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Abstract. Interprocedural analysis by means of partial tabulation of
summary functions may not terminate when the same procedure is ana-
lyzed for infinitely many abstract calling contexts or when the abstract
domain has infinite strictly ascending chains. As a remedy, we present a
novel local solver for general abstract equation systems, be they mono-
tonic or not, and prove that this solver fails to terminate only when
infinitely many variables are encountered. We clarify in which sense the
computed results are sound. Moreover, we show that interprocedural
analysis performed by this novel local solver, is guaranteed to terminate
for all non-recursive programs — irrespective of whether the complete
lattice is infinite or has infinite strictly ascending or descending chains.

1 Introduction

It is well known that static analysis of run-time properties of programs by means
of abstract interpretation can be compiled into systems of equations over com-
plete lattices [I0]. Thereby, various interesting properties require complete lat-
tices which may have infinite strictly ascending or descending chains [T6/8J6]. In
order to determine a (post-) solution of a system of equations over such lattices,
Cousot and Cousot propose to perform a first phase of iteration using a widen-
ing operator to obtain a post-solution which later may be improved by a second
phase of iteration using a narrowing operator. This strict arrangement into sep-
arate phases, though, has the disadvantage that precision unnecessarily may be
given up which later is difficult to recover. It has been observed that widening
and narrowing need not be organized into separate phases [4J52]. Instead vari-
ous algorithms are proposed which intertwine widening with narrowing in order
to compute a (reasonably small) post-fixpoint of the given system of equations.
The idea there is to combine widening with narrowing into a single operator and
then to iterate according to some fixed ordering over the variables of the system.
Still, monotonicity of all right-hand sides is required for the resulting algorithms
to be terminating [412].

Non-monotonic right-hand sides, however, are introduced by interprocedural
analysis in the style of [3] when partial tabulation of summary functions is used.
In order to see this, consider an abstract lattice D of possible program invariants.
Then the abstract effect of a procedure call can be formalized as a transforma-
tion f* from D — . For rich lattices D such transformations may be difficult to
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represent and compute with. As a remedy, each single variable function may be
decomposed into a set of variables — one for each possible argument — where
each such variable now receives values from D only. As a result, the difficulty of
dealing with elements of D — D is replaced with the difficulty of dealing with
systems of equations which are infinite when D is infinite. Moreover, composi-
tion of abstract functions is translated into indirect addressing of variables (the
outcome of the analysis for one function call determines for which argument an-
other function is queried) — implying non-monotonicity [I5]. Thus, termination
of interprocedural analysis by means of the solvers from [42] cannot be guaran-
teed. Interestingly, the local solver SLR3 [2] terminates in many practical cases.
Nontermination, though, may arise in two flavors:

— infinitely many variables may be encountered, i.e., some procedure may be
analyzed for an ever growing number of calling contexts;

— the algorithm may for some variable switch infinitely often from a narrowing
iteration back to a widening iteration.

From a conceptual view, the situation still is unsatisfactory: any solver used as
a fixpoint engine within a static analysis tool should reliably terminate under
reasonable assumptions. In this paper, we therefore re-examine interprocedural
analysis by means of local solvers. First, we extend an ordinary local solver to
a two-phase solver which performs widening and subsequently narrowing. The
novel point is that both iterations are performed in a demand-driven way so that
also during the narrowing phase fresh variables may be encountered for which
no sound over-approximation has yet been computed.

In order to enhance precision of this demand-driven two-phase solver, we
then design a new local solver which intertwines the two phases. In contrast to
the solvers in [412], however, we can no longer rely on a fixed combination of a
widening and a narrowing operator, but must enhance the solver with extra logic
to decide when to apply which operator. For both solvers, we prove that they
terminate — whenever only finitely many variables are encountered: irrespective
whether the abstract system is monotonic or not. Both solvers are guaranteed
to return (partial) post-solutions of the abstract system of equations only if all
right-hand sides are monotonic. Therefore, we make clear in which sense the
computed results are nonetheless sound — even in the non-monotonic case. For
that, we provide a sufficient condition for an abstract variable assignment to be a
sound description of a concrete system — given only a (possibly non-monotonic)
abstract system of equations. This sufficient condition is formulated by means of
the lower monotonization of the abstract system. Also, we elaborate for partial
solutions in which sense the domain of the returned variable assignment provides
sound information. Here, the formalization of purity of functions based on com-
putation trees and variable dependencies plays a crucial role. Finally, we prove
that interprocedural analysis in the style of [12J3] with partial tabulation using
our local solvers terminates for all non-recursive programs and every complete
lattice with or without infinite strictly ascending or descending chains.

The paper is organized as follows. In Section 2l we recall the basics of abstract
interpretation and introduce the idea of a lower monotonization of an abstract



system of equations. In Section [3] we recapitulate widening and narrowing. As
a warm-up, a terminating variant of round-robin iteration is presented in Sec-
tion @ In Section Bl we formalize the idea of local solvers based on the notion of
purity of functions of right-hand sides of abstract equation systems and provide
a theorem indicating in which sense local solvers for non-monotonic abstract sys-
tems compute sound results for concrete systems. A first local solver is presented
in Section [6] where widening and narrowing is done in conceptually separated
phases. In Section [{l we present a local solver where widening and narrowing
is intertwined. Section [§] considers the abstract equations systems encountered
by interprocedural analysis. A concept of stratification is introduced which is
satisfied if the programs to be analyzed are non-recursive. These notions enable
us to prove our main result concerning termination of interprocedural analysis
with partial tabulation by means of the solvers from sections [6] and [7]

2 Basics on Abstract Interpretation

In the following we recapitulate the basics of abstract interpretation as intro-
duced by Cousot and Cousot [I0JI3]. Assume that the concrete semantics of a
system is described by a system of equations

r=fy, x€X (1)

where X is a set of variables taking values in some power set lattice (C,C,U)
where C = 2% for some set @ of concrete program states, and for each z € X,
fz 1 (X = C) — C is the defining right-hand side of x. For the concrete system
of equations, we assume that all right-hand sides f,,z € X, are monotonic.
Accordingly, this system of equations has a unique least solution ¢ which can
be obtained as the least upper bound of all assignments o, 7 an ordinal. The
assignments o, : X — C are defined as follows. If 7 = 0, then o,z = L for all
x € X.If 7 =7/ +1 is a successor ordinal, then o, x = f, o,/, and if 7 is a limit
ordinal, then o, z = |J{fz 0+ | 7/ < 7}. An abstract system of equations

y=fi yey (2)

specifies an analysis of the concrete system of equations. Here, Y is a set of
abstract variables which may not necessarily be in one-to-one correspondence
to the concrete variables in the set X. The variables in Y take values in some
complete lattice (D, C, L) of abstract values and for every abstract variabley € Y,
fﬁ : (Y = D) — D is the abstract defining right-hand side of y. The elements d €
D are meant to represent invariants, i.e., properties of states. It is for simplicity
that we assume the set D of all possible invariants to form a complete lattice, as
any partial order can be embedded into a complete lattice so that all existing least
upper and greatest lower bounds are preserved [22]. In order to relate concrete
sets of states with abstract values, we assume that there is a Galois connection
between C and D, i.e., there are monotonic functions o : C — D, v : D — C such
that for all c € C and d € D, a(c) C d iff ¢ C v(d). Between the sets of concrete



and abstract variables, we assume that there is a description relation R C X xY.
Via the Galois connection between C and D), the description relation R between
variables is lifted to a description relation R* between assignments o : X — C
and o : Y — D by defining 0 R* of iff for all x € X,y € YV, o(x) C ~v(o¥(y))
whenever 2 R y holds. Following [13], we do not assume that the right-hand sides
of the abstract equation system are necessarily monotonic. For a sound analysis,
we only assume that all right-hand sides respect the description relation, i.e.,
that for all z € X and y € Y with x R v,

foo CA(ffo") (3)

whenever o R* o holds. Our key concept for proving soundness of abstract
variable assignments w.r.t. the concrete system of equations is the notion of the
lower monotonization of the abstract system. For every function f¥: (Y — D) —
D we consider the function

fro=[{ro|ocd} (4)

which we call lower monotonization of f*. By definition, we have:
Lemma 1. For every function f*: (Y — D) — D the following holds:

1. iﬁ is monotonic;
2. fi ot C flot for all of;
3. fj = f* whenever f* is monotonic. ad

The lower monotonization of the abstract system (2]) then is defined as the system
y=r, yey (5)

Since all right-hand sides of () are monotonic, this system has a least solution.

Ezxample 1. Consider the single equation
y1 = if yg =0thenlelse 0

over the complete lattice of non-negative integers equipped with an infimum
element, i.e., let the domain D = N U {oo}. This system is not monotonic. Its
lower monotonization is given by y; = 0. ad

Lemma 2. Assume that o is the least solution of the concrete system (). Then
o R* o for every post-solution ¥ of the lower monotonization (G).

Proof. For every ordinal 7, let o, denote the 7th approximation of the least
solution of the concrete system and assume that of is a post-solution of the
lower monotonization of the abstract system, i.e., ofy I ﬁ/ ot holds for all

y € Y. By ordinal induction, we prove that o, R* of. The claim clearly holds
for 7 = 0. First assume that 7 = 7/ + 1 is a successor ordinal, and that the



claim holds for 7/, i.e., o R* of. Accordingly, o, R* ¢’ holds for all ¢/ J o*.
Consider any pair of variables z,y with x R y. Then o, x = fyo, C *y(fg o’) for
all ¢/ 3 ¢%. Accordingly, a(o, z) C fE o’ for all ¢/ J o, and therefore,

a(UT:C)EH{fﬁa"o’gaﬁ}zizoﬁgaﬁy

since of is a post-solution. From that, the claim follows for the ordinal 7. Now
assume that 7 is a limit ordinal, and that the claim holds for all ordinals 7 < 7.
Again consider any pair of variables x,y with £ R y. Then

ora=|J{ora|7 <r}ycJ{o"y) |7 <7} =7("y)
and the claim also follows for the limit ordinal 7. O

From Lemma 2 we conclude that for the abstract system from Example [ the
assignment of = {y; + 0} is a sound description of every corresponding concrete
system, since of is a post-solution of the lower monotonization y; = 0.

In general, Lemma [2] provides us with a sufficient condition guaranteeing
that an abstract assignment o* is sound w.r.t. the concrete system (II) and the
description relation R, namely, that o* is a post-solution of the system (5]). This
sufficient condition is remarkable as it is an intrinsic property of the abstract
system since it does not refer to the concrete system. As a corollary we obtain:

Corollary 1. Every post-solution ot of the abstract system () is sound.

Proof. For all y € Y, ofy 3 fg ot 3 ig o® holds. Accordingly, of is a post-
solution of the lower monotonization of the abstract system and therefore sound.
O

3 Widening and Narrowing

It is instructive to recall the basic algorithmic approach to determine non-trivial
post-solutions of abstract systems (2) when the set Y of variables is finite, all
right-hand sides are monotonic and the complete lattice D has finite strictly
increasing chains only. In this case, chaotic iteration may be applied. This kind
of iteration starts with the initial assignment L which assigns L to every variable
y € Y and then repeatedly evaluates right-hand sides to update the values of
variables until the values for all variables have stabilized. This method may also
be applied if right-hand sides are non-monotonic: the only modification required
is to update the value for each variable not just with the new value provided by
the left-hand side, but with some upper bound of the old value for a variable
with the new value. As a result, a post-solution of the system is computed which,
according to Corollary [Il is sound.

The situation is more intricate, if the complete lattice in question has strictly
ascending chains of infinite length. Here, we follow Cousot and Cousot [T0JI3/9]
who suggest to accelerate iteration by means of widening and narrowing. A



widening operator V : DxID — D takes the old value a € D and a new valueb € D
and combines them to a value a Ub C a Vb with the additional understanding
that for any sequence b;,7 > 0, and any value ag, the sequence a;41 = a; Vb;, 1 >
0, is ultimately stable. In contrast, a narrowing operator A : D x D — D takes
the old value a € D and a new value b € D and combines them to a value
a Ab satisfying aMb C a Ab T a — with the additional understanding that for
any sequence b;,7 > 0, and any value ag, the sequence a;11 = a; Ab;,i > 0, is
ultimately stable.

While the widening operator is meant to reach a post-solution after a finite
number of updates to each variable of the abstract system, the narrowing oper-
ator allows to improve upon a variable assignment once it is known to be sound.
In particular, if all right-hand sides are monotonic, the result of a narrowing
iteration, if started with a post-solution of the abstract system, again results in
a post-solution. Accordingly, the returned variable assignment can easily be veri-
fied to be sound. In analyzers which iterate according to the syntactical structure
of programs such as ASTREE [14], this strict separation into two phases, though,
has been given up. There, when iterating over one loop, narrowing for the cur-
rent loop is triggered as soon as locally a post-solution has been attained. This
kind of intertwining widening and narrowing is systematically explored in [4]2].
There, a widening operator is combined with a narrowing operator into a single
derived operator 1 defined by

alb=if bC athenaAbd
elseaVb

also called warrowing. Solvers which perform chaotic iteration and use warrowing
to combine old values with new contributions, necessarily return post-solutions —
whenever they terminate. In [45], termination could only be guaranteed for sys-
tems of equations where all right-hand sides are monotonic. For non-monotonic
systems as may occur at interprocedural analysis, only practical evidence could
be provided for the proposed algorithms to terminate in interesting cases.

Here, our goal is to lift these limitations by providing solvers which terminate
for all finite abstract systems of equations and all complete lattices — no matter
whether right-hand sides are monotonic or not. For that purpose, we dissolve
the operator 7 again into its components. Instead, we equip the solving routines
with extra logic to decide when to apply which operator.

4 Terminating Structured Round-Robin Iteration

Let us consider a finite abstract system as given by:

yi = fF i=1,...,n (6)

In [], a variation of round-robin iteration is presented which is guaranteed to
terminate for monotonic systems, while it may not terminate for non-monotonic
systems. In order to remedy this failure, we re-design this algorithm by addi-
tionally maintaining a flag which indicates whether the variable presently under
consideration has or has not reached a sound value (Fig.[dl). Solving starts with a



void solve(b, 7) {
if (i <0) return,
solve(b,i — 1);

if (b) tmp = oy:] A tmp;
else if (tmp C ofy:]) {
tmp = o[y:] A tmp;
b = true;
} else tmp = oy;] V tmp;
if (o]y:;] = tmp) then return;
oyi] = tmp;
solve(b',1);

Fig. 1. Terminating structured round-robin iteration.

call solve(false, n) where n is the highest priority of a variable. A variable y; has
a higher priority than a variable y; whenever ¢ > j holds. A call solve(b, ) consid-
ers variables up to priority ¢ only. The Boolean argument b indicates whether a
sound abstraction (relative to the current values of the higher priority variables)
has already been reached. The algorithm first iterates on the lower priority vari-
ables (if there are any). Once solving of these is completed, the right-hand side
ff of the current variable y; is evaluated and stored in the variable tmp. Addi-
tionally, b’ is initialized with the Boolean argument b. First assume that b has
already the value true. Then the old value o y; is combined with the new value
in tmp by means of the narrowing operator giving the new value of tmp. If that
is equal to the old value, we are done and solve returns. Otherwise, o y; is up-
dated to tmp, and solve(true,i) is called tail-recursively. Next assume that b
has still the value false. Then the algorithm distinguishes two cases. If the old
value o y; exceeds the new value, the variable tmp receives the combination of
both values by means of the narrowing operator. Additionally, &’ is set to true.
Otherwise, the new value for tmp is obtained by means of widening. Again, if
the resulting value of tmp is equal to the current value o y; of y;, the algorithm
returns, whereas if they differ, then o y; is updated to tmp and the algorithm
recursively calls itself for the actual parameters (', n). In light of Theorem [I]
the resulting algorithm is called terminating structured round-robin iteration or
TSRR for short.

Theorem 1. The algorithm in Figureldl terminates for all finite abstract systems
of the form (@). Upon termination, it returns a variable assignment o which is
sound. If all right-hand sides are monotonic, o is a post-solution.

For a proof see Appendix [BlIn fact, for monotonic systems, the new variation of
round-robin iteration behaves identical to the algorithm SRR from [4].



5 Local Solvers

Local solving may gain efficiency by querying the value only of a hopefully small
subset of variables whose values still are sufficient to answer the initial query.
Such solvers are at the heart of program analysis frameworks such as the C1A0
system [I8/I7] or GOBLINT. In order to reason about partial variable assignments
as computed by local solvers, we can no longer consider right-hand sides in
equations as black boxes, but require a notion of variable dependence.

For the concrete system we assume that right-hand sides are mathematical
functions of type (X — C) — C where for any such function f and variable
assignment o : X — C, we are given a superset dep(f, o) of variables onto which
f possibly depends, i.e.,

(Vo € dep(f,0).0lx] =d'[z]) = fo=fo' (7)

forall o’ : X — C. Let 0 : X — C denote a solution of the concrete system. Then
we call a subset X’ C X of variables o-closed, if for all z € X', dep(f,,0) C X'.
Then for every x contained in the o-closed subset X', o[z] can be determined
already if the values of o are known for the variables in X’ only.

In [23124] it is observed that for suitable formulations of interprocedural
analysis, the set of all run-time calling contexts of procedures can be extracted
from o-closed sets of variables.

Ezxample 2. The following system may arise from the analysis of a program con-
sisting of a procedure with a loop (signified by the program point u) within
which the same procedure is called twice in a row. Likewise, the procedure p
iterates on some program point v by repeatedly applying the function g:

(w,q) =U{(w,q1) |qn € U{ (v, q2) | 2 € (u, ) } } U {q}
(v,¢) =U{9ga | ¢ € (v,q) }U{q}

for ¢ € Q. Here, @ is a superset of all possible system states, and the unary
function ¢ : Q — 2% describes the operational behavior of the body of the loop
at v. The set of variables of this system is given by X = {(u,q),{v,q) | ¢ € Q}
where (u,q), (v,q) represent the sets of program states possibly occurring at
program points u and v, respectively, when the corresponding procedures have
been called in context g. For any variable assignment o, the dependence sets of
the right-hand sides are naturally defined by:

dep(f(u,q),0) = {(w, )} U {{v, @) | @2 € o (u, q)}
U {<U7Q1> | g2 € 0'<U,q>,Q1 € 0<U=Q2>}
dep(f(v,q)va) = {<U7q>}

where f, again denotes the right-hand side function for a variable z. Assuming
that g(qo) = {q1} and g(q1) = 0, the least solution o maps (u, qo), (v, go) to the
set {qo,q1} and (u,q1), (v,q1) to {q1}. Accordingly, the set {(u, ¢), (v,q;) | i =
0,1} is o-closed. We conclude, given the program is called with initial context
qo, that the procedure p is called with contexts gg and ¢; only. a



In concrete systems of equations, right-hand sides may depend on infinitely many
variables. Since abstract systems are meant to give rise to effective algorithms,
we impose more restrictive assumptions onto their right-hand side functions. For
these, we insist that only finitely many variables may be queried. Following
the considerations in [20IT92T], we demand that every right-hand side f* of
the abstract system is pure in the sense of [20]. This means that, operationally,
the evaluation of f* for any abstract variable assignment o¥ consists of a finite
sequence of variable look-ups before eventually, a value is returned. Technically,
f% can be represented by a computation tree, i.e., is an element of

tree == Answer D | Query Y x (D — tree)

Thus, a computation tree either is a leaf immediately containing a value or
a query, which consists of a variable together with a continuation which, for
every possible value of the variable returns a tree representing the remaining
computation. Each computation tree defines a function [¢] : (Y — D) — D by:

[Answerd] o =d
[Query (y, )] o = [c(oly])] o

Following [20], the tree representation is uniquely determined by (the operational
semantics of) f*.

Example 3. Computation trees can be considered as generalizations of binary
decision diagrams to arbitrary sets D. For example, let D = N U {oo}, i.e., the
natural numbers (equipped with the natural ordering and extended with oo as
top element), the function f*: (Y — D) — D with {y1,y2} C Y, defined by

ffo =if o[y1] > 5 then 1 + o[ys] else o[yi]
is represented by the tree

Query (y1,fund; — if di > 5 then Query (y2, fun ds — Answer (1 + ds))
else Query (y1, fund; — Answerd,)) O

A set dep(f*,0*) C Y with a property analogous to (7)) can be explicitly obtained
from the tree representation ¢ of f! by defining dep(f¥, o%) = treedep(t, o*) where:

treedep(Answerd, of) =)
treediep(Query (y, ), o%) = {y} U treedep(c (o7[y]), 0%)

Technically, this means that the value ffof = [t] o can be computed already
for partial variable assignments ¢’ : Y’ — D, whenever dep(ff, T @ o') =
treedep(t, T @ ¢’) C Y'. Here, T : Y — D maps each variable of Y to T and
T & o’ returns the value o'[y] for every y € Y/ and T otherwise.

Example 4. Consider the function f* from Example [l together with the partial
assignment o’ = {y; + 3}. Then dep(f*, T @ o’) = {1} O



We call a partial variable assignment o’ : Y’ — D closed (w.r.t. an abstract
system (2)), if for all y € Y, dep(f5, T®o’) CY".

In the following, we strengthen the description relation R additionally to
take variable dependencies into account. We say that the abstract system (2)
simulates the concrete system () (relative to the description relation R) iff for
all pairs z,y of variables with £ R y, such that for the concrete and abstract
right-hand sides f, and fﬁ, respectively, property (@) holds and additionally
dep(fz,0) R dep(fﬁ, o%) whenever ¢ R* o*. Here, a pair of sets X', Y of concrete
and abstract variables is in relation R if for all x € X', R y for some y € Y.
Theorem [2] demonstrates the significance of closed abstract assignments which
are sound.

Theorem 2. Assume that the abstract system ([2)) simulates the concrete sys-
tem (@) (relative to R) where o is the least solution of the concrete system.
Assume that o 1 Y — D is a partial assignment with the following properties:

1. ot is closed;
2. T @ ot is a post-solution of the lower monotonization of the abstract system.

Then the set X' ={zx e X |JyeY' . a Ry} is o-closed.

Proof. By Lemma Bl ¢ R* (T @ o) holds. Now assume that R y for some
y € Y'. By definition therefore, dep(f,,0) R dep(fE,I @ o*). Since the latter is
a subset of Y, the former must be a subset of X', and the assertion follows. 0O

6 Terminating Structured Two-Phase Solving

We first present a local version of a two-phase algorithm to determine a sound
variable assignment for an abstract system of equations. As the algorithm is lo-
cal, no pre-processing of the equation system is possible. Accordingly, variables
where widening or narrowing is to be applied must be determined dynamically (in
contrast to solvers based on static variable dependencies where widening points
can be statically determined [7]). We solve this problem by assigning priorities
to variables in decreasing order in which they are encountered, and consider a
variable as a candidate for widening/narrowing whenever it is queried during the
evaluation of a lower priority variable. The second issue is that during the nar-
rowing iteration of the second phase, variables may be encountered which have
not yet been seen and for which therefore no sound approximation is available.
In order to deal with this situation, the algorithm does not maintain a single
variable assignment, but two distinct ones. While assignment o is used for the
widening phase, o1 is used for narrowing with the understanding that, once the
widening phase is completed, the value of a variable y from o¢ is copied as the
initial value of y into 1. This clear distinction allows to continue the widening
iteration for every newly encountered variable 3’ in order to determine an accept-
able initial value before continuing with the narrowing iteration. The resulting
algorithm can be found in Figures Pl and [Bl Initially, the priority queue @ and
the sets domy and dom; are empty. Accordingly, the mappings o; : dom; — D



void iterateg(n) { void iterate; (n) {

if (Q # 0 Amin_prio(Q) <n){ if (Q # 0 Amin_prio(Q) <n) {
y = extract_min(Q); y = extract_min(Q);
solvey (y, prioly] — 1);
do_varo(y); do_var, (y);
iterateo(n); iterate; (n);
} }
}
void solveo (y) { void solve: (y,n) {
if (y € domg) return; if (y € dom;) return;
domg := domo U {y}; solveg (y);
prio[y] := next__prio(); dom; := domy U {y};
ooly] = L; o1ly] = ooly];
inflly] == 0; forall (z € {y} Uinfl[y]) insert z Q;
do_ vary(y); infl[y] = 0;
iterateo (prio[y]); iterates (n);
} }

Fig. 2. The solver TSTP, part 1.

void do_ vary(y) { void do_ var; (y) {
isp =y € point; isp =y € point;
point := point\{y}; point := point\{y};
D evalg(z) { D evali(z) {
solveo(2); solve1 (z, prio[y] — 1);
if (prio[z] > prio[y]) point := point U {z}; if (prio[z] > prio[y]) point := point U {z};
infl[z] := infl[2] U {y}; infl[z] == infl[z] U{y};
return oo[z]); return o [z];
} }
tmp = fﬁ evalo; tmp = fﬁ evaly;
if (isp) tmp = ooly] V tmp; if (isp) tmp = oy] A tmp;
if (oo[y] = tmp) return; if (o1[y] = tmp) return;
ooly] = tmp; o1ly] = tmp;
forall (z € infl[y]) insert z Q; forall (z € infl[y]) insert z Q;
infl[y] = 0; infl[y] = 0;
return; return;
} }

Fig. 3. The solver TSTP, part 2.



and infl : dom — 2Y are also empty. Likewise, the set point is initially empty.
Solving for the variable yo starts with the call solve; (yo,0).

Let us first consider the functions solvey, iteratey, do_ vary. These are meant to
realize a local widening iteration. A call solvey(y) first checks whether y € dom.
If this is the case, solving immediately terminates. Otherwise, og[y] is initialized
with L, y is added to domg, the empty set is added to infl[y], and y receives the
next available priority by means of the call next_ prio. Subsequently, do_ vary(y)
is called, followed by a call to iterateg(prio[y]) to complete the widening phase for
y. Upon termination, a call iterateg(n) for an integer n has removed all variables
of priority at most n from the queue @Q. It proceeds as follows. If @) is empty
or contains only variables of priority exceeding n, it immediately returns. Oth-
erwise, the variable y with least priority is extracted from Q). Having processed
do_vary(y), the iteration continues with the tail-recursive call iterateg(n).

It remains to describe the function do_ vary. When called for a variable y, the
algorithm first determines whether or not y is a widening/narrowing point, i.e.,
contained in the set point. If so, y is removed from point, and the flag isp is set
to true. Otherwise, isp is set to false. Then the right-hand side fg is evaluated
and the result stored in the variable ¢mp. For its evaluation, the function fﬁ,
however, does not receive the current variable assignment oy but an auxiliary
function evaly which serves as a wrapper to the assignment oy. The wrapper
function evaly, when queried for a variable z, first calls solvey (2) to compute a
first non-trivial value for z. If the priority of z is greater or equal to the priority
of y, a potential widening point is detected. Therefore, z is added to the set
point. Subsequently, the fact that z was queried during the evaluation of the
right-hand side of y, is recorded by adding y to the set infl[z]. Finally, o¢[z] is
returned.

Having evaluated fg evaly and stored the result in tmp, the function do_ varg
then applies widening only if i¢sp equals true. In this case, tmp receives the value
of oly] V tmp. In the next step, tmp is compared with the current value og[y].
If both values are equal, the procedure returns. Otherwise, og[y] is updated to
tmp. The variables in infl[y] are inserted into the queue @, and the set infl[y] is
reset to the empty set. Only then the procedure returns.

The functions solve;, iterate; and do_var;, on the other hand, are meant
to realize the narrowing phase. They essentially work analogously to the corre-
sponding functions solvey, iteratey and do_vary. In particular, they re-use the
mapping infl which records the currently encountered variable dependencies as
well as the variable priorities and the priority queue @. Instead of oy, domg, how-
ever, they now refer to o1, domy, respectively. Moreover, there are the following
differences.

First, the function solve; now receives not only a variable, but a pair of
an integer m and a variable y. When called, the function first checks whether
y € domjy. If this is the case, solving immediately terminates. Otherwise, solvey(y)
is called first. After that call, the widening phase for y is assumed to have
terminated where the resulting value is og[y]. Accordingly, o1[y] is initialized
with og[y], and y is added to dom;. As the value of oy for y has been updated, y
together with all variables in infl[y] are added to the queue, whereupon infl[y] is



set to the empty set, and iterate;(n) is called to complete the narrowing phase
up to the priority n. Upon termination, a call iterate;(n) for an integer n has
removed all variables of priority at most n from the queue @. In distinction to
iterateg, however, it may extract variables y from @ which have not yet been
encountered in the present phase of iteration, i.e., are not yet included in dom;
and thus have not yet received a value in o;. To ensure initialization, solve; (y, n)
is called for n = prio[y] — 1. This choice of the extra parameter n ensures that all
lower priority variables have been removed from @ before do_ var;(y) is called.

It remains to explain the function do_var;(y). Again, it essentially behaves
like do_ varg(y) — with the distinction that the narrowing operator is applied
instead of the widening operator. Furthermore, the auxiliary local function evaly
is replaced with eval; which now uses a call to solve; for the initialization of its
argument variable z (instead of solvey) where the extra integer argument is given
by prio[y] — 1, i.e., an iteration is performed to remove all variables from @ with
priorities lower than the priority of y (not of z).

In light of Theorem[Bl we call the algorithm from Figures 2l and Bl terminating
structured two-phase solver.

Theorem 3. The local solver TSTP from Figure [2 and [3 when started with
a call solvey(yo,0) for a variable yo, terminates for every system of equations
whenever only finitely many variables are encountered.

Upon termination, assignments Jf :Y; = D, i = 0,1 are obtained for finite
sets Yy 2 Y1 of variables so that the following holds:

1 Yo € le;

2. 0% is a closed partial post-solution of the abstract system (2);

3. o7 is a closed partial assignment such that T @ 0§ is a post-solution of the

lower monotonization of the abstract system (2.

For a proof see Appendix

7 Terminating Structured Mixed-Phase Solving
The draw-back of the two-phase solver TSTP from the last section is that it may
lose precision already in very simple situations.

Example 5. Consider the system:

y1=max(y1,y2) Y2 =min(y3,2) yz3=y2+1

over the complete lattice N> and the following widening and narrowing opera-

tors:
aVb=ifa < bthen c else a

aAb=if a = ocothen b else a

Then solvey(y1) detects y2 as the only widening point resulting in
g9 = {yl = 00, Y2 H— 00, Y3 — OO}

A call to solve; (y1,0) therefore initializes y; with oo implying that oq[y;] = oo
irrespective of the fact that o1[y2] = 2. O



We may therefore aim at intertwining the two phases into one — without sac-
rificing the termination guarantee. The idea is to operate on a single variable
assignment only and iterate on each variable first in widening and then in nar-
rowing mode. In order to keep soundness, after every update of a variable y in
the widening phase, all possibly influenced lower priority variables are iterated
upon until all stabilize with widening and narrowing. Only then the widening
iteration on y continues. If on the other hand an update for y occurs during
narrowing, the iteration on possibly influenced lower priority variables is with
narrowing only. The distinction between the two modes of the iteration is main-
tained by a flag where false and true correspond to the widening and narrowing
phases, respectively. The algorithm is provided in Figure [ and

void iterate(b, n) {

if (Q # 0 A min_prio(Q) <n) {

y = extract_min(Q);

b = do_var(b,y);

n' = prioly];

if(b£V An>n'){
iterate(b’, n');
iterate(b, n);

} else iterate(b’, n);

void solve(y) {

if (y € dom) return;
dom = dom U {y};
prio[y] := next__prio();
oly] = L;

inflly] == 0;

b’ = do_ var(false, y);
iterate(b’, prio[y]);

Fig. 4. The solver TSMP, part 1.

bool do_var(b,y) {
isp =y € point;
point := point\{y};
D eval(z) {

}

solve(2);

if (prio[z] > prio[y]) point := point U {z};

infl[z] = infllz] U {y};
return o[z];

tmp = fﬁ eval;
b = b;

if (isp)
if (b) tmp = oly] A tmp;
else if (tmp C o[y]) {
tmp = oly] A tmp;
b = true;

} else tmp := o[y] V tmp;
if (o[y] = tmp) return true;
oly] = tmp;
forall (z € infl[y]) insert z Q;
infl[y] := 0;
return b’;

Fig. 5. The solver TSMP, part 2.



Initially, the priority queue @ and the set dom are empty. Accordingly, the map-
pings ¢ : dom — D and infl : dom — Y are also empty. Likewise, the set point is
initially empty. Solving for the variable yo starts with the call solve(yg). Solving
for some variable y first checks whether y € dom. If this is the case, solving imme-
diately terminates. Otherwise, y is added to dom and receives the next available
priority by means of a call to next_ prio. That call should provide a value which
is less than any priority of a variable in dom. Subsequently, the entries o[y| and
infl[y] are initialized to L and the empty set, respectively, and do_ var is called
for the pair (false, y). The return value of this call is stored in the Boolean vari-
able b’'. During its execution, this call may have inserted further variables into
the queue Q). These are dealt with by the call iterate(d’, prio[y]).

Upon termination, a call iterate(b, n) has removed all variables of priority at
most n from the queue Q. It proceeds as follows. If ) is empty or contains only
variables of priority exceeding n, it immediately returns. Otherwise, the variable
y with least priority n’ is extracted from Q. For (b,y), do_var is called and the
return value of this call is stored in b'.

Now we distinguish several cases. If b = true, then the value b’ returned by
do_ var will necessarily be true as well. In that case, iteration proceeds by tail-
recursively calling again iterate(true,n). If on the other hand b = false, then
the value b’ returned by do_var can be either true or false. If ¥’ = false or
b = true and n’ = n, then iterate(b’,n) is tail-recursively called. If, however,
b’ = true and n > n’, then first a sub-iteration is triggered for (true,n’) before
the main loop proceeds with the call iterate(false, n).

It remains to describe the function do_var. When called for a pair (b,y)
consisting of a Boolean value b and variable y, the algorithm first determines
whether or not y is a widening/narrowing point, i.e., contained in the set point.
If so, y is removed from point, and the flag isp is set to true. Otherwise, isp is
just set to false. Then the right-hand side fg is evaluated and the result stored
in the variable tmp. For its evaluation, the function fﬁ, however, does not receive
the current variable assignment o, but an auxiliary function eval which serves as
a wrapper to o. The wrapper function eval, when queried for a variable z, first
calls solve z to compute a first non-trivial value for z. If the priority of z exceeds
or is equal to the priority of y, a potential widening/narrowing point is detected.
Therefore, z is added to the set point. Subsequently, the fact that the value of
z was queried during the evaluation of the right-hand side of y, is recorded by
adding y to the set infl[z]. Finally, the value o[z] is returned.

Having evaluated fg eval and stored the result in ¢mp, the function do_ var
then decides whether to apply widening or narrowing or none of them according
to the following scheme. If isp has not been set to true, no widening or narrowing
is applied. In this case, the flag b’ receives the value b. Therefore now consider the
case isp = true. Again, the algorithm distinguishes three cases. If b = true, then
necessarily narrowing is applied, i.e., tmp is updated to the value of o[y] A tmp,
and b’ still equals b, i.e., true. If b = false then narrowing is applied whenever
tmp C o[y] holds. In that case, tmp is set to o[y] A tmp, and b’ to true. Otherwise,
i.e., if b = false and tmp £ oy, then widening is applied by setting tmp to
oly] V tmp, and b" obtains the value false.



In the next step, tmp is compared with the current value o[y]. If both values
are equal, the value of b’ is returned. Otherwise, o[y| is updated to ¢tmp. The
variables in infl[y] are inserted into the queue @), and the set infl[y] is reset to the
empty set. Only then the value of b is returned.

Ezample 6. Consider the system of equations from Example[fl Calling solve for
variable y; will assign the priorities 0, —1,—2 to the variables y1,y2 and ys,
respectively. Evaluation of the right-hand side of y; proceeds only after solve(y2)
has terminated. During the first update of ys, yo is inserted into the set point,
implying that at the subsequent evaluation the widening operator is applied
resulting in the value oo for y2 and y3. The subsequent narrowing iteration on
y2 and y3 improves these values to 2 and 3, respectively. Only then the value for
y1 is determined which is 2. During that evaluation, y; has also been added to
the set point. The repeated evaluation of its right-hand side, will however, again
produce the value 2 implying that the iteration terminates with the assignment

o={y1 = 2,y2 — 2,y3 — 3} O

In light of Theorem [ we call the algorithm from Figures @ and Bl terminating
structured mized-phase solver or TSMP for short.

Theorem 4. The local solver TSMP from Figure [§] and [A when started for a
variable yo, terminates for every system of equations whenever only finitely many
variables are encountered.

Upon termination, an assignment o : Yy — I is returned where Yy is the set
of variables encountered during solve(false, yo) such that the following holds:

— Yo € YVO7
— ot is a closed partial assignment such that T @ o¥ is a post-solution of the
lower monotonization of the abstract system (2.

For a proof see Appendix

8 Interprocedural Analysis

As seen in example 2] the concrete semantics of programs with procedures can
be formalized by a system of equations over a set of variables X = {(u,q) | u €
U,q € Q} where U is a finite set of program points and @ is the set of possible
system states. A corresponding abstract system of equations for interprocedural
analysis can be formalized using abstract variables from the set Y = {{(u,a) |
u € U,a € D} where the complete lattice D of abstract values may also serve
as the set of abstract calling contexts for which each program point w may be
analyzed. The description relation R between concrete and abstract variables is
then given by (u,q) R (u,a) <= q € y(a) for all (u,q) € X and (u,a) € Y and
program points u € U. Moreoever, we require that for all right-hand sides f,
of the concrete system and fg of the abstract system that f, ¢ C ~( fﬁ a) holds,



whenever x R y and ¢ € y(a). Right-hand sides for abstract variables are given
by expressions e according to the following grammar:

e == dlalger el fue)

where d € D denotes arbitrary constants, « is a dedicated variable representing
the current calling context, g : D — --- — D is a k-ary function, and (u, e) with
u € U refers to a variable of the equation system. Each expression e describes a
function [e]* : D — (Y — D) — D which is defined by:

[dlfaoc =d [gfer-ex]tao =gt ([er]fao) - ([ex]f ao)
[e]tao =a [(u,e)]f ao =0 (u,[e]ao)

A finite representation of the abstract system of equations then is given by the
finite set of schematic equations

(u, ) = ey, ueU

for expressions e,. Each schematic equation (u,a) = e, denotes the (possibly
infinite) family of equations for the variables (u,a),a € D. For each a € D, the
right-hand side function of (u, a) is given by the function [e,]* a. This function is
indeed pure for every expression e, and every a € D. Such systems of equations
have been used, e.g., in [ITU3] to specify interprocedural analyses.

Ezxample 7. Consider the schematic system:
(u, @) = (v, (v, {u, a))) Uax (v,0) = g% (v,0) Ua

for some unary function g* : D — . The resulting abstract system simulates the
concrete system from Example if g(¢) € v(g*(a)) holds whenever ¢ € v(a). O

As we have seen in the example, function calls result in indirect addressing via
nesting of variables. In case that the program does not have recursive procedures,
there is a mapping A : U — N so that for every u with current calling context «,
right-hand side e, and every subexpression (u’,¢’) of e, the following holds:

— If M) = AM(u), then ¢/ = o
— If ') # Au), then Mu') < A(u).

If this property is satisfied, we call the equation scheme stratified where \(u) is
the level of u. Intuitively, stratification means that a new context is created only
for some point u’ of a strictly lower level. For the interprocedural analysis as
formalized, e.g., in [3], all program points of a given procedure may receive the
same level while the level decreases whenever another procedure is called. The
system from Example [7is stratified: we may, e.g., define A(u) = 2 and A(v) = 1.

Theorem 5. The solver TSTP as well as the solver TSMP terminate for strat-
ified equation schemes.



Proof. We only consider the statement of the theorem for solver TSMP. Assume
we run the solver TSMP on an abstract system specified by a stratified equation
scheme. In light of Theorem [4 it suffices to prove that for every u € U, only
finitely many contexts a € D are encountered during fixpoint computation. First,
we note that variables (v,a) may not be influenced by variables (u,a’) with
A(u) > A(v). Second, let D, , denote the set of variables (u, a’) with A(u) = A(v)
onto which (v, a’) may depend. Then all these variables share the same context.
We conclude that new contexts for a point v at some level k are created only by
the evaluation of right-hand sides of variables of smaller levels. For each level k,
let Uy C U denote the set of all u with A(u) < k. We proceed by induction on k.
Assume that we have proven termination for all calls solve (u,a’), A(u) < k for
any subset of variables (v, a’’) which have already been solved. Then evaluating a
call solve (v, a) with A(v) = k will either query the values of other variables (v', a’)
where A(v') = k. In this case, a’ = a. Therefore, only finitely many of these are
encountered. Or variables (v/,a’) are queried with A(v') < k. For those which
have not yet been encountered solve (v, a’) is called. By induction hypothesis,
all these calls terminate and therefore query only finitely many variables. As the
evaluation of call (v, a) encounters only finitely many variables, it terminates. O

A similar argument explains why interprocedural analyzers based on the func-
tional approach of Sharir/Pnueli [25/I] terminate not only for finite domains but
also for full constant propagation — if only the programs are non-recursive.

9 Conclusion

We have presented local solvers which are guaranteed to terminate for all ab-
stract systems of equations given that only finitely many variables are encoun-
tered — irrespective of whether right-hand sides of the equations are monotonic
or not or whether the complete lattice has infinite strictly ascending/descending
chains or not. Furthermore, we showed that interprocedural analysis with partial
tabulation of procedure summaries based on these solvers is guaranteed to ter-
minate with the only assumption that the program has no recursive procedures.
Clearly, theoretical termination proofs may only give an indication that the pro-
posed algorithms are well-suited as fixpoint engines within a practical analysis
tool. Termination within reasonable time and space bounds is another issue. The
numbers provided by our preliminary practical experiments within the analysis
framework GOBLINT seem encouraging (see Appendix [A]). Interestingly, a direct
comparison of the two-phase versus mixed-phase solver for full context-sensitive
interprocedural analysis, indicated that TSMP was virtually always faster, while
the picture w.r.t. precision is not so clear. Also, the new solvers always returned
post-solutions of the abstract systems — although they are not bound to do so.

There are several ways how this work can be extended. Our techniques cru-
cially require a Galois connection to relate the concrete with the abstract domain.
It is not clear how this restriction can be lifted. Also one may think of extending
two phased approaches to a many-phase iteration as suggested in [9].
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A Experimental Evaluation

We implemented the solvers TSTP and TSMP presented in Sections B and [7]
within the analysis framework GOBLINT'. For that, these solvers have been ex-
tended to deal with side-effects (see [3] for a detailed discussion of this mecha-
nism) to jointly deal with flow- and context-sensitive and flow-insensitive anal-
yses. In order to perform a fair comparison of the new solvers with warrow-
ing-based local solving as proposed in [4)2], we provided a simplified version of
TSMP. This simplified solver performs priority based iteration in the same way
as TSMP but uses the warrowing operator instead of selecting operators accord-
ing to extra flags. These three solvers were evaluated on the SPECint benchmark
suite? consisting of not too small real-world C programs (1,600 to 34,000 LOC).
Furthermore, the following C programs where analyzed: ent?, figlet*, maradns®,
wget®, and some programs from the coreutils” package. The analyzed program
wget is the largest one with around 77,000 LOC.

The analyses which we performed are put on top of a basic analysis of point-
ers, strings and enums. For enum variables, sets of possibles values are main-

! http://goblint.in.tum.de/ 2 https://www.spec.org/cpu2006/CINT2006,/

% http://www.fourmilab.ch/random/ (version 28.01.2008) * http://www.figlet.org/
® http://www.maradns.org/ © https://www.gnu.org/s/wget/

" https://www.gnu.org/s/coreutils/
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The blue bars (resp. red bars) depict the percentage of required variables (resp. evalu-
ations of right-hand sides) of the solver TSMP compared to the solver TSTP.

Fig. 6. Efficiency of TSMP vs. TSTP.

tained. The benchmark programs were analyzed with full context-sensitivity of
local data while globals were treated flow-insensitively.

The experimental setting is a fully context-sensitive interval analysis of int
variables. Therefore, program 482.sphinx had to be excluded from the benchmark
suite since it uses procedures which recurse on int arguments. Interestingly, the
warrowing solver behaves exactly the same as TSMP on all of our benchmark
programs. We interpret this by the fact that for the given analysis the right-hand
sides are effectively monotonic. Accordingly, Figure [l only reports the relative
precision of TSTP compared to TSMP.

Figure [6 compares the solvers TSMP and TSTP in terms of space and time.
For a reasonable metric for space we choose the total number of variables (i.e.,
occurring pairs of program points and contexts) and for time the total number of
evaluations of right-hand sides of a corresponding variable. The table indicates
that the solver TSMP requires only around half of the variables of the solver
TSTP. Interestingly, the percentage of evaluations of right-hand sides in a run
of TSMP is still around 60 to 70 percent of the solver TSTP.

In the second experiment, as depicted by Figure[ll we compare the precision
of the two solvers. For a reasonable metric we only compare the values of variables
which occur in both solver runs. As a result, between 80 and 95 percent of the
variables receive the same value. It is remarkable that the mixed phase solver is
not necessarily more precise. In many cases, an increase in precision is observed,
yes — there are, however, also input programs where the two-phase solver excels.
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(a) for which TSMP and TSTP compute the same value;

(b) for which TSMP computes more precise results then TSTP;

(¢) for which TSTP computes more precise results then TSMP;

(d) for which the results computed by TSMP and TSTP are incomparable.

Fig. 7. Precision of TSMP vs. TSTP.

B Proof of Theorem 1]

By induction on 4, we prove that solve(b, ¢) terminates. For i = 0, the statement
is obviously true. Now assume that ¢ > 0 and that by induction hypothesis,
solve(b',i — 1) terminates for b’ € {true, false}. First consider the case where
b = true. In this case, the flag b’ for the tail-recursive call will be equal to true
as well, and only narrowing will be applied to y;. Therefore, the sequence of tail-
recursive calls solve(b, i) eventually will terminate. Now consider the case where
b = false. By induction hypothesis, all recursive calls solve(d’,i — 1) terminate.
Consider the sequence of tail recursive calls where the flag &’ is not set to true.
Within this sequence, the new values for y; form an ascending chain dy C d; C
d> ... where d;j11 = dj Va; for suitable values a;. Due to the properties of a
widening operator, this sequence is finite, i.e., there is some j such that d;y; C d;.
In this case the call either terminates directly or recursively calls solve(d’, ) for
b = true. Therefore, solving terminates also in this case.

It remains to prove that upon termination, a sound variable assignment o
is found. For j = 1,...,n, and a variable assignment p : {y1,...,yn} — D, we
consider the system &, ; defined by:

yi:fﬁﬂ' (7’:175])



with fgﬂ- of = fi(p@ot) for of : {y1,...,y;} — D. Here, the operator @ is meant
to overwrite the values of p by the corresponding values of of whenever o¥ is
defined. Let £, ; denote the lower monotonization of £, ;. We claim:

1. Assume o7 is a post-solution of the system £, ;. Then solve(true, j) when
started with p; = p ® o1, returns with a variable assignment po = p ® o9
where o5 is still a post-solution of &€ ...

2. solve(false, j) returns a post-solution of €,

We proceed by induction on j. For 57 = 0, nothing must be proven. Therefore
assume j > 0. Consider the first claim. As post-solutions of £, ; are preserved
by each update which combines an old value o(y;) with the value of the corre-
sponding right-hand side fgﬂ- for o by means of M and thus also by A, the claim
follows.

For a proof of the second claim, let us consider the sub-sequence of tail-
recursive calls solve(b, j) where b’ remains false. Eventually this sequence ends
with a last call where b is set to true. Let p’ denote the variable assignment
before this update occurs. Then p’(y;) 3 f;p' 3 ij p'. Likewise, by induction
hypothesis, p'|y,....y,_,} iS & post-solution of £ , ;. Altogether therefore, p’ =
p@o’ for some variable assignment o’ : {y1,...,y;} — D which is a post-solution
of £, ;. Accordingly, solve(false, j) either directly terminates with p', and the
second claim follows, or solve(true, j) is called, and the second claim follows
from the first one. This completes the proof of the two claims. Since the second
claim, instantiated with j = n, implies that the variable assignment returned by
the algorithm is a post-solution of the lower monotonization of the system, it is
sound. And by Lemma [I]3, it then is also a post-solution of the original abstract
system whenever all right-hand sides are monotonic. ad

C Proof of Theorem 3

Assume that only finitely many variables are encountered during the run of the
algorithm, i.e., from some point neither domg nor dom; receive new elements.
Since solvey(y) is called before the variable y is added to dom;, and solvey(y)
enforces that y is included in domg, we have that dom; C domg throughout the
algorithm. Due to the initial call solve; (yo,0), yo is contained in Y7 implying the
first item in the list.

Variables y are added into sets infl[z] only during the evaluation of a call to
eval; and after an appropriate call to solve; — implying that y is contained in
dom; whenever eval; was called inside a call do_var;(y). Accordingly, all vari-
ables added to the priority queue necessarily are contained in domg. Thus, all
variables for which do_ varg is called at a call of iterateg(n) are all contained in
domg, while all variables for which do_var; is called at a call of iterate;(n) are
already contained in dom;. Therefore, we define Y; = dom; when the iteration
has terminated for ¢ = 0,1. We claim that for every priority n, the following
holds:

1. Every call iterateg(n) during the evaluation of solvey(0, yo) terminates.



2. Every call iterate; (n) during the evaluation of solve; (0,y0) terminates as
well.

In order to prove the first claim, assume for a contradiction that there is some
n such that the call iterateg(n) does not terminate. Since Yj is finite, there must
by a variable y of maximal priority prio(y) < n so that do_vary(y) is evaluated
infinitely often. This means that from some point on, y is the variable of maximal
priority for which do_ var is called. Let d;,7 > 0 denote the sequence of the new
values for y. We claim that for every ¢ > 0, d;+1 = d; V a; holds for some suitable
value a;. This holds if y € point from the first evaluation onward. Clearly, if this
were the case, we arrive at a contradiction, as any such widening sequence is
ultimately stable. Accordingly, it remains to prove that from the first evaluation
onward, y is contained in point — whenever do_vary(y) is called. Assume for
a contradiction that there is a first such call where y is not contained in point.
Assume that this call provided the ith value d; for y. This means that, since the
last evaluation of fg, no query to the value of y during the evaluation of lower
priority variables has occurred. Accordingly, the set infl[y] does not contain any
lower priority variables, which means that no further variable is evaluated before
the next call do_ vary(y). But then this next evaluation of fg will return the value
a. Subsequently, the queue @) does no longer contain variables of priority less then
or equal to n, and therefore the iteration would terminate — in contradiction to
our assumption.

Now consider the second claim. For a contradiction now assume that there is
some n so that the call iterate; (n) does not terminate. Since every call iterateg(m)
encountered during its evaluation is already known to terminate, we conclude
that there must be a variable y of priority less then or equal to n so that
do_var(y) is evaluated infinitely often. As before this means that from some
point on, y is the variable of maximal priority for which do_var; (y) is called. Let
d;,1 > 0 denote the sequence of the new values for y. We claim that for every
1 >0, diy1 = d; Aa; holds for some suitable value a;. This holds if d; C d;11
and y € point from ¢ = 1 onward. Again, if this were the case, we arrive at a
contradiction, as any such widening sequence is ultimately stable. Accordingly,
it remains to prove that from the first evaluation onward, y is contained in point
— whenever do_var;(y) is called. This, however, follows by the same argument
as for iterateg(y). This completes the proof of the claim.

By the claim which we have just proven, each occurring call iterate;(n) will
terminate. From that, the termination of the call solve; (o, 0) follows as stated
by the theorem.

It remains to prove the remaining two assertions of the enumeration. Again,
we assume that only finitely many variables are encountered in a run of the local
two-phase solver when started for a variable yg, and assume that after some
call to do_ var;, no further variable is added to domg, and likewise no further
variable is added to dom;. In order to prove the second assertion, we prove that
the following invariants hold before every call do_ var;(y1):

1. For every variable y in the current domain domg, infl[y] contains (at least)
all variables z ¢ Q U {y1} whose last evaluation of f# has called eval;(y);



2. If y € domo\(Q U {w1}), then aoly] I fH(T @ a9);
3. It y € dom1\(Q U {y1}), then ou[y] I f*(T @ o1);

Here, T is the variable assignment which maps each variable in Yy to T. Here, we
only prove the second invariant. For that, consider a call to do_vary(y1). If this
is the very first call of do_var; for y;, then this occurs inside a call solve; (y1).
Accordingly, the value o1[y] has been initialized to og[y]. Then we have, by the
first invariant:

o1y1] = oolyr] 2 f5 (T @ 00) 3 izl (I @ oo)

At that moment, the priority queue does not contain any variable y with priority
less or equal the priority of y;, implying that for all these y, o1[y] 3 L’i (I®or)
holds. This property is preserved by updating oi[y;] with a value exceeding
f 21 (T & 01). Accordingly, all variables z from infl[y;] with priority less or equal
to y1 will subsequently be iterated upon with iterate;. But since these variables
z satisfy o1[z] 3 iﬁ (L ® 01), the invariant holds for the calls of do_var; therein.

By construction, 0 is the maximal priority of any variable. yo receives the
least priority. Therefore, solve; (0,yo) returns with an empty queue Q. By the
second invariant the second assertion of the theorem follows. a

D Proof of Theorem [

By Theorem M the only condition for TSMP to terminate is that only finitely
many variables are encountered. No further assumptions, e.g., w.r.t. monotonic-
ity of right-hand sides must be made as in [4J2]. Upon termination, the algorithm
is guaranteed to return sound results. The returned variable assignment is a
(partial) post-solution of the lower monotonization of the system, which means
it may not necessarily be a post-solution of the original system — given that
some right-hand sides are not monotonic.

Assume that only variables from the finite set Yy are encountered during the
run of the algorithm. We claim that for every priority ¢, the following holds:

1. Every call iterate(true, ) during the evaluation of solve yy terminates.
2. Every call iterate(false, 7) during the evaluation of solve yo terminates as well.

In order to prove the first claim, assume for a contradiction that there is
some ¢ such that the call iterate(true,i) does not terminate. Note that then
any subsequent call to do_var as well as iterate will always be evaluated for the
Boolean value true. Since Yj is finite, there is a variable y of maximal priority
prio(y) < i so that do_ var(true, y) is evaluated infinitely often. This means that
from some point on, y is the variable of maximal priority for which do_ var is
called. Let d;, 7 > 0 denote the sequence of the new values for y. We claim that for
every i > 0, d;11 = d; A a; holds for some suitable value a;. This holds if y € point
from the first evaluation onward. Clearly, if this were the case, we arrive at a
contradiction, as any such narrowing sequence is ultimately stable. Accordingly,



it remains to prove that from the first evaluation onward, y is contained in point

— whenever do_var(true, y) is called. Assume for a contradiction that there is a
first such call where y is not contained in point. Assume that this call provided
the ith value d; for y. This means in particular that, since the last evaluation of
fﬁ, no query to the value of y during the evaluation of lower priority variables
has occurred. Accordingly, the set infl[y] does not contain any lower priority
variables, which means that no further variable is evaluated before the next call
do_var(true,y). But then this next evaluation of fg will return the value a.
Subsequently, the queue ) does no longer contain variables of priority < ¢, and
therefore the iteration would terminate — in contradiction to our assumption.

Let us therefore now consider the second claim. For a contradiction now
assume that there is some ¢ so that the call iterate(false,:) does not termi-
nate. Since every call iterate(true, j) encountered during its evaluation is already
known to terminate, we conclude that there must be a variable y of maximal
priority <4 so that do_var(false, y) is evaluated infinitely often. As before this
means that from some point on, y is the variable of maximal priority for which
do_ var(false,y) is called. Let d;, i > 0 denote the sequence of the new values for
y. We claim that for every i > 0, d;11 = d; V a; holds for some suitable value
a; where y € point from ¢ = 1 onward. Again, if this were the case, we arrive
at a contradiction, as any such widening sequence is ultimately stable. Accord-
ingly, it remains to prove that from the first evaluation onward, y is contained in
point — whenever do_ var(false, y) is called. This, however, follows by the same
argument as for iterate(true, y). This completes the proof of the claim.

Now assume that only finitely many variables are encountered in a run of
TSMP when started for a variable x, and assume that after some call to do_ var,
no further variable is encountered. Let Yy denote this set of variables. By the
claim which we have just proven, each subsequent call to the function iterate will
terminate. From that, the termination of the call solveyy follows as stated by
the theorem.

It remains to prove the second assertion. We remark that, whenever a new
variable is encountered, it is added into the set dom and never removed. Let
Yp again denote the finite set of variables encountered during solveyy, i.e., the
final value of dom. In particular, yg is contained in Yp. In order to prove the
second assertion, we note that the following invariants hold before every call
do_var(b,y1):

1. For every variable y in the current domain dom, infl[y] contains (at least) all
variables z € Q U {y;} whose last evaluation of f has called eval y;

2. 1f y € dom\(Q U {y1}), then ofy] I f*(T ® 0);
3. If b = true, then ofy;] 3 iﬁyl (I®o).

Here, T is the variable assignment which maps each variable in Yy to T. In
order to see the second statement, we observe that iteration on a variable always
starts with the flag false. Now consider a call to do_var(false, y;) where b’ is
set to true. This is the case when o[y1] 3 tmp where tmp is the value of the last



evaluation of the right-hand side of y;. Accordingly,
oln] 3 i, (Teo) 31 (Teo)

At that moment, the priority queue does not contain any variable y with priority
less or equal the priority of y;, implying that for y, ofy] 3 ii(l @ o) holds.
This property is preserved by updating o[y;] with a value exceeding L’i (I ®o).
Accordingly, all variables z from infl[y;] with priority less or equal to y; will
subsequently be iterated upon with b = true. But since these satisfy o[z] 3
f i (T & o), the invariant holds for the calls of do_ var therein.

By construction, yg receives the least priority. Therefore, solve yg returns with

an empty queue Q. By the second invariant the second assertion of the theorem
follows. O
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