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Abstract. Markov decision processes (MDPs) with multi-dimensional weights are useful to analyze
systems with multiple objectives that may be conflicting and require the analysis of trade-offs. We
study the complexity of percentile queries in such MDPs and give algorithms to synthesize strategies
that enforce such constraints. Given a multi-dimensional weighted MDP and a quantitative payoff
function f, thresholds v; (one per dimension), and probability thresholds «;, we show how to compute
a single strategy to enforce that for all dimensions ¢, the probability of outcomes p satisfying f;(p) > v;
is at least ;. We consider classical quantitative payoffs from the literature (sup, inf, lim sup, lim inf,
mean-payoff, truncated sum, discounted sum). Our work extends to the quantitative case the multi-
objective model checking problem studied by Etessami et al. [18] in unweighted MDPs.

1 Introduction

Markov decision processes (MDPs) are central mathematical models for reasoning about (optimal) strategies
in uncertain environments. For example, if rewards (given as numerical values) are assigned to actions in
an MDP, we can search for a strategy (policy) that resolves the nondeterminism in a way that the expected
mean reward of the actions taken by the strategy over time is maximized. See for example [27] for a solution
to this problem. If we are risk-averse, we may want to search instead for strategies that ensure that the mean
reward over time is larger than a given value with a high probability, i.e., a probability that exceeds a given
threshold. See for example [19] for a solution.

Recent works are exploring several natural extensions of those problems. First, there is a series of works
that investigate MDPs with multi-dimensional weights [14,6] rather than single-dimensional as it is tradi-
tionally the case. Multi-dimensional MDPs are useful to analyze systems with multiple objectives that are
potentially conflicting and make necessary the analysis of trade-offs. For instance, we may want to build
a control strategy that both ensures some good quality of service and minimizes the energy consumption.
Second, there are works that aim at synthesizing strategies enforcing richer properties. For example, we may
want to construct a strategy that both ensures some minimal threshold with certainty (or probability one)
and a good expectation [7]. An illustrative survey of such extensions can be found in [29].

Our paper participates in this general effort by providing algorithms and complexity results on the
synthesis of strategies that enforce multiple percentile constraints. A multi-percentile query and the associated
synthesis problem is as follows: given a multi-dimensionally weighted MDP M and an initial state sinit,
synthesize a strategy o such that it satisfies the conjunction of ¢ constraints:

q
Q = /\ Pl]jwvsinit I:flw > Ui] > (673
i=1

where each [; refers to a dimension of the weight vectors, each v; is a value threshold, and «; is a probability
threshold, and f is a payoff function. Each constraint ¢ expresses that the strategy ensures probability at
least a; to obtain payoff at least v; in dimension ;.
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. . Single-dim. Multi-dim.
Single-constraint ) . ) )
Multi-constraint Multi-constraint
Reachability P [27] P(M)-E(Q) [18], PSPACE-h —
feF P [12] P P(M) E(Q)
PSPACE-h.
MP P [27] P P
MP P [27] P(M)-E(Q) P(M)-E(Q)
Sp P(M)-Pys(Q) [22] | P(M)-Pps(Q) (one target) P(M)-E(Q)
PSPACE-h. [22] PSPACE-h. [22] PSPACE-h. [22]
eoDs | P02 Pr(MLBQ) | P9 E(Q)
NP-h. NP-h. PSPACE-h.

Table 1: Some results for percentile queries. Here F = {inf,sup, liminf, limsup}, MP (resp. MP) stands
for sup. (resp. inf.) mean-payoff, SP for shortest path, and DS for discounted sum. Parameters M and Q
resp. represent model size and query size; P(z), E(z) and Pp(x) resp. denote polynomial, exponential and
pseudo-polynomial time in parameter z. All results without reference are new.

We consider seven payoff functions: sup, inf, limsup, liminf, mean-payoff, truncated sum and discounted
sum. This wide range covers most classical functions: our exhaustive study provides a complete picture for
the new multi-percentile framework and we focus on establishing meta-theorems and connections whenever
possible. Some of our results are obtained by reduction to the previous work of [18], but for mean-payoff,
truncated sum and discounted sum, that are non-regular payoffs, we need to develop original techniques.

Let us consider some examples. In an MDP that models a stochastic shortest path problem, we may want
to obtain a strategy that ensures that the probability to reach the target within d time units exceeds 50
percent: this is a single-constraint percentile query. With a multi-constraint percentile query, we can impose
richer properties on strategies, for instance, enforcing that the duration is less than d; in at least 50 percent
of the cases, and less than dy in 95 percent of the cases, with d; < d3. We may also consider percentile
queries in multi-dimensional systems. If in the model, we add information about fuel consumption, we may
also enforce that we arrive within d time units in 95 percent of the cases, and that in half of the cases the
fuel consumption is below some threshold c.

Contributions. We study percentile problems for a range of classical payoff functions: we establish al-
gorithms and prove complexity and memory bounds. Our algorithms can handle multi-constraint multi-
dimensional queries, but we also study interesting subclasses, namely, multi-constraint single-dimensional
queries, single-constraint queries, and other classes depending on the payoff functions. We present an overview
of our results in Table 1. For all payoff functions but the discounted sum, they only require polynomial time
in the size of the model when the query size is fixed. In most applications, the query size is typically small
while the model can be very large. So our algorithms have clear potential to be useful in practice.

We give a non-exhaustive list of contributions and highlight some links with related problems.

A) We show the PSPACE-hardness of the multiple reachability problem with exponential dependency on
the query size (Theorem 2), and the PSPACE-completeness of the almost-sure case, refining the results
of [18]. We also prove that in the case of nested target sets, the problem admits polynomial-time solution
(Theorem 3), and we use it to solve some of the multi-constraint percentile problems.

B) For payoff functions inf, sup, lim inf and lim sup, we establish a polynomial-time algorithm for the single-
dimension case (Theorem 5), and an algorithm that is only exponential in the size of the query for the
general case (Theorem 6). We prove the PSPACE-hardness of the problem for sup (Theorem 7), and give
a polynomial time algorithm for limsup (Theorem 8).

C) In the mean-payoff case, we distinguish MP defined by the limsup of the average weights, and MP by
their liminf. For the former, we give a polynomial-time algorithm for the general case (Theorem 10). For
the latter, our algorithm is polynomial in the model size and exponential in the query size (Theorem 11).



D) The truncated sum function computes the sum of weights until a target is reached. It models shortest
path problems. We prove the multi-dimensional percentile problem to be undecidable when both negative
and positive weights are allowed (Theorem 12). Therefore, we concentrate on the case of non-negative
weights, and establish an algorithm that is polynomial in the model size and exponential in the query size
(Theorem 13). We derive from [22] that even the single-constraint percentile problem is PSPACE-hard.

E) The discounted sum case turns out to be difficult, and linked to a long-standing open problem, not known
to be decidable (Lemma 17). Nevertheless, we give algorithms for an approximation of the problem, called
e-gap percentile problem. Our algorithm guarantees correct answers up to an arbitrarily small zone of
uncertainty (Theorem 14). We also prove that this e-gap problem is PSPACE-hard in general, and already
NP-hard for single-constraint queries (Lemma 20 and Lemma 21). According to a very recent paper by
Haase and Kiefer [23], our reduction even proves PP-hardness of single-contraint queries, which suggests
that the problem does not belong to NP at all otherwise the polynomial hierarchy would collapse.

We systematically study the memory requirement of strategies. We build our algorithms using different
techniques. Here are a few of them. For inf and sup payoff functions, we reduce percentile queries to multiple
reachability queries, and rely on the algorithm of [18]: those are the easiest cases. For liminf, limsup and
MP, we additionally need to resort to maximal end-component decomposition of MDPs. For the following
cases, there is no simple reduction to existing problems and we need non-trivial techniques to establish
algorithms. For MP, we use linear programming techniques to characterize winning strategies, borrowing
ideas from [18,6]. For shortest path and discounted sum, we consider unfoldings of the MDP, with particular
care to bound their sizes, and for the latter, to analyze the cumulative error due to necessary roundings.

Related work. There are several works in the literature that study multi-dimensional MDPs: for discounted
sum, see [14], and for mean-payoff, see [6,19]. In the latter papers, the following threshold problem is studied
in multi-dimensional MDPs: given a threshold vector v and a probability threshold v, does there exist a
strategy o such that P[r > v] > v, where r denotes the mean-payoff vector. The work [19] solves this
problem for the single dimensional case, and the multi-dimensional for the non-degenerate case (w.r.t. the
solutions of a linear program). A general algorithm was later given in [6]. This problem asks for a bound on
the joint probability of the thresholds, that is, the probability of satisfying all constraints simultaneously.
In contrast, in our problem we bound the marginal probabilities separately, which may allow for more
modeling flexibility. The problem of maximizing the expectation vector was also solved in [6]. Recently, and
independently from our work, the problem of bounding the marginal probabilities was considered in [13] for
MP. The given algorithm consists in a single linear program (while we use a two-step procedure), has the
same ingredients as ours, and has the same complexity. In addition, the algorithm of [13] also allows one to
add a constraint on the expectation vector.

Multiple reachability objectives in MDPs were considered in [18]: given an MDP and multiple targets T;,
thresholds «;, decide if there exists a strategy that forces each T; with a probability larger than ;. This
work is the closest to our work and we show here that their problem is inter-reducible with our problem for
the sup measure. In [18] the complexity results are given only for the size of the model and not for the size
of the query: we refine those results here and answer questions that were left open in that paper.

Several works consider percentile queries but only for one dimension and one constraint (while we consider
multiple constraints and possibly multiple dimensions) and particular payoff functions. Single-constraint
queries for lim sup and lim inf were studied in [12]. The threshold probability problem for truncated sum was
studied in MDPs with either all non-negative or all non-positive weights in [26,30]. Quantile queries in the
single-constraint case were studied for the shortest path with non-negative weights in [34], and for energy-
utility objectives in [1]. They have been recently extended to cost problems [22], in a direction orthogonal
to ours. For fixed finite horizon, [38] considers the problem of ensuring a single-contraint percentile query
for the discounted sum, and that of maximizing the expected value subject to a single percentile constraint.
Still for the discounted case, there is a series of works studying threshold problems [36,37] and value-at-risk
problems [5]. All can be related to single-constraint percentiles queries.

This paper extends previous work presented in a conference [28]: it gives a full presentation of the technical
details, along with additional results.



2 Preliminaries

Markov decision processes. A finite Markov decision process (MDP) is a tuple M = (S, A, §) where S is
the finite set of states, A is the finite set of actions and 6: S x A — D(S) is a partial function called the
probabilistic transition function, where D(S) denotes the set of rational probability distributions over S. The
set of actions that are available in a state s € S is denoted by A(s). We use (s, a,s’) as a shorthand for
d(s,a)(s’). An absorbing state s is such that for all a € A(s), (s, a,s) = 1. We assume w.l.o.g. that MDPs
are deadlock-free: for all s € S, A(s) # 0 (if not the case, we simply replace the deadlock by an absorbing
state with a unique action). An MDP where for all s € S, |A(s)| = 1 is a fully-stochastic process called a
Markov chain.

A weighted MDP is a tuple M = (S, A, §,w), where w is a d-dimension weight function w: A — Z. For
any l € {1,...,d}, we denote w;: A — 7Z the projection of w to the I-th dimension, i.e., the function mapping
each action a to the I-th element of vector w(a). A run of M is an infinite sequence s1a;...an—18, ... of
states and actions such that §(s;, a;, 8;+1) > 0 for all ¢ > 1. Finite prefixes of runs are called histories.

Fix an MDP M = (S, A,9). An end-component (EC) of M is an MDP C = (5, A’,0") with S’ C S,
0 # A'(s) C A(s) for all s € S’ and Supp(d(s,a)) € S’ for all s € S’,a € A'(s) (here Supp(-) denotes the
support), 0’ = d|g 4, and such that C is strongly connected, i.e., there is a run between any pair of states
in S’. The union of two ECs with non-empty intersection is an EC; one can thus define mazimal ECs. We
let MEC(M) denote the set of maximal ECs of M, computable in polynomial time [16].

Strategies. A strategy o is a function (SA)*S — D(A) such that for all h € (SA)*S ending in s, we
have Supp(c(h)) C A(s). The set of all strategies is X. A strategy is pure if all histories are mapped to Dirac
distributions. A strategy o can be encoded by a Moore machine, (M, 04,0y, ) where M is a finite or infinite
set of memory elements, « the initial distribution on M, o, the memory update function o, : AXSXM — M,
and o, : S x M — D(A) the next action function where Supp(o,(s,m)) C A(s) for any s € S and m € M.
We say that o is finite-memory if |M| < oo, and K-memory if |M| = K; it is memoryless if K = 1, thus
only depends on the last state of the history. We see such strategies as functions s — D(A(s)) for s € S.
A strategy is infinite-memory if | M| is infinite. For a class of problems, we say that strategies use linear
(resp. polynomial, exponential) memory if there exist strategies for which K is linear (resp. polynomial,
exponential) in the size of M. The entity choosing the strategy is often called the controller.

An MDP M, a strategy o encoded by (M, 0,04, @), and a state s determine a Markov chain M7 defined
on the state space S x M as follows. The initial distribution is such that for any m € M, state (s,m) has
probability a(m), and 0 for other states. For any pair of states (s,m) and (s’,m’), the probability of the
transition (s,m), a, (s’,m') is equal to o,(s,m)(a) - 6(s,a,s’) if m’ = o, (s,m,a), and to 0 otherwise. A run
of M? is an infinite sequence of the form (s1,m1), a1, (s2,m2),aq, ..., where each (s;,m;), a;, (Siy1,Miy1) is
a transition with nonzero probability in MJ, and s; = s. When considering the probabilities of events in
Mg, we will often consider sets of runs of M. Thus, given £ C (SA)“, we denote by P, [E] the probability
of the runs of M? whose projection® to M is in E, i.e., the probability of event E when M is executed with
initial state s and strategy o. Note that every event has a uniquely defined probability [35] (Carathéodory’s
extension theorem induces a unique probability measure on the Borel o-algebra over (SA)“).

Almost-sure reachability of ECs. Let Inf(p) denote the random variable representing the disjoint union
of states and actions that occur infinitely often in the run p. By an abuse of notation, we see Inf(p) as a
sub-MDP M’ if it contains exactly the states and actions of M’. It was shown that for any MDP M| state s,
strategy o, P§; [Inf is an EC] =1 [16].

Multiple reachability. Given a subset T' of states, let 0T be the reachability objective w.r.t. T, defined as
the set of runs visiting a state of T at least once. The multiple reachability problem consists, given MDP M,
state sinit, target sets 11,...,T,, and probabilities a1, ..., a4 € [0,1] N Q, in deciding whether there exists a
strategy o € X such that A7, P s [OT;] > ;. The almost-sure multiple reachability problem restricts to
ar=...=qq=1.

3 The projection of a run (s1,m1), a1, (s2,m2),az,...in MJ to M is simply the run siais2az2... in M.



Percentile problems. We consider payoff functions among inf, sup, lim inf, lim sup, mean-payoff, truncated
sum (shortest path) and discounted sum. For any run p = s1ais2as ..., dimension I € {1,...,d}, and weight
function w,

— infy(p) = inf;>1 wi(ay), sup;(p) = sup;>, wi(a;),
lim inf; (p) = liminf; o wi(a;), limsup,(p) = limsup,_, .. wi(a;),

- MP, (p) = lim infnﬁoo % 2?21 wl(aj)v Wl (P) = limsup,,_, % Z?:l wl(aj),
- DSl’\l (p) = E;’;l X - wi(ay), with \; €10,1[N Q a rational discount factor,
~ TS/ (p

TS/ (p

) = Z}:ll wy(a;) with s, the first visit of a state in T C S. If T is never reached, then we assign
) = 0.

For any payoff function f, f; > v defines the runs p that satisfy fi(p) > v. A percentile constraint is of
the form P, . [fi > v] > «, where o is to be synthesized given threshold value v and probability a. We
study multi-constraint percentile queries requiring to simultaneously satisfy ¢ constraints each referring to a
possibly different dimension. Formally, given a d-dimensional weighted MDP M, initial state sjnix € S, payoff
function f, dimensions l1,...,l; € {1,...,d}, value thresholds v1,...,v, € Q and probability thresholds
a1, ..., 04 € [0,1]NQ, the multi-constraint percentile problem asks if there exists a strategy o € X' such that

query

q
Q:= /\ Pl]jwvsinit [flz > Ui] >
i=1

holds. We can actually solve queries 37 o, /", /\;;1 P s [fi., = vij] > a;;. We present our results for
conjunctions of constraints only since the latter is equivalent to verifying the disjuncts independently: in
other terms, to \/;*, 3o ATL, P§, . [fi., = vij] = i

We distinguish single-dimensional percentile problems (d = 1) from multi-dimensional ones (d > 1). We
assume w.l.o.g. that ¢ > d otherwise one can simply neglect unused dimensions. For some cases, we will
consider the e-relazation of the problem, which consists in ensuring each value v; — ¢ with probability c;.

Complexity. We assume binary encoding of constants, and define the model size |M|, a polynomial in |S]|
and the size of the encoding of weights and probabilities (e.g., logy W with W the largest absolute weight),
as the size of the representation of M; and the query size |Q|, a polynomial in the number of constraints ¢
and the encoding of thresholds, that of the query. The problem size refers to the sum of the two.

Memory and randomness. Throughout the paper, we will study the memory requirements for strategies
w.r.t. different classes of percentile queries. Here, we show, by a simple example, that randomness is always
needed for all payoff functions.

Lemma 1. Randomized strategies are necessary for multi-dimensional percentile queries for any payoff func-
tion.

Proof. Let M be a 2-dim. deterministic MDP with S = {sg, 1,52}, A = {a, b} and the transition function
defined as d(sg,a,s1) = 1, 0(s0,b,82) = 1, 6(s1,a,81) = 1 and 6(s2,b,s2) = 1. Essentially there are only
two possible runs in this MDP: p; = sp(as1)® and pa = so(bs2). Assume that the weight and the payoff
functions are chosen such that f(p1) = (1,0) and f(p2) = (0,1): they are incomparable. Consider the query

Q=P [h21/2]21/2 A B lh>1/221/2

It is easy to see that Q can only be satisfied by a strategy that chooses between a and b with equal
probability, hence no pure strategy satisfies the query. Note that here f can be chosen anything among
sup, lim sup, MP, MP, DS* with appropriate \;, and TS with target sets T = {s1} and T» = {s5} respec-
tively for each query. For inf, and lim inf, we may switch the weight vectors to obtain the same result. a



3 Multiple Reachability and Contraction of MECs

Multiple reachability. The multiple reachability problem was studied [18] where an algorithm based on a
linear program (LP) of size polynomial in the model and exponential in the query was given. As a particular
case, it was proved that restricting the target sets to absorbing states yields a polynomial-size LP. We will
use this LP later in Fig. 5 in Section 5.

Theorem 1 ([18]). Memoryless strategies suffice for multiple reachability with absorbing target states, and
can be decided and computed in polynomial time. With arbitrary targets, exponential-memory strategies (in
query size) can be computed in time polynomial in the model and exponential in the query.

In this section, we improve over this result by showing that the case of almost-sure multiple reachability
is PSPACE-complete, with a recursive algorithm and a reduction from QBF satisfiability. This also shows
the PSPACE-hardness of the general problem. Moreover, we show that exponential memory is required for
strategies, following a construction of [15].

Theorem 2. The almost-sure multiple reachability problem is PSPACE-complete, and strategies need expo-
nential memory in the query size.

We first show the PSPACE-completeness of the almost-sure multiple reachability problem.
Lemma 2. The almost-sure multiple reachability problem is PSPACE-complete.

Proof. We start by showing PSPACE-membership. Let M be an MDP, s, a state, and 71, ...,T, target sets.
We write ' =T U...UT,. Note first that we know how to solve the problem in polynomial time for ¢ = 1.
Let M’ be the MDP obtained by M by making all states in T" absorbing. The procedure works as follows.
For each state z € T, let us define I = {1 < i < ¢ | z € T;}; we clearly have |I| < n. We recursively verify
whether there is a strategy almost-surely satisfying the multiple reachability objective (T;);ecr. Let T denote
all states of T' for which the recursive call returned positively. We now check in polynomial time whether
the set T can be reached almost-surely from sg. Note that the recursive call depth is linear, so the whole
procedure uses polynomial space.

We now prove the equivalence between M and M’. Assume that there is a strategy o almost-surely
reaching 7 in M’. This strategy can be followed in M until some state x of T is reached, which happens
almost-surely. But we know, by the recursive callof our procedure, that from any such state z € T there
exists a strategy almost-surely satisfying the rest of the reachability objectives. Thus, by extending ¢ in each
state © € T by these strategies, we construct a solution to the multiple reachability problem in M. Notice
that the constructed strategy uses linear memory since it is “memoryless” between each switch.

Conversely, assume that there is a strategy o satisfying the multiple reachability query in M from sg.
Towards a contradiction, assume that some state x € T'\ T is reached with positive probability in M under o,
thus also in M’ under the same strategy. We know by the recursive call of our procedure that the remaining
targets cannot be satisfied almost-surely by any strategy from state x in M. It follows that strategy o fails
to satisfy all targets almost-surely from sg, a contradiction.

To show PSPACE-hardness, we reduce the truth value of a quantified Boolean formula (QBF) to our
problem. An instance of QBF is a quantified Boolean formula over X = {x1,z2,...,2,}

U = 3x1Veodrs .. . Vr,u_13x, - C1 ANCo A ...Cyp,

where each clause C; is the disjunction of 3 literals taken in {z,—x | z € X}. From ¥, we construct an
(acyclic) MDP as shown in Fig. 1. For each variable z;, there are three states called z;, f; and ¢; in the
MDP. In a state x; that corresponds to an existentially quantified variable, there are two actions that are
available: T and L. The action T visits (deterministically) the state ¢; while the action L visits the state
fi, and then in the two cases, the run proceeds to the state for the next variable. Intuitively, choosing T
in x; corresponds to the choice of truth value true for x;, and L to truth value false. In a state z; that
corresponds to an universally quantified variable, there is only the action * available and the successor is
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Fig. 1: Reduction for the QBF formula Jz1Vzy...32,C1 A ... A Cp,. The objectives are T; = {¢t; | x; €
Citu{fi| ;€ C;}foralll <j<m.

chosen uniformly at random between f; and ¢;. The targets are defined as follows: for each clause Cj, the
target set T = {t; | x; € C;}U{fi | ~x; € C;} must be visited with probability one. Clearly, given the value
assigned to a variable x;, we visit exactly the set of target sets T that correspond to the clauses that are
made true by the valuation of x;. It should be clear now that the histories in the MDP are in bijection with
the valuation of the Booelan variables in ¥ and that the set of valuations that satisfies ¥ correspond exactly
to the histories that visits all the sets T}, 1 < j < n with probability one.

Now, we claim that there is a strategy to reach each set 7}, 1 < j < n, with probability one if and only if
the formula ¥ is true. Indeed, if ¥ is true, we know that there exists for each existentially quantified variable
x; a choice function g,, which assign a truth value to x; given the truth values chosen for the variables that
appears before z; in the quantification block. These choice functions naturally translate into a (deterministic
memryfull) strategy that mimics the choices of truth values by choosing between | and T accordingly. We
get that if the formula is true (all closed are made true) then the associated strategy visits all the target sets
with probability one.

For the other direction, we first note that it is not useful for the scheduler to play a randomised strategy.
As the graph of the MDP is acyclic (except for the two states ¢, and f,, that have a self loop), all the target
sets are visited with probability one if and only if all the outcomes of the strategy visits all the target sets.
So, if the scheduler plays randomly say in state x; then all the resulting outcomes for action L and all the
resulting outcomes for action T must visit all the target sets, so both choices need to be good and so there is
no need for randomisation and the scheduler can safely choose one of the two arbitrarily. So, pure strategies
are sufficient and but we have seen that pure strategies corresponds exactly to the choice functions in the
QBF problem. So is clear that from a winning strategy for the scheduler, we can construct a choice function
that makes the formula true. O

We establish an exponential lower bound on the memory requirements based on a family of MDPs
depicted in Fig. 2 and inspired from [15, Lemma 8].

Lemma 3. Ezxzponential-memory in the query size is necessary for almost-sure multiple reachability.

Proof. Consider the unweighted MDP M depicted in Fig. 2. The MDP is composed of k gadgets where a
state between s; , and s; g is stochastically chosen (they are equiprobable), followed by k gadgets where the
controller can decide to visit either s} ; or s; 5. We define an almost-sure multiple reachability problem for
target sets

Ti = {Sl.,L; S/l,L}a {SI,R; S/l,R}v {SQ,L; S/Q)L}v ceey {Sk,Lv S;g,L}v {Sk,Rv S;g,R}'

Hence, this problem requires ¢ = 2 - k constraints to be defined. We claim that a strategy satisfying this
problem cannot be expressed by a Moore machine containing less than 2% = 23 memory states.

Indeed, it is clear that to ensure almost-sure reachability of all sets T;, the controller has to chose in state
s} the exact opposite action of the one stochastically chosen in s;. Remembering the k choices made in states
s; requires k bits of encoding. Hence, a satisfying strategy requires a Moore machine with 2¥ memory states
to encode those choices.

It is easy to see that if the controller uses a - possibly randomized - strategy o with less than 2*
memory states, then there exists ¢ € {1,...,k} such that o(s1...s;8;,...5;) = o(s1...8:8i,r...S}), Le.,
the controller chooses to go to s; ; (resp. s; p) with identical probability against both stochastic choices
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Fig. 2: Family of multiple reachability problems requiring exponential memory.

in s;. Assume that the controller chooses to go toward s} ; with probability p € [0, 1] and toward s} 5 with

probability 1 — p: this implies that the probability that the target set {s; 1,5} 1} (resp. {sir,s; g}) is never

visited is equal to % - (1 — p) (resp. % - p). Clearly, it is impossible to have both those probabilities equal to

2
zero simultaneously, which proves that such a strategy cannot satisfy the almost-sure multiple reachability
problem defined above, and concludes our proof. a

Despite the above lower bounds, it turns out that the polynomial time algorithm for the case of absorbing
targets can be extended: we identify a subclass of the multiple reachability problem that admits a polynomial-
time solution. In the nested multiple reachability problem, the target sets are nested, i.e., Ty CT> C ... CT,.
The memory requirement for strategies is reduced as well to linear memory.

Theorem 3. The nested multiple reachability problem can be solved in polynomial time. Strategies have
memory linear in the query size, which is optimal.

Intuitively, we use ¢ + 1 copies of the original MDP, one for each target set, plus one last copy. The idea
is then to travel between those copies in a way that reflects the nesting of target sets whenever a target
state is visited. The crux to obtain a polynomial-time algorithm is then to reduce the problem to a multiple
reachability problem with absorbing states over the MDP composed of the ¢ + 1 copies, and to benefit from
the reduced complexity of this case.

Proof. Assume an MDP M, sy and the target sets 77 C ... C T, are given. We make ¢ + 1 copies of the
MDP M, namely, My, ..., My, Mgi1. We start Mgy at state sipie. We redirect some of the edges as follows.
For any M;, state s, action a, and ¢t € Supp(d(s,a)), if ¢t € T; for some j < i, then we direct this edge to
state ¢t in M where j’ is the smallest index with ¢ € Tj. Hence, along any run, we are in copy M; if, and
only if we have already satisfied all targets T}, ...,T,. Now, we add a fresh absorbing state L; to each copy.
From all states of M; a fresh action a™ leads to L;. Let us call this new MDP M’. Note that the size of M
is O(q|M]).

For each i =1...q, we define T] = {L;, L;,_1,..., L1}. We claim that the multiple reachability problem
query (T;, ai)1<i<q for M is equivalent to (7, a;)1<i<q for M’. But the latter query has absorbing target
states, thus the problem can be solved in polynomial time by [18].

Consider a strategy o for M achieving the objectives (T5, o;)i<i<q. We can assume w.l.o.g. that o is
finite-memory by [18]. Let S; denote the set of states of M;. We define strategy o’ for M’ as follows. Let
us define a mapping p(-) from the histories of M’ to those of M, where a state of any copy is projected
to the original state in M. The mapping is actually a bijection from histories of M’ that do not use the
action a' to histories of M. Now, for all histories h of M’ that end in copy M;, if P(J{z[,p(h) [OUj<i T3] = 0, we
set o’(h) = at. Otherwise, we let o/ (h) = o(p(h)).

We prove that for all i = 1...q, Pq,  [0T3] < ]P"]’\},% [OT!]. Let ¢(h) denote the copy in which h ends
in M. For all histories h of M from which the probability of satisfying ¢ U;<,,~1(n)) T is nonzero, we have
P9y o [R] = P‘]{},756 [p~1(h)] by definition. Define H; = {h | Vi =1...|h| —1,h; & Tj, hin € T3, P, 4, [R] > 0},
that is, the histories that visit T; for the first time at their last state. Clearly P§, ( [H;] = P§, ( [0T;]. But
the probability of reaching T; is always nonzero along these histories, so we also have H; = H! := {h € H; |
Vi = 1...[h|,Pf.,, [OTi] > 0}, and we get P, . [H] = P§, , [H]]. In other words, P§,, , [0 Uj<i Sj] >
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1.5, [OT], that is, the target sets 71, ..., Ty are reached in M’ with at least the same probabilities as in M.
We now need to show that from any history ending in copy M;, some state L; with j < ¢ is reached almost-
surely in M’ under ¢’. It will follow that IP"]’\}”S,_ [0T}] > P}, . [0Ti]. To see this, notice that strategy o is
finite-memory, and so is ¢’. So there exists v >|mt0 such that for any state s, and memory element m if the
probability of satisfying ¢ U;«; S; is nonzero from s and m, then it is at least v. Note that the probability of
never satisfying ¢ U;<; S; while staying in such states is 0. So, whenever the run reaches copy M;, almost-
surely, either some copy M; with j < ¢ is reached, or we reach a history h such that P(J{z[,p(h) [OUjc; T5] =0,
in which case we end in ;. The inequality follows.

Conversely, consider any strategy ¢’ for M’ achieving the reachability objectives (T}, a;)1<i<q. We assume
o’ to be memoryless by [18]. We define o(h) = o'(p~'(h)) whenever the action o’ prescribes is different
than o', and otherwise ¢’ switches to an arbitrary memoryless strategy. Since all histories of M’ that end
in 1, satisfy the objectives T; U ... U Ty, strategy o achieves the objectives (T}, o;)1<i<q. The memory of o
is O(q) since ¢’ is memoryless in M’ which is made of ¢ copies of M.

We now show that linear memory is necessary. Consider an MDP M with states s,t1,...,t,, L. State s
has n actions aq, . ..,a,. For each 1 <14 < n, action a; leads from s to ¢; with probability 1 — i%, and with
probability 1% leads to absorbing state L. From all states ¢; with ¢ > 1, s is reachable by a deterministic
action, but from ¢; one can only reach L. The MDP is depicted in Fig. 3 (L is not shown).

Fig. 3: Linear memory is required for the nested multiple reachability problem.

We consider the nested multiple reachability targets Ty, ..., T, with T; = {¢;,...,t1} for each 4, and
consider threshold probabilities o, .. ., a,, defined by o, = 1— n+r1, and a; = a;41(1— z-|+1) forl1 <i<n-—1.
Let us first describe a strategy that satisfies these constraints. Define a strategy that deterministically

chooses, at each visit to state s, the following actions: a,,an_1,.-.,a1. A simple calculation shows that the
constraints are satisfied: the probability of satisfying T, is at least 1 — n%rl by the first action, that of T;,_;

is %H(l - %) by the sequence a,a,—1 of actions, and so on. We argue that this is the only strategy that

satisfies these reachability queries showing that O(n) memory is necessary.

Consider any strategy o satisfying the multiple reachability queries. We show that o must determinis-
tically choose a,, in the first step. In fact, assume that some action a; with i # n is chosen with proba-
bility n > 0. The probability of moving to L under any such action is at least % Thus the probability of
going to L in the first step (without seeing any ¢;) is at least n + (1 — n)n%rl > n%rl, which is a contra-
diction. Now, assume that o deterministically chooses a,a,—1 ...a,—;t1 in the first ¢ steps. The probability
of reaching T;,—; in the first ¢ steps is thus 0, while the probability of being in s (and not in 1) after 4

steps is v = (1 — n+r1) (1= n+1+2) Assume that o does not deterministically choose a,,;. Target T;,—;
is reached by histories that eventually choose some action a,—_;,...,a;. Let H denote the set of histories

stopping at the first action from this set, i.e., H = s((an + ... + an—i+1)8)* (@n—; + ... + a1). Note that
at these histories, either we satisfy T;,—; or we end in L, so the probability of satisfying 7;,—; under ¢ can
be written as v ), .y anpr, where ay is the probability of o of choosing the actions of A from the current

history, and py, is the probability of the resulting run. We have, for all h € H, p, < (1— %H) = (1- ﬁlﬂ)
since h contains =1 actions outside ai,...,a,_; and after each such action we must come back to s. For

all h € H with WT_l > 1, we must have aj = 0 since otherwise we would get v, -y anpn < (1 — n%m)
Furthermore, if o chooses an action some action a; with 1 < j < n — ¢ in the first step, the probability of

going to L is ;% >1-— ﬁm It follows that aj, = 1 for the unique history that chooses action a,,_;. a



Contraction of MECs. In order to solve percentile queries, we sometimes reduce our problems to multiple
reachability by first contracting MECs of given MDPs, which is a known technique [16]. We define a trans-
formation of MDP M to represent the events Inf(p) C C for C € MEC(M) as fresh states. Intuitively, all
states of a MEC will now lead to an absorbing state that will abstract the behavior of the MEC.

Consider M with MEC(M) = {C4,...,Cy}. We define MDP M’ from M as follows. For each C;, we
add state s¢, and action a* from each state s € C; to s¢,. All states s¢, are absorbing, and A(s¢,) = {a*}.
The probabilities of events Inf(p) C C; in M are captured by the reachability of states s¢, in M’, as follows.
We use the classical temporal logic symbols ¢ and [J to represent the eventually and always operators
respectively.

Lemma 4. Let M be an MDP and MEC(M) = {C1,...,Cpn}. For any strategy o for M, there exists a
strategy T for M’ such that for all i € {1,...,m}, Pq,  [OOC;] = P, . [0sc,]. Conversely, for any
strategy T for M’ such that Y ;" Py, . [Osc,] = 1, there exists o such that for all i, P§, . [0OC;] =
Py, [0sc.

Proof. Consider any strategy 7 in M" with 331", P7,, [0sc,] = 1. We define strategy o for M by imitating 7
except that whenever it chooses action a* from some state s € C;, we switch to a memoryless strategy that
surely stays inside C;. The desired equality follows. The other direction was proved in [6, Lemma 4.6]. a

Under some hypotheses, solving multi-constraint percentile problems on ECs yield the result for all
MDPs, by the transformation of Lemma 4. We prove a general theorem and then derive particular results
as corollaries.

Theorem 4. Consider all prefiz-independent payoffs f such that for all strongly connected MDPs M, and
all (I;,vi)1<i<q € {1,...,d} x Q, there exists a strategy o such that

Vie{l,....d}, Py, [fi > vil = supPhy o [fi = il

If the value sup, is computable in polynomial time for strongly connected MDPs, then the multi-constraint
percentile problem for f is decidable in polynomial time. Moreover, if strategies achieving sup.. for strongly
connected MDPs use O(g(M,q)) memory, then the overall strategy use O(g(M,q)) memory.

The hypotheses are crucial. Essentially, we require payoff functions that are prefix-independent and for
which strategies can be combined easily inside MECs (in the sense that if two constraints can be satisfied
independently, they can be satisfied simultaneously). Prefix-independence also implies that we can forget
about what happens before a MEC is reached. Hence, by using the MEC contraction, we can reduce the
percentile problem to multiple reachability for absorbing target states.

Proof. Consider an MDP M, an initial state sjnit, and an instance of the multi-constraint percentile problem
(14, i, a)1<i<q for payoff function f.

Let C1,...,Cy, denote the MECs of M. Consider the MDP M’ of Lemma 4. For each 1 < j < m, let u(j)
denote the component-wise optimal value vector achievable inside C; and o; a witness strategy, which can be
computed by hypothesis in polynomial time. Note that because f is prefix-independent and each C; strongly
connected, it follows by [8] that sup, P}, . [fi, > vi] € {0,1}. In fact, for strongly connected MDPs, if a
prefix-independent measure can be satisfied with nonzero probability, then there exists a state from which
the threshold can be satisfied with probability 1. Moreover, because the MDP is strongly connected, such a
state is reachable almost-surely from any other state.

Now, for each 1 < i < g, we define T; = {sc, | 1 < j < m,sup, P}, . [fi, > u(j)i] = 1}, where states
sc, were defined in Lemma 4. We solve the multiple reachability with absorbing targets T1,...,T,, in M’,
with probabilities o, ..., o, by Theorem 1. All computations are in polynomial time. We now establish the
connection with the multi-constraint percentile problem.

Assume there is a strategy 7 in M’ witnessing the multiple reachability problem. Recall that the strategy o
for M of Lemma 4 derived from 7 consists in following 7 until an action a* is taken, upon which one switches
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to an arbitrary strategy inside the current MEC. Let us define strategy ¢’ in this manner, by switching to
the optimal strategy o;, where C; is the current MEC. It follows that, for each 1 < ¢ < g, the probability
of switching to o; for j such that sc, € T; is at least a;. But such o; satisfy f;, > v; almost-surely in Cj.
Because f is prefix-independent, we get P‘]’V;’sm [fi, > vi] > «;. Strategy o’ thus just needs one additional bit
compared to o to remember whether it has switched to a strategy inside a MEC.

Conversely, consider any strategy o satisfying the multi-constraint percentile problem for f. Let 7 be the
strategy for M’ given by Lemma 4. We have,

PG sl fie = vi] = 2250 PGy L > v | OOCSPY, o [0OC]
= Z;nzl if,s[fli > v | QDCJ‘]P}-W,SM[OSCJ]

Furthermore, we P, [f(w;) > v; | OOC;] > 0 implies that sup,, aclj,s[f(wi) > v;] = 1 as observed above. It
follows that, P{, .[f(w:) > v; | OOC;] < sup,, ng,s[f(wi) > v;)]. We obtain

a; < P?\rLsinit [f(wl) > vi] < Z PR/[/,s;n;t [<>Scj]7
j:Cj eT;

which concludes the proof. a

4 Inf, Sup, LimInf, LimSup Payoff Functions

Single-dimensional queries. We give polynomial-time algorithms for the single-dimensional multi-cons-
traint percentile problems. For inf and sup we reduce the problem to nested multiple reachability, while
liminf and lim sup are solved by applying Theorem 4.

Theorem 5. The single-dimensional multi-constraint percentile problems can be solved in polynomial time
in the problem size for inf, sup, liminf, and limsup functions. Computed strategies use memory linear in
the query size for inf and sup, and constant memory for liminf and lim sup.

Proof. Let us fix MDP M, and a starting state sj,i;. We start with sup. The result will be derived by
Theorem 3. Consider an instance (v;, a;)1<i<q of the problem, where we assume w.l.o.g. that v; <... < v,.
To simplify the argument, let us assume that weights are assigned to states rather than edges; one can always
transform the given MDP (in polynomial time) to ensure this. We define T; as the set of states whose weights
are at least v;. The problem of ensuring that P§, . [sup > v;] > «a; by some strategy o is then equivalent
to the nested reachability problem with targets 71 2 T> O ... D T,. The problem can thus be solved in
polynomial time by Theorem 3. The resulting strategies use linear memory by this theorem.

For Inf, consider an instance (v;, ;)1<i<q Of the problem with v; < ... <wv,. We make ¢+ 1 copies of M,
each named M;. For any state s of M, we refer as s(i) to the corresponding copy in M;. The starting state
is sinit(¢ + 1). In each M;, any edge from s(i) to ¢(i) of weight w < v; is redirected to ¢(j), where j < ¢ is the
least index such that w < v;. Intuitively, if the run is in M;, this means that the current history h violates
all constraints inf > v; for all j =7...q. For each 1 < ¢ < g, let Safe?w denote the set of states of M;;q
from which inf > v; can be surely satisfied. These sets can be computed in polynomial time. Now, we add
an absorbing state T; for each copy M;, and a fresh action a' deterministically leads to T; from all states
Safe;. Note that M’ has size O(q|M|). Define T; = {T;,..., T4}. Now the multiple reachability instance
(T3, i) 1<i<q on M’ (with absorbing target states) is equivalent to the multi-constraint percentile problem
for inf. In fact, from any strategy o satisfying the reachability probabilities in M’, one can clearly construct
a strategy for M by following o until some state T, is reached, and then switching to a strategy that is surely
safe for the objective inf > v;. Conversely, given a strategy o for M satisfying the multi-constraint percentile
query, we define strategy o’ for M’ by following o, and as soon as some state Safeé\/[ is reached, going to T;.
We argue that for each 1 < i < ¢, the probability of reaching U?:iSafeJM is at least a; in M under o. In
fact, otherwise, with probability more than 1 — «;, the play always stays outside this set. Because inf > v;
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is a safety property, this means that the property is violated with probability more than 1 — «;, which is a
contradiction. The resulting strategy uses linear memory since M’ is made of ¢ + 1 copies of M.

For liminf and limsup, consider an instance (v;, ;)1<i<q of the problem, where we assume v; < ... < v,.
We are going to use Theorem 4.

The problem is easy to solve for an end-component C: for each i = 1...¢q, one removes all edges with
weight smaller than v;, and checks if there is an end-component C” included in C. Consider the largest ¢
with this property. We know that from any state of C, C’ can be reached almost-surely, and one can stay
inside C” surely. Then by such a strategy, all constraints liminf > v; for j = 1.. .47 are satisfied almost-surely,
while other constraints are violated almost-surely by any strategy that stays inside C. Optimal strategies
inside strongly connected MDPs are thus memoryless. We satisfy the hypotheses of Theorem 4, which yields
a polynomial-time algorithm.

The limsup case is solved similarly: In each end-component C, if iy denotes the largest v;, such that some
edge of C' has weight > v;,, then all constraints limsup > v; for j = 1...4y can be satisfied almost-surely,
and no other constraint is satisfied by any strategy.

The memory usage follows from Theorem 4. O

Multi-dimensional queries. We show that all multi-dimensional cases can be solved in time polynomial
in the model size and exponential in the query size by a reduction to multiple LTL objectives studied in [18].
Our algorithm actually solves a more general class of queries, where the payoff function can be different for
each query.

Theorem 6. The multi-dimensional percentile problems for sup, inf, lim sup and lim inf can be solved in time
polynomial in the model size and exponential in the query size, yielding strategies with memory exponential
in the query.

Given an MDP M, for all i € {1...q} and value v;, we denote Alzivi the set of actions of M whose
rewards are at least v;. We fix an MDP M. For any constraint ¢; = f(w;,) > v;, we define an LTL
formula denoted ®; as follows. For fi, = inf, &; = OA7", for f;, = sup, &; = OA;", for f;, = liminf,
P, = ODAE“, and for f;, = limsup, &; = D(}Alzi”". The percentile problem is then reduced to queries of the
form A{_ PG, . [®i] > i, for which an algorithm was given in [18] that takes time polynomial in [M| and
doubly exponential in g. We improve this complexity since our formulae have bounded sizes.

Lemma 5. For all constraints ¢1,...,¢q, and probabilities o, ..., aq, there exists a strateqy o such that
Algigq P‘]’V_[)Sinit[gbi] > «y if, and only if, there exists a strategy T such that Algigq P}\-/I,s;n;t[@i] > «ay. This
can be decided in time polynomial in the model and exponential in the query, and computed strategies use
exponential memory in the query.

Proof. The correspondence between LTL formulae and weighted objectives are clear by construction. The
complexity follows from [18]. In fact, if D; denotes the subset construction applied to Biichi automata
recognizing &;, then the multiple objective LTL problem can be solved in time polynomial in the size of the
product of M with Dq,...,D,. But for each formula, a Biichi automaton of size 2 can be constructed; it
follows that the algorithm of [18] has complexity polynomial in |M| and exponential in ¢. The computed
strategy is memoryless on the product of M and D;,..., Dy, thus the corresponding strategy for M has
memory Dy X ... x D, which is a single exponential in g. o

The exponential dependency on the query size cannot be avoided in general unless P = PSPACE, as
shown in the following theorem.

Theorem 7. The multi-dimensional percentile problem is PSPACE-hard for sup.

Proof. Multiple reachability with arbitrary target sets can be encoded as the multi-dimensional multi-
constraint percentile problem for sup with weights from {0,1}, as we show now. Given MDP M and tar-
gets T1,...,T,, we define M’ by duplicating states as follows. For each state s, we create a new state DS,
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All actions leaving s now leave from sP, and a single action a® deterministically leads from s to s°. It is
clear that there is a bijection between the strategies of M and those of M’ and that they induce the same
reachability probabilities for any subset of states of M. We define a g-dimensional weight function on M’
that takes values in {0,1}. At any state s, w;(a®) = 1 if, and only if s € T;. All other actions have value 0.
In other terms, the weight function assigns 1 to dimension ¢ if the target set T; is seen. Since the payoff
function is sup, along any history the dimensions that have the value 1 are exactly the target sets that
have been satisfied. For any probabilities a1, ..., aq, 30,Vi =1...¢,Pq, [sup;, > 1] > «, if, and only if
3o, Pg [0Ti] > ;). PSPACE-hardness follows from Theorem 2. 1 O

Nevertheless, the complexity can be improved for lim sup functions, for which we give a polynomial-time
algorithm by an application of Theorem 4.

Theorem 8. The multi-dimensional percentile problem for lim sup is solvable in polynomial time. Computed
strategies use constant-memory.

Proof. The problem is easy to solve if M is strongly connected. In fact, if for some 4, M contains no action
whose weight at dimension /; is at least v;, then no strategy satisfies lim sup;, > v; with positive probability.
Conversely, let I C {1,...,q} such that for each ¢ € I, M contains an edge e with wy, (e) > v;. Then, there
Is a strategy o satisfying NierPq, o limsup;, > v;] = 1. In fact, because M is strongly connected each state
and action can be eventually reached almost-surely from any state. In particular, the strategy which assigns
uniform probabilities to all available actions visits all states infinitely often almost-surely.

Thus, we satisfy the hypotheses of Theorem 4, and a polynomial-time algorithm follows. O

The exact query complexity of the liminf and inf cases are left open.

5 Mean-payoff

We consider the multi-constraint percentile problem both for MP and MP. We will see that strategies require
infinite memory in both cases, in which case it is known that the two payoff functions differ. The single-
constraint percentile problem was first solved in [19]. The case of multiple dimensions was mentioned as a
challenging problem but left open. We solve this problem thus generalizing the previous work.

5.1 The Single-Dimensional Case

We start with a polynomial-time algorithm for the single-dimensional case obtained via Theorem 4, thus
extending the results of [19] to multi-constraint percentile queries.

Theorem 9. The single dimensional multi-constraint percentile problems for payoffs MP and MP are equiv-
alent and solvable in polynomial time. Computed strategies use constant memory.

Proof. Let Ci,...,Cp be the MECs of a given MDP M. If we define v*(C;) = sup,cxEg, [[MP] =

SUD,e 5 EgS[W], then for each 1 < ¢ < m, there exists a strategy o;, computable in polynomial time,
with the property P7; [MP = v*(C;)] = 1 [27]. In other terms, optimal strategies exist for single dimensional
mean-payoff, and the optimal value can be achieved almost-surely inside strongly connected MDPs. In con-
trast, no value greater than the optimal value can be achieved with positive probability. The polynomial-time
algorithm then follows from Theorem 4.

The equivalence between MP and MP follows from the fact that they are equivalent inside MECs since
memoryless strategies exist, and that the strategy of Theorem 4 almost-surely eventually switches to an
optimal strategy for a MEC. O
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5.2 Percentiles on Multi-Dimensional MP

Let Eg, s [MP;] be the expectation of MP; under strategy o, and Valy, . (MP;) = sup, E, SM[W ], com-
putable in polynomial time [27]. We solve the problem inside ECs, then apply Theorem 4. It is known that
for strongly connected MDPs, for each i, some strategy o satisfies P, . [MP; = Valy, .. (MP;)] = 1, and

that for all strategies 7, Pj, . [MP; > v] = 0 for all v > Valy, .. (MP;). By switching between these optimal
strategies for each dimension, with growing intervals, we prove that for strongly connected MDPs, a single
strategy can simultaneously optimize MP; on all dimensions.

We first recall the following result on the convergence speed of optimal memoryless strategies in MDPs.

Lemma 6 ([32]). Let M be any single-dimensional weighted MDP, v* = sup, Eq, . [MP], and o an optimal
memoryless strategy with v* = EF, [MP]. For all ¢ > 0 and n > 0, there exists Ko > 0 such that for all
K > Ko, P‘&ﬁsinit[{slalsgag . % Zfil w(a;)) >v*—e}]>1-—1n

We now show that strongly connected multi-dimensional MDPs, a single strategy can simultaneously
optimize MP, on all dimensions.

Lemma 7. For any strongly connected MDP M, there is an infinite-memory strategy o such that Vi €
{1,...,d}, PMsn.t[MPi > Valy, . (MP;)] =

Proof. Let us write v; = Valy, (MP;), and let 0; be a memoryless optimal strategy for this dimension. We
define a strategy that switches between these strategies o; with growing time intervals. We fix n € (0, 1),
and define the sequence e; = % Let t; = 1. For i > 2, if Ky the bound given by Lemma 6 for £; and n, we
choose t; > K such that ¢; > 32 Z;;ll t;. Strategy o is defined by running o; during ¢; steps where j = (4
mod d) + 1. Let us define o; = >7_, t;.

We now prove that o achieves the optimal value at each dimension with probability 1. Let A; denote
the random variable of the i-th action of an execution for a given MDP, initial state, and strategy. Fix any
dimension k € {1,...,d}. For any 7 such that (¢ mod d)+1 = k, between steps «;—1 + 1 and «, strategy oy,
is memoryless, and by Lemma 6, we have

1 .
7\475init[; Z w(AJ) >V — Ei] 2.
b j=aio1+l
Observe that ;— = %, and “t = 12“ So, with probability 7, we get
ngallw( )7 + Zgalll w(A )+ Z] i 1+1w(AJ)
> O” L minge 4 w(a) + (v —&i).
2 ’i2+1 mlnaeA ’U}(G) 12+1 ( - Ei)'

This means that for any € > 0, there exists 49 such that for all ¢ > ip with (¢ mod d) + 1 = k, we have

(e %3

1
Afs.n.ta_z >1) _E]>777

so P9/ o [MP; > v} —¢] =1 for all £ > 0. It follows that P/ s [MPy, > v}] = 1 for all dimensions k. O
Thanks to the above lemma, we fulfill the hypotheses of Theorem 4, and we obtain the following theorem.

Theorem 10. The multi-dimensional percentile problem for MP is solvable in polynomial time. Strategies
use infinite-memory, which is necessary.

To see that infinite-memory strategies are necessary for MP, consider the MDP of Fig. 4 where thresholds
vy = vg = 1 can be achieved almost-surely by the above theorem, but not by any finite-memory strategy.
The proof is identical to the case of maximizing the expectation in [9, Lemma 7] where it is proved for the
case of deterministic MDPs (i.e., automata).
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Fig. 4: Infinite-memory strategies are necessary for MP.

5.3 Percentiles on Multi-Dimensional MP

In contrast with the MP case, our algorithm for MP is more involved, and requires new techniques. In fact,
the case of end-components is already non-trivial for MP, since there is no single strategy that satisfies all
percentile constraints in general, and one cannot hope to apply Theorem 4 as we did in previous sections. We
rather need to consider the set of strategies oy satisfying mazimal subsets of percentile constraints; these are
called maximal strategies. We then prove that any strategy satisfying all percentile queries can be written
as a linear combination of maximal strategies, that is, there exists a strategy which chooses and executes
each o following a probability distribution.

For general MDPs, we first consider each MEC separately and write down the linear combination with
unknown coeflicients. We know that any strategy in a MDP eventually stays forever in a MEC. Thus, we
adapt the linear program of [18] that encodes the reachability probabilities with multiple targets, which are
the MECs here. We combine these reachability probabilities with the unknown linear combination coefficients,
and obtain a linear program (Figure 5), which we prove to be equivalent to our problem.

Single EC. Fix a strongly connected d-dimensional MDP M and pairs of thresholds (v;, a;)1<i<q. We denote
each event by A; = MP,; > v;. In [6], the problem of maximizing the joint probability of the events A; was
solved in polynomial time. In particular, we have the following for strongly connected MDPs.

Lemma 8 ([6]). If M is strongly connected, then there exists o such that P, [[A<i<qAi] > 0 if, and only

if there exists o' such that P?\}ys[/\lgiqui] = 1. Moreover, this can be decided in polynomial time, and for
positive instances, for any € > 0, a memoryless strateqy T can be computed in polynonomial time in M,
log(v;) and log(L), such that Ph s Ni<icgMP; > v —e] = 1.

We give an overview of our algorithm. Using Lemma 8, we define strategy oy achieving P7; [AierA;] =1

for any maximal subset I C {1,...,q} for which such a strategy exists. Then, to build a strategy for
the multi-constraint problem, we look for a linear combination of these oj: given oy,,...,0r, , we choose
each ig € {1,...,m} following a probability distribution to be computed, and we run Ol -

We now formalize this idea. Let Z be the set of maximal I (for set inclusion) such that some o satisfies
P(ﬁ,s[/\ielAi] = 1. Note that for all I € Z, and j ¢ I, P(ﬁ)s[/\ieIAi A A;] = 0. Assuming otherwise would
contradict the maximality of I, by Lemma 8. We consider the events A; = AjerA; Nigr —A; for maximal 1.

We are looking for a non-negative family (A;)rez whose sum equals 1 and such that Vi € {1,...,q},
Y oret st icr M > a;. This will ensure that if each o7 is chosen with probability A; (among the set {o;}c7);
with probability at least oy, some strategy satisfying A; with probability 1 is chosen. So each A; is satisfied
with probability at least ay;. This can be written in the matrix notation as

MA>a, 0<A 1-A=1, (1)
where M is a ¢ x |Z| matrix with M; r =1 if ¢ € I, and 0 otherwise.

Lemma 9. For any strongly connected MDP M, and an instance (v;, a;)1<i<q of the multi-constraint per-
centile problem for MP, (1) has a solution if, and only if there exists a strategy o satisfying the multi-constraint
percentile problem.

Proof. Assume (1) and consider the strategy > ;.7 Aror, which means that at the beginning of the run, we
choose each set I with probability A;, and run o;. Clearly, the probability of satisfying A; is at least the
probability of running a strategy oy such that ¢ € I, which is 7, 7..c; Ar. The result follows.

Conversely, let o denote a strategy satisfying P, . [A;] > «a; for all i. Let us consider all events Aj
including non-maximal I. The events A; are disjoint and we have A; = Ur.;e1A;. It follows that P s [Ai] =
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Y rier P s A = D11 P s AL - PO, [AL] since PT7 - [A;] = 1 by definition. In order to derive a
probability distribution on mazimal subsets only, we define a partition of 2{%~4} by assigning each non-

A1 =2 sea(n) Pir,sm [As]- This yields a solution of (1). 0

Now (1) has size O(q - 27), and each subset I can be checked in time polynomial in the model size. The
computation of Z, the set of maximal subsets, can be carried out in a top-down fashion; one might thus
avoid enumerating all subsets in practice. We get the following result.

Lemma 10. For strongly connected MDPs, the multi-dimensional percentile problem for MP can be solved
in time polynomial in M and exponential in q. Strategies require infinite-memory in general. On positive
instances, 29-memory randomized strategies can be computed for the e-relaxation of the problem in time
polynomial in | M|, 29, max; (log(v;),log(a)),log(2).

Proof. The first statement is clear from the two previous lemmas, since (1) can be solved in time polynomial
in M and exponential in g. For the e-relaxation problem, notice that once we compute the set Z and solve (1),
for any set I € Z, we compute in polynomial time a randomized strategy o ensuring A = AjefMP, > v; —e.
This can be done as in [6]. Then the strategy choosing randomly each o; with probability o; ensures all
bounds up to ¢ (i.e., v; —¢€).

The need for infinite memory was proved in [6, Section 5] for the problem of ensuring thresholds
P s [MP; > v; A...MP, > wy] > « for thresholds vy,v2 and probability «. It was proved that on
the MDP of Fig. 4, v1 = v = 0.5 and @ = 1 can be ensured by an infinite-memory strategy and that
finite-memory strategies can only achieve these thresholds with probability 0. Now, if the multi-constraint
percentile query P§, . [MP; > v1] > 0.6 AP§, . [MPy, > va] > 0.6 has a solution by a strategy o, then
we must have Pg, _ [MP; > vy A MPy > v3] > 0.2 (this simply follows from the fact that 0.6 + 0.6 = 1.2).
Therefore 0 must use infinite-memory. O

General MDPs. Given MDP M, let us consider M’ given by Lemma 4. We start by analyzing each maximal
EC C of M as above, and compute the sets Z¢ of maximal subsets. We define a variable )\? for each I € 7€,
and also y, , for each state s and action a € A’(s). Recall that A’(s) = A(s) U {a*} for states s that are
inside a MEC, and A’(s) = A(s) otherwise. Let Suec be the set of states of M that belong to a MEC. We
consider the linear program (L) of Fig. 5.

1,..(s)+ Z Ysr ad(s'sa,8) = Z Ys,a Vs € S, (2)
s’€S,acA(s’) acA’(s)
Z Ys,a* = 17 (3)
s€ESMEC
D yser = Y AY, VC e MEC(M), (4)
seC 1€z¢
A >0, VCeMEC(M),VI eI, (5)

> > ANz, Vi=1...d (6)

CEMEC(M) 1€ZC el
Fig.5: Linear program (L) for the multi-constraint percentiles for MP.

We prove the following main lemma in this section.

Lemma 11. The LP (L) has a solution if, and only if the multi-constraint percentiles problem for MP has
a solution. Moreover, the equation has size polynomial in M and exponential in q. From any solution of (L)
randomized finite memory strategies can be computed for the e-relaxation problem.
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The linear program follows the ideas of [18,6]. Note that the first two lines of (L) corresponds to the
multiple reachability LP of [18] for absorbing target states. The equations encode strategies that work in
two phases. Variables y;, , correspond to the expected number of visits of state-action s, a in the first phase.
Variable y; o« describes the probability of switching to the second phase at state s. The second phase consists
in surely staying in the current MEC, so we require ZseSMEc Ys.o+ = 1 (and we will have ys o« = 0 if s does
not belong to a MEC). In the second phase, we immediately switch to some strategy UIC where C' denotes
the current MEC. Thus, variable )\? corresponds to the probability with which we enter the second phase
in C and switch to strategy o¢ (see (4)). Intuitively, given a solution (A\;); computed for one EC by (1), we
have the correspondence /\IC = ZSEC Ys.a* - A1. The interpretation of (6) is that each event A; is satisfied
with probability at least «;.

The two following lemmas prove Lemma 11.

Lemma 12. If (L) has a solution then there exists a strategy for the multi-constraint percentile problem.
Moreover, from any solution of (L) one can derive in time polynomial in M, log(%), and exponential in q,
a O(2%)-memory randomized strategqy solving the e-relaxation of the multi-constraint percentile problem.

Proof. Let y;a,ysja*,/\? be a solution of (L). By [18, Theorem 3.2], there exists a memoryless strategy p
for M’ such that Pf, . [0sc] = > cc¥sar for each MEC C, and 3= ccmec(ar) Phr s, [05c] = 1 by the
second line. In this strategy, ys .+ is the probability of going to s¢, from s.

For each MEC C, we define the strategy ¢¢ for M which, from the states of C, executes each strategy oy

C )\?

sec Ys,a*
distribution otherwise. We combine these in a strategy o for M which starts by simulating p until p chooses
takes the action a*, at which point o switches to o

for I € Z€ with probability > A’C el s , if the denominators are positive, and with an arbitrary
JeT J

A7
Zsec Ys,a*
and I € Z¢. Moreover, thanks to the fact that Y oec Suec Ys,ar = 1, we know that o will eventually switch

By construction the probability of o of switching to 0§ is Y osce Ysar - = \¢, for any C

to some o¢ almost-surely. Because for all I and C such that i € I, the probability of o of satisfying A;
inside C' is 0 (see above), we get that the probability of satisfying A; under o is equal to the probability
of switching to some /\IC. But thanks to the last line of the program, this quantity is at least «;. Hence, o
satisfies the multi-constraint percentile problem.

We obtain a strategy for the relaxed problem as follows. Each strategy UIC may be infinite-memory a
priori but for any € > 0, we can compute by Lemma 8, memoryless randomized strategies TIC ensuring A7
with probability 1. Now, since p is also memoryless, the combined strategy only needs 2941 memory elements

(to store the phase, and which I it has chosen once in a MEC). The result follows. ad

Lemma 13. If strategy o solves the multi-constraint percentile problem for MP, then (L) has a solution.

Proof. Let C1,...,Cy, denote the MECs, and define yc, = P§, . [Inf(p) = C;i] for each i. Clearly, we have
> Yo, = 1. Let p denote the strategy on M’ of Lemma 4 given for . For any action a € C;, let y, , denote
the expected number of times action a is taken at s under p in M’ starting at Si,i. Now, [18, Lemma 3.3]
ensures that these variables have finite values and satisfy the first two lines of (L).

We define strategy ¢’ for M which follows p until action a* is taken, at which point it switches to each
strategy of with probability P3, , [As | Inf(p) = C] (these include non-maximal sets ). We have that

Por el = D PYp . lAi | Inf(p) = CIP, . [Inf(p) = C].
CEMEC(M)

By definition of o’, the first term in the sum equals P§, . [A; | Inf(p) = C]. The second term in the sum is
equal to P}, . [0sc] =PF, . [Inf(p) = C]. It follows that P§, . [A;] =PF, . [Ai].

Now, to obtain a solution of (L), it remains to get rid of the strategies o for non-maximal subsets I for
each MEC. We thus modify once more o’ to obtain ¢” as follows. Whenever ¢’ switches to some strategy o¢,
where I is not maximal, we rather switch to some 09 for some -arbitrarily chosen- maximal J DO I. It is
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clear that P, . [Inf(p) = C] = P‘]{}/ysinit[lnf(p) = (] and ]P(IT//[/,sinit [Ar | Inf(p) = C] > P§, ... [Ar | Inf(p) = C] for
all I € 7€.
Now, for each C and I € Z, we define \§ = P‘]’\}:Sinit [A; Alnf(p) = C]. Tt is easy to verify that 0 < \¢

and Y70 AY = Y o0 Usars 50 (4) and (5) are satisfied. We have Y-, 7c, 2 = P‘K}:smit[lnf(p) = (] =

P3s ... [Inf(p) = Ci] = yc, for all i = 1...d. Moreover, P‘X}:Sinit[Ai] = D CeMEC(M) 2TeTC icT P‘X}:Sinit[AJ A
Inf(p) = C]. This is at least equal to P§, . [A;] as we saw above, which is at least o; by assumption; hence
(6) is also satisfied. O

Our results for the multi-dimensional problems with MP are summed up in the next theorem.

Theorem 11. The multi-dimensional percentile problem for MP can be solved in time polynomial in the
model, and exponential in the query. Infinite-memory strategies are necessary, but exponential-memory (in
the query) suffices for the e-relaxation and can be computed with the same complexity.

6 Shortest Path

We study shortest path problems in MDPs, which generalize the classical graph problem. In MDPs, the
problem consists in finding a strategy ensuring that a target set is reached with bounded truncated sum
with high probability. This problem has been studied in the context of games and MDPs (e.g., [2,17,7]).
We consider percentile queries of the form Q = A{ , P s [TS;‘? < vi} > «; (inner inequality < is more
natural but > could be used by negating all weights). Observe that each constraint ¢ may relate to a different
target set T; C S.

6.1 MDPs with Arbitrary Weights

We prove that without further restriction, the multi-dimensional percentile problem is undecidable, even for
a fixed number of dimensions. Our proof is inspired by the approach of Chatterjee et al. for the undecidability
of two-player multi-dimensional total-payoff games [10] but requires additional techniques to adapt to the
stochastic case.

Theorem 12. The multi-dimensional percentile problem is undecidable for the truncated sum payoff func-
tion, for MDPs with both negative and positive weights and four dimensions, even with a unique target set.

Proof. We reduce the halting problem for two-counter machines (2CMs) to a multi-dimensional percentile
problem for the truncated sum payoff function over an MDP with weights in Z*, with a unique target set.

Counters of a 2CM take values (v, v2) € N? along an execution, and can be incremented or decremented
(if positive). A counter can be tested for equality to zero, and the machine can branch accordingly. The
halting problem for 2CMs is well-known to be undecidable [25].

Consider a 2CM M. From this 2CM, we construct an MDP M = (S, A, §, w) and a target set of states
T C S, with an initial state sjhi € S such that there exists a strategy o € X satisfying the four-dimensional
percentile query

4
Q= /\ P, [TSL <0] = 1.
=1

if and only if the machine does not halt.

Intuitively, this MDP is built such that strategies that do not faithfully simulate the 2CM M cannot
satisfy the percentile query. To ensure that this is the case, we will implement checks through probabilistic
transitions that will produce bad runs with positive probability against unfaithful strategies.

The MDP M is built as follows. The states of M are copies of the control states of M (plus some
special states discussed in the following). Actions in the MDP represent transitions between these control
states. The weight function maps actions to 4-dimensional vectors of the form (¢1,—cq,co, —ca), that is,
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(c) Halting. (d) Checking that C1 is equal to zero.
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(e) Escape gadget reachable by every action of the MDP.

Fig. 6: Gadgets encoding 2CM halting problem in a multi-dimensional percentile problem for truncated sum
payoff function.

two dimensions for the first counter C; and two for the second counter C5. Each increment of counter Cy
(resp. C2) in M is implemented in M as an action of weight (1,—1,0,0) (resp. (0,0,1,—1)). For decrements,
we have weights respectively (—1,1,0,0) and (0,0,—1,1) for C; and Cj. Therefore, the current value of
counters (v1,v2) along an execution of the 2CM M is represented in the MDP as the current sum of weights,
(v1, —v1,v2, —v2). Hence, along a faithful execution, the 1st and 3rd dimensions are always non-negative,
while the 2nd and 4th are always non-positive. The two dimensions per counter are used to enforce faithful
simulation of non-negativeness of counters and zero test.

We now discuss how this MDP M ensures faithful simulation of the 2CM M by the controller through
the use of the gadgets represented in Fig. 6. Small filled circles represent equiprobable stochastic transitions,
double circles depict states of the target set T

— An escape gadget has a positive probability to be reached whenever an instruction of the 2CM is simu-
lated. When in this gadget, the controller can decrease the sum on all dimensions below zero by cycling
long enough before deciding to reach the target, hence making the run acceptable for the considered
percentile query.

— Increment and decrement of counter values are easily simulated using the first four dimensions.

— Values of counters may never go below zero. To ensure this, we make every decrement action probabilistic
with three equiprobable outcomes. Consider the decrement of C; as depicted in Fig. 6b. Either the
simulation continues (dashed control state), or it branches to the escape gadget, or it branches to the
bottom right part of the decrement gadget. In that case, the controller can cycle long enough in the first
state to ensure a negative sum of weights in all dimensions except for the second one, before reaching
the target (runs have to reach the target or their truncated sum will be oc). If the controller is not
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faithful and a negative value is reached on counter C; when decrementing, this branching will induce
a run which is losing because the second dimension will be strictly positive (recall it has value —cy).
Notice that the controller can never cheat, otherwise this branching will happen with strictly positive
probability (i.e., after a finite prefix). On the contrary, if the controller never cheats, this branching is
harmless and induces acceptable runs w.r.t. the percentile query. The gadget is similar for decrements
of C5 using the fourth dimension.

— Zero tests are correctly executed. In the same spirit, we allow a probabilistic branching after the controller
claims a counter is equal to zero. Consider Fig. 6d for counter C. If a zero test is passed while ¢; > 0, the
sum on the first dimension will stay strictly positive and the run will not be acceptable. On the contrary,
if the controller is faithful, this branching is again harmless as it is possible to make all sums negative
except for the first dimension for which it would already be equal to zero. We use a similar gadget for
C5 based on the third dimension. We also need to ensure that the controller cannot cheat by claiming
that a counter is strictly positive while it is not. To achieve this, we follow each claim that C; is strictly
positive by a decrement on C; (using our gadget) followed by an increment (idem). Thus, if C; is equal
to zero while the controller claims the opposite, the decrement gadget will yield non-acceptable runs, as
seen before. On the other hand, if the controller is faithful, visiting those two gadgets is safe (and does
not modify the counters for the rest of the simulation).

— Halting. The end of a 2CM execution is modeled in the MDP by an halting state. This state does not
belong to the target set T: any run corresponding to an halting execution will have its truncated sum
equal to co on all dimensions, which makes it bad for the percentile query.

Now, we have argued that if the simulation is not faithful, bad runs will be produced with strictly positive
probability, and the percentile query will not be satisfied. Furthermore, if the machine halts, then with a
strictly positive probability, the halting state will be reached (because the machine halts after a finite number
of operations), which also results in bad runs. Hence if the percentile query is satisfied by a strategy o € X,
then this strategy describes a faithful infinite execution of M.

It remains to show that if the 2CM does not halt, the percentile query is satisfiable. Clearly, the halting
state will never be reached, and gadgets cannot produce bad runs as the simulation is faithful. However,
runs that never reach any target state (i.e., runs that never branch away from the simulation) are still bad
runs as they yield an infinite truncated sum. Nonetheless, observe that each action taken in the MDP yields
a strictly positive probability to branch to the escape gadget or to branch inside decrement and zero-test
gadgets. Hence, if the 2CM does not halt, such actions are taken infinitely often and with probability one,
the simulation eventually branches toward the target states (with a good truncated sum as argued before).
We conclude that the strategy that simulates a never-halting machine does yield good runs with probability
one.

Consequently, we have that the studied multi-dimensional percentile problem is equivalent to the 2CM
halting problem, and thus, undecidable. a

6.2 MDPs with Non-Negative Weights

In the light of this result, we will restrict our setting to non-negative weights, a setting closer to the orig-
inal interpretation of the shortest path problem (we could equivalently consider non-positive weights with
inequality > inside percentile constraints). We first discuss recent related work.

Comparison with quantiles and cost problems. In [34], Ummels and Baier study quantile queries over
non-negatively weighted MDPs. They are equivalent to minimizing v € N in a single-constraint percentile
query P7, . [TST < v] > « such that there still exists a satisfying strategy, for some fixed a. Very recently,
Haase and Kiefer extended quantile queries by introducing cost problems [22]. They can be seen as single-
constraint percentile queries where inequality TS? < v is replaced by an arbitrary Boolean combination of
inequalities ¢. Hence, it can be written as Pf, . [TST = <p] > «a. Cost problems are studied on single-
dimensional MDPs and all the inequalities relate to the same target 7', in contrast to our setting which
allows both for multiple dimensions and multiple target sets. The single probability threshold bounds the
probability of the whole event .
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Both settings are incomparable. Cost problems consist in a unique query that checks that with probability
«, paths satisfy the Boolean combination ¢. In percentile queries, we have several constraints and we check
that each inequality is satisfied with the corresponding probability «;: paths do not need to satisfy all
inequalities at the same time. In full generality, for a fixed probability threshold «, it is easier to satisfy a
unique constraint over a disjunction of inequalities than to satisfy a disjunction of constraints over single
inequalities: in the second case, o percent of the paths must satisfy the same unique inequality, not in the
first one. Similarly, it is harder to satisfy a unique constraint over a conjunction of inequalities than to satisfy
a conjunction of constraints over single inequalities: in the first case, @ percent of the paths must satisfy all
inequalities, not in the second one.

Still, our queries share common subclasses with cost problems: atomic formulae ¢ exactly correspond
to our single-constraint queries. Moreover, cost problems for such formulae are inter-reducible with quantile
queries [22, Proposition 2]. Cost problems with atomic formulae are PSPACE-hard, so this also holds for
single-constraint percentile queries. The best known algorithm in this case is in EXPTIME. In the following,
we establish an algorithm that still only requires exponential time while allowing for multi-constraint multi-
dimenstonal multi-target percentile queries.

Overview. Our main contributions for the shortest path are summarized in Theorem 13. In the following,
we detail each of them and discuss some subclasses of queries with interesting complexities.

Theorem 13. The percentile problem for the shortest path with non-negative weights can be solved in time
polynomial in the model size and exponential in the query size (exponential in the number of constraints and
pseudo-polynomial in the largest threshold). The problem is PSPACE-hard even for single-constraint queries.
Exponential-memory strategies are sufficient and in general necessary.

Algorithm. The sketch of our algorithm is as follows. Consider a d-dimensional MDP M and a ¢-query
percentile problem, with potentially different targets for each query. Let vmax be the maximum of the thresh-
olds v;. Because weights are non-negative, extending a finite history never decreases the sum of its weights.
Thus, any history ending with a sum exceeding vmax in all dimensions is surely losing under any strategy.

Based on this, we build an MDP M’ by unfolding M and integrating the sum for each dimension in
states of M'. We ensure its finiteness thanks to the above observation and we reduce its overall size to a
single-exponential by defining a suitable equivalence relation between states of M’: we only care about the
current sum in each dimension, and we can forget about the actual path that led to it. Precisely, the states
of M’ are in S x {0,...,vmax + 1}%. Now, for each constraint, we compute a set of target states in M’
that exactly captures all runs satisfying the inequality of the constraint. Thus, we are left with a multiple
reachability problem on M’: we look for a strategy o’ that ensures that each of these sets R; is reached with
probability «;. This query can be answered in time polynomial in |M’| but exponential in the number of sets
R;, i.e., in ¢ (Theorem 1).

We prove the correctness of our algorithm in the next lemma.

Lemma 14. The percentile problem for the shortest path can be solved in time polynomial in the size of the
MDP and the thresholds values, and exponential in the number of dimensions of the weight function and the
number of constraints of the problem.

Proof. Let M = (S, A, §,w) be the considered MDP, with w: A — N¢ its d-dimensional non-negative weight
function, sihix € S the initial state. We consider a g-constraint query: we are looking for a strategy o € X
such that Q == A]_, s [TSZi < ’Ui] > «; for the given thresholds v; € N, «; € [0,1] N Q and target sets
T; C S. The algorithm is as follows.

Let vmax be the maximum of the thresholds v;, ¢ € {1,...,q}. Observe that given any prefix of a run,
extending it can never decrease the sum of weights (as all weights are non-negative) and that any run for
which the truncated sum exceeds vmax in all dimensions is not interesting for the controller.

Based on those observations, we unfold the MDP M, creating a tree-like structure in the nodes of which
we integrate the current sum of weights. That is, nodes are labeled by elements of S x N¢. We stop a branch
as soon as the sum reaches vmax + 1 in all dimensions (we do not care about what happens after the sum hits
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this value as it is now a bad outcome for all the percentile constraints). Now, this unfolding is not exactly a
tree because we allow actions of weight zero in the original MDPs. Hence we may have to introduce cycles
in the unfolding: whenever a branch visits a node with a label identical to one of its ancestors, we stop
this branch and introduce a cycle to the corresponding ancestor. Those two cutting criteria guarantee an
unfolding which is finite and of maximum height h = O(|S| - (vmax + 2) - d). That is because every cycle (in
the original MDP) that does not result in a cycle in the unfolding has to increase at least one dimension, by
at least one, and has at most length |S]|.

Now comnsider the overall size of this unfolding. Recall that we want to build an unfolding which is at
most exponential. If no special care is taken, the size of the unfolding could be as high as O(b"), where b
denotes the branching degree of M, defined as

b= meag‘{(a, s')|a€ Als),s €8,(s,a,s") > 0}|.

In particular, the overall size could be exponential in vmax, that is, doubly-exponential in its encoding. To
avoid that, we reduce the size of the unfolding by merging equivalent nodes.

What are equivalent nodes? First, we declare two nodes to be equivalent if they relate to the same state
and describe identical sums on all dimensions. Second, observe that for any node of the unfolding, the sum
on any dimension can theoretically grow up to h - W, with W the largest weight appearing on any action
of M. That is, it can grow larger than (vmax + 1) as we stop only when all dimensions are larger than this
bound. Nonetheless, w.r.t. satisfaction of the percentile query, we do not need to recall exactly what is the
value reached after exceeding vmax as in any case, such a sum in a given dimension is not acceptable for any
related constraint. Hence, we can also merge nodes by replacing any label larger than (vmax + 1) by label
(Umax + 1)

By merging nodes equivalent according to this definition, we ensure that the overall size of the unfolding
is at most u = O(|S| - (Vmax + 2)%). Indeed, the possible values for sums on any dimension in the unfolding
run from 0 to (vmax+ 1). Observe that this overall size w is, as desired, polynomial in the number of states | S|
and in the largest threshold vnax, and exponential in the number of dimensions d.

Interestingly, this merging process can be executed on the fly while building the unfolding hence does not
hinder the total execution time of the algorithm (i.e., one does not have to fully build the doubly-exponential
unfolding to construct the single-exponential merged one).

Now notice that this unfolding is itself an MDP, denoted M’. For each constraint i € {1,...,q}, we can
compute the set R; of nodes that are labeled by a state in the corresponding target set T; and have a label
less than or equal to v; on the corresponding sum dimension /;. Hence, such a set R; actually captures all
branches satisfying the inequality of constraint ¢ (a branch is captured if it possesses a node of R;). Observe
that we only consider dimensions related to constraint ¢ when computing the set R; (e.g., it is not a problem
to exceed vmay in other dimensions). This computation takes time O(u - ¢) in the worst case.

Now we are left with a multiple reachability problem on M’: we have to decide the existence of a strategy o’
satisfying the query

q
Q/ = /\ Pﬂlﬁ{nit [ORZ} 2 Q.
=1

If such a strategy o’ exists in M’', it is easy to see that the equivalent strategy o in the original MDP M
satisfies the shortest path percentile query Q. Indeed, the probability of reaching set R; in M’ following
strategy o’ is exactly the probability of satisfying constraint ¢ in M following the equivalent strategy o. On
the contrary, if no strategy satisfies the multiple reachability query Q’, it implies that the original percentile
query Q cannot be satisfied either.

Solving this multiple reachability query Q' can be done in polynomial time in the size of the unfolding
MDP M’ but exponential in the number of sets R;, i.e., in the number of constraints (Theorem 1). Hence,
the overall time required by the algorithm is polynomial in |S| and in the maximum threshold vmax, and
exponential in the number of dimensions d and in the number of constraints q. a

It is worthwhile to mention that the exponential dependency on the number of constraints can be lifted
when they all consider the same target set.
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Remark 1. Percentile problems with unique target are solvable in time polynomial in the number of constraints
but still exponential in the number of dimensions.

Proof. Consider the unfolding algorithm described in the proof of Lemma 14. Assume that all constraints
of the percentile query relate to the same target set 7' C S. In that case, all branches can be stopped as
soon as they reach a state of T'. Thus, when computing the sets R; for the multiple reachability problem on
the unfolding M’, all nodes that belong to these sets are actually leaves of the unfolding. Hence they are
absorbing states of M’. From Theorem 1, it follows that the multiple reachability problem can be solved in
polynomial time, which eliminates the exponential dependency on the number of constraints for solving the
shortest path percentile problem with a single target set. a

For single-dimensional queries with a unique target set (but still potentially multi-constraint), our algo-
rithm remains pseudo-polynomial as it requires polynomial time in the thresholds values (i.e., exponential
in their encoding).

Corollary 1. The single-dimensional percentile problem with a unique target set can be solved in pseudo-
polynomial time.

Lower bound. By equivalence with cost problems for atomic cost formulae, it follows from [22, Theo-
rem 7] that no truly-polynomial-time algorithm exists for the single-constraint percentile problem unless
P = PSPACE.

Lemma 15. The single-constraint percentile problem for the shortest path is PSPACE-hard.

Memory. We now formally prove the need for (and sufficiency of) exponential memory in shortest path
percentile queries.

Lemma 16. Exponential-memory strategies are both sufficient and, in general, necessary to satisfy percentile
queries for the shortest path.

Proof. First, the algorithm given in Lemma 14 solves the percentile problem by answering a multiple reacha-
bility problem over an unfolded MDP of exponential size. As stated in Theorem 1, memory of size polynomial
in the MDP (here, the unfolded one) and exponential in the number of constraints (which is untouched by our
algorithm) is sufficient to satisfy such queries. Hence, it follows that exponential-memory strategies suffice
for shortest path percentile queries.

Second, let us show that multiple reachability problems over an MDP M can be reduced to shortest path
percentile problems over the very same MDP, enriched with a trivial weight function. Consider an unweighted
MDP M = (S, A,d) and a multiple reachability query for sets T; C S and thresholds «; € [0,1] N Q, with
1 €{1,...,q}. Let M’ = (S, A,J,w) be a single-dimensional weighted version of the MDP M, where all
actions are assigned weight zero. Then we trivially have that a strategy o satisfies the multiple reachability
query on M if and only if it satisfies the percentile query A7_, P o [TSTi < O} > a; on M’. Indeed, runs
that are bad for this percentile query are exactly the ones that are assigned truncated sum oo because they
do not reach the considered target sets. This concludes the reduction.

Finally, we know by Lemma 3 that exponential memory is needed in general for multiple reachability
queries. This lower bound thus straightforwardly carries over to shortest path percentile queries. a

7 Discounted Sum

The discounted sum accumulates weights using a discount factor to model that short-term rewards or costs are
more important than long-term ones. It is well-studied in automata [3] and MDPs [27,14,11]. We consider
queries of the form Q := 3:1 ‘]’\Lsinit [DSIAI_" > vi} > «;, for discount factors A; € ]0,1[ N Q and the
usual thresholds. That is, we study multi-dimensional MDPs and possibly distinct discount factors for each
constraint.

Unfortunately, our setting encompasses a much simpler question which is still not known to be decidable.
We discuss this question and its reduction to our problem in Sect. 7.1. We also argue that solving this
problem would require an important breakthrough. Then, in Sect. 7.2, we establish a conservative algorithm
that, in some sense, can approximate the answer to the percentile problem.

23



7.1 Precise Discounted Sum is Hard

Consider the precise discounted sum problem: given a rational ¢, and a rational discount factor A € 0, 1],
does there exist an infinite binary sequence 7 = 717973 ... € {0,1}* such that 377} M - 7; = ¢? In [4], this
problem is related to several long-standing open questions, such as decidability of the universality problem
for discounted-sum automata [3]. A slight generalization to paths in graphs is also mentioned by Chatterjee
et al. as a key open problem in [11].

Lemma 17. The precise discounted sum problem can be reduced to an almost-sure percentile problem over
a two-dimensional MDP with only one state.

Proof. Assume we have a precise discounted sum problem with discount factor A € ]0,1[ N Q and target
value t € Q. Let M be an MDP with only one state s and two actions, a and b (that both cycle on
s with probability one, obviously). Consider the two-dimensional weight function w: A — Z?2 such that
w(a) = (0,0) and w(b) = (1,—1). The role of action a (resp. ) is to represent the choice of 0 (resp. 1) in the
binary sequence.

We define the percentile problem asking for the existence of a strategy o € X such that

9s[DST >t =1 A P [DS) > —t] =1

By definition of the weight function, the second term of the conjunction is equivalent to P, [DS{‘ < t] =1.

Hence, if a satisfying strategy o exists, it does satisfy P'{, [DS? = t] = 1. We claim that the answer to the
precise discounted sum problem is Yes if and only if the answer to the percentile problem is Yes.

First, assume a satisfying strategy o exists. In general, our percentile problems do not require strategies
to be pure. However, even if ¢ is randomized, we can extract a run p induced by this strategy and such that
DS} (p) = t (such a run exists otherwise the strategy would not satisfy the percentile query). This run can
be seen as a sequence of actions ps € {a,b}*, which we translate in a corresponding sequence 7 € {0, 1}*
satisfying the precise discounted sum problem.

Conversely, assume there exists a sequence 7 € {0,1}* satisfying the precise discounted sum problem.
Then this sequence defines a (possibly infinite-memory) pure strategy o that ensures a discounted sum equal
to t, and thus the percentile query is satisfied. a

This suggests that answering percentile problems for the discounted sum would require an important
breakthrough.

7.2 Approximation Algorithm

Approaching an answer. As shown in Sect. 7.1, an exact algorithm is currently out of reach. Fortunately,
we are still able to establish an algorithm that can “approximate” a solution. Since we consider decision
problems, the notion of approximation should not be understood sensu stricto. We will formalize the output
of the algorithm in the following but we first give an intuitive sketch.

The e-gap problem. Our algorithm takes as input a percentile query and an arbitrarily small precision
factor € > 0 and has three possible outputs: Yes, No and Unknown. If it answers Yes, then a satisfying
strategy exists and can be synthesized. If it answers No, then no such strategy exists. Finally, the algorithm
may output Unknown for a specified “zone” close to the threshold values involved in the problem and of width
which depends on €. It is possible to incrementally reduce the uncertainty zone, but it cannot be eliminated
as the case ¢ = 0 would answer the precise discounted sum problem, which is not known to be decidable.
We actually solve an e-gap problem, a particular case of promise problems [21], where the set of inputs is
partitioned in three subsets: yes-inputs, no-inputs and the rest of them. The promise problem then asks to
answer Yes for all yes-inputs and No for all no-inputs, while the answer may be arbitrary for the remaining
inputs. In our setting, the set of inputs for which no guarantee is given can be taken arbitrarily small,
parametrized by value € > 0: this is an e-gap problem. This notion is later formalized in Theorem 15.
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Related work: single-constraint case. There are papers considering models related to single-constraint
percentile queries. Consider a single-dimensional MDP and a single-constraint query, with thresholds v and
a. The threshold problem fixes v and maximizes « [36,37]. The value-at-risk problem fixes o and maximizes
v [5]. This is similar to quantiles in the shortest path setting [34].

Paper [5] is the first to provide an exponential-time algorithm to approximate the optimal value v*
under a fixed « in the general setting. The authors also rely on approximation. While we do not consider
optimization, we do extend the setting to multi-constraint, multi-dimensional, multi-discount problems, and
we are able to remain in the same complexity class, namely EXPTIME.

Overview. Our main contributions for the discounted sum are summarized in Theorem 14. In the following,
we provide a thorough discussion for each of them, and prove several intermediate results of interest.

Theorem 14. The e-gap percentile problem for the discounted sum can be solved in time pseudo-polynomial
in the model size and the precision factor, and exponential in the query size: polynomial in the number of
states, the weights, the discount factors and the precision factor, and exponential in the number of constraints.
It is PSPACE-hard for two-dimensional MDPs and already NP-hard for single-constraint queries. Exponential-
memory strategies are both sufficient and in general necessary to satisfy e-gap percentile queries.

Cornerstones of the algorithm. Our approach is similar to the shortest path: we want to build an
unfolding capturing the needed information w.r.t. the discounted sums, and then reduce the percentile
problem to a multiple reachability problem over this unfolding. However, several challenges have to be
overcome.

First, we need a finite unfolding. This was easy in the shortest path due to non-decreasing sums and
corresponding upper bounds. Here, it is not the case as we put no restriction on weights. Nonetheless, thanks
to the discount factor, weights contribute less and less to the sum along a run. In particular, cutting all runs
after a pseudo-polynomial length changes the overall sum by at most ¢/2.

Second, we reduce the overall size of the unfolding. For the shortest path we took advantage of integer
labels to define equivalence. Here, the space of values taken by the discounted sums is too large for a
straightforward equivalence. To reduce it, we introduce a rounding scheme of the numbers involved. This
idea is inspired by [5]. We bound the error due to cumulated roundings by /2.

So, we control the amount of information lost to guarantee exact answers except inside an arbitrarily
small e-zone. Given a g-constraint query Q for thresholds v;, «;, dimensions I; and discounts \;, we define
the z-shifted query Q., for x € Q, as the exact same problem for thresholds v; + x, «;, dimensions [/; and
discounts \;. Our algorithm satisfies the following theorem, which formalizes the e-gap percentile problem
mentioned in Theorem 14. .

Theorem 15. There is an algorithm that, given an MDP, a percentile query Q for the discounted sum and
a precision factor € > 0, solves the following e-gap problem in exponential time. It answers

— Yes if there is a strategy satisfying the (2 - €)-shifted percentile query Qa.c;
— No if there is no strategy satisfying the (—2 - €)-shifted percentile query Q_so..;
— and arbitrarily otherwise.

We first state a more precise result and proceed with the technical discussion of the algorithm in the
following paragraphs.

Theorem 16. There is an algorithm satisfying the following properties.

It takes as input an MDP, a percentile query Q for the discounted sum and a precision factor € > 0.

If it outputs Yes, then there exists a strategy satisfying the percentile query Q.

If it outputs No, then there exists no such strategy.

If it outputs Unknown, then there exists a strategy satisfying at least the (—2 - €)-shifted percentile query
Q_s.. and there exists no strategy satisfying the (2 - )-shifted percentile query Qs...

5. It runs in time polynomial in the size of the MDP, the weights, the discount factors and the precision
factor, and exponential in the number of constraints.

Lo~
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It suffices to prove Theorem 16 for Theorem 15 to follow as an immediate corollary for the e-gap formu-
lation of the problem.

Technical discussion. Let M = (S, A,J,w) be a d-dimensional MDP. We consider the g-constraint per-
centile query Q := A7, P s [DSZ):" > vi] > «;, where for i € {1, ..., ¢}, we have that v; € Q, a; € [0,1]NQ,
Ai €10,1[NQ and I; € {1,...,d}. Let € be an arbitrarily small precision factor. We assume w.l.o.g. that
e € Qq, i.e., we always use rational precision factors.

We now describe the algorithm and establish intermediate results related to the construction operated
by the algorithm. We conclude by proving that all properties stated in Theorem 16 are satisfied.

Our first step is building an unfolding of M, in the classical way. We denote it by U. Each node of U
is labeled by the corresponding state of M and the discounted sum related to each query, computed over
the descending path from the root to the node. Observe that we have ¢ numerical dimensions in U and not
d as in the shortest path. This will prove useful because we may have different discount factors for each
constraint, hence the same dimension may induce different discounted sums depending on the considered
constraint. This building scheme induces an infinite tree U with nodes labeled by elements of S x Q9.

In order to obtain a finite tree, we compute a bound h on the height such that we do not lose too much
information by cutting all branches at level h (assuming the root node is at level 1). Let U, denote the cut
of U at level h.

Lemma 18. There exists a pseudo-polynomial height h such that for any infinite branch of U, its discounted
sum on any dimension and w.r.t. any of the discount factors is at most /2 far from the discounted sum of
its prefix branch in Uy,.

Proof. Consider any branch of Uy, for some h € Ny. We denote the corresponding prefix of a run by
T = 81a15203 . ..ap—15p. 1ts discounted sum w.r.t. discount factor A; and dimension [; is DSl);i (m) = E?;ll pYE
wy, (a;). This branch could be extended in U to any infinite branch that represents a prolonging run p =
$1a71 ... ap_1SRAp+1Sh+1 - - - Of which 7 is a prefix. We have that DSl);i (p) =>2 N wy, (a;) and we want

j=1"\i
to pick h such that !
DS (p) ~ DS} (m)| < 3,

for any prolonging run p. That is, we want

Y N (ay)| < %
j=h

Let A = max; A; be the largest discount factor (i.e., the one for which the discounting effect if the slowest)
and let W be the largest absolute weight appearing in the MDP M. We obtain that

[e'S) [e'S) 9] h—1
Zx\g-wli(aj) gW-Z/\j:W- Z)\j—Z)\j :W-%.
j=h j=h 7=0 7=0

It thus suffices to take h large enough to have that W - % < 5. We assume that W > 0 otherwise the
discounted sum is always zero and the percentile problem is trivial. We also recall that 0 < A < 1. Hence the
inequality becomes \* < %{V’\) Applying the binary logarithm, we get the following inequality:

h-logy(A) < logy(e) +logy (1 — A) — logy (W) — 1.
Since A < 1, we have that log,(A\) < 0 and we finally obtain that
S logy () + logy (1 — A) — log, (W) — 1
N logy (M)

Observe that this expression is always positive as ¢ < 1, A < 1 and W > 1. In the following, let us assume we
take the ceiling of this expression as the value h. What is the size of A w.r.t. the input of the algorithm? Since

h
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we are taking the binary logarithm of all involved values, it may seem that h only needs to be polynomial
in the encoding of the values. However, when A ~ 1, we have that logy A ~ 1 — A. Therefore, h can be
polynomial in the value of A, that is, exponential in its encoding. a

We now have a finite tree Up,, of pseudo-polynomial height, and such that all discounted sums labeled in
its leaves are at most /2 far from the one of any prolonging run. In other words, once such a leaf has been
reached, the controller may use any arbitrary strategy and its discounted sum will not vary by more than
¢/2. This implies that we only care about devising a strategy for the h first steps, as we will use later.

Consider the overall size of the tree Uy,. As discussed for the shortest path, this size can be as high as O(b"),
where b denotes the branching degree of M, defined as b = max,eg [{(a,s') | a € A(s),s' € S,8(s,a,s’) > 0}/.
Thus, the overall size could be pseudo-exponential. Again, we want to reduce this tree Uy to a compressed
tree of truly-exponential size by merging equivalent nodes.

However, in this case it does not suffice to look for nodes with the exact same labels. Indeed, the range of
possible labels is in general pseudo-exponential. Observe that the set of labels of any tree Uj, is a finite subset
of S x [=W - h,W - h]? (this characterization can be narrowed but it suffices for our needs). We introduce a
value v € Q and maps the set of possible labels to S X {—W -h, =W -h+~, —-W -h+2-v,..., W-h—~, W-h}?
by rounding the values appearing in U, to multiples of v (we assume w.l.o.g. that W - h is such a multiple).
To that end, we define the function Round, : Q@ — Q that rounds any rational x € Q to the closest multiple
of v, i.e., the closest value in the new set of labels. The idea of rounding numbers to reduce the complexity
is inspired by [5], but the technique differs.

Assume we apply this label mapping on Uy, for some fixed . Then, we define Uj, . as the MDP obtained
by merging nodes having identical labels after the mapping. This is the unfolded MDP we are looking for
if v is chosen adequately, and it can be built on the fly by rounding each node (and potentially merging)
at the moment it is created. Intuitively, v should not be too large to be able to keep the resulting rounding
error low, but it should be large enough to induce a range of labels which is at most of exponential size. The
following lemma states the existence of such a value v € Q.

Lemma 19. There exists a value v € Q such that
1. ‘S X{-W- -h,—W - -h+~,....W-h—~W- h}q| is at most exponential;
2. for all branch 7 in Uy, for all \;,1;, i € {1,...,q}, we have that
DS} () — RDS ()| < <.

where RDSl);i (m) denotes the rounded discounted sum of the corresponding branch ' in Uy~ (i.c., the
label of the corresponding leaf in Uy ~_ ).

€
Proof. We choose v = 1 and prove the two assumptions. Observe that we assume h > 1 otherwise Uy,

contains only the root node with all discounted sums equal to zero and no rounding is needed.
2-W-h+1

v
(2-W -h+1)-471is at most exponential. Since both h and W are at most exponential (in the encoding of

q
First, consider assumption 1. The size of the set is |S| - ( ) . Hence it suffices to prove that

h—1
values), this boils down to proving that v~ = is at most exponential, which is the case.
€

Second, let us prove assumption 2. Recall that our rounding scheme maps each value to the closest
multiple of v whenever the label of a node is computed. It is important to understand that this rounding is
executed on the fly, and not after building the tree U}, fully (otherwise we would require pseudo-exponential
time). Consequently, when a discounted sum for a node of level 2 < n < h is computed, we have to take
into account that the label of its father of level n — 1 has already been rounded: the rounding errors add up
along a branch.

We claim that the total error over a branch of height h is bounded by the expression (h — 1) - % That
is, for all height-h branch 7 of Uy, for all \;, I;,

DS (r) — RDS; ()| < (h — 1) -

o2
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We prove it by induction. Let m = s1a182 ... sy, in the following.
The base case is h = 2. We ask whether

|Ai - wi, (a1) — Roundy (A; - wy, (a1))| <

bo] 2

This is clearly true by definition of Round,, which maps any rational to the closest multiple of .
Now assume our claim is true up to level 2 < h — 1. We prove it is still satisfied for level h. Let us rewrite

’DS[\; (m) — RDS[\j (77)‘ as follows:

‘DSl):"(sl c Sho1)+ )\h Yowg, (an—1) — Round,, (RDSi”(sl ce 8p—1) F )\h Loy, (ag,— 1)) ’

Using the equality Round,(n - v+ 2) = n -+ Round,(z) for n € N and z € Q, along with the fact that
RDSl);i (81...8n—1) is already rounded by construction, we rewrite this as:

‘DSlAj(sl . sh_l)—i—)\?_l cwy, (ap—1) — RDSIA;' (s1...5n—1) — Round, ()\?_1 - wy, (ah_l)) ‘
By the subadditivity of | - |, we bound this expression by

‘DSlAj(sl e Sho1) — RDSZ):" (s1... sh_l)‘ +

A1y, (ap—1) — Round, ()\?_1 ~wy, (an—1)) ‘

Finally, using the induction hypothesis for the first term and the definition of Round,, for the second one, we
can bound this sum by

h-2)-2+2 -1

wm
wm
wm

which proves our initial claim.
€
Now, by our choice of -, this implies that the total rounding error over any branch is at most 2 which

proves the correctness of assumption 2. a

Let us sum up the situation: given an MDP, a percentile query and a precision factor € > 0, we are
able to construct an unfolded MDP U}, ., of at most exponential size such that all leaves have labels in
SXx{-W -h,—W - -h+~,...,W-h—~,W-h}% where each of the ¢ numerical dimensions approximate the
discounted sum of corresponding infinite branches within an error bounded by ¢ (¢/2 due to truncating the
branches and /2 due to the rounding of values).

The last step of our algorithm is as follows. Consider the 2 - ¢ following target sets of nodes in Uj ~. .

—Vie{l,...,q}, Sure; is the set of leaves for which the label on numerical dimension i is greater than or
equal to v; + €. Essentially, we have that RDSZ):" (m) > v; + ¢, where 7 denotes a corresponding descending
branch.

—Vie{l,...,q}, Maybe, is the set of leaves for which the label on numerical dimension 7 is greater than or
equal to v; —e. Essentially, we have that RDSZ):" (m) > v; — e, where 7 denotes a corresponding descending
branch.

Observe that Sure; C Maybe,; for all query 4. Our algorithm proceeds as follows.

A) We execute the multiple reachability problem checking the existence of a strategy ¢’ such that
/\ ]P’Uh - <>Sure } >,

with s/, the root node of the unfolded MDP. If the answer is Yes, then we answer Yes to the percentile
problem. Otherwise, we proceed to the next step.

28



B) We execute the multiple reachability problem checking the existence of a strategy o’ such that
q ’
/\ Pgh’N'v’Silnit [OMaybeJ 2 i,
i=1

with s/;, the root node of the unfolded MDP. If the answer is Yes, then we answer Unknown to the

percentile problem. Otherwise, we answer No.

The intuition is threefold. First, if a leaf of Sure; is reached, then whatever the strategy that is played
afterwards, any prolonging run will have a discounted sum at least equal to v; w.r.t. the corresponding
discount factor A; and dimension [;. Hence, all prolonging runs are acceptable for constraint ¢. Second, if a
leaf of Maybe, is reached, then some prolonging runs may satisfy the constraint while other do not: we need
to compute the unfolding for a smaller precision factor € in order to obtain useful information from nodes
that are currently in Maybe; \ Sure;. Third, if a leaf does not belong to Maybe;, then any prolonging run
is guaranteed to falsify constraint ¢ as adding error € does not suffice to make the discounted sum at least
equal to v;. We are finally able to prove Theorem 16.

Proof (Proof of Theorem 16). We consider each of properties 2-5 separately.
Property 2. Our algorithm answers Yes if and only if there exists a strategy o’ satisfying the multiple
reachability query A, PY / [(}Surei} > a;. We define the strategy o on the original MDP M that plays

Un,~y sSinie
as follows: it chooses the (h— 17) first actions according to ¢’ and then plays an arbitrary memoryless strategy.
By Lemma 18, Lemma 19, and by definition of Sure;, this strategy guarantees that for all i € {1,...,q¢}, a
discounted sum (w.r.t. A; and [;) at least equal to v; is achieved with probability at least equal to a;. Hence
this finite-memory strategy o satisfies the discounted sum percentile query on the original MDP M.

Property 8. Our algorithm answers No if and only if there exists no strategy ¢’ satisfying the multiple
reachability query /\;1:1 ]P’Z/h,w7 ol [<>l\/|aybel-} > «;. By contradiction, assume the multiple reachability query
cannot be satisfied, yet there exists a strategy o in the original MDP M that satisfies the percentile query
for the discounted sum. That is, for all ¢ and associated \;,l;, this strategy achieves discounted sum at
least v; with probability at least o;. By Lemma 18 and Lemma 19, we know that such a strategy reaches
with probability at least o; leaves in Uy, ~., that are labeled with a value at least equal to v; — & in numerical
dimension ¢. That is, o reaches each set Maybe; with probability at least c;, which contradicts the hypothesis
and proves the property.

Property 4. Applying the same argument as for property 1, if there exists a strategy o’ for the multiple
reachability query A7, ]P’Z;,N ol [OMaybeJ > w4, then this strategy can be translated into a strategy o
over M that ensures the perce;ltiTé query where all value thresholds v; are replaced by their shifted version
v; — 2 - £. Indeed, observe that the threshold gap between sets Maybe; and Sure; is exactly 2 - €. Conversely,
we apply the argument of property 2 to deduce that if there exists no strategy for the multiple reachability
query AL, ]P)Z/h,wxsi’n;t [OSurei} > «; (which is the case otherwise the answer of the algorithm would have

been Yes), then there is no strategy for the percentile query shifted by 2 - €.
Property 5. It remains to study the complexity of our algorithm. Recall that the unfolded MDP U},

can be constructed in time .
2-W-h+1
o(is-(25)).

while h is polynomial in A = max; A;, log,(g) and log,(WW) and + is polynomial in both € and h. Moreover,
multiple reachability queries executed by the algorithm only require polynomial time in |Uy ~_ | as all target
states are absorbing (they are leaves in the unfolding). Overall, this shows that our algorithm requires time
that is polynomial in |S|, W, A and e, and exponential in g. This proves the property and finally concludes
our proof of correctness for the algorithm. O

Lower bounds. The e-gap percentile problem is PSPACE-hard by reduction from subset-sum games [33].
Those are two-player games defined by a finite list of pairs of natural numbers (a1, b1), (az,b2), ..., (an, bn),

29



Fig. 7: Encoding of subset-sum game into 2-dimensional percentile problem for the discounted sum.

and a target ¢ € N. Players take turns choosing between a; and b;. After n rounds, if the sum of the chosen
numbers equals ¢, then player 1 wins, otherwise player 2 wins. Deciding if player 1 has a winning strategy in
a subset-sum game is PSPACE-complete [33].

Lemma 20. The e-gap problem defined in Theorem 15 is PSPACE-hard, already for two-dimensional MDPs
and fized values of discount and precision factors.

Two tricks are important. First, counterbalancing the discount effect via adequate weights. Second,
simulating an equality constraint. This cannot be achieved directly because it requires to handle e = 0. Still,
by choosing weights carefully we restrict possible discounted sums to integer values only. Then we choose
the thresholds and £ > 0 such that no run can take a value within the uncertainty zone. This circumvents
the limitation due to uncertainty.

Proof. Consider a subset-sum game defined by pairs (a1,b1), ..., (an,b,) € N2, and target ¢t € N. Assume
that we have an algorithm, called Algo., that solves the e-gap problem of Theorem 15. We claim that this
algorithm can also decide if player 1 has a winning strategy in the subset-sum game, through a polynomial-
time reduction of the subset-sum game to a discounted sum percentile problem.

We construct a 2-dimensional MDP M = (S, A, §,w). Our construction is illustrated in Fig. 7. Filled
circles represent equiprobable stochastic transitions. Controllable states simulate choices of player 1 in the
game: the controller can choose between a; and b; when j is odd. Conversely, stochastic transitions simulate
choices of player 2: when j is even, a; and b; are chosen with the same probability 1/2. Each action corre-
sponding to choosing a; (resp. b;) has a 2-dimensional weight (A\™7 -a;, —A™7 - a;) (resp. (A9 -bj, —=A77-b;)).
The discount factor can be fixed arbitrarily, say A = 1/2 for the sake of concreteness. Note that those weights
only require an encoding which is polynomial in the size of the input. We add a self-loop with weight (0, 0)
on the terminal state.

Observe that any run in this MDP has a discounted sum which is exactly equal to the sum of the chosen
elements a;, b;, thanks to the countereffect of A= in the weights definition. Hence we also have that all runs
have integer discounted sums.

Our goal is to find a 2-dimensional percentile query that can express the winning condition of the subset-
sum game, taking into account that algorithm Algo. can only solve the e-gap problem.

Intuitively, we would like to express that the discounted sum must be exactly equal to ¢, in all possible
runs. First observe that given the structure of the MDP, the terminal state and its zero loop is guaranteed
to be reached in n steps. Therefore, any strategy ensuring the required property almost-surely (i.e., with
probability one) also ensures it surely (i.e., over all possible runs). Ideally, we would like to execute the
2-constraint percentile problem asking for the existence of a strategy that satisfies query

Q%= P ,[DS}>t]=1 A P ,[DS)>~t] =1.

Let us call it Problem A. Any strategy satisfying Q4 would be a winning strategy for player-1, and conversely.
Still, this would only be useful if we could take € = 0, which we cannot.
Instead, consider Problem B, asking for the existence of a strategy satisfying

QF = P, [DS} >t—1/2]=1 A P§,[DS)>—t—1/2]=1.
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Furthermore, let us choose the precision factor e = 1/6. Recall we assume that Algo. solves the e-gap
problem. Consider the execution of Algo. over query QF. By definition of the e-gap problem (Theorem 15),
we have that:

(1) if there exists a strategy o satisfying
QF == P ,[DS} >t—1/6]=1 A P ,[DS}>—t—1/6] =1,

then the answer of Algo. is Yes;
(2) if there exists no strategy o satisfying

QB,.:= P} [DS}>t—5/6]=1 A P§,,[DS)>—t—5/6]=1,

then the answer of Algo. is No;
(3) otherwise the answer can be either Yes or No.

Now let us review the possible answers of Algo,.

Assume the answer is Yes. By (2), we have that there exists a strategy o that satisfies OB, _ otherwise
the answer would have been No. Since all runs have integer discounted sums, this necessarily implies that o
also satisfies Q4. Indeed, we have that t = [t — 5/6] and —t = [—t — 5/6]. Hence player-1 has a winning
strategy in the subset-sum game.

Assume the answer is No. By (1), we have that there exists no strategy o that satisfies QF_ otherwise
the answer would have been Yes. Obviously, there exists no more strategy satisfying Q4 since it is harder to
satisfy (its thresholds are higher). Hence player-1 has no winning strategy in the subset-sum game.

Finally, we see that the answer of Algo. is Yes if and only if the answer to Problem A is also Yes. Since
algorithm Algo. can decide Problem A, we also have that it can decide if player-1 has a winning strategy in
the subset-sum game, which concludes our proof. a

For single-constraint e-gap problems, we prove NP-hardness, even for Markov chains. Our proof is by
reduction from the K-th largest subset problem [20], inspired by [7, Theorem 11]. A recent paper by Haase
and Kiefer [23] shows that this K-th largest subset problem is actually PP-complete. This suggests that the
single-constraint problem does not belong to NP at all, otherwise the polynomial hierarchy would collapse
to PN by Toda’s theorem [31].

Lemma 21. The e-gap problem defined in Theorem 15 is NP-hard for single-constraint queries. This holds
even for Markov chains, i.e., MDPs with only one available action in every state.

Proof. The K-th largest subset problem is as follows. Given a finite set X = {z1,...,2,} (hence n = |X]), a
size function h: X — N assigning non-negative integer values to elements of X, and two naturals K, L € N,
decide if there exist K distinct subsets Y; C X, 1 <4 < K, such that h(Y;) = > oy h(z) < L for all K
subsets. The NP-hardness of this problem was proved in [24].

We assume w.l.o.g. that K < 2™ otherwise the answer to the problem is trivially No since we cannot find
a sufficient number of distinct subsets.

Given an instance of the K-th largest subset problem, we build a Markov chain as depicted in Fig. 8.
Observe that this is indeed a Markov chain as there is a unique action available in all states. As usual,
the filled circles represent equiprobable transitions. In the first step, element 7 is either selected (upper
transition) or not selected (lower one), with equal probability. This is repeated for every element up to
reaching the terminal state with a zero loop. Hence, there is a bijection between runs in this Markov chain
and subsets of X. Moreover, all subsets are equiprobable: they have probability 1/2™ to be selected.

The discount factor can be chosen arbitrarily. For the sake of concreteness, assume it is A = 1/2. Now,
observe that the weight function is defined such that the discounted sum over a run representing a subset
Y C X is exactly equal to —h(Y) = —3_ .y h(z). To achieve this, we again use the trick of multiplying
values —h(z;) by A=+ (the shift is due to the first transition). By definition of our weight function, it is
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Fig. 8: Reduction from K-th largest subset problem to e-gap problem for a single-constraint discounted sum
percentile problem over a Markov chain.

clear that all runs take integer values. Also, the size of the Markov chain is polynomial in the size of the
original problem.

Consider the single-constraint percentile query asking if

K
A
Pars[DS™ > —L —1/2] = o=,

with s the initial state of the Markov chain. Note that we drop the existential quantification on strategies
since there exists a unique - and trivial - strategy in a Markov chain. Recall that we only have access to an
algorithm, say Algo., that solves the e-gap problem, not the exact one. Consider € = 1/6 and let us review
the possible answers given by the execution of Algo. on this query.

Assume Algo, answers Yes. By definition of the e-gap problem (Theorem 15), we have that

K K
Ppr,s[DS* > —L - 5/6] > o = Py, [DS* > —L] > o
The implication follows from the fact that all runs take integer values and by equality [-L — 5/6] = —L
since L € N. This implies that there are at least K distinct runs representing subsets Y; C X for which
—h(Y;) > =L < h(Y;) < L. Hence the answer to the K-th largest subset problem is also Yes.
Now assume Algo. answers No. By definition of the e-gap problem, we have that

K K

A
]P]w)S[DS 2—L—1/6} <2_n 2_n’

= Pus[DS*>-L] <
using the fact that the second inequality is harder to satisfy. This implies that there are strictly less than
K distinct runs representing subsets Y; C X for which —h(Y;) > —L < h(Y;) < L. Hence the answer to the
K-th largest subset problem is also No.

In summary, we have that Algo. answers Yes if and only if the answer to the K-th largest subset problem
is also Yes. This concludes our proof. a

Memory. For the precise discounted sum and generalizations, infinite memory is needed [11]. For e-gap
problems, the exponential upper bound follows from the algorithm while the lower bound is shown via a
family of problems that emulate the ones used for multiple reachability (Theorem 2).

Lemma 22. Ezponential-memory strategies are both sufficient and, in general, necessary to satisfy e-gap
percentile problems for the discounted sum.

Proof. First, the algorithm of Theorem 16 solves the e-gap percentile problem by answering a multiple
reachability problem over an unfolded MDP of exponential size. As stated in Theorem 1, memory of size
polynomial in the MDP (here, the unfolded one) and exponential in the number of contraints (which is
untouched by our algorithm) is sufficient to satisfy such queries. Moreover, once the first h steps have been
played according to such a strategy, any arbitrary strategy may be used, in particular a memoryless one
suffices. Hence, it follows that exponential-memory strategies suffice for the discounted sum e-gap percentile
problem.
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Second, for the lower bound we use a family of MDPs based on the one defined to prove the exponential
memory requirements of multiple reachability problems (Lemma 3). Consider the unweighted MDP depicted
in Fig. 2. Recall it is composed of k stochastic gadgets followed by %k controllable gadgets. We transform this
MDP into a 2 - k-dimensional MDP M as follows. First, we remove the self-loops on states s;“ ;, and s;C g and
replace them by actions going to a terminal state s; with probability one: this is for technical convenience.
Second, we associate actions to 2 - k-dimensional weight vectors:

— the action leaving s; has weight —A~! in all 2 - k dimensions,

— actions leaving a state s; 1 have weight A=2" in dimension i and weight zero in all other dimensions,

— actions leaving a state s; g have weight A2 in dimension k + i and weight zero in all other dimensions,
— actions leaving a state s; 1, have weight A~ +29) in dimension i and weight zero in all other dimensions,

— actions leaving a state s,  have weight A~ (F+29) i dimension k+i and weight zero in all other dimensions,
— all remaining actions have weight zero in all dimensions.

As usual, the discount factor can be taken equal to 1/2. While this may seem technical, the goal is simple:
emulating the multiple reachability problem used in Lemma 3. Each dimension [ € {1,...,2 -k} will get a
—1 by the first action. Then, a dimension [ € {1,...,k} (resp. l € {k+1,...,2 - k}) will get a 1 when s; 1,
or siL (resp. when s;_j r or si_kﬁ) is visited. All other actions have no impact on the discounted sum over
dimension I. Therefore, one can easily check if a run p has visited a set {s; ,s] ;} (resp. {si r,s]g}): it
suffices to check if the discounted sum on dimension 4 (resp. k + ) is at least zero.

Now consider the percentile query

2-k
Q= A P3, [DS} > -1/2] =1,
=1

and in particular, its e-gap version, with ¢ = 1/6. Applying the same reasoning as for proofs of Lemma 20
and Lemma 21, we can prove that the answer to this e-gap problem is Yes if and only if all target sets

T, = {Sl,Lv SIl,L}v {Sl,Rv SII,R}v {32,L7 S/Q,L}v SRR {Sk7L7 S;c,L}v {Sk7R7 S;c.,R}

are reached almost-surely. By Lemma 3, we know that this requires a strategy encoded as a Moore machine
with no less than 2¥ memory states. This shows the exponential lower bound for the e-gap problem and
concludes our proof. a

8 Conclusion

Through this paper, we studied the strategy synthesis problem for multi-percentile queries on multi-dimen-
sional MDPs: we considered a wide range of payoff functions from the literature (sup, inf, limsup, liminf,
mean-payoff, truncated sum, discounted sum), and established a complete picture of the multi-percentile
framework, including algorithms, lower bounds on complexity, and memory requirements. Our results are
summed up in Table 1.

It is especially interesting to observe that for all payoff functions but the discounted sum, our algorithms
require polynomial time in the size of the model when the query size is fixed. This is of utmost practical
interest as in most applications, the query size (i.e., specification) is typically small while the model (i.e.,
the system) can be very large. Hence, our algorithms have clear potential to be useful in practice. As future
work, we aim to assess their practical efficiency through implementation in tool suites and case studies.
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