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Abstract This paper presents a framework to derive instantiation-based decision proce-
dures for satisfiability of quantified formulas in first-order theories, including its correctness,
implementation, and evaluation. Using this framework we derive decision procedures for
linear real arithmetic (LRA) and linear integer arithmetic (LIA) formulas with one quan-
tifier alternation. We discuss extensions of these techniques for handling mixed real and
integer arithmetic, and to formulas with arbitrary quantifier alternations. For the latter, we
use a novel strategy that handles quantified formulas that are not in prenex normal form,
which has advantages with respect to existing approaches. All of these techniques can be
integrated within the solving architecture used by typical SMT solvers. Experimental results
on standardized benchmarks from model checking, static analysis, and synthesis show that
our implementation in the SMT solver CVC4 outperforms existing tools for quantified linear
arithmetic.

1 Introduction

Among the biggest challenges in automated reasoning is efficient support for quantifiers
in the presence of background theories. Quantifiers enable direct encoding of a number of
problems of interest, including synthesis of software fragments from specifications [34, 50,
56], construction of transfer functions for program analysis [40], invariant inference [14,27],
as well as analysis of properties that go beyond safety [10, 11].

The most commonly used complete method for deciding constraints over quantified the-
ories is quantifier elimination [29, Section 2.7]. Quantifier elimination algorithms typically
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solve a more general problem, of transforming arbitrary quantified formula with free vari-
ables into a theory-equivalent formula with no quantifiers. However, depending on the par-
ticular variant of the language of constraints, performing actual quantifier elimination can
have worse complexity than the decision problem [9], in part because it is required to give
an answer on any formula, and the smallest formula resulting from quantifier elimination
can be very large [64]. When the goal is to decide the satisfiability of quantified constraints,
quantifier elimination may be doing unnecessary work. More importantly, procedures based
on quantifier elimination often do not handle the underlying ground constraints in the most
efficient way. Thus, quantifier elimination tends to be prohibitively expensive in practice.
Recent work involving quantifier elimination [12,41] has been motivated by avoiding worst-
case performance by effectively computing an equisatisfiable set of ground formulas in a
lazy fashion.

In the broader scope of automated theorem proving, it is often important to reason about
formulas involving multiple theories, each of which may or may not support quantifier elim-
ination. In practice, the goal is to obtain a framework for handling quantified formulas that
is both complete for formulas belonging to decidable logics, and empirically effective when
completeness guarantees are not known. To this end, modern SMT solvers most commonly
use heuristic instantiation-based approaches [18], which are incomplete but work well in
practice for undecidable fragments of first-order logic. A long term goal of this work is
to capitalize both on recent advances in specialized techniques for quantified linear arith-
metic [12, 13, 32, 44], and recent advances in instantiation-based theorem proving for first-
order logic [17, 24, 51].

In this paper, we introduce an approach for establishing the satisfiability of formulas in
quantified linear arithmetic based on a new quantifier instantiation framework. The use of
quantifier instantiation for this task is motivated by the following.

– Procedures based on lazy quantifier instantiation typically establish satisfiability much
faster than their theoretical complexity.

– Using quantifier instantiation for decidable fragments enables a uniform integration and
composition with existing instantiation-based techniques [17, 18, 51], which are widely
used by modern SMT solvers.

– An important class of synthesis problems can be expressed as quantified formulas with
one quantifier alternation. As shown in [50], solutions for these problems can be ex-
tracted from an unsatisfiable core of quantifier instantiations.

Related Work Quantifier elimination has been used to, e.g., show decidability and clas-
sification of Boolean algebras [55, 61], Presburger arithmetic [46], decidability of prod-
ucts [22, 42], [39, Chapter 12], and algebraically closed fields [60]. The original result on
decidability of Presburger arithmetic is by Presburger [46]. The space bound for Presburger
arithmetic was shown in [23]. The matching lower and upper bounds for Presburger arith-
metic were shown in [9], see also [33, Lecture 24]. An analysis parameterized by the number
of quantifier alternations is presented in [48]. A mechanically verified quantifier elimination
algorithm was developed by Nipkow [43].

An approach for lazy quantifier elimination for linear real arithmetic was developed by
Monniaux [41]. Integration of linear quantifier elimination into the solving algorithm used
by SMT solvers was developed in [12], though the presented integration is not model driven.
A lazy approach for quantifier elimination, which relies on an operation called model-based
projection, has been developed in the context of SMT-based model checking [32], and can
be used for extracting Skolem functions for simulation synthesis [21]. An efficient approach
for quantified linear real arithmetic that is based on finding player strategies for establishing
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satisfiability is given in [20]. A recent approach involving quantified formulas with arbitrary
alternations has been developed by Bjørner et al [13] for several background theories, which
is closely related to the approach in this paper. By comparison, their approach is described
in terms of a model-based projection operation whereas ours is based on instantiation. Ad-
ditionally, their strategy for handling quantified formulas with multiple alternations assumes
quantified formulas are in prenex form, whereas ours handles a more general grammar of
quantified formulas that includes those not in prenex normal form. We will comment more
on the technical differences between these two approaches in the later sections.

The most widely used techniques for quantifier instantiation in SMT were developed
in [18], and later in [17, 25], which primarily focused on quantified formulas with uninter-
preted functions. Our approach for quantified linear arithmetic instantiates quantified for-
mulas based on a lazy stream of candidate models, terminating when either it finds a finite
set of instances are unsatisfiable, or discovers that the original formula is satisfiable. Other
approaches in this spirit have been used for quantified Boolean formulas [31], quantified
bit-vectors [66], the essentially uninterpreted fragment [26], and, more generally, theories
having a locality property [5, 30]; these works do not directly apply to quantified linear
arithmetic. A recent approach for quantified formulas with one quantifier alternation has
been developed in the SMT solver Yices [19]. The present paper builds upon our previous
work for solving synthesis conjectures using quantifier instantiation in SMT [50], where an
approach for quantified linear arithmetic was described without a specific method for se-
lecting instances and without completeness guarantees. While the present paper focuses on
linear arithmetic, where it outperforms existing approaches, we expect the presented frame-
work to be relevant for other quantified theories. Among the examples of further decidable
quantified constraints are quantified theories of term algebras [39, Chapter 23], [38, 57] and
their extensions [15, 35, 52], feature trees [4, 62], and monadic second-order theories [63].

Contributions This paper makes the following contributions. First, we define a general
class of instantiation-based procedures for establishing the satisfiability of quantified for-
mulas in Section 2. We demonstrate instances of the procedure are sound and complete for
formulas over linear real arithmetic (LRA) and linear integer arithmetic (LIA) with one
quantifier alternation in Sections 3 and 4, two quantified fragments for which many current
SMT solvers do not have efficient support for. We describe how these two procedures can be
combined for mixed real and integer arithmetic (LIRA) in Section 5, although completeness
for this fragment is left for future work. We show how our procedure can be integrated into
the solving architecture used by SMT solvers and how the procedure can be used for solv-
ing formulas with arbitrary quantifier alternation in Section 6. A key feature of our strategy
for handling quantifier alternations is that we do not impose the restriction that quantified
formulas must be in prenex normal form. We show how instantiation procedures can be
used in part for solving synthesis problems in Section 7. Our approach is sound and com-
plete for quantified linear arithmetic and is based purely on quantifier instantiation, which
has the advantage of being composable with existing techniques and whose soundness is
straightforward to verify. Section 8 gives experimental results for an implementation of the
procedures for LIA and LRA in the SMT solver CVC4, which in addition to having the
aforementioned advantages, outperforms state-of-the-art SMT solvers and theorem provers
for quantified linear arithmetic benchmarks.
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1.1 Preliminaries

We consider formulas in multi-sorted first-order logic. A signatureΣ consists of a countable
set of sort symbols and a set of function symbols. Given a signature Σ, well-sorted terms,
atoms, literals, and formulas are defined as usual, and referred to respectively as Σ-terms.
We denote by FV (t) the set of free variables occurring in the term t, and extend this notion
to formulas. A Σ-term or formula is ground if it has no free variables. We will consider
term tuples (t1, . . . , tn), and denote them by letters in bold font, e.g. t. A term written t[k]
denotes a term whose free variables are in the tuple k. A formula is closed if it has no free
variables.

A Σ-interpretation I maps

– each set sort symbol τ ∈ Σ to a non-empty set τI , the domain of τ in I,
– each function f ∈ Σ of sort τ1× . . .× τn → τ to a total function fI of sort τI1 × . . .×
τIn → τI where n > 0, and to an element of τI when n = 0, and

– each variable x of sort τ to an element of τI .

We write tI to denote the interpretation of t in I, defined inductively as usual. A satisfia-
bility relation between Σ-interpretations and Σ-formulas, written I |= ϕ, is also defined
inductively as usual. In particular, we assume that I |= ¬ϕ if and only if it is not the case
that I |= ϕ. We say that I is a model ofϕ if I satisfiesϕ. Formulasϕ1 andϕ2 are equivalent
(up to k) if they are satisfied by the same set of models (when restricted to the interpretation
of variables k).

A theory is a pair T = (Σ, I) where Σ is a signature and I is a non-empty set of Σ-
interpretations, the models of T . We assume Σ contains the equality predicate, which we
denote by≈. Let JϕKT denote the set of T -models of ϕ. Observe that J¬ϕKT = I\ JϕKT . A
Σ-formula ϕ[x] is T -satisfiable if it is satisfied by some interpretation in I (i.e. JϕKT 6= ∅).
Dually, a Σ-formula ϕ[x] is T -unsatisfiable if it is satisfied by no interpretation in I (i.e.
JϕKT = ∅). A formula ϕ is T -valid if every model of T is a model of ϕ (i.e., JϕKT = I).

A set Γ of formulas T -entails aΣ-formula ϕ, written Γ |=T ϕ, if every model of T that
satisfies all formulas in Γ satisfies ϕ as well. A set of literals M propositionally entails a
formula ϕ, writtenM |=p ϕ, ifM entails ϕ when considering all atomic formulas inM ∪ϕ
as propositional variables; such entailment is that of propositional logic and is independent
of the theory.

We write RA (resp. IA) to denote the theory of real (resp. integer) arithmetic. Its signa-
ture consists of the sort Real (resp. Int), the binary predicate symbols > and <, functions +
and · denoting addition and multiplication, and the constants of its sort interpreted as usual.
We write t ≤ s as shorthand for ¬(t > s), and t ≥ s as shorthand for ¬(t < s). We write
LRA (resp. LIA) to denote the language of linear real (resp. integer) arithmetic formulas,
that is, whose literals are of the form (¬)(c1 ·x1+. . .+cn ·xn ./ c) where c1, . . . , cn, c and
x1, . . . , xn are non-zero constants and distinct variables of sort Real (resp. Int) respectively,
and ./ is one of >, <, or ≈. For each literal of this form, there exists an equivalent literal
that is in solved form with respect to xi for each i = 1, . . . , n. That is, an LRA-literal is in
solved form with respect to x if it is of the form (¬)(x ./ t), where x 6∈ FV (t). Similarly,
an LIA-literal is in solved form with respect to x if it is of the form (¬)(c · x ./ t), where
x 6∈ FV (t) and c is an integer constant greater than zero. For integer constants c1 and c2
and non-zero constant c, we write c1 ≡c c2 to denote that c1 and c2 are congruent modulo
c, that is (c1 mod c) = (c2 mod c), and we write c | c1 if c divides c1.
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PS(∃k ∀xϕ[k,x]):
Let Γ := ∅ and e be a tuple of fresh variables of the same type as x.
Repeat

If Γ is T -unsatisfiable, then return “unsat”.
If Γ ′ = Γ ∪ {¬ϕ[k, e]} is T -unsatisfiable, then return “sat”.
Otherwise,

Let I be a model of T and Γ ′ and let t[k] = S(I, Γ,¬ϕ[k, e], e).
Γ := Γ ∪ {ϕ[k, t[k]]}.

Fig. 1 An instantiation-based procedure PS for determining the T -satisfiability of ∃k ∀xϕ[k,x], parame-
terized by selection function S.

We write LIRA to denote the language of mixed linear real and integer arithmetic for-
mulas, that is, linear arithmetic formulas where variables and constants may be of either real
or integer sort.

2 Counterexample-Guided Quantifier Instantiation

In this section, we assume a fixed theory T and a language L that is closed under negation
and such that the satisfiability of finite sets of L formulas modulo T is decidable. We present
a procedure for checking satisfiability of formulas in the languageQ(L) = {∃k ∀xϕ[k,x] |
ϕ[k,x] ∈ L}.

2.1 An Instantiation Procedure and Its Soundness

Figure 1 presents an instantiation-based procedure for determining the satisfiability of a
T -formulas ∃k ∀xϕ[k,x], where ϕ[k,x] belongs to L. The procedure introduces a tuple
of distinct fresh variables e of the same sort as x. It maintains a set of formulas Γ , initially
empty, and terminates when either Γ or Γ∪{¬ϕ[k, e]} is T -unsatisfiable. On each iteration,
the procedure invokes the subprocedure S (over which the procedure is parameterized),
which returns a tuple of terms t[k] whose free variables are a subset of k. We then add to Γ
the formula ϕ[k, t[k]]. We call S the selection function of PS .

Definition 1 A selection function (for L) takes as arguments an interpretation I, a set of
formulas Γ , and a formula ¬ϕ[k, e] in L, and a tuple of variables e, where I |= Γ ∪
¬ϕ[k, e]. It returns a tuple of terms t[k] such that ϕ[k, t[k]] is also in L.

The intuition of the algorithm in Figure 1 is to find a subset of the instances of ∀xϕ[k,x]
that are either (a) unsatisfiable, and are thus sufficient for showing that ∀xϕ[k,x] is unsat-
isfiable, or (b) satisfiable and entail ∀xϕ[k,x]. The algorithm recognizes the latter case by
checking the satisfiability of Γ ∪ ¬ϕ[k, e] on each iteration of its main loop. In either case,
the algorithm may terminate before enumerating all instances of ∀xϕ[k,x].

The procedure above is agnostic to the theory T . We remark that similar instantiation-
based procedures have been developed in recent SMT solvers [19,50]. In this paper, we will
focus on instantiation-based procedures for linear arithmetic, giving technical comparisons
to existing approaches when applicable.

We first show that the procedure always returns correct results, regardless of the behavior
of the selection function, leaving the termination question for the next subsection. We first
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prove that when the procedure terminates, the input to the procedure is equivalent to Γ . This
means that the procedure PS can perform quantifier elimination by means of tracking the
contents of Γ .

Lemma 1 If PS terminates when Γ = {ϕ[k, t1], . . . , ϕ[k, tn]}, then ∃k ∀xϕ[k,x] is
equivalent to ∃kϕ[k, t1] ∧ . . . ∧ ϕ[k, tn].

Proof First, clearly all models of ∃k ∀xϕ[k,x] also satisfy ∃kϕ[k, t1] ∧ . . . ∧ ϕ[k, tn],
since each ϕ[k, ti] is a consequence of ∀xϕ[k,x].

To show the opposite direction of the equivalence, in the case that PS terminates with
“unsat”, we have that Γ is T -unsatisfiable, and thus ∃kϕ[k, t1] ∧ . . . ∧ ϕ[k, tn] is T -
unsatisfiable. Thus, it is vacuously the case that all of its models satisfy ∀xϕ[k,x]. In the
case thatPS terminates with “sat”, we have that Γ is T -satisfiable and Γ ′ = Γ∪{¬ϕ[k, e]}
is T -unsatisfiable. Since the only formulas added to Γ are of the form ϕ[k, t[k]], the vari-
ables e do not occur in Γ , and thus Γ ∪ {∃x¬ϕ[k,x]} is T -unsatisfiable as well. Let I
be a model of Γ . Since I is not a model of Γ ∪ {∃x¬ϕ[k,x]}, it must be the case that
I 6|= ∃x¬ϕ[k,x], and hence I is a model for ∃k ∀xϕ[k,x]. Thus, in this case all models
of ∃kϕ[k, t1] ∧ . . . ∧ ϕ[k, tn] also satisfy ∃k ∀xϕ[k,x]. Thus, the lemma holds. ut

Corollary 1 If PS terminates with “unsat”, then ∃k ∀xϕ[k,x] is T -unsatisfiable.

Proof PS terminates with “unsat” only if Γ is T -unsatisfiable. Thus by Lemma 1, we have
that ∃k ∀xϕ[k,x] is T -unsatisfiable as well. ut

Corollary 2 If PS terminates with “sat”, then ∃k ∀xϕ[k,x] is T -satisfiable.

Proof PS terminates with “sat” only if Γ is T -satisfiable. Thus by Lemma 1, we have that
∃k ∀xϕ[k,x] is T -satisfiable as well. ut

2.2 Termination of the Instantiation Procedure

The following properties of selection functions are of interest for showing the procedure PS
terminates.

Definition 2 (Finite) A selection function S is finite for ϕ[k, e] if there exists a finite set
S∗(ϕ[k, e], e) such that S(I, Γ,¬ϕ[k, e], e) ∈ S∗(ϕ[k, e], e) for all I, Γ .

Definition 3 (Monotonic) A selection function S is monotonic for ϕ[k, e] if whenever Γ |=
ϕ[k, t], we have that S(I, Γ,¬ϕ[k, e], e) 6= t.

Observe that, if S is a monotonic selection function, then for any finite list of terms t1, . . . tn
we have S(I, {ϕ[k, t1], . . . , ϕ[k, tn]},¬ϕ[k, e], e) /∈ {t1, . . . , tn}.

Definition 4 (Model-Preserving) A selection function S is model-preserving for ϕ[k, e] if
whenever S(I, Γ,¬ϕ[k, e], e) = t, we have that I |= ¬ϕ[k, t].

Lemma 2 A selection function that is model-preserving for ϕ[k, e] is also monotonic for
ϕ[k, e].

Proof Assume that S is model-preserving for ϕ[k, e] and that S(I, Γ,¬ϕ[k, e], e) = s.
By definition of model-preserving, we have that I |= ¬ϕ[k, s]. Thus, for each t such that
I |= ϕ[k, t], we have that s 6= t. Thus, S is monotonic for ϕ[k, e]. ut
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Theorem 1 If S is finite and monotonic for ϕ[k, e] in L, thenPS is a (terminating) decision
procedure for the T -satisfiability of ∃k ∀xϕ[k,x].

Proof Given a monotonic and finite S, the procedurePS can only execute a finite number of
iterations. Assuming a decision procedure for determining the T -satisfiability of T -formulas
in L,PS(∃k ∀xϕ[k,x]) must terminate. By Corollaries 1 and 2,PS is a decision procedure
for the T -satisfiability of ∃k ∀xϕ[k,x]. ut

By this result, we obtain a sound and complete instantiation strategy from Figure 1 by
virtue of constructing a selection function that is finite and monotonic for formulas residing
in a language L of interest. It is important to note that the property of being both finite and
monotonic is a sufficient condition of a selection function for proving the termination of an
instantiation-based procedure according to the algorithm in Figure 1, although it is not the
only sufficient condition for doing so.

In this paper we will construct selection functions S that are finite and monotonic for all
ϕ[k,x] in quantifier-free linear real and integer arithmetic.

3 Instantiation for LRA-Formulas

Consider the case where k and x are vectors of Real variables and L is the class of quantifier-
free LRA-formulas ϕ[k,x]. For simplicity of the presentation, we assume that equalities are
eliminated from ϕ by the transformation:

t ≈ 0  0 ≤ t ∧ 0 ≥ t

As a result of Theorem 1, to devise a sound and complete instantiation-based procedure
for deciding the satisfiability of ∃k ∀xϕ[k,x], it suffices to devise a finite and monotonic
selection function for LRA, which we describe in the following.

Figure 2 gives a selection function SLRA for LRA, which takes an interpretation I, a
set of formulas Γ , the formula ¬ϕ[k, e], and the tuple of variables e. It invokes the recur-
sive procedure SR which constructs a term corresponding to each variable in e. Analogous
to existing approaches for linear quantifier elimination [36, 43], we assume that the sig-
nature of linear real arithmetic contains non-standard terms for symbolically representing
substitutions (often referred to as virtual terms). In particular, we consider a signature that
contains a free distinguished constant δ of sort Real, representing an infinitesimal positive
value. Any quantifier-free constraint containing δ is equivalent to one that does not by the
transformations:

δ < t 0 < t and δ > t 0 ≥ t where δ 6∈ FV (t).

Thus we may assume without loss of generality that ¬ϕ[k, e] contains no occurrence of δ.
For each variable ei from e, the procedure SR invokes the (non-deterministic) subpro-

cedure SR0, which chooses a term corresponding to ei based on a set of literals M over the
atoms of ψ which propositionally entail ψ and are satisfied by I, which we call a propo-
sitionally satisfying assignment for ψ. We partition M into three sets M`, Mu and Mc,
where M` contains literals that correspond to lower bounds for e, Mu contains literals that
correspond to upper bounds for e, and Mc contains the remaining literals. The sets M` and
Mu are equivalent to sets of literals that are in solved form with respect to e. When M`
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SLRA(I, Γ,¬ϕ[k, e], e):
Return SR(I,¬ϕ[k, e], e, ())

SR(I, ψ, (ei, . . . , en), t):
If i > n, return t
Otherwise, let ti = SR0(I, ψ, ei), σ = {ei 7→ ti}
Return SR(I, ψσ, (ei+1, . . . , en), (tσ, ti))

SR0(I, ψ, e):
Let M =M` ∪Mu ∪Mc be such that:

– I |=M and M |=p ψ,
– M` ⇔ {e � `1, . . . , e � `n},
– Mu ⇔ {e ≺ u1, . . . , e ≺ um}, and
– e 6∈ FV (`1, . . . , `n) ∪ FV (u1, . . . , um) ∪ FV (Mc).

Return one of


`i + δ`i n > 0,max{(`1 + δ`1)

I , . . . , (`n + δ`n)
I} = (`i + δ`i )

I

uj − δuj m > 0,min{(u1 − δu1 )I , . . . , (um − δum)I} = (uj − δuj )I

0 n = 0 and m = 0

Fig. 2 A selection function SLRA for linear real arithmetic LRA. Each ≺ is either < or ≤; δ`i is δ if the
ith lower bound for e is strict, and 0 otherwise. Similarly, each � is either > or ≥; δuj is δ if the jth upper
bound for e is strict, and 0 otherwise.

contains at least one literal, we may return the lower bound whose value is maximal accord-
ing to I, and similarly for Mu. If both M` and Mu are empty, we return the term 0. When
SR0 returns the term ti, we apply the substitution {ei 7→ ti} to ψ and t, and append ti
to t. Terms returned by SR0 may involve the constant δ. We define a satisfiability relation
between models and formulas involving δ, as well as the max and min function for terms
involving δ in the obvious way, such that (t1 + c1 · δ)I > (t2 + c2 · δ)I if either tI1 > tI2
or both tI1 = tI2 and c1 > c2.

Overall, SLRA returns a tuple of terms t, after which we add ϕ[k, t] to Γ in Figure 1.

Lemma 3 SLRA is finite for ϕ[k, e].

Proof We first show only a finite number of terms can be returned by SR0(I, (¬ϕ[k, e])σ, e)
for any I, σ, e. Let A be the set of atoms occurring in ϕ[k, e]σ. The literals in satisfying as-
signments of (¬ϕ[k, e])σ are over these atoms. Let {e > t1, . . . , e > tn, e < s1, . . . , e <
sm} be the set of atoms that are in solved form with respect to e that are equivalent to the
atoms of A containing e, where e 6∈ FV (t1, . . . , tn, s1, . . . , sm). The terms returned by
SR0(I, (¬ϕ[k, e])σ, e) are in the set:

{0, t1(+δ), . . . , tn(+δ), s1(−δ), . . . , sm(−δ)}

Notice that literals over the atoms in A may occur either with positive or negative polarity
in M . Thus for each literal e < ti for i = 1, . . . , n, SR0 may either return ti + δ when
considering (e > ti) in M as a lower bound for e, or ti when considering ¬(e > ti) in M ,
which is equivalent to (e ≤ ti), as an upper bound for e. Similarly we consider two cases
for each literal e > si for i = 1, . . . ,m. Since there are only a finite number of recursive
calls to SR within SLRA, and each call appends only a finite number of possible terms to t,
the set of possible return values of SLRA is finite, and thus it is finite for ϕ[k, e]. ut

Lemma 4 If I is a model for LRA and for the quantifier-free formula ψ, then I is also a
model for ψ{e 7→ SR0(I, ψ, e)}.
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Proof Let M be a set of literals of the form described in the definition of SR0 for I, ψ and
e. Consider the case where SR0(I, ψ, e) = `i + δ`i for some i, where n > 0. We show that
I satisfies M{e 7→ `i + δ`i}. First, since max{(`1 + δ`1)

I , . . . , (`n + δ`n)
I} = (`i + δ`i )

I ,
we know that I satisfies M`{e 7→ `i + δ`i}. In the case that the bound on e we consider is
strict, that is, e > `i ∈ M`, then δ`i is δ, and `Ii < uIj for all j ∈ {1, . . . ,m}. Thus, I
satisfies (`i+δ ≺ uj) = (e ≺ uj){e 7→ `i+δ}. In the case that the bound on e we consider
is non-strict, that is, if e ≥ `i ∈ M`, then δ`i is 0, and `Ii ≤ uIj for all j ∈ {1, . . . ,m}.
Thus, I satisfies (`i ≺ uj) = (e ≺ uj){e 7→ `i}. In either case, we have that I satisfies
each literal in Mu{e 7→ `i + δ`i}. Finally, I clearly satisfies Mc{e 7→ `i + δ`i} = Mc.
The case when m > 0 is symmetric to the case when n > 0. In the case where n = 0
and m = 0, we have that ψ does not contain e, and I satisfies M{e 7→ 0}. In each case, I
satisfies M{e 7→ SR0(I, ψ, e)}, which entails ψ{e 7→ SR0(I, ψ, e)}, and thus the lemma
holds. ut

Lemma 5 SLRA is model-preserving for ϕ[k, e].

Proof Assume SLRA(I, Γ,¬ϕ[k, e], e) returns t. By definition of selection function, I and
¬ϕ[k, e] are such that I |= ¬ϕ[k, e]. By repeated applications of Lemma 4, we have that I
satisfies all inputs ψ to SR. When SR terminates, ψ is ¬ϕ[k, t], and thus I |= ¬ϕ[k, t]. ut

Theorem 2 PSLRA
is a sound and complete procedure for determining the LRA-satisfiability

of ∃k ∀xϕ[k,x].

Proof By Theorem 1 and Lemma 2 of our framework as well as LRA-specific Lemma 3
and Lemma 5. ut

We illustrate the procedure through examples. SR0 is non-deterministic; we choose
instantiations only based on the lower bounds M` found in the procedure SR0, though the
procedure is free to choose its instantiations based on the upper bounds Mu as well. We
underline the literal in M` corresponding to the bound whose value is maximal in I. Γ
is initially empty and on each iteration Γ ′ is the union of Γ and the Skolemized negation
¬ϕ[e] of the input formula ∀xϕ[x], where e are fresh variables of the same sort as x. Each
round of SLRA computes a tuple t[k], which is used to instantiate our quantified formula in
Figure 1. The last column shows the corresponding instance of the quantified formula after
simplification, including the elimination of δ.

Example 1 Consider the formula ∀x (x ≤ a ∨ x ≤ b). Let e be a fresh Skolem variable of
the same sort (Real) as x. The Skolemized negation of this formula is ¬(e ≤ a ∨ e ≤ b),
which simplifies to (e > a∧ e > b). The iterations of the loop of PSLRA

are summarized in
the following table, where Γ is initially empty, and Γ ′ is obtained by adding (e > a∧e > b)
to Γ on each iteration.

SR0(I, ψ, e)
# Γ Γ ′ e M` return t[k] Add to Γ
1 sat sat e {e > a, e > b} a+ δ (a+ δ) a < b
2 sat sat e {e > a, e > b} b+ δ (b+ δ) b < a
3 unsat

On the first iteration, Γ and Γ ′ = {e > a ∧ e > b} are satisfiable by a model, call it I1,
where assume that eI1 = 2, aI1 = 1, bI1 = 0. We call SR0 with inputs I1, (e > a∧e > b),
and e. A propositionally satisfying assignment M for (e > a ∧ e > b) includes both these
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literals, and the set of lower bounds M` for e on this iteration is {e > a, e > b}. Since
aI1 > bI1 , the procedure SR0 finds that the literal e > a gives the maximal lower bound
for e, and hence it returns the term a+δ. The disjuncts of the instance a+δ ≤ a∨a+δ ≤ b
added to Γ on the first iteration simplify to ⊥ and a < b respectively. On the second
iteration, Γ and Γ ′ = {e > a ∧ e > b, a < b} are still satisfiable with a model, call it
I2, where assume that eI2 = 2, aI2 = 0, bI2 = 1. Since now bI2 > aI2 , we have that b
is now the maximal lower bound for e. Hence, SR0 returns b + δ on the second iteration,
and we add the formula b < a to Γ . On the third iteration, Γ contains both a < b and
b < a and hence is LRA-unsatisfiable. Overall, this run shows ∃ab ∀x (a ≥ x ∨ x ≥ b) is
LRA-unsatisfiable. ut

Example 2 To demonstrate how multiple universally quantified variables are handled, con-
sider the formula ∀xy (x+ y < a ∨ x− y < b) whose Skolemized negation after simplifi-
cation is e1 + e2 ≥ a ∧ e1 − e2 ≥ b. A possible run of PSLRA

is as follows.

SR0(I, ψ, e)
# Γ Γ ′ e M` return t[k] Add to Γ
1 sat sat e1 {e1 ≥ a− e2, e1 ≥ b+ e2} b+ e2

e2 {e2 ≥ a−b
2 }

a−b
2 (a+b2 , a−b2 ) ⊥

2 unsat

On the first iteration, since Γ and Γ ′ are satisfiable say with model I1, we first call SR0 on
I1, (e1+e2 ≥ a∧e1−e2 ≥ b), and e1. The setM` contains inequalities that are in solved
form with respect to e1 that correspond to lower bounds for e1 in (e1+e2 ≥ a∧e1−e2 ≥ b),
which are {e1 ≥ a− e2 ∧ e1 ≥ b+ e2}. Assuming b+ e2 is the maximal lower bound for
e1, SR0 returns b+ e2. In the procedure SR, we then apply the substitution {e1 7→ b+ e2}
to (e1 + e2 ≥ a ∧ e1 − e2 ≥ b), giving us (b + e2 + e2 ≥ a ∧ b + e2 − e2 ≥ b), which
simplifies to e2 ≥ a−b

2 . Calling SR0 again with input I1, this formula, and e2, we have that
M` now is the set {e2 ≥ a−b

2 }, and thus SR0 returns a−b2 for e2. We apply the substitution
{e2 7→ a−b

2 } to the term b + e2 we computed for e1, giving us b + a−b
2 , which simplifies

to a+b
2 . Overall, SLRA returns the tuple of terms (a+b2 , a−b2 ). Applying the substitution

{x 7→ a+b
2 , y 7→ a−b

2 } to our input formula results in the formula (a+b2 + a−b
2 < a ∨

a+b
2 −

a−b
2 < b), which simplifies to⊥. This run shows ∃ab ∀xy (x+ y < a∨ x− y < b)

is LRA-unsatisfiable. ut

Example 3 To demonstrate how quantified formulas with Boolean structure are handled,
consider the formula ∀x ((a < x ∧ x < b) ∨ x < a + b) whose Skolemized negation is
(a ≥ e ∨ e ≥ b) ∧ e ≥ a+ b. A possible run of PSLRA

is as follows.

SR0(I, ψ, e)
# Γ Γ ′ e M` return t[k] Add to Γ
1 sat sat e {e ≥ a+ b} a+ b (a+ b) 0 < b ∧ a < 0
2 sat sat e {e ≥ b, e ≥ a+ b} b (b) 0 < a
3 unsat

On the first iteration, we have that Γ and Γ ′ = {(a ≥ e ∨ e ≥ b) ∧ e ≥ a + b} are
satisfiable with a model, call it I1. In the above run, we assume that I1 satisfies a ≥ e but
not e ≥ b, and hence e ≥ b is not included as a lower bound in M`. We return the instance
for {x 7→ a + b}, which simplifies to 0 < b ∧ a < 0. On the second iteration, the model
for Γ ′, call it I2, must now satisfy 0 < b ∧ a < 0, and hence bI2 > (a + b)I2 > aI2 .
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Since I2 satisfies e ≥ a+ b, it cannot satisfy a ≥ e, and hence it must satisfy e ≥ b. Thus,
on this iteration, M` contains e ≥ b and e ≥ a + b. Moreover since bI2 > (a + b)I2 , we
know that b must be the maximal lower bound for e, and hence we return an instance based
on {x 7→ b}, which simplifies to 0 < a, after which we find that Γ is unsatisfiable. This run
shows ∃ab∀x ((a < x ∧ x < b) ∨ x < a+ b) is LRA-unsatisfiable. ut

Example 4 To demonstrate a case where a variable has no bounds, consider the formula
∀xy (x ≤ y), whose Skolemized negation is e1 > e2. A possible run of PSLRA

on this
input is as follows.

SR0(I, ψ, e)
# Γ Γ ′ e M` return t[k] Add to Γ
1 sat sat e1 {e1 > e2} e2 + δ

e2 ∅ 0 (δ, 0) ⊥
2 unsat

On the first iteration, after choosing e2 + δ for e1, we apply the substitution {e1 7→ e2 + δ}
to Γ ′, giving us the set containing e2+δ > e2, which simplifies to>. Thus when using SR0

to choose a term for e2, we have thatM` contains neither an upper nor a lower bound for e2,
and hence we choose to return the value 0. The instance of our input formula corresponding
to the substitution {x 7→ δ, y 7→ 0} simplifies to ⊥. This run shows ∀xy (x ≤ y) is LRA-
unsatisfiable. ut

Example 5 To demonstrate a non-trivial case using the infinitesimal δ, consider the formula
∀xy (x ≤ 0 ∨ y − 2 · x ≤ 0) whose Skolemized negation is e1 > 0 ∧ e2 − 2 · e1 > 0. A
possible run of PSLRA

on this input is as follows.

SR0(I, ψ, e)
# Γ Γ ′ e M` return t[k] Add to Γ
1 sat sat e1 {e1 > 0} δ

e2 {e2 > 2 · δ} 3 · δ (δ, 3 · δ) ⊥
2 unsat

The instance corresponding to the substition {x 7→ δ, y 7→ 3·δ} is (δ ≤ 0∨3·δ−2·δ ≤ 0),
which simplifies to (δ ≤ 0 ∨ δ ≤ 0), which after eliminating δ simplifies to ⊥. This run
shows ∀xy (x ≤ 0 ∨ y − 2 · x ≤ 0) is LRA-unsatisfiable. ut

The procedure PSLRA
, which is an instance of the procedure in Figure 1, can be under-

stood as lazily enumerating the disjuncts of the Loos-Weispfenning method for quantifier
elimination over linear real arithmetic [36], with minor differences which we discuss in the
next section. In this way, our approach is similar to the projection-based procedures de-
scribed in [13, 32]. These approaches compute implicants of quantified formulas, while our
approach instead computes a term which is in turn used for instantiation. For our purposes,
computing a term instead of an implicant has several advantages. In particular, it allows the
instantiation-based procedure to be used as a subprocedure for synthesis, which we describe
in Section 7, and enables a uniform combination of the approach with existing instantiation-
based techniques for first-order logic [18, 24, 51].
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Return one of


`i + δ n > 0

uj − δ m > 0

∞ m = 0

−∞ n = 0

, where

{
max{`I1 , . . . , `In} = `Ii if n > 0

min{uI1 , . . . , uIm} = uIj if m > 0.
.

Fig. 3 An alternative return value for SR0 that is analogous to Loos and Weispfenning’s method.

Return


uj+`i

2
n > 0 and m > 0

∞ m = 0

−∞ n = 0

, where

{
max{`I1 , . . . , `In} = `Ii if n > 0

min{uI1 , . . . , uIm} = uIj if m > 0.
.

Fig. 4 An alternative return value for SR0 that is analogous to Ferrante and Rackoff’s method.

Return


uj+`i

2
n > 0 and m > 0

`i + 1 n > 0 and m = 0

uj − 1 n = 0 and m > 0

0 n = 0 and m = 0

, where

{
max{`I1 , . . . , `In} = `Ii if n > 0

min{uI1 , . . . , uIm} = uIj if m > 0.
.

Fig. 5 An alternative return value for SR0.

3.1 Comparison to Existing Approaches

Recent approaches (including ours) for solving quantified linear arithmetic share similari-
ties with one another. In particular, given an existentially quantified formula ∃x.ϕ, based on
some strategy, they enumerate (possibly lazily) a finite set of ground formulas that are en-
tailed by this formula. We give a brief overview contrasting the technical details of existing
approaches in this section.

We have mentioned that the approach in Figure 2 involves the use of a free distinguished
constant δ, representing an infinitesimal positive value. Other approaches also involve use
of a free distinguished constant∞, representing an arbitrarily large positive value. Like δ,
this term can be eliminated from quantifier-free constraints, noting:

∞ < t ⊥ and∞ > t > where∞ 6∈ FV (t).

The two most widely known algorithms for quantifier elimination for linear real arith-
metic are the method based on virtual term substitution by Loos and Weispfenning [36],
and the method based on interior points by Ferrante and Rackoff [23]. In the context of our
approach, two alternatives for the return value of SR0 (Figures 3 and 4) closely approximate
the effect of these methods.

Recent approaches are inspired by of one (or both) of these methods. The approaches
described in [13,32] are closely based on the Loos-Weispfenning method, and the approach
described in [19] is closely based on Ferrante-Rackoff method. The approach described
in [43] examines a certified version of both approaches. The approach in Figure 2 is inspired
by the Loos-Weispfenning method, but does not use infinities.

Another possible return value is given in Figure 5 that does not use any virtual terms.
The approach in Figure 5 may be advantageous when considering quantified formulas hav-
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ing nested quantification, where eliminating virtual terms from quantified constraints is not
obvious.

4 Instantiation for LIA-Formulas

We now turn our attention to the class of LIA-formulas ∃k ∀xϕ[k,x], where x and k
are vectors of Int variables, and ϕ[k,x] is quantifier-free. We again assume all equalities
are eliminated from ϕ by replacing them with a conjunction of inequalities. Additionally,
we assume the signature of integer arithmetic is extended with symbols div+ and div−,
denoting integer division rounding up and down respectively, and that the language of LIA
includes terms of the form t divp c, where p ∈ {+,−} and c is a non-zero integer constant.
All occurrences of these symbols can be eliminated from any quantifier-free formula ϕ by
repeated applications of the transformation:

ϕ[t divp c]  ϕ[d] ∧ c · d ≈ t±p m ∧ 0 ≤ m < c (1)

where d and m are distinct fresh variables, and ±p is + if p is + and analogously for −.
Figure 6 gives a selection function SLIA for LIA. The procedure invokes the recursive

procedure SI , which takes as arguments I,¬ϕ[k, e], variables e that we have yet to incorpo-
rate into the substitutions, an integer θ, terms t found as substitutions for variables from e so
far, and a tuple of symbols p from {+,−} which we refer to as polarities. Due to the trans-
formation (1), we may assume without loss of generality that ¬ϕ[k, e] contains no instance
of integer division. The role of θ will be to capture divisibility relationships through the pro-
cedure, where θ is initially 1. The procedure invokes a call to SI0(I, ψ, ei, θ) which based
on the propositionally satisfying assignment for ψ returns a tuple of the form (c, ti, pi),
where c is a constant, ti is a term, and pi is a polarity. The procedure for constructing the
term ti in the procedure SI0 is similar to the procedure SR0 in the previous section, where
we find the lower bound of the form ci · e ≥ `i such that the (rational) value ( `ici )

I is maxi-
mal, and similarly for Mu. Additionally, SI0 adds a constant ρ to the maximal lower bound
(resp. subtracts a constant from the minimal lower bound). This constant ensures that the
returned term ti and e are congruent modulo θ · c in I, a fact which in part suffices to show
the overall function to be model-preserving. It then constructs a substitution with coefficients
σ of the form {c · ei 7→ ti}, where c 6= 0. A substitution of this form may be applied to
integer terms of the form c · (d · ei+ s) where ei 6∈ FV (s) and (c · (d · ei+ s))σ is defined
as d · ti+ c ·s. Additionally, we define (s1 ./ s2)σ as (c ·s1)σ ./ (c ·s2)σ for ./∈ {<,>},
and thus we can apply σ to arbitrary LIA-formulas. After constructing σ, the procedure SI
invokes a recursive call where σ is applied to ψ and (c · t), θ is multiplied by c, the term
θ · ti is appended to t, and pi is appended to p.

Overall, SLIA returns a vector of terms (t divp θ), that is, integer division applied pair-
wise to the terms in t and the constant θ, where p determines whether this division rounds
up or down. When using this selection function in the context of Figure 1, the instance
ϕ[k, t divp θ] is added to Γ . Note that our selection function chooses p such that integer
division rounds up for terms coming from lower bounds, and rounds down for terms coming
from upper bounds. This choice is not required for correctness, but can reduce the number
of instances needed for showing unsatisfiability.

Lemma 6 SLIA is finite for ϕ[k, e].
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SLIA(I, Γ,¬ϕ[k, e], e):
Return SI(I,¬ϕ[k, e], e, 1, (), ()).

SI(I, ψ, (ei, . . . , en), θ, t,p):
If i > n, return t divp θ
Otherwise, let (c, ti, pi) = SI0(I, ψ, ei, θ), σ = {c · ei 7→ ti}
Return SI(I, ψσ, (ei+1, . . . , en), θ · c, ((c · t)σ, θ · ti), (p, pi))

SI0(I, ψ, e, θ):
Let M =M` ∪Mu ∪Mc be such that:

– I |=M and M |=p ψ,
– M` ⇔ {c1 · e ≥ `1, . . . , cn · e ≥ `n}, c1 > 0, . . . , cn > 0,
– Mu ⇔ {d1 · e ≤ u1, . . . , dm · e ≤ um}, d1 > 0, . . . , dm > 0, and
– e 6∈ FV (`1, . . . , `n) ∪ FV (u1, . . . , um) ∪ FV (Mc).

Return one of



(ci, `i + ρ,+)
n > 0,max{( `1

c1
)I , . . . , ( `n

cn
)I} = ( `i

ci
)I ,

ρ = (ci · e− `i)I mod (θ · ci)

(dj , uj − ρ,−)
m > 0,min{(u1

d1
)I , . . . , (um

dm
)I} = (

uj

dj
)I ,

ρ = (uj − dj · e)I mod (θ · dj)
(1, ρ,+) n = 0,m = 0, ρ = eI mod θ

Fig. 6 A selection function SLIA for linear integer arithmetic LIA.

Proof First, we show only a finite number of tuples are returned by SI0(I, (¬ϕ[k, e])σ, e, θ)
for any I, σ, e and finite θ. Let A be the set of atoms occurring in ϕ[k, ei]σ. The literals in
satisfying assignments of (¬ϕ[k, e])σ are over these atoms. Let {a1 · e > t1, . . . , an ·
e > tn, b1 · e < s1, . . . , bm · e < sm} be the set of atoms that are in solved form
with respect to e and are equivalent to the atoms of A that contain e, where we have
ei 6∈ FV (t1, . . . , tn, s1, . . . , sm) and a1 > 0, . . . , an > 0, b1 > 0, . . . , bm > 0. The
tuples returned by the call to SI0(I, (¬ϕ[k, e])σ, e, θ) are in the set:

{(ai, ti − ρ,−) | 1 ≤ i ≤ n, 0 ≤ ρ < θ · ai} ∪
{(ai, ti + 1 + ρ,+) | 1 ≤ i ≤ n, 0 ≤ ρ < θ · ai} ∪
{(bi, si − 1− ρ,−) | 1 ≤ i ≤ m, 0 ≤ ρ < θ · bi} ∪
{(bi, si + ρ,+) | 1 ≤ i ≤ m, 0 ≤ ρ < θ · bi} ∪ {(1, ρ,+) | 0 ≤ ρ < θ}

Notice that since atoms can appear positively or negatively in M , we consider two possible
tuples for each literal in the above set. Since θ is finite, there are a finite number of tuples
of this form. Since there are only a finite number of recursive calls to SI within SLIA, and
each call modifies t based a finite number of possible tuples coming from the set above, the
set of possible return values of SLIA is finite, and thus it is finite for ϕ[k, e]. ut

Lemma 7 If I is a model for LIA and for quantifier-free ψ, θ ≥ 1, and SI0(I, ψ, e, θ) =
(c, t, p), then:

1. (c · e)I ≡θ·c tI , and
2. I |= ψ{c · e 7→ t}.

Proof We first show part 1. When n > 0 and SI0(I, ψ, e, θ) = (ci, `i + ρ,+), we have

(`i + ρ)I ≡θ·ci (`i + (ci · e− `i)I mod (θ · ci))I ≡θ·ci (ci · e)
I .
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When m > 0 and SI0(I, ψ, e, θ) = (dj , uj − ρ,−), we have

(uj − ρ)I ≡θ·dj (uj − (uj − dj · e)I mod (θ · dj))I ≡θ·dj (dj · e)I .

When n = 0, m = 0, and SI0(I, ψ, e, θ) = (1, ρ,+), we have

ρI ≡θ·1 (eI mod θ)I ≡θ·1 (1 · e)I

To show part 2, we first focus on the case where n > 0 and SI0(I, ψ, e, θ) = (ci, `i +
ρ,+). We have that ρ = (ci · e − `i)I mod (θ · ci). Let M be a set of literals of the form
described in the body of SI0(I, ψ, e). We show that I satisfies each literal in Mσ, where
σ = {ci · e 7→ `i + ρ}. First, consider an atom in M`σ that is equivalent to (cj · e ≥ `j)σ
for some j ∈ {1, . . . , n}. This is equivalent to (cj · ci · e ≥ ci · `j)σ, which is equivalent to
cj ·ci
ci
· (`i + ρ) ≥ cj ·ci

cj
· `j , which is satisfied by I since ( `ici )

I ≥ (
`j
cj
)I by our selection

of (ci, `i + ρ) and since ρ ≥ 0. Second, consider the atom in Muσ that is equivalent to
(dj · e ≤ uj)σ for some j ∈ {1, . . . ,m}. Let ρ′ = (ci · e − `i)I , which is greater than
0 since I satisfies (ci · e ≥ `i). Since (ci · e)I = (`i + ρ′)I , we have that I satisfies
(dj · e ≤ uj){ci · e 7→ `i + ρ′}, which is equivalent to (dj · (`i + ρ′) ≤ ci · uj). Since
ρ = ρ′ mod (θ · ci) ≤ ρ′, we have that I also satisfies (dj · (`i + ρ) ≤ ci · uj), which
is (dj · e ≤ uj)σ. Finally, I satisfies Mcσ as Mcσ = Mc and I |= Mc. Thus, I satisfies
Mσ, which entails ψσ. The case when m > 0 and SI0(I, ψ, e, θ) = (dj , uj − ρ,−) is
symmetric. When n = 0,m = 0, and SI0(I, ψ, e) = (1, ρ,+), the assignmentM does not
contain e, and thus I satisfies M{c · e 7→ ρ} =M and ψ{c · e 7→ ρ}. ut

Lemma 8 Each recursive call to SI(I, ψ, (ei, . . . , en), θ, (t1, . . . , ti−1),p) within a call
to SLIA(I, Γ,¬ϕ[k, e], (e1, . . . , en)) is such that:

1. θ | tIj for each 1 ≤ j < i, and
2. I |= ψ and ψ is equivalent to ¬ϕ[k, e]{θ · e1 7→ t1} · . . . · {θ · ei−1 7→ ti−1}.

Proof Both statements clearly hold for the initial call to SI in the body of SLIA. Now,
assume both statements hold for some call to SI(I, ψ, (ei, e′), θ, (t1, . . . , ti−1),p), and
assume (c, ti, pi) = SI0(I, ψ, ei, θ). We show that both statements hold for the call to
SI(I, ψσ, e′, θ · c, ((c · t1)σ, . . . , (c · ti−1)σ, θ · ti), (p, pi)), where σ = {c · ei 7→ ti}.

To show part 1, we have from Lemma 7 part 1 that:

(c · ei)I ≡θ·c tIi (2)

Consider a tj where 1 ≤ j < i, which by our assumption is such that θ | tIj , and thus
θ · c | (c · tj)I . By (2), we have that θ · c | ((c · tj)σ)I . Also by (2), we have that c | tIi ,
and thus θ · c | (θ · ti)I .

To show part 2, by our assumption, I |= ψ and thus by Lemma 7 part 2 we have that
I |= ψσ. By our assumption, ψ is equivalent to ¬ϕ[k, e]{θ · e1 7→ t1} · . . . · {θ · ei−1 7→
ti−1}. Thus, ψσ is equivalent to ¬ϕ[k, e]{(θ · c) · e1 7→ (c · t1)σ} · . . . · {(θ · c) · ei−1 7→
(c · ti−1)σ} · {(θ · c) · ei 7→ θ · ti}. Thus, the lemma holds. ut

Lemma 9 SLIA is model-preserving for ϕ[k, e].

Proof Assume SLIA(I, Γ,¬ϕ[k, e], e) = t, where e = (e1, . . . , en) and t = (t1, . . . , tn).
By Lemma 8 and the definition of SLIA, there is a θ such that for each i = 1, . . . , n, term ti
is of the form si div

p θ where θ | sIi , and I |= (¬ϕ[k, e]){θ ·e1 7→ s1}· . . . ·{θ ·en 7→ sn}.
Thus, I satisfies (¬ϕ[k, e]){e 7→ t} = ¬ϕ[k, t], and thus SLIA is model-preserving for
ϕ[k, e]. ut
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Theorem 3 PSLIA
is a sound and complete procedure for determining the LIA-satisfiability

of ∃k ∀xϕ[k,x].

Proof By Theorem 1, Lemma 2, Lemma 6 and Lemma 9. ut

Example 6 To demonstrate a case involving a substitution with coefficients, consider the
formula ∀xy (2 · x < a ∨ x+ 3 · y < b) whose negation is 2 · e1 ≥ a ∧ e1 + 3 · e2 ≥ b. A
possible run of PSLIA

on this input is as follows.
SI0(I, ψ, e, θ)

# Γ Γ ′ e θ M` return t[k] Add to Γ
1 sat sat e1 1 {2 · e1 ≥ a, . . .} (2, a,+)

e2 2 {6 · e2 ≥ 2 · b− a} (6, 2 · b− a,+) (6 · a, 4 · b− 2 · a) div+ 12 ψ1

2 unsat

We assume ρ = 0 for all calls to SI0 in this run. Applying the substitution {2 · e1 7→ a} to
e1+3·e2 ≥ b results in the bound 6·e2 ≥ 2·b−a for e2. We add to Γ an instance, call it ψ1,
which is equivalent to 2·((6·a) div+ 12) < a∨(6·a) div+ 12+3·((4·b−2·a) div+ 12) < b,
which after eliminating integer division is:

(2 · k1 < a ∨ k1 + 3 · k2 < b)∧ 12 · k1 ≈ 6 · a+m1 ∧ 0 ≤ m1 < 12∧
12 · k2 ≈ (4 · b− 2 · a) +m2 ∧ 0 ≤ m2 < 12

which is equisatisfiable to:

(6 · a+m1 < 6 · a ∨ 12 · b+m1 + 3 ·m2 < 12 · b)∧ 0 ≤ m1 < 12∧
0 ≤ m2 < 12

which is LIA-unsatisfiable. Thus, ∃ab ∀xy (2 · x < a∨ x+3 · y < b) is LIA-unsatisfiable.
ut

Example 7 To demonstrate a case involving a non-zero value of ρ, consider the formula
∀xy (3 ·x+ y 6≈ a∨ 0 > y∨ y > 2) whose negation is 3 · e1 + e2 ≈ a∧ 0 ≤ e2 ∧ e2 ≤ 2,
where ≈ denotes the conjunction of non-strict upper and lower bounds. A possible run of
PSLIA

on this input is as follows.
SI0(I, ψ, e, θ)

# Γ Γ ′ e θ M` return t[k] Add to Γ
1 sat sat e1 1 {3 · e1 ≥ a− e2} (3, a− e2,+)

e2 3 {e2 ≥ 0} (1, 0,+) (a, 0) div+ 3 ψ1

2 sat sat e1 1 {3 · e1 ≥ a− e2} (3, a− e2,+)
e2 3 {e2 ≥ 0} (1, 1,+) (a− 1, 1) div+ 3 ψ2

3 sat sat e1 1 {3 · e1 ≥ a− e2} (3, a− e2,+)
e2 3 {e2 ≥ 0} (1, 2,+) (a− 2, 2) div+ 3 ψ3

4 unsat

On the first iteration, we assume that Γ ′ is satisfied by a model, call it I1, that interprets
all variables as 0, and hence the values chosen for e1 and e2 correspond to their maximal
lower bounds in I1, a − e2 and 0 respectively, where in each call to SI0 we have ρ = 0.
The instance ψ1 added to Γ on this iteration is equivalent to 3 · (a div+ 3) 6≈ a and implies
that aI 6≡3 0 in subsequent models I. Thus, models I satisfying 3 · e1 + e2 ≈ a are such
that eI2 6≡3 0. On the next iteration, Γ ′ is satisfied by a model, call it I2, where the maximal
lower bound for e2 is 0. By the above reasoning and since I2 satisfies 3 · e1 + e2 ≈ a, it
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must be that ρ = ((e2 − 0)I2 mod 3) 6= 0. Assume (e2 − 0)I2 ≡3 1. The instance ψ2 is
equivalent to 3 ·((a−1) div+ 3)+1 6≈ a, which implies that aI 6≡3 1 in subsequent models
I, and hence eI2 6≡3 1. The instance ψ3 is equivalent to 3 · ((a − 2) div+ 3) + 2 6≈ a and
implies that aI 6≡3 2, which together with the two previous instances are T -unsatisfiable.
This run shows ∃a∀xy (3 · x+ y 6≈ a ∨ 0 > y ∨ y > 2) is LIA-unsatisfiable. ut

The procedure PSLIA
can be understood to lazily enumerating disjuncts of Cooper’s al-

gorithm for quantifier elimination over linear integer arithmetic [16], with minor differences.
The algorithm is essentially enumerating a single path of [16] by using the model to select a
satisfied case split for each variable over an entire block of quantifiers.1 Like that approach,
the worst-case performance is dependent upon the size of coefficients of monomials, which
is manifested in our case by the fact that the number of possible return values of SI0 is pro-
portional to the size of θ. While not shown here, our implementation takes steps to reduce
the size of θ by factoring out common divisors in θ and the coefficients returned by SI0.

4.1 Comparison to Existing Approaches

The approach taken in PSLIA
is similar to the one taken in Section 2.5 in [13]. The most

substantial difference between the two algorithms is that PSLIA
implements a variant of

Cooper’s algorithm while resolve in [13] uses the model to guide an execution of the Omega
test [47]. The most similar aspects of the approaches are the computation of a feasible ρ and
the computation of the d values in the grey shadow cases of resolve . These differ in that a
different d value is selected to ensure separation between each upper bound and the greatest
lower bound in a projection whereas ρ is selected using the current value of ci · e (the
selection of d is agnostic to e in our parlance) to ensure all bounds are satisfied by a single
instantiation.

5 Instantiation for LIRA-Formulas

The methods in the previous two sections can be used in part for the class of LIRA-formulas
with one alternation where constraints are over both real and integer variables. For conve-
nience, we assume the signature of LIRA is extended with conversion functions to int+

and to int− of sort Real → Int, denoting the result of rounding its (real) argument to an
integer. All occurrences of these symbols can be eliminated from quantifier-free constraints
by the transformation:

ϕ[to intp(t)]  ϕ[i] ∧ 0 ≤ ±p(i− t) < 1 (3)

where i is a fresh constant of type Int, and ±p is + if p is + and analogously for −.
Figure 7 gives a selection function SLIRA for LIRA, where by the above transforma-

tion we may assume without loss of generality that ¬ϕ[k, er, ei] contains no conversion
functions. Real variables er are processed before integer ones ei. The procedure invokes
the selection function SR for LRA which returns a set of terms tr. Afterwards, we ap-
ply a transformation, denoted to lia, to the formula ¬ϕ[k, tr, ei], which returns a pair

1 In the parlance of [16],PSLIA
selects a feasible j value using the calculation of ρ and avoids introducing

the F±∞ cases by introducing the no bounds case (n = 0,m = 0) and always favoring bounds when one
exists.
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SLIRA(I, Γ,¬ϕ[k, er, ei], e):
Let tr = SR(I,¬ϕ[k, er, ei], er, ()).
Let (I′, ϕ′) = to lia(I,¬ϕ[k, tr, ei]). Let ti = to lira(SI(I′, ϕ′, ei, 1, (), ())).
Return (tr{ei → ti}, ti).

Fig. 7 A selection function SLIRA for quantifier-free LIRA-formula ϕ[k, er, ei], where er are real vari-
ables and ei are integer variables. In this procedure, to lia(I, ψ) denotes the result of casting LIRA-formula
ψ to a LIA one, and I′ is an extension of I (see Example 8).

(I′, ϕ′) where I′ is an extension of I, and ϕ′ is a LIA formula. We construct ϕ′ by re-
placing each literal L of the form (¬)(ci · xi + cr · xr ./ c) in ¬ϕ[k, tr, ei] by the literal
(¬)(ci · xi + ipcr·xr

./ c) where xi are of type Int, xr are of type Real, ipcr·xr
is a fresh

variable of type Int and p is one of {+,−}. We define the interpretation of ipcr·xr
in I′ to

be the result of rounding the value (cr · xr)
I to an integer up if p is + or down if p is −. If

this variable occurs in a literal L that entails a lower bound on ipcr·xr
, then p is−, otherwise

p is +. Notice that in either case, the interpretation of L remains unchanged by the transfor-
mation to lia. After constructing to lia(I, (¬ϕ[k, tr, ei])), the procedure calls the selection
function SI on the resulting interpretation and formula, which returns a tuple of terms, call it
si. We then obtain a tuple of terms ti by applying a second transformation, denoted to lira,
to si, which replaces all LIA-variables of the form ipt in si with the LIRA-term to intp(t).
Overall, we return the tuple (tr{ei → ti}, ti), where integer variables ei are replaced by ti
within the terms tr selected for the real variables. When using this selection in the context
of the procedure in Figure 1, the instance ϕ[k, tr{ei → ti}, ti] is added to Γ .

Example 8 Consider the formula ∀x : Real y : Int (x − 2 · y < b ∨ y < a) where a and
b are free constants of type Real and Int respectively. The negated Skolemized form of this
formula is equivalent to e1 − 2 · e2 ≥ b ∧ e2 ≥ a, where e1 and e2 are fresh constants. A
possible run of PSLIRA

on this input is as follows.
# Γ Γ ′ e M` (SR, SI) return t[k] Add to Γ
1 sat sat e1 {e1 ≥ b+ 2 · e2} (b+ 2 · e2)

e2 {e2 ≥ i+a } (i+a ) (b+ 2 · to int+(a), to int+(a)) ⊥
2 unsat

On the first iteration, we run SR which returns the term b + 2 · e2 for x based on the
bound e1 ≥ b + 2 · e2. We then call to lia(I, ((b + 2 · e2) − 2 · e2 ≥ b ∧ e2 ≥ a)),
which returns (I′, ψ′), where ψ′ is equivalent to e2 ≥ i+a , and I′ interprets i+a as aI

was rounded up to an integer value. We subsequently call SI on this interpretation and
formula, which results in the selection of term i+a for e2. Thus, SI returns the tuple (i+a ),
where applying the transformation to lira gives us (to int+(a)). Overall, SLIRA returns
the tuple (b + 2 · to int+(a), to int+(a)), which we obtain by applying the substitution
{y 7→ to int+(a)} to our value for e1 and appending our value to int+(a) for e2. Applying
the substitution {x 7→ b+2·to int+(a), y 7→ to int+(a)} to our input results in the formula
(b + 2 · to int+(a) − 2 · to int+(a) < b ∨ to int+(a) < a), which after simplification is
(to int+(a) < a). After eliminating conversion functions, this formula is i < a ∧ 0 ≤
i − a < 1 where i is a fresh integer variable, which is LIRA-unsatisfiable. This run shows
that ∃a : Real b : Int∀x : Real y : Int (x− 2 · y < b ∨ y < a) is LIRA-unsatisfiable. ut

It is straightforward that the use of this selection function in Figure 1 gives a sound pro-
cedure for quantified LIRA due to Corollaries 1 and 2, and the transformation (3) preserves
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equivalence (up to variables k). We do not provide a formal proof of completeness for this
approach, although we note that quantifier elimination is possible for this fragment [65].

6 Boolean Structure and Nested Quantification

This section presents a novel technique for establishing the T -satisfiability of formulas with
Boolean structure and nested quantification. The technique generalizes the instantiation-
based procedure as described in Section 2, and can be integrated within the solving archi-
tecture used by SMT solvers.

In the following, we show an approach for determining the T -satisfiability of closed
T -formula (¬)ϕ. Without loss of generality, we assume ϕ is a formula from the following
grammar:

ϕ := ¬∀xϕ | G | ϕ1 ∨ . . . ∨ ϕm (4)

whereG is quantifier-free. In other words, all quantification in our input occurs as a (negated)
child of a disjunction. Notice this grammar is effectively a generalization of prenex normal
form, since all formulas in prenex normal form are equivalent to a formula in a subset of the
above grammar which restricts m = 1.2

At its core, our approach for establishing the satisfiability of ϕ is the following. Let
∀yψ[k,y] be a sub-formula of our input, where this formula may occur beneath any num-
ber of negations and ψ is quantifier-free. Using the procedure in Figure 1, construct a set
of instances {ψ[k, t1[k]], . . . , ψ[k, tn[k]]} that is either unsatisfiable, or that collectively
entail ∀yψ[k,y]. Note that the free variables k of this sub-formula are considered to be
existentially quantified implicitly here. If this set is unsatisfiable, replace ∀yψ[k,y] in
the input by ⊥. Otherwise, replace ∀yψ[k,y] in the input by the (quantifier-free) formula
ψ[k, t1[k]]∧. . .∧ψ[k, tn[k]]. Repeat this process until our input is replaced by a quantifier-
free formula. In this section, we describe an approach that is based on the above reasoning,
but is amenable to the standard solving architecture used by SMT solvers. In particular, the
approach will be based on incrementally constructing a set of quantifier-free formulas Γ that
approximate the input ϕ, where this set is periodically checked for T -satisfiability.

We begin with the following preliminaries. For each closed quantified T -formula, we
associate a Boolean variable A called the positive guard of ∀xϕ, and unique set of Skolem
variables e of the same sort as x. We write (A, e) � ∀xϕ to denote that A and e are
associated with ∀xϕ. We write bϕc for the result of replacing in ϕ all closed quantified
formulas (not occurring beneath other quantifiers in ϕ) with their corresponding positive
guards. We write A(ϕ) to denote the set of positive guards in ϕ. Our approach maintains
an evolving set of formulas Γ . We add formulas of the form A ⇒ φ to Γ , where φ is a
quantifier-free formula that is entailed by ∀xϕ and (A, e) � ∀xϕ. We call such formulas
guarded instances. We write bψcΓ to denote the result of replacing in bψc each positive
guard A by the conjunction of formulas on the right hand sides of instances from Γ that are
guarded byA. Conceptually, the formula bψcΓ will correspond to the current quantifier-free
approximation of ψ in Γ in our approach.

Example 9 Let ϕ be ¬∀xP (x) ∨ ¬∀y R(y) ∨ ¬∀z Q(z) ∨ G where G is quantifier-free,
let A1 � (∀xP (x), e1), A2 � (∀y R(y), e2) and A3 � (∀z Q(z), e3), and let Γ be
{A1 ⇒ P (a), A2 ⇒ R(b), A2 ⇒ R(c)}. Then, bϕc is ¬A1∨¬A2∨¬A3∨G,A(bϕc) =
{A1, A2, A3}, and bϕcΓ is ¬P (a) ∨ ¬(R(b) ∧R(c)) ∨ ¬> ∨G. ut
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solveT (∀xϕ[x]):
Return CEGQIT ({b∀xϕ[x]c}, b∀xϕ[x]c)

CEGQIT (Γ,A0):

1. If Γ is T -unsatisfiable, then return “unsat”.
2. If recT (Γ,A0) = ∅, then return “sat”.
3. Otherwise, return CEGQIT (Γ ∪ recT (Γ,A0), A0).

recT (Γ,A), where (A, e)� ∀y.ψ[k,y]:
Let φ[k, e] = bψ[k, e]cΓ .
If bAcΓ ∧ ¬φ[k, e] is T -unsatisfiable, then return ∅.
If there exists an A′ ∈ A(bψ[k, e]c) such that recT (Γ,A′) 6= ∅, then return recT (Γ,A

′).
Otherwise,

Let I be a model of T and bAcΓ ∧ ¬φ[k, e], and let t[k] = ST (I, Γ,¬φ[k, e], e).
Return {A⇒ φ[k, t[k]]}.

Fig. 8 Abstract procedure solve for establishing the T -satisfiability of ∀xϕ[x], which calls a
counterexample-guided approach for quantifier instantiation CEGQIT . Instances are added to Γ based on
a selection function ST for theory T . This procedure generalizes the one in Figure 1.

To determine the T -satisfiability of a closed T -formula ∀xϕ[x], we use the procedure
solveT in Figure 8. This procedure incrementally refines an approximation of ∀xϕ[x], given
by set Γ , until it is found to be (un)satisfiable in T . The procedure first invokes the recur-
sive subprocedure CEGQIT , which takes as input a set Γ initially containing the positive
guard A0 of ∀xϕ[x], and A0 itself. This subprocedure adds formulas to Γ in Step 3 until
either Γ is T -unsatisfiable (Step 1), in which case the input is unsatisfiable, or otherwise the
procedure saturates (Step 2), in which case the input is satisfiable.

Formulas are added to Γ based on the recursive procedure recT . Recall that our input
formula ∀xϕ[x] is a formula having a tree-like structure built from grammar (4). At a high
level, the procedure recT returns a guarded instance of some quantified sub-formula in this
tree whose satisfiability is yet to be determined, if one exists. In detail, this function takes
as arguments Γ and the positive guard A of a quantified formula ∀y.ψ[k,y], called initially
with A = A0. It first constructs the formula φ[k, e] = bψ[k, e]cΓ , which represents an
approximation of the formula ψ[k, e] under the assumption of the current instances in Γ .
If the current set of instances bAcΓ that are guarded by A and the negation of this formula
are unsatisfiable, then it is the case that ∀yψ[k,y] is equivalent to bAcΓ and the procedure
returns the empty set. Otherwise, we consider the direct children of ψ, i.e. those whose
positive guard A′ occurs in A(bψ[k, e]c). If the recursive call to recT returns a guarded
instance for some child A′, then the procedure returns that instance. Otherwise, it returns a
guarded instance A⇒ φ[k, t[k]], where I is a model of theory T , bAcΓ and ¬φ[k, e], and
terms t[k] are chosen by the selection function ST for theory T .

The correctness of this procedure relies on the following facts, where recall from Sec-
tion 1.1 two formulas are equivalent up to k if the are satisfied by the same set of models
when restricted to the interpretation of variables from k.

Lemma 10 Let (A, e)� ∀yψ[k,y].

1. If recT (Γ,A) returns {A⇒ φ[k, t]}, then φ[k, t] is equivalent to ψ[k, t] up to k.
2. If bAcΓ ∧ b¬ψ[k, e]cΓ is T -unsat, then ∀yψ[k,y] is equivalent to bAcΓ up to k.

2 For example, notice that ¬∀x1 ∃x2 ∀x3 ∃x4ϕ is equivalent to ¬∀x1 ¬∀x2 ¬∀x3 ¬∀x4 ¬ϕ.
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Proof We prove both facts simultaneously by induction on the structure of ψ.
(Base case) When ψ[k,y] is quantifier-free, then bψ[k, e]cΓ = ψ[k, e] and recT (Γ,A)

returns only sets of the form {A ⇒ ψ[k, t[k]]}. Thus, part 1 holds, and moreover we
have that ∀yψ[k,y] |=T bAcΓ . To show part 2, assume bAcΓ ∧ b¬ψ[k, e]cΓ is T -
unsatisfiable, or in other words bAcΓ |=T ψ[k, e]. Since e does not occur in bAcΓ , we
have that bAcΓ |=T ∀yψ[k,y], and thus ∀yψ[k,y] is equivalent to bAcΓ up to k.

(Inductive case) When ψ[k,y] is ¬∀x1 ψ1[k1,x1] ∨ . . . ∨ ¬∀xm ψm[km,xm], for
i = 1, . . . ,m, let (Ai, ei) � ∀xi ψi[ki,xi] if xi is non-empty. To show part 1, assume
recT (Γ,A) returns {A ⇒ φ[k, t]}, where φ[k, t] is bψ[k, t]cΓ . For each i = 1, . . . ,m
where xi is non-empty, by definition of recT it must be that recT (Γ,Ai) returns ∅, and thus
bAicΓ ∧ b¬ψi[ki, ei]cΓ is T -unsatisfiable. Thus, by part 2 of the induction hypothesis, we
have that bAicΓ is equivalent to ∀xi ψi[ki,xi] up to ki where ki is a subset of k. Thus,
bψ[k, t]cΓ is equivalent to ψ[k, t] up to k, and thus part 1 holds. To show part 2, we have by
part 1 that ∀yψ[k,y] |=T bAcΓ . When bAcΓ ∧b¬ψ[k, e]cΓ is T -unsatisfiable, ∀yψ[k,y]
is equivalent to bAcΓ up to k for the same reasons as in the base case. ut

Theorem 4 Assume the satisfiability of quantifier-free T -formulas is decidable, and a se-
lection function ST exists that is finite and monotonic.

1. If solveT (∀xϕ[x]) returns “unsat”, then ∀xϕ[x] is T -unsatisfiable.
2. If solveT (∀xϕ[x]) returns “sat”, then ∀xϕ[x] is T -satisfiable.
3. solveT (∀xϕ[x]) terminates.

Proof To show 1, let dΓ e denote the result of replacing the positive guards in Γ with the
quantified formula they respond to. By definition of solveT , we have that dΓ e contains
∀xϕ[x], and additionally contains tautologies of the form ∀xψ[k,y] ⇒ φ[k, t] where by
Lemma 10.1 φ[k, t] is equivalent to ψ[k, t] up to k. Thus, dΓ e is equivalent to ∀xϕ[x].
Furthermore, we have that dΓ e |=T Γ , and Γ is T -unsatisfiable. Thus, ∀xϕ[x] is T -
unsatisfiable.

To show 2, by definition of solveT , we have that Γ is T -satisfiable, and bA0cΓ ∧
¬bϕ[e]cΓ is T -unsatisfiable, where (A0, e) � ∀xϕ[x]. By Lemma 10.2, we have that
∀xϕ[x] is equivalent to bA0cΓ . Since A0 ∈ Γ , we have that Γ |=T bA0cΓ , and thus
∀xϕ[x] is satisfied by a model of Γ .

To show 3, all individual steps in the procedure are terminating since the T -satisfiability
of quantifier-free T -formulas is decidable. Furthermore, we show that the number of in-
stances added to Γ is finite. Let ∀yψ[k,y] be a formula where (A, e) � ∀yψ[k,y]
and for which recT (Γ,A) is called. Assume that at least one instance of the form {A ⇒
φ[k, t1[k]]} is added for some quantifier-free T -formula φ[k, e] = bψ[k, e]cΓ . Since for-
mulas are never removed from Γ , it must be the case that bψ[k, e]cΓ = bψ[k, e]cΓ∪Γ ′ for
all formulas Γ ′ added in subsequent recursive calls to CEGQIT . Thus, all instances returned
by recT guarded byA are of the form {A⇒ φ[k, ti[k]]} for the same φ. Since ST is mono-
tonic for ∃k ∀y φ[k,y], we are guaranteed to add a new instance to Γ on each recursive call
to CEGQIT . Thus, since ST is finite for ∃k ∀y φ[k,y], only finitely many instances of this
form are returned. Since there are only finitely many ∀yψ[k,y] for which recT is called
on, we have that only finitely many instances are added to Γ , finitely many recursive calls
are made to CEGQIT , and thus solveT (∀xϕ[x]) terminates. ut

By the previous theorem, assuming satisfiability of quantifier-free T -formulas is de-
cidable and a finite and monotonic selection function exists for T , solveT is a decision
procedure for T -formulas containing arbitrary nested quantification.
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Example 10 Consider the LIA-formula ∀xϕ[x] where ϕ[x] is ¬(∀y x > y ∨ 0 > y)∨x <
0. Let (A1, e1) � ∀xϕ[x] and let (A2, e2) � ∀y e1 > y ∨ 0 > y. We call CEGQI where
Γ is initially {A1}. A possible run of this procedure is summarized in the table below.

recT
# Γ ? A b¬ψ[e]c b¬ψ[e]cΓ bAcΓ ∧ b¬ψ[e]cΓ ? t[k] return return
1 sat A1 A2 ∧ e1 ≥ 0 > ∧ e1 ≥ 0 sat recT (Γ,A2)

A2 e1 ≤ e2 ∧ 0 ≤ e2 e1 ≤ e2 ∧ 0 ≤ e2 sat (e1) {A2 ⇒ 0 > e1}
2 sat A1 A2 ∧ e1 ≥ 0 0 > e1 ∧ e1 ≥ 0 unsat ∅ “sat”

On the first call to the procedure CEGQI, Γ is T -satisfiable. We call recT on Γ and A1,
which first checks the satisfiability of bA1cΓ ∧ b(∀y e1 > y ∨ 0 > y) ∧ e1 ≥ 0cΓ , which
is > ∧ (> ∧ e1 ≥ 0), which is satisfiable. It then checks if there exists an A′ among the
positive guards in b(∀y e1 > y ∨ 0 > y) ∧ e1 ≥ 0c for which an instance can be returned.
On the call to recT where A′ = A2, we find that e1 ≤ e2 ∧ 0 ≤ e2 is satisfiable, and there
are no positive guards in be1 > e2 ∨ 0 > e2c, that is, ∀y e1 > y ∨ 0 > y contains no
nested quantifiers. We use the selection function for linear integer arithmetic SLIA as given
in Section 4, which given input e1 ≤ e2∧0 ≤ e2 returns the tuple t[e1] = (e1), thus giving
the instanceA2 ⇒ 0 > e1 which we add to Γ . On the second call to CEGQIT , we have that
Γ = {A1, A2 ⇒ 0 > e1} is satisfiable, and we again call recT on Γ and A1, where now
0 > e1 ∧ e1 ≥ 0 is unsatisfiable. This establishes that ∀x¬(∀y x > y ∨ 0 > y) ∨ x < 0 is
LIA-satisfiable. ut

Example 11 We remark that treating formulas that are not in prenex normal form allows
us to avoid unnecessary computation. Consider the LIA-formula ∀xϕ[x], where ϕ[x] is
(¬(∀y x > y) ∨ ¬∀z ψ[x]), and ψ[x] is some LIA-formula. Let (A1, e1) � ∀xϕ[x], let
(A2, e2) � ∀y e1 > y, and let (A3, e3) � ∀z ψ[e1]. A possible run of this procedure is
summarized in the table below.

recT
# Γ ? A b¬ψ[e]c b¬ψ[e]cΓ bAcΓ ∧ b¬ψ[e]cΓ ? t[k] return return
1 sat A1 A2 ∧A3 > ∧> sat recT (Γ,A2)

A2 e1 ≤ e2 e1 ≤ e2 sat (e1) {A2 ⇒ e1 > e1}
2 sat A1 A2 ∧A3 e1 > e1 ∧ > unsat ∅ “sat”

The first call to procedure CEGQIT , adds the formula A2 ⇒ e1 > e1 to Γ . In the second
call to CEGQIT , within the call to recT for A = A1, we find that bA1cΓ ∧ b(∀y e1 >
y) ∧ ∀z ψ[e1]cΓ , which is > ∧ (e1 > e1 ∧ >), is unsatisfiable. Thus, we conclude that
∀x (¬(∀y x > y) ∨ ¬∀z ψ[x]) is LIA-satisfiable. This was determined regardless of the
content of ψ. ut

Example 12 Consider the LIA-formula ∀xy ϕ[x, y], where ϕ[x, y] is (¬(∀z z < x ∨ y <
z)∨x < y+5). Let (A1, (e1, e2))� ∀xy ϕ[x, y] and let (A3, e3)� ∀z z < e1∨e2 < z.
We call CEGQI where Γ is initially {A1}. A possible run of this procedure is summarized
in the table below.

recT
# Γ ? A b¬ψ[e]c b¬ψ[e]cΓ bAcΓ ∧ b¬ψ[e]cΓ ? t[k] return return
1 sat A1 A3 ∧ e1 ≥ e2 + 5 > ∧ e1 ≥ e2 + 5 sat recT (Γ,A3)

A3 e3 ≥ e1 ∧ e2 ≥ e3 e3 ≥ e1 ∧ e2 ≥ e3 sat (e2) {A3 ⇒ e1 > e2}
2 sat A1 A3 ∧ e1 ≥ e2 + 5 e1 > e2 ∧ e1 ≥ e2 + 5 sat . . .

A3 e3 ≥ e1 ∧ e2 ≥ e3 e3 ≥ e1 ∧ e2 ≥ e3 unsat ∅
A1 . . . . . . . . . (5, 0) {A1 ⇒ ⊥}

2 unsat “unsat”

On the first call to CEGQI, we find that Γ is satisfiable, and the call to recT returns the
guarded instance A3 ⇒ e1 > e2, which we add to Γ . On the second call to CEGQI, we
find that Γ is again satisfiable. The call to recT for A = A1 first finds that Γ ∪ {A3 ∧ e1 ≥
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e2+5} is also satisfiable, and invokes itself recursively onA3. The call to recT forA = A3

determines that bAcΓ ∧b¬ψ[e]cΓ , which is e1 > e2∧(e3 ≥ e1∧e2 ≥ e3), is unsatisfiable
and thus returns the empty set. By Lemma 10.2, this indicates that ∀z z < e1 ∨ e2 < z is
equivalent to e1 > e2, that is, the conjunction of instances in Γ that are guarded by A3.
Returning to recT for A = A1, we add an instance for ∀xy ϕ[x, y] where A3 is replaced
by e1 > e2 in the construction of b¬ϕ[e1, e2]cΓ , which gives us e1 > e2 ∧ e1 ≥ e2 + 5.
Applying the selection function SLIA as given in Section 4 to this formula returns the tuple
(5, 0) for (e1, e2), thus giving the instanceA1 ⇒ ¬(5 > 0∧5 ≥ 0+5), which is equivalent
to A1 ⇒ ⊥. We add this instance to Γ , after which we find that it is unsatisfiable, and thus
∀xy ϕ[x, y] is LIA-unsatisfiable. ut

6.1 Implementation Details

In practice, the approach in Figure 8 can be accomplished by a single instance of an SMT
solver. Although not shown here, we additionally associate a second Boolean variable B
with each quantified formula, called its negative guard. For each quantified formula ∀xϕ
with negative guardB, we add the formulaB ⇒ ¬ϕ[e] to Γ . The function recT then can be
simulated using a decision heuristic in the underlying SAT solver that decides positively on
the negative guards of innermost quantified formulas first, and adds instances of quantified
formulas only if their negative guards are not propagated to false at decision level 0. A
formal description of this technique is the subject of future work.

An alternative strategy to Figure 8 is to add instances of (top-most) quantified formu-
las that may have nested quantification. That is, for a quantified formula ∀xϕ[x], we may
add instances of the form A ⇒ ϕ[t], where ϕ contains quantified formulas. In such a strat-
egy, virtual terms in t (δ or∞) that are substituted beneath quantifiers in ϕ must be treated
specially. Adding instances of this form may potentially allow us to discover unsatisfiable
instances quicker, but also may introduce many quantified formulas that in turn degrade per-
formance. In the latest version of our implementation, we do not use this strategy. However,
an earlier version of our implementation (CVC4 from SMT COMP 2016) makes use of this
strategy.

6.2 Comparison to Existing Approaches

We refer to the treatment of quantified formulas in Figure 8 as counterexample-guided quan-
tifier instantiation [50]. The algorithm is similar to existing instantiation-based approaches
used by SMT solvers for quantified formulas [17, 25] in that it adds guarded instances of
quantified formulas incrementally. Its instance selection is guided by models for the nega-
tion of quantified formulas, similar to model-based quantifier instantiation [26]. This ap-
proach differs in its scope, in that it primarily targets quantified formulas having uninter-
preted functions, whereas the approach described in Figure 8 targets quantified formulas
having no uninterpreted functions. The approach of [26] also differs in that it uses a separate
copy of the SMT solver as an oracle for checking the satisfiability of the negation of each
quantified formula it instantiates, whereas our approach uses a single instance of the SMT
solver for doing these tasks simultaneously in its main solving loop. Other approaches that
are specialized for quantified linear arithmetic invoke separate instances of an SMT solver
for each quantifier alternation [13, 19], and are often restricted to inputs where quantified
formulas are in prenex normal form. In contrast, the approach in this section requires only
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one instance of the SMT solver and may be applied to inputs with Boolean structure in the
grammar (4) described at the beginning of this section.

7 Instantiation as a Synthesis Procedure

The connection between quantifier elimination and synthesis has been shown fruitful in pre-
vious work [34]; it is one of our motivations for further improving quantified reasoning
modulo theories. The instantiation procedure mentioned in this paper can be used to synthe-
size functions from certain classes of specifications. Consider (second-order) T -formulas of
the form:

∃f ∀xϕ[f ,x] (5)

where ϕ is a quantifier-free formula, x = (x1, . . . , xn) is a tuple of variables of sort τi for
i = 1, . . . , n, and f = (f1, . . . , fm) is a tuple of functions of sort τ1 × . . .× τn → τj for
j = 1, . . . ,m. We call such formulas synthesis conjectures. A synthesis conjecture is single
invocation (over L) if it is equivalent to:

∃f ∀xψ[x, f(x)] (6)

where ψ[x,y] ∈ L. That is, functions f are applied to the tuple x only. The formula (6) is
equivalent to the (first-order) formula ∀x ∃y ψ[x,y], whose negation

∃x ∀y ¬ψ[x,y] (7)

is suitable as an input to Figure 1. As observed in [50], solutions for single invocation syn-
thesis conjectures can be extracted from an unsatisfiable core of instantiations when prov-
ing the unsatisfiability of (7). In particular, let k be a set of distinct fresh variables of the
same sort as x, and say the set {¬ψ[k, t1[k]], . . . ,¬ψ[k, tn[k]]} is T -unsatisfiable where
ti = (t1i [k], . . . , t

m
i [k]) for i = 1, . . . , n. Then:

1 ≤ j ≤ m : fj = λx. ite(ψ[x, tjn[x]], t
j
n[x], ( · · · ite(ψ[x, tj2[x]], t

j
2[x], t

j
1[x]))) (8)

is a solution for f in (6). The instantiation-based procedure in Figure 1 can be used to dis-
charge (7). It is important to note that the solution (8) does not necessarily belong to the
language L, since there is no restriction on the selection functions for L that restricts its
return value t to terms in L. For example, in some of our approaches to linear real arith-
metic, t may contain a free distinguished constants δ or∞ which are outside of the typical
language of linear real arithmetic. Different selection functions or post-processing may be
required based on the restrictions for the solutions to synthesis conjectures.

In this paper, we have devised selection functions S for linear real and integer arithmetic
that are finite and monotonic in Sections 3 and 4. This implies a sound and complete method
for synthesizing tuples of functions whose specification is a single invocation synthesis con-
jecture over linear real and integer arithmetic.

Example 13 Consider the second-order LIA-formula ∃f ∀xy (f(x, y) ≥ x∧f(x, y) ≥ y),
which states that there exists a function f that is the maximum of its arguments x and
y. This formula is equisatisfiable to the first-order LIA-formula ∀xy ∃z (z ≥ x ∧ z ≥
y). We apply the instantiation-based procedure in Figure 1 on the negation of this input,
∃xy ∀z ¬(z ≥ x∧z ≥ y). The procedure may find the T -unsatisfiable set of instances based
on {¬(x ≥ x ∧ x ≥ y),¬(y ≥ x ∧ y ≥ y)}. Thus, a solution for f is λx1x2. ite((x1 ≥
x1 ∧ x1 ≥ x2), x1, x2), which after simplification is λx1x2. ite(x1 ≥ x2, x1, x2). ut
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keymaera (222) scholl (374) tptp (25) Total (621)
# time # time # time # time

cvc4+lw 222 4.1 369 700.0 25 0.4 616 704.4
cvc4 222 4.8 369 818.3 25 0.4 616 823.5
z3 222 8.1 368 875.4 25 0.9 615 884.5
cvc4+fr 222 4.1 365 672.7 25 0.7 612 677.5
cvc4+nvt 222 4.0 365 684.4 25 0.4 612 688.8
cvc4-sc16 222 5.4 349 1213.4 25 0.6 596 1219.3
z3-sc16 222 8.0 330 1345.9 25 0.8 577 1354.8
vampire 222 29.9 100 305.9 25 1.4 347 337.2
veriT 222 4.0 46 504.3 12 0.3 280 508.6
yices 222 3.9 – 0.0 25 0.4 247 4.2
princess 202 1068.7 0 0.0 25 59.2 227 1127.9

Fig. 9 Results for LRA benchmarks, showing times (in seconds) and benchmarks solved by each solver and
configuration over 3 benchmark classes with a 300s timeout. Yices (version 2.4.1) does not support nested
quantification, hence it was not applicable for the scholl class.

psyco (189) sygus (71) tptp (46) uauto (155) Total (461)
# time # time # time # time # time

z3 189 10.7 71 7.0 46 2.1 155 6.1 461 25.9
cvc4 189 65.7 71 8.7 46 0.9 155 3.1 461 78.3
cvc4-sc16 189 26.6 67 268.9 46 1.4 155 3.7 457 300.7
z3-sc16 176 6.7 70 11.5 46 1.9 155 5.4 447 25.5
vampire 26 145.7 59 522.0 44 3.2 155 54.4 284 725.4
beagle 28 1330.4 55 378.9 46 54.1 153 389.2 282 2152.5
princess 12 550.0 68 868.6 46 48.1 155 193.9 281 1660.6
veriT 1 0.1 67 82.3 15 0.4 155 3.0 238 85.6
proB 0 0.0 1 1.0 35 35.2 0 0.0 36 36.2

Fig. 10 Results for LIA benchmarks, showing times (in seconds) and benchmarks solved by each solver and
configuration over 4 benchmark classes with a 300s timeout.

8 Experimental Evaluation

We have implemented the procedure in the SMT solver CVC4 [6] (version 1.5 pre-release).
This section presents an evaluation of this implementation compared against other SMT
solvers, first-order theorem provers and synthesis solvers.

We considered all quantified benchmarks over 6 classes in the LRA and LIA logics
of the SMT library [7]. The class keymaera are verification conditions coming from the
Keymaera verification tool [45], scholl were used for simplification of non-convex polyhe-
dra in [54], psyco were used for weakest precondition synthesis for compiler optimizations
in [37], uauto correspond to verification conditions in [28], and the tptp classes correspond
to simple arithmetic conjectures coming from the TPTP library [58]. We also considered
a class of benchmarks sygus corresponding to first-order formulations of the 71 single-
invocation synthesis conjectures taken from the conditional linear integer track of the 2015
edition of the syntax-guided synthesis competition [1]. All benchmarks are in the SMT ver-
sion 2 format. For comparisons with automated theorem provers, they were converted to
the TPTP format by the SMTtoTPTP conversion tool [8]. We remark that all benchmarks
consist purely of quantified formulas over linear arithmetic with very little, and in a majority
of cases, no quantifier-free content. Of the 7 benchmark classes, only one (the scholl class
from LRA) had quantified formulas with nested quantification. 3

3 Details can be found at http://cs.uiowa.edu/˜ajreynol/FMSD-InstLA.
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The results for the linear real and integer benchmarks are in Figures 9 and 10 respec-
tively. We considered all SMT solvers and theorem provers from the LRA and LIA divisions
of SMT COMP 2016, and the TFA division of CASC J8 [59], the latest competitions in the
SMT and automated theorem proving communities 4. We write cvc4-sc16 and z3-sc16 to
denote solvers from SMT COMP 2016, where CVC4 implements an earlier version of the
techniques from this paper and Z3 (version 4.4.1) implements the techniques from [12]. We
additionally considered Yices version 2.4.1 for LRA, and Z3 version 4.4.2 which imple-
ments the techniques from [13], which we denote yices and z3 respectively. For LRA, we
consider 4 configurations of CVC4 each using different variants of the selection function in
Figure 2:

– cvc4 uses the return value in Figure 2,
– cvc4+lw uses the return value in Figure 3 (Loos and Weispfenning),
– cvc4+fr uses the return value in Figure 4 (Ferrante and Rackoff), and
– cvc4+nvt uses the return value in Figure 5 (with no virtual terms).

By convention, all versions of CVC4 return instantiations for maximal lower bounds before
minmial upper bounds, and do not use variable ordering heuristics for quantified formulas
with multiple variables.

For both LRA and LIA, the best configuration of CVC4 solves the most benchmarks
overall (616 and 461 respectively). Among the configurations of CVC4, the configuration
using a selection function based on Loos and Weispfenning’s method cvc4+lw performed
the best. The performance of the latest version of Z3 has comparable performance, solv-
ing one fewer benchmark in LRA. The configuration cvc4+lw solves 5 benchmarks that
z3 does not. z3 solves 4 benchmarks that cvc4+lw does not, and the virtual best of these
solvers solves all but one benchmark within the timeout. Moreover, we note that cvc4+lw
solves the aforementioned 5 benchmarks in an average of .4 seconds per benchmark. We
believe that this is because CVC4’s strategy is not restricted to quantified formulas that are in
prenex normal form, and thus it may terminate quickly by realizing large nested disjunctions
are not relevant to the overall formula. We will comment more on this in the next section.
CVC4 solves more benchmarks (616) from the scholl class than any other solver due to
its techniques for formulas with nested quantification from Section 6. A technique [19] in
the SMT solver Yices (version 2.4.1) is able to solve all benchmarks from the keymaera
and tptp classes of LRA, but does not handle quantified formulas in LIA or with nested
quantification.

For both benchmarks over LIA and LRA, the automated theorem provers trail the per-
formance of CVC4 (and Z3) significantly. The best LRA automated theorem prover, Vampire,
which uses a combination of a first-order theorem prover and an SMT solver [49], solves
only 347 benchmarks, compared to 616 solved by cvc4-fr. The best LIA automated theorem
prover was also Vampire, which solves 284 benchmarks, notably less than the 461 solved by
CVC4. We conclude that recent lazy model-based techniques for quantified linear arithmetic,
as implemented in CVC4 and Z3, are highly effective for solving quantified linear arithmetic.

8.1 Comparison of Strategies for Quantifier Alternation on Crafted Benchmarks

In this subsection, we demonstrate the effectiveness of our approach for handling nested
quantification based on the strategy in Section 6. As mentioned, our strategy may be applied

4 The solver cvc4-sc16 won the LRA and LIA divisions of SMT COMP 2016. The TFA division of CASC
J8 includes problems that combine arithmetic and uninterpreted functions, where the techniques in this paper
are only partially applicable. Vampire won this division, and CVC4 came in 3rd.
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to quantified formulas in a grammar that is not restricted to prenex normal form, and may
often avoid reasoning about irrelevant portions of quantified formulas, as demonstrated in
Example 11. This gives us an advantage with respect to existing approaches, including the
strategy used in Z3 [13], which is limited to quantified formulas in prenex normal form.

To demonstrate this advantage, we constructed a set of benchmarks that are very easy
if Boolean structure within quantifier scope is properly taken into account, and very hard
otherwise. In detail, we randomly constructed 500 unique formula templates of the form
ϕ1[F ], . . . , ϕ500[F ], where F occurs at some formula position in ϕi. Examples of formula
templates of this form are⊥∧F , ∀x∃y (x > y∧F ), ∃xy x > y∧∃z (x > z∧z > y)∧F ,
and so on. These templates were constructed by recursively generating an abstract syntax
tree where each formula node is given some probability of being one of ∀,∃,¬,∧,∨, >, and
each term node is given some probability of being either a bound variable or one of +, 0, 1.
For each i = 1, . . . , 500, we checked whether:

– The satisfiability result of ϕi[>] was the same as the satisfiability result of ϕi[⊥], and
– The satisfiability of both ϕi[>] and ϕi[⊥] could be quickly determined (in less than 5

seconds) by both CVC4 and Z3.

Among the 500 templates, we found that 360 met the first criterion above and 497 met the
second criterion5 Overall, 357 met both criteria. Notice that for any such template that meets
the first criteria, the satisfiability of ϕi[F ] can be determined independently of any closed
formula we substitute for F . For each of these 357 templates, we measure the time taken by
CVC4 and Z3 to solve the formula obtained by replacing F with closed formulas correspond-
ing to hard benchmarks from the previous section. Since F is irrelevant to the satisfiability
of ϕi[F ], one might expect that the satisfiability of ϕi[Fhard] should be determined relatively
quickly, even if the satisfiability of Fhard is hard to determine. However, we have that this is
not necessarily the case, and that solving time can vary significantly from solver to solver.

Figure 11 give the results of solvers cvc4 and z3 on template and instantiation pairs. We
consider the 357 formula templates, as described above. The first two sets of columns give
CVC4 and Z3’s cumulative run time on the 357 templates where F is replaced by> and⊥ re-
spectively. For the remaining three sets of columns, we replace F by formulas corresponding
to benchmarks from the scholl class of SMT-LIB (rnd 6 39, rndpre 4 41, and rndpre 4 56).
We chose these benchmarks since they are the three benchmarks that neither CVC4 nor Z3
can solve within a two minute timeout. We found that no solver answered differently for two
queries of the form ϕ[F1] and ϕ[F2] for F1 6= F2. In this experiment, Z3 timed out for 169
templates instantiated with Frnd 6 39, and 2 templates instantiated with Frndpre 4 41. Overall,
Z3 solved 71.2% benchmarks from the last three sets columns in less than 30 seconds. On the
other hand, the results show that CVC4 solves each benchmark relatively quickly, regardless
of the contents of F . The longest it took to solve any benchmark was 4.6 seconds. When
comparing the average solving time for benchmarks in the last three sets of columns versus
the first two sets, the average overhead was .13 seconds per benchmark.

For a closer look, Figure 12 gives results for an additional five crafted templates, and the
times taken by CVC4 and Z3 to solve each (template, benchmark) pair. For all templates, we
assume when applicable that free constants (e.g. a and b) are existentially quantified. The
first four templates are unsatisfiable regardless of the content of F . The fifth template we
considered was of the form Frndpre 4 8 ∨ F , where Frndpre 4 8 is the formula corresponding
to a benchmark (also from the scholl class) which CVC4 and Z3 both find to be satisfiable

5 For 2 templates, both Z3 and CVC4 took more than 5 seconds to solve for both cases of F ∈ {>,⊥},
and for 1 template, Z3 timed out when F was ⊥.
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F
> ⊥ Frnd 6 39 Frndpre 4 41 Frndpre 4 56

solver # time # time # time # time # time
cvc4 357 9.0 357 9.0 357 77.1 357 23.1 357 57.6
z3 357 8.0 357 7.9 297 17107.7 355 2043.9 356 2550.1

Fig. 11 Results for 357 randomly constructed templates of the form ϕ[F ] whose satisfiability does not de-
pend on F , for five cases of F . The first and second sets of columns give the number of solved and cumulative
running time of cvc4 and z3 where F is > and ⊥ respectively. The remaining three sets of columns give the
results where F is formulas corresponding to hard benchmarks from the scholl class of SMT-LIB. All exper-
iments run with a 300s timeout.

F
Frnd 6 39 Frndpre 4 41 Frndpre 4 56

template solver time solver time solver time

a > b ∧ ∃y (a > y ∧ y > b) ∧ F CVC4
Z3

0.17
0.13

CVC4
Z3

0.05
0.03

CVC4
Z3

0.21
0.06

∀x∃y (∀w ∃z (w > z ∧ x > y∧
y > a) ∧ ¬F )

CVC4
Z3

0.28
203.5

CVC4
Z3

0.19
209.7

CVC4
Z3

4.15
29.17

∀x∃y ∀w ∃z (w > z ∧ x > y∧
y > a ∧ ¬F )

CVC4
Z3

0.28
234.0

CVC4
Z3

0.19
172.9

CVC4
Z3

4.22
75.5

∀x∃y ((∀w ∃z ∀uw > z ∧ u > z∧
z > w ∧ w > y ∧ y > x) ∧ F )

CVC4
Z3

0.16
> 300

CVC4
Z3

0.04
0.69

CVC4
Z3

0.09
3.2

Frndpre 4 8 ∨ F
CVC4

Z3
0.16

196.4
CVC4

Z3
0.03
1.85

CVC4
Z3

0.10
8.9

Fig. 12 Results for example crafted templates ϕ[F ] for three cases of F . The formula Frndpre 4 8 corresponds
to an easy satisfiable benchmark from the same class.

quickly, and thus this template is satisfiable for all F . For the first template, both CVC4
and Z3 solve all three instances quickly. For the other templates, Z3’s performance varies
significantly. In fact, for some benchmarks such as the fourth template where F is Frnd 6 39,
Z3’s performance is worse (> 300 seconds) than running on Frnd 6 39 alone, which it solves
in 226.3 seconds. Overall, CVC4 answers quickly for all benchmarks, solving almost all
benchmarks in less than a second. It takes around 4 seconds to solve the second and third
templates instantiated with rndpre 4 56, where it spends a majority of its time finding a
model for the initial set of quantifier-free constraints and terminates after only two iterations
of the loop in procedure CEGQIT from Figure 8. In our testing, we were unable to find
a template ϕ[F ] for which CVC4 took more than 5 seconds longer to solve ϕ[Fhard] when
compared to the time it took to solve ϕ[>], where Fhard is a formula corresponding to one
of the benchmarks in the columns of Figure 12. On the other hand, Z3’s performance varied
significantly on many of the non-trivial templates we considered.

We believe this indicates that a strategy for quantified linear arithmetic that does not
require formulas to be in prenex normal form, such as the one from Section 6, can have
significant performance advantages. We conjecture that this design decision accounts for
the differences between CVC4 and Z3 in our evaluation in the previous section, where we
found that for 5 of the original benchmarks from the scholl class for which Z3 timed out, at
least one configuration of CVC4 was able to solve in less than 2 seconds.

8.2 Comparison with Synthesis Solvers

The techniques for solving quantified linear arithmetic in CVC4 have the additional advan-
tage that they may produce solutions to synthesis conjectures as described in Section 7. In
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keymaera (222) scholl (351) tptp (25)
#Inst #PInst #Inst #PInst #Inst #PInst

cvc4 0.11 0.86 7.23 5937.8 0.04 0.08

psyco (189) sygus (71) tptp (46) uauto (155)
#Inst #PInst #Inst #PInst #Inst #PInst #Inst #PInst

cvc4 21.9 >1M 5.1 7.6 0.2 0.3 1.6 6.3

Fig. 13 Average number of instantiations and possible instantiations per benchmark for LRA and LIA
benchmarks.

the 2015 edition of the syntax-guided synthesis (SyGuS) competition [2], an earlier version
of CVC4 won the conditional linear arithmetic track, solving 70 of 73 benchmarks using
techniques from [50]. The nearest solver ALCHEMIST [53] solved 43. CVC4 also won the
conditional linear arithmetic track in the 2016 edition, solving all 73 synthesis conjectures,
and a new approach in EUsolver [3] solved 72. The improvement in CVC4 in the latest edi-
tion is due to its use of a complete instantiation strategy for linear integer arithmetic when
solving single invocation synthesis conjectures as described in Section 7.

8.3 Number of Instantiations

We measured statistics on the number of instantiations CVC4 constructs while solving bench-
marks in the previous section. Let #lits(ψ,X) be the number of literals in ψ containing a
variable in set X . We approximate the number of possible instantiations of a quantified
formula ψ of the form ∀x1 . . . xn ϕ where ϕ is quantifier-free by the following calculation:

#PInst(ψ) = Πi=1,...,nmax(1,#lits(ϕ, {xi})

For each i, we add a factor corresponding to an approximation of the number of possible
bounds for variable xi. This measure is proportional to the worst-case behavior of the total
number of instantiations required for the termination of the instantiation-based procedure
in Figure 1 when using the selection functions SLRA and SLIA for linear real and integer
arithmetic. More precisely, each factor for variable xi is an approximation of the size of
the set of possible terms returned by functions SR0 and SI0, as described in the proofs of
Lemmas 3 and 6 respectively.

Figure 13 gives the average number of instantiations considered by CVC4 and the av-
erage possible number of instantiations considered by CVC4 across all benchmark families
on benchmarks that all configurations of CVC4 solve. A few benchmark families (such as
tptp and keymaera) had a very small number of possible instantiations, which can partially
be attributed to the fact that CVC4 applies aggressive preprocessing techniques to eliminate
variables from quantified formulas. Conversely, other benchmark families (such as scholl
and psyco) had a very large number of possible instantiations. Many of the benchmarks in
psyco contained formulas with quantifier prefixes up to 50 variables in length, and hence
often had upwards of 250 possible instantiations. Since the benchmarks in scholl contain
nested quantification, we consider a very conservative estimate of the number of possi-
ble instantiations by only considering innermost quantified formulas in our computation.
The number of instantiations CVC4 considers is on average considerably less the number
of possible instantiations, demonstrating that a lazy approach for quantifier instantiation is
beneficial, and often critical, to solving benchmarks in these libraries.
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9 Conclusion

We have presented a class of instantiation-based procedures that are at the same time com-
plete for quantified linear arithmetic and highly efficient in practice. Thanks to our frame-
work we also obtain a simple and modular correctness argument for soundness and com-
pleteness on formulas with one quantifier alternation. This correctness argument is used in
part for showing soundness and completeness on formulas with arbitrary quantifier alterna-
tions, as well as a complete and efficient method for solving single invocation synthesis con-
jectures. Our procedure for arbitrary quantifier alternations has advantages over approaches
that are limited to formulas in prenex normal form.

For future work, we would like to extend the approach to new theories including fixed-
width bit vectors, strings, and non-linear arithmetic, as well as for combinations of theories
that admit quantifier elimination. We would like to focus on further heuristics for quantified
linear arithmetic with arbitrary quantifier alternations, and for avoiding worst case perfor-
mance for quantified integer arithmetic involving large coefficients. A longer term goal of
this work is to develop an approach that is effective in practice for quantified formulas in-
volving both background theories and uninterpreted functions. We plan to investigate the
use of the framework described in this paper as a component of such an approach.

Acknowledgements We would like to thank Mikolas Janota for his helpful discussion, and
Peter Baumgartner for his help with converting the benchmarks used in the evaluation to the
TPTP format.
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45. A. Platzer, J.-D. Quesel, and P. Rümmer. Real world verification. In Automated Deduction–CADE-22,
pages 485–501. Springer Berlin Heidelberg, 2009.
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