ g[s′], and trace(α) = trace(a), we have
|α| = 0, i.e., α consists of a single state. In other words, the transition s

a
−→A s

′ can be
matched by the empty transition in B. Then, g is such that every live execution of (A,L)
contains an infinite number of transitions that are not sometimes-silent.

Clauses 1 and 2 are the usual conditions of a backward simulation requiring that a state in the
invariant IA of (A,L) is related to at least one state in the invariant IB of (B,M), and that every
start state of (A,L) is related only to start states of (B,M), ignoring states not in the invariant IB .
These clauses are needed due to the “backwards” nature of the bisimulation, since, from a state
u′ in the invariant IB it is possible, when “going backwards” along a transition to reach a state u
not in the invariant, i.e., u

a
−→B u

′, u /∈ IB , and u
′ ∈ IB is possible. Also, a start state in (A,L)

must always be matched by a start state in (B,M), since the matching state in (B,M) cannot be
chosen initially: it is constrained by the succeeding transitions, i.e., it is “chosen” last of all, and
so the result must be an initial state of B regardless of the choice.

Clause 3 is the condition of a backward simulation which requires that every transition s
a

−→A s
′

of (A,L) be “simulated” by an execution fragment α of (B,M), except that we also require that
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every complemented-pair q ∈ M is matched to a complemented-pair p ∈ L̂ by the mapping h and
that such corresponding pairs impose a constraint on the transition s

a
−→A s

′ of (A,L) and the
simulating execution fragment α of (B,M), as follows. If α contains some q.R state, then at least
one of s, s′ is a p.R state, and if at least one of s, s′ is a p.G state, then α contains some q.G state.
This requirement thus enforces the matching discussed at the beginning of this section, from which
live trace inclusion follows.

Clause 4 is needed to ensure that a live execution of (A,L) has at least one corresponding infinite
execution in (B,M). This execution can then be shown, using clause 3, to be live (see Lemma 8
below). If s

a
−→A s

′ is sometimes-silent, then a must be an internal action. Thus, in practice,
clause 4 holds, since executions with an (infinite) suffix consisting solely of internal actions are not
usually considered to be live. Clause 4 can itself be expressed as a complemented-pair (which is
added to L), which can then be refined at the next lower level of abstraction. Call an action a
of A non-sometimes-silent iff no transition arising from its execution is sometimes-silent. Thus,
every transition arising from the execution of a must always be matched with respect to g by some
nonempty execution fragment of B.

We can now express the requirement that a non-sometimes-silent action of A is executed in-
finitely often, as a complemented-pair, and refine this pair at the next lower level of abstraction.
The details are similar to those discussed above for Clause 3 of Definition 10, and are omitted.
Note the difference with forward simulation; there, we only had to ensure that it was infinitely of-
ten possible to choose a nonempty execution fragment to match with. With backward simulations,
we have to show that infinitely often, all the matching execution fragments are nonempty.

It is clear from the definitions that if (g, h) is a liveness-preserving backward simulation from
(A,L) to (B,M) w.r.t. some invariants, then g is a backward simulation from A to B w.r.t. the
same invariants. We write A ≤ℓB B if there exists a liveness-preserving backward simulation from
A to B w.r.t. some invariants, and A ≤ℓB B via b if b is a liveness-preserving backward simulation
from A to B w.r.t. some invariants. If the backward simulation g is image-finite, then we write
A ≤iℓB B, A ≤iℓB B via b, respectively.

Definition 13 (Liveness-preserving History Relation w.r.t. Invariants) Let (A,L) and
(B,M) be live automata with the same external actions. Let IA, IB be invariants of A, B,
respectively. A history relation from A to B with respect to IA and IB is a relation hs over
states(A) × states(B) that satisfies:

1. hs is a liveness-preserving forward simulation from A to B w.r.t. IA and IB, and

2. hs−1 is a refinement from B to A w.r.t. IB and IA.

We write A ≤ℓH B if there exists a liveness-preserving history relation from A to B w.r.t. some
invariants, and A ≤ℓH B via h if h is a liveness-preserving history relation from A to B w.r.t. some
invariants.

Definition 14 (Liveness-preserving Prophecy Relation w.r.t. Invariants) Let (A,L) and
(B,M) be live automata with the same external actions. Let IA, IB be invariants of A, B, re-
spectively. A prophecy relation from A to B with respect to IA and IB is a relation p over
states(A) × states(B) that satisfies:

1. p is a liveness-preserving backward simulation from A to B w.r.t. IA and IB, and
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2. p−1 is a refinement from B to A w.r.t. IB and IA.

We write A ≤ℓP B if there exists a liveness-preserving prophecy relation from A to B w.r.t. some
invariants, and A ≤ℓP B via p if p is a liveness-preserving prophecy relation from A to B w.r.t. some
invariants. If the liveness-preserving prophecy relation is image-finite, then we write A ≤iℓP B,
A ≤iℓP B via p, respectively.

We use ℓF, ℓR, iℓB, ℓH, iℓP to denote liveness-preserving forward simulation, liveness-preserving
refinement mapping, image-finite liveness-preserving backward simulation, liveness-preserving his-
tory relation, image-finite liveness-preserving prophecy relation, respectively. Thus, when we write
X ∈ {ℓF, ℓR, iℓB, ℓH, iℓP}, we mean that X is one of these relations.

Liveness-preserving simulation relations induce a correspondence between the live executions
of the concrete and the abstract automata. This correspondence is captured by the notion of Rℓ-
relation. We remind the reader of the definition trace(α′, j, k) = trace(bj · · · bk) if j ≤ k, and = λ
(the empty sequence) if j > k.

Definition 15 (Rℓ-relation and Live Index Mappings) Let (A,L) and (B,M) be live automata
with the same external actions. Let Rℓ = (R,H) where R is a relation over states(A) × states(B)
and H :M 7→ L̂ is a total mapping over M . Furthermore, let α and α′ be executions of (A,L) and
(B,M), respectively:

α = s0a1s1a2s2 · · ·
α′ = u0b1u1b2u2 · · ·

Say that α and α′ are Rℓ-related, written (α,α′) ∈ Rℓ, if there exists a total, nondecreasing mapping
m : {0, 1, . . . , |α|} 7→ {0, 1, . . . , |α′|} such that:

1. m(0) = 0,

2. (si, um(i)) ∈ R for all i, 0 ≤ i ≤ |α|,

3. trace(α′,m(i− 1) + 1,m(i)) = trace(ai) for all i, 0 < i ≤ |α|,

4. for all j, 0 ≤ j ≤ |α′|, there exists an i, 0 ≤ i ≤ |α|, such that m(i) ≥ j, and

5. for all complemented-pairs q ∈M and all i, 0 < i ≤ |α| :

(a) if (∃j ∈ m(i− 1) . . . m(i) : uj ∈ q.R) then si−1 ∈ p.R or si ∈ p.R, and

(b) if si−1 ∈ p.G or si ∈ p.G then (∃j ∈ m(i− 1) . . . m(i) : uj ∈ q.G),

where p = H(q).

The mapping m is referred to as a live index mapping from α to α′ with respect to Rℓ. Write
((A,L), (B,M)) ∈ Rℓ if for every live execution α of (A,L), there exists a live execution α′ of
(B,M) such that (α,α′) ∈ Rℓ.

Note that (α,α′) ∈ Rℓ does not require α,α′ to be live executions. By Definitions 2 and 15, it is
clear that, if Rℓ = (R,H), then (α,α′) ∈ Rℓ implies (α,α′) ∈ R. The following lemma establishes a
correspondence between the prefixes of a live execution of the concrete automaton and an infinite
family of finite executions of the abstract automaton.
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Lemma 5 Let (A,L) and (B,M) be live automata with the same external actions, and such that
(A,L) ≤ℓF (B,M) via f for some f = (g, h). Let α be an arbitrary live execution of (A,L). Then
there exists a collection (α′i,mi)0≤i of finite executions of (B,M) and mappings such that:

1. mi is a live index mapping from α|i to α
′
i with respect to f , for all i ≥ 0, and

2. α′i−1 ≤ α′i and mi−1 = mi↾{0, . . . , i− 1} for all i > 0, and

3. α′i−1 < α′i for infinitely many i > 0.

Proof. Let α = s0a1s1a2s2 . . . and let IA, IB be invariants of A, B, respectively, such that f is
a liveness-preserving forward simulation from (A,L) to (B,M) with respect to IA and IB . We
construct α′i and mi by induction on i.

Since s0 ∈ start(A), we have (s0, v0) ∈ g and v0 ∈ start(B) for some state v0, by Definition 10,
clause 1. Let α′0 = v0 and let m0 be the mapping that maps 0 to 0. Then, m0 is a live index
mapping from α|0 to α′0 with respect to f (in particular, clause 5 of Definition 15 holds vacuously,
since |α|0| = 0).

Now inductively assume that mi−1 (for i > 0) is a live index mapping from α|i−1 to α′i−1 with
respect to f . Let u0 = lstate(α′i−1). Then, by clause 4 of Definition 15 and the fact that mi−1

is nondecreasing, we have mi−1(i − 1) = |α′i−1| and (si−1, u0) ∈ g. Since si−1, si, and u0 are
reachable, by definition, they satisfy their respective invariants. Hence, by Definition 10, clause 2,

there exists a finite execution fragment u0
b1−→B u1

b2−→B · · ·
bn−→B un of B such that un ∈ g[si],

trace(b1 · · · bn) = trace(ai), and for all complemented-pairs q ∈M :

1. if (∃j ∈ 1 . . . n : uj ∈ q.R) then si−1 ∈ p.R or si ∈ p.R, and

2. if si−1 ∈ p.G or si ∈ p.G then (∃j ∈ 1 . . . n : uj ∈ q.G),

where p = h(q). Now define α′i = α′i−1
⌢(u0

b1−→B u1
b2−→B · · ·

bn−→B un), and define mi to be the
mapping such that mi(j) = mi−1(j) for all j, 0 ≤ j ≤ i− 1, and mi(i) = |α′i|. We argue that mi is
a live index mapping from α|i to α

′
i with respect to f , i.e., that all clauses of Definition 15 hold.

Clause 1 holds since mi(0) = mi−1(0) by definition, and mi−1(0) = 0 by the inductive hypothesis.
Clause 2 holds by the inductive hypothesis and un ∈ g[si]. Clause 3 holds by the inductive hypoth-
esis and trace(b1 · · · bn) = trace(ai). Clause 4 holds since mi(|α|i |) = mi(i) = |α′i|, by definition.
Finally, clause 5 holds by the inductive hypothesis and the conditions for all complemented-pairs

q ∈ M just established above w.r.t. si−1
ai−→A si and u0

b1−→B u1
b2−→B · · ·

bn−→B un. Having estab-
lished that mi is a live index mapping from α|i to α

′
i with respect to f , we conclude that clause 1

of the lemma holds.

Clause 2 of the lemma holds by construction of α′i and mi, since α
′
i and mi are obtained by

extending α′i−1 and mi−1, respectively.

By Definition 10, clause 3, for infinitely many i > 0, we can select the execution fragment

u0
b1−→B u1

b2−→B · · ·
bn−→B un that matches si−1

ai−→A si so that n > 0. Hence, for infinitely many
i > 0, we have α′i−1 < α′i. Thus, clause 3 of the lemma holds. ✷

Definition 16 (Induced Digraph) Let (A,L) and (B,M) be live automata with the same ex-
ternal actions and assume A ≤iℓB B via b = (g, h) with respect to invariants IA and IB. For any
execution α = s0a1s1a2s2 . . . of A, let the digraph induced by α, b, IB, L, and M be the directed
graph G given as follows:
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1. The nodes of G are the ordered pairs (u, i) such that 0 ≤ i ≤ |α|, and u ∈ g[si] ∩ IB, and

2. there is an edge from (u, i) to (u′, i′) iff i′ = i + 1 and there exists a finite execution frag-
ment α′ of B such that fstate(α′) = u, lstate(α′) = u′, trace(α′) = trace(ai+1), and for all
complemented-pairs q ∈M :

(a) if α′ ∈ q.R then si ∈ p.R or si+1 ∈ p.R, and

(b) if si ∈ p.G or si+1 ∈ p.G then α′ ∈ q.G,

where p = h(q).

Lemma 6 Let (A,L) and (B,M) be live automata with the same external actions and assume
A ≤iℓB B via b with respect to invariants IA and IB. Let α be any execution of A. Then the
digraph G induced by α, b, IB, L, and M satisfies:

1. For each i, 0 ≤ i ≤ |α|, there is at least one node in G of the form (u, i).

2. The roots of G are exactly the nodes of the form (u, 0).

3. G has a finite number of roots.

4. Each node in G has finite outdegree.

5. Each node of G is reachable from some root of G.

Proof. Let b = (g, h). Then g is an image-finite backward simulation from A to B. We deal with
each clause in turn.

1. Each state si of α is reachable, and so belongs to IA. Hence g[si] ∩ IB 6= ∅ by Clause 1 of
Definition 12. Hence by Definition 16, clause 1, there exist nodes of G of the form (u, i).

2. Every node (u, 0) is a root of G (i.e., it has no incoming edges). We now show that any
node (u, i) with i > 0 cannot be a root. Now u ∈ g[si] ∩ IB by Definition 16, clause 1.

Also, si−1 ∈ IA and si−1
ai−→A si by assumption, hence by Definition 12, clause 3, there

exists a finite execution fragment α′ of B such that fstate(α′) ∈ g[si−1] ∩ IB, lstate(α
′) = u,

trace(α′) = trace(ai), and, for all q ∈M ,

(a) if α′ ∈ q.R then si−1 ∈ p.R or si ∈ p.R, and

(b) if si−1 ∈ p.G or si ∈ p.G then α′ ∈ q.G,

where p = h(q). Hence, by Definition 16, clause 2, there exists an edge inG from (fstate(α′), i−
1) to (u, i).

3. Since g is image-finite, the set g[s0] ∩ IB is finite. By Definition 16, clause 1, all nodes of G
of the form (u, 0) must satisfy u ∈ g[s0]∩ IB. Hence, there are a finite number of such nodes.
By clause 2 of the lemma (which has already been established), these nodes are exactly the
roots of G. Hence, the number of roots is finite.

4. Let (u, i) be an arbitrary node of G. By Definition 16, clause 2, from any node of the form
(u, i), all outgoing edges are to nodes of the form (u′, i + 1). Since g is image-finite, the set
g[si+1] ∩ IB is finite. By Definition 16, clause 1, all nodes of G of the form (u, i + 1) must
satisfy u ∈ g[si+1]∩ IB. Hence, there are a finite number of such nodes. Hence, the outdegree
of any node of G of the form (u, i) is finite. Since (u, i) was chosen arbitrarily, the result
follows.
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5. We establish this by induction on the second component i of the nodes (u, i) of G. For the
base case, i = 0 and nodes (u, 0) are reachable by definition since they are roots. Assume the
induction hypothesis that all nodes of the form (u, i) are reachable from some root of G, and
consider an arbitrary node of the form (u, i+ 1).

Now u ∈ g[si+1]∩IB by Definition 16, clause 1. Also, si ∈ IA and si
ai+1

−→A si+1 by assumption,
hence by Definition 12, clause 3, there exists a finite execution fragment α′ of B such that
fstate(α′) ∈ g[si] ∩ IB , lstate(α

′) = u, trace(α′) = trace(ai+1), and, for all q ∈M ,

(a) if α′ ∈ q.R then si ∈ p.R or si+1 ∈ p.R, and

(b) if si ∈ p.G or si+1 ∈ p.G then α′ ∈ q.G,

where p = h(q). Hence, by Definition 16, clause 2, there exists an edge in G from (fstate(α′), i)
to (u, i + 1). By the induction hypothesis, (fstate(α′), i) is reachable. Hence, so is (u, i + 1).

Since all the clauses are established, Lemma 6 holds. ✷

Lemma 7 Let (A,L) and (B,M) be live automata with the same external actions, and such that
(A,L) ≤iℓB (B,M) via b for some b = (g, h). Let α be an arbitrary live execution of (A,L). Then
there exists a collection (α′i,mi)0≤i of finite executions of (B,M) and mappings such that:

1. mi is a live index mapping from α|i to α
′
i with respect to b, for all i ≥ 0, and

2. α′i−1 ≤ α′i and mi−1 = mi↾{0, . . . , i− 1} for all i > 0, and

3. α′i−1 < α′i for infinitely many i > 0.

Proof. Let α = s0a1s1a2s2 . . . and let IA, IB be invariants of A, B, respectively, such that b is a
image-finite liveness-preserving backward simulation from (A,L) to (B,M) with respect to IA and
IB . Let G be the digraph induced by α, b, IB , L and M . Since α is infinite (all live executions are
infinite, by Definition 5), G is infinite. Hence, by clauses 3 and 4 of Lemma 6, and Konig’s lemma,
G contains an infinite path. Fix p = (u0, 0)(u1, 1), . . . to be any such path. By Definition 16,
clause 1, ui ∈ g[si] ∩ IB for all i ≥ 0. We now construct α′i and mi by induction on i, with α′i such
that lstate(α′i) = ui.

Now s0 ∈ start(A) since α is an execution of A. Also, by Definition 16, u0 ∈ g[s0] ∩ IB. Hence,
by clause 2 of Definition 12, u0 ∈ start(B). Let α′0 = u0 and let m0 be the mapping that maps 0
to 0. Then, m0 is a live index mapping from α|0 to α′0 with respect to b (in particular, clause 5 of
Definition 15 holds vacuously, since |α|0| = 0), and lstate(α′0) = u0.

Now inductively assume that mi−1 (for i > 0) is a live index mapping from α|i−1 to α′i−1 with
respect to b, and that lstate(α′i−1) = ui−1. By construction of path p, there is an edge in G from
(ui−1, i−1) to (ui, i). Hence, by Definition 16, there exists a finite execution fragment α′′ such that
fstate(α′′) = ui−1, lstate(α

′′) = ui, trace(α
′′) = trace(ai), and, for all complemented-pairs q ∈M :

1. if α′′ ∈ q.R then si−1 ∈ p.R or si ∈ p.R, and

2. if si−1 ∈ p.G or si ∈ p.G then α′′ ∈ q.G,

where p = h(q). Now define α′i = α′i−1
⌢α′′, and define mi to be the mapping such that mi(j) =

mi−1(j) for all j, 0 ≤ j ≤ i− 1, and mi(i) = |α′i|. We argue that mi is a live index mapping from
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α|i to α′i with respect to b, i.e., that all clauses of Definition 15 hold, and that lstate(α′i) = ui.
Clause 1 holds since mi(0) = mi−1(0) by definition, and mi−1(0) = 0 by the inductive hypothesis.
Clause 2 holds by the inductive hypothesis, lstate(α′′) = ui, and ui ∈ g[si] (which we established
above). Clause 3 holds by the inductive hypothesis and trace(α′′) = trace(ai). Clause 4 holds since
mi(|α|i |) = mi(i) = |α′i|, by definition. Finally, clause 5 holds by the inductive hypothesis and the

conditions for all complemented-pairs q ∈M established above w.r.t. si−1
ai−→A si and α

′′. Having
established that mi is a live index mapping from α|i to α′i with respect to f , we conclude that
clause 1 of the lemma holds. Also, lstate(α′i) = lstate(α′′) = ui, as required for the induction step
to be valid.

Clause 2 of the lemma holds by construction of α′i and mi, since α
′
i and mi are obtained by

extending α′i−1 and mi−1, respectively.

By Definition 12, clause 4, for infinitely many i > 0, the execution fragment α′′ which matches
si−1

ai−→A si must have length |α′′| ≥ 1. Hence, for infinitely many i > 0, we have α′i−1 < α′i. Thus,
clause 3 of the lemma holds. ✷

Our next lemma shows that, if infinite concrete and abstract executions correspond in the sense
of (α,α′) ∈ Rℓ, and the concrete execution is live, then so is the abstract execution.

Lemma 8 Let (A,L) and (B,M) be live automata with the same external actions. Let Rℓ =
(R,H) where R is a relation over states(A) × states(B) and H : M 7→ L̂ is a total mapping over
M . Let α,α′ be arbitrary infinite executions of (A,L), (B,M) respectively. If (α,α′) ∈ Rℓ, then
α ∈ lexecs(A,L) implies α′ ∈ lexecs(B,M).

Proof. We assume the antecedents of the lemma and establish α′ 6∈ lexecs(B,M) implies α 6∈
lexecs(A,L). Let:

α = s0a1s1a2s2 · · ·
α′ = u0b1u1b2u2 · · ·

Since (α,α′) ∈ Rℓ, there exists a live index mapping m : {0, 1, . . . , |α|} 7→ {0, 1, . . . , |α′|} satisfying
the conditions in Definition 15. Suppose α′ 6∈ lexecs(B,M). Then, by Definition 6, there exists a
complemented-pair q ∈M such that α′ |= ✷✸q.R ∧✸✷¬q.G. Let p = H(q). We prove:

α |= ✷✸p.R ∧✸✷¬p.G. (*)
Since α′ |= ✷✸q.R, there exist an infinite number of pairs of states (um(i−1), um(i)) along α′ that
contain a q.R-state between them (inclusive, i.e., the q.R-state could be um(i−1) or um(i)). By
clauses 2 and 3 of Definition 15, for each such pair there corresponds a pair of states (si−1, si) along
α such that (si−1, um(i−1)) ∈ R and (si, um(i)) ∈ R. Also, by clause 5a of Definition 15, si−1 ∈ p.R
or si ∈ p.R. Since this holds for an infinite number of values of the index i, we conclude

α |= ✷✸p.R. (a)
Since α′ |= ✸✷¬q.G, there exists a state ug along α′ such that ∀ℓ ≥ g : uℓ 6∈ q.G. Now assume
that α |= ✷✸p.G. Since m is nondecreasing and cofinal in {0, 1, . . . , |α′|} (clause 4, Definition 15),
there exists an si−1 along α such that si−1 ∈ p.G and m(i − 1) ≥ g. By clauses 2 and 3 of
Definition 15, (si−1, um(i−1)) ∈ R and (si, um(i)) ∈ R. Also, by clause 5b of Definition 15, at least one
of um(i−1), um(i−1)+1, . . . , um(i) is a q.G state. Since m(i− 1) ≥ g, this contradicts ∀ℓ ≥ g : uℓ 6∈ q.G
above. Hence the assumption α |= ✷✸p.G must be false, and so:

α |= ✸✷¬p.G. (b)
From (a) and (b), we conclude (*). From (*), we have α 6|= p. Now p ∈ L̂, since H : M 7→ L̂.
Hence, α 6∈ lexecs(A, L̂) by Definition 6. Hence, by Proposition 4, α 6∈ lexecs(A,L). ✷

We can now establish a correspondence theorem for live executions. Our theorem states that, if
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a liveness-preserving simulation relation Sℓ is established from a concrete automaton to an abstract
automaton, then for every live execution α of the concrete automaton, there exists a corresponding
(in the sense of (α,α′) ∈ Sℓ) live execution α′ of the abstract automaton. Our proof uses Lemmas 5
and 7 to establish the existence of an infinite family of finite executions corresponding to prefixes
of α. We then construct α′ from this infinite family using the “diagonalization” technique of [17].
Finally, we invoke Lemma 8 to show that α′ is live, given that α is live.

Theorem 9 (Live Execution Correspondence Theorem) Let (A,L) and (B,M) be live au-
tomata with the same external actions. Suppose (A,L) ≤X (B,M) via Sℓ, where X ∈ {ℓF, ℓR, iℓB,
ℓH, iℓP}. Then ((A,L), (B,M)) ∈ Sℓ.

Proof. We proceed by cases on X.

Case 1: X = ℓF . So Sℓ is a liveness-preserving forward simulation f = (g, h), and (A,L) ≤ℓF

(B,M) via f . Let α = s0a1s1a2s2 . . . be an arbitrary live execution of (A,L), and let (α′i,mi)0≤i
be a collection of finite executions of (B,M) and mappings as given by Lemma 5. By definition
of ((A,L), (B,M)) ∈ f , we must show that there exists a live execution α′ of (B,M) such that
(α,α′) ∈ f .

By Definition 6, α is infinite. Let m be the unique mapping over the natural numbers defined
by m(i) = mi(i), for all i ≥ 0. Let α′ be the limit of α′i under the prefix ordering, that is, α′ is the
unique execution of (B,M) defined by α′|m(i) = α′i for all i ≥ 0, with the restriction that for any
index j of α′, there exists an i such that α′|j ≤ α′i. By Lemma 5, clause 3, α′ is infinite.

We now show that m is a live index mapping from α to α′ with respect to f . The proof thatm is
nondecreasing and total and satisfies clauses 1–4 of Definition 15 proceeds in exactly the same way
that the proof of the corresponding assertions does in the proof of the Execution Correspondence
Theorem in [17]. We repeat the details for sake of completeness.

Suppose m is not nondecreasing. Then there exists an i such that m(i) < m(i − 1). However,
m(i) = mi(i) and m(i − 1) = mi−1(i − 1) = mi(i − 1), so this contradicts the fact that mi is an
index mapping and is therefore nondecreasing. Likewise, we can see that the range of m is within
{0, . . . , |α′|}.

Clause 1 of Definition 15 holds since m0 is an index mapping and therefore satisfies m0(0) = 0.
Hence m(0) = m0(0) = 0. Assume clauses 2 or 3 do not hold. Then, there must exist an i for
which one of the clauses is invalidated. However, this contradicts the fact that, for all i, mi is an
index mapping from α|i to α

′
i with respect to f . Now assume that clause 4 does not hold. Hence,

there is an index j in α′ such that m(i) < j for all i. By definition of α′, there exists an i such that
α′|j ≤ α′i. Thus |α

′
i| ≥ j. Now Lemma 5 gives us mi(i) = |α′i|. Hence m(i) ≥ j, since m(i) = mi(i).

This contradicts m(i) < j.

Now assume that m violates clause 5 of Definition 15. Then, there exists a pair q ∈ M and an
i > 0 for which clause 5 is invalidated. However, this contradicts the fact that, for all i > 0, mi

is a live index mapping from α|i to α
′
i with respect to f (Lemma 5, clause 1). Hence m satisfies

clause 5 of Definition 15. Since m satisfies all clauses of Definition 15, m is a live index mapping
from α to α′ with respect to f , and so (α,α′) ∈ f . Since α ∈ lexecs(A,L), (α,α′) ∈ f , and α,α′

are both infinite, we can apply Lemma 8 to conclude α′ ∈ lexecs(B,M), i.e., α′ is a live execution
of (B,M), which establishes the theorem in this case.

Case 2: X = ℓR. So Sℓ is a liveness-preserving refinement mapping r = (g, h) and (A,L) ≤ℓR

(B,M) via r. Since a liveness-preserving refinement mapping is a liveness-preserving forward
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simulation, the result follows from Case 1.

Case 3: X = iℓB. So Sℓ is an image-finite liveness-preserving backward simulation b = (g, h),
and (A,L) ≤iℓB (B,M) via b. The argument is identical to that of Case 1, except that we invoke
Lemma 7 instead of Lemma 5.

Case 4: X = ℓH. So Sℓ is a liveness-preserving history relation hs and (A,L) ≤ℓH (B,M) via
hs. From Definition 13, hs is a liveness-preserving forward simulation from A to B. Hence, the
argument of Case 1 applies.

Case 5: X = iℓP . So Sℓ is an image-finite liveness-preserving prophecy relation p = (g, h), and
(A,L) ≤iℓP (B,M) via p. From Definition 14, p is an image-finite liveness-preserving backward
simulation from A to B. Hence, the argument of Case 3 applies.

Since all cases of X have been dealt with, the theorem is established. ✷

We now establish our main result: liveness-preserving simulation relations imply the live pre-
order.

Theorem 10 (Liveness) Let (A,L) and (B,M) be live automata with the same external actions.
Suppose (A,L) ≤X (B,M), where X ∈ {ℓF, ℓR, iℓB, ℓH, iℓP}. Then (A,L) ⊑ℓ (B,M).

Proof. From (A,L) ≤X (B,M), we have (A,L) ≤X (B,M) via Sℓ for some Sℓ = (g, h). We
establish traces(lexecs(A,L)) ⊆ traces(lexecs(B,M)), which, by Definition 7, proves the theorem.
Let β be an arbitrary trace in traces(lexecs(A,L)). By definition, β = trace(α) for some live
execution α ∈ lexecs(A,L). By the Live Execution Correspondence Theorem (9), there exists a
live execution α′ ∈ lexecs(B,M) such that (α,α′) ∈ Sℓ. Since (α,α′) ∈ Sℓ, we have (α,α′) ∈ g
by Definitions 2 and 15. Hence, by Lemma 2, trace(α) = trace(α′). Hence β = trace(α′), and so
β ∈ traces(lexecs(B,M)), since α′ ∈ lexecs(B,M). Since β was chosen arbitrarily, we conclude
traces(lexecs(A,L)) ⊆ traces(lexecs(B,M)), as desired. ✷

5 Refining Liveness Properties Within the Same Level of Abstrac-

tion

The previous section showed how to refine an abstract liveness condition M to a concrete liveness
condition L: every pair q ∈ M is mapped into some pair p in the semantic closure L̂ of L, and
then a liveness-preserving simulation relation that relates the R and G sets of p, q appropriately is
devised. We assume that the liveness properties L, M are directly specified, and so the pairs in M
and in L are easy to identify.5 However, pairs in L̂ − L are not directly specified, but only given
implicitly by A, L, and Definition 8. Thus, the question arises, given a pair q ∈M that is mapped
to some pair p, how do we establish p ∈ L̂? We do so as follows.

Given such a pair p, we refine it into a finite “lattice” of pairs that are already known to be
in L̂. Let P be a finite subset of L̂, and let ≺ be an irreflexive partial order over P 6. If r ∈ P ,

define succ(r) = {w ∈ P | r ≺ w ∧ ∀w′ : r � w′ ≺ w ⇒ r = w′}, where r � w
df
== r ≺ w or

r = w. Thus, succ(r) is the set of all “immediate successors” of r in (P,≺). We now impose two

5For example, if we were attempting to mechanize our method, we would assume that M , L are recursive sets.
6Following convention, we shall refer to this ordered set simply as P when no confusion arises.
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technical conditions on P : (1) for every pair r, the G set of r must be a subset of the union of
the R sets of all the immediate successors of r, i.e., r.G ⊆

⋃
w∈succ(r) w.R, and (2) P has a single

≺-minimum element bottom(P ), and a single ≺-maximum element top(P ), and bottom(P ).R = p.R
and top(P ).G = p.G.

Now let α be an arbitrary live execution of (A,L). Then, α |= ✷✸r.R ⇒ ✷✸r.G and α |=
✷✸w.R ⇒ ✷✸w.G, for all w ∈ succ(r). Since succ(r) is finite and r.G ⊆

⋃
w∈succ(r) w.R, it follows

that, if r.G holds infinitely often in α, then w.R holds infinitely often in α, for some w ∈ succ(r).
Hence, by “chaining” the above implications, we get α |= ✷✸r.R ⇒ ✷✸

⋃
w∈succ(r) w.G. Thus,

〈〈〈r.R,
⋃

w∈succ(r) w.G〉〉〉 ∈ L̂ by Definition 8. Thus, the ≺ ordering provides a way of relating
the complemented-pairs of P so that the complemented-pairs property (infinitely often R im-
plies infinitely often G) can be generalized to encompass a pair and its immediate successor
pairs. By starting with the ≺-minimum pair bottom(P ), and applying the above argument induc-
tively (using ≺ as the underlying ordering), we can establish the complemented-pairs property for
〈〈〈bottom(P ).R, top(P ).G〉〉〉, i.e., α |= ✷✸bottom(P ).R ⇒ ✷✸top(P ).G, and so 〈〈〈bottom (P ).R, top(P ).G〉〉〉 ∈
L̂. Since we require bottom(P ).R = p.R and top(P ).G = p.G, we obtain the desired result that p ∈ L̂.

Definition 17 (Complemented-pairs Lattice) Let (A,L) be a live automaton. Then (P,≺) is
a complemented-pairs lattice over L̂ iff 7

1. P is a finite subset of L̂,

2. ≺ is an irreflexive partial order over P ,

3. P contains an element top(P ) which satisfies ∀r ∈ P : r � top(P ), and an element bottom(P )
which satisfies ∀r ∈ P : bottom(P ) � r, and

4. ∀r ∈ P − {top(P )} : r.G ⊆
⋃

w∈succ(r) w.R.

The elements top(P ) and bottom(P ) are necessarily unique, since≺ is a partial order. Let lattices(L̂)
denote the set of all complemented-pairs lattices over L̂.

Lemma 11 Let (A,L) be a live automaton, (P,≺) ∈ lattices(L̂), ⊥ = bottom(P ), and ⊤ = top(P ).
Then 〈〈〈⊥.R,⊤.G〉〉〉 ∈ L̂.

Proof. Let α be an arbitrary live execution of (A,L). We show α |= ✷✸⊥.R ⇒ ✷✸⊤.G. By
Definition 8, this establishes the lemma.

We assume α |= ✷✸⊥.R and establish α |= ✷✸⊤.G. First, we establish:

If r ∈ P , r 6= ⊤, and α |= ✷✸r.R, then α |= ✷✸w.R for some w ∈ succ(r). (*)
Proof of (*): Assume the antecedent of (*). Since α is live and r ∈ L̂, we have α |= ✷✸r.R ⇒
✷✸r.G by Definition 8. Hence α |= ✷✸r.G. By Definition 17, r.G ⊆

⋃
w∈succ(r) w.R. Hence

α |= ✷✸
⋃

w∈succ(r) w.R. Since P is finite, succ(r) is finite. It follows that α |= ✷✸w.R for some
w ∈ succ(r). (End of proof of (*).)

We now construct a sequence r1, r2, . . . , ri, . . . of pairs in P such that ∀i ≥ 1 : α |= ✷✸ri.R. We
let r1 = ⊥, noting that α |= ✷✸⊥.R by assumption. We derive ri+1 by applying (*) to ri. It follows

7Note that we use the term “lattice” in an informal sense, since our complemented-pairs lattices do not satisfy
the mathematical definition of a lattice.
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by induction on the length of the derived sequence that α |= ✷✸ri+1.R (r1 = ⊥ supplies the base
case). Now suppose ⊤ is not in r1, r2, . . . Then (*) can be applied indefinitely. Since ri+1 ∈ succ(ri),
it follows that rj ≺ ri+1 for all j ∈ 1..i. Hence rj 6= ri+1 for all j ∈ 1..i. Thus r1, r2, . . . is an infinite
sequence of pairwise different complemented-pairs in P . But this is impossible, since P is finite.
Hence the assumption that ⊤ is not in r1, r2, . . . is false. It follows that r1, r2, . . . is a finite sequence
of pairwise different complemented-pairs, with ⊤ as its last member. Hence α |= ✷✸⊤.R. Since α
is live and ⊤ ∈ L̂, α |= ✷✸⊤.R ⇒ ✷✸⊤.G. Hence α |= ✷✸⊤.G, as desired. ✷

We remark that when constructing a lattice to refine a complemented-pair, we can use require-
ment 4 of Definition 17 (r.G ⊆

⋃
w∈succ(r) w.R) as a constraint that suggests how to order the

complemented-pairs of the lattice. Also, while Lemma 11 presents one method of establishing the
membership of complemented-pairs in L̂, our overall methodology is not restricted to this particular
method. Any appropriate deductive technique that suffices can be used, for example that of [40],
which is based on linear temporal logic. This provides a way of using deductive methods gener-
ally, and those based on temporal logic in particular, within a framework which accommodates the
refinement of liveness properties across multiple levels of abstraction.

6 Example—The Eventually Serializable Data Service

The eventually-serializable data service (ESDS) of [14, 26] is a replicated, distributed data service
that trades off immediate consistency for improved efficiency. A shared data object is replicated,
and the response to an operation at a particular replica may be out of date, i.e., not reflecting the
effects of other operations that have not yet been received by that replica. Thus, operations may
be reordered after the response is issued. Replicas communicate amongst each other the operations
they receive, so that eventually every operation “stabilizes,” i.e., its ordering is fixed with respect
to all other operations. Clients may require an operation to be strict, i.e., stable at the time of
response, and so it cannot be reordered after the response is issued. Clients may also specify, in
an operation x, a set x.prev of other operations that should precede x (client-specified constraints,
CSC ). We let O be the (countable) set of all operations on the data object, and V be the set of
all possible results of operations in O. R is the set of all replicas, and client(x) is the client issuing
operation x. We use x, y to index over operations, c to index over clients, and r, r′, i to index over
replicas. Each operation x has a unique identifier x.id . I is the set of identifiers of operations in
O.

In Appendix C, we give the I/O automata code (in “precondition-effect” style) from [14]. I/O
automata [33] add an input/output distinction to the external actions, i.e, all external actions
of an automaton are either input actions (which must furthermore be enabled in all states), or
output actions. This is needed to define a parallel composition operator ‖ with good composi-
tional properties. Figure 7 gives the environment of the ESDS system: a set of users, or clients,
which output requests request(x) to perform operations x, and input responses response(x, v) to
the requests, with returned value v. Figure 8 presents the specification ESDS-I . As a high-level
specification, ESDS-I is a single automaton, and therefore it does not address issues of concurrency
and distribution. The only concern is to specify the set of correct traces, which are by definition
the traces of ESDS-I . ESDS-I inputs requests request(x), and outputs responses response(x, v) to
the requests, with returned value v. Once request(x) has been received, it is “entered” into the
current partial order po, via internal action enter(x,new-po), which updates the value of po to that
given by new-po. This new value must include all operations in x.prev , and all operations that
have stabilized, as preceding x. Note that span(R) = {x | xRy ∨ yRx}, where R is a binary rela-
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tion. At any time, it is permissible to impose new ordering constraints, which is done by internal
action add constraints(new-po). The stabilize(x) internal action checks that x is totally ordered
with respect to all other operations (∀y ∈ ops , y �po x ∨ x �po y), and that all operations that
precede x have already stabilized (ops |≺pox ⊆ stabilized). In this case, x itself can be stabilized.
The calculate(x, v) internal action computes a return value v for the operation x. If x is strict, then
calculate(x, v) checks (in its precondition) that x has stabilized. The valset(x, ops ,≺po) function
returns the set of all values for x which are consistent with the set ops of all operations that have
been entered, and the partial order ≺po defined by po. The actual value returned is then chosen
nondeterministically from this set.

As an intermediate step, we refine ESDS-I to a second level specification ESDS-II . This refine-
ment consists only of changing some of the transitions. The state space and the signature remain
the same. Figure 9 presents these changes, as changes to the “precondition-effect” definitions of
some of the actions in the action list. The main difference with ESDS-I is that the precondition to
stabilize an operation x is relaxed: now, all operations that precede x are not required to be stable
themselves, but are only required to be totally ordered with respect to all other entered operations
(≺po totally orders ops |≺pox). This intermediate version ESDS-II is useful, as it is easier to con-
struct a simulation from the implementation to ESDS-II , and another simulation from ESDS-II
to ESDS-I , than it is to construct a simulation from the implementation directly to ESDS-I .

The implementation consists of front-ends, replicas, and channels. Each client c has a front-end
Frontend (c), see Figure 10, which inputs requests request(x), and relays them onto one or more
of the replicas Replica(r), via output action sendcr(〈“request”, x〉). Frontend (c) receives responses
from the replicas via input action receiverc(〈“response”, x, v〉), and relays the response onto the
client via output action response(x, v). While the frontend can receive several replies for x from
various replicas, it only relays one of these onto the client. A replica r (Figure 11) receives requests
to perform operation x via input action receivecr(〈“request”, x〉). It queues received operations into
a set pendingr of pending operations. A pending operation x can be “performed” by the internal
action do itr(x, l) if all operations in x.prev have been performed. In this case, x is assigned a “la-
bel” l larger than the labels of all operations known to be done at replica r. This label determines
the values that can be returned for x, using the valset function. Once x has been processed by
do itr(x, l), a value v for x can be returned by the output action sendrc(〈“response”, x, v〉). v is non-
deterministically chosen from among the set returned by valset(x, doner[r],≺lcr), which computes
all values for x that are consistent with the set doner[r] of operations done at replica r, and the
partial order ≺lcr on operations that is determined by the labels assigned to each operation. In ad-
dition, replicas “gossip” amongst each other, by means of the actions sendrr′(〈“gossip”, R,D,L, S〉)
and receiver′r(〈“gossip”, R,D,L, S〉). The purpose of gossiping is to bring each other up to date
on the operations that they have executed. All communication between the front-ends and the
replicas is by means of reliable asynchronous channels. Figure 12 shows a channel from process i
to process j with messages drawn from some set M.

We will use ESDS-Alg to refer to the parallel composition of all replicas, front-ends, and
channels, with all send and receive actions hidden8. Since the users must be taken into account,
the first-level specification, second-level specification, and implementation are the I/O automata
ESDS-I ‖Users , ESDS-II ‖Users , and ESDS-Alg ‖Users , respectively. We refer the reader to [14]
for a complete description of the ESDS system.

8I/O automata composed in parallel synchronize on actions with the same name, and otherwise execute indepen-
dently. An action is hidden by removing it from the set of output actions and adding it to the set of internal actions.
We refer the reader to [14, section 3] for formal definitions of parallel composition and hiding.
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G is a relation between states in ESDS-II ‖Users and ESDS-I ‖Users , such that (s, u) ∈ G if and
only if s ∈ states(ESDS-II ‖Users), u ∈ states(ESDS-I ‖Users), and:

• u.wait = s.wait

• u.rept = s.rept

• u.ops = s.ops

• u.po = s.po

• u.stabilized ⊇ s.stabilized

Figure 3: Forward Simulation from ESDS-II ‖Users to ESDS-I ‖Users

The liveness condition used in (the conference version of) [14] is that every request should
eventually receive a response, and every operation should stabilize. We express this as the following
complemented-pairs liveness condition M-I for the specification ESDS-I ‖Users :9

• {〈〈〈x ∈ wait , x 6∈ wait〉〉〉 | x ∈ O}, i.e., every request eventually receives a response.

• {〈〈〈x ∈ wait , x ∈ stabilized〉〉〉 | x ∈ O}, i.e., every operation eventually stabilizes.

Because the number of submitted operations x in general grows without bound with time, a count-
ably infinite number of pairs is needed to express this liveness condition in the natural manner
illustrated above. Note that we use predicates to denote sets of states.

6.1 Refinement from ESDS-I ‖Users to ESDS-II ‖Users

The top-level specification ESDS-I ‖Users and second-level specification ESDS-II ‖Users have the
same state-space, they only differ in some actions, as shown in Figure 9. Hence, we let the liveness
condition M-II of ESDS-II ‖Users consist of the same complemented-pairs as those in M-I , and
we map each pair of M-I into the same pair of M-II .

In [14], it is shown that the relation G given in Figure 3 is a forward simulation relation
from ESDS-II ‖ Users to ESDS-I ‖ Users. We show that G is also a liveness-preserving forward
simulation. For the pair 〈〈〈x ∈ wait , x 6∈ wait〉〉〉 it is clear that G satisfies clause 2 of Definition 10,
since G only relates states that agree on the value of wait . For the pair 〈〈〈x ∈ wait , x ∈ stabilized〉〉〉, we
see from Figure 3 that if s ∈ states(ESDS-II ‖Users) and u ∈ states(ESDS-I ‖Users) are related by
G, and s satisfies x ∈ stabilized , then u also satisfies x ∈ stabilized , since s.stabilized ⊆ u.stabilized .
Since s and u agree on the value of wait , we conclude that G satisfies clause 2 of Definition 10, for
this pair too.

By inspection, we verify that, in every live execution of ESDS-II , there is an infinite number
of executions of non-stabilize actions. Now according to the definition of G in Figure 3, every
action in ESDS-II is simulated by the same action in ESDS-I , except for the stabilize action; a
single stabilize(x) action in ESDS-II can be simulated by a possibly empty sequence of stabilize

9Throughout this section, our notation is consistent with [14].
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actions in ESDS-I . Hence, any transition generated by executing any action other than stabilize is
not always-silent, by clause 3 of Definition 10. Since every live execution of ESDS-II contains an
infinite number of these transitions, clause 3 of Definition 10 is satisfied.

Since each pair of M-I is mapped into a pair of M-II itself, rather than the semantic closure
M̂-II of M-II , we are done (i.e., there is no need to construct complemented-pairs lattices for these
pairs).

Since Definition 10 is now satisfied, we have established (ESDS-II ‖Users ,M-II ) ≤ℓF (ESDS-I ‖
Users ,M-I ). Hence, applying Theorem 10, we conclude (ESDS-II ‖ Users ,M-II ) ⊑ℓ (ESDS-I ‖
Users ,M-I ).

6.2 Refinement from ESDS-II ‖Users to ESDS-Alg ‖Users

Let L be the liveness condition of ESDS-Alg ‖Users . Since ESDS-Alg ‖Users is an implementation,
we take L to be the following: every action that is continuously enabled from some point onwards
is eventually executed (fair scheduling), and every message that is sent is eventually received (fair
polling of channels). These are reasonable liveness properties to expect of an implementation.

We map the pair 〈〈〈x ∈ wait , x 6∈ wait〉〉〉 of M-II into the pair 〈〈〈x ∈ waitc, x 6∈ waitc〉〉〉, where
c = client(x) is the client that requests operation x. We map the pair 〈〈〈x ∈ wait , x ∈ stabilized〉〉〉 of
M-II into the pair 〈〈〈x ∈ wait c, x ∈

⋂
i stable i[i]〉〉〉.

The proof obligations are then to exhibit a liveness-preserving forward simulation for this choice
of pair-mapping, and to show that the pairs 〈〈〈x ∈ waitc, x 6∈ wait c〉〉〉 and 〈〈〈x ∈ wait c, x ∈

⋂
i stable i[i]〉〉〉

are members of L̂, since they are not members of L.

6.2.1 Establishing a Liveness-preserving Forward Simulation

In [14], it is shown that the relation F given in Figure 4 is a forward simulation relation from
ESDS-Alg ‖Users to ESDS-II ‖Users . We establish that F is also a liveness-preserving forward
simulation. We first

By Definition 23, F already satisfies clause 1 of Definition 10. We argue that F also satisfies
clauses 2 and 3. Let SpReq = 〈〈〈x ∈ wait , x 6∈ wait〉〉〉, ImpReq = 〈〈〈x ∈ waitc, x 6∈ waitc〉〉〉, SpStab =
〈〈〈x ∈ wait , x ∈ stabilized〉〉〉, ImpStab = 〈〈〈x ∈ wait c, x ∈

⋂
i stablei[i]〉〉〉. Let B = ESDS-II ‖ Users ,

and A = ESDS-Alg ‖Users. Let s, u range over the states of ESDS-Alg ‖Users, ESDS-II ‖Users
respectively. We use the notation s.v to denote the value of state variable v in state s, and likewise
for u.v.

Establishing clause 2 of Definition 10 for the pairs SpReq = 〈〈〈x ∈ wait , x 6∈ wait〉〉〉 ∈ M-I and
ImpReq = 〈〈〈x ∈ waitc, x 6∈ waitc〉〉〉. F relates states s and u only if u.wait =

⋃
c s.waitc. Hence

x ∈ u.wait iff x ∈ s.waitc, where c = client(x). Thus u is a SpReq .R state iff s is a ImpReq .R state,
and u is a SpReq .G state iff s is a ImpReq .G state.

Let s
a

−→A s
′ and consider all possibilities for a. If a is one of send (along any channel),

receive (from any channel), or do itr (for any replica r), then a does not change wait c (for any
client c), and the actions of ESDS-II ‖ Users that simulate a do not change wait . Hence if

u0
b1−→B u1

b2−→B u2
b3−→B · · ·

bn−→B un is the simulating execution fragment of ESDS-II ‖Users , cor-
responding to s

a
−→A s

′ for the aforementioned cases of a, then we immediately conclude that (1) all
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F is a relation between states in ESDS-Alg ‖ Users and ESDS-II ‖ Users , i.e., F ⊆
states(ESDS-Alg ‖Users)× states(ESDS-II ‖Users), such that (s, u) ∈ F if and only if:

• u.requested = s.requested

• u.responded = s.responded

• u.wait =
⋃

c s.waitc

• u.rept =
⋃

c s.rept c ∪ s.potential rept c

• u.ops = s.ops =
⋃

r s.doner[r]

• u.po ⊆ s.po

• u.stabilized =
⋂

r s.stabler[r]

where s.potential rept c = {(x, v) | 〈“response”, x, v〉 ∈
⋃

r s.channel rc ∧ s.waitc} is the set of re-
sponses en route to Frontend(c), and u.po is the partial order induced by the various operation
constraints in the implementation. See [14] for details.

Figure 4: Forward simulation from ESDS-Alg ‖Users to ESDS-II ‖Users

ui, i ∈ 0 . . . n have the same value of wait , and (2) s and s′ have the same value of
⋃

c waitc. Together
with u0.wait =

⋃
c s.waitc, this allows us to conclude (∃i ∈ 0 . . . n : ui ∈ SpReq .R) iff s ∈ ImpReq .R

or s′ ∈ ImpReq .R, and s ∈ ImpReq .G or s′ ∈ ImpReq .G iff (∃i ∈ 0 . . . n : ui ∈ SpReq .G). Thus
clause 2 of Definition 10 is satisfied in this case.

If a is request(x), this is simulated by the same action in ESDS-II ‖Users . request(x) adds x to
wait c in ESDS-Alg ‖Users , and adds x to wait in ESDS-II ‖Users . Hence, using similar reasoning
as above, we easily verify that clause 2 of Definition 10 is satisfied in this case. The argument for
a = response(x, v) is similar. This concludes our argument that clause 2 of Definition 10 holds for
the pairs SpReq and ImpReq .

Establishing clause 2 of Definition 10 for the pairs SpStab = 〈〈〈x ∈ wait , x ∈ stabilized〉〉〉 ∈
M-I and ImpStab = 〈〈〈x ∈ wait c, x ∈

⋂
i stablei[i]〉〉〉. F relates states s and u only if u.wait =⋃

c s.waitc and u.stabilized =
⋂

i s.stablei[i] (definition of F in [14], and Figure 4). Hence x ∈ u.wait
iff x ∈ s.waitc, where c = client(x), and x ∈ u.stabilized iff x ∈

⋂
i s.stablei[i]. Thus u ∈ SpStab.R

iff s ∈ ImpStab .R, and u ∈ SpStab.G iff s ∈ ImpStab .G.

Let s
a

−→A s
′ and let u0

b1−→B u1
b2−→B u2

b3−→B · · ·
bn−→B un be the execution fragment of ESDS-II ‖

Users that simulates s
a

−→A s
′. Given the previous remarks, we conclude immediately that clause 2

of Definition 10 is satisfied when u1, . . . , un−1 are not present, i.e., the simulating fragment consists
of either a single state or a single transition.

The only case where u0
b1−→B u1

b2−→B u2
b3−→B · · ·

bn−→B un consists of more than one transition is
when a = receiverr′(m) . In this case, the actions b1, . . . , bn are add constraints(s′.po), stabilize(x1), . . . ,
stabilize(xk), where {x1, . . . , xk} =

⋂
i s
′.stable i[i] (see [14], Section 8). Now

⋂
i s.stable i[i] ⊆⋂

i s
′.stable i[i] by inspection of the receiverr′(m) action in Figure 11. Also, u0.stabilized =

⋂
i s.stablei[i],

and un.stabilized =
⋂

i s
′.stable i[i] = {x1, . . . , xk}, by definition of F and x1, . . . , xk.
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Now receiverr′(m) does not affect waitc, and add constraints(s′.po), stabilize(x1), . . . , stabilize(xk)
do not affect wait . Hence, (∃i ∈ 0 . . . n : ui ∈ SpStab.R) iff s ∈ ImpStab.R or s′ ∈ ImpStab.R. Also,
suppose s ∈ ImpStab.G or s′ ∈ ImpStab.G, i.e., x ∈

⋂
i s.stablei[i] or x ∈

⋂
i s
′.stable i[i]. Hence

x ∈
⋂

i s
′.stable i[i] since

⋂
i s.stablei[i] ⊆

⋂
i s
′.stable i[i]. Since un.stabilized =

⋂
i s
′.stable i[i], we

have x ∈ un.stabilized . Hence un ∈ SpStab.G. Hence (∃i ∈ 0 . . . n : ui ∈ SpStab.G).

We have thus established clause 2 of Definition 10 for the pairs SpStab and ImpStab.

Establishing clause 3 of Definition 10. From Figure 11, it is clear that the action sendrr′(m)
(for some m) is continuously enabled, and hence executed infinitely often in any live execution of
ESDS-Alg ‖Users . Hence, the action receiverr′(m) is also executed infinitely often. Now, according
to the definition of F (see [14], Section 8), receiverr′(m) is simulated by the sequence of actions
add constraints(s′.po), stabilize(x1), . . ., stabilize(xk), where {x1, . . . , xk} =

⋂
i s
′.stablei[i], and s

′ is
the state of ESDS-Alg ‖ Users resulting from the execution of receiverr′(m). Thus, receiverr′(m)
is always matched by at least one action, namely add constraints(s′.po). Hence, any transition
generated by executing receiverr′(m) is not always-silent, by clause 3 of Definition 10. Since every
live execution of ESDS-Alg ‖ Users contains an infinite number of these transitions, clause 3 of
Definition 10 is satisfied.

6.2.2 Establishing Membership in L̂

Establishing 〈〈〈x ∈ wait c, x 6∈ wait c〉〉〉 ∈ L̂. We use a complemented-pairs lattice over L̂, together
with Lemma 11, to establish 〈〈〈x ∈ wait c, x 6∈ waitc〉〉〉 ∈ L̂. Recall that L is the complemented-
pairs liveness condition for the implementation ESDS-Alg ‖ Users . At the implementation level,
the natural liveness hypothesis is that each continuously enabled action is eventually executed, and
each message in transit eventually arrives. We use this hypothesis to justify the pairs in L (which are
also in L̂, by definition). Figure 5 shows the complemented-pairs lattice that we use. c = client(x)
is the client that invoked operation x. We display the portion of the lattice corresponding to a

single replica r. The
... indicate where isomorphic copies corresponding to the other replicas occur

(the number of replicas is finite). Let L consist of all the pairs in Figure 5. It is straightforward to
verify that Figure 5 satisfies all the conditions of Definition 17. We justify the complemented-pairs
in Figure 5 as follows:

1. 〈〈〈x ∈ waitc,∃r :< “request”, x >∈ channel cr〉〉〉.
sendcr is continuously enabled and eventually happens, for at least one replica r.

2. 〈〈〈< “request”, x >∈ channel cr, x ∈ pendingr ∩ rcvd r〉〉〉.
Liveness of channel cr, and the definition of action receivecr in Figure 11.

3. 〈〈〈x ∈ pendingr ∩ rcvdr, x ∈ pendingr ∩ doner[r]〉〉〉.
If x.prev ⊆ doner[r] holds continuously, then either do itr is continuously enabled and even-
tually happens (making x ∈ doner[r] true), or do itr is disabled because x ∈ doner[r] becomes
true due to a gossip message. Establishing x.prev ⊆ doner[r] essentially requires a “sublat-
tice” for each x′ ∈ x.prev . This sublattice is a “chain” consisting of three pairs, with the
ordering (a) ≺ (b) ≺ (c):

(a) 〈〈〈x ∈ pendingr∩rcvd r, x
′ ∈ pendingr′ ∩rcvd r′〉〉〉 is the bottom element. It is justified since

each client includes in x.prev only operations that have already been requested. Thus
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〈〈〈x ∈ pending
r
∩ rcvd r, x ∈ pending

r
∩ doner[r]〉〉〉

〈〈〈< “response”, x, v >∈ channel rc, (x, v) ∈ rept
c
〉〉〉

〈〈〈x ∈ pending
r
∩ doner[r] ∧ x.strict ,

< “response”, x, v >∈ channel rc
〉〉〉

〈〈〈x ∈ pending
r
∩ doner[r] ∧ ¬x.strict ,

〉〉〉
< “response”, x, v >∈ channelrc

〈〈〈< “request”, x >∈ channelcr, x ∈ pending
r
∩ rcvdr〉〉〉

〈〈〈x ∈ waitc, ∃r :< “request”, x >∈ channel cr〉〉〉

〈〈〈(x, v) ∈ rept
c
, x 6∈ wait c〉〉〉

Figure 5: Complemented-pairs lattice that establishes 〈〈〈x ∈ wait c, x 6∈ waitc〉〉〉 ∈ L̂ (c = client(x)).

x′ ∈ x.prev is eventually received by some replica r′, at which point x′ ∈ pendingr′∩rcvd r′

holds.

(b) 〈〈〈x′ ∈ pendingr′ ∩ rcvd r′ , x
′ ∈ pendingr′ ∩ doner′ [r

′]〉〉〉 is the middle element. It is justified
“inductively,” i.e., it can be expanded into a sublattice in exactly the same way as
〈〈〈x ∈ pendingr ∩ rcvdr, x ∈ pendingr ∩ doner[r]〉〉〉. This “nested” expansion is guaranteed
to terminate however, since x.prev is finite, for all x.

(c) 〈〈〈x′ ∈ doner′ [r
′], x′ ∈ doner[r]〉〉〉 is the top element. It is justified since r′ eventually sends

a gossip message to r.

By applying Lemma 11 to this sublattice, we conclude 〈〈〈x ∈ pendingr∩rcvdr, x
′ ∈ doner[r]〉〉〉 ∈

L̂. Now doner[r] increases monotonically, x′ ∈ doner[r] is stable—once true, it remains true.
Hence, from the aforementioned pair for each x′ ∈ x.prev , we conclude that x.prev ⊆ doner[r]
eventually holds, and remains true subsequently, as required.

Note that the condition l > labelr(y.id) does not need to be verified as eventually holding,
since it merely expresses a constraint on the value of the “action parameter” l, i.e., the
only instances of do itr(x, l) which are enabled are those having values of l that satisfy l >
labelr(y.id). That is, l is properly regarded as part of the “name” of the action do itr(x, l).

4. 〈〈〈x ∈ pendingr ∩ doner[r] ∧ x.strict , < “response”, x, v >∈ channel rc〉〉〉.
This is justified by the following sublattice, where the ordering relation is (a) ≺ (b) ≺ (c) ≺
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(d) ≺ (e). x ∈ pendingr, x.strict , are implicit conjuncts of all the predicates in the sublattice,
except the Green predicate of pair (e), and are omitted for clarity.

(a) 〈〈〈x ∈ ∩doner[r], x ∈ ∩r′doner′ [r
′]〉〉〉. Justified since r sends gossip messages to every other

replica r′.

(b) 〈〈〈x ∈ ∩r′doner′ [r
′], x ∈ stabler[r]〉〉〉. Justified since each r′ sends gossip messages to r.

(c) 〈〈〈x ∈ stabler[r], x ∈ ∩r′stabler′ [r
′]〉〉〉. Justified since r sends gossip messages to every other

replica r′.

(d) 〈〈〈x ∈ ∩r′stabler′ [r
′], x ∈ ∩r′stabler[r

′]〉〉〉. Justified since each r′ sends gossip messages to
r.

(e) 〈〈〈x ∈ ∩r′stabler[r
′], < “response”, x, v >∈ channel rc〉〉〉. Justified since x ∈ pendingr,

x ∈ doner[r], and x ∈ ∩r′stabler[r
′] all hold continuously, since doner[r] and stabler[r

′]
grow monotonically. Hence sendrc(< “response”, x, v >) is continuously enabled, and so
is eventually executed.

5. 〈〈〈x ∈ pendingr ∩ doner[r] ∧ ¬x.strict , < “response”, x, v >∈ channel rc〉〉〉.
sendrc(< “response”, x, v >) is continuously enabled and eventually happens.

6. 〈〈〈< “response”, x, v >∈ channel rc, (x, v) ∈ rept c〉〉〉.
Liveness of channel rc, and the definition of action receiverc in Figure 10.

7. 〈〈〈(x, v) ∈ rept c, x 6∈ wait c〉〉〉.
response(x, v) is continuously enabled and eventually happens.

Establishing 〈〈〈x ∈ wait c, x ∈
⋂

i stable i[i]〉〉〉 ∈ L̂. We use the complemented-pairs lattice over L̂
given in Figure 6 together with Lemma 11. The bottom three complemented-pairs in Figure 6 also
occur in Figure 5, and have therefore already been justified. We justify the remaining pairs as
follows.

1. 〈〈〈x ∈ doner[r], x ∈
⋂

i done i[i]〉〉〉. Justified since r sends gossip messages to every other replica.

2. 〈〈〈x ∈
⋂

i donei[i], x ∈ stabler[r]〉〉〉. Justified since each i sends gossip messages to r.

3. 〈〈〈x ∈ stabler[r], x ∈
⋂

i stablei[i]〉〉〉. Justified since r sends gossip messages to every other
replica.

Since Definition 10 is now satisfied, we have established (ESDS-Alg ‖Users , L) ≤ℓF (ESDS-II ‖
Users ,M-II ). Hence, applying Theorem 10, we conclude (ESDS-Alg ‖ Users , L) ⊑ℓ (ESDS-II ‖
Users ,M-II ). Together with (ESDS-II ‖Users ,M-II ) ⊑ℓ (ESDS-I ‖Users ,M-I ) established above,
we have (ESDS-Alg ‖Users , L) ⊑ℓ (ESDS-I ‖Users ,M-I ), as desired.

We have illustrated three levels of abstraction, and two liveness-preserving forward simulations,
between the top and middle, and middle and bottom levels. It is straightforward to continue this
process. For example, an actual implementation would not simply route a request to any replica, but
would select the replica according to certain criteria, for example load balancing/performance [44],
or distance from the client [48]. Thus, the front-ends and replicas would be refined to incorporate a
load-balancing/anycast/replica (or mirror) location “service” which, given a request from a client
c, assigns some replica r to service that request. We then map the complemented-pair 〈〈〈x ∈
wait c,∃r :< “request”, x >∈ channel cr〉〉〉 into a pair at the next lower level which expresses the
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〈〈〈x ∈ pending
r
∩ rcvdr, x ∈ pending

r
∩ doner[r]〉〉〉

〈〈〈< “request”, x >∈ channelcr, x ∈ pending
r
∩ rcvdr〉〉〉

〈〈〈x ∈ wait c, ∃r :< “request”, x >∈ channelcr〉〉〉

〈〈〈x ∈ doner[r], x ∈
⋂

i
donei[i]〉〉〉

〈〈〈x ∈ stabler[r], x ∈
⋂

i
stablei[i]〉〉〉

〈〈〈x ∈
⋂

i
donei[i], x ∈ stabler[r]〉〉〉

Figure 6: Complemented-pairs lattice that establishes 〈〈〈x ∈ waitc, x ∈
⋂

i stable i[i]〉〉〉 ∈ L̂ (c =
client(x)).

liveness of the service: the service eventually assigns some replica r to every request x. This pair
could then be justified by constructing a lattice whose elements are the specified or derived liveness
properties of the service.

7 Discussion

7.1 Alternative Choices for Specifying Liveness Properties

We have used the complemented-pairs acceptance condition to specify liveness properties. There
are other acceptance conditions for finite automata over infinite strings that we could have chosen:
Buchi, generalized-Buchi, Rabin, and Muller. We briefly discuss each in turn.

A Buchi condition is a single set Green of states, and the computation must contain an infinite
number of states from Green. This can be expressed as a single complemented pair 〈〈〈true ,Green〉〉〉,
and so is subsumed by complemented-pairs. A generalized-Buchi condition is a set {Greeni | i ∈ η}
of sets of states, and for each Greeni, the computation should contain an infinite number of states
from Greeni. This can be expressed as the set of complemented-pairs {〈〈〈true ,Greeni〉〉〉 | i ∈ η} and
so is also subsumed by complemented-pairs.

The Rabin condition is a set {〈〈〈true ,Greeni〉〉〉 | i ∈ η} of pairs, however the acceptance condition
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is different. A computation α is accepted iff for some pair 〈〈〈Redi,Greeni〉〉〉, α does not contain an
infinite number of states in Redi, and α does contain an infinite number of states in Greeni. This
condition is a “disjunctive” one, it constrains a computation only with respect to any one of the
pairs, not all of them at once. Since, in writing specifications, conjunction is far more useful than
disjunction, i.e., we typically list some properties all of which must be satisfied, we feel that this
condition would not be useful in practice.

The Muller condition is a set {Greeni | i ∈ η} of sets of states, and, the set of states that occur
infinitely often along the computation should be exactly one of the Greeni. This condition is not
very suitable for an infinite-state model, since it is possible (and indeed, often the case) that an
infinite computation does not contain any particular state that recurs infinitely often, since the
model usually contains unbounded data, such as integers, reals, sequences, or sets. Thus, the set
of states each of which occurs infinitely often along the computation, is usually empty.

Finally, we consider the “temporal leads-to” property. Roughly, p leads-to q means that, when-
ever p holds, then q subsequently holds. In our framework, leads-to properties can be expressed
and verified by using history variables. Let flagp be a boolean history variable that is initially
false, is set whenever p ∧ ¬q holds, and reset whenever q holds. Then, the complemented-pair
〈〈〈flagp, q〉〉〉 expresses “p leads-to q.” Since flagp is not used to affect control flow, it does not need to
be “implemented.” Thus, the issue of atomically detecting the values of p and q at run time and
updating flagp, does not arise.

7.2 Application to Fault-tolerance

Our method can be applied to the verification of fault tolerance properties. We consider situations
in which the occurrence of a fault can cause the system to enter a “bad” state, i.e., one that
is unreachable under normal execution [5]. Let good denote the set of states that are reachable
under normal system execution from a start state, and let fault denote the set of states that result
immediately after a fault occurs, i.e., the post-states of faults (the faults can occur in any state,
good or bad). If follows that, under normal execution (no faults) only good states are reachable
from good states.

We are interested in “nonmasking” fault-tolerance properties of the type: once faults stop
occurring, the system will eventually recover to a good state (and therefore remain forever after
in good states, since only good states are reachable from good states in the absence of faults).
Expressed in temporal logic, this is (✸✷¬fault =⇒ ✷✸good). This is logically equivalent to
✷✸(fault ∨ good). We can express this as the complemented pair 〈〈〈true , fault ∨ good〉〉〉.

Hence, the liveness condition 〈〈〈true , fault∨good〉〉〉 defines the set of “live” executions to be either
(1) those along which an infinite number of faults occur (in which case we have no obligation to
recover to a good state) or (2) those along which an infinite number of good states occur. In the
latter case, we may also assume that faults stop occuring, since the negation of this is covered by
case (1). Since only good states are reachable from good states, it follows that there is some suffix
consisting entirely of good states, and so the system has recovered.

Thus, “live” executions are those in which the system exhibits the desired fault-tolerance prop-
erty. The trace of such an execution is then an “external fault-tolerant behavior.”

We can now refine such nonmasking fault-tolerance properties, i.e., to establish that the exter-
nal fault-tolerant behaviors of an implementation are included in those of the specification. Our
framework thus can take the place of theories that are specialized to dealing with nonmasking
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fault-tolerance, e.g., [12], which we have shown is just a particular kind of liveness property.

7.3 Mechanization Of Our Method

Our method imposes the following proof obligations:

1. Devise an appropriate liveness-preserving simulation and check that it satsifies all of the
conditions of its definition (one of Definitions 10–14).

2. For each derived pair, devise a complemented-pairs lattice and check that it satisfies the
conditions of Definition 17.

These conditions can be formalized in a first-order assertion language with interpreted symbols.
We refer the reader to [16, 19] for details. The conditions can be verified using theorem provers
such as PVS [46]. For lack of space, we omit an extended discussion of these issues, which can
be found, for example, in [19]. That paper presents normed simulations, where the existence of a
finite execution fragment at the abstract level that matches a concrete transition is replaced by the
existence of either a single matching transition, or an internal transition that decreases a supplied
norm (a function over a well-founded domain). It should be possible to extend the ideas in this
paper to normed simulations. For example, if the concrete transition contains a Red state, then
we require that, by the time that either the matching abstract transition has been generated, or
the norm function has decreased to minimum, that a corresponding Red state has appeared at the
abstract level. We leave the details to another occasion.

8 Expressive Completeness of Complemented-pairs Liveness Con-

ditions

We now investigate the expressiveness of complemented-pairs: what are the live execution properties
which can be expressed by complemented-pairs conditions? First, we make this notion precise.

Definition 18 Let A be an automaton and let ϕ be a live execution property for A. Then we say
that a liveness condition L expresses ϕ if and only if (A,L) is a live automaton and lexecs(A,L) = ϕ.

The use of (complemented-pairs) liveness conditions to specify liveness means that the liveness
of an execution depends only on the set of states which occur in that execution, and not on their
ordering. This is necessary, to satisfy the machine closure condition, since ordering is a safety
property: once an ordering is violated along a finite execution, no extension can then satisfy the
ordering.

In Section 8.1, we show that, under some assumptions that are natural for infinite-state sys-
tems, that the generalized Buchi condition is expressively complete, i.e., they can express any live
execution property. Since complemented pairs subsumes generalized Buchi, the result then carries
over to our framework.

In Section 8.2, we show that complemented pairs are expressively complete if history variables
can be used.
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8.1 Relative Expressive Completeness of Complemented-pairs Liveness Condi-
tions

In infinite-state systems, it is often the case that the occurrence of “significant” events is perma-
nently recorded by changes to the state. For instance, in the eventually-serializable data service
of Section 6, the execution of every operation on the data results in a permanent record of that
operation’s unique identifier. Any database system which maintains logs is also an example of this.
So is a real-time system in which clocks maintain the time, if we consider the passage of time to be a
significant event. This large class of systems justifies the assumption that a particular state cannot
repeat infinitely often along a live execution, since we expect that significant events (e.g., operation
execution, transaction commit, time passage) occur infinitely often along a live execution. Thus,
we assume the following condition in this section:

Assumption 1 (No infinite repetition) Let (A,L) be a live automaton, and α = s0a1s1 . . . be
a live execution of (A,L). Then, there is no state s such that s = si for an infinite number of
values for the index i. That is, no state occurs infinitely often along α.

Since a generalized-Buchi condition depends only on the set of states which occur in that
execution, we take it as reasonable that if one execution contains “more” states than another, and
the latter execution is live, then the former execution should also be live. In this section, we restrict
attention to liveness properties which satisfy this condition, which we call robust properties. Our
notion of one execution containing “more” states than another is captured by a relation ✁ between
executions.

Definition 19 (✁) Let α = s0a1s1 . . . and γ be infinite executions of automaton A. Then γ ✁ α
iff there exists a suffix γ′ = u0b1u1 . . . of γ and a mapping m : {0, 1, . . .} 7→ {0, 1, . . .} such that

1. ∀i ≥ 0 : sm(i) = ui, and

2. ∀i ≥ 0 : m−1(i) is a finite set.

Thus, γ ✁ α iff γ has some suffix γ′ which can be put into a correspondence with α as follows.
If a state s occurs some finite (> 0) number of times in γ′, then state s also occurs some finite
number of times in α. If s occurs infinitely often in γ′, then s also occurs infinitely often in α.
Note that Assumption 1 does not rule this out, since it applies only to live executions. ✁ is clearly
reflexive and transitive, and so is a preorder. We formalize the condition discussed above as the
class of robust live execution properties.

Definition 20 (Robust Live Execution Property) Let ϕ be a live execution property for au-
tomaton A. Then, ϕ is robust for A if and only if:

for all γ, α ∈ execsω(A), if γ ✁ α and γ ∈ ϕ then α ∈ ϕ.

Our robustness condition corresponds more closely to using a generalized-Buchi acceptance con-
dition than a complemented-pairs acceptance condition (see Section 7.1 above). Since complemented-
pairs subsume generalized-Buchi, this is still within our framework, and also allows for a simpler
technical development. The definition of live trace properties corresponding to robust live execution
properties is straightforward.
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Definition 21 (Robust Live Trace Property) Let A be an automaton, and ψ ⊆ traces(A).
Then, ψ is a robust live trace property for A if and only if there exists a robust live execution
property ϕ for A such that ψ = traces(ϕ).

We now show that an execution in ϕ can be distinguished from an execution outside ϕ by means
of a simple Buchi acceptance condition. For an execution α, define states(α) = {s | s occurs along α}.

Proposition 12 Let A be an automaton, and let ϕ be an arbitrary robust live execution property
for A. Let γ, α ∈ execsω(A) be such that γ ∈ ϕ and α 6∈ ϕ. Then there exists a set Gα,γ ⊆ states(A)
such that γ |= ✷✸Gα,γ and α |= ✷¬Gα,γ.

Proof. Since γ is an infinite execution, we have by Assumption 1 that states(γ) is an infinite set.
Now suppose that states(γ)−states(α) is a finite set. Then, by Assumption 1, there exists a suffix γ′

of γ which contains no state in states(γ)−states(α). Hence states(γ′) ⊆ states(α). By Assumption 1
each state along γ′ repeats only a finite number of times. Hence we have γ′ ✁ α by Definition 19.
Hence γ ✁ α, again by Definition 19. Thus by Definition 20, α ∈ ϕ, contrary to assumption. We
conclude that states(γ) − states(α) is an infinite set. Thus γ |= ✷✸(states(γ) − states(α)). Also,
α |= ✷¬(states(γ) − states(α)), by definition. So, letting Gα,γ = states(γ) − states(α) establishes
the proposition. ✷

We next show that an execution outside ϕ can be distinguished from every execution inside ϕ
by means of a simple Buchi acceptance condition.

Proposition 13 Let A be an automaton, and let ϕ be an arbitrary robust live execution property
for A. Let α ∈ execsω(A) be such that α 6∈ ϕ. Then there exists a set Gα ⊆ states(A) such that
α |= ✷¬Gα and ∀γ ∈ ϕ : γ |= ✷✸Gα.

Proof. Let γ be an arbitrary execution in ϕ, and let Gα,γ be the set given by Proposition 12 for α,
γ. Then γ |= ✷✸Gα,γ and α |= ✷¬Gα,γ . Let Gα =

⋃
γ∈ϕ Gα,γ. Then, ∀γ ∈ ϕ : γ |= ✷✸Gα, since

Gα,γ ⊆ Gα. Also, α |= ✷¬Gα since α |= ✷¬Gα,γ for every Gα,γ, γ ∈ ϕ. ✷

We now present the relative completeness result: every execution outside ϕ can be distinguished
from every execution inside ϕ by means of a generalized-Buchi acceptance condition.

Theorem 14 (Relative Expressive Completeness of Generalized-Buchi) Let A be an au-
tomaton, and let ϕ be an arbitrary robust live execution property for A. Then there exists a
generalized-Buchi condition L = {Gi | i ∈ η} over A such that ϕ = {γ | ∀i ∈ η : γ |= ✷✸Gi}.

Proof. If ϕ = execsω(A) then letting L = {true} establishes the theorem. Hence we assume that
ϕ is a proper subset of execsω(A) for the rest of the proof. Let α be an arbitrary execution in
execsω(A)− ϕ, and let Gα be as given in Proposition 13 for α. Let L = {Gα | α ∈ execsω(A)− ϕ}.
Define lexecs(A,L) = {γ | ∀α ∈ execsω(A) − ϕ : γ |= ✷✸Gα}. We show that ϕ = lexecs(A,L). The
proof is by double-containment.

lexecs(A,L) ⊆ ϕ: Choose arbitrarily α 6∈ ϕ. So α ∈ execsω(A) − ϕ. Hence α |= ✷¬Gα by
Proposition 13, and so α 6|= ✷✸Gα. Thus α 6∈ lexecs(A,L) by definition of lexecs(A,L). Taking the
contrapositive yields α ∈ lexecs(A,L) implies α ∈ ϕ, i.e., lexecs(A,L) ⊆ ϕ.

ϕ ⊆ lexecs(A,L): Choose arbitrarily γ ∈ ϕ and α ∈ execsω(A) − ϕ. Hence γ |= ✷✸Gα by
Proposition 13. Hence ∀α ∈ execsω(A) − ϕ : γ |= ✷✸Gα. Hence γ ∈ lexecs(A,L) by definition of
lexecs(A,L). Thus ϕ ⊆ lexecs(A,L). ✷
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Corollary 15 (Relative Expressive Completeness of Complemented-pairs) Let A be an
automaton, and let ψ be an arbitrary robust live trace property for A. Then there exists a complemented-
pairs liveness condition L over A such that traces(lexecs(A,L)) = ψ.

Proof. Let ψ be an arbitrary robust live trace property for A. By Definition 21, there exists a
robust live execution property ϕ for A such that ψ = traces(ϕ). By Theorem 14, there exists a
generalized-Buchi condition {Gi | i ∈ η} over A such that ϕ = {γ | ∀i ∈ η : γ |= ✷✸Gi}. Let
L = {〈〈〈true ,Gi〉〉〉 | i ∈ η}. Then lexecs(A,L) = ϕ. Hence there exists a complemented-pairs liveness
condition L over A such that traces(lexecs(A,L)) = ψ. ✷

8.2 Expressive Completeness of Complemented-pairs for Liveness Properties of
Forest Automata

An automaton A is a forest automaton iff for each reachable state s of A, there is exactly one
(finite) execution of A with last state s. Thus, if α,α′ are arbitrary different infinite executions of
A, then they have only a finite number of states in common. Any automaton can be turned into a
forest automaton by adding a history variable which records the execution up to the current state.
While this is obviously impractical for a real implementation, such a variable is only needed for
modeling and analysis purposes; it does not have to be implemented since it does not affect the
actual execution of the automaton.10

Let α be an arbitrary infinite execution of A. Define pair (α) = 〈〈〈states(α), ∅〉〉〉.

Proposition 16 Let A be a forest automaton. Then ∀α,α′ ∈ execsω(A) : α′ 6= α iff α′ |= pair (α).

Proof. Let α,α′ be arbitrary elements of execsω(A). If α′ 6= α, then α′ |= ✸✷¬states(α), since α,α′

have only a finite number of states in common. Hence α′ 6|= ✷✸states(α), and so α′ |= pair (α). If
α′ = α, then α′ |= ✷✸states(α), and so α′ 6|= pair (α). ✷

We show that, if ϕ is a live execution property for automaton A, then there exists a liveness
condition which expresses ϕ, i.e. such that an execution satisfies every complemented-pair in the
condition iff it is a member of ϕ.

Theorem 17 (Expressive Completeness of Complemented-pairs for Forest Automata)
Let A be a forest automaton, and let ϕ be an arbitrary live execution property for A. Then there
exists a complemented-pairs liveness condition L over A such that lexecs(A,L) = ϕ.

Proof. If ϕ = execsω(A) then letting L = {〈〈〈true , true〉〉〉} establishes the theorem. Hence we
assume that ϕ is a proper subset of execsω(A) for the rest of the proof. Let L = {pair (α) | α ∈
execsω(A)− ϕ}. We show that lexecs(A,L) = ϕ. The proof is by double-containment.

lexecs(A,L) ⊆ ϕ: Choose arbitrarily α′ ∈ lexecs(A,L) and α ∈ execsω(A)−ϕ. Now lexecs(A,L) ⊆
execsω(A) by definition, and so α′ ∈ execsω(A). From the definition of L, we have α′ |= pair (α).
Hence, by Proposition 16, α 6= α′. Since α was chosen arbitrarily from execsω(A)−ϕ, we conclude
α′ 6∈ execsω(A)− ϕ. Hence α′ ∈ ϕ, since α′ ∈ execsω(A).

ϕ ⊆ lexecs(A,L): Choose arbitrarily α′ ∈ ϕ and α ∈ execsω(A) − ϕ. Hence α 6= α′. Hence, by
Proposition 16, α′ |= pair (α). Since α was chosen arbitrarily from execsω(A) − ϕ, we conclude,
from the definition of L, that α′ ∈ lexecs(A,L). ✷

10The terms “ghost variable” and “auxiliary variable” have been used in the literature for this notion.
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Corollary 18 (Expressive Completeness of Complemented-pairs for Forest Automata)
Let A be a forest automaton, and let ψ be an arbitrary live trace property for A. Then there exists
a complemented-pairs liveness condition L over A such that traces(lexecs(A,L)) = ψ.

Proof. Let ψ be an arbitrary live trace property for A. By Definition 4, there exists a live execution
property ϕ for A such that ψ = traces(ϕ). By Theorem 17, there exists a liveness condition L
over A such that lexecs(A,L) = ϕ. Hence there exists a liveness condition L over A such that
traces(lexecs(A,L)) = ψ. ✷

9 Related Work

The use of an infinite number of complemented pairs was proposed by Vardi [53], which defines
a recursive Streett automaton to be one whose transition relation is recursive, and whose com-
plemented pairs are defined by recursive sets. Recursive Buchi automata are defined similarly.
Recursive Wolper automata are those with a recursive transition relation and no acceptance con-
ditions. Every infinite run of the Wolper automaton is accepting. The paper shows that Recursive
Wolper, Buchi, and Street automata all accept the same set of languages, namely Σ1

1. In our
approach, we make no restrictions on the set of complemented pairs. For example, we allow un-
countable sets of pairs, which could be useful for specifications over uncountable domains, e.g., the
reals.

The safety-liveness classification was first proposed in [27]. Formal characterizations of safety
and liveness, variously based on Buchi automata, temporal logic, or the Borel hierarchy, were
given in [2, 37, 50]. Many researchers have proposed deductive systems for proving properties of
infinite-state reactive and distributed systems, including liveness properties, e.g., [3, 28, 29, 38].
Some of the methods proposed to date incorporate diagrammatic techniques, similar in spirit to
our complemented-pairs lattices. In particular, Owicki and Lamport [45] propose proof lattices,
and Manna and Pnueli [36, 40] propose proof diagrams, both for establishing liveness properties of
concurrent programs. In [41], Manna and Pnueli propose three different kinds of verification dia-
grams, two for safety properties, and one for liveness properties of the form ✷(U =⇒ ✸V ), where
U, V are state-assertions, that is, temporal leads-to properties. Nodes in this diagram are labeled
with state-assertions, and directed edges between nodes represent program transitions. Some of
these edges correspond to “helpful” transitions, which are guaranteed to occur (using fairness) if
execution enters their source node, and whose occurrence makes progress towards making V true.
Browne et. al. [8] and Manna et. al. [35] present generalized verification diagrams, which can be
used to establish arbitrary temporal properties of programs, including liveness properties. These
are a particular kind of ω-automaton (“formula automata”). These methods relate a program,
expressed in an operational notation, to a property expressed in temporal logic, i.e., they relate
two artifacts expressed in very different notations. Thus, they cannot be used to refine liveness
properties in a multi-stage stepwise refinement method that, starting with a high-level specification,
expressed in a particular (operational) notation, constructs a sequence of artifacts, all expressed
in the same notation, and each a refinement of the previous one, and ending with the detailed
implementation.

Our complemented-pairs lattices relate a liveness property of an automaton, to a liveness prop-
erty of a lower level automaton, i.e., the relationship is between two artifacts expressed in the same
notation. This forms the basis for a multi-stage proof technique that refines high-level liveness
properties down to the liveness properties of an implementation in several manageable steps (our
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use of “sublattices” in Section 6 is an example of this). Furthermore, each indivudual refinement
step is itself decomposed into the tasks involved in constructing lattices and discharging the associ-
ated “verification conditions.” We feel that this ability to decompose a liveness proof into multiple
stages directly attacks the scalability problem, and is one of our main contributions. UNITY [9]
provides a framework in which a subclass of general liveness properties, namely “leads-to” can be
verified and refined. The approach is proof theoretic, and also relies on fairness. We showed in
Section 7.1 above how to deal with leads-to properties in our framework. All of the aforementioned
methods operate only at the level of executions, and do not provide a notion of external behavior,
such as a set of traces.

Gawlick et. al. [17, 18] presents a proof method for liveness properties. In that paper, a liveness
property of an automaton A is modeled as a subset L of the executions of A.11 However, the method
presented there imposes a proof obligation concerning the liveness of individual executions, without
providing any rule or method for discharging this obligation. Specifically, in addition to establishing
a simulation, we have to show that if an execution α of the implementation A corresponds to an
execution α′ of the specification B, and α is live (i.e., α is a member of the liveness property),
then α′ is also live12. Merely establishing a simulation between A and B is insufficient to show
this, since the simulation relation makes no reference to the liveness conditions of A and B. The
main concern in [17] is the interaction between liveness properties and parallel composition; a
notion of “environment-freedom” is introduced which enables the use of compositional verification
for liveness. The published version [18] omits the proof method.

Likewise, Jensen [23] presents simulation relations for proving liveness properties, and also
requires that an “inclusion” condition be verified. A difference is that the live executions are exactly
the fair executions, and so the inclusion property becomes: if an execution α of the implementation
A corresponds to an execution α′ of the specification B, and α is fair, then α′ is also fair (Theorems
2.9 and 2.10 in [23]).

Sogaard-Andersen, Lynch, and Lampson [51] presents a similar method, with the main difference
being that the liveness property is given by a linear temporal logic formula. Now, the proof
obligation is that if an execution α of the implementation A corresponds to an execution α′ of the
specification B, and α satisfies the liveness formula for A, then α′ satisfies the liveness formula for
B.

Henzinger et. al. [21] presents various extensions of simulation that take fairness into account.
Fairness is expressed using either Buchi or Streett (i.e., complemented-pairs) acceptance conditions.
However, the fair simulation notions are defined using a game-theoretic semantics, and require a
priori that fair executions of the concrete automaton have matching fair executions in the abstract
automaton. There is no method of matching the Red and Green states in the concrete and ab-
stract automata to assure fair trace containment. Also, the setting is finite state, and the paper
concentrates on algorithms for checking fair simulation.

Alur and Henzinger [4] proposes the use of complemented-pairs acceptance conditions to define
liveness properties. However it restricts the conditions to contain only a finite number of pairs.
As our example in Section 6 shows, it is very convenient to be able to specify an infinite number
of pairs—in this case, we were able to use two pairs for each operation x submitted to the data
service, one pair to check for response, and the other to check for stabilization. It would be
quite difficult to specify the liveness properties of the data service using only a finite number of
pairs. If however, the system being considered is finite-state, then we remark that much of the

11L must satisfy the machine closure constraint of Definition 5.
12See [17], page 89.
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work on temporal logic model checking seems applicable. For example, the algorithm of Emerson
and Lei [13] for model checking under fairness assumptions can handle the complemented-pairs
acceptance condition. While [4] gives rules for compositional and modular reasoning, it does not
provide a method for refining liveness properties. As stated above, we believe this is a crucial aspect
of a successful methodology for dealing with liveness. It should be clear that Figure 5 provides a very
succinct presentation for the refinement of the liveness property expressed by 〈〈〈x ∈ wait , x 6∈ wait〉〉〉,
namely that every request eventually receives a response.

Our work is in the linear-time setting, where the external behavior is a set of traces. In the
branching-time setting, the external behavior can be given as a “trace-tree” [21], i.e., a tree whose
branches are traces. Our liveness-preserving simulation relations should imply an appropriate
containment notion between “live-trace-trees,” i.e., a tree whose branches are live traces. However
we point out technical differences between our setting and [4, 21]: we abstract away states and
internal actions to obtain traces, whereas in [4, 21] an execution is a sequence of states (actions are
not named), and a trace is obtained by applying an “observation function” to each state along the
execution.

Kesten, Pnueli, and Vardi [24, 25] present a method of finitary abstraction: construct a finite-
state abstraction (“abstract system”) of an infinite-state “concrete” system, and model check this
abstraction for the required properties. The method deals with properties expressed in full linear
time temporal logic, (and so handles both safety and liveness), and is complete, i.e., a suitable finite
state abstraction can always be constructed. The semantics of the concrete system is given by a Fair
Discrete System (FDS), which consists of (1) a finite set of typed system variables, containing the
data and control state (the concrete variables), (2) a predicate giving the set of initial states, (3) a
predicate giving the transition relation, (4) a justice condition; a finite set of predicates {J1, ..., Jk},
where each Ji must hold infinitely often along a computation, and (5) a compassion condition,
a finite set of pairs of predicates {< p1, q1 >, ...., < pn, qn >}; along a computation, if pi holds
infinitely often, then qi must hold infinitely often. The justice and compassion conditions ensure
that the concrete system satisfies liveness properties by restricting attention to “fair” computations.
For a given concrete system, a finite-state abstract system is specified syntactically, by giving a
set of abstract variables (with finite domains), and for each abstract variable, giving its value
as an expression over the concrete variables. This implicitly defines a mapping from concrete to
abstract states, and gives rise to two abstraction operators on concrete predicates: (1) a universal
(contracting) abstraction, that holds in an abstract state iff the concrete predicate holds in all
corresponding concrete states, and (2) an existential (expanding) abstraction, that holds in an
abstract state iff the concrete predicate holds in some corresponding concrete state. The (concrete)
temporal properties to be verified are abstracted by distributing these operators through temporal
modalities (nexttime, until) and disjunction. Distribution through negation converts a universal
abstraction into an existential one, and vice-versa. The abstract system is obtained by applying
existential abstraction to the initial state predicate and each justice predicate. The transition
relation is abstracted by “lifting” it to the abstract level using the definitions of the abstract
variables in terms of the concrete variables. The compassion pairs < pi, qi > are abstracted by
applying universal abstraction to pi and existential abstraction to qi. A main result is that if the
abstracted system satisfies the abstracted property, then the concrete system satisfies the concrete
property. Another main result is that the method is complete: if the concrete system satsifies the
property, then there exists a corresponding finite state abstract system and abstracted property
such that the abstract system satsifies the abstract property. To obtain completeness, the concrete
system must be “augmented” by composing it (synchronously) with a “ranking monitor,” which
tracks the difference in successive values of a variant function (“progress measure” in the paper)
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that decreases with progress towards satisfying the liveness property, and is defined over a well-
founded domain. The reason for incompleteness of the unaugmented method is liveness properties.
A major difference with our approach is that the number of complemented pairs is finite, whereas
we allow an infinite set. Furthermore, the abstract system in our approach is not necessarily finite
state. Verification in our approach is by manually devising a liveness-preserving simulation relation,
and the needed complemented pairs lattices, and then checking the conditions in the corresponding
definitions, possibly with mechanization via theorem proving (see Section 7.3). Verification in
[24, 25] is by manually devising the finitary abstraction mapping and the ranking monitors, and
then model-checking the resulting abstracted system against the abstracted property. There is no
method for deriving a liveness property at one level from other liveness properties at the same level,
like our complemented-pairs lattices provide.

In [52], a method of abstraction based on Galois theory is presented. This is based on extensions
of the framework of abstract interpretation [10] to temporal properties. Again, there are two
abstraction notions: under-approximation and over-approximation. In [11], the interaction between
abstraction and model checking under fairness is discussed. It is pointed out that abstraction really
requires three-valued logic, since, e.g., a proposition that is true in one concrete state and false in
another has “unknown” value in an abstract state that represents both concrete states. To handle
fairness properly, two abstractions of the transition relation are introduced, called the free and
constrained transition relations.

10 Conclusions and Further Work

We have presented five liveness-preserving simulation relations that allow us to refine the liveness
properties of infinite-state distributed systems. Our method for refining liveness requires reasoning
only over individual states and finite execution fragments, rather than reasoning over entire exe-
cutions. We believe that the use of simulation-based refinement together with complemented-pairs
lattices for expressing and combining liveness properties provides a powerful and general frame-
work for refining liveness properties. In particular, our approach facilitates the decomposition of
the refinement task at each level into simpler subtasks: devise the liveness-preserving simulation
relation, and devise the complemented-pairs lattices. Since the lattices are a kind of diagram, they
also facilitate the decomposition of proofs and the separation of concerns, which contributes to
scalability of the method.

The general approach and techniques used in this paper do not depend intimately on the par-
ticular automaton model that we used. Thus, for example, our approach can be applied to labeled
transition systems, which are used to define operational semantics for process algebras such as
Algebra of Communicating Processes [7], Communicating Sequential Processes [22], Calculus of
Communicating Systems [42], and the π-calculus [43]. Our approach can also be extended in a
straightforward way to formalisms with unlabeled actions, such as (finite or infinite) Kripke struc-
tures, since the fact that actions are named is not used in any essential way, it just contributes to
the “matching” condition in simulation relations, and to the definition of external behavior (trace).

We showed that the Streett acceptance condition (generalized to arbitrary cardinality) is ex-
pressive enough to define any liveness property, provided that it satisfies a notion of robustness, or
provided that history variables can be used.

Simulation relations as a proof method for refinement have been widely studied. One major
impediment to their widespread adoption in practice is the absence of efficient methodologies for
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establishing simulation relations. Doing so usually requires long proofs, with many invariants, etc.
Some of the ideas in this paper may be applicable to decomposing and simplifying the task of
establishing simulation relations in the first place. For example, it may be possible to apply our
approach to refining the invariants that are used in such proofs. Another potential application
is to models of computation for dynamic [6], real-time [31], hybrid [32], and probabilistic [49]
systems. For example, a real-time analogue of a complemented-pair condition would be: if a Red

state occurs, then a Green state must occur within t time units. A complemented-pairs lattice that
refines a complemented-pair would then have to satisfy, in addition to the current requirements
of Definition 17, a condition for the time bounds: every path from the bottom element to the
top element should have a “total” time bound matching the pair being refined. In [6], we present
an automata-theoretic model for dynamic computation, in which individual processes (automata)
that constitute a system can be created and destroyed, and can dynamically change their action
signature. Since the techniques of this paper assume only a generic automaton structure, they are
applicable to the model of [6]. Combining these two pieces of work will result in a comprehensive
method for verifying the liveness properties of dynamic systems.
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A Simulation Relations

We present here five simulation relations, using the definitions of [34].

Definition 22 (Forward Simulation) Let A and B be automata with the same external actions.
A forward simulation from A to B is a relation f over states(A)× states(B) that satisfies:

1. If s ∈ start(A), then f [s] ∩ start(B) 6= ∅.

2. If s
a

−→A s
′ and u ∈ f [s], then there exists a finite execution fragment α of B such that

fstate(α) = u, lstate(α) ∈ f [s′], and trace(α) = trace(a).

Simulation based proof methods typically use invariants to restrict the steps that have to be
considered. An invariant of an automaton is a predicate that holds in all of its reachable states, or
alternatively, is a superset of the reachable states.

Definition 23 (Forward Simulation w.r.t. Invariants) Let A and B be automata with the
same external actions and with invariants IA, IB, respectively. A forward simulation from A to B
with respect to IA and IB is a relation f over states(A)× states(B) that satisfies:

1. If s ∈ start(A), then f [s] ∩ start(B) 6= ∅.

2. If s
a

−→A s
′, s ∈ IA, and u ∈ f [s] ∩ IB, then there exists a finite execution fragment α of B

such that fstate(α) = u, lstate(α) ∈ f [s′], and trace(α) = trace(a).

We write A ≤F B if there exists a forward simulation from A to B w.r.t. some invariants, and
A ≤F B via f if f is a forward simulation from A to B w.r.t. some invariants.

Definition 24 (Refinement Mapping w.r.t. Invariants) Let A and B be automata with the
same external actions and with invariants IA, IB, respectively. A refinement mapping from A to
B with respect to IA and IB is a function r from states(A) to states(B) that satisfies:

1. If s ∈ start(A), then r(s) ∈ start(B).

2. If s
a

−→A s
′, s ∈ IA, and r(s) ∈ IB, then there exists a finite execution fragment α of B such

that fstate(α) = r(s), lstate(α) = r(s′), and trace(α) = trace(a).

We write A ≤R B if there exists a refinement mapping from A to B w.r.t. some invariants, and
A ≤R B via r if r is a refinement mapping from A to B w.r.t. some invariants.

Definition 25 (Backward Simulation w.r.t. Invariants) Let A and B be automata with the
same external actions and with invariants IA, IB, respectively. A backward simulation from A to
B with respect to IA and IB is a relation b over states(A)× states(B) that satisfies:

1. If s ∈ IA, then b[s] ∩ IB 6= ∅.

2. If s ∈ start(A), then b[s] ∩ IB ⊆ start(B).
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3. If s
a

−→A s
′, s ∈ IA, and u

′ ∈ b[s′] ∩ IB, then there exists a finite execution fragment α of B
such that fstate(α) ∈ b[s] ∩ IB, lstate(α) = u′, and trace(α) = trace(a).

A backward simulation b w.r.t. invariants is image-finite iff for each s ∈ states(A), b[s] is a finite
set. We write A ≤B B if there exists a backward simulation from A to B w.r.t. some invariants,
and A ≤B B via b if b is a backward simulation from A to B w.r.t. some invariants. If the backward
simulation is image-finite, then we write A ≤iB B, A ≤iB B via b, respectively.

Definition 26 (History Relation w.r.t. Invariants) Let A and B be automata with the same
external actions and with invariants IA, IB, respectively. A history relation from A to B with
respect to IA and IB is a relation h over states(A)× states(B) that satisfies:

1. h is a forward simulation from A to B w.r.t. IA and IB.

2. h−1 is a refinement from B to A w.r.t. IB and IA.

We write A ≤H B if there exists a history relation from A to B w.r.t. some invariants, and A ≤H B
via h if h is a history relation from A to B w.r.t. some invariants.

Definition 27 (Prophecy Relation w.r.t. Invariants) Let A and B be automata with the same
external actions and with invariants IA, IB, respectively. A prophecy relation from A to B with
respect to IA and IB is a relation p over states(A)× states(B) that satisfies:

1. p is a backward simulation from A to B w.r.t. IA and IB.

2. p−1 is a refinement from B to A w.r.t. IB and IA.

A prophecy relation p w.r.t. invariants is image-finite iff for each s ∈ states(A), p[s] is a finite
set. We write A ≤P B if there exists a prophecy relation from A to B w.r.t. some invariants, and
A ≤P B via p if p is a prophecy relation from A to B w.r.t. some invariants. If the prophecy
relation is image-finite, then we write A ≤iP B, A ≤iP B via p, respectively.
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B Linear-time Temporal Logic

We define the syntax and semantics of the temporal logic that we use as follows. This is essentially
linear-time temporal logic without the until and nexttime operators.

Definition 28 (Syntax of Linear-time Temporal Logic) The syntax of a linear-time tempo-
ral logic formula is given inductively as follows, where f, g are sub-formulae, and U is a set of states
(which defines a state-assertion):

• Each of U, f ∧ g and ¬f is a formula

• ✷f is a formula which intuitively means that f holds in every state of the execution being
considered

• ✸f is a formula which intuitively means that f holds in some state of the execution being
considered

Formally, we define the semantics of linear-time temporal logic formulae with respect to an
infinite execution, that is, an infinite sequence of states.

Definition 29 (Semantics of Linear-time Temporal Logic) We use the usual notation to in-
dicate truth: α |= f means that f is true of execution α. We define |= inductively, where
α = s0s1s2 . . . is an infinite sequence of states, and αi = sisi+1 . . . is the suffix of α starting
in si.

α |= U iff s0 ∈ U
α |= ¬f iff it is not the case that α |= f
α |= f ∧ g iff α |= f and α |= g
α |= ✷f iff for all i ≥ 0, αi |= f
α |= ✸f iff for some i ≥ 0, αi |= f

In particular, α |= ✷✸f meains that αi |= f for an infinite number of values of i.
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C I/O Automaton Code for the ESDS Example, from [14]

I/O Automaton Users

Signature

Input:
response(x, v), where x ∈ O and v ∈ V

Output:
request(x), where x ∈ O

State

requested , a subset of O, initially empty

Actions

Output request(x)
Pre: x.id /∈ requested .id

x.prev ⊆ requested .id
Eff: requested ← requested ∪ {x}

Input response(x, v)
Eff: None

Figure 7: The Users Automaton
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I/O Automaton ESDS-I

Signature

Input:
request(x), where x ∈ O

Output:
response(x, v), where x ∈ O and v ∈ V

Internal:
enter(x,new-po), where x ∈ O and new-po is a strict partial order on I

stabilize(x), where x ∈ O

calculate(x, v), where x ∈ O and v ∈ V

add constraints(new-po), where new-po is a partial order on I

State

wait , a subset of O, initially empty; the operations requested but not yet responded to

rept , a subset of O × V , initially empty; operations and responses that may be returned to clients

ops , a subset of O, initially empty; the set of all operations that have ever been entered

po, a partial order on I, initially empty; constraints on the order operations in ops are applied

stabilized , a subset of O, initially empty; the set of stable operations

Actions

Input request(x)
Eff: wait ← wait ∪ {x}

Internal enter(x, new-po)
Pre: x ∈ wait

x /∈ ops

x.prev ⊆ ops .id
span(new-po) ⊆ ops .id ∪ {x.id}
po ⊆ new-po

CSC ({x}) ⊆ new-po

{(y.id , x.id) : y ∈ stabilized} ⊆ new-po

Eff: ops ← ops ∪ {x}
po ← new-po

Internal add constraints(new-po)
Pre: span(new-po) ⊆ ops .id

po ⊆ new-po

Eff: po ← new-po

Internal stabilize(x)
Pre: x ∈ ops

x /∈ stabilized

∀y ∈ ops , y �po x ∨ x �po y
ops |≺pox ⊆ stabilized

Eff: stabilized ← stabilized ∪ {x}

Internal calculate(x, v)
Pre: x ∈ ops

x.strict ⇒ x ∈ stabilized

v ∈ valset(x, ops ,≺po)
Eff: if x ∈ wait then rept ← rept ∪ {(x, v)}

Output response(x, v)
Pre: (x, v) ∈ rept

x ∈ wait
Eff: wait ← wait − {x}

rept ← rept − {(x, v′) : (x, v′) ∈ rept}

Figure 8: The Specification ESDS-I

Internal enter(x, new-po)
Pre: x ∈ wait

x.prev ⊆ ops .id
span(new-po) ⊆ ops .id ∪ {x.id}
po ⊆ new-po

CSC ({x}) ⊆ new-po

{(y.id , x.id) : y ∈ stabilized} ⊆ new-po

Eff: ops ← ops ∪ {x}
po ← new-po

Internal stabilize(x)
Pre: x ∈ ops

∀y ∈ ops , y �po x ∨ x �po y
≺po totally orders ops |≺pox

Eff: stabilized ← stabilized ∪ {x}

Figure 9: The Specification ESDS-II. Only differences with ESDS-I are shown.
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I/O Automaton Frontend (c)

Signature

Input:
request(x), where x ∈ O and c = client(x)
receiverc(m), where r is a replica and m ∈ Mresp

Output:
response(x, v), where x ∈ O, c = client(x), and v ∈ V

sendcr(m), where r is a replica and m ∈ Mreq

State

waitc, a subset of O, initially empty

reptc, a subset of O × V , initially empty

Actions

Input request(x)
Eff: waitc ← waitc ∪ {x}

Output sendcr(〈“request”, x〉)
Pre: x ∈ waitc
Eff: None

Input receiverc(〈“response”, x, v〉)
Eff: if x ∈ waitc then reptc ← reptc ∪ {(x, v)}

Output response(x, v)
Pre: (x, v) ∈ reptc

x ∈ waitc
Eff: waitc ← waitc − {x}

reptc ← reptc − {(x, v
′) : (x, v′) ∈ reptc}

Figure 10: The Automaton for the front end of client c
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I/O Automaton Replica(r)

Signature

Input:
receivecr(m), where c is a client and m ∈ Mreq

receiver′r(m), where r′ 6= r is a replica and m ∈ Mgossip

Output:
sendrc(m), where c is a client and m ∈ Mresp

sendrr′(m), where r′ 6= r is a replica and m ∈ Mgossip

Internal:
do itr(x, l), where x ∈ O and l ∈ Lr

State

pendingr, a subset of O, initially empty; the messages that require a response

rcvdr , a subset of O, initially empty; the operations that have been received

doner[i] for each replica i, a subset of O, initially empty; the operations r knows are done at i

stabler [i] for each replica i, a subset of O, initially empty; the operations r knows are stable at i

labelr : I → L ∪ {∞}, initially all ∞; the minimum label r has seen for id ∈ I

Derived variable: lcr = {(id , id ′) : labelr(id) < labelr(id ′)}, a strict partial order on I; the local constraints at r

Actions

Input receivecr(〈“request”, x〉)
Eff: pendingr ← pendingr ∪ {x}

rcvdr ← rcvdr ∪ {x}

Internal do itr(x, l)
Pre: x ∈ rcvdr − doner[r]

x.prev ⊆ doner[r].id
l > labelr(y.id) for all y ∈ doner [r]

Eff: doner[r]← doner [r] ∪ {x}
labelr(x.id)← l

Output sendrc(〈“response”, x, v〉)
Pre: x ∈ pendingr ∩ doner [r]

x.strict ⇒ x ∈
T

i stabler[i]
v ∈ valset(x, doner[r],≺lcr )
c = client(x)

Eff: pendingr ← pendingr − {x}

Output sendrr′(〈“gossip”, R,D,L, S〉)
Pre: R = rcvdr ; D = doner[r];

L = labelr ; S = stabler[r]

Input receiver′r(〈“gossip”, R,D,L, S〉)
Eff: rcvdr ← rcvdr ∪ R

doner [r′]← doner [r′] ∪D ∪ S
doner [r]← doner[r] ∪D ∪ S
doner [i]← doner[i] ∪ S for all i 6= r, r′

labelr ← min(labelr, L)
stabler[r′]← stabler[r′] ∪ S
stabler[r]← stabler [r] ∪ S ∪ (

T

i doner [i])

Figure 11: Automaton for replica r
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I/O Automaton Channel (i, j,M)

Signature

Input:
sendij(m), where m ∈ M

Output:
receiveij(m), where m ∈ M

State

channel ij , a multiset of messages, (taken fromM), initially empty

Actions

Input sendij(m)
Eff: channel ij ← channel ij ∪ {m}

Output receiveij(m)
Pre: m ∈ channel ij
Eff: channel ij ← channel ij − {m}

Figure 12: The Channel Automaton
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