
ETH Library

Monitoring of Temporal First-order
Properties with Aggregations

Journal Article

Author(s):
Basin, David ; Klaedtke, Felix; Marinovic, Srdjan; Zălinescu, Eugen

Publication date:
2015-01

Permanent link:
https://doi.org/10.3929/ethz-b-000098095

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Formal Methods in System Design 46(3), https://doi.org/10.1007/s10703-015-0222-7

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-2952-939X
https://doi.org/10.3929/ethz-b-000098095
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10703-015-0222-7
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Form Methods Syst Des (2015) 46:262–285
DOI 10.1007/s10703-015-0222-7

Monitoring of temporal first-order properties
with aggregations

David Basin · Felix Klaedtke · Srdjan Marinovic ·
Eugen Zălinescu

Published online: 31 January 2015
© Springer Science+Business Media New York 2015

Abstract In system monitoring, one is often interested in checking properties of aggre-
gated data. Current policy monitoring approaches are limited in the kinds of aggregations
they handle. To rectify this, we extend an expressive language, metric first-order temporal
logic, with aggregation operators. Our extension is inspired by the aggregation operators
common in database query languages like SQL. We provide a monitoring algorithm for this
enriched policy specification language. We show that, in comparison to related data process-
ing approaches, our language is better suited for expressing policies, and our monitoring
algorithm has competitive performance.

Keywords Runtime verification · Monitoring · System compliance · Temporal logic ·
Aggregation operators

A preliminary version of this work has been presented at the 4th International Conference on Runtime
Verification (RV 2013); see [7].

This work was partly done while the second author was at ETH Zurich.

D. Basin · S. Marinovic · E. Zălinescu (B)
Computer Science Department, Institute of Information Security, ETH Zurich,
Universiätstr 6, 8092 Zurich, Switzerland
e-mail: eugen.zalinescu@inf.ethz.ch

D. Basin
e-mail: david.basin@inf.ethz.ch

S. Marinovic
e-mail: srdan.marinovic@inf.ethz.ch

F. Klaedtke
NEC Europe Ltd., Kurfürsten-Anlage 36, 69115 Heidelberg, Germany
e-mail: felix.klaedtke@neclab.eu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-015-0222-7&domain=pdf

Form Methods Syst Des (2015) 46:262–285 263

1 Introduction

1.1 Motivation

System monitoring is a wide-spread requirement for many kinds of systems, ranging from
enterprise data centers to power grids. Both public and private companies are increasingly
required to monitor whether their system usage complies with normative regulations. For
example, US hospitals must follow the US Health Insurance Portability and Accountability
Act (HIPAA) and financial services must conform to the Sarbanes–Oxley Act (SOX). First-
order temporal logics are not only well-suited for formalizing such regulations, they also
admit efficient monitoring. When used online, these monitors observe the actions of agents,
such as users and their processes, and report violations. This can be in real-time, as the actions
occur. Alternatively, the actions are logged and the monitor checks them later, such as during
an audit. See, for example, [6,19].

Current logic-based monitoring approaches are limited in their support for expressing and
monitoring properties of aggregations. Such properties are often needed to express compli-
ance policies, such as the following simple example from fraud prevention: A user must not
withdraw more than $10,000 within a 31 day period from his credit card account. To formal-
ize this policy, we need an operator to express the aggregation of the withdrawal amounts
over the specified time window, grouped by the users. In this article, we address the problem
of expressing and monitoring first-order temporal properties built from such aggregation
operators.

1.2 Solution

First, we extend metric first-order temporal logic (MFOTL) with aggregation operators and
with functions. This followsHella et al.’s [20] extension of first-order logicwith aggregations.
We also ensure that the semantics of aggregations and grouping operations in our language
mimics that of SQL. As an illustration, a formalization in our language of the above fraud-
detection policy is

�∀u.∀s. [SUMa a. �[0,31) withdraw(u, a)](s; u) → s � 10000. (P0)

The SUM operator, at the current time point, groups all withdrawals for a user u over the
past 31 days and sums up their amounts a. The aggregation formula defines a binary relation
where the first coordinate is the SUM’s result s and the second coordinate is the user u for
whom the result is calculated. If the user’s sum is greater than 10,000, then the policy is
violated at the current time point. The formula (P0) therefore states that the aggregation
condition must hold for each user and every time point.

For comparison, an SQL query for determining the violations with respect to the above
policy at a specific time is

SELECT SUM(a) AS s, u FROM W GROUP BY u HAVING SUM(a) > 10000.

Here W is the dynamically created view consisting of the withdrawals of all users within
the 31 day time window relative to the given time. Note that the subscript a of the formula’s
aggregation operator in (P0) corresponds to a in the SQL query and the third appearance of a
in (P0) is implicit in the query, as it is fixed by the view’s definition. The second a in (P0) is
redundant; its inclusion emphasizes that the variable a is bound, i.e., it does not correspond
to a coordinate in the resulting relation.

123

264 Form Methods Syst Des (2015) 46:262–285

Not all formulas in our language are monitorable. Unrestricted use of logic operators
may require infinite relations to be built and manipulated. The second part of our solution,
therefore, is a monitorable fragment of our language. It can express all our examples, which
represent typical policy patterns, and it allows the liberal use of aggregations and functions.
We extend our monitoring algorithm for MFOTL [8] to this fragment. In more detail, the
algorithm processes log files sequentially and evaluates formulas in a bottom-up manner,
using extended relational algebra operators to compute the evaluation of a formula from the
evaluation of its direct subformulas. In particular, aggregation formulas are handled as the
homonymous relational algebra operators. Functions are handled similarly to Prolog, where
variables are instantiated before functions are evaluated.

We have implemented our monitoring solution and we evaluate it, comparing it with the
relational database management system PostgreSQL [23] and the stream-processing tool
STREAM [2]. Our evaluation focuses on two aspects: the suitability of our proposed lan-
guage for formalizing complex policies with aggregations (our examples are from the domain
of fraud detection) and the performance of our prototype implementation. The results show
that our language is better suited for specifying policies than SQL and our prototype’s perfor-
mance is superior to PostgreSQL’s performance. This is because temporal reasoning must be
explicitly encoded in SQL queries and PostgreSQL does not process logged data sequentially
in time. STREAM’s query language CQL [3] has limited support for temporal reasoning and
several temporal constructs must be explicitly encoded, as is the case with SQL. It is thus
less suited than our language for specifying the example policies. However, STREAM’s per-
formance is better than our tool’s. Nevertheless, the performance of our prototype tool is still
within the same order of magnitude as STREAM’s performance and it is efficient enough for
practical use.

1.3 Contributions

Although aggregations have appeared previously inmonitoring, our language is the first to add
expressive SQL-like aggregation operators to a first-order temporal language. This enables
us to express complex compliance policies with aggregations. Our prototype implementation
is therefore the first tool to handle such policies, and it does so with acceptable performance.

1.4 Related work

Our MFOTL extension is inspired by the aggregation operators in database query languages
like SQL and by Hella et al.’s extension of first-order logic with aggregation operators [20].
Hella et al.’s work is theoretically motivated: they investigate the expressiveness of such an
extension in a non-temporal setting. A minor difference between their aggregation operators
and ours is that their operators yield terms rather than formulas, as in our extension.

Monitoring algorithms for different variants of first-order temporal logics have been pro-
posed by Hallé and Villemaire [19], Bauer at al. [10], and Basin et al. [8]. Except for the
counting quantifier [10], none of them support aggregations. Bianculli et al. [11] present a
policy language based on a first-order temporal logic with a restricted set of aggregation
operators that can only be applied to atomic formulas. For monitoring, they require a fixed
finite domain and provide a translation to a propositional temporal logic. Such a translation
is not possible in our setting since variables range over an infinite domain. In the context of
database triggers and integrity constraints, Sistla andWolfson [24] describe an integration of
aggregation operators into their monitoring algorithm for a first-order temporal logic. Their
aggregation operators are different from those presented here in that they involve two formu-

123

Form Methods Syst Des (2015) 46:262–285 265

las that select the time points to be considered for aggregation and they use a database query
to select the values to be aggregated from the selected time points.

Other monitoring approaches that support aggregations are LarvaStat [14], LOLA [16],
EAGLE [4], and an approach based on algebraic alternating automata [17]. These approaches
allowone to aggregate over the events in system traces, where events are either propositions or
parametrized propositions. They do not support grouping, which is needed to obtain statistics
per group of events, e.g., the events generated by the same agent. Moreover, quantification
over data elements and correlating data elements is more restrictive in these approaches than
in a first-order setting.

Most data stream management systems like STREAM [2] and Gigascope [15] handle
SQL-like aggregation operators. For example, in STREAM’s query language CQL [3] one
selects events in a specified time range, relative to the current position in the stream, into a
table that one aggregates. The temporal expressiveness of such languages is weaker than our
language; in particular, linear-time temporal operators are not supported.

1.5 Organization

The remainder of the article is structured as follows. In Sect. 2, we extend MFOTL with
aggregation operators. In Sect. 3, we present our monitoring algorithm, which we evaluate
in Sect. 4. In Sect. 5, we draw conclusions.

2 MFOTL with aggregation operators

2.1 Preliminaries

We use standard notation for sets and set operations.We also use set notation with sequences.
For instance, for a set A and a sequence s̄ = (s1, . . . , sn), we write A ∪ s̄ for the union
A ∪ {si | 1 ≤ i ≤ n} and we denote the length of s̄ by |s̄|. Let I be the set of nonempty
intervals over N. We often write an interval in I as [b, b′) := {a ∈ N | b ≤ a < b′}, where
b ∈ N, b′ ∈ N ∪ {∞}, and b < b′.

A multi-set M with domain D is a function M : D → N ∪ {∞}. This definition extends
the standard one to multi-sets where elements can have an infinite multiplicity. Amulti-set M
is finite if M(a) ∈ N for every a ∈ D and the set {a ∈ D | M(a) > 0} is finite. We use the
brackets {| and |} to specify multi-sets. For instance, {|2 ·
n/2� | n ∈ N|} denotes the multi-set
M : N → N ∪ {∞} with M(n) = 2 if n is even and M(n) = 0 otherwise. A multi-set M is
empty if M(a) = 0 for any a ∈ D. We denote the empty multi-set by ∅.

Given a domain D, an aggregation operator is a function from multi-sets with domain D
to D∪{⊥∞} such that finitemulti-sets aremapped to elements of D\{⊥∞} and infinitemulti-
sets are mapped to ⊥∞. Common aggregations operators on finite non-empty multi-sets M
that only contain rational numbers are:

CNT(M) :=
∑

a∈D
M(a),

SUM(M) :=
∑

a∈D
M(a) · a,

MIN(M) := min{a ∈ D | M(a) > 0},
MAX(M) := max{a ∈ D | M(a) > 0},

123

266 Form Methods Syst Des (2015) 46:262–285

and

AVG(M) := SUM(M)/CNT(M).

On the empty multi-set, the definition of the aggregations operators CNT and SUM is
straightforward, namely, CNT(∅) := SUM(∅) := 0. However, the definition of the other
aggregations operators MIN, MAX, and AVG on the empty multi-set is less standard. For
example, the average over an empty multi-set is undefined. We can define AVG(∅) := ⊥,
where⊥ is a special domain element representing undefinedness. Analogously, we can define
MIN(∅) and MAX(∅) as ⊥, or we can assume special domain elements ∞ and −∞ and
define MIN(∅) and MAX(∅) as ∞ and −∞, respectively. Note that when ⊥, ∞, and −∞
are domain elements, one must extend the above definitions to finite, non-empty multi-sets
that contain such elements. This can, for example, be done by ignoring such elements and
their multiplicity. For readability, we omit a definition of these aggregation operators on such
“ill-formed” multi-sets. These definitions are not relevant for the results of this article.

2.2 Syntax

A signature S is a tuple (F,R, ι), where F is a finite set of function symbols, R is a finite set
of predicate symbols disjoint from F, and the function ι : F∪R → N assigns to each symbol
s ∈ F ∪ R an arity ι(s). In the following, let S = (F,R, ι) be a signature and V a countably
infinite set of variables, where V ∩ (F ∪ R) = ∅.

Function symbols of arity 0 are called constants. Let C ⊆ F be the set of constants of S.
Terms over S are defined inductively: Constants and variables are terms, and f (t1, . . . , tn) is
a term if t1, . . . , tn are terms and f is a function symbol of arity n > 0. We denote by fv(t)
the set of the variables that occur in the term t . We denote by T the set of all terms over S, and
by T∅ the set of ground terms, that is, terms without variables. A substitution θ is a function
from variables to terms. We use the same symbol θ to denote its homomorphic extension to
terms.

Given a finite set Ω of aggregation operators, the MFOTLΩ formulas over the signature
S are given by the grammar

ϕ ::= r(t1, . . . , tι(r)) | (¬ϕ) | (ϕ ∨ ϕ) | (∃x . ϕ) | (�Iϕ) | (ϕ SIψ) | [ωt z̄. ϕ](y; ḡ),
where r , t and the ti s, I , and ω range over the elements in R, T, I, and Ω , respectively, x and
y range over elements in V, and z̄ and ḡ range over sequences of elements in V. Note that
we overload notation: ω denotes both an aggregation operator and its corresponding symbol.
This grammar extends MFOTL’s grammar [21] in two ways. First, it introduces aggregation
operators. Second, terms may also be built from function symbols and not just from variables
and constants. For ease of exposition, we do not consider future-time temporal operators.

We call [ωt z̄. ψ](y; ḡ) an aggregation formula. It is inspired by the homonymous rela-
tional algebra operator. Intuitively, by viewing variables as (relation) attributes, ḡ are the
attributes on which grouping is performed, t is the term on which the aggregation operator ω

is applied, and y is the attribute that stores the result. The variables in z̄ are ψ’s attributes
that do not appear in the described relation. We define the semantics in Sect. 2.3, where we
also provide examples.

The set of free variables of a formula ϕ, denoted fv(ϕ), is defined as expected for the
standard logic connectives. For an aggregation formula, it is defined as fv

([ωt z̄. ϕ](y; ḡ)
) :=

{y}∪ ḡ. A variable is bound if it is not free. We denote by f̄v(ϕ) the sequence of free variables
of a formula ϕ that is obtained by ordering the free variables of ϕ by their occurrence when
reading the formula from left to right. A formula iswell-formed if, for each of its subformulas

123

Form Methods Syst Des (2015) 46:262–285 267

[ωt z̄. ψ](y; ḡ), it holds that (a) y �∈ ḡ, (b) fv(t) ⊆ fv(ψ), (c) the elements of z̄ and ḡ are
pairwise distinct, and (d) z̄ = fv(ψ) \ ḡ. Note that, given condition (d), the use of one
of the sequences z̄ and ḡ is redundant. However, we use this syntax to make the free and
bound variables explicit in aggregation formulas. Throughout this article, we consider only
well-formed formulas.

To omit parentheses, we assume that Boolean connectives bind stronger than temporal
connectives, and unary connectives bind stronger than binary ones, except for the quantifiers,
which bind weaker than Boolean ones. As syntactic sugar, we use standard Boolean connec-
tives such as ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), the universal quantifier ∀x . ϕ := ¬∃x .¬ϕ, and the
temporal operators ϕTIψ := ¬(¬ϕSI¬ψ), �I ϕ := t SIϕ, and �Iϕ := f TIϕ, where I ∈ I,
t := p ∨ ¬p, and f := ¬t, for some predicate symbol p of arity 0, assuming without loss of
generality that R contains such a symbol. Non-metric variants of the temporal operators are
easily defined, for example, � ϕ := �[0,∞)ϕ.

2.3 Semantics

We distinguish between predicate symbols whose corresponding relations are rigid over time
and those that are flexible, i.e., their interpretations can change over time. We denote by Rr

andR f the sets of rigid and flexible predicate symbols, whereR = Rr∪R f withRr∩R f = ∅.
We assume thatRr contains the binary predicate symbols≈ and≺, which have their expected
interpretation, namely, equality and ordering.

A structure D over the signature S consists of a domain D �= ∅ and interpretations
fD ∈ D

ι(f) → D and rD ⊆ D
ι(r), for each f ∈ F and r ∈ R. A temporal structure over

the signature S is a pair (D̄, τ̄), where D̄ = (D0,D1, . . .) is a sequence of structures over S
and τ̄ = (τ0, τ1, . . .) is a sequence of non-negative integers with the following properties.

1. The sequence τ̄ is monotonically increasing, that is, τi ≤ τi+1, for all i ≥ 0. Moreover,
τ̄ makes progress, that is, for every τ ∈ N, there is some index i ≥ 0 such that τi > τ .

2. All structures Di , with i ≥ 0, have the same domain, denoted D.
3. Function symbols and rigid predicate symbols have rigid interpretations, that is, fDi =

fDi+1 and pDi = pDi+1 , for all f ∈ F, p ∈ Rr , and i ≥ 0. We also write f D̄ and pD̄

for fDi and pDi , respectively.

We call the elements in the sequence τ̄ timestamps and the indices of the elements in the
sequences D̄ and τ̄ time points.

A valuation is a mapping v : V → D. For a valuation v, a variable sequence x̄ =
(x1, . . . , xn) ∈ Vn , and d̄ = (d1, . . . , dn) ∈ D

n , we write v[x̄ �→ d̄] for the valuation that
maps xi to di , for 1 ≤ i ≤ n, and the other variables’ valuation is unaltered. We abuse
notation by also applying a valuation v to terms. That is, given a structure D, we extend v

homomorphically to terms.
For the remainder of the article, we fix a countable domain D that contains the ratio-

nal numbers Q and elements like ⊥∞ and ⊥. We only consider a single-sorted logic. One
could alternatively have sorts for the different types of elements like data elements and the
aggregations. Furthermore, we assume that function symbols are always interpreted by total
functions. Partial functions like division over scalar domains can be extended to total func-
tions, e.g., by mapping elements outside the function’s domain to ⊥. Since the treatment of
partial functions is not essential to our work, we treat⊥ as any other element ofD. Alternative
treatments are possible, for example based on multi-valued logics [22].

Definition 1 Let (D̄, τ̄)be a temporal structure over the signatureS,with D̄ = (D0,D1, . . .)

and τ̄ = (τ0, τ1, . . .), ϕ a formula over S, v a valuation, and i ∈ N. We define the relation

123

268 Form Methods Syst Des (2015) 46:262–285

Fig. 1 Relation pD0 from Example 2. The two boxes represent the multi-set M for the two valuations v1
and v2, respectively

(D̄, τ̄ , v, i) |� ϕ inductively as follows:

(D̄, τ̄ , v, i) |� p(t1, . . . , tι(r)) iff
(
v(t1), . . . , v(tι(r))

) ∈ pDi

(D̄, τ̄ , v, i) |� ¬ψ iff (D̄, τ̄ , v, i) �|� ψ

(D̄, τ̄ , v, i) |� ψ ∨ ψ ′ iff (D̄, τ̄ , v, i) |� ψ or (D̄, τ̄ , v, i) |� ψ ′

(D̄, τ̄ , v, i) |� ∃x . ψ iff (D̄, τ̄ , v[x �→ d], i) |� ψ , for some d ∈ D

(D̄, τ̄ , v, i) |� �Iψ iff i > 0, τi − τi−1 ∈ I, and (D̄, τ̄ , v, i − 1) |� ψ

(D̄, τ̄ , v, i) |� ψSIψ
′ iff for some j ≤ i, τi − τ j ∈ I, (D̄, τ̄ , v, j) |� ψ ′,

and (D̄, τ̄ , v, k) |� ψ, for all k with j < k ≤ i

(D̄, τ̄ , v, i) |� [ωt z̄. ψ](y; ḡ) iff v(y) = ω(M) and if ḡ �= ∅ then M is non-empty,

where M : D → N ∪ {∞} is the multi-set
{∣∣v[z̄ �→ d̄](t) ∣∣ (D̄, τ̄ , v[z̄ �→ d̄], i) |� ψ, for some d̄ ∈ D

|z̄|∣∣}.

Note that the semantics for the aggregation formula is independent of the order of the variables
in the sequence z̄.

For a temporal structure (D̄, τ̄), a time point i ∈ N, a formula ϕ, a valuation v, and a
sequence z̄ of variables with z̄ ⊆ fv(ϕ), we define the set

[[ϕ]](D̄,τ̄ ,i)
z̄,v := {

d̄ ∈ D
|z̄| ∣∣ (D̄, τ̄ , v[z̄ �→ d̄], i) |� ϕ

}
.

We drop the superscript when it is clear from the context. We drop the subscript when
z̄ = f̄v(ϕ). In this case the valuation v is irrelevant and [[ϕ]](D̄,τ̄ ,i) denotes the set of satisfying
elements of ϕ at time point i in (D̄, τ̄).

With this notation, we illustrate the semantics for aggregation formulas in the case where
we aggregate over a variable. We use the same notation as in Definition 1. In particular,
consider a formula ϕ = [ωx z̄. ψ](y; ḡ), with x ∈ V, and a valuation v. Note that v (and
thus also v[z̄ �→ d̄]) fixes the values of the variables in ḡ because these are free in ϕ. The
multi-set M is as follows. If x �∈ ḡ, then M(a) = |{d̄ ∈ [[ϕ]]z̄,v | d j = a}|, for any a ∈ D,
where j is the index of x in z̄. If x ∈ ḡ, then M(v(x)) = |[[ϕ]]z̄,v| and M(a) = 0, for any
a ∈ D \ {v(x)}.
Example 2 Let (D̄, τ̄) be a temporal structure over a signature with a ternary predicate
symbol p, with pD0 = {(1, b, a), (2, b, a), (1, c, a), (4, c, b)}. Moreover, let ϕ be the for-
mula [SUMx x, y. p(x, y, g)](s; g) and z̄ = (x, y). At time point 0, for a valuation v1 with
v1(g) = a, we have [[p(x, y, g)]]z̄,v1 = {(1, b), (2, b), (1, c)} and M = {|1, 2, 1|}. For a
valuation v2 with v2(g) = b, we have [[p(x, y, g)]]z̄,v2 = {(4, c)} and M = {|4|}. Finally,
for a valuation v3 with v3(g) /∈ {a, b}, we have that both [[p(x, y, g)]]z̄,v3 and M are empty.
So the formula ϕ is only satisfied under a valuation v with v(s) = 4 and either v(g) = a or
v(g) = b. Indeed, we have [[ϕ]] = {(4, a), (4, b)}. The tables in Fig. 1 illustrate this example.

123

Form Methods Syst Des (2015) 46:262–285 269

If we group on the variable x instead of g, we get [[[SUMx y, g. p(x, y, g)](s; x)]] =
{(2, 1), (2, 2), (4, 4)}, and [[[SUMx x, y, g. p(x, y, g)](s)]] = {(8)}, if we do not group on
any variable. Finally, note that if the multi-set over which we aggregate is infinite, the aggre-
gated value is ⊥∞. For example, we have [[[SUMx x, y.¬p(x, y, g)](s; g)]] = D × {⊥∞}
and [[[SUMx x, y, g.¬p(x, y, g)](s)]] = {(⊥∞)}.
Example 3 This example illustrates the special case where aggregation operators are applied
on formulas that have no satisfying elements. Let (D̄, τ̄) be a temporal structure over a signa-
ture with a binary predicate symbol q , with qD0 = ∅. We have [[[ωx x . q(x, y)](s; y)]] = ∅,
for any aggregation operatorω, while [[[SUMx x . q(x, y)](s)]] = {(0)} and [[[AVGx x .q(x, y)]
(a)]] = {(⊥)}. Furthermore, ifMIN(∅) is defined as⊥ then [[[MINx x . q(x, y)](m)]] = {(⊥)},
while if it is defined as ∞, we obtain [[[MINx x . q(x, y)](m)]] = {(∞)} if ∞ ∈ D, and
[[[MINx x . q(x, y)](m)]] = ∅, if∞ �∈ D.

The issue with the definition of aggregation operators on empty multi-sets, illustrated by
Example 3, also appears in SQL. There, aggregation operators return the special domain
element NULL on empty multi-sets.

Example 4 Consider the formula ϕ = [SUMa a. ψ](s; u), where ψ is the formula
�[0,31) withdraw(u, a). Let (D̄, τ̄) be a temporal structure with the relations withdrawD0 =
{(Bob, 9), (Bob, 3)} and withdrawD1 = {(Bob, 3)}, and the timestamps τ0 = 5 and τ1 = 8.
We have that [[ψ]](D̄,τ̄ ,0) = [[ψ]](D̄,τ̄ ,1) = {(Bob, 9), (Bob, 3)} and therefore [[ϕ]](D̄,τ̄ ,0) =
[[ϕ]](D̄,τ̄ ,1) = {(12,Bob)}. Our semantics ignores the fact that the tuple (Bob, 3) occurs at
both time points 0 and 1. Note that the withdraw events do not have unique identifiers in
this example.

To account for multiple occurrences of an event, we can attach to each event addi-
tional information to make it unique. For example, assume we have a predicate symbol
ts at hand that records the timestamp at each time point, i.e., tsDi = {τi }, for i ∈ N. For
the formula ϕ′ = [SUMa a. ψ ′](s; u) with ψ ′ = �[0,31) withdraw(u, a) ∧ ts(τ), we have

that [[ϕ′]](D̄,τ̄ ,0) = {(12,Bob)} and [[ϕ′]](D̄,τ̄ ,1) = {(15,Bob)} because [[ψ ′]](D̄,τ̄ ,0) =
{(Bob, 9, 5), (Bob, 3, 5)} while [[ψ ′]](D̄,τ̄ ,1) = {(Bob, 9, 5), (Bob, 3, 5), (Bob, 3, 8)}. To
further distinguish between withdraw events at time points with equal timestamps, we would
need additional information about the occurrence of an event, for example information
obtained from a predicate symbol tpts that is interpreted as tptsDi = {(i, τi)}, for i ∈ N.

The multiplicity issue illustrated by Example 4 also appears in databases. SQL is based on
amulti-set semantics and one uses the DISTINCT keyword to switch to a set-based semantics.
However, it is problematic to define a multi-set semantics for first-order logic that associates
a tuple d̄ ∈ D

|fv(ϕ)| with a multiplicity denoting how often d̄ satisfies the formula ϕ rather
than a Boolean value. For instance, there are several ways to define a multi-set semantics
for disjunction: the multiplicity of d̄ for ψ ∨ ψ ′ can be either the maximum or the sum
of the multiplicities of d̄ for ψ and ψ ′. Depending on the choice, standard logical laws
become invalid, for example the distributivity of existential quantification or conjunction
over disjunction. Defining a multi-set semantics for negation is even more problematic.

3 Monitoring algorithm

In this section, we present our monitoring algorithm for MFOTLΩ . The algorithm is inspired
by those in [8,9,12] and it is based on formulating the evaluation of formulas ϕ in a fragment

123

270 Form Methods Syst Des (2015) 46:262–285

Fig. 2 The derivation rules defining the fragment F of monitorable formulas

of MFOTLΩ in terms of extended relational algebra operators applied to the evaluation of
the direct subformulas of ϕ. We start with an overview of our monitoring approach.

We assume that policies are of the form �∀x̄ . ϕ, where ϕ is an MFOTLΩ formula and
x̄ is the sequence of ϕ’s free variables. The policy requires that ∀x̄ . ϕ holds at every time
point in the temporal structure (D̄, τ̄). In the following, we assume that (D̄, τ̄) is a temporal
database, i.e., (1) the domain D is countably infinite, (2) the relation pDi is finite, for each
p ∈ R f and i ∈ N, (3) pD̄ is a recursive relation, for each p ∈ Rr , and (4) f D̄ is computable,
for each f ∈ F. We also assume that the aggregation operators inΩ are computable functions
on finite multi-sets.

The inputs of our monitoring algorithm are a formula ψ , which is logically equivalent to
¬ϕ, and a temporal database (D̄, τ̄), which is processed iteratively. The algorithm outputs,
again iteratively, the relation [[ψ]](D̄,τ̄ ,i), for each i ≥ 0. As ψ and ¬ϕ are equivalent, the
tuples in [[ψ]](D̄,τ̄ ,i) are the policy violations at time point i . Note that we drop the outermost
quantifier as we are interested not only in whether the policy is violated. An instantiation of
the free variables x̄ that satisfies ψ provides additional information about the violations.

3.1 Monitorable fragment

Not all formulas are effectively monitorable. Consider, for example, the policy formalization
�∀x .∀y. p(x) → q(x, y), with the formulaψ = p(x)∧¬q(x, y) thatwe use formonitoring.
There are infinitely many violations for time points i with pDi �= ∅, namely, any tuple
(a, b) ∈ D

2 \ qDi with a ∈ pDi . In such a case, [[ψ]](D̄,τ̄ ,i) is infinite and its elements
cannot be enumerated in finite time. We define a fragment of MFOTLΩ that guarantees
finiteness. Furthermore, the set of violations at each time point can be effectively computed
bottom-up over the formula structure. In the following, we treat the Boolean connective ∧
and the temporal operator TI as primitives.

Definition 5 The set F of monitorable formulas with respect to (Hp)p∈Rr is defined by the
rules given in Fig. 2, where Hp ⊆ {1, . . . , ι(p)}, for each p ∈ Rr .

123

Form Methods Syst Des (2015) 46:262–285 271

Let 	 be a label of a rule from Fig. 2. We say that a formula ϕ ∈ F is of kind 	 if there is a
derivation tree for ϕ having as its root a rule labeled by 	.

Before describing some of the rules, we first explain the meaning of the set Hp , for p ∈ Rr

with arity k. The set Hp contains the indexes j for which we can determine the values of the
variable x j that satisfy p(x1, . . . , xk), given that the values of the variables xi with i �= j
are fixed. Formally, given a temporal database (D̄, τ̄) and a rigid predicate symbol p of arity
k > 0, we say that an index j , with 1 ≤ j ≤ k, is effective for p if for any ā ∈ D

k−1,
the set {d ∈ D | (a1, . . . , a j−1, d, a j , . . . , ak−1) ∈ pD̄} is finite. For instance, for the rigid
predicate≈, the set of effective indexes is H≈ = {1, 2}. Similarly, for the rigid predicate≺N,
defined as a ≺N b iff a, b ∈ N and a < b, we have H≺N

:= {1}.
We describe the intuition behind the first four rules in Fig. 2. Themeaning of the other rules

should then be obvious. The first rule (FLX) requires that in an atomic formula p(t1, . . . , tι(p))
with p ∈ R f , the terms ti are pairwise distinct variables. This formula ismonitorable sincewe
assume that p’s interpretation is always a finite relation. For the rules (RIG∧) and (RIG∧¬),
consider formulas of the form ϕ∧ p(t1, . . . , tι(p)) and ϕ∧¬p(t1, . . . , tι(p))with p ∈ Rr and⋃ι(p)

i=1 fv(ti) ⊆ fv(ϕ). In both cases, the second conjunct further restricts the satisfying tuples
of ϕ. An example is the formula ϕ(x, y)∧ x + 1 ≈ y. If ϕ is monitorable, the conjunction is
also monitorable as it can be evaluated by removing from [[ϕ]] the tuples that do not satisfy
the second conjunct x + 1 ≈ y. The rule (RIG′∧) treats the case where one of the terms
ti is a variable that does not appear in ϕ. We require here that the index j is effective, so
that the values of this variable are determined by the values of the other variables, which
themselves are given by the tuples in [[ϕ]]. An example is the formula p(x, y) ∧ z ≈ x + y.
The required conditions on t j are necessary. If j is not effective, then we cannot guarantee
finiteness. Consider, for example, the formula q(x) ∧ x ≺ y. If we do not require that t j is
a variable, then we would have to solve equations to determine the value of the variable that
does not occur in ϕ. Consider, for example, the formula q(x) ∧ x ≈ y · y.

The rule (FLX) may seem quite restrictive. However, one can often rewrite a formula of
the form p(t1, . . . , tn)with p ∈ R f into an equivalent formula inF . For instance, p(x+1, x)
can be rewritten to ∃y. p(y, x)∧ x + 1 ≈ y. Alternatively, one can add additional rules that
handle such cases directly.

The following lemma shows that ϕ’s membership in F guarantees the finiteness of [[ϕ]].
The proof consists of a straightforward induction on the formula structure.

Lemma 6 Let (D̄, τ̄) be a temporal database, i ∈ N a time point, ϕ a formula, and Hp the
set of effective indexes for p, for each p ∈ Rr . If ϕ is a monitorable formula with respect to
(Hp)p∈Rr , then [[ϕ]](D̄,τ̄ ,i) is finite.

There are formulas like (x ≈ y)Sp(x, y) that describe finite relations but are not in F .
Finiteness can also be guaranteed by semantic notions like domain independence or syntactic
notions like range restriction, see, for example, [1] and also [8,13] for a generalization of these
notions to a temporal setting. If we restrict ourselves to MFOTL without future operators,
the range restricted fragment in [8] is more general than the fragment F . This is because, in
contrast to the rules in Fig. 2, range restrictions are not local conditions, that is, conditions
that only relate formulas with their direct subformulas. However, the evaluation procedures
in [1,8,13] also work in a bottom-up recursive manner. So one still must rewrite the formulas
to evaluate them bottom-up. No rewriting is needed for formulas in F . Furthermore, the
fragment ensures that aggregation operators are always applied to finitemulti-sets. Thus, for
any ϕ ∈ F , the element⊥∞ ∈ D never appears in a tuple of [[ϕ]], provided that pDi ⊆ Dι(p)

and f D̄(ā) ∈ D, for every p ∈ R, f ∈ F, i ∈ N, and ā ∈ Dι(f), where D = D \ {⊥∞}.

123

272 Form Methods Syst Des (2015) 46:262–285

3.2 MFOTLΩ and extended relational algebra operators

Ourmonitoring algorithm is based on interpretingMFOTLΩ connectives in terms of extended
relational algebra operators. This interpretation is represented by equalities between the eval-
uation of a formula and the evaluation of its direct subformulas, for each kind of formula
defined in Sect. 3.1. Such equalities extend the standard ones [1] that express the relation-
ship between first-order logic (without function symbols) and relational algebra, to function
symbols, temporal operators, and group-by operators. Before presenting the equalities, we
introduce the extended relational algebra operators.

3.2.1 Extended relational algebra operators

We start by defining constraints. We assume a given infinite set of variables Z =
{z1, z2, . . . } ⊆ V, ordered by their indices. A constraint is a formula r(t1, . . . , tn) or its
negation, where r is a rigid predicate symbol of arity n and the ti s are constraint terms,
i.e., terms with variables in Z . We assume that for each domain element d ∈ D, there is
a corresponding constant, also denoted by d . A tuple (a1, . . . , ak) satisfies the constraint
r(t1, . . . , tn) iff

⋃n
i=1 fv(ti) ⊆ {z1, . . . , zk} and (v(t1), . . . , v(tn)) ∈ rD, where v is a val-

uation with v(zi) = ai , for all i ∈ {1, . . . , k}. Satisfaction of a constraint ¬r(t1, . . . , tn) is
defined similarly.

In the following, let C be a set of constraints, A ⊆ D
m , and B ⊆ D

n . The selection of A
with respect to C is the m-ary relation

σC (A) := {ā ∈ A | ā satisfies all constraints in C}.
The integer i is a column in A if 1 ≤ i ≤ m. Let s̄ = (s1, s2, . . . , sk) be a sequence of k ≥ 0
columns in A. The projection of A on s̄ is the k-ary relation

πs̄(A) := {
(as1 , as2 , . . . , ask) ∈ D

k
∣∣ (a1, a2, . . . , am) ∈ A

}
.

Let s̄ be a sequence of columns in A× B. The join and the antijoin of A and B with respect
to s̄ and C are defined as

A ��s̄,C B := (πs̄ ◦ σC)(A × B)

and

A �s̄,C B := A \ (A ��s̄,C B).

Let ω be an operator in Ω , G a set of k ≥ 0 columns in A, and t a constraint term.
The ω-aggregate of A on t with grouping by G is the (k + 1)-ary relation

ωG
t (A) := {

(b, ā)
∣∣ ā = (ag1 , ag2 , . . . , agk) ∈ πḡ(A) and b = ω(Mā)

}
.

Here ḡ = (g1, g2, . . . , gk) is the maximal subsequence of (1, 2, . . . ,m) such that gi ∈ G,
for 1 ≤ i ≤ k, and Mā : Dm−k → N is the finite multi-set

Mā := {∣∣(πh̄ ◦ σ{d≈t}∪D)(A)
∣∣ d ∈ D

∣∣},

where h̄ is the maximal subsequence of (1, 2, . . . ,m) with no element in G and D := {ai ≈
zgi | 1 ≤ i ≤ k}.

123

Form Methods Syst Des (2015) 46:262–285 273

3.2.2 Interpreting MFOTLΩ connectives as extended regular algebra operators

Let (D̄, τ̄) be a temporal database, i ∈ N, and ϕ ∈ F . We express [[ϕ]](D̄,τ̄ ,i) in terms of
the generalized relational algebra operators. The following equalities follow directly from
the semantics of MFOTLΩ formulas and the definition of the extended relational algebra
operators.

Kind (FLX). This case is straightforward. For a predicate symbol p ∈ R f of arity n and
pairwise distinct variables x1, . . . , xn ∈ V,

[[p(x1, . . . , xn)]](D̄,τ̄ ,i) = pDi .

Kinds (RIG∧) and (RIG∧¬). Let ψ and p(t1, . . . , tn) be two formulas such that ψ ∧
p(t1, . . . , tn) is a formula of kind (RIG∧). Note that ψ ∧ ¬p(t1, . . . , tn) is a formula of
kind (RIG∧¬). Then

[[ψ ∧ p(t1, . . . , tn)]](D̄,τ̄ ,i) = σ{p(θ(t1),...,θ(tn))}
([[ψ]](D̄,τ̄ ,i))

and

[[ψ ∧ ¬p(t1, . . . , tn)]](D̄,τ̄ ,i) = σ{¬p(θ(t1),...,θ(tn))}
([[ψ]](D̄,τ̄ ,i)),

where the substitution θ : fv(ψ) → {z1, . . . , z|fv(ψ)|} is given by θ(x) = z j , with j the index
of x in f̄v(ψ). For instance, if ϕ ∈ F is the formula ψ(x, y) ∧ (x − y) mod 2 ≈ 0 then
[[ϕ]](D̄,τ̄ ,i) = σ{(z1−z2) mod 2≈ 0}[[ψ]](D̄,τ̄ ,i).

Kind (RIG′∧). Letψ∧ p(t1, . . . , tn) be a formula of kind (RIG′∧), with f̄v(ψ) = (y1, . . . , y).
Then

[[ψ ∧ p(t1, . . . , tn)]](D̄,τ̄ ,i) =
⋃

d̄∈[[ψ]](D̄,τ̄ ,i)

[[p(t1, . . . , tn) ∧
∧

j∈{1,...,	}
y j ≈ d j]](D̄,τ̄ ,i).

For instance, letϕ(x, y, z) = ψ(y, z)∧x ≺ y+z. Assume that [[ψ]](D̄,τ̄ ,i) = {(2, 0), (1, 2)}.
Then [[ϕ]](D̄,τ̄ ,i) = [[x ≺ y + z ∧ y ≈ 2 ∧ z ≈ 0]] ∪ [[x ≺ y + z ∧ y ≈ 1 ∧ z ≈ 2]] =
{(0, 2, 0), (1, 2, 0)} ∪ {(0, 1, 2), (1, 1, 2), (2, 1, 2)}.

Kinds (GEN∧) and (GEN∧¬). Let ψ ∧ ψ ′ and ψ ∧ ¬ψ ′ be formulas of kind (GEN∧) and
respectively (GEN∧¬), with f̄v(ψ) = (y1, . . . , yn) and f̄v(ψ ′) = (y′1, . . . , y′). Then

[[ψ ∧ ψ ′]](D̄,τ̄ ,i) = [[ψ]](D̄,τ̄ ,i) ��s̄,C [[ψ ′]](D̄,τ̄ ,i)

and

[[ψ ∧ ¬ψ ′]](D̄,τ̄ ,i) = [[ψ]](D̄,τ̄ ,i) �s̄,C [[ψ ′]](D̄,τ̄ ,i),

where (a) s̄ = (1, . . . , n, n + i1, . . . , n + i) with i j such that (i1, . . . , i) is the maximal
subsequence of (1, . . . ,) with y′i j /∈ fv(ψ), and (b) C = {z j ≈ zn+h | y j = y′h, 1 ≤
j ≤ n, and 1 ≤ h ≤ 	}. For instance, if ϕ = p(x, y) ∧ q(y, z) then s̄ = (1, 2, 4) and
C = {z2 ≈ z3}.

Kind (GEN∨). Let ψ ∨ ψ ′ be a formula of kind (GEN∨). Then

[[ψ ∨ ψ ′]](D̄,τ̄ ,i) = [[ψ]](D̄,τ̄ ,i) ∪ [[ψ ′]](D̄,τ̄ ,i).

123

274 Form Methods Syst Des (2015) 46:262–285

Kind (GEN∃). Let ∃x . ψ be a formula of kind (GEN∃) with f̄v(ψ) = (y1, . . . , yk). Then

[[∃x . ψ]](D̄,τ̄ ,i) = πj̄

([[ψ]](D̄,τ̄ ,i)),

where j̄ = (1, . . . , k) if x �∈ fv(ψ) and otherwise j̄ = (1, . . . , j − 1, j + 1, . . . , k) with j
such that x = y j .

Kind (GEN�). Let �Iψ be a formula of kind (GEN�). Then

[[�Iψ]](D̄,τ̄ ,i) =
{ [[ψ]](D̄,τ̄ ,i−1) if i > 0 and τi − τi−1 ∈ I,
∅ otherwise.

Kinds (GENS) and (GEN¬S). LetψSIψ
′ and¬ψSIψ

′ be two formulas of kind (GENS) and
respectively (GEN¬S), with f̄v(ψ) = (y1, . . . , yn) and f̄v(ψ ′) = (y′1, . . . , y′). Then

[[ψSIψ
′]](D̄,τ̄ ,i) =

⋃

j∈{i ′|i ′≤i, τi−τi ′ ∈I }

(
[[ψ ′]](D̄,τ̄ , j) ��s̄,C

(⋂

k∈{ j+1,...,i}
[[ψ]](D̄,τ̄ ,k)

))
,

and

[[¬ψSIψ
′]](D̄,τ̄ ,i) =

⋃

j∈{i ′|i ′≤i, τi−τi ′ ∈I }

(
[[ψ ′]](D̄,τ̄ , j) �s̄,C

(⋂

k∈{ j+1,...,i}
[[ψ]](D̄,τ̄ ,k)

))
,

where s̄ and C are as for the case of kinds (GEN∧) and (GEN∧¬). For instance, for f̄v(ψ) =
(x, y, z) and f̄v(ψ ′) = (z, z′, x), we have s̄ = (1, 2, 3, 5) and C = {z1 ≈ z6, z3 ≈ z4}.
Kinds (GENT). Let ψTIψ

′ be a formula of kind (GENT). Then

[[ψTIψ
′]](D̄,τ̄ ,i) =

(⋂

j∈{i ′|i ′≤i, τi−τi ′ ∈I }
[[ψ ′]](D̄,τ̄ , j)

)
∪

⋃

j∈{i ′|i ′≤i, τi−τi ′ ∈I }

(
[[ψ ′]](D̄,τ̄ , j) ��s̄,C

(⋂

k∈{ j,...,i}
[[ψ]](D̄,τ̄ ,k)

))
,

where s̄ and C are as for the case of kinds (GEN∧) and (GEN∧¬). This equality follows the
semantics of the T operator, that is, (D̄, τ̄ , v, i) |� ψTIψ

′ iff (D̄, τ̄ , v, j) |� ψ ′ for all j with
j ≤ i and τi − τ j ∈ I , or there is a j with j ≤ i and τi − τ j ∈ I such that (D̄, τ̄ , v, k) |� ψ ,
for all k with j ≤ k ≤ i .

Kind (GENω). Let [ωt z̄′. ψ](y; ḡ) be a formula of kind (GENω). It holds that

[[[ωt z̄
′. ψ](y; ḡ)]](D̄,τ̄ ,i) = ωG

θ(t)

([[ψ]](D̄,τ̄ ,i)),

where f̄v(ψ) = (y1, . . . , yn), for some n ≥ 0, G = {i | yi ∈ ḡ}, and the substitution
θ : fv(ψ) → {z1, . . . , zn} is given by θ(x) = z j , where j is the index of x in f̄v(ψ). For
instance, for [SUMx+y x, y. p(x, y, z)](s; z), we have G = {3} and θ(t) = z1 + z2.

Remark We do not have a translation from formulas in F into extended relational algebra
expressions because one cannot fix in advance the relational symbols used by such expres-
sions. Indeed, the right-hand side of the equalities for the kind (RIG′∧) and the kinds corre-
sponding to temporal operators depend not only on the left-hand side formula, but also on
the temporal database.

123

Form Methods Syst Des (2015) 46:262–285 275

Fig. 3 The init and eval procedures

3.3 Algorithmic realization

For a given formula ψ ∈ F , the algorithm iteratively processes the given temporal database
(D̄, τ̄). At each time point i , it calls the procedure eval to compute [[ψ]](D̄,τ̄ ,i). The input
of eval at time point i is the formula ψ , the time point i with its timestamp τi , and the
interpretations of the flexible predicate symbols, i.e., rDi , for each r ∈ R f . Note that D̄’s
domain and the interpretations of the rigid predicate symbols and the function symbols,
including the constants, do not change over time. We assume that they are fixed in advance.

The computation of [[ψ]](D̄,τ̄ ,i) is by recursion over ψ’s formula structure. To accelerate
the computation of [[ψ]](D̄,τ̄ ,i), the monitoring algorithm maintains state for each temporal
subformula, storing previously computed intermediate results. The monitor’s state is initial-
ized by the procedure init and updated in each iteration by the procedure eval. We describe the
algorithm’s state for each temporal operator when we present the pseudo-code that handles
the operator.

The pseudo-code of the procedures init and eval is given in Fig. 3. Our pseudo-code (also
used in the Figs. 4 and 5) is written in a functional-programming style with pattern matching.
The symbol 〈〉 denotes the empty sequence, ++ sequence concatenation, h::L the sequence
with head h and tail L , and λx . f (x) denotes a function f . The functions hd(L) and tl(L)
return the head and respectively the tail of the non-empty list L .

3.3.1 First-order connectives

We now describe the eval procedure in more detail. The cases correspond to the rules defining
the set ofmonitorable formulas. The pseudo-code for the cases corresponding to non-temporal

123

276 Form Methods Syst Des (2015) 46:262–285

Fig. 4 The eval_since procedure

Fig. 5 The eval_palways procedure

connectives follows closely the equalities given in Sect. 3.2.2. Note that extended relational
algebra operators have standard, efficient implementations [18],which can be used to evaluate
the expressions on the right-hand side of these equalities.

The predicates kind_rig and kind_rig’ check whether the input formula ϕ is indeed of
the intended kind. The get_info_* procedures return the parameters used by the correspond-
ing relational algebra operators. For instance, get_info_rig returns the singleton set consist-
ing of the constraint corresponding to the restrictions p(t1, . . . , tι(p)) or ¬p(t1, . . . , tι(p)).
Similarly, get_info_rig’ returns the effective index corresponding to the unique variable
that appears only in the right conjunct of ϕ. The procedure reval(p, k, ā) returns the set
{d ∈ D | (a1, . . . , ak−1, d, ak, . . . , an−1) ∈ pD̄}, for any ā ∈ D

n−1, where n is the arity of
the rigid predicate symbol p.

3.3.2 Aggregation operators

Computing the aggregation ωH
t ′ (A) is standard [18]. Namely, one iterates through the tuples

in the relation A and maintains a data structure that associates an accumulated value for the
aggregation term t ′ to each group of A, that is, to each tuple of values for the aggregation
attributes in H . The accumulation depends on the aggregation operator. For instance, for
CNT, it is the number of tuples of A seen so far that belong to the group, for SUM, it is the
sum of values for t ′ corresponding to such tuples, and for AVG it is the pair of the values used
for CNT and SUM. The accumulated values are updated at each iteration. For instance, for
CNT, the accumulated value is increased by one. When A’s scan is finished, the aggregated
value for each group is obtained from the accumulated value. Suitable data structures are
hash tables and balanced search trees as they allow for fast lookups and updates.

Finally, note that when handling an aggregation operator, one only needs a suitable accu-
mulation, functions for initializing and updating this accumulation, and a function f for
obtaining the aggregated value from the accumulated value. In the general case, the accu-
mulation consists of all the values for t ′ seen so far and the function f is the aggregation

123

Form Methods Syst Des (2015) 46:262–285 277

operator itself. For many aggregation operators, for instance for the ones in considered in
this article, the computation of the accumulated value can be carried out more efficiently.

3.3.3 Temporal operators

Consider first the case where the formula ϕ is of the form �Iψ . In this case, the state
stores between the iterations i − 1 and i , when i > 0, the timestamp of the last time point,
namely τϕ := τi−1, and the tuples that satisfy ψ at last time point i − 1, i.e., the relation

Aϕ := [[ψ]](D̄,τ̄ ,i−1). To evaluate ϕ at the current time point i , we recursively evaluate the
subformulaψ at i , we update the state, andwe return the relation resulting from the evaluation
of ψ at the previous time point, provided that the temporal constraint is satisfied. Otherwise
we return the empty relation. Note that by storing the relation [[ψ]](D̄,τ̄ ,i) at time point i , the
subformula ψ need not be evaluated again at time point i during the evaluation of ψ at time
point i + 1.

Consider now the case where the formula ϕ is of the form ψSIψ
′ or ¬ψSIψ

′, where
I = [a, b), for some a ∈ N and b ∈ N ∪ {∞}. This case is mainly handled by the sub-
procedure eval_since, given in Fig. 4. For clarity of presentation, we assume thatϕ = ψSIψ

′,
the other case being similar. The evaluation of ϕ reflects the logical equivalence ψSIψ

′ ≡∨
d∈I ψS[d,d]ψ ′. Note that we abuse notation here, as the right-hand side is not a formula

when b = ∞. The function interval_right_margin(ϕ) returns b.
The state at time point i , that is, after the procedure eval(ϕ, i, τi , Γi) has been executed,

consists of the list Lϕ of tuples (τ j , Ri
j) ordered with j ascending, where j is such that j ≤ i

and τi − τ j < b and with

Ri
j := [[ψ ′]](D̄,τ̄ , j) ��s̄,C

(⋂

k∈{ j+1,...,i}
[[ψ]](D̄,τ̄ ,k)

)
,

with s̄ and C defined as in Sect. 3.2.2. We have

[[ϕ]](D̄,τ̄ ,i) =
⋃

j∈{i ′|i ′≤i,τi−τi ′ ∈I }
Ri
j .

The computation of this union is performed in the last line of the eval_since procedure. Note
that, in general, not all the relations Ri

j in the list Lϕ are needed for the evaluation of ϕ at

time point i . However, the relations Ri
j with j such that τi − τ j �∈ I , that is τi − τ j < a,

are stored for the evaluation of ϕ at future time points i ′ > i . By storing these relations, the
subformulasψ1 andψ2 need not be evaluated again at time points j < i during the evaluation
of ψ at time point i .

We now explain how the state is updated at time point i from the state at time point i−1.We
first drop from the list Lϕ the tuples that are no longer relevant. More precisely, we drop the
tuples that have as their first component a timestamp τ j for which the distance to the current
timestamp τi is too large with respect to the right margin of I . This is done by the procedure
drop_old. Next, the state is updated using the logical equivalence αSβ ≡ (α∧�(αSβ))∨β.
This is accomplished in two steps. First, we update each element of Lϕ so that the tuples in
the stored relations also satisfy ψ at the current time point i . This step corresponds to the
conjunction in the above equivalence and it is performed by the map function. The update
is based on the equality Ri

j = Ri−1
j ��s̄,C [[ψ]](D̄,τ̄ ,i). Note that the join distributes over the

intersection. The second step, which corresponds to the disjunction in the above equivalence,
consists of appending the tuple (τi , Ri

i) to Lϕ . Note that Ri
i = [[ψ ′]](D̄,τ̄ ,i).

123

278 Form Methods Syst Des (2015) 46:262–285

Finally, we consider the case where the formula ϕ is of the form ψTIψ
′. The pseudo-

code for this case in the eval procedure reflects the logical equivalence ψTIψ
′ ≡ (�Iψ

′) ∨
(ψ ′SIψ ∧ψ ′). This case is mainly handled by the procedures eval_palways and eval_since’,
which correspond to the left-hand and respectively the right-hand side of the union operator
of the right-hand side of the equality given in Sect. 3.2.2. The pseudo-code of the eval_since’
procedure is similar to that of the eval_since procedure, and thus omitted. The only difference
consists in replacing the assignment Lϕ ← Lϕ ++ 〈(τ, A′)〉 by Lϕ ← Lϕ ++ 〈(τ, A ∩ A′)〉.
The list Lϕ , which is part of the state maintained for ϕ, has the same meaning as for the
case of the SI operator. Note also that the order of the parameters in the call to eval_since’
is reversed in comparison to eval_since; this matches the previously given equivalence. The
pseudo-code of the eval_palways is given in Fig. 5 and it represents the evaluation of formulas
of the form �Iψ

′ (“always in the past ψ ′”). This procedure uses and maintains the other part
of the state for ϕ, namely the list Hϕ . At time point i , after the procedure eval(ϕ, i, τi , Γi)

has been executed, the list Hϕ consists of the tuples (τ j , [[ψ ′]](D̄,τ̄ , j)) with j ≤ i and
τi − τ j ∈ I , ordered with j ascending. The list Hϕ is updated at each iteration by eliminating
old tuples using the same procedure drop_old as in the SI case, and by appending the tuple
(τi , [[ψ ′]](D̄,τ̄ ,i)). The procedure eval_palways returns the intersection on the left-hand side
of the union operator of the equality for the TI operator. As in the SI case, this intersection is
computed by calling the standard fold_left function on the list Hϕ , this time using the auxiliary
procedure aux_palways.

The following theorem states the correctness of our algorithm. Its proof follows the algo-
rithm’s presentation, and it proceeds by induction using the lexicographic ordering on tuples
(i, |ϕ|), where i ∈ N and |ϕ| denotes ϕ’s size, defined as expected.

Theorem 7 Let (D̄, τ̄) be a temporal database, i ∈ N, and ψ ∈ F . The procedure eval(ψ ,
i , τi , Γi) returns the relation [[ψ]](D̄,τ̄ ,i), whenever init(ψ), eval(ψ , 0, τ0, Γ0), . . . , eval(ψ ,
i − 1, τi−1, Γi−1) were called previously in this order, where Γ j = (pD j)p∈R f is the family
of interpretations of flexible predicates at j , for every time point j ∈ N.

3.3.4 Optimizations

Several optimizations are possible when evaluating formulas, in particular those formu-
las of the form ψ1SIψ2 and ψ1TIψ2. For instance, when I = [0,∞), for the SI opera-
tor, it is sufficient to store the resulting relation from the previous time point as we have
[[ψ1Sψ2]](D̄,τ̄ ,i) = [[ψ2]](D̄,τ̄ ,i) ∪ ([[ψ1Sψ2]](D̄,τ̄ ,i−1) �� [[ψ1]](D̄,τ̄ ,i)

)
. Further optimiza-

tions for incrementally updating the relations of the temporal formulas are described in [8].
We also present an optimization for the frequently occurring pattern [ωx z̄. �I ψ](y; ḡ).

Instead of applying the aggregation operator to the relation for the formula �I ψ , we directly
compute the aggregation from the relations for the formula ψ at the time points in the
specified time window. The approach is an adaptation of the one for handling stand-alone
aggregation operators, where one maintains a map between groups and accumulated values.
For [ωx z̄. �I ψ](y; ḡ), this map is not re-built from scratch at each time point; instead, it is
stored and updated at each time point. In addition to a function for updating accumulations
when tuples “enter” the relation for �I ψ , we also use a function to update accumulations
when tuples “leave” this relation. For instance, forCNT, one decreases the accumulated value
by 1. By using amulti-set for storing the relation for �I ψ , we can efficiently determine when
a tuple enters and when it leaves this relation.

123

Form Methods Syst Des (2015) 46:262–285 279

Fig. 6 Policy formalizations

4 Evaluation

In this section, we evaluate our extension of metric first-order temporal logic with aggrega-
tion operators. First, we evaluate whether MFOTLΩ is a suitable language for expressing
complex policies with aggregations. Second, we evaluate the performance of our prototype
monitor, comparing it with the stream-processing tool STREAM [2] and the relational data-
base PostgreSQL [23]. In contrast to existing logic-based monitoring solutions, both of these
tools support the aggregation of data values and their performance is comparable to other
state-of-the-art tools in their respective domains.

4.1 Specification language

To evaluate MFOTLΩ ’s suitability for specifying policies with aggregations, we compare
specifications inMFOTLΩ with those in the prominent query languagesCQL [3] (STREAM’s
query language) and SQL. For the comparison, we use the following six policies rooted in
the domain of fraud detection.

1. The sum of withdrawals of each user in the last 31 days does not exceed the limit
of $10,000.

2. Similar to the first policy, except that the withdrawals must not exceed $10,000 only
when the flag for checking the limit is set.

3. Similar to the second policy, except that the withdrawal limit is set by the user.
4. The maximal withdrawal of each user in the last week must be at most twice the average

of the user’s withdrawals over the last 91 days.
5. The average number of withdrawals per user in the last 31 days must not exceed a given

threshold of 150, where the average is taken over all users.
6. For each user, the number of withdrawal peaks in the last 31 days does not exceed a

threshold of 5, where a withdrawal peak is a value at least twice the average over the last
31 days.

The MFOTLΩ formulas that formalize the given policies are presented in Fig. 6. Note
that since we restrict ourselves in this article to the past-only fragment of MFOTLΩ , the
outermost temporal operator � (“always”) is not part of our definition of the logic given
in Sect. 2. However, we include it in our formalizations to emphasize that policies must be
fulfilled at all time points. We use withdraw(u, a) to denote that the user u has withdrawn
the amount a and ts(τ) to denote the timestamp τ of a time point.

123

280 Form Methods Syst Des (2015) 46:262–285

In theMFOTLΩ formalization of the first policy, theSUM operator adds all the withdrawal
amounts in the past 31 days, and we require that the result is less than 10,000. We use ts(τ)

to differentiate the different withdrawals of the same amount made by the user within a given
time window (see Example 4). The formalization of the second policy is a simple extension
of the first, where we just add the condition that a user’s limit is set. We use limit_on(u)

to denote that a user u sets the limit flag and limit_off (u) to denote that u unsets it. Using
the temporal operator S, we express the existence of a time point in the past where the user
has set the limit flag and has not unset it since then. To formalize the third policy, we use
limit(u,) to represent that u sets his limit to 	. To simulate setting no limit, a user can set
an arbitrarily high limit, and we assume that when a new account is opened, the limit is set
to some default value. The S operator is now used to find the latest limit that has been set by
the user. This limit is then used to constrain the sum of all withdrawals.

For the fourth policy, AVG computes the average withdrawal amount over the last 91
days and MAX finds the maximum withdrawal amount for the last week. We require that the
maximum is at most double the average. For the fifth policy, we first use CNT to count the
number of withdrawals made over last 31 days by each user. We then use AVG to compute
the average number of withdrawals per user during this time period, which we require not to
exceed 150. Finally for the sixth policy, we use AVG to compute the average withdrawal over
the last 31 days for each user. The CNT operator then counts all withdrawals with amounts
greater than twice the calculated average. We require that the count is not greater than 5.

Before we compare MFOTLΩ with SQL and CQL, we remark that the given MFOTLΩ

formalizations follow the common pattern �∀x̄ .∀ȳ. ϕ(x̄, ȳ) ∧ c(x̄, ȳ) → ψ(ȳ) ∧ c′(ȳ),
where c and c′ represent restrictions, i.e., formulas of the form r(t̄) and ¬r(t̄) with r ∈ Rr .
The formula to be monitored, i.e., ϕ(x̄, ȳ)∧ c(x̄, ȳ)∧¬(ψ(ȳ)∧ c′(ȳ)) is in the fragment F
if ϕ and ψ are in F , and both c and c′ satisfy the conditions of the (RIG) rules. See Fig. 2 in
Sect. 3.1. It can be easily checked that this is indeed the case for the given formulas (P1) to
(P6) and we can thus use our monitoring solution for them.

4.1.1 Comparison with SQL

SQL does not have temporal operators, and thus all temporal reasoning must be explicitly
specified. This can be done by adapting the standard embedding of temporal logic into first-
order logic to represent MFOTLΩ formulas as SQL queries. The key ideas underlying the
embedding are the following. First, we add to each predicate two additional attributes, tp and
ts, which represent the time point and the timestamp of an event’s occurrence. Second, we use
the tpts predicate fromExample 4, with two attributes, tp and ts, whose interpretation consists
of all pairs of time points and associated timestamps. Finally, we express temporal constraints
by arithmetic expressions over the newly introduced temporal data, that is, the data values
for the tp and ts attributes. The tpts predicate is needed to preserve the semantic equivalence
betweenMFOTLΩ and its embedding in first-order logic, as there can be time points at which
no event occurs. Expressing first-order formulas with aggregations as extended relational
algebra expressions is done in a standard way [1].

To illustrate this approach, consider the following SQL query for reporting violations with
respect to the first policy (P1).

SELECT T1.ts, SUM(T2.a) AS s, T2.u
FROM (SELECT ∗ FROM tpts) AS T1,

(SELECT tp AS tp’, ts AS ts’, u, a FROM withdraw) AS T2
WHERE T2.tp’ ≤ T1.tp AND 0 ≤ T1.ts − T2.ts’ AND T1.ts − T2.ts’ ≤ 30
GROUP BY T1.tp, T1.ts, T2.u
HAVING SUM(T2.a) > 10000
ORDER BY T1.ts

123

Form Methods Syst Des (2015) 46:262–285 281

A drawback of using SQL is that the queries are less succinct because they must explicitly
account for temporal constraints within policies. Therefore, without an automated translation
from MFOTLΩ to SQL, queries for complex policies are difficult to specify and maintain.
Moreover, and regardless of whether an automated translation is used, queries are hard to
simplify and optimize. This is not just due to the query’s complexity, the structure is also lost:
since there is no distinction between temporal data and other data, an SQL engine cannot
exploit the policy’s temporal dimension to optimize the query’s execution. Our performance
evaluation in Sect. 4.2 illustrates this point.

4.1.2 Comparison with CQL

STREAM’s query language CQL for data streams extends SQL with the sliding window
construct. This construct takes as input a stream of timestamped events and a range. For each
event in the stream, it outputs a relation that contains the current event and all the preceding
events that fall within the given range. CQL’s time model differs from MFOTLΩ ’s and thus
the meaning of range in CQL and MFOTLΩ do not match. In CQL, there is no notion of
time points and the sliding window evaluation is applied after each received event.

To illustrate the sliding window construct, consider the following CQL query, which
returns all the violations of the first policy (P1).

sum_rel := SELECT SUM(a) AS s, u FROM withdraw [RANGE 31] GROUP BY u
SELECT ∗ FROM sum_rel WHERE s > 10000

Here, the slidingwindow construct, syntactically denotedwith the [. . .] expression, is applied
over the withdraw stream. That is, for each event e with timestamp τ , a relation is created
that contains e and all the events that happened between τ and τ − 31 days. Finally, both
SELECT queries are evaluated using the standard SQL semantics. TheCQL’s slidingwindows
construct roughly corresponds to the �I operator in MFOTLΩ , where I is of the form [0, t)
with t ∈ N ∪ {∞}. All other MFOTLΩ operators must be implicitly encoded. To illustrate,
consider the following CQL query to find violations of the second policy (P2).

cnt_on := SELECT COUNT(∗) AS c_on, u FROM limit_on [RANGE Unbounded] GROUP BY u
cnt_off := SELECT COUNT(∗) AS c_off, u FROM limit_off [RANGE Unbounded] GROUP BY u
limit_is_on := SELECT cnt_on.u FROM cnt_on, cnt_off

WHERE cnt_on.u = cnt_off.u AND c_off = c_on
SELECT sum_rel.s, sum_rel.u
FROM sum_rel, limit_is_on
WHERE sum_rel.u = limit_is_on.u AND s > 10000

To mimic the semantics of the S operator, we first count the number of limit_on and
limit_off events for each user and produce the corresponding cnt_on and cnt_off relations.
The [RANGE Unbounded] sliding window ranges over the entire stream up to the currently
processed position. Second, we create the limit_is_on stream, which contains the users u that
have the limit turned on at the current timestamp. The limit is turned on for user u if there
are as many limit_on events as limit_off events. We assume here that, for each user, the limit is
initially turned off and that the limit_on and limit_off events alternate. Finally, for each (s, u)

tuple in sum_rel, we check whether u has turned his limit on at the current timestamp and, if
so, whether s is greater than 10,000.

The previous workaround for policy (P2) does not apply to policy (P3). Here we must
find the latest limit set for each user, and this is not possible without directly access-
ing the timestamps of events. Thus, to express the policy (P3) in CQL, we assume that
events in the limit stream are tuples of the form (τ, u,) timestamped by τ , in contrast
to withdraw events which are tuples of the form (u, a). We encode the MFOTLΩ sub-
formula ¬∃	′. limit(u, 	′) S limit(u,) with an SQL query that uses the timestamp field

123

282 Form Methods Syst Des (2015) 46:262–285

explicitly, in a manner similar to the approach used to express temporal operators in
SQL. This encoding can be generalized and used for any MFOTLΩ temporal operator.
However, it has similar drawbacks to using SQL, as seen by STREAM’s performance
on (P3).

Temporal reasoning using only the sliding window in STREAM is limited in general. For
example, we cannot check that certain event patterns happen at every time point in a given
time window, whereas inMFOTLΩ we can simply use the�I operator. Moreover, we cannot
select tuples from a time window that is strictly in the past. It is therefore in general not clear
how to specify in CQL temporal constraints of the form ϕSIψ , with 0 /∈ I .

To illustrate the first limitation, consider the following policy. If during the past week
a user’s acount balance is continually negative, that is, the amount withdrawn exceeds the
amount deposited at each time point during the week, then the user must not withdraw more
money from his account. In MFOTLΩ , this policy is formalized by the following formula,
where deposit(u, a) has the expected meaning.

�∀u.
(
�[0,8)∃w. ∃d. [SUMa a, τ. �withdraw(u, a) ∧ ts(τ)](w; u)∧

[SUMa a, τ. � deposit(u, a) ∧ ts(τ)](d; u) ∧ w ! d
) →

¬∃a.withdraw(u, a)

The following policy illustrates the second limitation. If a user makes a withdrawal larger
than $1,000, then he must not have been in-debt during the last seven days. In MFOTLΩ ,
this policy is formalized by the formula

�∀u.
(∃a.withdraw(u, a) ∧ a ! 1000

) → (¬indebt(u)S[8,∞)outdebt(u)
)
,

wherewe assume that the time pointswhen the useru goes into debt and out of debt aremarked
by indebt(u) and outdebt(u), respectively. The subformula ¬indebt(u)S[8,∞)outdebt(u)

holds when the last outdebt event for the user u happened more than 7 days ago and no
indebt event for u has happened since then. Here we assume that each user is initially not in
debt, and this is marked with a corresponding outdebt event.

In summary, the sliding window operator is restrictive, even in CQL’s simple underlying
time model, namely, a stream of timestamped events. Since the sliding window operator is
CQL’s only construct for performing temporal reasoning directly, one must often combine it
in ad-hoc ways with other language constructs to express temporal constraints. In contrast,
MFOTLΩ has richer support for expressing temporal constraints over a more sophisticated
time model (e.g., time points are timestamped and multiple events can happen at the same
time point). In particular, the temporal operator SI in combination with the other Boolean
connectives often allows one to express temporal properties naturally.

4.2 Tool performance

For our performance evaluation,we use the policies fromSect. 4.1 and synthetically generated
logs with different time spans (in days).1 The logs contain withdraw events from 500 users,
except for (P6), for which we consider only 100 users. Each user makes on average five
withdrawals per day. The SQL queries for PostgreSQL and the CQL queries for STREAM
aremanually obtained from the correspondingMFOTLΩ formulas (P1)–(P6). TheMFOTLΩ

formulas and SQL queries have the same semantics, while the semantic differences between
MFOTLΩ and CQL are not substantial for the policies and logs considered. In particular, the

1 Our prototype, the formulas, and the input data are available as an archive at http://sourceforge.net/projects/
monpoly/files/fmsd-experiments.tgz.

123

http://sourceforge.net/projects/monpoly/files/fmsd-experiments.tgz
http://sourceforge.net/projects/monpoly/files/fmsd-experiments.tgz

Form Methods Syst Des (2015) 46:262–285 283

Table 1 Running times (STREAM/MonPoly extension /PostgreSQL) in seconds

Policy Time span

400 800 1,200 1,600 2,000

(P1) 8 / 9 / 76 9 / 19 / 279 11 / 29 / 610 12 / 39 / 1,065 14 / 48 / 1,650

(P2) 21 / 10 / 247 23 / 20 / 1,646 24 / 30 / † 26 / 40 / † 28 / 50 / †

(P3) ‡ / 21 / 193 ‡ / 40 / 1,125 ‡ / 61 / † ‡ / 81 / † ‡ / 101 / †

(P4) ‡ / 22 / 168 ‡ / 44 / 604 ‡ / 66 / 1,230 ‡ / 88 / 2,251 ‡ / 110 / 3,458

(P5) 12 / 9 / 75 15 / 19 / 280 15 / 29 / 612 17 / 38 / 1,068 19 / 48 / 1,650

(P6) 24 / 76 / 83 33 / 157 / 337 41 / 234 / 745 49 / 313 / 1,351 59 / 395 / 2,099

Timeouts after 3,600 seconds are marked with the symbol † and out of memory or runtime errors with ‡

tools (PostgreSQL version 9.1.4, STREAM version 0.6.0, and our prototype, which extends
our monitoring tool MonPoly [5]) output the same violations. Finally, note that the formulas
differ in the number of temporal and aggregation operators, as well as their respective nesting.

Table 1 shows the running times of the three tools on a standard desktop computer with
8GB of RAM and an Intel Core i5 CPU with 2.67GHz. PostgreSQL’s running times only
account for the query evaluation, performed once per log file, and not for populating the
database. For MAX aggregations, STREAM aborts with a runtime error. We mark this in
the table with the symbol ‡. Overall, our tool’s performance is between STREAM’s and
PostgreSQL’s for our examples. We also note that STREAM and our tool scale linearly
in our experiments with respect to the logs’ time spans. This is not the case for Post-
greSQL.

Regarding memory usage, our tool uses less than 50MB for each policy, and memory
consumption does not depend on the logs’ time span. STREAM’s memory usage is set in
advance as a configuration parameter. In these experiments, we set this parameter to 1.5GB
for policy (P3) and to 64MB for the other policies. STREAM runs out of memory for (P3).
Setting the parameter higher, e.g. to 2GB, leads to a memory-related runtime error for (P3),
which is also marked with the symbol ‡ in the table. PostgreSQL’s memory consumption
increases with the time span. It varies from around 400MB for (P1) and (P5), to 2.5GB for
(P2) and (P6), and to around 4GB for (P3), for the last value of the time span for which a
timeout does not occur.

In the following, we comment on the running times. We first focus on our tool. We
observe that the formulas (P1), (P2), and (P5) are roughly equally hard to monitor. This is
because their running times are dominated by the evaluation of the subformula of the form
[ωa a, τ. �[0,31) withdraw(u, a) ∧ ts(τ)](v; u), which is common to all three formulas. In
more detail, the number of tuples satisfying the temporal subformula at a time point is on
average 31mn, where m is the average number of withdrawals per day of a user and n is the
number of users. This size is significantly larger than the size of the relations corresponding
to the additional subformulas in (P2) and (P5). For (P2), at each time point, on average the
relations for limit_on(u) and limit_off (u) contain (n/10)/2 tuples each and the relation for
¬limit_off (u) S limit_on(u) contains n/2 tuples, because the limit flag is toggled for each
user on average every 10 days. For (P5), the outer aggregation operator AVG is applied to a
relation of average size n. Note that in general the nesting of aggregation operators does not
have a substantial impact on the running times, since aggregating over a relation does not
increase its size.

123

284 Form Methods Syst Des (2015) 46:262–285

For formulas (P3), (P4), and (P6), the main impact on the running times is due to the
computation of the natural join [[ϕ]] �� [[ψ]], where ϕ and ψ denote the two main conjuncts
in the formalization of the formulas (P2), (P3), (P4), and (P6). The formula (P3) is slower to
monitor than (P2) because the natural join can be optimized when fv(ψ) ⊆ fv(ϕ), which is
the case for (P2) but not for (P3). This remark also applies to (P4) and (P6). The relations for
the additional subformulas in (P3) are also larger than in (P2): on average, the relation for
limit(u,) contains n/10 tuples and the relation for ¬∃	′. limit(u, 	′) S limit(u,) contains
n tuples because the limits are changed on average every 10 days for each user. The formula
(P4) takes longer to monitor than (P3) because it uses a significantly larger time window.
Finally, (P6) takes significantly longer to monitor than (P4) because the input and output
relations of the main join operator are also larger. For (P3) and (P4), the two input relations
and the output relation each have size n. For (P6), the sizes of the input relations are on
average n and 31mn while the output relation is on average of size 31mn.

PostgreSQL performs worst in these experiments. This is not surprising as PostgreSQL
was not designed for this application domain. In particular, PostgreSQL has no support for
temporal reasoning and we treat time as just another data value, as explained in Sect. 4.1.
Treating time as data has the following disadvantages. First, it is not suited for the online
event processing: query evaluation does not scale because the database grows over time and
the query must be reevaluated on the entire database each time new events are added. Second,
even for offline processing (as done in our experiments), the query evaluation procedure does
not take advantage of the temporal ordering of events. This deficiency is most evident when
evaluating the SQL queries for the formulas (P2) and (P3). We note that while PostgreSQL
is faster on (P3) than on (P2), it consumes significantly more memory for (P3) than for (P2).

In contrast to PostgreSQL, STREAM is designed for online event processing and its
running times, except for policy (P3), are consistently better than those of our tool. For the
policy (P3), we have bypassed STREAM’s default temporal reasoning by treating time as
data, and we observe a very high memory consumption, as is the case with PostgreSQL. We
also remark that the extension needed to go from formalizing (P1) to formalizing (P2) has
a larger impact on STREAM’s performance than on our tool. This is because extending the
CQL query for (P1) requires a workaround, which does not use the sliding window construct.

Even though STREAM generally outperforms our tool, the performance differences are
not as significant as one might expect. One reason why our tool is slower is because it
must account for MFOTLΩ ’s underlying time model, which is more complex than CQL’s.
MFOTLΩ has also a richer tool set than CQL to express temporal patterns.

5 Conclusion

Existing logic-based policy monitoring approaches offer little support for aggregations. To
rectify this shortcoming, we extended metric first-order temporal logic with expressive SQL-
like aggregation operators and presented amonitoring algorithm for this language. Our exper-
imental results for a prototype implementation of the algorithm are promising. The proto-
type’s performance is in the reach of optimized stream-processing tools, despite its richer
input language and its lack of systematic optimization. As future work, we will investigate
performance optimizations for our monitor. In general, it remains to be seen how logic-based
monitoring approaches can benefit from the techniques used in stream processing.

Acknowledgments Thisworkwas partially supported by theZurich InformationSecurity andPrivacyCenter
(ZISC).

123

Form Methods Syst Des (2015) 46:262–285 285

References

1. Abiteboul S, Hull R, Vianu V (1995) Foundations of databases. Addison-Wesley Longman Publishing
Co., Inc., Boston

2. Arasu A, Babcock B, Babu S, Datar M, Ito K, Motwani R, Nishizawa I, Srivastava U, Thomas D, Varma
R, Widom J (2003) STREAM: the Stanford stream data manager. IEEE Data Eng Bull 26(1):19–26

3. Arasu A, Babu S, Widom J (2006) The CQL continuous query language: semantic foundations and query
execution. VLDB J 15(2):121–144

4. Barringer H, Goldberg A, Havelund K, Sen K (2004) Rule-based runtime verification. In: Proceedings of
the 5th international conference on verification, model checking and abstract interpretation (VMCAI’04).
Lecture notes in computer science, vol 2937, pp 44–57

5. Basin D, Harvan M, Klaedtke F, Zălinescu E (2012) MONPOLY: Monitoring usage-control policies.
In: Proceedings of the 2nd international conference on runtime verification (RV’11). Lecture notes in
computer science, vol 7186, pp 360–364

6. Basin D, Harvan M, Klaedtke F, Zălinescu E (2013) Monitoring data usage in distributed systems. IEEE
Trans Softw Eng 39(10):1403–1426

7. Basin D, Klaedtke F, Marinovic S, Zălinescu E (2013) Monitoring of temporal first-order properties with
aggregations. In: Proceedings of the 4th international conference on runtime verification (RV’13). Lecture
notes in computer science, vol 8174, pp 40–58

8. Basin D, Klaedtke F, Müller S, Pfitzmann B (2008) Runtime monitoring of metric first-order temporal
properties. In: Proceedings of the 28th conference on foundations of software technology and theoretical
computer science (FSTTCS’08). Leibniz international proceedings in informatics (LIPIcs), vol 2, pp
49–60

9. Basin D, Klaedtke F, Zălinescu E (2012) Algorithms for monitoring real-time properties. In: Proceedings
of the 2nd international conference on runtime verification (RV’11). Lecture notes in computer science,
vol 7186, pp 260–275

10. Bauer A, Goré R, Tiu A (2009) A first-order policy language for history-based transaction monitoring. In:
Proceedings of the 6th international colloquium on theoretical aspects of computing (ICTAC’09). Lecture
notes in computer science, vol 5684, pp 96–111

11. Bianculli D, Ghezzi C, Pietro PS (2013) The tale of SOLOIST: A specification language for service
compositions interactions. In: Proceedings of the 9th international symposium on formal aspects of
component software (FACS’12). Lecture notes in computer science, vol 7684, pp 55–72

12. Chomicki J (1995) Efficient checking of temporal integrity constraints using bounded history encoding.
ACM Trans Database Syst 20(2):149–186

13. Chomicki J, Toman D, Böhlen MH (2001) Querying ATSQL databases with temporal logic. ACM Trans
Database Syst 26(2):145–178

14. Colombo C, Gauci A, Pace GJ (2010) LarvaStat: Monitoring of statistical properties. In: Proceedings of
the 1st international conference on runtime verification (RV’10). Lecture notes in computer science, vol
6418, pp 480–484

15. Cranor C, Johnson T, Spataschek O, Shkapenyuk V (2003) Gigascope: A stream database for network
applications. In: Proceedings of the 2003 ACM SIGMOD international conference on management of
data, pp 647–651

16. D’Angelo B, Sankaranarayanan S, Sánchez C, RobinsonW, Finkbeiner B, SipmaHB,Mehrotra S,Manna
Z (2005) LOLA: Runtime monitoring of synchronous systems. In: Proceedings of the 12th international
symposium on temporal representation and reasoning (TIME’05), pp 166–174

17. Finkbeiner B, Sankaranarayanan S, Sipma H (2005) Collecting statistics over runtime executions. Form
Methods Syst Des 27(3):253–274

18. Garcia-Molina H, Ullman JD,Widom J (2009) Database systems: the complete book. Pearson Education,
Harlow

19. Hallé S, Villemaire R (2012) Runtime enforcement of web service message contracts with data. IEEE
Trans Serv Comput 5(2):192–206

20. Hella L, Libkin L, Nurmonen J, Wong L (2001) Logics with aggregate operators. J ACM 48(4):880–907
21. Koymans R (1990) Specifying real-time properties with metric temporal logic. Real-Time Syst 2(4):255–

299
22. Owe O (1993) Partial logics reconsidered: a conservative approach. Form Asp Comput 5(3):208–223
23. PostgreSQL Global Development Group. PostgreSQL, Version 9.1.4, 2012. http://www.postgresql.org/
24. Sistla AP, Wolfson O (1995) Temporal conditions and integrity constraints in active database systems. In:

Proceedings of the 1995 ACM SIGMOD international conference on management of data, pp 269–280

123

http://www.postgresql.org/

