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Abstract. We show a new and constructive proof of the following
language-theoretic result: for every context-free language L, there is a
bounded context-free language L’ C L which has the same Parikh (com-
mutative) image as L. Bounded languages, introduced by Ginsburg and
Spanier, are subsets of regular languages of the form wjws - - - wj, for some
w1, ..., wr € X*. In particular bounded subsets of context-free languages
have nice structural and decidability properties. Our proof proceeds in
two parts. First, using Newton’s iterations on the language semiring, we
construct a context-free subset L of L that can be represented as a se-
quence of substitutions on a linear language and has the same Parikh im-
age as L. Second, we inductively construct a Parikh-equivalent bounded
context-free subset of L.

We show two applications of this result in model checking: to under-
approximate the reachable state space of multithreaded procedural pro-
grams and to underapproximate the reachable state space of recursive
counter programs. The bounded language constructed above provides
a decidable underapproximation for the original problems. By iterat-
ing the construction, we get a semi-algorithm for the original problems
that constructs a sequence of underapproximations such that no two un-
derapproximations of the sequence can be compared. This provides a
progress guarantee: every word w € L is in some underapproximation of
the sequence, and hence, a program bug is guaranteed to be found. In
particular, we show that verification with bounded languages generalizes
context-bounded reachability for multithreaded programs.

1 Introduction

Many problems in program analysis reduce to undecidable problems about
context-free languages. For example, checking safety properties of multithreaded
recursive programs reduces to checking emptiness of the intersection of context-
free languages [19,4]. Checking reachability for recursive counter programs relies
on context-free languages to describe valid control flow paths.

We study underapproximations of these problems, with the intent of building
tools to find bugs in systems. In particular, we study underapproximations in
which one or more context-free languages arising in the analysis are replaced by
their subsets in a way that (P1) the resulting problem after the replacement be-
comes decidable and (P2) the subset preserves “many” strings from the original



language. Condition (P1) ensures that we have an algorithmic check for the un-
derapproximation. Condition (P2) ensures that we are likely to retain behaviors
that would cause a bug in the original analysis.

We show in this paper an underapproximation scheme using bounded lan-
guages [12,11]. A language L is bounded if there exist k € N and finite words
W, W, ..., w such that L is a subset of the regular language wy - - - wj. In par-
ticular, context-free bounded languages (hereunder bounded languages for short)
have stronger properties than general context-free languages: for example, it is
decidable to check if the intersection of a context-free language and a bounded
language is non-empty [12]. For our application to verification, these decidability
results ensure condition (P1) above.

The key to condition (P2) is the following Parikh-boundedness property: for
every context-free language L, there is a bounded language L' C L such that
the Parikh images of L and L’ coincide. (The Parikh image of a word w maps
each symbol of the alphabet to the number of times it appears in w, the Parikh
image of a language is the set of Parikh images of all words in the language.) A
language L’ meeting the above conditions is called a Parikh-equivalent bounded
subset of L. Intuitively, L' preserves “many” behaviors as for every string in L,
there is a permutation of its symbols that matches a string in L'.

The Parikh-boundedness property was first proved in [16,2], however, the
chain of reasoning used in these papers made it difficult to see how to explicitly
construct the Parikh-equivalent bounded subset. Our paper gives a direct and
constructive proof of the theorem. We identify three contributions in this paper.
Explicit construction of Parikh-equivalent bounded subsets. Our con-
structive proof falls into two parts. First, using Newton’s iteration [9] on the
semiring of languages, we construct, for a given context-free language L, a fi-
nite sequence of linear substitutions which denotes a Parikh-equivalent (but not
necessarily bounded) subset of L. (A linear substitution maps a symbol to a
language defined by a linear grammar, that is, a context-free grammar where
each rule has at most one non-terminal on the right-hand side.) The Parikh
equivalence follows from a convergence property of Newton’s iteration.

Second, we provide a direct constructive proof that takes as input such a
sequence of linear substitutions, and constructs by induction a Parikh-equivalent
bounded subset of the language denoted by the sequence.

Reachability analysis of multithreaded programs with procedures. Us-
ing the above construction, we obtain a semi-algorithm for reachability analysis
of multithreaded programs with the intent of finding bugs. To check if configu-
ration (c1,c¢z) of a recursive 2-threaded program is reachable, we construct the
context-free languages LY = L(c;) and LY = L(cs) respectively given by the ex-
ecution paths whose last configurations are ¢; and ¢z, and check if either L} N LY
or LY N LY is non-empty, where Lj = LY Nw}---wj and Ly = LY Nvf---of
are two Parikh-equivalent bounded subsets of L and L9, respectively. If either
intersection is non-empty, we have found a witness trace. Otherwise, we con-
struct L{ = LY Nwj ---wjf and Ly = LY Nvj ---vf in order to exclude, from the
subsequent analyses, the execution paths we already inspected. We continue by



rerunning the above analysis on L} and L3. If (c1, c2) is reachable, the iteration
is guaranteed to terminate; if not, it could potentially run forever. Moreover, we
show our technique subsumes and generalizes context-bounded reachability [18].
Reachability analysis of programs with counters and procedures. We
also show how to underapproximate the set of reachable states of a procedural
program that manipulates a finite set of counters. This program is given as a
counter automaton A (see [17] for a detailed definition) together with a context-
free language L over the transitions of A. Our goal is to compute the states of
A that are reachable using a sequence of transitions in L.

A possibly non terminating algorithm to compute the reachable states of A
through executions in L is to (1) find a Parikh-equivalent bounded subset L’ of
L; (2) compute the states that are reachable using a sequence of transitions in
L’ (as explained in [17], this set is computable if (i) some restrictions on the
transitions of A ensures the set is Presburger definable and (i7) L’ is bounded,
ie. L' C wi---wjy); and (3) rerun the analysis using for L Nwy ---wj so that
runs already inspected are omitted in every subsequent analyses. Again, every
path in L is eventually covered in the iteration.

Related Work. Bounded languages have been recently proposed by Kahlon for
tractable reachability analysis of multithreaded programs [14]. His observation
is that in many practical instances of multithreaded reachability, the languages
are actually bounded. If this is true, his algorithm checks the emptiness of the

intersection (using the algorithm in [12]). In contrast, our results are applicable
even if the boundedness property does not hold.
For multithreaded reachability, context-bounded reachability [18,20] is a pop-

ular underapproximation technique which tackles the undecidability by limiting
the search to those runs where the active thread changes at most k times. Our
algorithm using bounded languages subsumes context-bounded reachability, and
can capture unboundedly many synchronizations in one analysis. We leave the
empirical evaluation of our algorithms for future work.

2 Preliminaries

An alphabet is a finite non-empty set of symbols. We use the letter X' to denote
some alphabet. We assume the reader is familiar with the basics of language
theory (see [13]). The concatenation L- L’ of two languages L, L’ C X* is defined
using word concatenation as L- L' ={l-I'|le LAl € L'}.

An elementary bounded language over X' is a language of the form wy - - - wj
for some wy,...,w, € X*.
Vectors. For p € N, we write Z? and NP for the set of p-dim vectors (or
simply vectors) of integers and naturals, respectively. We write 0 for the vec-
tor (0,...,0) and e; the vector (z1,...,%,) € NP such that z; = 1if j = ¢
and z; = 0 otherwise. Addition on p-dim vectors is the componentwise ex-
tension of its scalar counterpart, that is, given (z1,...,2p), (Y1,...,yp) € ZP
(@1, xp) + (Y1, Yp) = (@1 + Y1, .., Tp + Yp). Given A € N and z € ZP, we
write Az as the A\-times sum x + - -+ + .



Parikh Image. Give X a fixed linear order: X' = {aq, ..., a,}. The Parikh image
of a symbol a; € X, written ITx(a;), is ;. The Parikh image is extended to words
of X* as follows: ITx(¢) = 0 and IT5(u-v) = II5(u)+ s (v). Finally, the Parikh
image of a language on X is the set of Parikh images of its words. We also define,
using vector addition, the operation + on sets of Parikh vectors as follows: given
Z, 7' CNP let Z+2' ={2+7 |2€ ZN2 € Z'}. Thus, ITs maps 2~ to 2V,
We also define the inverse of the Parikh image IT5': 2V — 27 as follows: given
a subset M of NP, IT-' (M) is the set {y € X* | I3m € M: m = IIx(y)}. When
it is clear from the context we generally omit the subscript in IT5; and Hgl.

The following lemma gives the properties of IT and IT-! we need in the
sequel.

Lemma 1. For every M € 2Y° we have IT o IT-Y(M) = M.
Let ¢ = I ' o I, for every X,Y C X* we have:

additivity of I II(X UY) = II(X) U II(Y);
monotonicity of ¢ X CY implies ¢(X) C ¢(Y);
extensivity of ¢ X C ¢(X);

idempotency of ¢ ¢ o ¢(X) = ¢(X);
structure-semipreservation of ¢ ¢(X) - ¢(Y) C (X -Y);
preservation of IT II(X -Y)=1II(X)+ II(Y).

Proof. For the first statement we first observe that II is a surjective function,
for each vector of NP there is a word that is mapped to that vector. Next,

Dol " (M)=H({y|3Ime M: m=1I(y)}) def. of 117!
={l(y)|Ime M: m=1I(y)} def. of IT
=M surjectivity of IT

For the additivity, the monotonicity, the extensivity and the idempotency prop-
erties, we simply show the equivalence given below. Hence the properties imme-
diately follows by property of Galois connection (we refer the reader to [7] for
detailed proofs). We show that for every L € 2¥° M € 24" we have : II(L)yCc M
iff L C IT=Y(M).

LCI (M)

iff LC{y|ImeM: m=1I(y)} def. of IT71
iftvVee LIme M: m=1I(¢)

iftVvhe II(L)Ime M: m=h def. of IT

iff I1(L) € M



For structure semipreservation, we prove that ¢(x)-é(y) C ¢(z-y) for z,y € X*
as follows:

={a’ -y [ 1I(2)) = H(x) NII(y') = II(y)}

oy | T+ 1(y) = H(x) + 1(y)}

={z" -y | & -y)=1(x-y)} def. of IT
=T ' oIl(z-y)

= ¢z -y)

The result generalizes to languages in a natural way. Finally, the preservation of
II is proved as follows:

nNXx-v)y={l(lw) |l we X-Y} def. of IT
={(z-y)|lzeXANyeY} def. of -
={(z)+Hy) |z XNyeY} def. of IT
={a+blac H(X)NbeIl(y)}
=HI(X)+0(Y) def. of +

O

Context-free Languages. A contezt-free grammar G is a tuple (X, X, §) where
X is a finite non-empty set of variables (non-terminal letters), X' is an alphabet of
terminal letters and 6 C X' x (X UX)* a finite set of productions (the production
(X, w) may also be noted X — w). Given two strings u,v € (X' U X)* we define
the relation u = v, if there exists a production (X,w) € § and some words
y,z € (YU X)* such that u = yXz and v = ywz. We use =* for the reflexive
transitive closure of =. A word w € X* is recognized by the grammar G from
the state X € X if X =* w. Given X € X, the language Lx(G) is given by
{w e X*| X =* w}. A language L is context-free (written CFL) if there exists
a context-free grammar G = (X, X, J) and an initial variable X € X such that
is L = Lx(G). A linear grammar G is a context-free grammar where each
production is in X x X*(X U {e})X*. A language L is linear if L = Lx(G) for
some linear grammar G and initial variable X of G. A CFL L is bounded if it is
a subset of some elementary bounded language.

Proof Plan. The main result of the paper is the following.

Theorem 1. For every CFL L, there is an effectively computable CFL L' such
that (i) L' C L, (it) II(L) = II(L'), and (4it) L' is bounded.

We actually solve the following related problem in our proof.

Problem 1. Given a CFL L, compute an elementary bounded language B such
that IT(LN B) = II(L).



If we can compute such a B, then we can compute the CFL L' = BN L
which satisfies conditions (¢) to (éi7) of the Th. 1. Thus, solving Pb. 1 proves the
theorem constructively.

We solve Pb. 1 for a language L as follows: (1) we find an L’ such that
L' CL,II(L')=I(L), and L' has a “simple” structure (Sect. 3) and (2) then
show how to find an elementary bounded B with II(L' N B) = II(L'), assuming
this structure (Sect. 4). Observe that if L’ C L and I1(L) = II1(L'), then for every
elementary bounded B, we have II(L' N B) = II(L') implies II(L N B) = II(L)
as well. So the solution B for L’ in step (2) is a solution for L as well. Section 5
provides applications of the result for program analysis problems.

3 A Parikh-Equivalent Representation

Our proof to compute the above L’ relies on a fixpoint characterization of CFLs
and their Parikh image. Accordingly, we introduce the necessary mathematical
notions to define and study properties of those fixpoints.

Semiring. A semiring S is a tuple (S, ®,®,0, 1), where S is a set with 0,1 € S,
(S,®,0) is a commutative monoid with neutral element 0, (S, ®, 1) is a monoid
with neutral element 1, 0 is an annihilator w.r.t. ®, i.e. 0©a =a ® 0 = 0 for
all a € S, and ® distributes over @, i.e. a © (b B c) = (a©®b) @ (a ®@ ¢), and
(a®b)©c=(a®c)®(boc). We call @ the combine operation and ® the
extend operation. The natural order relation C on a semiring S is defined by
aCbs ddeS:a®d=0>. The semiring S is naturally ordered if C is a partial
order on S. The semiring S is commutative if a ©b = b ® a for all a,b € S,
idempotent if a®a = a for all a € S, complete if it is naturally ordered and C is
such that w-chains ap C a1 C -+ C a, E --- have least upper bounds. Finally,
the semiring S is w-continuous if it is naturally ordered, complete and for all
sequences (a;)ien with a; € S, sup {@;_,a; | n € N} = @,y ai. We define two
semirings we shall use subsequently.

Language Semiring. Let L = <22*,U, -0, {5}> denote the idempotent w-
continuous semiring of languages. The natural order on L is given by set
inclusion (viz. Q).

Parikh Semiring. The tuple P = <2NP,U,{L,®, {0}> is the idempotent w-
continuous commutative semiring of Parikh vectors. The natural order is
again given by C.

Valuation, partial order, linear form, monomial and polynomial
(transformation). A valuation v is a mapping X — S. We denote by S%
the set of all valuations and by 0 the valuation which maps each variable to 0.
The operations @, ® are naturally extended to valuations. The partial order C
on S can be lifted to a partial order on valuations, to this end we stack a point
above C (viz. E) to denote the pointwise inclusion, given by v C v’ if and only
if v(X) C v'(X) for every X € X.

A linear form is a mapping [: S* — S satisfying I(v @ v') = I(v) @ I(v") for



every v,v’ € 8* and [(0) = 0.
A monomial is a mapping ST — S described by a finite expression m =
a10X10az...a50XpOagy1 where k >0, a1,...,a541 € Sand Xq,... X € X
such that m(v) = a; ©v(X1) ®az...a, ©v(Xy) ®apyy for v € S*. The empty
monomial is given by an empty expression coincides with 1.
A polynomial is a finite combination of monomials : f = m; ® - - - & my where
k > 0 and mq, ..., mg are monomials. The set of polynomials w.r.t. S and X will
be denoted by S[X]. The empty polynomial is given by an empty combination
of monomials and coincides with 0.
Finally, a polynomial transformation F is a mapping S* — S¥ described by
the set {Fy € S[X] | X € X} of polynomials: hence, for every valuation v € S%,
F(v) is a valuation that assigns each variable X € X to Fx(v).
Differential. For every X € X, let dX denote the linear form defined by
dX (v) = v(X) for every v € S¥: dX is the dual variable associated with the
variable X. Let dX denote the set {dX | X € X'} of dual variables.

Let f € S[X] be a polynomial and let X € X be a variable. The differential
w.r.t. X of f is the mapping Dxf: S¥ — S — S that assigns to every
valuation v the linear form Dx f|, defined by induction as follows:

0 if feSor feXx\{X}
dX if f=X
DXf|v = .
Dxglo © h(v) @ g(v) © Dxhly if f=g©h
DXg|v@DXh|v lff:g@h
Then, the differential of f is defined by
Df =P Dxf .
Xex

Consequently, the linear form D f|,, is a polynomial of the following form:
(a1 ©dX10a))®...® (ap ©dX; ©a})

where each a;,a; € S and X; € X. We extend the definition of differential on
polynomial transformation. Hence, DF : 8* — S* — S% is defined for every
v,w € S¥ and every variable X as follows:

(DF[y(w))(X) = DFx|y(w) .

Least Fixpoint. Recall that a mapping f: S — S is monotone if ¢ C b im-
plies f(a) C f(b), and continuous if for any infinite chain ag,a1,as,... we
have sup{f(a;)} = f(sup{a;}). The definition can be extended to mappings
F:S8* — S from valuations to valuations in the obvious way (component-
wise). Then we may formulate the following proposition (cf. [15]).

Proposition 1. Let F' be a polynomial transformation. The mapping induced by
F' is monotone and continuous. Hence, by Kleene’s theorem, F has a unique least

fixpoint uF'. Further, uF is the supremum (w.r.t. E) of the Kleene’s iteration
sequence given by no = F(0), and ni+1 = F(n;).



Fixpoints of polynomial transformations relates to CFLs as follows. Given
a grammar G = (X, X,0), let L(G) be the valuation which maps each variable
X € X to the language Lx(G). We first characterize the valuation L(G) as the
least fixpoint of a polynomial transformation F' defined as follows: each Fx of
F is given by the combination of a’s for (X, a) € § where « is interpreted as a
monomial on the semiring £. From [6] we know that L(G) = uF.

Ezample 1. Let G = ({Xo, X1}, {a,b},6) where 6 = {(Xo — aXila), (X1 —
XoblaX1bXo)}. It defines the polynomial transformation F on £ such that
Fx,=a-X;Uaand Fx, = Xo-bUa-X;-b- Xg, and L(G) is the least fixpoint
of F in the language semiring. a

We now recall the iteration sequence of [8,9] whose limit is the least fixpoint
of F. In some cases, the iteration sequence converges after a finite number of
iterates while the Kleene iteration sequence does not.

Newton’s Iteration Sequence. Given a polynomial transformation F' on a
w-continuous semiring S, Newton’s iteration sequence is given by the following
sequence:

po=F(@0) and  piy = DF[; (F(p))
the limit of which coincides with pF' (see [9,8] for further details).

3.1 Relating the Semirings

We naturally extend the definition of the Parikh image to a valuation v € LY as
the valuation of P% defined for each variable X by: IT(v)(X) = II(v(X)). The
following lemma relates polynomial transformations on £ and P.

Lemma 2. Let fp € L|X], that is a polynomial over the semiring L and vari-
ables X. Define fp = Il o fr o II™, we have fp € P[X].

Proof. By induction on the structure of f,. The polynomial f, is given by
mq U ---Umyg. Hence,

Hofpoll™ " =Io(miU---Umyg)oll!
=Iomyoll 'U---UIlomyoll !

where each m; is of the form a1 - X7 -ag...ar - Xy - ag41 with aq, ..., a1 C X%,
Xq,..., X € X. Let m be a monomial, we have:

HomoIll ™" =Ioa;-Xy-ay...ap Xp-aper o "
= II(ay) + X1 + I(ay) ... I(ay) + Xg + H(agr1) id. of IT o I, preser. of IT

a

We now prove a commutativity results on polynomials and the Parikh map-
ping.



Lemma 3. Let fp € L[X], for every valuation v € LY, we have:

H(fe(v)) = fp(I(v)) .

Proof. First, the definition of fp shows that for every v € £¥:
1T o fr(v) = fp o Il(v)

iff IT o fr(v) = I o fr o IT™1 o IT(v)

only if IT™ o ITo fr(v) =" oIl o froll "o II(v)

Moreover,

O~ eIl o fe(v)=M"" oIl o fooll™ o II(v)

only if ITo IT™ o ITo fr(v) =IT o I o IT o fr o IT~" o IT(v)
only if IT o fr(v) = IT o fr o IT™* o IT(v)

iff IT e fr(v) = fp o 1I(v)

Hence,

o fr(v) = fpoll(v) iff I oIl o fr(v) =T " oIl ofroll ' oIl(v)

Let ¢ = I~ o I, we will thus show that for every v € £¥

¢o fr(v)=¢o frod(v)

appl. of IT~!

appl. of IT
identity of IT o IT™*
def. of fp

The inclusion ¢ o fz(v) C ¢ o fr o ¢(v) is clear since v C ¢(v), every function
occuring in the above expression is monotone and the functional composition
preserves monotonicity. For the reverse inclusion, we first show that for every
w C ¢(v) we have fr(w) C ¢ o fr(v). That is Vo € fe(w): x € po fr(v). fr €
L]|X] shows that z € m(w) for some monomial m = a; - X1 -as...ax - X - a1,

that is z € a1 - w(X4) - as...ar - w(Xg) - ags1. We have,

po fr(v)Dolar-v(Xy)-az...ar v(Xk) - ars1)
2 ¢(a1) - ¢(v(X1)) - ¢(az) ... dlar) - ¢(v(Xk)) - dlars1)
Day-p(v(Xy))-ag...ar - dp(v(Xk)) - ari1
Dar-w(Xy) az...ap - w(Xg) - apy1
>

The following reasoning concludes the proof:

froo(v) Coo fr(v) from above with w = ¢(v)
only if po frop(v) Cpodo fr(v) monotonicity of ¢
iff po frod(v) Cpo fr(v) idempotency of ¢

struct. semipreserv.

extensivity of ¢

w C ¢(v)
def. of x



Here follows a commutativity result between the differential and the Parikh
image.

Lemma 4. For every fr € L[X], every valuation v,w € LY, every X € X we
have:

I(Dx frlo(w)) = Dx fplmw) (I (w)) .

Proof. First it is important to note that Lemma 2 shows that fp and f, are of
the same form. Then the proof falls into four parts according to the definition
of the differential w.r.t. X.

fe € 2% or fr € X\ {X}. In this case, we find that Dx fr|,(w) = 0,
hence that II(Dx fr|o(w)) = 0. Since fp is of the above form, we find that
Dx fplmw) I(w)) = 0.

fLZX. SOf'p:X.

II(Dx X|y(w)) = H(dX (w)) def. of diff
= II(w(X)) def. of dX
=II(w)(X) def. of IT
=dX(II(w)) def. of dX
= Dx X| 1wy (I (w)) def. of diff

fz =gz - he So fp is of the form gp + hp. The induction hypothesis shows the
rest.
fr = U;ey fi this case is treated similarly. O

This result generalizes to the complete differential :
H(Dfclo(w)) = D fp|mw (I(w)) .

We note that the previous results also generalizes to polynomial transforma-
tion in a natural way. In the next subsection, thanks to the previous results,
we show that Newton’s iteration sequence on the language semiring reaches a
stable Parikh image after a finite number of steps. This result is crucial in order
to achieve the goal of this section: compute a sublanguage L’ of L such that
L)y =1(L".

3.2 Convergence of Newton’s Iteration

Given a polynomial transformation F', we now characterize the relationship be-
tween the least fixpoints uF' taken over the language and the Parikh semiring,
respectively. Either fixpoint is given by the limit of a sequence of iterates which
is defined by Newton’s iteration scheme [8,9]. Our characterization operates at
the level of those iterates: we inductively relate the iterates of each iteration
sequence (over the Parikh and language semirings). We use Newton’s iteration



instead of the usual Kleene’s iteration sequence because Newton’s iteration is
guaranteed to converge on the Parikh semiring in a finite number of steps, a
property that we shall exploit. Kleene’s iteration sequence, on the other hand,
may not converge. Lemma. 5 relates the iterates for uF, and pFp using the
Parikh image mapping.

Lemma 5. Let (v;)ien and (K;);en be Newton’s iteration sequences associated
with Fr and Fp, respectively. For every i € N, we have II (v;) = K;.

Proof. base case. (i = 0) This case is trivially solved using part (2) of Lem. 2.

inductive case. (i + 1)

H(viy1) = H(DF.|;, (Fr(vi)))

=II(| ] DF.l, (Fc(vi))) def. of *
JEN

= |J I(DF.l, (Fe(vi))) additivity of IT
JEN

= U II(DF¢ly, (DFﬁ‘i?l(Fﬁ(Vi)))) funct. comp.
jEN

= |J DFplnw,) (I(DFcl} (Fe(vi))) Lem. 4
jEN

= |J DFpl)y,, (T (Fr(v))) j—1x Lem. 4
jEN

= J DFpl}y,,, (Fp(IT(v)))) Lem. 2
JjEN

= |J DFpll,, (Pr(k:)) ind. hyp.
jEN

= DFpl;, (Fp(ki))

= Kit1

In [9], the authors show that Newton’s iterates converges after a finite number
of steps when defined over a commutative w-continuous semiring. This shows, in
our setting, that (k;);en stabilizes after a finite number of steps.

Lemma 6. Let (Kk;);en be Newton’s iteration sequence associated to Fp and let
n be the number of variables in X. For every k > n, we have ki, = II(uFy).
Hence, for every k > n, II(vy) = I (uFy).



Proof.

Kk; = II(v;) for each 7 € N by Lem. 5
i€N i€N
< uFp = U II(v;) w-continuity of P
ieN
© pFp =1(| Jv) additivity of IT
€N
< uFp = II(uFr) w-continuity of £
= Ky = [ (uFr) for every k > n by Th. 6 of [9]
Transitivity of the equality shows the remaining result. ad

We know Newton’s iteration sequence (v;);cn, whose limit is puFr, may not
converge after a finite number of iterations. However, using Lem. 6, we know
that the Parikh image of the iterates stabilizes after a finite number of steps.
Precisely, if n is the number of variables in X', then the language given by v, is
such that IT(v,) = II(L(G)). Moreover because (v;);en is an ascending chain,
for each variable X € X, we have that v, (X) is a sublanguage of Lx(G) such
that [T (v, (X)) = I(Lx(G)).

3.3 Representation of Iterates

We now show that Newton’s iterates can be effectively represented as a combi-
nation of linear grammars and homomorphisms.

A substitution o from alphabet X to alphabet X is a function which maps
every word over X; to a set of words of X5 such that o(¢) = {¢} and o(u-v) =
o(u)-o(v). A homomorphism h is a substitution such that for each word u, h(u)
is a singleton. We define the substitution opg/5: X1 U {a} — X1 U {b} which
maps a to b and leaves all other symbols unchanged.

We show below that the iterates (vx)r<n have a “nice” representation.

Let us leave for a moment Newton’s iteration sequence and turn to our initial
problem as stated in Pb. 1. Let L be a context-free language, our goal is to com-
pute a sublanguage L’ such that IT(L) = I1(L') (then we solve Pb. 1 on instance
L' instead of L because it is equivalent). Below we give an effective procedure to
compute such a L’ based on the previously defined iteration sequences and the
convergence results.

Given a grammar G = (X, X, ), let L(G) be the valuation which maps each
variable X € X to the language Lx (G). We first characterize the valuation L(G)
as the least fixpoint of a polynomial transformation F' which is defined using G
as follows: each Fx of F' is given by the combination of s for (X, a) € § where
« is now interpreted as a monomial on the semiring L.



Ezample 2. Let G = ({Xo, X1}, {a,b},d) be the context-free grammar with the
production:

Xo—aXi|a
X1 — Xob | aX1bXo

It defines the following polynomial transformation on L% where Fx,=aX1Ua
and I"_'X1 = Xob U aleXo.

It is well known that L(G) = pF (see for instance [8]). To evaluate pF' one
can evaluate Newton’s iteration sequence (v;);en for F. However, a transfinite
number of iterates may be needed before reaching pF'. We now observe that, by
the result of Lem. 6, if we consider the iteration sequence (v)r<n Up to iterate
n where n equals to the number of variables in X’ then the language given by v,
is such that II(v, ) = II(L(QG)). Moreover because (v;);en is an ascending chain
we find that: for each variable Xy € X, v,,(Xo) is a sublanguage of Lx,(G) such
that IT(v,(Xo)) = II(Lx,(G)).

We now explain how to turn this theoretical result into an effective procedure.
Our first step is to define an effective representation for the iterates (vy)g<p. Our
definition is based on the one that was informally introduced in Example 3.1,
part (2) of [8]. To this end, we start by defining how to represent the differen-
tial DF|;(F(v)) used in the definition of Newton’s iteration sequence as the
language generated by a linear grammar.

We define v to be the valuation which maps each variable X € X to vy
where vx is a new symbol w.r.t. Y. We first observe that DF|, is a polyno-
mial transformation on the set of dual variables dX such that the linear form
associated to X is a polynomial of the form:

(a1 -dXy-a))U---U(ag - dXg - a},)

where each a;,a; € (XU {vy |Y € X})* and X; € X. Moreover, Fy is a sum
of monomials my, ..., me. Hence, we define the linear grammar G = (X, X U
{vx | X € X},6). For the variable X, the set of productions ¢ is:

X — aleall | | akaa;C
X —=>mi(v)]|...| me(v)

We are able to prove that:

Lemma 7. Let v be the valuation which maps each variable X € X to vx:

L(G) = DF[,(F(v)) .

Proof. We show by induction the following equivalence. Let X € X, w € X U
{Uy ‘ Y € X}*:
X =M1y iff w € DF|F(F(v))(X) .



Base case. (k = 0) In this case, the following equivalence has to be estab-
lished:

X=w
iff we Lx(X - my(v) |- | me(v))
iff w e my(v)U---Umy(v) the monomials for Fy (v)

iff w € Fx(v)
iff w € F(v)(X)

Inductive case. (k+1)

w € DF[y*(F(v))(X)
iff w € DF|,(DF|X(F(v)))(X) funct. comp.
iff w € DFx|o(DF[3(F(v)))
iff w € (a1 -dXy-a})U...U(ay - dXy - a})(DF|E(F(v)))  def. of diff.
iff 3i: w € (a; - dX; - a})(DF|*(F(v)))
iff 3i 3w’ € DF|*(F(v))(X;): w=a; -w' - d
iff 3 3w’ : X — a; X0, € 0 A Xy =M Agw'al = w
iff X =Ft2
O

Ezample 3. (cont’d from the previous example) The differential of F' is given
by:
DF| _ ( ClXm >
v dXobUCLdX1 b’U(Xo)Ua’U(Xl)bdXO

The grammar G is given by ({Xo, X1}, {a,b, UXO,UXl};S) where 0 is such
that:

Xo = aXy | avx, |a
X1 — Xob ‘ (J,,le’l)XU ‘ (l’UleXQ ‘ ’UXOb ‘ alevaO .

k-fold composition. We effectively compute and represent each iterate as the
valuation which maps each variable X to the language generated by a k-fold
composition of a substitution. Since the substitution maps each symbol onto
a language which is linear, it is effectively represented and manipulated as a
linear grammar. To formally define the representation we need to introduce the
following definitions.

Let G = (X, Y U{vx | X € X},0) be a linear grammar and let k € N, define
v’jf to be the set of symbols {v’)“( | X € X}. Given a language L on alphabet
YU{vx | X € X}, we define L[v%] to be O'[UX/UI)«(]XEX(L).

For k € {1,...,n}, we define o5: ¥ Uvk — XY Uvk™" as the substitution
which maps each v% onto Lx (G)[v5!] and leaves ¥ unchanged For k = 0 the



substitution oo maps each v% on F(0)(X) and leaves X unchanged. Let k, £ be
such that 0 < k < /¢ < n we define O’i to be o o - - - o gy. Hence, cr(’)c is such that:
(Zuvk) I (DU (ZDueh)t I (Zuog)r I B

Finally, the k-fold composition of a linear grammar G and initial variable X
is given by of (v% ). Lemma 8 relates k-fold compositions with (vg)ken-

Lemma 8. There exists an effectively computable linear grammar G such that
for every k >0, every X € X we have v(X) = ok (v%).

Proof. By induction on k.

Base case. (k = 0) Definition of the iteration sequence shows that vo(X) =
F(0)(X) which in turn equals (v} ) by definition.

Inductive case. (k + 1) First, let us define o,, to be the substitution which
maps vy onto v (X). Hence we have

Vi1 = DF|.tk(F(Vk)) def. of vy
=0, (L(G)) Lem. 7, def. of oy,

The above definition shows that o, (vx) = v%(X), hence that o, (vx) = of (v%)
by induction hypothesis. Hence

Vit1(X) = 0u, (Lx (G))

=0y, ° 0[v§/vy](0k+l<v§(+1)) def. of gk*!

= Ug ° Uk“(”?(“) by above
k+1/, k+1

= O'O+ (UXJr )

O

Lem. 8 completes our goal to define a procedure to effectively compute and
represent the iterates (vg)gen. This sequence is of interest since, given a CFL L
and v, the n-th iterate (where n equals the number of variables in the grammar
of L so that II(v,) = II(L)), if B is a solution to Pb. 1 for the instance v,,, B
is also a solution to Pb. 1 for L.

Let us conclude this section on a complexity note. Below we show that the
linear grammar G given in Lem. 8 is computable in polynomial time in the size
of F which is to be defined. To start with we define the size of a monomial which
is intuitively the length of the “string” that defines the monomial. Formally, let
m be a monomial its size denoted, sizeof (m), is given by 0 if m is the empty
monomial; 1 if m € 2% or m € X UdX and by sizeof (m1) + sizeof (my) if
m = m1-mg. The above definition naturally extends to polynomials by summing
the sizes of the monomials. The empty polynomial has size zero.

In what follows we show that the derivative of a monomial as a polynomial
of some form.

Lemma 9. Let m = by - -- by, be a monomial where each b; € 2" UX,let X e X
and v € LY. We have Dxm|, coincide with the polynomial given by:



1. apply the inductive definition of a derivative on m which is given by
Dxm|y =Dx (b1 -bg—1)|o - v(bg)U(by--br_1)-a where a = dX ifbp = X
and () otherwise. Above we abusively wrote v(by) which in fact denotes v(by,)
if by € X and by otherwise.

2. turn the result into a polynomial, that is a finite combination of monomials,
by distributing - over U (in the inductive part of point (1)).

In the rest of this section, we identify Dxm/|, with the polynomial of Lem. 9.

Lemma 10. Let m = by---by, and Dxm|, = Uie{17”.)1}mi. We have
sizeof (m;) <k and I <k.

dX ifm=X
Proof. k=1. Dxm|, = 0 1lm which concludes the case.
else

k > 1. Induction hypothesis shows that Dx (b1 bk—1)|s = Uje{l,...,J} m3
where sizeof(m;-) < k—1and J < k — 1. Hence by Lem. 9, the distributiv-
ity of - over U, the size of v(b;) bounded by 1 show that sizeof (m;) < k and
I=J+1<k. O

Corollary 1. The size of Dx (b1 -+ bg)|v is bounded by k* (where k is the size
of the monomial).

Let us extend this reasoning to polynomials and polynomial transforma-
tions. Let f = Uie{l,...,I} m,;. The definition of differential shows that Dy f|, =
Ui<i<;r Dxmil, where each Dxm;|, is a polynomial as shown by Lem. 9. Let
n = sizeof (f), we have that sizeof (Dx f|,) is bounded by n3. This result follows
from Coro. 1 and the fact that I <mn.

Let us now extend our result to the differential in each variable. The definition
of derivative shows that Df|, = Uyxcx Dx flo the definition of which is given
above. Let n = max(|X|, sizeof (f)), we find that sizeof (D f|) is bounded by n*.

Finally we extend the result to polynomial transformation using the equal-
ity (DF|,)(X) = DFx]|,. Let us now characterize the time complexity of the
algorithm that computes for DF|,,.

Corollary 2. Let F and v be respectively a polynomial transformation and a
valuation over X . Define S = {v(X)}ycpyU{a € L|3X € X': a occurrs in Fx}.
The size of S is given by the sum of the size of each of its member. The size of
a € 2% is given by the sum of the length of each w € a. If S is of finite size
then DF|, is computable in time polynomial in the size of each Fx, X and the
size of S.

Remark that we could generalize and drop the finiteness requirement for .S.
For example, regular languages or context-free languages would be admissible
candidates for each element of S because they come with a finite representa-
tion and decision procedure for the tests/operations we need to compute the
differential.

We showed above how to compute G from DF |» and F'. So we conclude that
G is computable in time polynomial in the size of each Fy, X and the size of S.



4 Constructing a Parikh Equivalent Bounded Subset

We now show how, given a k-fold composition L', to compute an elementary
bounded language B such that IT(L' N B) = II1(B), that is we give an effective
procedure to solve Pb. 1 for the instance L’. This will complete the solution to
Pb. 1, hence the proof of Th. 1. In this section, we give an effective construction
of elementary bounded languages that solve Pb. 1 first for regular languages,
then for linear languages, and finally for a linear substitution. We start with
Lem. 11 the proof of which is given in [16]. First we need to introduce the
notion of semilinear sets. A set A C N” is a linear set if there exist ¢ € N™ and
P1,--.,Pk € N" such that A = {c + Zle Aipi | A € N}: ¢ is called the constant

of A and py,...,px the periods of A. A semilinear set S is a finite union of
linear sets: S = (J;_, A4; where each A; is a linear set. Parikh’s theorem (cf. [11])
shows that the Parikh image of every CFL is a semilinear set that is effectively
computable.

Lemma 11. Let L and B be respectively a CFL and an elementary bounded
language over X such that II(LNB) = II(L). There is an effectively computable
elementary bounded language B’ such that IT(L* N B') = I (L") for all t € N.

Proof. By Parikh’s theorem, we know that ITx (L) is a computable semilinear

set. Let us consider uy,...,us € L such that [Is(u;) = ¢; for i € {1,...,¢}.
Let B' = uj - --uj B, we see that B’ is an elementary bounded language. Let

t > 0 be a natural integer. We have to prove that II(L') C II(L' N B’).

t < £ We conclude from the preservation of IT and the hypothesis IT(L) =

II(L N B) that

(LY = I(LN B))
CII(L'n BY) monotonicity of IT
CI(L'n B") B' C B since e € B
CII(L'NB) def. of B’

t > £ Let us consider w € Lt. For every i € {1,...,¢} and j € {1,...,k;}, there
exist some positive integers A;; and p;, with Zle w; =t such that

Z,chz + Z Z /\z]pzj .

1=1 j=1
i — 1 if u; >0
We define a new variable for each i € {1,...,¢}: a; = x nH .
0 otherwise.
For each ¢ € {1,...,¢}, we also consider z; a word of L U {e} such that z; = ¢ if

Hi = 0 and H(Z7) =c¢ + 2_1;7:1 /\ijpij else.

Let w' = ui" ... uy*2 ... 2. Clearly, II(w') = II(w) and w’" € u}---uj(L U
{e})t. For each i € {1,...,¢}, II(L N B) = II(L) shows that there is 2/ €
(LN B) U {e} such that II(z)) = II(z;). Let w” = u" ... uy*2] ...z, We find
that IT(w"”) = I (w), w"” € B" and we can easily verify that w” € L. O



Regular Languages.The construction of an elementary bounded language that
solves Pb. 1 for a regular language L is known from [16] (see also [17], Lem. 4.1).
The construction is carried out by induction on the structure of a regular ex-
pression for L. Assuming L # (), the base case (i.e. a symbol or ¢) is trivially
solved. Note that if L = () then every elementary bounded language B is such
that IT(L N B) = II(L) = .

The inductive case falls naturally into three parts. Let Ry and Rs be regu-
lar languages, and By and Bs the inductively constructed elementary bounded
languages such that IT(Ry N By) = II(R;) and II(Ry N By) = I1(Ry).

concatenation For the instance R; - Rs, the elementary bounded language
Bj - By is such that II((Ry - Re) N (B1 - Be)) = II(R:1 - Ra);

union For R; U Ry, the elementary bounded language B; - Bs suffices;

Kleene star Let us consider Ry and Bj, Lem. 11 shows how to effectively
compute an elementary bounded language B’ such that for every t € N,
II(RYNB’) = II(R}). Let us prove that B’ solves Pb. 1 for the instance R}.
In fact, if w is a word of R}, there exists a t € N such that w € RY{. Then,
we can find a word w’ in RY N B’ with the same Parikh image as w. This
proves that IT(R}) C II(R; N B’). The other inclusion holds trivially.

Proposition 2. For every reqular language R, there is an effective procedure to
compute an elementary bounded language B such that II(RN B) = II(R).

Linear Languages.We now extend the previous construction to the case of
linear languages. Recall that linear languages are used to represent the iterates
(Vk)ken. Lemma 12 gives a characterization of linear languages based on regular
languages, homomorphism, and some additional structures.

Lemma 12. (from [13]) For every linear language L over X, there exist an
alphabet A and its distinct copy E, an homomorphism h : (AU g)* — X* and a
regular language R over A such that L = h(RA*NS) where S = {wd" | w € A*}
and w" denotes the reverse image of the word w. Moreover there is an effective
procedure to construct h, A, and R.

Proof. Assume the linear language L is given by linear grammar G = (X, X, §)
and a initial variable X,. We define the alphabet A to be {a, |p € d}. We
define the regular language R as the language accepted by the automaton
given by (X U{qs},T, Xo,{qs}) where: T = {(X,a,,Y) | p=(X,aYp) €} U
{(X,ap,q7) | p=(X,a) € 6 Ao € *}. Next we define the homomorphism, h
which, for each p = (X, oY ) € 6, maps a, and a, to o and (3, respectively. By
construction and induction on the length of a derivation, it is easily seen that
the result holds. a

Next, we have a technical lemma which relates homomorphism and the Parikh
image operator.



Lemma 13. Let X, Y C X* be two languages and a homomorphism h : A* —
X*, we have:

II(X) = I(Y) implies IT(h(X)) = I(h(Y)) .

Proof. Tt suffices to show that the result holds for = replaced by C. Let 2’ €
h(X). We know that there exists x € X such that z' = h(x). The equality
II(X) = II(Y) shows that there exists y € Y such that IT(y) = II(z). It is clear
by property of homomorphism that IT(h(y)) = II(h(z)). O

The next result shows that an elementary bounded language that solves Pb. 1

can be effectively constructed for every linear language L that is given by h and
R such that L = h(RA* N S).

Proposition 3. For every linear language L = h(Rg* N.S) where h and R are
given, there is an effective procedure which solves Pb. 1 for the instance L, that
is a procedure returning an elementary bounded B such that II(LNB) = II(L).

Proof. Since R is a regular language, we can use the result of Prop. 2 to effectively
compute the set {wi,...,wy,} of words such that for R' = RN w}---w), we
have IT(R’) = II(R). Also, we observe that for every language Z C A* we have
ZA*NS = {wa" |w e Z}.

II(R') = II(R) by above
only if IT(R'A* N S) = II(RA* N S) by above
only if IT(h(R'A* N S)) = II(h(RA* N S)) Lem. 13
only if IT(h(R'A* N S)) = II(L) def. of L
only if IT(R(RA* N S) Nw} -+ wiwh, - w; ) = II(L) def. of R’
only if IT(R(RA* N S) N h(wt - wiwh, - -wl ) = II(L)

only if IT(L N h(wt - whwh, - -wl ) = II(L) def. of L
only if IT(L N h(wy)* - h(wy,)*h(wp,)* - h(w})*) = (L)

which concludes the proof since h(w) € X* if w € (AU A)*. O

Linear languages with Substitutions.Our goal is to solve Pb. 1 for k-fold

compositions, i.e. for languages of the form cr;-C (v%). Prop. 3 gives an effective

procedure for the case j = k since O']]: (v’)“() is a linear language. Prop. 4 generalizes

to the case j < k: given a solution to Pb. 1 for the instance O’]+1(UX) there is

an effective procedure for Pb. 1 for the instance o; o 0¥, (v%) = 0¥ (v%).

Proposition 4. Let
1. L be a CFL over X;



2. B an elementary bounded language such that II(L N B) = II1(L);
3. o and T be two substitutions over X such that for each a € X, (i) o(a) and
7(a) are respectively a CFL and an e.b. and (i) II(c(a) N 7(a )) I(o(a)).

Then, there is an effective procedure that solves Pb. 1 for the instance o(L), by
returning an elementary bounded language B" such that II (o (L)NB') = II(o(L)).

Proof. Let wi,...,w, € X* be the words such that B = wj ---wj. Let L; =
o(w;) for each i € {1,...,k}. Since o(a) is a CFL so is o(w;) by property of
the substitutions and the closure of CFLs by finite concatenations. For the same
reason, 7(w;) is an elementary bounded language. Next, Lem. 11 where the
elementary bounded language is given by 7(w;), shows that we can construct an
elementary bounded language B; such that for all t € N, IT(L! N B;) = II(L}).
Define B’ = Bj ... By, that is an elementary bounded language. We have to prove
the inclusion IT(o (L)) C II(o(L)NB’) since the reverse one trivially holds. So, let
w € o(L). Since I(LNw} ---wj) = (L), there is a word w’ € (L Nw} - --wj)
such that IT(w) = II(w’). Then we have

w' €a(LNwi - wj)
€ o(wi ... wp) for some tq,...,1
ceo(wi)...owy) property of subst.
€ o(w)" ... o(wy)* property of subst.
eLy... L o(w;) = L;

For each i € {1,...,k}, we have IT(L¥ N B;) = IT(LY), so we can find w” €
(LN By)... (L ﬂ By,) such that IT(w") = II(w’). Definition of B’ also shows
that w” € B’. Moreover
w” € (LY N By)... (L} N By)
€Ly ... L}

co(wy)™...o(w)™ o(w;) =L;
€o(wit)...o(wk) property of subst.
€ o(wi...wp) property of subst.
eo(LNwi...wy) wit . wik € LNwy ... wj

€o(L)

Finally, w” € B’ and w” € o(L) and II(w"”) = II(w'), which in turn equals
IT(w), prove the inclusion. O

We use the above result inductively to solve Pb. 1 for k-fold composition as
follows: fix L to be o}, (v%), B to be the solution of Pb. 1 for the instance L, o

to be o; and 7 a substitution which maps every vX to the solution of Pb. 1 for

the instance o;(v% ). Then B’ is the solution of Pb. 1 for the instance o (v%).



Algorithm 1: Bounded Sequence

Data: G a linear grammar
Data: B a valuation s.t. for every X € X B(X) is an elementary bounded
language and IT(Lx (G)) = II(Lx(G) N B(X))
Data: n € N
Result: B € L% such that for every X € X B(X) is an elementary bounded
and II(B(X) Nvp (X)) = II(vn(X))
1 Let B,,_1 be B[vf{fl};
fori=n—-2,n—3,...,0do
Let 7,41 be the substitution which maps each véfl on B [v}] and leaves each
letter of X unchanged;
foreach X € X do
2 Let B;(X) be the language returned by Prop. 4 on the languages
L oo (V%) and Bi+1(X), and the substitutions 041, Tit1;

Let 79 be the substitution which maps each v% on the elementary bounded
language wi - - - wy, where {w1,...,w,} = 0o(v%) and leaves each letter of X
unchanged;
foreach X € X do
3 Let B(X) be the language returned by Prop. 4 on the languages of (v%)
L and Bo(X), and the substitutions oo, 7o;
return B

4.1 k-fold Substitutions

Let us now solve Pb. 1 where the instance is given by a k-fold composition.
Given a CFL L = Lx,(G) where G = (X, X,9) is a grammar and Xy € X an
initial variable, we compute the linear grammar G and the k-fold composition
{oj}to<j<n as defined in Sec. 3.3. With the result of Prop. 3, we find a valuation

B such that for every variable X, (1) B(X) is an elementary bounded language
and (2) I(Lx (G)) = I(Lx (G) N B(X)).

The above reasoning is formally explained in Alg. 1.

We now prove the following invariants for Alg. 1.

Lemma 14. In Alg. 1, for every X € X,

— for every k € {0,...,n— 1}, Bi(X) is an elementary bounded language on
(Xu vﬁg)* such that H(UZ+1(USL() N Bi(X)) = H(U,’CLH(U}));

— B(X) is an elementary bounded language on X* such that II(v,(X) N
B(X)) = (v (X)).

Proof. — By induction on k:
Base case. (k = n — 1) Alg. 1 assumes that B(X) is an elemen-
tary bounded language, so is B,_1 by line 1. It remains to prove that
H(on(v%)NBy—1(X)) = (0, (vY)), which is equivalent, by definition of o,
and B, _1, to IT(Lx(G)[v3 ] N Blv% (X)) = II(Lx(G)[v%']). By prop-
erty of the symbol-to-symbol substitution Tloy /o1 the equality reduces to

II(Lx(G)N B(X)) = II(Lx(G)) which holds by assumption of Alg. 1.



Inductive case. (0 < k < n — 2) At line 1, we see that we can ap-
ply the result of Prop. 4 because (1) o7, ,(v%) is a CFL (CFLs are closed
by context-free substitutions), (2) B;1+1(X) is an elementary bounded lan-
guage (induction hypothesis), (3) for every variable Y € X, o4 (vi!) is
a CFL, 7,11 (vit!) is an elementary bounded language and IT(o;4 1 (vi™) N
T (Vi) = (0441 (vE)). Hence, the proposition shows that B;(X) is an
elementary bounded language and II(0}, (v ) N B;(X)) = II (0}, (v)).

— The above invariant for & = 0 shows that, for every variable X € X, (1
By(X) is an elementary bounded language, and (2) II(o7 (v%) N Bo(X))
II (o} (v%)). We conclude from line 1 and Prop. 4 that II(of (v%)NB(X)) =
I (0§ (v%)), and that II(v,(X) N B(X)) = II(v,(X)) by Lem. 8.

~—

O

Referring to our initial problem, we finally find that:

Corollary 3. Let B be the valuation returned by Alg. 1, B is a valuation in LY
such that for every X € X: II(Lx(G)N B(X)) = II(Lx(G)).

In fact, for X = Xy, B(Xp) is the solution of Pb. 1 for the instance L. This
concludes the proof of Th. 1. In what follows, we show two applications of Th. 1
in software verification.

Iterative Algorithm. We conclude this section by showing a result related to
the notion of progress if the result of Th. 1 is applied repeatedly.

Lemma 15. Given a CFL L, define two sequences (L;)ien, (B;)ien such that
(1) Lo = L, (2) B is elementary bounded and II(L; N B;) = II(L;), (3) Lit1 =

L; N B;. For every w € L, there exists i € N such that w ¢ L;. Moreover, given
Lo, there is an effective procedure to compute L; for every i > 0.

Proof. Let w € L and let v = II(w) be its Parikh image. We conclude form
II(LoNBy) = II(Ly) that there exists a word w’ € By such that II (w') = v. Two
cases arise: either w’ = w and we are done; or w’ # w. In that case L; = LoN By
shows that w’ ¢ L;. Intuitively, at least one word with the same Parikh image
as w has been selected by By and then removed from L by definition of L.
Repeatedly applying the above reasoning shows that at each iteration there exists
a word w' such that IT(w") = v, w” € B; and w” ¢ Ly, since L;11 = L; N B;.
Because there are only finitely many words with Parikh image v we conclude that
there exists j € N, such that w ¢ L;. The effectiveness result follows from the
following arguments: (1) as we have shown above (our solution to Pb. 1), given
a CFL L there is an effective procedure that computes an elementary bounded
language B such that II(L N B) = II(L); (2) the complement of B is a regular
language effectively computable; and (3) the intersection of a CFL with a regular
language is again a CFL that can be effectively constructed (see [13]). O

Intuitively this result shows that given a context-free language L, if we repeatedly
compute and remove a Parikh-equivalent bounded subset of L (LN B is effectively
computable since B is a regular language), then each word w of L is eventually
removed from it.



5 Applications

We now demonstrate two applications of our construction. The first application
gives a semi-algorithm for checking reachability of multithreaded procedural pro-
grams [19,14,4]. The second application computes an underapproximation of the
reachable states of a recursive counter machine.

5.1 Multithreaded Procedural Programs

Multithreaded Reachability. A common programming model consists of mul-
tiple recursive threads communicating via shared memory. Formally, we model
such systems as pushdown networks [20]. Let n be a positive integer, a pushdown
network is a triple N' = (G, I, (4;)1<i<n) where G is a finite non-empty set of
globals, I' is the stack alphabet, and for each 1 < ¢ < n, 4, is a finite set of
transition rules of the form (g,v) — (¢’,a) for g,¢' € G,y € I', a € I'*.

A local configuration of N is a pair (g, ) € G x I'* and a global configuration
of N is a tuple (g,a1,...,qy,), where g € G and ay,...,a, € I'* are individual
stack content for each thread. Intuitively, the system consists of n threads, each
of which have its own stack, and the threads can communicate by reading and
manipulating the global storage represented by g.

We define the local transition relation of the i-th thread, written —;, as
follows: (g,v8) =i (¢',apB) iff {(g,7) — (¢’,a) in A; and S € I'*. The transi-
tion relation of N, denoted —, is defined as follows: (g, a1,..., a4, ..., ) —
(¢ a1,k an) iff (g,04) =4 (¢, ). By —=F, =, we denote the reflexive
and transitive closure of these relations. Moreover, we define the global reachabil-
ity relation ~» as a reachability relation where all the moves are made by a single
thread: (g, @1,..., G4y am) ~ (¢ a1, .. &yt o) iff (g, 0) =5 (¢, o) for
some 1 <4 < n. The relation ~» holds between global configurations reachable
from each other in a single context. Furthermore we denote by ~+;, where j > 0,
the reachability relation within j contexts: ~» is the identity relation on global
configurations, and ~»; ;1= ~»; o ~». Let Cy and C' be two global configura-
tions, the reachability problem asks whether Cy —* C holds. An instance of the
reachability problem is denoted by a triple (A, Cy, C).

A pushdown system is a pushdown network where n = 1, namely (G, I, A). A
pushdown acceptor is a pushdown system extended with an initial configuration

co € G x I'*, labeled transition rules of the form (g,~) SN (¢'a) for g,¢',7v,
defined as above and A € X U {e}. A pushdown acceptor is given by a tuple
(G, I, X, A, cp). The language of a pushdown acceptor is defined as expected
where the acceptance condition is given by the empty stack.

In what follows, we reduce the reachability problem for a pushdown network
of n threads to a language problem for n pushdown acceptors. The pushdown
acceptors obtained by reduction from the pushdown network settings have a
special global 1 that intuitively models an inactive state. The reduction also
turns the globals into input symbols which label transitions. The firing of a
transition labeled with a global models a context switch. When such transition



fires, every pushdown acceptor synchronizes on the label. The effect of such a
synchronization is that exactly one acceptor will change its state from inactive
to active by updating the value of its global (i.e. from L to some g € G) and
exactly one acceptor will change from active to inactive by updating its global
from some g to L. All the others acceptors will synchronize and stay inactive.

Given an instance of the reachability problem, that is a pushdown network
(G, I, (Ai)1<i<n) With n threads, two global configurations Cy and C' (assume
wlog that C is of the form (g, ¢, ..., ¢)), we define a family of pushdown acceptors
{(G',F,E,Ag,cg)}KKn, where:

— G'=GU{L}, I'is given as above, and X' =G x {1,...,n},
— Al is the smallest set such that:
(9:7) = (g, @) in AL if (g,7) = (¢, @) in Ay

[ ]

(9,9) . .
e (9,7 = (L) forjefl,....n}\{i}, ge G,y I}
o (L,7) (<g—7j>) (L,v) for je{l,...,n}\{i}, g€ G, y€T;

e (L,7) ey (9,7) forge G,y e I'.

—let Co = (g,a1,...,Q4,...,0p), ch is given by (L, ;) if i > 1; (g, 1) else.

Proposition 5. Let n be a positive integer, and (N,Co,C) be an instance
of the reachability problem with n threads, one can effectively construct CFLs
(L1,...,Ly) (as pushdown acceptors) such that Co —* C iff LyN---N L, # 0.

The converse of the proposition is also true, and since the emptiness problem
for intersection of CFLs is undecidable [13], so is the reachability problem. We
will now compare two underapproximation techniques. The context-bounded
switches for the reachability problem [18] and the bounded languages for the
emptiness problem that is given below.

Let Lq,..., Li be context-free languages, and consider the problem to decide
if Ny<;<p Li # 0. We give a decidable sufficient condition: given an elementary
bounded language B, we define the intersection modulo B of the languages {L;},

as ﬂz(-B) L; = (N, L) NB. Clearly, ﬂEB) L; # 0 implies (), L; # 0. Below we show
that the problem ﬂl(-B) L; # () is decidable .

Lemma 16. Given an elementary bounded language B = w7 ---w};, and CFLs
Ly,..., Ly, it is decidable to check if ﬂg?igk L; # 0.

Proof. Define the alphabet A = {a1,...,a,} disjoint from X. Let h be the ho-
momorphism that maps the symbols ay, ..., a, to the words wy, ..., w,, respec-
tively. We show that (), [Ta (R~ (LiNB)Naj ---a}) # 0 iff ﬂgE)Kk L; #0.

‘We conclude from w € ﬂgli)Kk L; that w € Band w € L; forevery 1 <1i < k,
hence there exist ¢1,...,t, € N such that w = wil ...wir by definition of B.
Then, we find that (¢1,...,t,) = Ha(h~ (w)Naj - - - a}), hence that (t1,...,t,) €
IIa(h~Y(L; " B)Na}---a) for every 1 < i < k by above and finally that
Micick Ta(h™ (Lin B)Naj ---ay,).



Algorithm 2: Intersection

Input: L?, LY : CFLs

L1+ LY, Lo+ LY;

repeat forever

if II(L1)NII(L2) = ( then

| return L9 N L3 is empty

else
Compute B; and Bz elementary bounded languages such that
H(Ll M Bl) = H(Ll) and H(LQ M BQ) = IY(LQ)7
Compute B = B; - Bo;
if L1 N®) Ly # () then

| return LY N LY is not empty

| L1(—L10§,L2<—L2ﬂ§

For the other implication, consider (t¢1,...,t,) a vector of
Mi<icr Ha(h(L;NB)Naj - -a},) and let w = wi' ... wh. For every 1 < i < k,
we will show that w € L;NB. As (t1,...,t,) € Ia(h~(L;NB)Naj - - -aj,), there
exists a word w’ € af - --a such that II4(w') = (t1,...,t,) and h(w') € L; N B.
We conclude from ITs(w') = (t1,...,t,), that w' = @' ...alr and finally that,
h(w’") = w belongs to L; N B.

The class of CFLs is effectively closed under inverse homomorphism and in-
tersection with a regular language [13]. Moreover, given a CFL, we can compute
its Parikh image which is a semilinear set. Finally, we can compute the semi-
linear sets 114 (ff1 (L;,NnB)Naj--- a*) and the emptiness of the intersection of

n
semilinear sets is decidable [11]. 0

While Lem. 16 shows decidability for every elementary bounded language, in
practice, we want to select B “as large as possible”. We select B using Th. 1.
We first compute for each language L; the elementary bounded language B; =
wgi)* e wy(l?* such that IT(L; N B;) = II1(L;). Finally, we choose B = By - - - By.

By repeatedly selecting and removing a bounded language B from each L;
where 1 < i < k we obtain a sequence {L]};>¢ of languages such that L; =
L? D) L} D .... The result of Lem. 15 shows that for each word w € L;, there is
some j such that w ¢ L{, hence that the above sequence is strictly decreasing,
that is L; = LY D L} 2 ..., and finally that if (), ,, L; # 0 then the iteration
is guaranteed to terminate.

At Alg. 2, we present a pseudocode for the special case of the intersection of
two CFLs.

Comparison with Context-Bounded Reachability. A well-studied under-
approximation for multithreaded reachability is given by context-bounded reach-
ability [18]. Given a pushdown network, global configurations Cy and C, and a
number k > 1, the context-bounded reachability problem asks whether Cy ~»p C
holds, i.e. if C' can be reached from Cj in k context switches. This problem
is decidable [18]. Context-bounded reachability has been successfully used in



practice for bug finding. We show that underapproximations using bounded lan-
guages (Lem. 16) subsumes the technique of context-bounded reachability in the
following sense.

Proposition 6. Let N be a pushdown network, Cy, C' global configurations of
N, and (Lq,...,L,) CFLs over alphabet X such that Cy —* C iff "zL; # 0.
For each k > 1, there is an elementary bounded language By, such that Cy ~j C
only if ﬂEB"') L; #0. Also, ﬂl(-B’“) L; # 0 only if Co —* C.

Proof. Consider all sequences Cy ~» Cp---Cg_1 ~ Ci of k or fewer switches.
By the CFL encoding (Prop. 5) each of these sequences corresponds to a word
in %, If Cy ~»j, C, then there is a word w € ; Li and w € X% Define By, to be
wi -+ w}, where wi, ..., wy, is an enumeration of all strings in X*. We conclude
from w € ¥* and the definition of Bj, that w € By, hence that ﬂz(.B’“) L; #0

since w € [, L;. For the other direction we conclude from ﬂEB’“) L; # 0 that
M; Li # 0, hence that Cy —* C. O

However, underapproximation using bounded languages can be more pow-
erful than context-bounded reachability in the following sense. There is a fam-
ily {(Nk, Cok, Ck)}en of pushdown network reachability problems such that
Cor ~k Cr but Cox »r—1 C for each k, but there is a single elementary
bounded B such that ﬂEB) L # 0 for each k, where again (Lig, ..., Lyg) are
CFLs such that Co, ~ Cy iff N;L; # 0 (as in Prop. 5).

For clarity, we describe the family of pushdown networks as a family of two-
threaded programs whose code is shown in Fig. 1. The programs in the family
differs from each other by the value to which k is instantiated: k = 0,1,.... Each
program has two threads. Thread one maintains a local counter ¢ starting at 0.
Before each increment to c, thread one sets a global bit. Thread two resets bit.
The target configuration C} is given by the exit point of p1. We conclude from
the program code that hitting the exit point of p1 requires ¢ > k to hold. For
every instance, C}, is reachable, but it requires at least k context switches. Thus,
there is no fixed context bound that is sufficient to check reachability for every
instance in the family. In contrast, the elementary bounded language given by
((bit == true,2)- (bit == false, 1))* is sufficient to show reachability of the
target for every instance in the family.

thread pl1() { thread p2() {
int c=0; Li:bit = false;
L:bit=true; goto L1;
if bit == false { ++c; } T
if c<k { goto L; }
}

Fig. 1: The family of pushdown network with global bit.



5.2 Recursive Counter Machines

In verification, counting is a powerful abstraction mechanism. Often, counting
abstractions are used to show decidability of the verification problem. Counting
abstractions have been applied on a wide range of applications from parametrized
systems specified as concurrent JAVA programs to cache coherence protocols
(see [21]) and to programs manipulating complex data structures like lists (see
for instance [3]). In those works, counting not only implies decidability, it also
yields precise abstractions of the underlying verification problem. However, in
those works recursion (or equivalently the call stack) is not part of the model.
One option is to abstract the stack using additional counters, hence abstracting
away the stack discipline. Because counting abstractions for the stack yields too
much imprecision, we prefer to use a precise model of the call stack and perform
an underapproximating analysis. This is what is defined below for a model of
recursive programs that manipulate counters.
Counter Machine: Syntax and Semantics. An n-dimensional counter ma-
chine M = (Q, T, a, 3,{G¢},cp) consists of the finite non-empty sets @ and 7" of
locations and transitions, respectively; two mappings a: T'+— Q and 5: T +— Q,
and a family {Gy},c, of semilinear (or Presburger definable) sets over N

A M-configuration (q,x) consists of a location ¢ € @ and a vector z € N"; we
define C'y; as the set of M-configurations. For each transition ¢ € T, its semantics
is given by the reachability relation Ry (t) over Cpy defined as (q, ) Ras(t) (¢, ')
iff ¢ = a(t), ¢ = B(t), and (z,2’') € G;. The reachability relation is naturally
extended to words of T by defining Ry (e) = {((¢,2),(q,z)) | (g,2) € Car}
and Ry(u-v) = Rpr(u) o Rpr(v). Also, it extends to languages as expected.
Finally, we write (M, D) for a counter machine M with an initial set D C C)y
of configurations. Note that semilinear sets carry over subsets of Cj; using a
bijection from @ to {1,...,|Q|}.

Computing the Reachable Configurations. Let R C Cj x Cuy
and D C Cy, we define the set of configurations post[R](D) as
{(¢,2) | 3(q0,%0) € D A (q0,x0)R(q,x)}. Given a n-dim counter machine M =
(Q,T,a,B,{G¢},cr), asemilinear set D of configurations and a CFL L C T™ (en-
coding execution paths), we want to underapproximate post[Rs(L)](D): the set
of M-configurations reachable from D along words of L. Our underapproxima-
tion computes the set post[Rys(L')](D) where L' is a Parikh-equivalent bounded
subset L such that L’ = L N B where B = w} - - w.

We will construct, given (M, D), L and B (we showed above how to effec-
tively compute such a B), a pair (M’, D) such that the set of M-configurations
reachable from D along words of L N B can be constructed from the set of M’-
configurations reachable from D’. Without loss of generality, we assume M is
such that @ is a singleton. (One can encode locations using counters.)

Let M = (Q,T,, 3,{G4},cr) a 7-dim counter machine with @ = {qy} and
B = w}---w} such that [I(L N B) = II(L). Let h be the homomorphism that
maps some fresh symbols ay,...,a, to the words w1, ...,w,, respectively. We
compute the language L’y = k™' (LN B) Na}---aj. Let S = I, 01 (L)),
and note that S is a semilinear set. For clarity, we first consider a linear set H



.fy/:Fy—i—(k-i-l)’l’L e
1<

e Q' = {qi}ogigk U {qij}()g?g}? U{ar}

s s 11<i<n
o1 = {tO} U {tivti}lgigk U {tija tij nggk
e o’ and 3’ are given by the automaton
eLetie{0,...,k}and j € {1,...,n}
G, — Gi_m 0..AOij\'On ifi=0
’ {(z,z) e N>’}  else
th = Gj:il o G;n’
Gy, = G(w;”) o Gy, , and

Gtij = {(('T’U)’ (I7U)) | Vixn+j = O}

Let # € {+, -}, G¥. = {((z,v), (&,0)) € N*"" [V = vifeini;}.

Let w € T*, G(w) is s.t. G(e) = {(z,2) € N}, G(t) = {((z,v), («',v)) € N> |
(z,z') € Gi}, and G(wp - ws) = G(wp) o G(ws) if w =€, t and w, - wp, respectively.

Fig.2: The 7'-dim counter machine M’ = (Q',T", &/, ', {G+t},c 1)

where po = (po1,- .-, Pon) denotes the constant and {p; = (p;1, ... 7pin)}z‘el\{0}
the set of periods of H and I = {0,...,k}. Let J = {1,...,n}. In the following,
for every pair of vectors z = (z1,...,2,) and y = (y1,...,¥s), we denote by
(x,y) the vector (z1,...,%r,Y1,--.,Ys). The machine M’ is defined in Fig. 2.

Between qo and qg1, M’ non-deterministically picks values for all the ad-
ditional counters which we denote {Ay;};c; ;c;- When M’ fires ¢, we have
for all ¢ € I and j,5/ € J: Aj; = X and Ag; = 1. Below, for ev-
ery ¢ € I, we denote by A; the common value of the counters {)\Z-j}jeJ.
Then, M’ simulates the behavior of M for the sequence of transitions
given by wf01+/\1p11+"'+/\’€p’“1 <o wPonTAPInt -+ AkPin the Parikh image of which
is po + > ;c; Nipi- Let us define the set D’ of configurations of Cy as
{(q0, (z,0)) | (gr.2) € D Av =0k}

A sufficient condition for the set of reachable configurations of M’ start-
ing from D’ to be effectively computable is that for each ¢ in {t{};cp\ o) U

{tfj}ieljeJ (i.e. the loops in Fig. 2), it holds that ¢* is computable and
Presburéer definable. Given ¢ the problem of deciding if ¢* is Presburger de-
finable is undecidable [1]. However, there exist some subclasses C of Pres-
burger definable sets such that if ¢t € C then t* is Presburger defin-
able and effectively computable, hence the set of reachable configurations of
(M',D’) can be computed by quantifier elimination in Presburger arithmetic.
A known subclass is that of guarded command Presburger relations. An n-
dimensional guarded command is given by the closure under composition of
{(z,2') e N*" |2/ =z + e;} (increment), {(z,2’) € N*" |2/ =z —e;} (decre-
ment) and {(z,z) € N*" |z = (21,...,2,) Az; =0} (O-test) for 1 <i < n.
Other subclasses are given in [5,10]. Note that if for each t € T of M, G; is
given by a guarded command then so is each Gy for t' € T” of M’ by definition.



Hence, we find that the set post[Rym (T7*)](D’) of reachable configura-
tions of (M’, D’) is Presburger definable, effectively computable and relates to
post[Rar(L')](D) for the bounded language L’ as follows.

Lemma 17. Let (qf,z) € Chr,
(qf,) € post[Rar(LN](D) iff Fv € NEFU™: (g4 (2,v)) € post[Rar (T")](D').

We can easily compute the intersection of the two semilinear sets S and {gy} x N7
over ) x N7, because of the way we have carried the notion of semilinear set
over @' x N7. We take a bijection 7 from @’ to {1,...,|Q|}, so a configuration

1 ifn(g) =J
0 otherwise
Hence, the intersection consists of all the vectors of S with the composant of gy
equal to one and the others equal to zero. Lem. 15 shows that by iterating the
construction we obtain a semi-algorithm for a context-free language.
Acknowledgment. We thank Ahmed Bouajjani for pointing that the bounded
languages approach subsumes the context-bounded switches one.

(¢,2) € Q' x N is represented by (p1,...,pgp,z)" with p; =
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