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Some notes on the abstraction operation for

Multi-Terminal Binary Decision Diagrams⋆

Ludwig Griebl · Johann Schuster

Abstract The starting point of this work are inaccurate statements found in the
literature for Multi-terminal Binary Decision Diagrams (MTBDDs) [1,3,6] regard-
ing the well-definedness of the MTBDD abstraction operation. The statements try
to relate an operation ∗ on a set of terminal values M to the property that the
abstraction over this operation does depend on the order of the abstracted vari-
ables. This paper gives a necessary and sufficient condition for the independence
of the abstraction operation of the order of the abstracted variables in the case of
an underlying monoid and it treats the more general setting of a magma.

1 Introduction

Multi-terminal Binary Decision Diagrams (MTBDDs) are widely used to com-
pactly store functions of Boolean sets. In the model-checking context they are
often used to store generator matrices of large Markov chains generated in a com-
positional way [4]. This work considers an elementary operation on MTBDDs
(sometimes also called Algebraic Decision Diagrams), which is called “Abstrac-
tion”. Whenever a set S, |S| > 1 of MTBDD-variables is to be abstracted, this
operation is not necessarily well-defined, as it can depend on the order of ab-
stracted variables. We try to formulate as precise as possible the criteria for a
well-defined abstraction over more than one variable.

We will call the algebraic structure that leads to well-defined abstraction oper-
ations “abstractable magmas”, but we would like to add that these magmas have
a number of names in the literature as e.g. “medial”, “abelian”, “alternation”,
“transposition”, “interchange”, “bi-commutative”, “bisymmetric”, “surcommuta-
tive”, “entropic” [7,2]. Whenever left- and right-division is possible (i.e. the magma
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is already a quasigroup), some deep structure theorems are known for the medial
case. For a recent survey we refer to [5].

So far, there have been only statements on well-defined abstraction operations
for MTBDDs in the literature that did not use abstractable magmas [1,3,6]. We
show in this paper that all the aforementioned statements so far are inaccurate
and show that the correct criterion are abstractable magmas.

The paper is organised as follows: In Sec. 2 we give some basic definitions. The
main statements and lemmata are formulated in Sec. 3 and Sec. 4. Sec. 5 gives
the connection to associativity and commutativity. Some illustrating examples are
given in Sec. 6-8, Sec. 9 transfers the results to operations on R (modulo some
euqivalence class) and Sec. 10 concludes the paper.

2 Definitions

Definition 1 (Algebraic structures) Amagma (M, ∗) consists of a setM equipped
with a single binary operation ∗ : M × M → M . A binary operation is closed by
definition (i.e. a∗b ∈ M for all a, b ∈ M), but no other axioms are imposed on the op-
eration. A semigroup (M, ∗) is a magma where ∗ is associative, i.e. (a∗b)∗c = a∗(b∗c)
for all a, b, c ∈ M . A monoid (M, ∗) is a semigroup with an unit element, i.e. ∃e ∈ M

such that e ∗ a = a ∗ e = a for all a ∈ S. For a magma (M, ∗) operation ∗ is called
commutative, if a ∗ b = b ∗ a for all a, b ∈ M .

Definition 2 Let (M, ∗) be a magma. The generalised switching functions over M
with n variables (n ∈ N) are defined as

GSF (n,M) := {IBn → M}

For i ∈ {1, . . . , n} define the mapping A(i) (called abstraction with respect to ∗)
by

A(i) : GSF (n,M) → GSF (n,M)
f 7→ A(i)(f)

where

A(i)(f) : IBn → M

(b1, . . . , bn) 7→ f(b1, . . . , bi−1, 0, bi+1, . . . , bn) ∗ f(b1, . . . , bi−1, 1, bi+1, . . . , bn).

If the context is clear we omit the term “with respect to ∗”.

Remark 1 This work centers around a natural question: Under which conditions is
the following diagram commutative (i, j ∈ {1, 2, . . . , n}, i 6= j):

GSF (n,M)
A(i)

//

A(j)

��

GSF (n,M)

A(j)

��

GSF (n,M)
A(i)

// GSF (n,M)

Definition 3 Let n ∈ N be arbitrary but fixed.

1. f ∈ GSF (n,M) is called abstractable when it holds that A(i) ◦A(j)(f) = A(j) ◦
A(i)(f) ∀i, j ∈ {1, 2, . . . , n}.

2. GSF (n,M) is called abstractable when all f ∈ GSF (n,M) are abstractable.

Remark 2 By definition, GSF (1,M) is abstractable for every (M, ∗).
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3 The case n = 2

Fix a magma (M, ∗).

Lemma 1 Abstractability is characterised as follows:

1. f ∈ GSF (2,M) abstractable ⇔ (f(0,0) ∗ f(1, 0)) ∗ (f(0,1) ∗ f(1,1)) = (f(0,0) ∗
f(0,1)) ∗ (f(1,0) ∗ f(1, 1))

2. GSF (2,M) abstractable ⇔ (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d) ∀a, b, c, d ∈ M

Proof The first part of the Lemma will be used in the proof of the second part.

1. Two abstractions are possible and they have to be equal:
(a) A(2) ◦ A(1)(f) = . . . = (f(0,0) ∗ f(1, 0)) ∗ (f(0,1) ∗ f(1, 1))
(b) A(1) ◦ A(2)(f) = . . . = (f(0,0) ∗ f(0, 1)) ∗ (f(1,0) ∗ f(1, 1))

2. ⇐ Let GSF (2,M) be not abstractable ⇒ ∃f ∈ GSF (2,M) that is not ab-
stractable. Define a := f(0,0), b := f(0,1), c := f(1, 0), d := f(1, 1). Then (by
part 1 of the lemma) (a ∗ b) ∗ (c ∗ d) 6= (a ∗ c) ∗ (b ∗ d)
⇒ Let (a ∗ b) ∗ (c ∗ d) 6= (a ∗ c) ∗ (b ∗ d) and define f(0.0) := a, f(0,1) := b,
f(1,0) := c and f(1, 1) := d. Then (by part 1) f not abstractable.

4 The case n ∈ N

Lemma 2 The following statements are equivalent (n ≥ 2):
GSF (n,M) abstractable ⇔ (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d) holds for all a, b, c, d ∈ M .

Proof ⇒: Assume ∃(a, b, c, d) ∈ M4 : (a ∗ b) ∗ (c ∗ d) 6= (a ∗ c) ∗ (b ∗ d). Define

f : IBn → M

(b1, b2, . . . , bn) 7→







a for (b1, b2) = (0,0)

b for (b1, b2) = (0,1)

c for (b1, b2) = (1,0)

d for (b1, b2) = (1,1)

then f ∈ GSF (n,M), but

A(1) ◦ A(2)(f)(b1, . . . , bn)

=




(f(0,0, b3 . . . , bn)
︸ ︷︷ ︸

a

∗ f(0,1, b3 . . . , bn)
︸ ︷︷ ︸

b

) ∗ (f(1,0, b3 . . . , bn)
︸ ︷︷ ︸

c

∗ f(1, 1, b3 . . . , bn)
︸ ︷︷ ︸

d

)






6=




(f(0,0, b3 . . . , bn)
︸ ︷︷ ︸

a

∗ f(1,0, b3 . . . , bn)
︸ ︷︷ ︸

c

) ∗ (f(0,1, b3 . . . , bn)
︸ ︷︷ ︸

b

∗ f(1, 1, b3 . . . , bn)
︸ ︷︷ ︸

d

)






= A(2) ◦ A(1)(f)(b1, . . . , bn),
(1)

so A(1) ◦A(2)(f) 6= A(2) ◦A(1)(f).
⇐: Assume that GSF (n,M) is not abstractable. Then ∃ f ∈ GSF (n,M) and
i, j ∈ {1, 2, . . . , n}, i 6= j such that A(i) ◦ A(j)(f) 6= A(i) ◦ A(j)(f), that is ∃β =
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(b1, b2, . . . , bn) : A(i) ◦ A(j)(f)(β) 6= A(i) ◦ A(j)(f)(β). Assume without loss of
generality i < j. The following function is in GSF (2,M):

h : IB2 → M

(x, y) 7→ f(β1, β2 . . . , βi−1, x, βi+1, . . . , βj−1, y, βj+1, . . . , βn)
.

By definition A(1) ◦A(2)(h) 6= A(2) ◦A(1)(h)
Lemma 1
⇒ ∃a, b, c, d ∈ M with (a ∗ b) ∗ (c ∗

d) 6= (a ∗ b) ∗ (c ∗ d).

Lemma 2 motivates the following definition:

Definition 4 (M, ∗) is abstractable when (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d) holds for
all a, b, c, d ∈ M .

Corollary 1 (M, ∗) abstractable ⇔ ∃n ∈ N, n ≥ 2, GSF (n,M) is abstractable ⇔

∀n ∈ N GSF (n,M) is abstractable.

Proof Lemma 2 shows that abstractability does not depend on n (n ≥ 2).

5 Associativity, commutativity and abstractability

The following two lemmata show the connection between associativity, commuta-
tivity and abstractability.

Lemma 3 Let (M, ∗) be a magma, then it holds that

( ∗ commutative ∧ ∗ associative ) ⇒ (M, ∗) abstractable.

Proof This is the trivial implication one immediately sees from (x1∗x2)∗(x3∗x4)
!
=

(x1 ∗ x3) ∗ (x2 ∗ x4). As ∗ is associative, all parentheses can be omitted, so it re-
mains to swap x2 and x3 to get equality. But this is possible due to commutativity.

Lemma 4 Let (M, ∗) be a magma, then it holds that

( (M, ∗) abstractable ∧ ∃ left and right unit elements el, er ∈ M ) ⇒ (∗ commutative).

Proof Assuming abstractability, (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d) holds for all
a, b, c, d ∈ M . Setting a = el d = er it must also hold that b ∗ c = c ∗ b for arbitrary
b, c (commutativity).

Lemma 5 Let (M, ∗) be a magma, then it holds that

( (M, ∗) abstractable ∧ ∃ unit element e ∈ M ) ⇒ (∗ commutative ∧ ∗ associative).

Proof Assume that e ∗ m = m = m ∗ e is the unit element in (M, ∗). Assuming
abstractability, (a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d) holds for all a, b, c, d ∈ M . Then

(setting b = e) one has a∗(c∗d)
unit
= (a∗e)∗(c∗d)

abstractable
= (a∗c)∗(e∗d)

unit
= (a∗c)∗d

(associativity). The commutativity follows by Lemma 4.

Remark 3 The converse of Lemma 5 is not true: For (N\{0},+), + is commutative
and associative, so by Lemma 3 abstractable. But as 0 /∈ N \ {0}, no unit element
is present.
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In the case of a magma with unit element, one can immediately conclude:

Corollary 2 For a magma (M, ∗) with unit element e it holds that

(M, ∗) abstractable ⇔ (∗ commutative ∧ ∗ associative),

in particular if there is an abstractable magma (M, ∗) where ∗ is not associative or not

commutative, it cannot have a unit element.

The following box shows the contributions of this paper.

The following statements hold for the given algebraic structures:

1. monoid (M, ∗) ⇒ [(∗ commutative) ⇔ (M, ∗) abstractable ]
2. semigroup (M, ∗)

(a) ∗ commutative ⇒ (M, ∗) abstractable
(b) ∗ non-commutative:

i. ∃(M, ∗) : (M, ∗) abstractable
ii. ∃(M, ∗) : (M, ∗) not abstractable

3. ∃ magma (M, ∗) : (∗ non-associative) ∧(M, ∗) abstractable

Proof Statement 1 is Corollary 2. Statement 2(a) is Lemma 3. Statement 2(b)i is
proven in Sec. 8.2. Statement 2(b)ii is treated in Sec. 8.1. Statement 3 is justified
by the examples in Sec. 7 (one commutative and one non-commutative example).

6 The case of a monoid

This section gives some examples for monoids.

6.1 Non-abstractable examples

6.1.1 Permutation group

It is well-known that the permutations of 3 elements define an associative but not
commutative group with composition of permutations as operation. The group is
denoted by (S3, ◦). As a group is, in particular, also a monoid, Corollary 2 shows
that (S3, ◦) is not abstractable.

6.1.2 Matrix multiplication

It is well-known that matrix multiplication is associative but not commutative.
As there is also a unit element, Mat(2× 2,R) forms a non-commutative monoid.
Therefore by Corollary 2 it is clear that (Mat(2× 2,R), ·) is not abstractable.

6.2 Abstractable examples

Here one can take the usual examples (Z,+), (R, ·), etc. as they form commutative
monoids.
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7 The case of a magma

The aim of this section is to show that neither commutativity nor associativity
is required for (M, ∗) to be abstractable. Especially these examples show that
associativity is not necessary and therefore disprove the statements “The key point
here is associativity. If operator ∗ does not have this property, then the result of
generic abstraction depends on the order of applying ∗ . . .” ([1], p. 179), “The
operator ∗must be associative as the order in which the co-factors and the variables
are chosen shall not influence the outcome of the operation.” ([3], p. 39) and “It
now becomes obvious that associativity of the operator ∗ is required in order to
ensure that the ordering of the variables and the order in which the cofactors are
chosen do not influence the outcome.” ([6], p. 40/41).

7.1 Not associative and not commutative magma (finite)

Given the two-element set {0, 1} with the magma:

* 0 1

0 1 0
1 1 0

Looking at the composition table it is clear that it is not commutative (0 ∗ 1 6=
1 ∗0) and not associative (0 ∗ 0)

︸ ︷︷ ︸

1

∗0 6= 0 ∗ (0 ∗ 0)
︸ ︷︷ ︸

1

. But still ({0, 1}, ∗) is abstractable:

Defining 0̄ := 1, 1̄ := 0 it holds that x ∗ y = ȳ, therefore (x1 ∗ x2)
︸ ︷︷ ︸

x̄2

∗ (x3 ∗ x4)
︸ ︷︷ ︸

x̄4

= x4.

Therefore it is trivially abstractable.

7.2 Not associative and not commutative magma (infinite, by Greither)

The set Z := {. . . ,−2,−1, 0,1, 2, . . .} with the operation −. The subtraction is not
commutative (2 − 3 = −1, but 3 − 2 = 1), not associative (1 − (2 − 3) = 2 6=
(1− 2)− 3 = −4), but is abstractable as (x1−x2)− (x3−x4) = x1−x2−x3+x4 =
(x1 − x3)− (x2 − x4).

7.3 Not associative but commutative magma

This example is a non-associative (but commutative) mapping ∗ on a set {a, b, c, d}
where ({a, b, c, d}, ∗) is abstractable. Given a magma ({a, b, c, d}, ∗) with the oper-
ation ∗ defined as:

* a b c d

a a c b d
b c a d b
c b d a c
d d b c a

Then ∗ is not associative, as (a ∗ b) ∗ c = a, but a ∗ (b ∗ c) = d. It can be seen that
(M, ∗) is (non-trivially) abstractable by checking all possible combinations (e.g. by
a computer program) or by the following verification that exploits symmetries
(note that ∗ is commutative):
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1. Four different values: (x1 ∗ x2) ∗ (x3 ∗ x4) = a

Therefore one checks
x1 x2 x3 x4 x1 ∗ x2 x3 ∗ x4

a b c d c c
a c b d b b
a d b c d d

and the remaining cases follow by commutativity.
2. Three different values: (x1 ∗ x1)

︸ ︷︷ ︸

a

∗(x2 ∗ x3) = (x1 ∗ x2) ∗ (x1 ∗ x3) Here one has

to check a little bit more:
x2 x3 a ∗ (x2 ∗ x3) x1 (x1 ∗ x2) ∗ (x1 ∗ x3)

a b b c b * d = b
d d * b = b

One checks similarly the cases

(x2, x3, x1) = {(a, c, b/d), (a, d, b/c), (b, c, a/d), (b, d, a/c), (c, d, a/b)}.

The remaining cases follow by commutativity.
3. The case of three equal values is clear by commutativity.
4. For four equal values there is nothing to show.

8 The case of a semigroup

Let (M, ∗) be a semigroup (* is associative, but not necessarily commutative and
no unit element is required).

8.1 Non-abstractable example (Tamura)

This semigroup ({a, b, c, d}, ∗) is one of the examples presented in [8]. The operation
is defined as

* a b c d

a a a a a
b b b b b
c c c c c
d a a b a

.

The reader may convince himself that the operation is indeed associative. From
the table it is clear that ∗ is not commutative. Further, ({a, b, c, d}, ∗) cannot be
a monoid, as e.g. there is no element e such that e ∗ d = d (d is not even in the
image of the operation). Now (d ∗ a) ∗ (c ∗ b) = a 6= (d ∗ c) ∗ (a ∗ b) = b and therefore
({a, b, c, d}, ∗) is not abstractable.

8.2 Abstractable examples

There are abstractable semigroups (M, ∗) where the operation ∗ is not commuta-
tive.

Definition 5 A trivial associative non-commutative semigroup is a set M together
with a (left or right) projection ∗ : M ×M → M .
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Lemma 6 If (M, ∗) is a trivial associative non-commutative semigroup, then (M, ∗)
is trivially abstractable.

Proof Clear by definition.

9 Operations on R

In this section we show how the results of the previous sections can be applied to
the real numbers.

9.1 Structure transport

We give a construction for a structure transport from semigroups to sets. Thereby,
for example, an associative but non-commutative operation on R (modulo a certain
equivalence relation) can be defined.

Lemma 7 Given a set S, a non-commutative semigroup (M, ∗) (i.e. ∃a, b ∈ M : a∗b 6=
b ∗ a) and a surjective mapping f : S → M . Then there exists an injective mapping

g : M → S, such that f ◦g = id (identity) and a non-commutative associative operation

on S/∼ can be defined by

∗∗ : S/∼ × S/∼ → S/∼

(a, b) 7→ g(f(a) ∗ f(b)).

Here ∼ is the equivalence relation defined by a ∼ b :⇔ g(f(a)) = g(f(b)).

Proof The mapping g is well-known to exist. It remains to show that (S/∼, ∗∗) is a
non-commutative semigroup:

Associativity: a∗∗ (b∗∗c) = g




f(a) ∗ f(g

︸︷︷︸

id

(f(b) ∗ f(c)))




 = g (f(a) ∗ (f(b) ∗ f(c))).

Analogously one has (a ∗∗ b) ∗∗ c = . . . = g ((f(a) ∗ f(b)) ∗ f(c)). So because of the
associativity of ∗ the associativity is proven.
Non-commutative: As (M, ∗) is non-commutative, it follows that ∃m1, m2 ∈ M :
m1 ∗ m2 6= m2 ∗ m1. As f is surjective there exist s1, s2 such that f(s1) = m1,
f(s2) = m2. Therefore f(s1) ∗ f(s2) 6= f(s2) ∗ f(s1). As g is injective it follows that
s1 ∗∗ s2 6= s2 ∗∗ s1.

9.2 Associative operations where (R/∼, ∗) is not abstractable

9.2.1 Permutation group

For example choose the surjection

R → S3

x 7→ σ⌈x⌉ mod 6

and an appropriate mapping S3 → R. That construction leads by Lemma 7 to a
semigroup (that is already a monoid). By Corollary 2 it is clear that (R/∼, ∗) is not
abstractable.
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9.2.2 R
2 using matrix multiplication

Using the following mapping, R2 can be endowed with an associative, but non-
commutative operation:

m : R
2 → Mat(2× 2,R)

(a, b) 7→







(

1 0

0 1

)

for a = b = 0

(

a a

b b

)

otherwise

With the usual matrix multiplication it is clear that the resulting matrices are
again of this special form, so it is indeed an operation. In this way R

2 is equipped
with a non-commutative monoid structure (cf. Lemma 7). The mapping m :
R

2 \ {(0,0)} → Mat(2 × 2,R) is continuous. Note that no two elements of R
2

are identified by ∼. The monoid (R2, ∗) is not abstractable. This monoid can be
used to define an operation on R modulo some equivalence relation. A mapping
f : R → R

2 can be defined by an appropriate space filling curve (e.g. Peano
space filling curve which is surjective and smooth, but not injective) and an iso-
morphism (0,1) ≃ R (e.g. tan(π(x − 1

2))). So one has the (surjective) mapping

R ≃ (0, 1)
Peano
→ (0,1)2 ≃ R

2 that can be used for the structure transport by Lemma
7 (choosing an appropriate mapping R

2 → R). Again, (R/∼, ∗) is not abstractable.

9.3 Associative operations where (R, ∗) is abstractable

9.3.1 Projection functions

The projection functions

l : R× R → R

(a, b) 7→ a

and

r : R×R → R

(a, b) 7→ b

can be easily shown to be non-commutative. By Lemma 6 (R, l) and (R, r) are
abstractable.

Remark 4 Among all affine mappings R2 → R, the only operations that are associa-
tive and not commutative are the projection functions: Assume t(x, y) := ax+by+c

with a, b, c ∈ R. Then, because of non-commutativity, one has a 6= b. For associa-
tivity it must hold that t(x, t(y, z)) = t(t(x, y), z) and therefore the terms

t(x, t(y, z)) = t(x, ay + bz + c) = ax+ b(ay+ bz + c) + c = ax+ aby + b2z + bc+ c

t(t(x, y), z) = t(ax+ by + c, z) = a(ax+ by + c) + bz + c = a2x+ aby + bz + ac+ c

must coincide for all x, y, z ∈ R. Comparing coefficients leads to a2 = a, b2 = b

and therefore a, b ∈ {0, 1}. From bc + c = ac + c and a 6= b it follows that c = 0.
Therefore only the projections remain.
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9.3.2 Other continuous examples

There are associative non-commutative continuous operations

l : R×R −→ R

where (R, l) is abstractable. Exemplary construction:

1. M :=]4,∞[ and

h : M ×M −→ M

(x, y) 7→ min(min(x+ 1, 16) · y,64)

2. h is well-defined:

x, y ∈ M ⇒ min(x+ 1,16) > 5 ⇒ (min(x+ 1, 16) · y) > 5 · 4 = 20 ⇒

min(min(x+ 1, 16) · y, 64) > 20.
So

h(x, y) > 20 ∀ (x, y) ∈ M ×M

or 20 is a lower bound of h(M ×M).
3. h is associative:

x, y, z ∈ M .
– Knowing h(x, y) > 20 and z > 4:

h((h(x, y), z) = min(min(h(x, y) + 1, 16) · z, 64) = min((16 · z),64) = 64
– Knowing h(y, z) > 20 and x > 4 ⇒ min(x+ 1, 16) · h(y, z) > 64, so

h(x, h(y, z)) = min(min(x+ 1,16) · h(y, z),64) = 64

h((h(x, y), z) = h(x, h(y, z)) = 64 ∀ x, y, z ∈ M

4. h is not commutative:
h(5,4) = 24 and h(4, 5) = 25.

5. h is continuous as a composition of continuous mappings
6. There exists a homeomorphism f : R −→ M (e.g. x 7→ exp(x) + 4).

Using the construction given in the proof of Lemma 7 one gets:

l : R×R −→ R

(a, b) 7→ f−1(h(f(a), f(b)))

l is continuous, associative and non-commutative. Note that nothing is identi-
fied by ∼ for this construction.

So, as in the abstraction formula always at least two consecutive operations have
to be performed, the result of any abstraction is equal to 64, i.e. constant (which
can also be seen as some kind of triviality).

10 Conclusion

We have corrected and extended statements made in [1,3,6]. It is now clear that
not associativity is the crucial point, but one has to differentiate. In the case of a
monoid, commutativity is crucial (here: necessary and sufficient) for the indepen-
dence of the abstraction operation of the order of the abstracted variables. For
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the cases of magmas, semigroups and monoids a couple of examples show how the
abstraction behaves for a set of abstracted variables. The paper shows that the
well-definedness of the abstraction operation is equivalent to the operation being
an abstractable magma. Basic examples of abstractable magmas over the real num-
bers (not known to the MTBDD community prior to this paper) are subtraction
and division.
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