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Abstract We explore how formal methods and tools of the verification trade could be used
for malware detection and analysis. In particular, we propose a new approach to learning
and generalizing from observed malware behaviors based on tree automata inference. Our
approach infers k-testable tree automata from system call dataflow dependency graphs. We
show how inferred automata can be used for malware recognition and classification.
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1 Introduction

Over the last several decades, the IT industry advanced almost every aspect of our lives
(including health care, banking, traveling) and industrial manufacturing. The tools and tech-
niques developed in the computer-aided verification community played an important role in
that advance, changing the way we design systems and improving the reliability of industrial
hardware, software, and protocols.

This paper is an extended journal version of [3]. The extensions include additional experimental results
and a more thorough discussion.
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In parallel, another community made a lot of progress exploiting software flaws for vari-
ous nefarious purposes, especially for illegal financial gain. Their inventions are often inge-
nious botnets, worms, and viruses, commonly known as malware. Malware source code is
rarely available and malware is regularly designed so as to thwart static analysis through the
use of obfuscation, packing, and encryption [36].

For the above mentioned reasons, detection, analysis, and classification of malware are
difficult to formalize, explaining why the verification community has mostly avoided, with
some notable exceptions (e.g., [8, 19]), the problem. However, the area is in a dire need of
new approaches based on strong formal underpinnings, as less principled techniques, like
signature-based detection, are becoming insufficient. Recently, we have been experiencing a
flood of malware [33], while the recent example of Stuxnet (e.g., [29]) shows that industrial
systems are as vulnerable as our every-day computers.

In this paper, we show how formal methods, more precisely tree automata inference, can
be used for capturing the essence of malicious behaviors, and how such automata can be
used to detect behaviors similar to those observed during the training phase. First, we exe-
cute malware in a controlled environment to extract dataflow dependencies among executed
system calls (syscalls) using dynamic taint analysis [6, 31]. The main way for programs to
interact with their environment is through syscalls, which are broadly used in the security
community as a high-level abstraction of software behavior [14, 25, 34]. The dataflow de-
pendencies among syscalls can be represented by an acyclic graph, in which nodes represent
executed syscalls, and there is an edge between two nodes, say s; and s, when the result
computed by s; (or a value derived from it) is used as a parameter of s,. Second, we use tree
automata inference to learn an automaton recognizing a set of graphs. The entire process is
completely automated.

The inferred automaton captures the essence of different malicious behaviors. We show
that we can adjust the level of generalization with a single tunable factor and how the in-
ferred automaton can be used to detect likely malicious behaviors, as well as for malware
classification. We summarize the contributions of our paper as follows:

— Expansion of dependency graphs into trees causes exponential blowup in the size of the
graph, similarly as with eager inlining of functions during static analysis. We found that
a class of tree languages, namely k-testable tree languages [37] can be inferred directly
from dependency graphs, avoiding the expansion to trees.

— We improve upon the prior work on inference of k-testable tree languages by providing
an O'(kN) algorithm, where k is the size of the pattern and N is the size of the graph used
for inference.

— We show how inferred automata can be used for detecting likely malicious behaviors and
for malware classification. To our knowledge, this is the first work applying the theory of
tree automata inference to malware analysis. We provide experimental evidence that our
approach is both feasible and useful in practice.

2 Related work
2.1 Tree automata inference
Inference of minimal finite state automata from both positive and negative examples is

known to be NP-complete [18]. Thus, inferring a single minimal classifier for millions of
new malware samples that appear each year might be infeasible. Inferring a non-minimal
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classifier is feasible, but the classifier could be too large to be useful in practice. In this pa-
per, we focus on a less expressive family of languages, for which minimal automata can be
efficiently identified from positive examples only.'

A subclass of regular tree languages—k-testable tree languages [37]—is identifiable in
the limit from positive examples only. These languages are defined in terms of a finite set
of k-level-deep tree patterns. The k factor effectively determines the level of abstraction,
which can be used as a knob to regulate the ratio of false positives (goodware detected
as malware) and false negatives (undetected malware). The patterns partition dependency
graphs into a finite number of equivalence classes, inducing a state-minimal automaton. The
automata inferred from positive (malware) examples could be further refined using negative
(goodware) examples. Such a refinement is conceptually simple, and does not increase the
inference complexity, because of the properties of k-testable tree languages. We leave such
a refinement for future work.

A number of papers focused on k-testable tree automata inference. Garcia and Vidal
[16] proposed an &' (kP N) inference algorithm, where k is the size of the pattern, P the
total number of possible patterns, and N the size of the input used for inference. Many
patterns might not be present among the training samples, so rather than enumerating all
patterns, [15] and [24] propose very similar algorithms that use only the patterns present
in the training set. Their algorithms are somewhat complex to implement as they require
computation of three different sets (called roots, forks, and leaves). Their algorithms are
O(M*N log(N)), where M is the maximal arity of any alphabet symbol in the tree language.
We derive a simpler algorithm, so that computing forks and leaves becomes unnecessary.
The complexity of our algorithm is &'(kN), thanks to an indexing trick that after performing
k iterations over the training sample builds an index for finding patterns in the training set.
Patterns in the test set can be located in the index table in amortized time linear in the size
of the pattern. In our application—malware analysis—the k factor tends to be small (< 5),
so our algorithm can be considered linear-time.

2.2 Malware analysis

From the security perspective, several types of malware analysis are interesting: malware
detection (i.e., distinguishing malware from goodware), classification (i.e., determining the
family of malware to which a particular sample belongs), and phylogeny (i.e., forensic anal-
ysis of evolution of malware and common/distinctive features among samples). All three
types of analyses are needed in practice: detection for preventing further infections and
damage to the infected computers, and the other two analyses are crucial in development of
new forms of protection, forensics, and attribution. In this paper, we focus on detection and
classification.

The origins of the idea to use syscalls to analyze software can be traced to Forrest et
al. [13], who used fixed-length sequences of syscalls for intrusion detection. Wagner and
Dean [34] built non-deterministic push-down automata (NDPDA) accepting valid sequences
of syscalls, obtained through static analysis of the source code. Such automata are then used
for monitoring the execution of programs at runtime. If a runtime sequence of syscalls is
rejected, that might signal an intrusion. The non-determinism of NDPDA posed signifi-
cant challenges in the monitoring phase, but the idea of abstracting applications’ behavior
with syscalls was embraced by other researchers. For example, Christodorescu et al. [9]

IPositive examples are examples belonging to the language to be inferred, while negative examples are those
not in the language.
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note that malware authors could easily reorder data-flow-independent syscalls, circumvent-
ing sequence-detection schemes, but if we analyze data-flow dependencies among syscalls
and use such dependency graphs for detection, circumvention becomes harder. Data-flow-
dependent syscalls cannot be (easily) reordered without changing the semantics of the
program. They compute a difference between sets of malware and goodware dependency
graphs, and show how resulting graphs can be used to detect malicious behaviors. Such
graph matching can detect only the exact behavioral patterns already seen in some train-
ing sample, but does not automatically generalize from observed behaviors, i.e., does not
attempt to overapproximate the training set in order to detect similar, but not exactly the
same behaviors. The approach is, however, fairly efficient, because the difference of two
sets of ordered, directed, and acyclic dependency graphs can be computed in polynomial
time. While the results we present in this paper do not take negative samples (obtained from
goodware) into account, doing so would likely improve both the detection and reduce the
false positive rate. It would be sufficient to exclude from the training set the graphs that
appear in both goodware and malware training samples.

Fredrikson et al. [14] propose an approach that focuses on distinguishing features, rather
than similarities among dependency graphs. First, they compute dependency graphs at run-
time, declaring two syscalls, say s; and s,, dependent, if the type and value of the value
returned by s; are equal to the type and value of some parameter of s, and s, was executed
after s;. They extract significant behaviors from such graphs using structural leap mining,
and then choose behaviors that can be combined together using concept analysis. In spite of
a very coarse unsound approximation of the dependency graph and lack of automatic gen-
eralization, they report 86 % detection rate on around 500 malware samples used in their
experiments. We see their approach as complementary to ours: the tree-automata we infer
from real dependency graphs obtained through taint analysis could be combined with leap
mining and concept analysis, to improve their classification power.

Bonfante et al. [4] propose to unroll control-flow graphs obtained through dynamic anal-
ysis of binaries into trees. The obtained trees are more fine-grained than the syscall depen-
dency graphs. The finer level of granularity could, in practice, be less susceptible to mimicry
attacks (e.g., [35]), but is also easier to defeat through control-flow graph manipulations. The
computed trees are then declared to be tree automata and the recognizer is built by a union
of such trees. Unlike inference, the union does not generalize from the training samples and
will recognize only behaviors that are the exact match for some previously observed behav-
ior. The reported experiments include a large set of malware samples (over 10,000), but the
entire set was used for training, and authors report only false positives on a set of goodware
(2653 samples). Thus, it is difficult to estimate how well their approach would work for
malware detection and classification.

2.3 Taint analysis

Dynamic taint analysis (DTA) [31] is a technique used to follow data flows in programs or
whole systems at runtime. DTA can be seen as a single-path symbolic execution [23] over
a very simple domain (set of taints). Its premises are simple: taint is a variable annotation
introduced through taint sources, it is propagated through program execution according to
some propagation rules until it reaches a taint sink. In our case, for instance, taint sources
are the syscalls’ output parameters, and taint sinks are the input parameters.

As will be discussed in detail later, our implementation is based on the binary rewrit-
ing framework Pin [27] and uses the taint propagation rules from Newsome and Song [31].
Since DTA must operate at the instruction-level granularity, it poses a significant runtime
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overhead. Our DTA implementation executes applications several thousand times slower
than the native execution. Our position is that the speed of the taint analysis is less impor-
tant than the speed of inference and recognition. The taint analysis can be run independently
for each sample in parallel, the dependency graph extraction is linear with the length of each
execution trace, and hardware-based information flow tracking has been proposed (e.g., [12,
32]) as a potential solution for improving performance. In contrast, inference techniques
have to process all the samples in order to construct a single (or a small number of) recog-
nizer(s). An average anti-virus vendor receives millions of new samples annually and the
number of captured samples has been steadily growing over the recent years. Thus, we be-
lieve that scalability of inference is a more critical issue than the performance of the taint
analysis.

In general, DTA both under- and over-approximates dependencies [6, 20]. The problem
of under-tainting (i.e. an output appears untainted, but is actually derived from a tainted
input) is generally caused by implicit flows due to control dependencies or interactions with
the system. The inverse problem, over-tainting, generally comes from imprecision of the
taint propagation rules, or difficulties that arise from working with machine code.

3 Notation and terminology

In this section, we introduce the notation and terminology used throughout the paper. First,
we build up the basic formal machinery that allows us to define tree automata. Second, we
introduce some notions that will help us define k-roots that can be intuitively seen as the top
k levels of a tree. Later, we will show how k-roots induce an equivalence relation used in our
inference algorithm. Towards the end of this section, we introduce k-testable languages, less
expressive than regular tree languages, but suitable for designing fast inference algorithms.

Let N be the set of natural numbers and N* the free monoid generated by N with con-
catenation (-) as the operation and the empty string € as the identity. The prefix order < is
defined as: u < v for u, v € N* iff there exists w € N* suchthat v=u-w.Foru e N*, n e N,
the length |u| is defined inductively: |€| =0, |u - n| = |u| + 1. We say that a set S is prefix-
closed if u <vAveS=uecsS. A tree domain is a finite non-empty prefix-closed set
D C N* satisfying the following property: if u -n€ DthenV1 <j<n.u-je€ D.

A ranked alphabet is a finite set & associated with a finite ranking relation arity C
& x N. Define %, as aset {f € F|(f,n) € arity}. The set T (%) of terms over the ranked
alphabet .% is the smallest set defined by:

1. % CT(%)
2.ifn>1, feF, ti,....,t, e T(F) then f(t;,....1,) € T(F)

Each term can be represented as a finite ordered tree ¢t : D — %, which is a mapping
from a tree domain into the ranked alphabet such that Yu € D:

1. iftu)e F,, n>1then{jlu-jeD}={l,...,n}
2. ift(u)e Fothen {j|u-jeD}=0

As usual in the tree automata literature (e.g., [10]), we use the letter ¢ (possibly with
various indices) both to represent a tree as a mathematical object and to name a relation that
maps an element of a tree domain to the corresponding alphabet symbol. An example of a
tree with its tree domain is given in Fig. 1.

The set of all positions in a particular tree ¢, i.e., its domain, will be denoted dom(t).
A subtree of t rooted at position u, denoted t/u is defined as (¢/u)(v) = t(u - v) and
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Fig. 1 An example of a tree ¢ f 1
and its tree domain.
dom(t) ={1,11,111,112,12,13, 131}, /i\‘ /l\‘
g a h 11 12 13
F ={f,g h,a,b},|t|=3, A | /\ |
t(H)=f,t/131=b
a b b 111 112 131

dom(t/u) ={v | u - v € dom(t)}. We generalize the dom operator to sets as: dom(S) =
{dom(u) | u € S}. The height of a tree ¢, denoted ||z]|, is defined as:

)l = max({|u| such that u € dom(t)})

Let & ={&/ | f € U0 i} be a set of new nullary symbols such that & N % = @. The
Z set will be used as a set of placeholders, such that £, can be substituted only with a tree ¢
whose position one (i.e., the head) is labeled with f,i.e., t(1) = f. Let T (& U &) denote
the set of trees over the ranked alphabet and placeholders. For ¢, € T (& U %), we define
the link operation 7’ by:

(121 ) = t(n) ifnedomt)A(t(n)€EV () =& At'(1)# £))
TP ifn=y-z, t(y)=&q), y€dom(t),z € dom(t’)

For any two trees, t,t € T (%), the tree quotient t 't is defined by:
T ={"e T(EUF) |1 =1"81}

The tree quotient operation can be extended to sets, as usual: =1 = {t~!¢' | ' € S}. For any
k > 0, define k-root of a tree ¢ as:

t if7(1) € %
root (1) = { & if f=t(1), feU.oZFi, k=0
f@rooty_1(t1), ..., ro0t,_1(t,)) ift=f(ty,....t,), It > k>0

A finite deterministic bottom-up tree automaton (FDTA) is defined as a tuple (Q, &, 8, F),
where Q is a finite set of states, % is a ranked alphabet, F C Q is the set of final states,
and § =, &; is a set of transition relations defined as follows: 8 : Fo — Q and for n > 0,
8, (F, x 0" — Q.

The k-testable in the strict sense (k-TSS) languages [24] are intuitively defined by a set
of tree patterns allowed to appear as the elements of the language. The following theorem is
due to Lopez et al. [26, Theorem 6.1]:

Theorem 1 Let £ C T(F). £ is a k-TSS iff for any trees t|,t, € T(F) such that
rooty(t,) = root(t,), when tflf YN t{'.,"f % (, then it follows that tflf = t{lf.

We choose Lépez et al.’s theorem as a definition of k-TSS languages. Other definitions in
the literature [15, 24] define k-TSS languages in terms of three sets; leaves, roots, and forks.
Forks are roots that have at least one placeholder as a leaf. Theorem 1 shows that such more
complex definitions are unnecessary. Intuitively, the theorem says that within the language,
any two subtrees that agree on the top k levels are interchangeable, meaning that a bottom-
up tree automaton has to remember only a finite amount of history. In the next section, we
show that we can define an equivalence relation inducing an automaton accepting a k-TSS
language using only our definition of the k-root, as expected from Theorem 1.
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4 k-Testable tree automata inference
4.1 Congruence relation

We begin with our definition of the equivalence relation that is used to induce a state-
minimal automaton from a set of trees. The equivalence relation, intuitively, compares trees
up to k levels deep, i.e., compares k-roots.

Definition 1 (Root Equivalence Relation ~;) For some k > 0, two trees 1,1, € T (%) are
root-equivalent with degree k, denoted #; ~y 15, if rooty (t,) = rooty (t2).

Lemma 1 The ~; relation is a congruence (monotonic equivalence) relation of finite index.

Proof (Sketch) It is obvious that ~; is an equivalence relation (reflexive, symmetric, and
transitive), and here we show that it is also monotonic, and therefore a congruence. Sup-
pose t; = f(t11,...,t,) and t = f(t21, ..., tay,), such that root,(t, /i) = root;(t,/ i) for all
1 <i < n. First, note that if kX > 0 and root;(t) = root,(t'), then rooti_(t) = root,_;(t).
According to the definition of rooty, for k > 0 we obtain:

rooty (ty)
= f(rooty_1(t11), ..., rooty_i(t1,)) By definition of rooty
= f(rooty_i(t21), ..., rooty_i(t,)) By inductive hypothesis
= rooty (1) By definition of root;

The k = 0 case is trivial, as rooty(t;) = &5 = rooty(t>).

The size of a k-root is bounded by M*, where M = max({n | %, € F, %, # ?}). Each
position u in the k-root’s domain can be labeled with at most | iy )| symbols. Thus,
root;. generates a finite number of equivalence classes, i.e., is of finite index. O

As a consequence of Lemma 1, inference algorithms based on the root equivalence rela-
tion need not propagate congruences using union-find [11] algorithms, as the root equiva-
lence relation is a congruence itself.

Definition 2 (~;-induced Automaton) Let 7/ C T (%) be a finite set of finite trees. The
ATy = (Q, &, 3, F) automaton induced by the root equivalence relation ~; is defined
as:
QO ={rooty(t') |t € T' . u € dom(T’) . t' =t /u}
F = {root;(t) |t € T'}
So(f)=f for feF
8, (f, rooty(t1), ..., root;(t,)) = rooty (f(t1,...,t,)) forn>1, fe %,

Corollary 1 (Containment) From the definition it follows that Yk > 0. T' C L (A~ +(T")).
In other words, the ~-induced automaton abstracts the set of trees T'.

Theorem 2 £ (A™F) is a k-TSS language.
Proof We need to prove that V|, 1, € T(F), k > 0. root (t;) = rooty (t) A tl’l.,?(AW) #+

/N t{lf(AN") #*0 = thZ(ANk) = t{lo"f(A”k). Suppose the antecedent is true, but the
consequent is false, i.e., tl_l_?(Awk) #* tz_lZ(A“k). Then there must exist ¢ such that t#, €
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ZL(A™) and tt, € L(A™*). Let u be the position of &,(y), i.e., (tit)/u = t,. Without
loss of generality, let ¢ be the tree with minimal |u|. Necessarily, |u| > 1, as otherwise
tl_lf(ANk) =@.Letu =w-i, i € N. We prove that 1, must be in .Z (A~*), contradicting
the initial assumption, by induction on the length of w.

Base case (Jw| = 1): Let (t(w))(1) = f, f € %,. There are two subcases: n = 1 and
n > 1. For n = 1, the contradiction immediately follows, as § ( f, root,(t1)) = §(f, root,(t;)).
For the n > 1 case, observe that for all positions w - j such that 1 < j <n and j # 1,
@) /w- j=(tit)/w - j =t/w- j. From that observation and root(t|) = root(t;), it
follows that

§((tgrr/w)(1), root (1t /w - 1), ..., root (1 /w - n))
=8((tt2/w) (1), rooty (tta/w - 1), ..., rooty (t5 1, /w - n))

Induction step (Jw| > 1): Let w = w’ - m, m € N. From the induction hypothesis, we
know that for all m, root, (t§t, /w) = root; (1, /w), thus it follows:

S((rttrr/w") (1), rooty (et /w' - 1), ..., rooty (t8 11 /w’ - n))
= 8((zttt2/u/)(l), rootk(ttttz/w/ . l), el rootk(tﬁtz/u/ . n))

Proposition 1 (Minimality) A~ is state-minimal.
Proof Follows from Myhill-Nerode Theorem [21, p. 72] and Lemma 1. ]

Minimality is not absolutely crucial for malware analysis in a laboratory setting, but it is
important in practice, where antivirus tools can’t impose a significant system overhead and
have to react promptly to infections.

Proposition 2 (Garcia [15]) Z(A™+1) C L (A7)

An important consequence of Garcia’s theorem is that the k factor can be used as an
abstraction knob—the smaller the k factor, the more abstract the inferred automaton. This
tunability is particularly important in malware detection. One can’t hope to design a clas-
sifier capable of perfect malware and goodware distinction. Thus, tunability of the false
positive (goodware detected as malware) and false negative (undetected malware) ratios is
crucial. More abstract automata will result in more false positives and fewer false negatives.

4.2 Inference algorithm

In this section, we present our inference algorithm, but before proceeding with the algo-
rithm, we discuss some practical aspects of inference from data-flow dependency graphs.
As discussed in Sect. 2, we use taint analysis to compute data-flow dependencies among
executed syscalls at runtime. The result of that computation is not a tree, but an acyclic di-
rected graph, i.e., a partial order of syscalls ordered by the data-flow dependency relation,
and expansion of such a graph into a tree could cause exponential blowup. Thus, it would
be more convenient to have an inference algorithm that operates directly on graphs, without
expanding them into trees.
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Fig. 2 Folding a tree into a f f
maximally-shared graph / l \ \'
h g h T h
ol /
a b

g g g
/\ SN N

b

Fortunately, such an algorithm is only slightly more complicated than the one that oper-
ates on trees. In the first step, our implementation performs common subexpression elim-
ination [1] on the dependency graph to eliminate syntactic redundancies. The result is a
maximally-shared graph [2], i.e., an acyclic directed graph with shared common subgraphs.
Figure 2 illustrates how a tree can be folded into a maximally-shared graph. In the second
step, we compute a hash for each k-root in the training set. The hash is later used as a hash
table key. Collisions are handled via chaining [11], as usual, but chaining is not described
in the provided algorithms. The last step of the inference algorithm traverses the graph and
folds it into a tree automaton, using the key computed in the second phase to identify equiv-
alent k-roots, which are mapped to the same state.

To simplify the exposition, we shall use the formal machinery developed in Sect. 3 and
present indexing and inference algorithms that work on trees. The extension to maximally-
shared graphs is trivial and explained briefly later.

input : Tree t, factor k
result : Key computed for every subtree of ¢

tmp < hash(t(1));

foreach 1 <i <arity(t(1)) do
ty < t/i;
tmp <— tmp ® hash(t;.key);
ComputeKey(t,, k);

end

t.key < tmp;

Algorithm 1 ComputeKey—Computing k-Root Keys (Hashes). The @ operator can be any
operator used to combine hashes, such as bitwise exclusive OR, with zero as the identity
element. The hash : & — N function can be implemented as a string hash, returning an
integral hash of the alphabet symbols

Algorithm 1 traverses tree ¢ in postorder (children before the parent). Every subtree has a
field key associated with its head, and the field is assumed to be initially zero. If the algorithm
is called once, for tree ¢, the key of the head of each subtree #; will consist only of the hash
of the alphabet symbol labeling ¢, i.e., hash(t;(1)). If the algorithm is called twice (on the
same tree), the key of the head of each subtree will include the hash of its own label and the
labels of its children, and so on. Thus, after k calls to ComputeKey, the key of each node
will be equal to its k-root key. Note that the temporary key, stored in the tmp variable, has
to be combined with the children’s (k — 1)-root key. The algorithm can be easily extended
to operate on maximally-shared graphs, but has to track visited nodes and visit each node
only once in postorder. The complexity of the algorithm is &'(k - N), where N is the size of
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the tree (or maximally-shared graph). For multi-rooted graphs (or when processing multiple
trees), all roots can be connected by creating a synthetic super-root of all roots, and the
algorithm is then called k times with the super-root as the first operand.

input : Tree ¢, factor k, alphabet %
output: A~ = (Q, %,8, F)

0=0,§=0,F =0;
foreach subtree t; in {t/u | u € dom(t)} traversed in postorder do
if rep[t;.key] = ) then
q < rooty(ty);
replt;.key]l = q;
0« Q0U{q};
end
n < arity(t;(1));
8 < 3 U{((1,(1), repl(ts/1).keyl, ..., repl(ts/n).keyl), replt;.keyD};

end
F = F U {rep[t.keyl};
return (Q, % ,45, F)

Algorithm 2 k-Testable Tree Automaton Inference. The rep : hash(rooty (T (F))) —
root; (T (& )) hash map contains representatives of equivalence classes induced by ~. Col-
lisions are handled via chaining (not shown)

Algorithm 2 constructs the A™* automaton. The tree (alternatively maximally-shared
graph) used for training is traversed in postorder, and k-root of each subtree is used to re-
trieve the representative for each ~;-induced equivalence class. Multi-rooted graphs can be
handled by introducing super-roots (as described before). Amortized complexity is & (kN),
where N is the size of the tree (or maximally-shared graph).

5 Implementation
5.1 Taint analysis

We use Pin [27] to perform instruction-level tracing and analysis. Pin is a dynamic binary in-
strumentation framework that allows program monitoring and rewriting only in user space,
which prevents us from propagating taints through syscalls in the kernel space. One pos-
sible solution would be to declare all syscalls’ input parameters to be taint sinks, and all
output parameters to be taint sources. Unfortunately, the kernel interface for the Windows
XP operating system is only partially documented. To work around this problem, we use the
libwst library by Martignoni and Paleari [28] to automatically extract and parse parameters
of Windows syscalls. With libwst, we find out the number, type, and directionality (in/out)
of parameters. The reverse-engineered parameters are then used as an input-output specifi-
cation of syscalls. After each return from a syscall, we walk the stack and mark any location
pointed to by an out parameter as tainted with a new taint mark. At syscall entry (i.e., just
before our tool loses control), we walk the stack and check if taint has reached any of its
in parameters. Since each taint mark can be traced back to a unique out parameter, the set
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of dependencies for an in parameter corresponds exactly to the set of its taint marks. We
approximate the leaves of the dependency graph (i.e., input parameters not returned by any
syscall) with their types. A more precise approach, left for future work, would be to use the
actual values.

Ideally, each malware sample would run unencumbered in the environment targeted by
its authors. According to conventional wisdom, most malware samples target Windows XP,
so we set it up with the latest service pack in a VirtualBox virtual machine with no net-
work connection and only one user with administrative rights. Although the lack of network
connection might prevent some samples from executing their payload, such a precaution
is necessary to avoid spreading the infection. We infect the virtual machine via a shared
folder. The physical machine used to run the dependency graph extraction experiments has
a2.66 GHz Intel Core i7 CPU and 8 GB RAM. After each run, we revert the virtual machine
to a clean snapshot so that malware samples can not interfere with each other.

5.2 Inference algorithm

The inference algorithm is a relatively straightforward implementation of algorithms in
Sect. 4.2, written in about 3200 lines of C++ code. As explained before, after reading the de-
pendency graphs, the implementation performs common subexpression elimination (CSE),
computes k-root hashes (Algorithm 1), infers a k-testable tree automaton (Algorithm 2),
and then runs the dependency graphs from the test set against that automaton. Both CSE and
inference are done directly on dependency graphs, avoiding an expansion into trees.

6 Experimental results
6.1 Benchmarks

For the experiments, we use two sets of benchmarks: the malware and the goodware set. The
malware set comprises 2631 samples pre-classified into 48 families. Each family contains
5-317 samples. We rely upon the classification of Christodorescu et al. [7] and Fredrikson
et al. [14].2 The classification was based on the reports from antivirus tools. For a small
subset of samples, we confirmed the quality of classification using virustotal.com, a free
malware classification service. However, without knowing the internals of those antivirus
tools and their classification heuristics, we cannot evaluate the quality of the classification
provided to us. Our classification experiments indicate that what the classification antivirus
tools do might be somewhat ad-hoc. Table 1 shows the statistics for every family, while
Table 2 shows goodware statistics. Table 3 gives some idea of how antivirus tools classify
one randomly chosen sample.

The goodware set comprises 33 commonly used applications: AdobeReader, Apple SW
Update, Autoruns, Battle for Wesnoth, Chrome, Chrome Setup, Firefox, Freecell, Freeciv,
Freeciv server, GIMP, Google Earth, Internet Explorer, iTunes, Minesweeper, MSN Messen-
ger, Netcat port listen and scan, NetHack, Notepad, OpenOffice Writer, Outlook Express,
Ping, 7-zip archive, Skype, Solitaire, Sys info, Task manager, Tux Racer, uTorrent, VLC,

2The full set of malware contains 3136 samples, but we eliminated samples that were not executable, ex-
ecutable but not analyzable with Pin (i.e., MS-DOS, Winl6, and POSIX subsystem executables), broken
executables, and those that were incompatible with the version of Windows (XP) that we used for experi-
ments.
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Table 1 Malware statistics per
family. All dependency graphs
were obtained by running each
sample for 120 sec in a controlled
environment. The identifier that
will be used in later graphs is
given in the first column. The
third column shows the number
of samples per family. The Avg.
column shows the average height
of the dependency graphs across
all the samples in the family. The
Nodes column shows the total
number of nodes in the
dependency graph (after CSE).
The Trees column shows the total
number of different trees (i.e.,
roots of the dependency graph)
across all the samples. The Max
column gives the maximal height
of any tree in the family
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ID  Family name Samples Avg. Nodes Trees Max.
1 ABU.Banload 16 771 544 303 21
2 Agent 42 8.86 965 593 27
3 Agent.Small 15 8.88 950 588 27
4 Allaple.RAHack 201 8.78 1225 761 44
5 Ardamax 25 6.21 144 69 16
6 Bactera.VB 28 7.09 333 177 28
7  Banbra.Banker 52 13.97 1218 686 37
8  Bancos.Banker 46 14.05 742 417 45
9  Banker 317 17.70 2952 1705 43

10  Banker.Delf 20 14.78 939 521 50

11 Banload.Banker 138 19.38 2370 1332 152

12 BDH.Small 5 5.82 348 199 21

13 BGM.Delf 17 7.04 339 199 25

14 Bifrose.CEP 35 11.17 1190 698 50

15 Bobax.Bobic 15 898 859 526 30

16  DKI.Poisonlvy 15 9.22 413 227 40

17  DNSChanger 22 12.62 874 483 36

18  Downloader.Agent 13 12.89 1104 613 49

19  Downloader.Delf 22 10.76 1486 906 32

20  Downloader.VB 17 10.80 516 266 29

21  Gaobot.Agobot 20 17.54 1812 1052 45

22 Gobot.Gbot 58 7.01 249 134 22

23 Horst.CMQ 48 16.86 1030 541 42

24 Hupigon.ARR 33 23.58 2388 1244 55

25  Hupigon.AWQ 219 24.63 7225 3758 62

26  IRCBot.Sdbot 66 16.51 3358 1852 47

27  LdPinch 16 16.88 1765 1012 66

28  Lmir.LegMir 23 9.00 1112 667 28

29  Mydoom 15 5.78 484 305 20

30 Nilage.Lineage 24 9.64 1288 657 83

31  Games.Delf 11 8.44 971 632 22

32 Games.LegMir 76 17.18 11892 8184 59

33 Games.Mmorpg 19 7.00 654 478 25

34 OnLineGames 23 7.30 718 687 16

35  Parite.Pate 71 1431 1420 816 36

36  Plemood.Pupil 32 6.29 330 189 24

37  PolyCrypt.Swizzor 43 1032 415 213 30

38  Prorat AVW 40 23.47 1031 572 58

39  Rbot.Sdbot 302 14.23 4484 2442 47

40 SdBot 75 14.13 2361 1319 40

41  Small.Downloader 29 11.93 2192 1216 34

42 Stration.Warezov 19 9.76 1682 1058 34

43  Swizzor.Obfuscated 27 21.75 1405 770 49

44 Viking HLLP 32 7.84 512 315 24
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Table 1 (Continued) )
ID  Family name Samples  Avg. Nodes  Trees  Max.

45 Virut 115 11.76 3149 1953 40
46  VS.INService 17 11.42 307 178 37
47 Zhelatin.ASH 53 12.14 1919 1146 39
48 Zlob.Puper 64 15.16 2788 1647 90

Win. Media Player, and WordPad. We deemed these applications to be representative of
software commonly found on the average user’s computer, from a number of different ven-
dors and with a diverse set of behaviors. Also, we used two micro benchmarks: a HelloWorld
program written in C and a file copy program. Micro-benchmarks produce few small depen-
dency graphs and therefore might be potentially more susceptible to be misidentified for
malware.

In behavioral malware detection, there is always a contention between the amount of
time the behavior is observed and the precision of the analysis. For malware samples, which
are regularly small pieces of software, we set the timeout to 120 sec of running in our en-
vironment. We also tried the 800 s timeout on a small randomly selected subset of malware
samples, without noticing a significant improvement in detection rates. For goodware, we
wanted to study the impact of the runtime on the height and complexity of generated depen-
dency graphs, and the impact of these differences on the false positive rates. Thus, we ran
goodware samples for both 120 and 800 sec. To give some intuition of how that corresponds
to the actual native runtime, it takes approximately 800 s in our DTA analysis environment
for Acrobat Reader to open a document and display a window.

We noticed a general tendency that detection and classification tend to correlate posi-
tively with the average height of trees in samples used for training and testing. We provide
the average heights in Tables 1 and 2, and heat maps providing a deeper insight into the
distribution of the heights in Figs. 3, 4, and 5. The heat maps confirm our claim that mal-
ware is indeed simpler than goodware, at least when compared by their syscall dependency
graphs. The majority of malware samples have dependency graphs with 30 or fewer levels
and the deepest one has 70 levels, while many goodware samples ran for 120 s (Fig. 5) have
graphs with more than 70 levels and three samples even had 100 levels. Running goodware
for 800 s produces more deeper dependency graphs, as expected.

6.2 Malware and goodware recognition

For our malware recognition experiments, we chose at random 50 % of the entire malware
set for training, and used the rest and the entire goodware set as test sets. Training with
k = 4 took around 10 sec for the entire set of 1315 training samples, and the time required
for analyzing each test sample was less than the timing jitter (sub-second range). All the
experiments were performed in Ubuntu 10.04, running in a VMware 7.1.3 workstation, run-
ning on Win XP Pro and dual-core 2.5 GHz Intel machine with 4 GB of RAM. In Fig. 6, we
show the results, using the goodware dependency graphs produced with an 800 sec timeout.
The results obtained with a 120 sec timeout are slightly worse and not shown.’

The detection works as follows. We run all the trees (i.e., roots of the dependency graph)
in each test sample against the inferred automaton. First, we sort the trees by height, and

3The 120 sec results are available in the full version available on the first author’s web page.
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Table 2 Goodware statistics. For the description of other columns, see Table 1

800 sec Trace 120 sec Trace

ID Application Avg. Nodes Trees Max. Avg. Nodes Trees Max.
1 AdobeReader 8.09 340 191 22 8.57 271 147 22
2 Apple SW Update 13.74 561 317 51 20.87 293 151 51
3 Autoruns 12.29 330 181 43 12.45 304 160 43
4 Battle for Wesnoth ~ 41.01 602 355 76 34.73 380 187 76
5 Chrome 13.85 436 240 43 11.11 273 143 31
6 Chrome Setup 5.19 148 74 17 5.19 148 74 17
7 Copy 77.14 913 426 244 64.99 880 412 215
8 Firefox 30.43 785 464 94 44.02 356 175 89
9 Freecell 11.65 308 167 33 11.49 316 172 33
10 Freeciv 28.48 472 241 75 37.14 300 137 72
11 Freeciv server 11.46 300 177 30 11.62 297 174 30
12 GIMP 30.97 681 359 86 36.33 299 134 69
13 Google Earth 33.08 321 155 76 4.63 88 37 13
14 HelloWorld 1.62 35 15 4 1.53 34 14 4
15 Internet Explorer 10.58 572 319 49 13.08 279 139 45
16 iTunes 48.81 852 457 120 32.05 404 217 75
17 Minesweeper 10.85 304 167 30 10.72 305 167 30
18 MSN Messenger 17.75 809 477 59 23.28 308 158 58
19 Netcat port listen 65.08 997 494 241 67.05 873 413 225
20 Netcat port scan 54.67 1123 597 241 65.69 882 420 225
21 NetHack 4.94 124 63 15 4.94 124 63 15
22 Notepad 9.68 350 198 30 10.69 298 165 30
23 OpenOffice Writer 6.55 271 156 19 6.60 271 156 19
24 Outlook Express 20.45 490 279 51 20.64 360 201 49
25 Ping 11.82 535 317 34 12.19 360 197 34
26 7-zip archive 12.96 269 149 26 12.97 267 144 30
27 Skype 1.38 31 12 3 1.38 31 12 3
28 Solitaire 11.63 303 165 31 11.30 311 170 31
29 Sys. Info 6.48 613 382 26 7.01 305 171 26
30 Task Manager 11.28 513 307 35 11.94 343 196 35
31 TuxRacer 14.11 441 261 44 15.53 279 157 39
32 uTorrent 9.31 267 151 28 10.49 214 114 28
33 VLC 12.92 325 178 38 12.76 295 159 38
34 Win. Media Player 9.50 448 255 36 10.23 315 174 36
35 ‘WordPad 8.33 420 235 28 8.52 262 147 27
Average 19.06 426 235 51 17.10 295 153 46

then compute how many trees for each height are accepted by the automaton. Second, we
score the sample according to the following function:
accepted;

: * 1
score = =Lt (1)

2l
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Table 3 Sample 3BC816C45FD461377E13A775AE8768A3 classification. Data obtained from Virusto-
tal.com

Antivirus Classification Antivirus Classification
AVG Downloader.Generic4.GAF AhnLab-V3 Win-Trojan/Xema.variant
AntiVir TR/Agent.8192.123 Antiy-AVL Trojan/Win32.Agent.gen
Avast Win32&Agent-GQA Avast5 Win32&Agent-GQA
BitDefender Trojan.Downloader.Agent. AAH CAT- TrojanDownloader.Agent.aah
QuickHeal

ClamAV Trojan.Downloader-6542 Command W32/Downldr2.COH
Comodo TrojWare.Win32. nProtect Trojan-Downloader/

TrojanDownloader.Agent. AAH W32.Agent.8192.K
Emsisoft Trojan-Dropper.Agent!IK F-Prot W32/Downldr2.COH
F-Secure Trojan.Downloader.Agent. AAH GData Trojan.Downloader.Agent. AAH
Tkarus Trojan-Dropper.Agent Jiangmin Trojan/PSW.GamePass.gir
K7AntiVirus Trojan-Downloader Kaspersky Trojan-Downloader.

Win32.Agent.aah

McAfee Suspect-AB!3BC816C45FD4 DrWeb Adware.DealHelper
Microsoft TrojanDownloader& NOD32 Win32/

Win32/Agent TrojanDownloader.Agent. AAH
Norman W32/Agent. ECGQ PCTools Trojan-Downloader.Agent. AAH
Panda Trj/Downloader. OEW Prevx Med. Risk Malware Downloader
Rising Trojan.Clicker.Win32.Small.nh Sophos Mal/Generic-L
Symantec Downloader TheHacker Trojan/Downloader.Agent.aah
TrendMicro TROJ_Generic VirusBuster Trojan.DL.Agent. TOR

where i ranges from 1 to the maximal height of any tree in the test sample (the last column
of Table 1), accepted; is the number of trees with height i accepted by the automaton, and
total; is the total number of trees with height i. The test samples that produce no syscall
dependency graphs are assumed to have score zero.

The score can range from O to 1. Higher score signifies a higher likelihood the sample
is malicious. The ratio in the nominator of Eq. (1) is multiplied by the depth of the tree to
filter out the noise from shallow trees, often generated by standard library functions, that
have very low classification power.

The results turned out to be slightly better with an 800 sec timeout than with the
120 sec timeout, as the average height of dependency graphs was slightly larger. As ex-
pected, we found that with the rising k factor (and therefore decreasing level of abstrac-
tion), the capability of inferred tree automaton to detect malware decreases, which obvi-
ously indicates the value of generalization achieved through tree automata inference. On
the other hand, with the rising k factor, the detection becomes more precise and there-
fore the false positive rate drops down. Thus, it is important to find the right level of ab-
straction. In our experiments, we determined that k = 4 was the optimal abstraction level.
The desired ratio between false positives and negatives can be adjusted by selecting the
score threshold. All samples scoring above (resp. below) the threshold are declared mal-
ware (resp. goodware). For example, for k = 4, timeout of 800 sec, and score 0.6, our
approach reports two false positives (5 %)—Chrome setup and NetHack, and 270 false
negatives (20 %), which corresponds to an 80 % detection rate. For k = 4, timeout of
800 sec, and score 0.6, our approach reports one additional false positive (System info),
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Fig. 3 Malware tree height heat map. The x axis represents the tree height, while the y axis lists malware
families. The legend on the right is a color code for the number of trees observed with a particular height
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Fig. 4 Goodware (800 sec trace) Tree height heat map. The x axis represents the goodware samples

and the same number of false negatives, although a few malware samples are somewhat
closer to the threshold. Obviously, the longer the behavior is observed, the better the classi-
fication.
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Fig. 5 Goodware (120 sec trace) Tree height heat map. The x axis represents the goodware samples

It is interesting to notice that increasing the value of k above 4 does not make a significant
difference in (mis)detection rates. We ran the experiments with k up to 10, but do not show
the results as they are essentially the same as for k = 4. From our preliminary analysis, it
seems that generalization is effective when a sequence of dependent syscalls are executed
within a loop. If two samples execute the same loop body a different number of times,
our approach will be able to detect that. Changing k effectively changes the window with
which such loop bodies are detected. During the inference, it seems like one size (of k) does
not fit all cases. We believe that by analyzing the repetitiveness of patterns in dependency
graphs, we could detect the sizes of loop bodies much more accurately, and adjust the k
factor according to the size of the body, which should in turn improve the generalization
capabilities of the inference algorithm. Many other improvements of our work are possible,
as discussed later.

6.3 Malware classification

We were interested in investigating the classification power of inferred automata, so we did
the following experiment. We divided at random each family into training and test sets of
equal size. For each training set, we inferred a family-specific tree automaton. For each
test set, we merge the dependency graphs for all the samples in the set, computing a single
dependency graph, which is then analyzed with the inferred tree automaton. The scores are
computed according to Eq. (1), with kK = 3. The only difference from the experiment done
in the previous section is that the score is computed for the entire test set, not individual
samples in the set. Results are shown in Fig. 7. The size of the dot in the graph is proportional
to the computed score, the largest dots correspond to the score of 1.

Some classification results can be explained by looking at the previously given heat maps.
For instance, family 25 has a large number of diverse graphs of different depths—almost the
entire row 25 in Fig. 3 is black up to the depth of 50. Thus, it is not surprising that such a
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% of samples with scores above (below)
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Fig. 6 Malware and goodware recognition. Timeouts for generating the dependency graphs were 120 sec
for malware test and training sets and 800 sec for the goodware test set in the figure on the left. The training
set consists of 50 % of the entire malware set, chosen at random. The test set consists of the remaining
malware samples (curves rising from left to right), and the goodware set (curves falling from left to right).
The rising curves represent the percentage of malware samples for which the computed score was less than
the corresponding value on the x axis. The falling curves represent the percentage of goodware samples for
which the score was greater than the corresponding value on the x axis. The figure shows curves for four
different values of k, there is essentially no difference between the cases when k =4 and k = 5. For the
rising curves, the lowest curve is for kK = 2, the next higher one for k = 3, and the two highest ones for the
remaining cases. For the falling curves, the ordering is reversed. The optimal score for distinguishing malware
from goodware is the lowest intersection of the rising and falling curves for the same k

diversity of graphs within a single family will produce a classifier that accepts many different
behaviors. In Fig. 7, the vertical line of dots above family 25 shows that the classifier learned
from half of the samples of family 25 is indeed fairly general and produces large scores
for many other families. We could improve both the classification and detection results by
eliminating common graphs from the training sets, as done by Christodorescu et al. [9]. Such
elimination can be done efficiently in polynomial time.

The pronounced diagonal in Fig. 7 shows that our inferred automata clearly have a signif-
icant classification power and could be used to classify malware into families. There is some
noise as well. The noise could be attributed to many factors: over-generalization, over- and
under-tainting of our DTA [6, 20], insufficiently large dependency graphs, frequently used
dynamic libraries that are shared by many applications and malware, and a somewhat ad-hoc
pre-classification by the antivirus tools.

7 Limitations

There are several inherent limitations of our approach. An attacker could try to mask syscall
dependencies so as to be similar (or the same) as those of benign applications. This class of
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Fig. 7 Malware classification results. The x (i) axis represents the training (test) sets. The size of the shaded
circle is proportional to the score computed by Eq. (1). The largest dots correspond to the score of 1

attacks are known as mimicry attacks [35]. All intrusion and behavioral malware detection
approaches are susceptible to mimicry attacks. One way to make this harder for the attacker,
is to make the analysis more precise, as will be discussed in the following section.

Triggering interesting malware behavior is another challenge. Some behaviors could be
triggered only under certain conditions (date, web site visited, choice of the default lan-
guage, users’ actions, ... ). Moser et al. [5, 30] proposed DART [17] as a plausible approach
for detecting rarely exhibited behaviors.

As discussed earlier, our DTA environment slows the execution several thousand times,
which is obviously too expensive for real-time detection. A lot of work on malware analysis
is done in the lab setting, where this is not a significant constraint, but efficiency obviously
has to be improved if taint-analysis based approaches are ever to be broadly used for mal-
ware detection. Hardware taint-analysis accelerators are a viable option [12, 32], but we also
expect we could probably achieve an order of magnitude speedup of our DTA environment
with a very careful optimization.

8 Conclusions and future work

In this paper, we presented a novel approach to detecting likely malicious behaviors and
malware classification based on tree automata inference. We showed that inference, un-
like simple matching of dependency graphs, does generalize from the learned patterns and
therefore improves detection of yet unseen polymorphic malware samples. We proposed an
improved k-testable tree automata inference algorithm and showed how the k factor can
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be used as a knob to tune the abstraction level. In our experiments, our approach detects
80 % of the previously unseen polymorphic malware samples, with a 5 % false positive rate,
measured on a diverse set of benign applications.

Currently, detection and classification of malware require significant amounts of man-
ual work (see [22] for discussion and references). The goal of our approach is to automate
these processes in the laboratory setting. Currently, tracing targeted applications and track-
ing their syscall dependencies incurs a significant slowdown, which is, in our view, the most
significant obstacle to adopting our approach in a real-time real-world setting. We expect
that further research and recent progress in hardware-assisted [12, 32] taint analysis could
bridge the performance gap.

There are many directions for further improvements. The classification power of our
approach could be improved by a more precise analysis of syscall parameters (e.g., using
their actual values in the analysis), by dynamically detecting the best value of the k factor
in order to match the size of loop bodies that produce patterns in the dependency graphs, by
using goodware dependency graphs as negative examples during training, and by combining
our approach with the leap mining approach [14].

Also, in the current dependency graphs analysis, we do not distinguish how syscalls re-
turn values. For example, if a syscall returns two values, one through the first out parameter
and another one through the second, we consider these two values to be the same during the
inference, even though our taint analysis distinguishes them. In other words, the inference
merges all outputs into a single output and all dependencies are analyzed with respect to that
single merged output.

Another interesting direction is inference of more expressive tree languages. Inference
of more expressive languages might handle repeated patterns more precisely, generalizing
only as much as needed to fold a repeatable pattern into a loop in the tree automaton. Further
development of similar methods could have a broad impact in security, forensics, detection
of code theft, and perhaps even testing and verification, as the inferred automata can be seen
as high-level abstractions of program’s behavior.
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