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Abstra
t: We de�ne a probabilisti
 
ontra
t framework for des
ribing and analysing 
omponent-

based embedded systems, based on the theory of Intera
tive Markov Chains (IMC). A 
ontra
t

spe
i�es the assumptions a 
omponent makes on its 
ontext and the guarantees it provides. Proba-

bilisti
 transitions allow for un
ertainty in the 
omponent behavior, e.g., to model observed bla
k-

box behavior (internal 
hoi
e) or reliability. An intera
tion model spe
i�es how 
omponents inter-

a
t.

We provide the ingredients for a 
omponent-based design �ow, in
luding (1) 
ontra
t satis-

fa
tion and re�nement, (2) parallel 
omposition of 
ontra
ts over disjoint, intera
ting 
omponents,

and (3) 
onjun
tion of 
ontra
ts des
ribing di�erent requirements over the same 
omponent. Com-

positional design is enabled by 
ongruen
e of re�nement.
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omposition
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Contrats probabilistes pour la 
on
eption à base

de 
ompostants

Résumé : Nous dé�nissons un 
adre formel de 
ontrats probabilistes pour

dé
rire et analyser des systèmes embarqués à base de 
omposants. Ce 
adre

formel est fondé sur la théorie des 
haînes de Markov intera
tives (IMC). Un


ontrat spé
i�e les hypothèses qu'un 
omposant fait quant à son 
ontexte et

les garanties qu'il fournit. Des transitions probabilistes permettent de raisonner

sur les in
ertitudes dans le 
omportement d'un 
omposant, par exemple pour

modéliser un 
omportement de type boîte noire (
hoix interne) ou sa �abilité.

Un modèle d'intera
tion spé
i�e la fa�on dont des 
omposants interagissent.

Nous fournissons tous les ingrédients pour le �ot de 
on
eption à base

de 
omposants, in
luant (1) la satisfa
tion et le ra�nement de 
ontrat, (2)

la 
omposition parallèle de 
ontrats portant sur des 
omposants disjoints qui

interagissent, et (3) la 
onjon
tion de 
ontrats dé
rivant des 
omportements

di�érents d'un même 
omposant. Notre 
adre formel permet de faire de la


on
eption 
ompositionnelle grâ
e à la 
ongruen
e de l'opération de ra�nement.

Mots-
lés : 
omposant, 
ontrat probabiliste, ra�nement, 
omposition
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1 Introdu
tion

Embedded and distributed systems often en
ompass unreliable software or hard-

ware 
omponents, as it may be te
hni
ally or e
onomi
ally impossible to make

a system entirely reliable. As a result, system designers have to deal with prob-

abilisti
 spe
i�
ations su
h as �the probability that this 
omponent fails at this

point of its behavior is less than or equal to 10
−6�. More generally, un
ertainty

in the observed behavior is introdu
ed by abstra
tion of bla
k-box behavior of


omponents, the environment, or the exe
ution platform. In this paper, we

introdu
e a framework for the design of 
orre
t systems from probabilisti
, in-

tera
ting 
omponents.

Figure 1(a) shows a Link system that transmits data between a Client and

a Server. The Link re
eives a request from the Client and en
odes the request

before sending it to the Server. The en
oding pro
ess fails with probability 0.02.

After re
eiving a response from the Server, it de
odes the data before delivering

it to the Client. To model 
omponents, we use a variant of Intera
tive Markov

Chain (IMC) framework [9℄ with dis
rete time semanti
s, whi
h 
ombines la-

beled transition systems (LTS) and Markov 
hains. Figure 1(b) shows an IMC

RR n° 7328
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(a) Client � Link � Server.
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(b) The IMC Mℓ of the Link.

Figure 1: An example of IMC: a Client-Link-Server.

des
ribing the Link 
omponent of Figure 1(a). From its initial state ℓ0, the
Link goes to state ℓ1 as soon as it re
eives (rec) a request from a Client; the

probability that it delivers (del′) this request to the Server is 0.98 and the prob-

ability that it fails to deliver it to the Server is 0.02. The Link goes to state ℓ4
immediately after re
eiving a response (rec′) from the Server; the probability

that it delivers (del) the response to the Client is 0.95 and the probability of

failing to do so is 0.05. In state ℓ8, the Link may still 
ommuni
ate with the

Server regarding other servi
es, but will not deliver any response to the Client.

Components 
ommuni
ate through intera
tions, that is, syn
hronized a
tion

transitions. Intera
tions are essential in 
omponent frameworks be
ause they

allow the modeling of how 
omponents 
ooperate and 
ommuni
ate. We use

the BIP framework [8℄ to model intera
tions between 
omponents.

Sin
e the deploying 
ontext of a 
omponent is not known at design time, we

use probabilisti
 
ontra
ts to spe
ify and reason about the 
orre
t behaviors of a


omponent. Contra
ts were �rst introdu
ed in [13℄. They allow the designer to

spe
ify what a 
omponent 
an expe
t from its 
ontext, what it must guarantee,

and expli
itly limit the responsibilities of both.

The framework we propose here allows us to model 
omponents, their in-

tera
tions, and the un
ertainty in their observed behavior (�2). It supports the

di�erent steps 
lassi
ally found in a design �ow: re�nement, satisfa
tion, and

proje
tion (�3), parallel 
omposition (�4.1), and 
onjun
tion (shared re�nement)

(�4.2). We prove that these operations satisfy the desired properties of indepen-

dent implementability and 
ongruen
e for parallel 
omposition, and soundness

for 
onjun
tion. The features of our framework are thus the following:

• re�nement is 
ompositional, that is, 
ontra
ts over di�erent 
omponents


an be re�ned and implemented independently;

• the parallel 
omposition of two 
ontra
ts is satis�ed by the parallel 
om-

position of any two implementations of the 
ontra
ts; and

• several 
ontra
ts Ci over the same 
omponent may be used to indepen-

dently spe
ify di�erent requirements, possibly over di�erent subsets of

the 
omponent intera
tions. The 
onjun
tion is a 
ommon re�nement of

all Ci.

As pointed out in [2℄, the 
onjun
tion of probabilisti
 spe
i�
ations is non

trivial, sin
e a straight-forward approa
h would introdu
e spurious behaviors.

RR n° 7328
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2 Components and Contra
ts

We use Intera
tive Markov Chains [9℄ with dis
rete-time semanti
s to model the

behavior of 
omponents.

De�nition 1 (Probability distribution). A probability distribution over a �nite

set X is a fun
tion f : X → [0, 1] su
h that
∑

x∈X

f(x) = 1.

De�nition 2 (Intera
tive Markov Chain (IMC)). An IMC is a tuple

(Q,A,→, π, s0) where:

• Q is a nonempty �nite set of states, partitioned into Qp, the set of prob-

abilisti
 states, and Qa, the set of a
tion states;

• A is a �nite alphabet of a
tions;

• → ⊆ Qa ×A×Q is an a
tion transition relation;

• π : Qp → (Q → [0, 1]) is a transition probability fun
tion su
h that, for

ea
h s ∈ Qp, π(s) is a probability distribution over Q;

• s0 is the initial state.

Ea
h a
tion state in Qa may have outgoing a
tion transitions � also 
alled

non-deterministi
 transitions in the literature � like those in a labeled tran-

sition system (LTS). Ea
h probabilisti
 state in Qp has outgoing probabilisti


transitions like those in a Markov 
hain. Probability distributions on states

are memoryless, i.e., the future of an IMC depends only on the 
urrent state,

not on past 
hoi
es. For example, in Figure 1(b), the probabilisti
 
hoi
e that

the Link delivers the response to the Client (i.e., π(ℓ4)(ℓ5) = 0.95) is indepen-
dent from the probabilisti
 
hoi
e of delivering a request to the Server (i.e.,

π(ℓ1)(ℓ2) = 0.98).
Notation: For 
onvenien
e, we sometimes write the transition probability

fun
tion π as a transition relation 99K ⊆ Qp × [0, 1] ×Q su
h that:

99K = {(s, p, s′) | s ∈ Qp ∧ s′ ∈ Q ∧ p = π(s)(s′)}

Graphi
ally, we only depi
t the 99K transitions labeled with a non null proba-

bility (see Figure 2(a)).

We introdu
e 
ontra
ts as a �nite spe
i�
ation for a possibly in�nite num-

ber of 
omponents modeled by IMCs. In 
ontrast to IMCs, the probabilisti


transitions of a 
ontra
t are labeled with probability intervals, similar to the

formalism of [10, 17℄. Moreover, two distin
t states ⊤ and ⊥ are used to dis-

tinguish the assumptions on the use of the 
omponent from the guarantees it

provides.

De�nition 3 (Contra
t). A 
ontra
t is a tuple (Q,A,→, σ, t0) where:

• Q is a nonempty �nite set of states, partitioned into Q = Qp∪Qa∪{⊤,⊥},
where Qp is the set of probabilisti
 states, Qa is the set of a
tion states,

and ⊤ and ⊥ are distin
t states without any outgoing transitions;

• A is a �nite alphabet of a
tions;

RR n° 7328
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s1

s0

s3

s2

s4

er2

res′
0.7

res′

0.2

handleres′

0.1
req′

req′ ⊤

t2

t3

t0

t1

req′

req′ [0.9, 1]

[0, 0.1]

res′

(a) IMC Ms for Server (b) Contra
t Cs for Server

Figure 2: Contra
t Examples

• → ⊆ Qa ×A×Q is the a
tion transition relation;

• σ : Qp → (Q → 2[0,1]) is a transition probability predi
ate, asso
iating

with ea
h pair of states in Qp ×Q an interval of probabilities;

• t0 is the initial state.

Let C⊥ = ({⊥}, ∅, ∅, ∅,⊥) be the in
onsistent 
ontra
t.

Notations: We also write σ as a transition relation 99K ⊆ Qp × 2[0,1] ×Q
su
h that 99K = {(s, P, s′) | s ∈ Qp ∧ s′ ∈ Q ∧ P = σ(s)(s′)}. We write

q
>0
99K q′ if ∃p > 0 : p ∈ σ(q, q′) and denote by

>0
99K

+

the transitive 
losure of
>0
99K. Graphi
ally, we only depi
t the

>0
99K transitions (see Figure 2(b)). Let

Ã = →∪
>0
99K, and let Ã

∗ be the re�exive and transitive 
losure of Ã. A state

q ∈ Q is rea
hable if and only if t0 Ã
∗ q. A 
ontra
t is 
onsistent if ⊥ is not

rea
hable.

The meaning of a 
ontra
t C over a 
omponent M is the following:

• a transition s
a
→ ⊤ spe
i�es the assumption of the 
omponent M that an

intera
tion involving a
tion a does not o

ur in state s;

• in an a
tion state s, an a
tion a labeling a transition not leading to ⊤
spe
i�es the guarantee of the 
omponent M that a is enabled in s; 
on-
versely, the absen
e of any outgoing transition labeled with a spe
i�es the

guarantee that an intera
tion involving a will not o

ur;

• the ⊤ state represents the fa
t that the assumption has been violated, and

hen
eforth, the 
omponent M 
an behave arbitrarily;

• the ⊥ state stands for �in
onsistent� and means that M 
annot satisfy the


ontra
t C any more;

• a transition s
[a,b]
99K t spe
i�es an interval of allowed transition probabilities,

i.e., the 
omponent M has a transition s
p

99K t with any p ∈ [a, b].

Hypothesis 1. We require that the target states of probabilisti
 transitions are

a
tion or probabilisti
 states: if q
>0
99K q′ then q′ /∈ {⊤,⊥}.

Example 1. The 
ontra
t Cs in Figure 2(b) spe
i�es that, after the Server

re
eives a request req′, the probability that it rea
hes state t3 is within [0, 0.1];
in state t3, it assumes that the environment does not provide req ′; if this o

urs,

RR n° 7328
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its implementation is not bound by Cs any more; the probability that it rea
hes

t2 from t1 is within [0.9, 1]; in state t2, it guarantees to send a response (res′).
In �3, we show how to 
he
k that the IMC Ms (in Figure 2(a)) satis�es the


ontra
t Cs.

∀α ∈ A, ⌊s1
α
−→ s2⌋ = s1

α
−→ s2

∀p ∈ [0, 1], ⌊s1
p

99K s2⌋ = s1

[p,p]
99K s2

Figure 3: Rules for lifting an IMC to a 
ontra
t.

From the de�nitions of IMC and 
ontra
t, we 
an see that an IMC 
an

be trivially 
onverted into a 
ontra
t. For this, we de�ne a lifting operator ⌊.⌋
(Figure 3). We use the same notation 99K to represent both kinds of probabilisti


transitions (i.e., those in an IMC and in a 
ontra
t).

⌈n⌉ = if n > 1 then 1 else n
[ℓ1, u1] + [ℓ2, u2] = [ℓ1 + ℓ2, ⌈u1 + u2⌉] [F1]
[ℓ1, u1] ∗ [ℓ2, u2] = [ℓ1 ∗ ℓ2, u1 ∗ u2] [F2]

k ∗ [ℓ, u] = [k ∗ ℓ, k ∗ u] for k ∈ [0, 1] [F3]

Figure 4: Operations on probability intervals.

In Figure 4, we de�ne some useful operations related to probability intervals.

When summing up the upper bounds, the 
eiling for a probability value is 1, so

if the summation is greater than 1, we let the result be 1 (operator ⌈.⌉).

De�nition 4 (Delimited 
ontra
t). A 
ontra
t C = (Q,A,→, σ, t0) is delim-

ited [6℄ i� ∀s ∈ Qp, ∀s′ ∈ Q, and ∀p ∈ σ(s)(s′): 1 − p ∈
∑

s′′∈Q\{s′}

σ(s)(s′′).

De�nition 4, borrowed from [6℄, states that, for any probability 
hosen in any

probabilisti
 transition's interval, it is always possible to 
hoose probabilities in

the intervals of all the remaining transitions outgoing from the same state su
h

that the sum is 1.

t2

t1

t0 [0.7, 0.8] b

[0.2, 0.3]

a

t2

t1

t0 [0.7, 0.9] b

[0.2, 0.3]

a

(a) Delimited. (b) Non-delimited.

Figure 5: Delimited 
ontra
t and non-delimited 
ontra
t.

Example 2. Figure 5(a) shows a delimited 
ontra
t: for all p ∈ [0, 2, 0.3], we

an �nd p′ ∈ [0.7, 0.8] su
h that p + p′ = 1 and vi
e versa. Figure 5(b) shows

a 
ontra
t that is not delimited. However, we 
an 
ut [6℄ the redundant sub-

interval [0.8,0.9℄ from the interval [0.7,0.9℄ to obtain the delimited 
ontra
t of

Figure 5(a).
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3 Contra
t Re�nement

System synthesis involves re�ning a 
ontra
t until an implementation is ob-

tained. We therefore de�ne formally the notion of 
ontra
t re�nement.

3.1 Re�nement and Satisfa
tion

We �rst de�ne 
ontra
t re�nement, and give thereafter some explanations.

De�nition 5 (Contra
t re�nement). Let C1 = (Q1,A,→1, σ1, s0) and C2 =
(Q2,A, →2, σ2, t0) be two 
ontra
ts. A relation ¹ ⊆ Q1 ×Q2 is a simulation if

for all s ¹ t we have:

1. s = ⊤ =⇒ t = ⊤.

2. t = ⊥ =⇒ s = ⊥.

3. If (s, t) ∈ Qa
1 × (Qa

2 ∪ {⊤}) then

(a) ∀t′ 6= ⊤ ∈ Q2, (t
α
→2 t′) =⇒ (∃s′ ∈ Q1, s

α
→1 s′ ∧ s′ ¹ t′);

(b) ∀s′ ∈ Q1, (s
α
→1 s′) =⇒ (t = ⊤ ∨ ∃t′ ∈ Q2, t

α
→2 t′ ∧ s′ ¹ t′).

4. If (s, t) ∈ Qp
1×Qp

2 then there exists a fun
tion δ : Q1×Q2 → [0, 1], whi
h,
for ea
h s′ ∈ Q1, gives a probability distribution δ(s′) over Q2, su
h that

for every probability distribution f over Q1 with f(s′) ∈ σ1(s)(s
′) and

∀t′ ∈ Q2,

∑

s′∈Q1

f(s′)∗δ(s′)(t′) ∈ σ2(t)(t
′) and ∀s′ ∈ Q1 :

(

δ(s′)(t′) > 0 =⇒ s′ ¹ t′
)

5. If (s, t) ∈ Qa
1 ×Qp

2 then ∃ta ∈ Qa
2 : t

>0
99K

+

2 ta ∧ s ¹ ta and ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ¹ t′

)

.

6. If (s, t) ∈ Qp
1 ×Qa

2 then ∃sa ∈ Qa
1 : s

>0
99K

+

1 sa ∧ sa ¹ t and ∀s′ ∈ Q1,
(

s
>0
99K1 s′ =⇒ s′ ¹ t

)

.

It 
an be shown that a greatest simulation relation, 
alled re�nement and

noted ≤, exists. C1 re�nes C2 (written C1 ≤ C2) i� s0 ≤ t0.

In De�nition 5, 
onditions (1) and (2) ensure that C1 makes no stronger

assumptions on the 
ontext than C2, and that the in
onsistent state ⊥ is only

re�ned by itself. Sin
e De�nition 5 de�nes ≤ as the greatest relation, this implies

that for any state s, ⊥ ≤ s and s ≤ ⊤.

Condition (3a) says that any a
tion transition a

epted by C2 must also be

a

epted by C1. In 
ontrast, a
tion transitions leading to ⊤ (i.e., violating the

assumption) do not need to be present in the re�nement C1. This is why we

have ∀t′ 6= ⊤ in 
ondition (3a). On the other hand, 
ondition (3b) says that

ea
h a
tion transition of C1 must also be enabled in C2, unless C2 is in the ⊤
state. Condition (4), adapted from [10℄, deals with re�nement among proba-

bilisti
 states. Intuitively, s ¹ t if there exists a fun
tion δ that distributes the

RR n° 7328
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probabilities of transitions from s to all su

essor states s′ onto the transitions

from t to its su

essors t′, su
h that the sum of the probability fra
tions (i.e.,

f(s′) ∗ δ(s′)(t′)) is in the range σ2(t)(t
′); this is illustrated in Example 4.

Condition (5) says that an a
tion state s re�nes a probabilisti
 state t if it

re�nes all a
tion states rea
hable with a path of positive probabilities from t.
Finally, 
ondition (6) is symmetri
al to 
ondition (5).

In Se
tion 2, we gave an intuitive explanation of 
ontra
ts: transitions lead-

ing to ⊤ model the violation of the assumption, whereas a
tion transitions not

leading to ⊤ model the guarantee that the transition has to be o�ered. The fol-

lowing example shows that De�nition 5 is 
onsistent with the usual 
ontravariant

notion of 
ontra
t re�nement requiring that the re�ning 
ontra
t has a weaker

assumption and a stronger guarantee.

⊤ t2

t3

t0 t1
a

[0.5, 0.9]

[0.1, 0.5]

b

a

b

(a) Contra
t C2

s1

s3

s2

s0

a

b

[0.2, 0.4]a

[0.6, 0.8]

⊤

u3

u2u1u0

u4

a

a

c

[0.6, 0.8]

[0.2, 0.4]

b

b

a

(b) Contra
t C1a (
) Contra
t C1b

Figure 6: Stronger guarantee and weaker assumption

Example 3. In Figure 6(a), the 
ontra
t C2 says that, in the state t0, the

a
tion b is assumed not to o

ur; if an intera
tion involving b o

urs (and the

environment violates the assumption of C2), then a 
omponent implementing

C2 is no longer bound by C2; i.e., it 
an do anything after the a
tion b is

syn
hronized. The 
ontra
t C2 also says that, in the state t0, the a
tion a is

guaranteed to be o�ered. It follows that a 
ontra
t 
an re�ne C2 in di�erent

ways, as shown in Figure 6:

(1) C1a ≤ C2: the 
ontra
t C1a does not o�er a
tion b in state s0.

(2) C1b ≤ C2: the 
ontra
t C1b o�ers a
tion b in state u0. If the b is syn-


hronized with its environment, it rea
hes state u4, from whi
h C1b 
an

perform any a
tion.

Both in C1a and C1b, the a
tion a is guaranteed in state s0 and u0 respe
tively.

It is also easy to 
he
k that s1 ≤ t1 as the probabilisti
 transition leading to

s2 has a tighter interval and s2 ≤ t2, and similarly for the transition leading

to s3. This means that both C1a and C1b have stronger guarantees than C2.

At the same time, the transition labeled by b leading from state t0 to ⊤ has

been removed in C1a and repla
ed with a transition leading to a state di�erent

from ⊤ in C1b, thus weakening the assumption of C2. For instan
e, 
ontra
t C2
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s1

s3

s2

s4 t2

t3

t1
d3

[0.9, 1]d2

[0, 0.1]

[0.2, 0.2]

d1

[0.1, 0.1]

[0.7, 0.7]
(1) p2 ∈ [0.1, 0.1]

(2) p3 ∈ [0.7, 0.7]

(3) p4 ∈ [0.2, 0.2]

(4) p2 + p3 + p4 = 1

(5) p3 ∗ d1 + p4 ∗ d2 ∈ [0.9, 1]

(6) p2 ∗ d3 ∈ [0, 0.1]

Figure 7: Left: Contra
t re�nement s1 ≤ t1. Right: Constraints to be 
he
ked.

assumes a
tion b not to o

ur, whereas C1a guarantees not to o�er b in state

s0. On the other hand, u0 a

epts more behaviors by the environment than t0
without rea
hing ⊤.

We de�ne the satisfa
tion of a 
ontra
t by an IMC as the re�nement of the


ontra
t by the lifted IMC (i.e., written in the form of a 
ontra
t).

De�nition 6 (Contra
t satisfa
tion). An IMC M satis�es a 
ontra
t C (written

M |= C) i� ⌊M⌋ ≤ C.

Example 4. We illustrate in Figure 7 how to 
he
k that the 
ontra
ts of Figure 2

are su
h that ⌊Ms⌋ ≤ Cs, in parti
ular, s1 ≤ t1. It is easy to 
he
k that s3 ≤ t2,
s4 ≤ t2, and s2 ≤ t3. A

ording to Condition (4) in De�nition 5, we must

�nd for ea
h si ∈ {s2, s3, s4} a probability distribution δ(si) over {t2, t3} su
h

that
∑

i∈{2,3,4},j∈{2,3}

f(si) ∗ δ(si)(tj) ∈ σ2(t1)(tj) � where f is the probability

distribution over {s2, s3, s4} with f(s2) = 0.1, f(s3) = 0.7, and f(s4) = 0.2
�, and δ(si)(tj) = 0 if si 6≤ tj. In Figure 7, δ(s3)(t2) = d1, δ(s4)(t2) = d2,

δ(s2)(t3) = d3 (all three represented by dotted lines), and δ(si)(tj) = 0 for

all other pairs of states. We must thus 
he
k that for ea
h tuple (p2, p3, p4)
satisfying the 
onstraints (1) to (4) in Figure 7, the 
onstraints (5) and (6) are

implied. As ea
h δ(si) is a probability distribution, we obtain for our example

d1 = d2 = d3 = 1. (Note that if we had s2 ≤ t2 as well with weight d4 from

s2 to t2, we would have another 
onstraint d3 + d4 = 1, and (5) would be
ome

p3 ∗ d1 + p4 ∗ d2 + p2 ∗ d4 ∈ [0.9, 1].) Condition (4) 
an be 
he
ked e�
iently

by requiring the set in
lusion to hold for the bounds of interval σ(s)(s′), using
a linear programming solver.

De�nition 7 (Models of 
ontra
ts). The set of models of a 
ontra
t C (written

M(C)) is the set of IMCs that satisfy C: M(C) = {M | M |= C}.

It 
an be 
he
ked that the in
onsistent 
ontra
t C⊥, 
onsisting only of the

state ⊥, does not have any model.

De�nition 8 (Semanti
al equivalen
e). Contra
ts C1 and C2 are semanti
ally

equivalent (written C1 ≡ C2) i� M(C1) = M(C2).

Lemma 1 (Re�exivity of re�nement). For all 
ontra
ts C = (Q,A,→, σ, s0),
we have C ≤ C, and for any state s ∈ Q, we have s ≤ s.

Proof. De�nition 5 (1)�(3) are trivially satis�ed for {(s, t) | s = t}. De�ni-

tion 5 (4) is satis�ed with δ(s)(s) = 1 and δ(s)(t) = 0 for s 6= t. Finally,

De�nition 5 (5)�(6) are irrelevant for {(s, t) | s = t}.
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Lemma 2 (Transitivity of re�nement). For all 
ontra
ts C1, C2 and C3, if

C1 ≤ C2 and C2 ≤ C3, then C1 ≤ C3.

Proof. See appendix A.1.

Corollary 1. For all IMC M and 
ontra
ts C1 and C2, we have:

1. if M |= C1 and C1 ≤ C2, then M |= C2;

2. if C1 ≤ C2, then M(C1) ⊆ M(C2);

3. if C1 ≤ C2 and C2 ≤ C1, then C1 ≡ C2.

3.2 Bisimulation

We adapt the usual notion of bisimulation to 
ontra
ts, and de�ne redu
tion of

a 
ontra
t with respe
t to bisimulation.

De�nition 9 (Bisimulation ≃). Given two 
ontra
ts C1 = (Q1,A,→1, σ1, s0)
and C2 = (Q2,A, →2, σ2, t0), a relation ≃ ⊆ Q1 ×Q2 is a bisimulation if both

≃ and ≃−1= {(t, s) | s ≃ t} are simulations.

C1 and C2 are bisimilar (written C1 ≃ C2) i� s0 ≃ t0, where ≃ is the greatest

bisimulation.

De�nition 10 (Redu
tion modulo ≃ and redu
ed 
ontra
t C). Let C = (Q,A,

→, σ, s0) be a 
ontra
t and ≃ be a bisimulation over Q. For all s ∈ Q, let Cs =
{q ∈ Q | s ≃ q} be the equivalen
e 
lass of s. Let C = {Cs | s ∈ Q}. The redu
ed


ontra
t, written C/≃, is (C,A,→≃, σ≃, Cs0
) with Cp = {c ∈ C | ∀s ∈ c : s ∈ Qp}

and Ca = C \ (Cp ∪ {⊤,⊥}) su
h that, ∀s = {s1, . . . , sm}, t = {t1, . . . , tn} ∈ C,
we have:

(a) s
α
→≃ t i� ∃i, j : si

α
→ tj, and

(b) σ≃(s, t) =
∑

1≤j≤n

σ(s1, tj) i� s ∈ Cp.

If ≃ is the greatest bisimulation then we write C for C/≃.

Noti
e that an equivalen
e 
lass may 
ontain both a
tion and probabilisti


states. For ea
h probabilisti
 state si ∈ s, the probabilities of transitions to

states tj ∈ t are summed up (it does not matter whi
h of the transitions is taken

sin
e all the su

essors tj are equivalent). This sum is the transition probability

from si to some state in t. By de�nition of ≃, the sum is the same for all si ∈ s,
thus we pi
k σ(s1, tj).

Example 5. By De�nition 10, we 
an redu
e the 
ontra
t C3 of Figure 8(a) to

C3 of Figure 8(b). There are 3 equivalen
e 
lasses: {s1}, {s4} and {s2, s3, s5, s6}.
By De�nition 10(b), we sum up the (lower bound and upper bound of) transi-

tions from s1 to s2 and from s1 to s3.

Lemma 3 (Bisimilarity of redu
tion). For any 
ontra
t C, we have C ≃ C.

Proof. Let C = (Q,A,→, σ, s0) and C/≃ = (C,A,→≃, σ≃, Cs0
). By De�ni-

tion 10 we have s0 ∈ Cs0
and thus s0 ≃ Cs0

and C ≃ C.
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s1 s3

s2

s5

s4

s6

b

a

a

[0.1, 0.3]

a

[0.4, 0.5][0.2, 0.3]

[0.5, 0.6]

[0.5, 0.6]

{s1}

{s4}

{s2, s3, s5, s6}[0.7, 0.9]

[0.1, 0.3]

a

b

(a) Contra
t C3 (b) Redu
ed 
ontra
t C3

Figure 8: A redu
ed 
ontra
t.

De�nition 11 (Deadend freedom). A delimited 
ontra
t C = (Q,A,→, σ, s0) is
deadend-free if any rea
hable state has an outgoing transition in (Q\{⊤},A,→′

, σ, s0) where →′ = {(q, a, q′) ∈ → | q′ 6= ⊤}.

In other words, C is deadend-free if all rea
hable a
tion states have a su
-


essor state other than ⊤. In parti
ular, ⊥ is unrea
hable in any deadend-free


ontra
t sin
e ⊥ has no su

essor at all.

Theorem 1 (Re�nement preserves deadend-freedom). Let C = (Q,A,→, σ, s0)
and C ′ = (Q′,A,→′, σ′, s′0) be two 
ontra
ts su
h that C ′ ≤ C, and C ′ is

delimited and 
onsistent. If C is deadend-free then so is C ′.

Proof. Sin
e C ′ is delimited, every rea
hable probabilisti
 state has an outgoing

transition with a non-empty probability interval. For ea
h a
tion state in q ∈ Qa

that has a transition q
a
→ q1 with q1 6= ⊤, all a
tion states q′ ∈ Q′ re�ning q

have an outgoing transition q′
a
→ ′ q2 with q2 6= ⊤. On the other hand, all

rea
hable a
tion states in Q′ must re�ne some rea
hable a
tion state in Q. The


laim follows.

3.3 Contra
t Proje
tion

The need of proje
tion arises naturally in 
ontra
t frameworks. A and B being

two alphabets of a
tions su
h that B ⊆ A, we abstra
t from a
tions in A \ B
that are not relevant by renaming them into internal τ a
tions. The 
ontra
t

over the alphabet B ∪ {τ} is then proje
ted on the sub-alphabet B by using the

standard determinization algorithm (see e.g. [1℄).

De�nition 12 (Proje
tion). Let C = (Q,A,→1, σ, s0) be a 
ontra
t and B ⊆ A

su
h that for any q ∈ Qa and α ∈ A, if q
α
→1 ⊤ or q

α
→1 ⊥ then α ∈ B. Let

C ′ = (Q,B ∪ {τ},→2, σ, s0) be the 
ontra
t where all transition labels in A \ B
are repla
ed with a new label τ . We require that C is su
h that act ∩ prob = ∅
where

act =
{

q ∈ Q | ∃q′ ∈ Q : q
τ∗

→2 q′ ∧
(

(∃α ∈ B ∃q′′ ∈ Q : q′
a
→2 q′′) ∨ (∀q′′ : q′

τ∗

→2 q′′ =⇒ q′′ ∈ Qa)
)}

prob = {q ∈ Q | ∃q′ ∈ Qp : q
τ∗

→2 q′}

and
τ∗

→2 is the transitive and re�exive 
losure of
τ
→2.

RR n° 7328



Probabilisti
 Contra
ts for Component-based Design 13

The proje
tion of C on B (written πB(C)) is obtained by τ -elimination (de-

terminization) of C ′.

The requirement that a
tion transitions immediately leading to ⊤ or ⊥ be

kept in the proje
tion ensures that Hypothesis 1 is preserved. The se
ond re-

quirement ensures that the states of πB(C) are partitioned into a
tion states,

probabilisti
 states, {⊤}, and {⊥}. More pre
isely, act is the set of states q
from whi
h a state q′ is rea
hable by taking only τ transitions, su
h that either

a transition with an a
tion label in B is enabled in q′, or no more probabilisti


state is rea
hable. Conversely, prob is the set of states from where a probabilis-

ti
 state 
an be rea
hed. Disjointness of both sets ensures that every state of

πB(C) is uniquely typed, su
h that πB(C) is a 
ontra
t again.

Lemma 4 (Proje
tion and re�nement). For all 
ontra
ts C1 = (Q1,A,→1

, 99K1, s0) and C2 = (Q2,A,→2, 99K2, t0) and for all B ⊆ A su
h that πB(C1)
and πB(C2) are de�ned, if C1 ≤ C2 then πB(C1) ≤ πB(C2).

Proof. See appendix A.2.

Example 6. In Figure 2, if we do not 
are how the implementation handles

failure 
ases, we 
an 
he
k that πAs\{handle}(Ms) |= Cs, where As is the a
tion

alphabet of Cs.

4 Contra
t Composition

We introdu
e two 
omposition operations for 
ontra
ts: parallel 
omposition ||
parametrized with an intera
tion set I, and 
onjun
tion ∧ (also 
alled shared

re�nement).

4.1 Parallel Composition of Contra
ts

Parallel 
omposition allows the designer to build 
omplex models from simpler


omponents in a stepwise and hierar
hi
al manner. In order to reason about the


omposition of 
omponents at the 
ontra
t level, we de�ne the parallel 
omposi-

tion of 
ontra
ts. As in the BIP 
omponent framework [8℄, parallel 
omposition

is parametrized with a set of intera
tions, where ea
h intera
tion is a set of


omponent a
tions o

urring simultaneously. For instan
e, an intera
tion set
{

{a}, {a, b}, {c}
}

says that a
tion a 
an interleave or syn
hronize with b; a
-
tion b must syn
hronize with a; a
tion c is a singleton intera
tion that always

interleaves. Whenever there is no ambiguity we simply write a (resp. a|b) for

the singleton intera
tion {a} (resp. for the intera
tion {a, b}), therefore the

symbol �|� is 
ommutative.

De�nition 13 (Parallel 
omposition of 
ontra
ts). Let C1 = (Q1,A1,→1, 99K1,

s0) and C2 = (Q2,A2,→2, 99K2, t0) be two 
ontra
ts. The parallel 
omposition

of C1 and C2 with respe
t to an intera
tion set I ⊆ 2A1∪A2 (written C1||IC2)

is the 
ontra
t
(

Q, I,→′, 99K, (s0, t0)
)

where:

1. Q = (Q′
1 ×Q′

2) ∪ {⊤,⊥} with Q′
1 = Q1 \ {⊤1,⊥1}, Q′

2 = Q2 \ {⊤2,⊥2},
Qa = Qa

1 ×Qa
2, and Qp = Q \ (Qa ∪ {⊤,⊥});
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2.

→′ = {(q, a, q′) ∈ → | q′ /∈ Q⊤ ∪Q⊥} ∪

{(q, a,⊤) | ∃q′ ∈ Q⊤ : (q, a, q′) ∈ →} ∪

{(q, a,⊥) | ∃q′ ∈ Q⊥ : (q, a, q′) ∈ →}

where → is the least relation satisfying the rules [R1℄�[R3℄ in Figure 9;

and

3. 99K is the least relation satisfying the rules [R4℄�[R6℄ in Figure 9

where Q⊤ = (Q1 ×{⊤2})∪ ({⊤1}×Q2) and Q⊥ = (Q1 ×{⊥2})∪ ({⊥1}×Q2).

In other words, ⊤ (resp. ⊥) is rea
hed in C1||IC2 as soon as one of C1 or

C2 rea
hes its ⊤i (resp. ⊥i) state.

q1
α
→1 q′1 α ∈ I q2 ∈ Qa

2

(q1, q2)
α
−→ (q′1, q2)

[R1]
q2

α
→2 q′2 α ∈ I q1 ∈ Qa

1

(q1, q2)
α
−→ (q1, q

′
2)

[R2]

q1
α
→1 q′1 q2

β
→2 q′2 α|β ∈ I

(q1, q2)
α|β
−−→ (q′1, q

′
2)

[R3]
q1

[p1,p2]
99K 1 q′1 q2

[p3,p4]
99K 2 q′2

(q1, q2)
[p1∗p3,p2∗p4]

99K (q′1, q
′
2)

[R4]

q1
P

99K1 q′1 q2 ∈ Qa
2

(q1, q2)
P

99K (q′1, q2)
[R5]

q2
P

99K2 q′2 q1 ∈ Qa
1

(q1, q2)
P

99K (q1, q
′
2)

[R6]

Figure 9: Rules for the parallel 
omposition of 
ontra
ts.

Rules [R1℄ to [R3℄ are the usual parallel 
omposition rules for LTS, while

Rule [R4℄ is similar to the typi
al parallel 
omposition for Markov 
hains but on

probability intervals. Finally, Rules [R5℄ and [R6℄ state that probabilisti
 tran-

sitions, usually modeling hidden internal behavior, have priority over a
tion

transitions. Parallel 
omposition is 
ommutative sin
e the rules are symmetri-


ally de�ned.

Example 7. Figure 10 illustrates the parallel 
omposition of 
ontra
ts Cs (from

Figure 2(b)) and Cℓ = ⌊Mℓ⌋ (where Mℓ is given in Figure 1(b)), with I =
{rec, del, req′|del′, res′|rec′, fail1 , fail2}. The 
omposed 
ontra
t Cs ||I Cℓ states

that a failure in the Link 
omponent does not prevent it from 
ontinuing to

deliver the request req′ to the Server, and re
eiving the response res′ from the

Server, but the failure prevents it from delivering the response res′ ba
k to the

Client.

We end the se
tion on parallel 
omposition with several useful theorems.

Theorem 2 (Congruen
e of re�nement for ||I). For all 
ontra
ts C1, C2, C3, C4

and an intera
tion set I, if C1 ≤ C2 and C3 ≤ C4, then C1||I C3 ≤ C2||I C4.

Proof. See appendix B.1.

Theorem 3 (Independent implementability). For all IMCs M,N , 
ontra
ts

C1, C2, and intera
tion set I, if M |= C1 and N |= C2, then M ||IN |= C1||IC2.
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(t2, u9)

(t1, u9)

(t2, u3)

(t1, u3)
(t0, u6)

(t0, u8)

(t3, u9)

(t0, u1)

(t0, u0)

(t0, u2)

(t0, u5)

(t0, u4)

(t0, u7)

(t3, u3)

[0.02, 0.02]

[0.9, 1]

[0, 0.1]

req′|del′

rec

[0.05, 0.05]

[0.95, 0.95]

fail2

[0, 0.1]

fail1

[0.9, 1]

res′|rec′

res′|rec′

req′|del′

del

[0.98, 0.98]

Figure 10: Parallel 
omposition of Cs and Cℓ.

Proof.

M |= C1 and N |= C2

⇐⇒ (By de�nition of |=)
⌊M⌋ ≤ C1 and ⌊N⌋ ≤ C2

⇒ (By Theorem 2 (Congruen
e of re�nement for ||I))
⌊M⌋||I⌊N⌋ ≤ C1||IC2

⇐⇒ (By de�nition of ⌊.⌋ (Figure 3))
⌊M ||IN⌋ ≤ C1||IC2

⇐⇒ (By De�nition 6 (|=))
M ||IN |= C1||IC2

Theorem 4 (Redu
tion and parallel 
omposition). For all 
ontra
ts C1 and

C2, C1 ||I C2 ≡ C1 ||I C2.

Proof.

(By Lemma 3 (Bisimilarity of redu
tion))
C1 ≤ C1 and C2 ≤ C2 and C1 ≤ C1 and C2 ≤ C2

⇒ (By Theorem 2 (Congruen
e of re�nement for ||I))
C1||IC2 ≤ C1||IC2 and C1||IC2 ≤ C1||IC2

⇒ (By Corollary 1)
C1||IC2 ≡ C1||IC2

4.2 Conjun
tion of 
ontra
ts

A single 
omponent may have to satisfy several 
ontra
ts that are spe
i�ed in-

dependently, ea
h of them spe
ifying di�erent requirements on the 
omponent,

su
h as safety, reliability, or quality of servi
e. Therefore, the 
ontra
ts may

use di�erent, possibly overlapping, sub-alphabets of the 
omponent. The 
on-

jun
tion of 
ontra
ts 
omputes a 
ommon re�nement of all 
ontra
ts. Prior

to 
onjun
tion, we de�ne similarity of 
ontra
ts as a test whether a 
ommon

re�nement exists.

De�nition 14 (Similarity (∼)). Let C1 = (Q1,A1,→1, 99K1, s0) and C2 = (Q2,

A2,→2, 99K2, t0) be two 
ontra
ts. ∼ ⊆ (Q1 \ {⊥}) × (Q2 \ {⊥}) is the largest

relation su
h that ∀(s, t) ∈ (Q1 \ {⊥}) × (Q2 \ {⊥}), s ∼ t i� (s = ⊤ ∨ t = ⊤)
or 
onditions (1) to (4) below hold:

1. If (s, t) ∈ Qa
1 ×Qa

2 then
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(a) for all s′ ∈ Q1, if s
α
→1 s′, then either

i. α /∈ A2, or

ii. α ∈ A2 and ∃m ≥ 0, ∃β1, ..., βm ∈ A2 \ A1, ∃t1, ..., tm, t′ ∈ Q2 :

t
β1

→2 t1
β2

→2 . . .
βm

→2 tm
α
→2 t′ ∧ ∀i = 1, ...,m : s ∼ ti;

(b) for all t′ ∈ Q2, if t
α
→2 t′, then either

i. α /∈ A1, or

ii. α ∈ A1 and ∃m ≥ 0, ∃β1, ..., βm ∈ A1 \A2, ∃s1, ..., sm, s′ ∈ Q1 :

s
β1

→1 s1
β2

→1 . . .
βm

→1 sm
α
→1 s′ ∧ ∀i = 1, ...,m : si ∼ t;

2. If (s, t) ∈ Qp
1 ×Qp

2 then

(a) for all s′ ∈ Q1, if s
P1

99K s′, then t
P2

99K t′ for some t′ ∈ Q2 with

P1 ∩ P2 6= ∅ and s′ ∼ t′; and

(b) for all t′ ∈ Q2, if t
P2

99K t′, then s
P1

99K s′ for some s′ ∈ Q1 with

P1 ∩ P2 6= ∅ and s′ ∼ t′;

3. If (s, t) ∈ Qa
1 ×Qp

2 then for all t′ ∈ Q2 with t
P

99K2 t′, s ∼ t′;

4. If (s, t) ∈ Qp
1 ×Qa

2 then for all s′ ∈ Q1 with s
P

99K1 s′, s′ ∼ t.

Finally, C1 and C2 are similar, written C1 ∼ C2, i� s0 ∼ t0.

Ea
h Pi in De�nition 14 refers to a probabilisti
 interval in the form of [ℓi, ui].
Any state is similar to a top state ⊤i (where the 
ontra
t does not 
onstrain the

implementation in any way). The bottom states ⊥i are not similar to any state.

Two a
tion states are similar if they agree on the enabled a
tions in the shared

alphabet A1 ∩ A2. The su

essor states are not required to be similar again,

as they may be made unrea
hable in a subsequent parallel 
omposition. Two

probabilisti
 states are similar if the probabilisti
 transitions 
an be mat
hed

su
h that the intervals overlap (P1∩P2 = ∅) and the su

essor states are similar.

Overall, two states are similar if they agree on the behavior up to and in
luding

the next rea
hable a
tion transition in the shared alphabet.

De�nition 15 (Unambiguous 
ontra
t). A 
ontra
t C = (Q,A,→, 99K, s0) is

unambiguous w.r.t B ⊆ A i� for all r, s, and t ∈ Q su
h that:

(

r
>0
99K s ∧ r

>0
99K t

)

∨
(

∃α, β ∈ (A \ B) ∪ {∅} : r
α
→ s ∧ r

β
→ t

)

we have: if s ∼ t then s = t, where q
∅
→ q for all q ∈ Q, .

C is unambiguous if it is unambiguous w.r.t A.

In other words, a 
ontra
t is unambiguous if the rea
hable su

essor states

of any probabilisti
 state are pairwise non-similar.

Example 8. In Figure 11(a), the 
ontra
t Ca is ambiguous be
ause s2 ∼ s3

(highlighted in gray) but s2 6= s3.

We are now ready to de�ne the 
onjun
tion of two 
ontra
ts. The two 
on-

tra
ts may refer to di�erent, not ne
essarily disjoint alphabets. Therefore, the


ontra
ts 
an be used to spe
ify requirements on two (not ne
essarily disjoint)

aspe
ts of a 
omponent.
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s1

s3

s2

s5

s4

s7

s6

[0, 0.4]

[0, 0.3]

b
[0.8, 1]

[0.7, 1]
b

[0.4, 1]

[0, 0.6]

a

a

s1

s3

s2

b

a

[0.5, 1]

[0, 0.5]

t2

t3

t4

t1

[0, 0.2]

[0.2, 0.4]

a

a

[0.4, 0.8]
b

(a) Contra
t Ca (b) Contra
t C1 (
) Contra
t C2

Figure 11: (a) An ambiguous 
ontra
t Ca; (b,
) Two non-similar 
ontra
ts C1

and C2.

De�nition 16 (Conjun
tion of 
ontra
ts (∧)). Let C1 = (Q1,A1,→1, 99K1

, s0) and C2 = (Q2,A2,→2, 99K2, t0) be two 
ontra
ts su
h that C1 and C2 are

unambiguous w.r.t A1 ∩ A2. The 
onjun
tion of C1 and C2 is the 
ontra
t

C1 ∧ C2 =
(

Q,A1 ∪ A2,→
′, 99K, (s0, t0)

)

where:

1. Q = {(q1, q2) ∈ Q1 × Q2 | q1 ∼ q2 ∧ (q1 6= ⊤1 ∨ q2 6= ⊤2)} ∪ {⊤,⊥},
Qp = Q∩

(

(Qp
1 ×Q2) ∪ (Q1 ×Qp

2)
)

, and Qa = Q \ (Qp ∪ {⊤,⊥});

2.

→′ = {(q, a, q′) ∈ → | q′ ∈ Q} ∪

{(q, a,⊤) |
(

q, a, (⊤1,⊤2)
)

∈ →} ∪

{(q, a,⊥) | ∃q′ = (q′1, q
′
2) ∈ Q1 ×Q2 : ¬(q′1 ∼ q′2) ∧ (q, a, q′) ∈ →}

where → is the least relation satisfying the rules [C1℄ � [LiftR℄ in Fig-

ure 12, and

3. 99K is the least relation satisfying the rules [C3℄ � [C4R℄ in Figure 12

(where for all other probabilisti
 transitions (q1, q2)
P

99K (q′1, q
′
2), P =

[0, 0]).

The ⊥ state is entered in the 
ontra
t C1∧C2 as soon as a pair of non-similar

states (in
luding, by de�nition, pairs with at least one ⊥ state) is rea
hed.

Rule [C1℄ requires the 
ontra
ts to agree on a
tion transitions over their


ommon alphabet. A

ording to rule [C2L℄ (resp. [C2R℄), the 
onjun
tion

behaves like the �rst (resp. se
ond) 
ontra
t as soon as the other 
ontra
t is

in ⊤. Rules [LiftL℄ and [LiftR℄ allow the interleaving of a
tion transitions

that are not in the 
ommon alphabet. Rules [C3℄ � [C4R℄ de�ne probabilisti


transitions whose su

essor states are similar.

Example 9. Figure 13 shows three 
ontra
ts for the Link 
omponent: Cℓ1 spe
-

i�es that the implementation should re
eive a request (rec) from the Client and

deliver it to the Server (del′); Cℓ2 spe
i�es that the implementation should re-


eive a response (rec′) from the Server and deliver it to the Client (del); Cℓ3 re-

quires the response (rec′) re
eived from the Server to o

ur after the request

(del′) delivered to the Server. We 
an verify that Mℓ |= (Cℓ1∧Cℓ3)∧ (Cℓ2∧Cℓ3)
(where Mℓ is in Figure 1(b)).
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q1
α
→1 q′1 q2

α
→2 q′2

(q1, q2)
α
−→ (q′1, q

′
2)

[C1]

q1
α
→1 q′1

(q1,⊤2)
α
−→ (q′1,⊤2)

[C2L]
q2

α
→2 q′2

(⊤1, q2)
α
−→ (⊤1, q

′
2)

[C2R]

q1
α
→1 q′1 q2 ∈ Qa

2 α 6∈ A2

(q1, q2)
α
→ (q′1, q2)

[LiftL]

q2
α
→2 q′2 q1 ∈ Qa

1 α 6∈ A1

(q1, q2)
α
→ (q1, q

′
2)

[LiftR]

q1
P1

99K1 q′1 q2
P2

99K2 q′2 q′1 ∼ q′2

(q1, q2)
P1∩P2

99K (q′1, q
′
2)

[C3]

q1
P

99K1 q′1 q2 ∈ Qa
2 ∪ {⊤2} q′1 ∼ q2

(q1, q2)
P

99K (q′1, q2)
[C4L]

q2
P

99K2 q′2 q1 ∈ Qa
1 ∪ {⊤1} q1 ∼ q′2

(q1, q2)
P

99K (q1, q
′
2)

[C4R]

Figure 12: Rules for 
onjun
tion of 
ontra
ts.

s3 ⊤

s0 s2

s1

[0.02, 0.02]

rec

fail1

del′
[0.98, 0.98]

⊤

t2

t3

t0

t1 [0.95, 1]

[0, 0.05]

del

rec′

fail2

(a) Cℓ1 (b) Cℓ2

(
) Cℓ3

u1u0
rec′
del′

Figure 13: Example: Conjun
tion of Contra
ts

Example 10. Sin
e a 
ontra
t that is not in redu
ed form may be ambiguous,


ontra
ts should be redu
ed before performing 
onjun
tion. In Figure 11(
),


ontra
t C2 is ambiguous, but t2 ≃ t3. If we redu
e C2 by applying De�nition 10,

we get t1
[0.2,0.6]
99K {t2, t3}

a
→ {t2, t3}. The redu
ed 
ontra
t is unambiguous and

s1 ∼ t1, hen
e 
onjun
tion yields a 
ommon re�nement of C1 and C2.

Theorem 5 (Asso
iativity of 
onjun
tion over the same alphabet). For all

unambiguous 
ontra
ts C1 = (Q1,A,→1, σ1, s0), C2 = (Q2,A,→2, σ2, t0), and
C3 = (Q3,A,→3, σ3, u0), (C1 ∧ C2) ∧ C3 = C1 ∧ (C2 ∧ C3).

Proof. See appendix B.5.

Theorem 6 (Soundness of 
onjun
tion). For all unambiguous 
ontra
ts C1

and C2, if πAi
(C1 ∧ C2) is de�ned then πAi

(C1 ∧ C2) ≤ Ci for i = 1, 2.

Proof. See appendix B.2.
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⊤
t2

t3

t0

t1
[0, 0.5]

[0, 0.1]
a

a

a

[0, 0.4]
v2

v3

⊤

(t0, t0)

(t1, t1)
[0, 0.1]

a

[0, 1]

a
a

[0, 0.7]

(a) Ambiguous 
ontra
t Cb (b) Cb ∧ Cb

(
) A model Mb

s1

s0

s3

s2

s5s4
b

0.2 a

a a
0.8

Figure 14: Example where Mb |= Cb ∧ Cb but Mb 6|= Cb.

Example 11. Figure 14 motivates the requirement of 
onjun
tion (De�ni-

tion 16) for unambiguous 
ontra
ts. The resulting 
ontra
t Cb ∧ Cb is redu
ed

su
h that the model relation 
an be seen easily. In Figure 14(b), v2 denotes the

equivalent 
lass {(t1, t2), (t2, t1), (t2, t2)} while v3 denotes the equivalent 
lass

{(t1, t3), (t2, t3), (t3, t1), (t3, t2), (t3, t3)}. Sin
e t1 ∼ t2 ∼ t3, dupli
ated intervals

lead to an unsound result.

Theorem 7 (Completeness of 
onjun
tion over the same alphabet). For all

delimited unambiguous 
ontra
ts C1, C2, C3, if C1 ≤ C2 and C1 ≤ C3, then

C1 ≤ C2 ∧ C3.

Proof. See appendix B.4.

Theorem 8 (Congruen
e of re�nement for ∧ over the same alphabet). For all

delimited unambiguous 
ontra
ts C1, C2, C3, and C4 over the same alphabet, if

C1 ≤ C2 and C3 ≤ C4, then C1 ∧ C3 ≤ C2 ∧ C4.

Proof. See appendix B.4.

5 Case Study

We study a dependable 
omputing system with time redundan
y. The system

spe
i�
ation is expressed by the 
ontra
t CS of Figure 15 (top left), whi
h

spe
i�es that the 
omputation comp should have a su

ess probability of at

least 0.999. If the 
omputation fails, then nothing is spe
i�ed (state ⊤). All the


ontra
ts in this se
tion are delimited.

The pro
essor P the system is running on is spe
i�ed by the 
ontra
t CP of

Figure 15 (top right). Following an exe
ution request exe, either the pro
essor

su

eeds and replies with ok (with a probability at least p), or fails and replies

with nok (with a probability at most 1 − p). The failure rates for su

essive

exe
utions are independent. The probability p is a parameter of the 
ontra
t.

We pla
e ourselves in a setting where the reliability level guaranteed by CP

alone (as expressed by p) 
annot ful�ll the requirement of CS (that is, 0.999),
and hen
e some form of redundan
y must be used. We propose to use time

redundan
y, as expressed by the 
ontra
t CR of Figure 15 (bottom). Ea
h
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⊤CS

success

s0

comp

[0.999, 1]

s1

s3

[0, 0.001]
s2

fail p1

CP ok

p0

[p, 1]

[0, 1 − p]

p2

p3

nok

exe

CR

q2 q4

q6

q0 q1 q3

q5

ok′

exe′ nok′ exe′

nok′

ok′

success

comp

fail

Figure 15: (Top left) Spe
i�
ation CS ; (top right) Pro
essor 
ontra
t CP ;

(bottom) Time redundan
y 
ontra
t CR.


omputation comp is �rst laun
hed on the pro
essor P (exe′), either followed

by a positive (ok′) or negative (nok′) answer from P . In the latter 
ase, the

exe
ution is laun
hed a se
ond time, therefore implementing time redundan
y.

The 
ontra
t CR �nally answers with success if either exe
ution is followed by

ok′, or with fail is both exe
utions are followed by nok′.

In terms of 
omponent-based design for reliability, we want to determine the

minimum value of p that guarantees the reliability level of CS . To 
ompute this

minimum value, we �rst 
ompute the parallel 
omposition CR||ICP , with the

intera
tion set I = {comp, exe|exe′, ok|ok′, nok|nok′, success, fail}. The redu
-
tion modulo bisimulation of this parallel 
omposition is shown in Figure 16 (top),

where the intera
tions exe|exe′, ok|ok′, and nok|nok′ have been repla
ed for 
on-


iseness by exe, ok, and nok, respe
tively. We 
all this new 
ontra
t CR||P . We

then 
ompute the proje
tion of CR||P onto the set B = {comp, success, fail}.
The result Cπ = πB(CR||P ) is shown in Figure 16 (bottom left).

nok

q0

comp

nok exe

q1 q2

[p, 1]

[0, 1 − p]

q3

q5

q4

q6 q7

[0, 1 − p]

[p, 1]

CR||P = CR||ICP

q8q9

exe

success

fail

ok

[0, 1 − p]
q′
3

[p, 1]

q′
2

q′
0

comp
q′
1

q′
4

Cπ = πB(CR||P )

[p, 1]

[0, 1 − p]
fail

success

q′′
1

q′′
0

comp
[2p − p2, 1] q′′

2

q′′
3

C̃π

[0, (1 − p)2]

success

fail

Figure 16: Parallel 
omposition CT ||P ; Proje
tion Cπ; Transitive 
losure C̃π.
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We are thus fa
ed with a 
ontra
t Cπ having sequen
es of probabilisti
 tran-

sitions; more pre
isely, sin
e some probabilisti
 states have several outgoing

transitions, we have DAGs of probabilisti
 transitions. We therefore 
ompute

the transitive 
losure for ea
h su
h DAG: that is, for ea
h sequen
e of proba-

bilisti
 transitions from the initial state of the DAG (e.g., q′1 in Cπ) to one of

its �nal states (e.g., q′2 and q′4 in Cπ), we 
ompute the equivalent probabilisti


transition. Starting from q′1, the probability interval of rea
hing q′2 (resp. q′4)
is given by {p′ + (1 − p′)p′ | p′ ∈ [p, 1]} (resp. {(1 − p′)2 | p′ ∈ [p, 1]}), that is,
[2p− p2, 1] (resp. [0, (1− p)2]). The resulting 
ontra
t C̃π is shown in Figure 16

(bottom right).

The last step involves 
he
king under whi
h 
ondition on p the 
ontra
t C̃π

re�nes the spe
i�
ation CS . We have C̃π ≤ CS ⇔ (1−p)2 ≤ 0.001 ⇔ p ≥ 0.968.
This means that, with time redundan
y and a pro
essor with a reliability level

of at least 0.969, we are able to ensure an overall reliability level of 0.999.
To demonstrate the versatility of our 
ontra
t framework, we show in Fig-

ure 17 the alternative 
ontra
t C ′
R

for spatial redundan
y. This time, the ex-

e
ution is laun
hed both on pro
essor 1 (exe1) and on pro
essor 2 (exe2). We


all CP1 the 
ontra
t of pro
essor 1, whi
h is identi
al to CP in Figure 15 (top

right). We 
all CP2 the 
ontra
t of pro
essor 2, whi
h is identi
al to CP1 upto

a renaming of the index. The 
ontra
t C ′
R
answers with success if either ok1 or

ok2 is re
eived, or with fail is both nok1 and nok2 are re
eived, in any order.

ok2 ∨ nok2

q5

q7

nok1

q2 q3

q6

q4

nok1

nok2

nok2

ok2

q0 q1

comp exe1 exe2

ok1 ∨ ok2

ok1

fail

success
ok1 ∨ nok1

Figure 17: Spatial redundan
y: the 
ontra
t C ′
R
.

We leave the intermediate 
omputations as exer
ises for the reader. These

are:

• CA = CP1||ICP2 with I = {exe′1, ok
′
1, nok′

1, exe′2, ok
′
2, nok′

2}.

• CB = CA||I′C ′
R
with I ′ = {comp, success, fail, exe1|exe′1, ok1|ok

′
1, nok1|nok′

1,
exe2|exe′2, ok2|ok

′
2, nok2|nok′

2}.

We then 
ompute the proje
tion πB(CB) onto the set B = {comp, success, fail}.
The redu
tion modulo bisimulation of the result, 
alled C ′

π, is shown in Fig-

ure 18 (left). Like with the time redundan
y 
ontra
t, we 
ompute the transi-

tive 
losure for ea
h DAG of probabilisti
 transitions. The result C̃ ′
π is shown

in Figure 18 (right).

The last step involves 
he
king under whi
h 
ondition on p1 and p2 the


ontra
t C̃ ′
π re�nes the spe
i�
ation CS . We have C̃ ′

π ≤ CS ⇔ (1−p1)(1−p2) ≤
0.001. This 
ondition is to be 
ompared with the (1 − p)2 ≤ 0.001 
ondition

obtained with time redundan
y.
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q′
2

q′
4

q′
5

q′
3

q′
6

q′
7

q′
0

comp
q′
1

[p1, 1]

[0, 1-p1]

[p2, 1]

[p2, 1]

[0, 1-p2]

[0, 1-p2]

C ′
π

= πB(CB)

fail

success

q′′
3

q′′
2

q′′
0

comp
q′′
1

[p1+p2-p1.p2, 1]

[0, (1-p1)(1-p2)]

C̃ ′
π

success

fail

Figure 18: Proje
tion C ′
π = πB(CB) onto the set B = {comp, success, fail};

Transitive 
losure C̃ ′
π.

6 Dis
ussion

We have introdu
ed a design framework based on probabilisti
 
ontra
ts and

proved essential properties for its use in 
omponent-based design. Our de�nition

of 
ontra
ts adapts ideas from [10, 17, 6℄, although the frameworks in [10, 6℄ do

not support intera
tions between 
ontra
ts. This arti
le extends the preliminary

work of [16℄ with several new results. In parti
ular, the de�nition of similarity

has been weakened, so as to provide a less pessimisti
 de�nition of 
onjun
tion.

This enables us to provide a new result on 
ompleteness of 
onjun
tion if both

arguments share the same alphabet (Theorem 7).

6.1 Design 
hoi
es

A fundamental synta
ti
 
hoi
e in de�ning a symboli
 
ontra
t framework is

to de�ne a 
ontra
t either as a pair (assumption, guarantee) as in [7℄ � 
all

them assume/guarantee 
ontra
ts � or as a single impli
it transition system

where the distin
tion of assumption and guarantee is made by means of a spe-


i�
 ⊤ state, as in the present arti
le. Whereas assume/guarantee 
ontra
ts

have the bene�t of making expli
it the assumptions of how a 
omponent is used

and the guarantees provided by the 
omponent in this 
ase, they 
ome at the

pri
e of introdu
ing some redundan
y whenever the assumptions and the guar-

antees refer to the same sub-alphabet of the 
omponent. From a more te
hni
al

point of view, another downside of assume/guarantee 
ontra
ts is that paral-

lel 
omposition and 
onjun
tion of symboli
 representations usually require the


omputation of an equivalent impli
it form of the 
ontra
t, whose de�nition is

far from being obvious for probabilisti
 
ontra
ts.

A further 
hoi
e is where to represent the probabilisti
 behavior: in the

model of a 
omponent (i.e., the implementation), in the 
ontra
t (i.e., the spe
-

i�
ation), or both. We have 
hosen the last option, as it allows us to model

both the expe
ted probabilisti
 behavior and the behavior o�ered by existing


omponents, and reason about how the spe
i�
ation 
an be realized.

Moreover, probability distributions 
an be lo
al to 
ontra
t states or global.

In this work we have adopted the �rst option, as state-dependent distributions
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o

ur naturally in models of physi
al behavior: e.g., the failure rate of a mi-


ropro
essor in
reases as the pro
essor ages. The pri
e of distinguishing lo
al

distributions are more involved de�nitions of re�nement and 
onjun
tion.

A �nal parameter of the 
ontra
t framework is the de�nition of parallel


omposition. We have 
hosen to support the BIP intera
tion model [8℄ for

its expressiveness. In this framework, the dire
tion of 
ommuni
ations is not

represented; it would be quite straight-forward, however, to add this information

by typing ports as input or output ports.

6.2 Related work

Several authors have proposed probabilisti
 extensions of Hoare triples and Di-

jkstra's wp-
al
ulus, see e.g. [14℄. A tra
e-based theory of probabilisti
 system

with 
ompositional semanti
s and re�nement is introdu
ed in [3℄. Later on,

shared re�nement of interfa
es and 
onjun
tion of modal spe
i�
ations over

possibly di�erent alphabets have been de�ned in [5, 15℄. A framework of modal

assume/ guarantee 
ontra
ts is introdu
ed in [7℄, for whi
h both parallel 
ompo-

sition and 
onjun
tion are de�ned. [11℄ introdu
es a 
ompositional framework

based on 
ontinuous time IMCs, adopting a similar intera
tion model as done in

this paper. [11℄ supports proje
tion, parallel and symmetri
 
omposition, but

not 
onjun
tion.

A tra
e-based theory of probabilisti
 
ontra
ts has been introdu
ed in [4℄,

where a 
ontra
t 
onsists of an assumption A and a guarantee G, both being sets

of tra
es. A tra
e is a sequen
e of valuations of global variables, a subset of whi
h

is probabilisti
. The probabilisti
 variables are supposed to obey a distribution

that is independent of the state. Two types of satisfa
tion of a 
ontra
t C
by a (non-probabilisti
) model S are de�ned: R-satisfa
tion (for reliability) is

the probability that S satis�es C; A-satisfa
tion (for availability) measures the

expe
ted time ratio during whi
h S satis�es C. Conjun
tion and re�nement are

de�ned for both types of satisfa
tion. In 
ontrast to our framework, probability

distributions are de�ned globally.

Assume/guarantee veri�
ation of probabilisti
 models is studied in [12℄.

Probabilisti
 automata are used to model probabilisti
 and non-deterministi


behavior. Several assume/guarantee rules are introdu
ed using pairs (A,G) of

probabilisti
 safety properties, where a probabilisti
 safety property is itself a

pair of a (non-probabilisti
) regular safety property and a probability.

The re
ently introdu
ed Constraint Markov Chains (CMC) [2℄ generalize

Markov 
hains by introdu
ing 
onstraints on state valuations and transition

probability distributions, aiming at a similar goal of providing a probabilisti



omponent-based design framework. Whereas CMCs do not support expli
it

intera
tions among 
omponents, they allow the designer to expressively spe
ify


onstraints on probability distributions. In this framework, 
onjun
tion is shown

to be sound and 
omplete.
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A Contra
t Re�nement

A.1 Transitivity of Re�nement

Lemma 2 [Transitivity of ≤℄ For all 
ontra
ts C1, C2, and C3, if C1 ≤ C2 and

C2 ≤ C3, then C1 ≤ C3.

Proof. Let

C1 = (Q1,A1,→1, σ1, r0)
C2 = (Q2,A2,→2, σ2, s0)
C3 = (Q3,A3,→3, σ3, t0)

To show C1 ≤ C2 and C2 ≤ C3 implies C1 ≤ C3, by De�nition 5 [Contra
t

Re�nement℄, we must show r0 ≤ s0 and s0 ≤ t0 implies r0 ≤ t0. That is, for all
r ∈ Q1, s ∈ Q2, t ∈ Q3, we must show that:

r ≤ s ∧ s ≤ t ⇒ r ≤ t

We have the following indu
tion hypothesis: for all r′, t′ whi
h are next

states of r and t respe
tively,

(∃s′ ∈ Q2, r
′ ≤ s′ ∧ s′ ≤ t′) ⇒ r′ ≤ t′ [H1℄

To show r ≤ t, we 
he
k 
onditions in De�nition 5 one by one as follows.

(1)

r = ⊤
⇒ (r ≤ s,by De�nition 5 (1))

s = ⊤
⇒ (s ≤ t,by De�nition 5 (1))

t = ⊤

(2)

t = ⊥
⇒ (s ≤ t,by De�nition 5 (2))

s = ⊥
⇒ (r ≤ s,by De�nition 5 (2))

r = ⊥

(3) If (r, t) ∈ Qa
1 × (Q∪

3 {⊤}), then
(a) for all t′ 6= ⊤ ∈ Q3,

t
α
→3 t′

⇒ (s ≤ t,by De�nition 5 (3a))

∃s′ ∈ Q2, s
α
→2 s′ and s′ ≤ t′

⇒ (t′ 6= ⊤ and s′ ≤ t′ implies s′ 6= ⊤, so by De�nition 5 (3a))

∃s′ ∈ Q2,∃r′ ∈ Q1, r
α
→1 r′ and r′ ≤ s′ and s′ ≤ t′

⇒ (Sin
e r′ ≤ s′ and s′ ≤ t′, by indu
tion hypothesis [H1℄)

∃r′ ∈ Q1, r
α
→1 r′ and r′ ≤ t′

(b) for all r ∈ Q1,

r
a
→1 r′

⇒ (By De�nition 5 (3b))

s = ⊤ or ∃s′ ∈ Q2, s
α
→2 s′ and r′ ≤ s′

RR n° 7328



Probabilisti
 Contra
ts for Component-based Design 27

There are two 
ases to 
onsider:

� Case s = ⊤.
s = ⊤

⇒ (By De�nition 5 (1))
t = ⊤

Sin
e any state re�nes ⊤, we have r ≤ ⊤.

� Case s 6= ⊤.

∃s′ ∈ Q2, s
α
→2 s′ and r′ ≤ s′

⇒ (s ≤ t,by De�nition 5 (3b))

∃s′ ∈ Q2, (t = ⊤ or ∃t′ ∈ Q3, t
α
→3 t′ and s′ ≤ t′) and r′ ≤ s′

There are two sub
ases to 
onsider:

* Sub
ase t = ⊤. Sin
e any state re�nes ⊤, we have r ≤ ⊤.

* Sub
ase t 6= ⊤.

∃s′ ∈ Q2, (∃t′ ∈ Q3, t
α
→3 t′ and s′ ≤ t′) and r′ ≤ s′

⇒ (Sin
e r′ ≤ s′ and s′ ≤ t′, by the indu
tion hypothesis [H1℄)

∃t′ ∈ Q3, t
a
→3 t′ and r′ ≤ t′

(4) Now, let us 
onsider De�nition 5 (4). Given C1 ≤ C2, by De�nition 5 (4),

we know there is a probability distribution δ12 ⊂ Q1 × Q2 × [0, 1], su
h
that, ∀f1(r

′) ∈ σ1(r)(r
′), s′ ∈ Q2,

(A)
∑

r′∈Q1

(f1(r
′) ∗ δ12(r

′)(s′)) ∈ σ2(s)(s
′),

and ∀r′ ∈ Q1, δ12(r
′)(s′) > 0 ⇒ r′ ≤ s′

Given C2 ≤ C3, by De�nition 5 (4), we know there is a probability distri-

bution δ23 ⊂ Q2 ×Q3 × [0, 1], su
h that, ∀f2(s
′) ∈ σ2(s)(s

′), t′ ∈ Q3,

(B)
∑

s′∈Q1

(f2(s
′) ∗ δ23(s

′)(t′)) ∈ σ3(t)(t
′),

and ∀s′ ∈ Q2, δ23(s
′)(t′) > 0 ⇒ s′ ≤ t′

We want to establish a δ13 ⊂ Q1 × Q3 × [0, 1] su
h that De�nition 5 (4)

holds. Let δ13 be

δ13(r
′)(t′) =

∑

s′∈Q2

δ12(r
′)(s′) ∗ δ23(s

′)(t′)

We want to 
he
k that δ13 satis�es the 
ondition De�nition 5 (4) for all
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f1(r
′) ∈ δ1(r)(r

′), t′ ∈ Q3.

∑

r′∈Q1

(

f1(r
′) ∗ δ13(r

′)(t)
)

= (By de�nition of δ13)
∑

r′∈Q1

(

f1(r
′) ∗

∑

s′∈Q2

δ12(r
′)(s′) ∗ δ23(s

′)(t′)
)

= (By distribution of ∗ over +)
∑

r′∈Q1

∑

s′∈Q2

f1(r
′) ∗ δ12(r

′)(s′) ∗ δ23(s
′)(t′)

= (By 
ommutativity and asso
iativity of +)
∑

s′∈Q2

∑

r′∈Q1

f1(r
′) ∗ δ12(r

′)(s′) ∗ δ23(s
′)(t′)

= (By (A), ∃f2 ∈ σ2(s), f2(s
′) =

∑

r′∈Q1

f1(r
′) ∗ δ12(r

′)(s′))

∑

s′∈Q2

f2(s
′) ∗ δ23(s

′)(t′)

∈ (By (B), whi
h holds for all f2 ∈ σ2(s))
σ3(t)(t

′)

So we have the desired result
∑

r′∈Q1

(

f1(r
′) ∗ δ13(r

′)(t)
)

∈ σ3(t)(t
′).

(5) If r ∈ Qa
1 and t ∈ Qp

3 and r ≤ s and s ≤ t, then there are two sub
ases to


onsider: s ∈ Qa
2 and s ∈ Qp

2.

� Sub
ase s ∈ Qa
2 .

r ≤ s and s ≤ t
⇐⇒ (By De�nition 5 [Contra
t re�nement℄ (5))

r ≤ s and ∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ s ≤ ta and

∀t′ ∈ Q3,
(

t
>0
99K3 t′ =⇒ s ≤ t′

)

⇒ (Sin
e r ≤ s and s ≤ ta, by indu
tion hypothesis [H1℄

where r′ = r, s′ = s, t′ = ta)

r ≤ s and ∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ r ≤ ta and

∀t′ ∈ Q3,
(

t
>0
99K3 t′ =⇒ s ≤ t′

)

⇒ (Sin
e r ≤ s and s ≤ t′, by indu
tion hypothesis [H1℄

where r′ = r, s′ = s, t′ = t′)

∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ r ≤ ta and

∀t′ ∈ Q3,
(

t
>0
99K3 t′ =⇒ r ≤ t′

)

⇐⇒ (By De�nition 5 [Contra
t re�nement℄ (5))
r ≤ t
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� Sub
ase s ∈ Qp
2.

r ≤ s and s ≤ t
⇐⇒ (By De�nition 5 [Contra
t re�nement℄ (5))

∃sa ∈ Qa
2 : s

>0
99K

+

2 sa ∧ r ≤ sa and

∀s′ ∈ Q2,
(

s
>0
99K2 s′ =⇒ r ≤ s′

)

and s ≤ t
⇐⇒ (By De�nition 5 [Contra
t re�nement℄ (4))

(1) ∃sa ∈ Qa
2 : s

>0
99K

+

2 sa ∧ r ≤ sa and

(2) ∀s′ ∈ Q2,
(

s
>0
99K2 s′ =⇒ r ≤ s′

)

and

(3) ∃δ : Q2 ×Q3 → [0, 1],∀f(s′) ∈ σ3(s)(s
′) and

∀t′ ∈ Q3,
∑

s′∈Q2

(f(s′) ∗ δ(s′)(t′)) ⊆ σ3(t)(t
′) and

∀s′ ∈ Q2 :
(

δ(s′)(t′) > 0 =⇒ s′ ≤ t′
)

⇒ (By (1), s ≤ t and De�nition 5 (4,5), we have (4);

from (2) and (3), we know ∀s′, t′, r ≤ s′ and s′ ≤ t′,
thus we apply indu
tion hypothesis [H1℄ where

r′ = r, s′ = s′, t′ = t′, we have (5))

(1) ∃sa ∈ Qa
2 : s

>0
99K

+

2 sa ∧ r ≤ sa and

(4) ∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ sa ≤ ta and

(5) ∀t′ ∈ Q3,
(

t
>0
99K3 t′ =⇒ r ≤ t′

)

⇒ (From (1) and (4), we know r ≤ sa and sa ≤ ta,
thus we 
an apply the indu
tion hypothesis [H1℄ where

r′ = r, s′ = sa, t′ = ta)

∃ta ∈ Qa
3 : t

>0
99K

+

3 ta ∧ r ≤ ta and

∀t′ ∈ Q3,
(

t
>0
99K3 t′ =⇒ r ≤ t′

)

⇐⇒ (By De�nition 5 [Contra
t re�nement℄ (5))
r ≤ t

(6) Similar to the proof in (5).

Remark: The 
onverse of Corollary 1, item 2 does not hold, as shown by the


ounter example in Figure 19. There is no model for C1, i.e., M(C1) = ∅, while
there are models for C2. Thus, we have M(C1) ⊂ M(C2) and C1 6≤ C2.

s1

s2

s0

[0, 0.2]

[0.6, 0.7]

a

b

t2

t0

t1

[0.8, 1] d

[0, 0.2]

c

(a) Contra
t C1 (b) Contra
t C2

Figure 19: Counter example for the 
onverse of Corollary 1, item 2.

RR n° 7328



Probabilisti
 Contra
ts for Component-based Design 30

A.2 Contra
t Proje
tion

Lemma 4 [Proje
tion and re�nement℄ For all 
ontra
ts C1 = (Q1,A,→1, 99K1

, s0) and C2 = (Q2,A,→2, 99K2, t0) and for all B ⊆ A su
h that πB(C1) and

πB(C2) are de�ned, if C1 ≤ C2 then πB(C1) ≤ πB(C2).

Proof. Let πB(C1) = (Q3,A,→3, σ3, s0) and πB(C2) = (Q4,A,→4, σ4, t0).
Given states s and t in Q1 and in Q2, respe
tively, let s ∈ Q3 and t ∈ Q4

be states with s ∈ s and t ∈ t. Noti
e that the states of Q3 and Q4 are not

equivalen
e 
lasses of the states in Q1 and Q2: s may be part of several states

of Q3. To show that s0 ≤ t0 ⇒ s0 ≤ t0, we show the general 
ase: for all

s ∈ Q1, t ∈ Q2, if s ≤ t, then s ≤ t. We prove this lemma by stru
tural

indu
tion. We have the following indu
tion hypothesis: for all s′ ∈ Q1, t
′ ∈

Q2, s
′ ∈ Q3, t

′ ∈ Q4, su
h that s′ ∈ s
′ and t′ ∈ t

′,

s′ ≤ t′ =⇒ s
′ ≤ t

′ [H℄

We have the following 
ases to 
onsider:

• Case s = ⊤. A
tions leading to a ⊤ state are kept in the proje
tion. There

is no state in the proje
tion 
ontaining other states than ⊤. Therefore,

both s and t are ⊤.

• Case t = ⊥. A
tions leading to a ⊥ state are kept in the proje
tion. There

is no state in the proje
tion 
ontaining other states than ⊥. Therefore, in

both 
ases, s and t are ⊥.

• Case s ∈ Qa
1 , t ∈ Qa

2 ∪ {⊤}. There are two 
ases to 
onsider. The 
ase

that ∃α ∈ Q1, s
α
→1 ⊤ is taken 
are in 
ase (b).

(a) ∀t′ 6= ⊤ ∈ Q2, (t
α
→2 t′) =⇒ (∃s′ ∈ Q1, s

α
→1 s′ ∧ s′ ≤ t′).

If α ∈ B, this a
tion transition is kept in πB(C1) and πB(C2). So we

have s
α
→3 s

′ and t
α
→4 t

′. From s′ ≤ t′, by indu
tion hypothesis [H℄,

we have s
′ ≤ t

′. So we have ∀t′ 6= ⊤ ∈ Q4, (t
α
→4 t

′) =⇒ (∃s′ ∈

Q3, s
α
→3 s

′ ∧ s
′ ≤ t

′) whi
h meets De�nition 5 (≤) (3a).

If α /∈ B, this a
tion transition does not appear in πB(C1) and πB(C2).
We have {s, s′} ⊆ s and {t, t′} ⊆ t. By indu
tion hypothesis [H℄, we

have s ≤ t.

(b) ∀s′ ∈ Q1, (s
α
→1 s′) =⇒ (t = ⊤ ∨ ∃t′ ∈ Q2, t

α
→2 t′ ∧ s′ ≤ t′).

For the 
ase t = ⊤, sin
e a
tions leading to a ⊤ state are kept in the

proje
tion, there is no state in the proje
tion 
ontaining other states

than ⊤. Therefore, t is ⊤. By De�nition 5, any state re�nes ⊤, so

we have s ≤ t.

For the 
ase ∃t′ ∈ Q2, t
α
→2 t′ ∧ s′ ≤ t′, we have two sub
ases to


onsider:

* If α ∈ B, this a
tion transition is kept in πB(C1) and πB(C1).

So we have s
α
→3 s

′ and t
α
→4 t

′. From s′ ≤ t′, by indu
tion

hypothesis [H℄, we have s
′ ≤ t

′. So we have ∀s′ ∈ Q3, (s
α
→3 s

′)

=⇒ ∃t′ ∈ Q4, t
α
→2 t

′ ∧ s
′ ≤ t

′, whi
h meets De�nition 5 (≤)

(3b).
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* If α /∈ B, this a
tion transition does not appear in πB(C1) and

πB(C2). We have {s, s′} ⊆ s and {t, t′} ⊆ t. By indu
tion

hypothesis [H℄, we have s ≤ t.

• Case s ∈ Qp
1, t ∈ Qp

2. By De�nition 5 (4), we know s
P1

99K1 s′, t
P2

99K2 t′

and s′ ≤ t′. Proje
tion only has e�e
t on a
tion states, the probabilisti


transitions remain the same (up to their target states). That is, we have

(1) s
P3

99K3 s
′ and (2) t

P4

99K4 t
′. From s′ ≤ t′, by indu
tion hypothesis [H℄,

we have (3) s
′ ≤ t

′. From (1), (2), (3), by De�nition 5 (4), we have s ≤ t.

• Case s ∈ Qa
1 , t ∈ Qp

2. By De�nition 5 (5), ∃ta ∈ Qa
2 : t

>0
99K

+

2 ta ∧ s ≤ ta

and ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

)

. If we have t′ ∈ Qp
2, we have s ≤ t′.

Proje
tion does not have e�e
t on probabilisti
 transitions, by indu
tion

hypothesis [H℄, we are done. If t′ ∈ Qa
2 , then we have s ≤ ta. Sin
e s ∈ Qa

1 ,

this falls into the 
ase s ∈ Qa
1 , t ∈ Qa

2 , whi
h has been proved above.

• Case s ∈ Qp
1, t ∈ Qa

2 . Similar reasoning as the 
ase s ∈ Qa
1 , t ∈ Qp

2.

B Contra
t Composition

B.1 Congruen
e of Re�nement for Parallel Composition

Lemma 5 (Congruen
e of re�nement for ||I). For all 
ontra
ts C1, C2, and

C3, and for all intera
tion set I, if C1 ≤ C2, then C1||IC3 ≤ C2||IC3.

Proof. Let

C1 = (Q1,A1,→1, σ1, s0)
C2 = (Q2,A2,→2, σ2, t0)
C3 = (Q3,A3,→3, σ3, u0)

C1||I C3 = (Q13,A13,→13, σ13, (s0, u0))
C2||I C3 = (Q23,A23,→23, σ23, (t0, u0))

Let θ ⊆ Q1 × Q2 be the re�nement relation stating that s ≤ t. Let θ′ ⊆
Q13×Q23 be a binary relation su
h that ((s, u), (t, u)) ∈ θ′ if (s, t) ∈ θ. We now

prove that θ′ allows us to establish that (s, u) ≤ (t, u).
Notation: For all interval σ, let σ and σ denote respe
tively the lower bound

and the upper bound of σ.
First, we 
onsider the 3 
ases involving the state ⊤i.

(a) Case s = ⊤1. Sin
e s ≤ t, by De�nition 5 (≤) (1), t = ⊤2. By De�nition 13

(Parallel 
omposition), both 
omposed states are ⊤. Sin
e ⊤ ≤ ⊤, we have

the desired result.

(b) Case t = ⊤2. By De�nition 13 [Parallel 
omposition℄, the 
omposed state

(t, u) is repla
ed by ⊤. Sin
e any state re�nes ⊤, we have the desired

result.

(
) Case u = ⊤3. By De�nition 13 [Parallel 
omposition℄, both 
omposed

states are ⊤. Sin
e ⊤ ≤ ⊤, we have the desired result.
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Se
ond, we 
onsider the 3 
ases involving the state ⊥i:

(a) Case s = ⊥1. By De�nition 13 [Parallel 
omposition℄, the 
omposed state

(s, u) is repla
ed by ⊥. Sin
e ⊥ re�nes any state, we have the desired

result.

(b) Case t = ⊥2. Sin
e s ≤ t, by De�nition 5 (≤) (2), s is ⊥1. By De�nition 13

[Parallel 
omposition℄, both 
omposed states are ⊥. Sin
e ⊥ ≤ ⊥, we have
the desired result.

(
) Case u = ⊥3. By De�nition 13 [Parallel 
omposition℄, both 
omposed

states are ⊥. Sin
e ⊥ ≤ ⊥, we have the desired result.

Now, we 
onsider 
ases where states s, t, u are neither ⊤i nor ⊥i. We have

the following 
o-indu
tion hypothesis: for all s′, t′, u′ su
h that s′, t′, u′ are the

next states of s, t and u respe
tively, and ((s′, u′), (t′, u′)) ∈ θ′,

s′ ≤ t′ ⇒ (s′, u′) ≤ (t′, u′) [H℄

Given ((s, u), (t, u)) ∈ θ′, we have the following 
ases to 
onsider.

• Case s ∈ Qa
1 , t ∈ Qa

2 , u ∈ Qa
3 . Sin
e s ≤ t, we have (1) s

α
→1 s′; (2) t

α
→2 t′;

(3) u
β
→3 u′; (4) s′ ≤ t′. There are three sub
ases to 
onsider:

(a) Sub
ase α|β ∈ I.

By (1), (3) and rule [R3℄, we have (5) (s, u)
α|β
→ 12 (s′, u′).

By (2), (3) and rule [R3℄, we have (6) (t, u)
α|β
→ 23 (t′, u′).

From (4), by 
o-indu
tion hypothesis [H℄, we have (7) (s′, u′) ≤
(t′, u′). By De�nition 5 (3), we thus have (s, u) ≤ (t, u).

(b) Sub
ase α ∈ I.

By (1), (3) and rule [R1℄, we have (5) (s, u)
α
→12 (s′, u).

By (2), (3) and rule [R1℄, we have (6) (t, u)
α
→23 (t′, u).

From (4), by 
o-indu
tion hypothesis [H℄, we have (7) (s′, u) ≤ (t′, u).
By De�nition 5 (3), we thus have (s, u) ≤ (t, u).

(
) Sub
ase β ∈ I.

By (1), (3) and rule [R2℄, we have (5) (s, u)
β
→12 (s, u′).

By (2), (3) and rule [R2℄, we have (6) (t, u)
β
→23 (t, u′).

From (4), by 
o-indu
tion hypothesis [H℄, we thus have (7) (s, u′) ≤
(t, u′).

For ea
h sub
ase, from (5), (6), (7), and De�nition 5 (3), we have (s, u) ≤
(t, u).

• Case s ∈ Qa
1 , t ∈ Qa

2 , u ∈ Qp
3. Sin
e s ≤ t, we have (1) s

α
→1 s′; (2) t

α
→2 t′;

(3) u
P3

99K3 u′; (4) s′ ≤ t′.

By (1), (3) and rule [R6℄, we have (5) (s, u)
P3

99K12 (s, u′).

By (2), (3) and rule [R6℄, we have (6) (t, u)
P3

99K23 (t, u′).
From (4), by 
o-indu
tion hypothesis [H℄, we have (s, u′) ≤ (t, u′). Let

δ(s, u′)(t, u′) = 1. By De�nition 5 (4), we thus have (s, u) ≤ (t, u).
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• Case s ∈ Qa
1 , t ∈ Qp

2, u ∈ Qa
3 . Sin
e s ≤ t, we have (1) s

α
→1 s′; (2)

t
P2

99K2 t′; (3) u
β
→3 u′. (4) ∃ta ∈ Qa

2 : t
>0
99K

+

2 ta ∧ s ≤ ta; ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

)

. By (2), (3) and rule [R6℄, we have (t, u)
P2

99K23

(t′, u). From (4), by 
o-indu
tion hypothesis [H℄, we have (s, u) ≤ (t′, u).
By De�nition 5 (5), we have (s, u) ≤ (t, u).

• Case s ∈ Qa
1 , t ∈ Qp

2, u ∈ Qp
3. Sin
e s ≤ t, we have (1) s

α
→1 s′; (2)

t
[p1,p2]
99K 2 t′; (3) u

[p3,p4]
99K 3 u′. (4) ∃ta ∈ Qa

2 : t
>0
99K

+

2 ta ∧ s ≤ ta; ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

)

.

By (1), (3) and rule [R6℄, we have (s, u)
[p3,p4]
→ 12 (s, u′).

By (2), (3) and rule [R4℄, we have (t, u)
[p1∗p3,p2∗p4]

99K 12 (t′, u′).
This yields:

(†1) σ23(t, u)(t′, u′)
= [σ23(t, u)(t′, u′), σ23(t, u)(t′, u′)]
= [σ2(t)(t

′) ∗ σ3(u)(u′), σ2(t)(t
′) ∗ σ3(u)(u′)]

By Lemma 1 [Re�exivity of re�nement℄, u ≤ u. This means that there

exists a probability distribution δ3 that satis�es the 
ondition (4) of Def-

inition 5 for all f3(u
′) ∈ σ3(u)(u′) and u′ ∈ Q3. By de�nition of f3, we

have:

(†2)
∑

u′∈Q3

f3(u
′) ∗ δ3(u

′)(u′) ∈ σ3(u)(u′)

⇐⇒
∑

u′∈Q3

σ3(u)(u′) ∗ δ3(u
′)(u′) ⊆ σ3(u)(u′)

We want to 
he
k that there exists a δ that satis�es the 
ondition Def-

inition 5 (4) for all f(s, u′) ∈ σ13(s, u)(s, u′) and (t′, u′) ∈ Q23. Let
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δ((s, u′))((t′, u′)) ∈ σ2(t)(t
′) ∗ δ3(u

′)(u′)

(By de�nition [F2℄ in Figure 4: [a, b] ∗ [c, d] = [a ∗ c, b ∗ d])
σ2(t)(t

′) ∗ σ3(u)(u′) ⊆ [σ2(t)(t
′) ∗ σ3(u)(u′), σ2(t)(t

′) ∗ σ3(u)(u′)]

⇒ (By †2 and by set theory

[a, b] ∗ [c, d] ⊆ [e, f ] ∧ [c1, d1] ⊆ [c, d] =⇒ [a, b] ∗ [c1, d1] ⊆ [e, f ])
∑

u′∈Q3

σ2(t)(t
′) ∗ σ3(u)(u′) ∗ δ3(u

′)(u′)

⊆ [σ2(t)(t
′) ∗ σ3(u)(u′), σ2(t)(t

′) ∗ σ3(u)(u′)]

⇒ (By de�nition of δ and 
ommutativity of ∗)
∑

u′∈Q3

(σ3(u)(u′) ∗ δ(s, u′)(t′, u′))

⊆ [σ2(t)(t
′) ∗ σ3(u)(u′), σ2(t)(t

′) ∗ σ3(u)(u′)]

⇐⇒ (By (1), (3), rule [R6℄,
∑

(s,u′)∈Q13

σ13(s, u)(s, u′) =
∑

u′∈Q3

σ3(u)(u′))

∑

(s,u′)∈Q13

(σ13(s, u)(s, u′) ∗ δ(s, u′)(t′, u′))

⊆ [σ2(t)(t
′) ∗ σ3(u)(u′), σ2(t)(t

′) ∗ σ3(u)(u′)]

⇐⇒ (By (†1))
∑

(s,u′)∈Q13

(σ13(s, u)(s, u′) ∗ δ(s, u′)(t′, u′)) ⊆ σ23(t, u)(t′, u′),

⇐⇒ (By de�nition of f)
∑

(s,u′)∈Q13

(f(s, u′) ∗ δ(s, u′)(t′, u′)) ∈ σ23(t, u)(t′, u′)

So we have the desired result (s, u) ≤ (t, u).

• Case s ∈ Qp
1, t ∈ Qa

2 , u ∈ Qa
3 . Similar to the 
ase s ∈ Qa

1 , t ∈ Qp
2, u ∈ Qa

3 .

• Case s ∈ Qp
1, t ∈ Qa

2 , u ∈ Qp
3. Similar to the 
ase s ∈ Qa

1 , t ∈ Qp
2, u ∈ Qp

3.

• Case s ∈ Qp
1, t ∈ Qp

2, u ∈ Qa
3 . We have (1) s

P1

99K1 s′; (2) t
P2

99K2 t′;

(3) u
α
→3 u′. By (1), (3) and rule [R5℄, we have (5) (s, u)

P1

99K12 (s′, u).

By (2), (3) and rule [R5℄, we have (6) (s, u)
P1

99K12 (s′, u). We know

that there is a probability distribution δ ⊂ Q1 × Q2 × [0, 1], su
h that,

∀f(s′) ∈ σ1(s)(s
′), t′ ∈ Q2,

(†)
∑

s′∈Q1

(f(s′) ∗ δ(s′)(t′)) ∈ σ2(t)(t
′) and ∀s′ ∈ Q1, δ(s

′)(t′) > 0 ⇒ s′ ≤ t′

Let δ′ = δ. We want to 
he
k that δ′ satis�es the 
ondition De�nition 5 (4)
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for all f(s′, u) ∈ σ13(s, u)(s′, u) and (t′, u) ∈ Q23.

(By de�nition of δ′)
∑

(s′,u)∈Q13

(f(s′, u) ∗ δ(s′)(t′))

= (By (3) and rule [R5℄,
∑

(s′,u)∈Q13

f(s′, u) =
∑

s′∈Q1

f(s′))

∑

(s′,u)∈Q13

(f(s′) ∗ δ(s′)(t′))

∈ (By (†))
σ2(t)(t

′)

= (By (3) and rule [R5℄, σ23(t, u)(t′, u) = σ2(t)(t
′))

σ23(t, u)(t′, u),

So we have the desired result (s, u) ≤ (t, u).

• Case s ∈ Qp
1, t ∈ Qp

2, u ∈ Qp
3. We have (1) s

[p1,p2]
99K 1 s′ and (2) u

[p3,p4]
99K 3 u′.

From (1), (2), by rule [R4℄, we have (s, u)
[p1∗p3,p2∗p4]

99K 13 (s′, u′). This

yields:

(†1) σ13(s, u)(s′, u′) = σ1(s)(s
′) ∗ σ3(u)(u′)

Sin
e s ≤ t, by De�nition 5 [Contra
t Re�nement℄ (4), we know t
[p5,p6]
99K 2 t′

for some t′, p5, p6 and s′ ≤ t′. By u
[p3,p4]
99K 3 u′ and rule [R4℄, we know

(t, u)
[p5∗p3,p6∗p4]

99K 23 (t′, u′). This yields:

(†2) σ23(t, u)(t′, u′) = σ2(t)(t
′) ∗ σ3(u)(u′)

By De�nition 5 (4), we know there is a probability distribution δ ⊂ Q1 ×
Q2 × [0, 1], s.t.,

(†3) ∀f(s′) ∈ σ1(s)(s
′), t′ ∈ Q2,

∑

s′∈Q1

(f(s′) ∗ δ(s′)(t′)) ∈ σ2(t)(t
′),

and s′ ≤ t′ if δ(s′)(t′) > 0

We want to show that there is a probability distribution δ′ ⊂ Q13 ×Q23 ×
[0, 1], su
h that De�nition 5 (4) holds. Let δ′ be

δ′(s′, u′′)(t′, u′) =

{

δ(s′)(t′), if u′′ = u′

0, otherwise

We want to 
he
k that δ′ satis�es the 
ondition De�nition 5 (4) for all

f ′ ∈ σ13(s, u)) and (t′, u′) ∈ Q23. We prove it for all t′ ∈ Q2 as follows.

RR n° 7328



Probabilisti
 Contra
ts for Component-based Design 36

(By (†3), f(s′) ∈ δ1(s)(s
′))

∑

s′∈Q1

σ1(s)(s
′) ∗ δ(s′)(t′) ⊆ σ2(t)(t

′)

⇐⇒ (By arithmeti
, if [a, b], [c, d], [e, f ] ⊆ [0, 1], then

[a, b] ⊆ [c, d] ⇐⇒ [a, b] ∗ [e, f ] ⊆ [c, d] ∗ [e, f ].
We also know that σ3(u)(u′) ⊆ [0, 1])

∀u′ ∈ Q3,
∑

s′∈Q1

σ1(s)(s
′) ∗ σ3(u)(u′) ∗ δ(s′)(t′),⊆ σ2(t)(t

′) ∗ σ3(u)(u′)

⇐⇒ (By (†1) and (†2))

∀u′ ∈ Q3,
∑

s′∈Q1

σ13(s, u)(s′, u′) ∗ δ′(s′)(t′) ⊆ σ23(t, u)(t′, u′)

⇐⇒ (For u′′ 6= u′,
∑

(s′,u′′)∈Q13

does not add any non-zero term.

Also by de�nition of δ′.)

∀u′ ∈ Q3,
∑

(s′,u′′)∈Q13

σ13(s, u)(s′, u′′) ∗ δ′(s′, u′′)(t′, u′) ⊆ σ23(t, u)(t′, u′)

⇐⇒ (By de�nition of f ′)

∀u′ ∈ Q3,
∑

(s′,u′′)∈Q13

(f ′(s′, u′′) ∗ δ′(s′, u′′)(t′, u′)) ∈ σ23(t, u)(t′, u′)

We have the desired result (s, u) ≤ (t, u).

Theorem 2 (Congruen
e of re�nement for ||I) For all 
ontra
ts C1, C2, C3, C4

and an intera
tion set I, if C1 ≤ C2 and C3 ≤ C4, then C1||I C3 ≤ C2||I C4.

Proof.

C1 ≤ C2 and C3 ≤ C4

⇒ (By Lemma 5 (Congruen
e of ≤ for ||I) twi
e)
C1||IC3 ≤ C2||IC3 and C3||IC2 ≤ C4||IC2)

⇒ (By 
ommutativity of ||I)
C1||IC3 ≤ C3||IC2 and C3||IC2 ≤ C4||IC2)

⇒ (By Lemma 2 (Transitivity of ≤))
C1||IC3 ≤ C4||IC2

⇒ (By 
ommutativity of ||I)
C1||IC3 ≤ C2||IC4

B.2 Conjun
tion of Contra
ts

Theorem 6 (Soundness of 
onjun
tion) For all 
ontra
ts C1 and C2, πAi
(C1 ∧

C2) ≤ Ci for i = 1, 2.

Proof. We only show the proof for πA1
(C1∧C2) ≤ C1 as the proof for πA2

(C1∧
C2) ≤ C2 is similar. If C1 ∧ C2 = C⊥ then πAi

(C1 ∧ C2) = C⊥, and the 
laim
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follows. We now 
onsider the 
ases where C1 ∧ C2 6= C⊥. Let

C1 = (Q1,A1,→1, 99K1, s0)
C2 = (Q2,A2,→2, 99K2, t0)

πA1
(C1 ∧ C2) = (Q12,A1,→12, 99K12, (s0, t0))

Let θ ⊆ Q12 × Q1 be a binary relation su
h that {((s, t), s) | s ∈ Q1, t ∈
Q2, (s, t) ∈ Q12}. We want to show that θ ⊆ ≤. Sin
e proje
tion is only done

for a
tion transitions where the a
tion is in A2 and not in A1, it only a�e
ts

the 
ase [LiftR℄.

First, we 
onsider the 2 
ases involving the state ⊤i.

• Case s = ⊤1. As any state re�nes ⊤1, we are done.

• Case t = ⊤2. We de�ne a mapping ρ from Q1 ×Q2 to Q1, ρ : (s,⊤2) 7→ s.
A

ording to rules [C2L℄ and [C4L℄, the ma
ro-state (s,⊤2) follows the

transitions of s for any state s, hen
e ρ is a bije
tion. So (s,⊤2) ≤ s.

Now, we 
onsider 
ases where states s and t are neither ⊤i nor ⊥i. We have the

following indu
tion hypothesis: for all s′, t′ su
h that s′, t′ are the next states of
s and t respe
tively, and (s′, t′) ∈ θ,

(s′, t′) ≤ s′ [H]

Given ((s, t), s) ∈ θ, we have the following 
ases to 
onsider.

• Case s ∈ Qa
1 , t ∈ Qa

2 . We have There are 3 sub
ases to 
onsider.

� Sub
ase s
α
→1 s′ and t

α
→2 t′. We have the following indu
tion

hypothesis:

(s′, t′) ≤ s′ [HC1℄

Sin
e we have s
α
→1 s′ and (s, t)

α
→12 (s′, t′) and [HC1℄, it is easy to


he
k that De�nition 5 [≤℄ (3a) and (3b) are satis�ed, and sin
e (s, t)
is not ⊤, De�nition 5 [≤℄ (1) is va
uously true. So we have (s, t) ≤ s.

� Sub
ase s
α
→1 s′ and α 6∈ A2. We have the following indu
tion

hypothesis:

(s′, t) ≤ s′ [HLiftL℄

Sin
e we have s
α
→1 s′ and (s, t)

α
→12 (s′, t) and [HLiftL℄, it is easy to


he
k that De�nition 5 [≤℄ (3a) and (3b) are satis�ed and sin
e (s, t)
is not ⊤, De�nition 5 (1) is va
uously true.

� Sub
ase t
α
→2 t′ and α 6∈ A1. We have the following indu
tion hy-

pothesis:

(s, t′) ≤ s [HLiftR℄

Sin
e s ∈ Qa
1 , s is not ⊤1. We thus know (s, t′) is not ⊤. After

proje
tion on A1, we have (s, t) = (s, t′). By [HLiftR℄, we know

(s, t) ≤ s, so we are done.

• Case s ∈ Qp
1, t ∈ Qa

2 . We have s
P

99K1 s′, t ∈ Qa and s′ ∼ t. By rule [C4L℄,

we have (s, t)
P

99K12 (s′, t). We have the following indu
tion hypothesis:

(s′, t) ≤ s′ [HC4L℄
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Sin
e ≤ is re�exive (by Lemma 1), we have s ≤ s. We know that there is

a probability distribution δ ⊂ Q1 ×Q1 × [0, 1], su
h that, ∀f ∈ σ(s) and

s′ ∈ Q1,

(†2)
∑

s′∈Q1

(f(s′) ∗ δ(s′)(s′)) ∈ σ1(s)(s
′), and δ(s′)(s′) > 0 =⇒ s′ ≤ s′

We want to establish a δ′ su
h that for all f ′(s′, t′) ∈ δ12(s, t)(s
′, t′), De�-

nition 5 (4) holds. Let δ′ ⊂ Q12 ×Q1 × [0, 1] be de�ned as δ′(s′, t′)(s′) =
δ(s′)(s′).

(By (†2))
∑

s′∈Q1

(f(s′) ∗ δ(s′)(s′)) ∈ σ1(s)(s
′)

⇐⇒ (By de�nition of f)
∑

s′∈Q1

([σ1(s)(s
′), σ1(s)(s

′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s
′)

⇐⇒ (By rule [C4L℄, [σ12(s
′, t′), σ12(s

′, t′)] = [σ1(s)(s
′), σ1(s)(s

′)])
∑

(s′,t′)∈Q12

([σ12(s
′, t′), σ12(s

′, t′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s
′)

⇐⇒ (By de�nition of δ′)
∑

(s′,t′)∈Q12

([σ12(s
′, t′), σ12(s

′, t′)] ∗ δ′(s′, t′)(s′)) ⊆ σ1(s)(s
′)

⇐⇒ (By de�nition of f ′)
∑

(s′,t′)∈Q12

(f ′(s′, t′) ∗ δ′(s′, t′)(s′)) ∈ σ1(s)(s
′)

Together with the indu
tion hypothesis [HC4L℄, we thus have the desired

result.

• Case s ∈ Qa
1 , t ∈ Qp

2. Similar to the proof in 
ase s ∈ Qp
1, t ∈ Qa

2 .

• Case s ∈ Qp
1, t ∈ Qp

2. We have s
[p1,p2]
99K 1 s′ and t

[p3,p4]
99K 2 t′ and s′ ∼ t′.

By rule [C3℄, we have (s, t)
[p5,p6]
99K 12 (s′, t′) where p5 = max(p1, p3) and

p6 = min(p2, p4). We have We have the following indu
tion hypothesis:

(s′, t′) ≤ s′ [HC3℄

Sin
e ≤ is re�exive (by Lemma 1), we have s ≤ s. We know that there

is a probability distribution δ ⊂ Q1 × Q1 × [0, 1], su
h that, ∀f(s′) ∈
σ(s)(s′), s′ ∈ Q1,

(†1)
∑

s′∈Q1

(f(s′) ∗ δ(s′)(s′)) ∈ σ1(s)(s
′), and δ(s′)(s′) > 0 =⇒ s′ ≤ s′

We want to establish a δ′ su
h that for all f ′(s′, t′) ∈ δ12(s, t)(s
′, t′), De�-

nition 5 (4) holds. Let δ′ ⊂ Q12 ×Q1 × [0, 1] be de�ned as δ′(s′, t′)(s′) =
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δ(s′)(s′).

(By (†1))
∑

s′∈Q1

(f(s′) ∗ δ(s′)(s′)) ∈ σ1(s)(s
′)

⇐⇒ (By de�nition of f)
∑

s′∈Q1

([σ1(s)(s
′), σ1(s)(s

′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s
′)

⇐⇒ (By rule [C3℄, [σ12(s
′, t′), σ12(s

′, t′)] ⊆ [σ1(s)(s
′), σ1(s)(s

′)])
∑

s′∈Q1

([σ12(s
′, t′), σ12(s

′, t′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s
′),

⇐⇒ (By De�nition 15 [Unambiguous 
ontra
t℄, the similarity between

s′ and t′ is a bije
tion, so the number of (s′, t′) states is the same

as the number of s′ states.)
∑

(s′,t′)∈Q12

([σ12(s
′, t′), σ12(s

′, t′)] ∗ δ(s′)(s′)) ⊆ σ1(s)(s
′),

⇐⇒ (By de�nition of δ′)
∑

(s′,t′)∈Q12

([σ12(s
′, t′), σ12(s

′, t′)] ∗ δ′(s′, t′)(s′)) ⊆ σ1(s)(s
′),

⇐⇒ (By de�nition of f ′)
∑

(s′,t′)∈Q12

(f ′(s′, t′) ∗ δ′(s′, t′)(s′)) ∈ σ1(s)(s
′)

Together with the indu
tion hypothesis [HC3℄, we thus have the desired

result.

B.3 Proofs for Similarity

Lemma 6 (Re�nement implies similarity). For all unambiguous 
ontra
ts C1

and C2 su
h that ⊥ 6∈ C1, if C1 ≤ C2, then C1 ∼ C2.

Proof. Let C1 = (Q1,A1,→1, σ1, s0) and C2 = (Q2,A2,→2, σ2, t0). To show

s0 ≤ t0 implies s0 ∼ t0, we prove the general 
ase, for all states s ∈ Q1 and

t ∈ Q2, if s ≤ t, then s ∼ t.
Sin
e there is no ⊥ state in C1 and C1 ≤ C2, by De�nition 5 [Re�nement℄,

there is no ⊥ in C2. We also know that any state is similar to the ⊤ state, so

we have four 
ases to distinguish:

• Case s ∈ Qa and t ∈ Qa. It is easy to 
he
k that De�nition 5 (3a) implies

De�nition 14 (1b); Similarly, De�nition 5 (3b), where t is not ⊤, implies

De�nition 14 (1a).

• Case s ∈ Qp and t ∈ Qp. Sin
e s and t are states in an unambiguous


ontra
t, by the indu
tion hypothesis, s′ ≤ t′ =⇒ s′ ∼ t′ =⇒ s′ = t′,
whi
h means that the re�nement relation between s′ and t′ is a bije
tion.

It follows that the δ in the De�nition 5 (4) is δ(s′)(t′) = 1 for s′ ≤ t′.

Suppose s
P1

99K s′ and t
P2

99K t′ where s′ ≤ t′. To satisfy the De�nition 5 (4),

we must have P1 ⊆ P2, whi
h indeed implies P1 ∩ P2 6= ∅, whi
h satis�es

De�nition 14 (2).
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• Case s ∈ Qa and t ∈ Qp. It is easy to 
he
k De�nition 5 (5) implies

De�nition 14 (3).

• Case s ∈ Qp and t ∈ Qa. It is easy to 
he
k De�nition 5 (6) implies

De�nition 14 (4)

Lemma 7 (Commutativity of ∼). For all 
ontra
ts C1, C2, C1 ∼ C2 i� C2 ∼
C1.

Proof. By inspe
ting De�nition 14, we see that the 
onditions for s and t to be

similar are symmetri
ally de�ned. Thus, for all states s, t, s ∼ t i� t ∼ s. If

states s0 and t0 are initial states of C1 and C2 respe
tively, we then have s0 ∼ t0
i� t0 ∼ s0. Thus, C1 ∼ C2 i� C2 ∼ C1.

Lemma 8 (Monotoni
ity of similarity over the same alphabets). For all unam-

biguous 
ontra
ts C1, C2, and C3 over the same alphabet, su
h that C1 ≤ C2, if

C1 ∼ C3, then C2 ∼ C3.

Proof. By logi
 A ⇒ B ⇐⇒ ¬B ⇒ ¬A, we prove C2 6∼ C3 ⇒ C1 6∼ C3.
If C2 6∼ C3, the initial states of C2 and C3 are not similar. Sin
e C1 ≤ C2,

by De�nition 5, the initial states of C1 and C3 are not similar either. Thus,

C1 6∼ C3 and we are done.

Remark: We do not have transitivity of similarity. That is, the following

statement does not hold: for all 
ontra
ts C1, C2, and C3, if C1 ∼ C2 and

C2 ∼ C3, then C1 ∼ C2. Here is a 
ounter example:

(a)s0

[0,0.3]
99K s1

a
→ s1 (b)t0

[0,1]
99K t1

a
→ t1 (c)u0

[0.5,1]
99K u1

a
→ u1

Here, s0 ∼ t0 and t0 ∼ u0, but s0 6∼ u0.

B.4 Completeness of 
onjun
tion

Lemma 9 (Commutativity of ∧). For all 
ontra
ts C1 and C2, C1 ∧ C2 =
C2 ∧ C1.

Proof. It is obvious be
ause the rules for 
onjun
tion are symmetri
.

Lemma 10 (Idempoten
y of ∧). For any 
ontra
t C, C ∧ C ≡ C.

Proof. For any 
ontra
t C, C is similar to itself. As C and C share the same

alphabet and the same stru
ture and we want to establish that the initial state of

C re�nes itself, only 
onjun
tion rules [C1℄ and [C3℄ in Figure 12 
an be applied.

Examining [C1℄, the resulting transition (q1, q1)
α
→ (q1, q1) has the same a
tion

transition as q1
α
→ q1 for all q1. Examining [C3℄, sin
e P1 ∩ P1 = P1, the

resulting transition (q1, q1)
P1

99K (q1, q1) has the same probabilisti
 transition as

q1
P1∩P1

99K q1 for all q1. So we have idempoten
y.

Lemma 11 (Congruen
e of re�nement for ∧ over the same alphabets). For all

delimited unambiguous 
ontra
ts C1, C2, C3, if C1 ≤ C2, then C1∧ C3 ≤ C2∧ C3.
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Proof. Note that, if C1 6∼ C3, then C1∧C3 is C⊥ (re
all that C⊥ has been de�ned

in De�nition 3). Sin
e ⊥ re�nes any state, we have C1 ∧ C3 ≤ C2 ∧ C3. So we

only have to 
onsider the 
ase where C1 ∼ C3. By Lemma 8 (Monotoni
ity of

similarity), we know C2 ∼ C3. Let

C1 = (Q1,A,→1, σ1, s0)
C2 = (Q2,A,→2, σ2, t0)
C3 = (Q3,A,→3, σ3, u0)

C1 ∧ C3 = (Q13,A,→13, σ13, (s0, u0))
C2 ∧ C3 = (Q23,A,→23, σ23, (t0, u0))

Notation: for all interval σ, let σ and σ denote respe
tively the lower bound

and the upper bound of σ.
Let θ ⊆ Q1 ×Q2 be the re�nement relation su
h that (s, t) ∈ θ i� s ≤ t. Let

θ′ ⊆ Q13 × Q23 be a binary relation su
h that ((s, u), (t, u)) ∈ θ′ i� (s, t) ∈ θ,
s ∼ u and t ∼ u. We now prove that θ′ allows us to establish that (s, u) ≤ (t, u).

First, we 
onsider the 3 
ases involving the state ⊤i.

(a) Case s = ⊤1. Sin
e s ≤ t, by De�nition 5 (≤) (1), t = ⊤2. By De�nition 16

(Conjun
tion), the 
onjun
tion of C1 and C3 is in the state ⊤ and the


onjun
tion of C2 and C3 is also in the state ⊤. Sin
e ⊤ ≤ ⊤, we have

the desired result.

(b) Case t = ⊤2. By De�nition 16 (Conjun
tion), the state (t, u) in the


onjun
tion is repla
ed by ⊤. Sin
e any state re�nes ⊤, we have the

desired result.

(
) Case u = ⊤3. By De�nition 16 (Conjun
tion), the 
onjun
tion of C1 and

C3 is in the state ⊤ and the 
onjun
tion of C2 and C3 is also in the state

⊤. Sin
e ⊤ ≤ ⊤, we have the desired result.

Se
ond, we 
onsider the 3 
ases involving the state ⊥i:

(a) Case s = ⊥1. By De�nition 16 (Conjun
tion), the state (s, u) in the


onjun
tion is repla
ed by ⊥. Sin
e ⊥ re�nes any state, we have the

desired result.

(b) Case t = ⊥2. Sin
e s ≤ t, by De�nition 5 (≤) (2), s is ⊥1. By De�nition 16

(Conjun
tion), the 
onjun
tion of C1 and C3 is in the state ⊥ and the


onjun
tion of C2 and C3 is also in the state ⊥. Sin
e ⊥ ≤ ⊥, we have

the desired result.

(
) Case u = ⊥3. By De�nition 16 (Conjun
tion), the 
onjun
tion of C1 and

C3 is in the state ⊥ and the 
onjun
tion of C2 and C3 is also in the state

⊥. the state of 
onjun
tion for both sides is ⊥. Sin
e ⊥ ≤ ⊥, we have the
desired result.

Now, we 
onsider 
ases where states s, t, u are neither ⊤i nor ⊥i. We have the

following 
o-indu
tion hypothesis: for all s′, t′, u′ su
h that s′, t′, u′ are the next

states of s, t, u respe
tively, and ((s′, u′), (t′, u′)) ∈ θ′,

s′ ≤ t′ ⇒ (s′, u′) ≤ (t′, u′) [H℄

Given ((s, u), (t, u)) ∈ θ′, we have the following 
ases to 
onsider.
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• Case s ∈ Qa
1 , t ∈ Qa

2 , u ∈ Qa
3 . Sin
e s ≤ t, we have (1) s

α
→1 s′; (2)

t
α
→2 t′; (3) u

α
→3 u′; (4) s′ ≤ t′. From (1) and (3), by rule [C1℄, we

have (5) (s, u)
α
→13 (s′, u′). From (2) and (3), by rule [C1℄, we have (6)

(t, u)
α
→23 (t′, u′). From (4), by the 
o-indu
tion hypothesis [H℄, we have

(7) (s′, u′) ≤ (t′, u′). The 
onditions (5), (6) and (7) meet De�nition 5

(≤) (3).

• Case s ∈ Qa
1 , t ∈ Qa

2 , u ∈ Qp
3. We have (1) u

P3

99K3 u′. Sin
e C1 ∼
C3, (2) u′ ∼ s. From s ∈ Qa

1 , (1) and (2), by rule [C4R℄, we have (3)

(s, u)
P3

99K13 (s, u′). (Note that, sin
e u′ is a state in an unambiguous


ontra
t (De�nition 15), it is impossible to have more than one u′ su
h

that s ∼ u′.) Sin
e C2 ∼ C3, we have (4) t ∼ u′. From (1), t ∈ Qa
2

and (4), by rule [C4R℄, we have (5) (t, u)
P3

99K13 (t, u′). As s ≤ t, by the


o-indu
tion hypothesis [H℄, we have (6) (s, u′) ≤ (t, u′). From (3) and

(5), we 
an �nd a probability distribution δ′ ⊂ Q13×Q23×[0, 1], su
h that

De�nition 5 (≤) (4) holds, that is: δ(s, u′)(t, u′) = 1. Thus, (s, u) ≤ (t, u).

• Case s ∈ Qa
1 , t ∈ Qp

2, u ∈ Qa
3 . Given s ≤ t, by De�nition 5 (≤) (5),

∃ta ∈ Qa
2 : t

>0
99K

+

2 ta ∧ s ≤ ta and ∀t′ ∈ Q2,
(

t
>0
99K2 t′ =⇒ s ≤ t′

)

.

From s ≤ ta and s ≤ t′, by the 
o-indu
tion hypothesis [H℄, we have (1)

(s, u) ≤ (ta, u) and (2) (s, u) ≤ (t′, u) respe
tively. By applying rule [C4R℄

multiple times, we have (3) (t, u)
>0
99K

+

23 (ta, u). From (3), (1) and (2), by

De�nition 5 (≤) (5), we have (s, u) ≤ (t, u).

• Case s ∈ Qa
1 , t ∈ Qp

2, u ∈ Qp
3. We have (1) t

P2

99K2 t′ and (2) u
P3

99K3

u′. Sin
e C1 ∼ C3, we have (3) s ∼ u′. Sin
e C2 ∼ C3, we have (4)

P2 ∩ P3 6= ∅ and t′ ∼ u′. From s ∈ Qa
1 , (2) and (3), by rule [C4R℄, we

have (s, u)
P3

99K13 (s, u′). From (1), (3) and (4), by rule [C3℄, we have

(t, u)
P2∩P3

99K 23 (t′, u′). Sin
e s ≤ t, by De�nition 5 (≤) (5) we have (5)

s ≤ t′. Note that, s ≤ t′ =⇒ s ∼ t′. Now, sin
e t′ is a state in an

unambiguous 
ontra
t, it is impossible to have more than one t′ su
h that

s ∼ t′. So the t′ is unique. From (5), by the 
o-indu
tion hypothesis [H℄, we

have (s, u′) ≤ (t′, u′). As C2 is delimited (De�nition 4) and unambiguous

(De�nition 15) and C1 ≤ C2, there is only one t′ from t. As C3 is also

delimited and unambiguous and C2 ∼ C3, there is only one u′ from u.
That is, P2 = P3 = [0, 1]. So P3 ⊆ P2 ∩ P3. We 
an �nd a probability

distribution δ′ ⊂ Q13 ×Q23 × [0, 1], su
h that De�nition 5 (≤) (4) holds,
that is: δ(s, u′)(t′, u′) = 1. Thus, (s, u) ≤ (t, u).

• Case s ∈ Qp
1, t ∈ Qa

2 , u ∈ Qa
3 . Similar reasoning as in Case s ∈ Qa

1 , t ∈
Qp

2, u ∈ Qa
3 .

• Case s ∈ Qp
1, t ∈ Qa

2 , u ∈ Qp
3. Similar reasoning as in Case s ∈ Qa

1 , t ∈
Qp

2, u ∈ Qp
3.

• Case s ∈ Qp
1, t ∈ Qp

2, u ∈ Qa
3 . Similar reasoning as in Case s ∈ Qa

1 , t ∈
Qa

2 , u ∈ Qp
3, but with a probability distribution δ′ ⊂ Q13 × Q23 × [0, 1],

su
h that De�nition 5 (≤) (4) holds, that is: δ′(s′, u)(t′, u) = δ(s′)(t′).
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• Case s ∈ Qp
1, t ∈ Qp

2, u ∈ Qp
3. We have (1) s

P1

99K1 s′, (2) t
P2

99K2 t′, (3)

u
P3

99K3 u′. Sin
e C1 ∼ C3, (4) s′ ∼ u′. Sin
e C2 ∼ C3, (5) t′ ∼ u′. From

(1), (3) and (4), by rule [C3℄, we have (6) (s, u)
P1∩P3

99K 13 (s′, u′). From (2),

(3) and (4), by rule [C3℄, we have (7) (t, u)
P2∩P3

99K 23 (t′, u′). We know:

(†1) σ13(s, u)(s′, u′) = [σ13(s, u)(s′, u′), σ13(s, u)(s′, u′)]
= [max(σ1(s, s

′), σ3(u, u′)),min(σ1(s, s
′), σ3(u, u′))]

(†2) σ23(t, u)(t′, u′) = [σ23(t, u)(t′, u′), σ23(t, u)(t′, u′)]
= [max(σ2(t, t

′), σ3(u, u′)),min(σ2(t, t
′), σ3(u, u′))]

By De�nition 5 (4), we also know that there is a probability distribution

δ ⊂ Q1 ×Q2 × [0, 1], su
h that, ∀f(s′) ∈ σ1(s)(s
′), t′ ∈ Q2,

∑

s′∈Q1

(f(s′) ∗ δ(s′)(t′)) ∈ σ2(t)(t
′) and ∀s′ ∈ Q1, δ(s

′)(t′) > 0 ⇒ s′ ≤ t′

Moreover, we have:

(†3)
∑

s′∈Q1

(f(s′) ∗ δ(s′)(t′)) ∈ σ2(t)(t
′)

⇐⇒
∑

s′∈Q1

([σ1(s)(s
′), σ1(s)(s

′)] ∗ δ(s′)(t′)) ⊆ σ2(t)(t
′)

⇐⇒
∑

s′∈Q1

[σ1(s)(s
′) ∗ δ(s′)(t′), σ1(s)(s

′) ∗ δ(s′)(t′)] ⊆ [σ2(t)(t
′), σ2(t)(t

′)]

We want to show that there is a probability distribution δ′ ⊂ Q13 ×Q23 ×
[0, 1], su
h that De�nition 5 (4) holds for all f ′(s′, u′) ∈ σ13(s, u)(s′, u′)
and all (t′, u′) ∈ Q23. Let |s′| be the number of outgoing states from s
where δ(s′)(t′) > 0. Let δ′(s′, u′)(t′, u′) = δ(s′)(t′) ∗ |s′|.
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(By (†3))
∑

s′∈Q1

[σ1(s)(s
′) ∗ δ(s′)(t′), σ1(s)(s

′) ∗ δ(s′)(t′)] ⊆ [σ2(t)(t
′), σ2(t)(t

′)]

⇐⇒ (By set theory, if [a, b], [c, d], [e, f ] ⊆ [0, 1], then

[a, b] ⊆ [c, d] ⇐⇒ [max(a, e),min(b, f)] ⊆ [max(c, e),min(d, f)].
By distributivity of ∗ over max and min.
We also know that σ3(u)(u′) ⊆ [0, 1])

∀u′ ∈ Q3,
∑

s′∈Q1

[max(σ1(s)(s
′), σ3(u)(u′)) ∗ δ(s′)(t′),

min(σ1(s)(s
′), σ3(u)(u′)) ∗ δ(s′)(t′)]

⊆ [max(σ2(t)(t
′), σ3(u)(u′)),min(σ2(t)(t

′), σ3(u)(u′))]

⇐⇒ (By de�nition of
∑

, we 
an apply
∑

u′∈Q3

to both sides of ⊆)

∑

u′∈Q3

∑

s′∈Q1

[max(σ1(s, s
′), σ3(u)(u′)) ∗ δ(s′)(t′),

min(σ1(s)(s
′), σ3(u)(u′)) ∗ δ(s′)(t′)]

⊆
∑

u′∈Q3

[max(σ2(t)(t
′), σ3(u)(u′)),min(σ2(t)(t

′), σ3(u)(u′))]

⇐⇒ (By de�nition of
∑

)
∑

(s′,u′)∈Q13

[max(σ1(s)(s
′), σ3(u)(u′)) ∗ δ(s′)(t′),

min(σ1(s)(s
′), σ3(u)(u′)) ∗ δ(s′)(t′)]

⊆ [max(σ2(t)(t
′), σ3(u)(u′)) ∗ (1/|s′|),min(σ2(t)(t

′), σ3(u)(u′)) ∗ (1/|s′|)]
⇐⇒ (By multiplying both sides of ⊂ by |s′|)

∑

(s′,u′)∈Q13

[max(σ1(s)(s
′), σ3(u)(u′)) ∗ δ(s′)(t′) ∗ |s′|,

min(σ1(s)(s
′), σ3(u)(u′)) ∗ δ(s′)(t′) ∗ |s′|]

⊆ [σ2(t)(t
′) ∗ σ3(u)(u′), σ2(t)(t

′) ∗ σ3(u)(u′)]
⇐⇒ (By fa
torization, extra
t (δ(s′)(t′) ∗ |s′|))

∑

(s′,u′)∈Q13

[max(σ1(s)(s
′), σ3(u)(u′)),min(σ1(s)(s

′), σ3(u)(u′))]
∗ δ(s′)(t′) ∗ |s′|

⊆ [max(σ2(t)(t
′), σ3(u)(u′)),min(σ2(t)(t

′), σ3(u)(u′))]
⇐⇒ (By de�nition of δ′)

∑

(s′,u′)∈Q13

[max(σ1(s)(s
′), σ3(u)(u′)),min(σ1(s)(s

′), σ3(u)(u′))]
∗δ′(s′, u′)(t′, u′)

⊆ [max(σ2(t)(t
′), σ3(u)(u′)),min(σ2(t)(t

′), σ3(u)(u′))]
⇐⇒ (By (†2))

∑

(s′,u′)∈Q13

([max(σ1(s)(s
′), σ3(u)(u′)),min(σ1(s)(s

′), σ3(u)(u′))]
∗ δ′(s′, u′)(t′, u′))

⊆ σ23(t, u)(t′, u′)
⇐⇒ (By (†1))

∑

(s′,u′)∈Q13

(δ13(s, u)(s′, u′) ∗ δ′(s′, u′)(t′, u′)) ⊆ σ23(t, u)(t′, u′)

⇐⇒ (By de�nition of f ′)
∑

(s′,u′)∈Q13

(f ′(s′, u′) ∗ δ′(s′, u′)(t′, u′)) ∈ σ23(t, u)(t′, u′)

Theorem 8 (Congruen
e of re�nement for ∧) For all delimited unambiguous


ontra
ts C1, C2, C3, and C4 over the same alphabet, if C1 ≤ C2 and C3 ≤ C4,
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then C1 ∧ C3 ≤ C2 ∧ C4.

Proof.

C1 ≤ C2 and C3 ≤ C4

⇒ (By Lemma 11 (Congruen
e of re�nement for ∧) twi
e)
C1 ∧ C3 ≤ C2 ∧ C3 and C3 ∧ C2 ≤ C4 ∧ C2

⇒ (By Lemma 9 (Commutativity of ∧))
C1 ∧ C3 ≤ C3 ∧ C2 and C3 ∧ C2 ≤ C4 ∧ C2

⇒ (By Lemma 2 (Transitivity of ≤))
C1 ∧ C3 ≤ C4 ∧ C2

⇒ (By Lemma 9 (Commutativity of ∧))
C1 ∧ C3 ≤ C2 ∧ C4

Theorem 7 (Completeness of 
onjun
tion over the same alphabet) For all

delimited unambiguous 
ontra
ts C1, C2, C3, if C1 ≤ C2 and C1 ≤ C3, then

C1 ≤ C2 ∧ C3.

Proof.

C ≤ C1 and C ≤ C2

⇒ (By Theorem 8 (Congruen
e of re�nement for ∧))
C ∧ C ≤ C1 ∧ C2

⇒ (By Lemma 10 (Idempoten
e of 
onjun
tion))
C ≤ C1 ∧ C2

Corollary 2. For all IMC M and delimited unambiguous 
ontra
ts C1 and C2,

if M |= Ci, i = 1, 2 then M |= C1 ∧ C2.

We do not have 
ompleteness for 
onjun
tion if two 
ontra
ts have di�erent

alphabets; that is, the following statement does not hold:

For all IMC M and 
ontra
ts C1 = (Q1,A1,→1, σ1, s0) and C2 = (Q2,A2,→2

, σ2, t0), if πAi
(M) |= Ci, i = 1, 2 then M |= C1 ∧ C2.

A 
ounter-example is shown in Figure 20, where A1 = {a, c}, A2 = {b}, and
Pi = [pi, pi] for i = 1, 2, 3, 4. For the ease of 
he
king πAi

(M) |= Ci, we

simply let the Ci be ⌊πAi
(M)⌋ and rename the labelling of the states a

ord-

ingly. Intuitively, it is impossible for M to produ
e a sequen
e ba. Spe
i�
ally,
s1 6≤ (t0, u2), so s0 6≤ (t0, {u0, u1}) and M 6|= C1 ∧ C2.

B.5 Asso
iativity of Conjun
tion

Before proving Theorem 5, let us show that we do not have asso
iativity of


onjun
tion if two 
ontra
ts have di�erent alphabets. That is, the following

statement does not hold :

For all unambiguous 
ontra
ts C1, C2, and C3, (C1∧C2)∧C3 ≡ C1∧ (C2∧C3).
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s1s0

s3

s2

s5

s4

b

c
cp2

a
p1

b

(a) An IMC M .

t3

t0 t1

{t2, t4}

t5

a

cP2

cP1

(b) A 
ontra
t C1 where A1 = {a, c} and πA1
(M) |= C1.

{u3, u5}

u2 u4

{u0, u1}
b

P1 b

P2

(
) A 
ontra
t C2 where A2 = {b} and πA2
(M) |= C2.

(t1, u2)

(t3, {u3, u5})

(t0, u4)(t0, u2) (t1, u4)
({t2, t4}, u4)

(t0, {u3, u5})

({t2, t4}, u2)

({t2, t4}, {u3, u5})

(t3, u4)

(t5, u4)

(t5, {u3, u5})

(t5, u2)

(t0, {u0, u1})

(t3, u2)

(t1, {u3, u5})

c

P1 b

b

P2

b

c

a P1

P1

P2

b

a

c
b

c

b

P1

b
b

c

a

P2

P2

(d) Conjun
tion C1 ∧ C2 where M 6|= C1 ∧ C2.

Figure 20: A 
ounter example for 
ompleteness of 
onjun
tion for 
ontra
ts.
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Figure 21 shows a 
ounter example. In Figure 21 (e), there is no transition

from state ((⊤1, t0), u0) be
ause the a
tion transition c from state (⊤1, t0) in

C1 ∧C2 is in the set of a
tions of C3 (i.e., we 
annot apply the 
onjun
tion rule

[LiftL℄). However, in its 
orresponding state (⊤1, (t0, u0)) in Figure 21 (g), we


an have transitions that follow the 
ontra
t C2 ∧ C3 due to the 
onjun
tion

rule [C2R℄.

s1 ⊤1s0
b
a f1 ⊤2t1t0

d
c f2 u1u0

b
c

(a) C1 (b) C2 (
) C3

⊤(s1, t1)

(s1, t0)

(⊤1, t0)

(s0,⊤2)

(s1,⊤2)

(⊤1, t1)

(s0, t1)

(s0, t0)
c

f2a

c

ac

f2

f2d b

d

f1

b

b d

f1

a

f1

(d) C1 ∧ C2

((⊤1, t0), u0)

...

((s1, t0), u0)((s0, t0), u0)

((s0, t0), u1)b
a

f1

(e) part of (C1 ∧ C2) ∧ C3

(t1, u0)

(t0, u1)

(t0, u0) (⊤1, u1)(⊤1, u0)d
f2

b c

c

b

(f) C2 ∧ C3

(⊤1, (t0, u1))

(s0, (t0, u1))

(s1, (t0, u0))(s0, (t0, u0))

(⊤1, (t0, u0))

...

...
f1

b

b

a

(g) part of C1 ∧ (C2 ∧ C3)

Figure 21: Counter example for asso
iativity of 
onjun
tion

De�nition 17 (Equality of 
ontra
ts). For all 
ontra
ts C1 = (Q1,A,→1

, σ1, s0) and C2 = (Q2,A,→2, σ2, t0), C1 is equal to C2 (written C1 = C2) i�

there exists a bije
tion ρ : Q1 → Q2 su
h that t0 = ρ(s0) and for all s, s′ ∈ Q1,

we have: s
a
→ s′ ⇐⇒ ρ(s)

a
→ ρ(s′), and s

P
99K s′ ⇐⇒ ρ(s)

P
99K ρ(s′).

Theorem 5 [Asso
iativity of 
onjun
tion over the same alphabet℄ For all

unambiguous 
ontra
ts C1 = (Q1,A,→1, σ1, s0), C2 = (Q2,A,→2, σ2, t0), and
C3 = (Q3,A,→3, σ3, u0), (C1 ∧ C2) ∧ C3 = C1 ∧ (C2 ∧ C3).
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Proof. Let

C1 = (Q1,A,→1, σ1, s0)
C2 = (Q2,A,→2, σ2, t0)
C3 = (Q3,A,→3, σ3, u0)

C1 ∧ C2 = (Q12,A,→12, σ12, (s0, t0))
C2 ∧ C3 = (Q23,A,→23, σ23, (t0, u0))

(C1 ∧ C2) ∧ C3 = (Q12.3,A,→12.3, σ12.3, ((s0, t0), u0))
C1 ∧ (C2 ∧ C3) = (Q1.23,A,→1.23, σ1.23, (s0, (t0, u0)))

Let ρ be the state mapping from Q12.3 to Q1.23 su
h that ρ(⊥12.3) = ⊥1.23,

ρ(⊤12.3) = ⊤1.23, and for all ((s, t), u) ∈ Q12.3 su
h that s ∼ t ∼ u, we have

ρ(((s, t), u)) = (s, (t, u)). We must show the following property:

∀q, q′ ∈ Q12.3, q
a
→ q′ ⇐⇒ ρ(q)

a
→ ρ(q′) and q

P
99K q′ ⇐⇒ ρ(q)

P
99K ρ(q′) [P℄

If q = ⊥12.3 or q = ⊤12.3, then the property [P℄ is trivially satis�ed. Oth-

erwise, q is of the form ((s, t), u) with s ∼ t ∼ u, and we have the following


ases:

(1) Case where q′ = ⊥. We thus have the following (not ne
essarily ex
lusive)

sub
ases:

(1a) s → ⊥1. A

ording to Rule 2 of De�nition 16, we have (s, t) → ⊥12.

Hen
e ((s, t), u) → ⊥12.3. Similarly, whatever the transition from

(t, u) in C23, we have (s, (t, u)) → ⊥1.23. Sin
e ρ(⊥12.3) = ⊥1.23, the

states q and q′ satisfy [P℄.

(1b) The sub
ases t → ⊥1 and/or u → ⊥1 are analogous to (1a).

(1
) The three states are a
tion states with s → s′, t → t′, and u → u′,

and are su
h that s′ 6∼ t′. Firstly, a

ording to Rule 2 of De�nition 16,

we have (s, t) → ⊥12. Hen
e ((s, t), u) → ⊥12.3. Se
ondly, either

t′ ∼ u′ or t′ 6∼ u′. The �rst 
ase implies that (t, u) → (t′, u′). It

follows that s′ 6∼ (t′, u′). The se
ond 
ase implies that (t, u) → ⊥23.

So in both 
ases, (s, (t, u)) → ⊥1.23. Sin
e ρ(⊥12.3) = ⊥1.23, the

states q and q′ satisfy [P℄.

(1d) The sub
ases where some states are probabilisti
 states and/or an-

other pair of destination states is not similar are analogous to (1
).

(2) Case where one or two states among s, t, and u is equal to ⊤i. We have

the following sub
ases:

(2a) s = ⊤1, t
β
→ t′, and u

γ
→ u′. Firstly, sin
e t ∼ u, we ne
essarily have

β = γ. Thus, a

ording to Rule [C1℄, (t, u)
β
→ (t′, u′). Se
ondly, a
-


ording to Rule [C2R℄, (s, t)
β
→ (⊤1, t

′) and (s, (t, u))
β
→ (⊤1, (t

′, u′)).

Thirdly, a

ording to Rule [C1℄, ((s, t), u)
β
→ ((⊤1, t

′), u′). In other

words, ρ(((⊤1, t), u))
β
→ ρ(((⊤1, t

′), u′)) and the states q and q′ sat-
isfy [P℄.

(2b) The other sub
ases, in
luding with probabilisti
 transitions, are anal-

ogous to (2a).
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(3) Case where q′ = ((s′, t′), u′) with s′ ∼ t′ ∼ u′. We have the following

sub
ases:

(3a) The three states are a
tion states with s
α
→ s′, t

β
→ t′, and u

γ
→ u′.

Firstly, sin
e s ∼ t ∼ u, we ne
essarily have α = β = γ. Thus, a

ord-
ing to Rule [C1℄, (s, t)

α
→ (s′, t′) and (t, u)

α
→ (t′, u′). Se
ondly, apply-

ing again Rule [C1℄ gives ((s, t), u)
α
→ ((s′, t′), u′) and (s, (t, u))

α
→

(s′, (t′, u′)). In other words, ρ(((s, t), u))
α
→ ρ(((s′, t′), u′)) and the

states q and q′ satisfy [P℄.

(3b) The other 
ases with probabilisti
 transitions are analogous to (3a).

Theorem 9 (Distributivity of ‖ over ∧). Let Ci be an unambiguous 
ontra
t

over alphabet Ai, i = 1, 2, 3, su
h that (A1 ∪ A2) ∩ A3 = ∅, and let I ⊆
A1 ∪ A2 ∪ A3 ∪ (A1 ⊲⊳ A2), where S1 ⊲⊳ S2 = {a|b | a ∈ S1 ∧ b ∈ S2}. Then,

(C1 ∧ C2)‖IC3 ≤ (C1‖IC3) ∧ (C2‖IC3)

Proof.

(By Theorem 6 [Conjun
tion is a 
ommon re�nement℄)
C1 ∧ C2 ≤ C1 and C1 ∧ C2 ≤ C2

⇒ (By Lemma 5 [Congruen
e of re�nement for ||I ℄)
(C1 ∧ C2)‖IC3 ≤ C1‖IC3 and (C1 ∧ C2)‖IC3 ≤ C2‖IC3

⇒ (By Theorem 8 [Congruen
e of re�nement for ∧℄)
((C1 ∧ C2)‖IC3) ∧ ((C1 ∧ C2)‖IC3) ≤ (C1‖IC3) ∧ (C2‖IC3)

⇐⇒ (By Lemma 10 [Idempoten
e of 
onjun
tion℄)
(C1 ∧ C2)‖IC3 ≤ (C1‖IC3) ∧ (C2‖IC3)
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