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Abstract
In recent years, expansion-based techniques have been shown to be very powerful in theory
and practice for solving quantified Boolean formulas (QBF), the extension of propositional
formulas with existential and universal quantifiers over Boolean variables. Such approaches
partially expand one type of variable (either existential or universal) for obtaining a proposi-
tional abstraction of the QBF. If this formula is false, the truth value of the QBF is decided,
otherwise further refinement steps are necessary. Classically, expansion-based solvers pro-
cess the given formula quantifier-block wise and use one SAT solver per quantifier block. In
this paper, we present a novel algorithm for expansion-based QBF solving that deals with the
whole quantifier prefix at once. Hence recursive applications of the expansion principle are
avoided and only two incremental SAT solvers are required. While our algorithm is naturally
based on the ∀Exp+Res calculus that is the formal foundation of expansion-based solving,
it is conceptually simpler than present recursive approaches. Experiments indicate that the
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performance of our simple approach is comparable with the state of the art of QBF solving,
especially in combination with other solving techniques.

Keywords Quantified Boolean formulas · Decision procedures · CEGAR

1 Introduction

Efficient tools for deciding the satisfiability of Boolean formulas (SAT solvers) are the core
technology in many verification and synthesis approaches [49]. However, verification and
synthesis problems are often beyond the complexity class NP as captured by SAT, requir-
ing more powerful formalisms like quantified Boolean formulas (QBFs) [7]. QBFs extend
propositional formulas by universal and existential quantifiers over Boolean variables [34]
resulting in a decision problem that is PSPACE-complete. Applications from verification and
synthesis [10,15,16,20,22,26], realizability checking [21], bounded model checking [18,52],
and planning [19,44] motivate the quest for efficient QBF solvers (see [45] for a survey).

Unlike for SAT, where conflict-driven clause learning (CDCL) is the single dominant
solving approach for practical problems, two dominant approaches exist for QBF solving.
On one hand, CDCL has been successfully extended to QCDCL that enables clause and cube
learning [23,37,51]. On the other hand, variable expansion has become very popular. In short,
expansion-based solvers eliminate one kind of variables by assigning them truth values and
solve the resulting propositional formula with a SAT solver. For QBFs with one quantifier
alternation (2QBF), a natural approach is to use two SAT solvers: one that deals with the
existentially quantified variables and another one that deals with the universally quantified
variables. For generalizing this SAT-based approach to QBFs with an arbitrary number of
quantifier alternations, expansion is recursively applied per quantifier block, requiring multi-
ple SAT solvers realizing a counter-example guided extraction approach (CEGAR) [17]. As
noted by Rabe and Tentrup [42], these CEGAR-based approaches show poor performance
for formulas with many quantifier alternations in general.

We also propose an approach that is guided by counter-examples, but that deals with
quantifier alternations in a different manner than available CEGAR approaches. Inspired by
Counterexample-Guided Inductive Synthesis (CEGIS), we present a novel solving algorithm
based on non-recursive expansion for QBFs with arbitrary quantifier prefixes using only
two SAT solvers. In short, CEGIS is a generic framework initially devised in the context of
syntax-guided synthesis [1]. It involves the interaction between two components:

• The learner generates candidate solutions that are consistent with all currently found
counterexamples or—if it does not find such a candidate solution—it has shown that the
problem does not have a solution, i.e., it is unsatisfiable.

• The verifier provides, given a candidate solution to a problem, a counterexample that
disproves it, or it correctly proves that the candidate solution is indeed a valid solution.

We adopt the CEGIS paradigm for QBF solving as follows. Our approach instantiates all
variables of the same kind (either the universal variables or the existential variables) at once
with a candidate solution/counterexample and passes the resulting propositional abstraction
of the QBF to a SAT solver. If the SAT solver finds the formula to be unsatisfiable, the
truth value of the original QBF is decided, otherwise the model returned by the SAT solver
is used as candidate solution/counter example for refining the propositional abstraction. In
theory (i.e., from a proof complexity perspective), our approach of non-recursive expansion
is equivalent to approaches that apply recursive expansion since both non-recursive and
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recursive expansion rely on the ∀Exp+Res proof system [6]. However, the non-recursive
expansion has practical implications such as a modified search strategy. That is, the use of
recursive or non-recursive expansion results in different search strategies for the proof. With
respect to proof search, there is an analogy to, e.g., implementations of resolution-based
CDCL SAT solvers that employ different search heuristics.

In addition to the new algorithm, we also implemented a hybrid approach that com-
bines clause learning with non-recursive expansion-based solving for exploiting the power
ofQCDCL.Our experiments indicate that this hybrid approach performs verywell, especially
on formulas with multiple quantifier alternations.

This paper is structured as follows. After a review of related work in the next section, we
introduce the necessary preliminaries in Sect. 3. After a short recapitulation of expansion
in Sect. 4, our novel non-recursive expansion-based algorithm is presented in Sect. 5. The
relation between our solving approach and ∀Exp+Res is explained in Sect. 6. Implementation
details are discussed in Sect. 7 together with a short discussion of the hybrid approach. In
Sect. 8 we compare our approach to state-of-the-art solvers.

This paper is an extended version of [9]. Besides a careful revision of the text, it contains
more examples and illustrations, as well as an additional chapter relating our new solving
approach to the ∀Exp+Res proof system. Furthermore, we added comprehensive experiments
on the benchmark set used in QBFEval 2018.

2 Related work

Already the early QBF solvers Qubos [3] and Quantor [3] incorporate selective quantifier
expansion for eliminating one kind of quantification to reduce the given QBF to a proposi-
tional formula.Qubos heuristically chooses which kind of quantifier to eliminate. If universal
quantifiers are eliminated, subformulas of the form ∀x .φ are replaced by φ[x/�] ∧ φ[x/⊥].
Dually, subformulas of the form ∃x .φ are replaced by φ[x/�] ∨ φ[x/⊥]. For handling the
blow-up, Qubos implements several simplification techniques. Qubos does not require the
input QBF to be in prenex conjunctive normal form (PCNF), but it is able to process for-
mulas of arbitrary structure. Even more, the expansion of existential variables destroys any
PCNF structure. Quantor, in contrast, preserves the PCNF structure by expanding universal
variables only. In both cases, the resulting propositional formula is then solved by calling
a SAT solver once. Over 15 years ago, Qubos and Quantor impressively demonstrated the
power of expanding universal variables but also showed its enormous memory consump-
tion. As a pragmatic compromise, bounded universal expansion was introduced for efficient
preprocessing [13,24,25,50].

The first approach which uses two alternating SAT solvers A and B for solving 2QBF,
i.e., QBFs of the form ∀U∃E .φ, was presented in [43]. Solver A is initialized with φ, B with
the empty formula. Both propositional formulas are incrementally refined with satisfying
assignments found by the other solver. If A finds its formula unsatisfiable, then the QBF is
false. Otherwise, the negation of the universal part of the satisfying assignment is passed
to solver B. If solver B finds its formula unsatisfiable, then the QBF is true. Otherwise,
the existential part of the satisfying assignment is passed to solver A. Janota and Marques-
Silva generalized the idea of alternating SAT solvers [33] such that one solver deals with the
existentially quantified variables and one solver dealswith the universally quantified variables
exclusively. Solver A gets instantiations of φ in which the universal variables are assigned,
and solver B gets instantiations of ¬φ in which the existential variables are assigned. The
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satisfying assignment found by one solver is used to obtain a new instantiation for the other.
This loop is repeated until one solver returns unsatisfiable. This approach realizes a natural
application of the counter-example guided abstraction refinement (CEGAR) paradigm [17].
A detailed survey on 2QBF solving is given in [4].

A significant advancement of expansion-based solving for QBF with an arbitrary number
of quantifier alternationswasmadewith the solver RAReQS [28,29],which recursively applies
the previously discussed 2QBF approach [33] for each quantifier alternation. The approach
turned out to be highly competitive.1 For formalizing this solving approach the calculus
∀Exp+Res was introduced [6], and proof-theoretical investigations revealed the orthogonal
strength of ∀Exp+Res and Q-resolution [35], the QBF variant of the resolution calculus that
forms the basis for QCDCL-based solvers. Research on the proof complexity of QBF has
identified an exponential separation between Q-resolution and the ∀Exp+Res system. There
are families of QBFs for which any Q-resolution proof has exponential size, in contrast
to ∀Exp+Res proofs of polynomial size, and vice versa. Hence these two systems have
orthogonal strength.

Recent work successfully combines machine learning with this CEGAR approach [27].
Motivated by the success of expansion-based QBF solving, several other approaches [12,32,
42,46–48] have been presented that are based on levelised SAT solving, i.e., one SAT solver is
responsible for the variables of one quantifier block. In this paper, we also introduce a solving
approach that is based upon propositional abstraction but considers thewhole quantifier prefix
at once.

3 Preliminaries

The QBFs considered in this paper are in prenex normal form Π.φ where Π is a quantifier
prefix Q1x1Q2x2 . . . Qnxn over the set of variables X = {x1, . . . , xn} with Qi ∈ {∀, ∃} and
xi 	= x j for i 	= j . The propositional formula φ contains only variables from X . Unless
stated otherwise, we do not make any assumptions on the structure of φ. Sometimes Π.φ is
in prenex conjunctive normal form (PCNF), i.e., Π is a prefix as introduced before and φ

is a conjunction of clauses. A clause is a disjunction of literals, and a literal is a variable or
the negation of a variable. The prefix imposes the order <Π on the elements of X such that
xi <Π x j if i < j . By UΠ (EΠ ) we denote the set of universally (existentially) quantified
variables of the prefix Π . If clear from the context we omit the subscript Π . We assume the
standard semantics of QBF. A QBF consisting of only the syntactic truth constant ⊥ (�) is
false (true). A QBF ∀xΠ.φ is true if Π.φ[x ← �] and Π.φ[x ← ⊥] are both true, where
φ[x ← t] is the substitution of each occurrence of x by t in φ. A QBF ∃xΠ.φ is true if
Π.φ[x ← �] or Π.φ[x ← ⊥] is true.

Given a set X of variables, we call a total function σ : X → {�,⊥, ε} an assignment
for X . If there is an x ∈ X with σ(x) = ε then σ is a partial assignment, otherwise σ is
a full assignment of X . Informally, σ(x) = ε means that σ does not assign a truth value to
variable x . A restriction σ |Y : Y → {�,⊥, ε} of assignment σ : X → {�,⊥, ε} to Y ⊆ X
is defined by σ |Y (x) = σ(x) if x ∈ Y , otherwise σ |Y (x) = ε. By ΣX we denote the set
of all full assignments σ : X → {�,⊥}. Let φ be a propositional formula over X . By σ(φ)

we denote the application of assignment σ : X → {�,⊥, ε} on φ, i.e., σ(φ) is the formula
obtained by replacing variables x ∈ X by σ(x) if σ(x) ∈ {�,⊥} and performing standard
propositional simplifications. Let φ,ψ be propositional formulas over the set of variables

1 http://www.qbflib.org.
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X . If for every full assignment σ ∈ ΣX , σ(φ) = σ(ψ) then φ and ψ are equivalent. Let
τ : X → {�,⊥, ε} and σ : Y → {�,⊥, ε} be assignments such that for every x ∈ X ∩ Y ,
τ(x) = σ(x) if τ(x) 	= ε and σ(x) 	= ε. Then the composite assignment of σ and τ is denoted
by στ : X ∪ Y → {�,⊥, ε} and for every propositional formula φ over X ∪ Y , it holds that
στ(φ) = τσ (φ) = σ(τ(φ)) = τ(σ (φ)). Furthermore, we use the equality σσ = σ for any
assignment σ .

Example 1 Let σ : X → {�,⊥, ε} be an assignment over variables {a, b, x, y} defined by
σ(a) = �, σ(b) = ε, σ(x) = �, and σ(y) = ε. The restriction τ = σ |Y of σ to Y = {x, y}
is given by τ(a) = ε, τ(b) = ε, τ(x) = �, τ(y) = ε. For the propositional formula
φ = (x ∨ a ∨ y) ∧ (¬x ∨ ¬a ∨ y) ∧ (¬y ∨ b), the application of σ and τ on φ gives us
σ(φ) = y ∧ (¬y ∨ b) and τ(φ) = (¬a ∨ y) ∧ (¬y ∨ b).

4 Expansion

In the following, we introduce the notation and terminology used for describing expansion-
based QBF solving in general, and the algorithm introduced in the next section in particular.
We first define the notion of instantiation that is inspired by the axiom rule of the calculus
∀Exp+Res [31] which is introduced in Sect. 6.

Definition 1 Let Π.φ be a QBF with prefix Π = Q1x1 . . . Qnxn over the set of variables
X = {x1, . . . , xn} and σ : Y → {�,⊥, ε} with Y ⊆ X an assignment. If Y ⊂ X , we extend
the domain of σ to X by setting σ(x) = ε if x ∈ X but x /∈ Y . The instantiation of φ by σ ,
denoted by φσ , is obtained from φ as follows:

1. All variables x ∈ X with σ(x) 	= ε are set to σ(x);
2. All variables x ∈ X with σ(x) = ε are replaced by xω where annotation ω is uniquely

defined by the sequence σ(xk1)σ (xk2) . . . σ (xkm ) such that the set formed from the vari-
ables xki contains all variables of X with xki <Π x and σ(xki ) 	= ε. Furthermore,
xki <Π xk j if ki < k j ;

3. All truth constants occurring in the formula (not in the annotations) are eliminated by
standard simplification rules.

If we instantiate a QBF Π.φ with the full assignment σ : UΠ → {�,⊥} of the universal
variables, we obtain a propositional formula that contains only (possibly annotated) variables
from EΠ . The dual holds for the instantiation by a full assignment σ : EΠ → {�,⊥} of the
existential variables.

Example 2 Given the QBF ∀a∃x∀b∃y.φ with φ = ((x ∨a∨ y)∧ (¬x ∨¬a∨ y)∧ (¬y∨b)).
Then U = {a, b} and E = {x, y}. Let σ : U → {�,⊥, ε} be defined by σ(a) = �
and σ(b) = ⊥. Then φσ = (¬x� ∨ y�⊥) ∧ ¬y�⊥. Further, let τ : E → {�,⊥, ε} with
τ(x) = ⊥ and τ(y) = ⊥. Then φτ = a. Note that a is not annotated because it occurs in the
first quantifier block.

Sometimes we want to remove the annotations from an assignment or an instantiated
formula. Therefore, we introduce the following notation. Letφσ be an instantiation by assign-
ment σ : X → {�,⊥, ε} and Xσ the set of annotated variables. If we have an assignment
τ : Xσ → {�,⊥, ε}, then we define τ−σ : X → {�,⊥, ε} by τ−σ (x) = τ(xσ ) for xσ ∈ Xσ .
If we have an instantiated formulaφσ , then (φσ )−σ is the formula obtained by replacing every
annotated variable xσ ∈ Xσ by x . In general, (φσ )−σ 	= φ.
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input : QBF Π.φ with universal variables U and existential variables E
output: truth value of Π.φ

1 A0 := {α0}, where α0 : U → {�, ⊥} is an arbitrary assignment
2 S0 := ∅
3 i := 1

4 while true do

5 (isUnsat, τ) := SAT(
∧

α∈Ai−1
φα)

6 if isUnsat then return false;
7 Si := Si−1 ∪ {(τ |Eα )−α | α ∈ Ai−1}
8 (isUnsat, ρ) := SAT(

∧
σ∈Si

¬φσ)
9 if isUnsat then return true;

10 Ai := Ai−1 ∪ {(ρ|Uσ )−σ | σ ∈ Si}
11 i++

12 end

Fig. 1 Non-Recursive Expansion-Based Algorithm

Example 3 Reconsider the propositional formula φ and assignments σ, τ from Example 2
above. Then (φσ )−σ = ((¬x�∨y�⊥)∧¬y�⊥)−σ = (¬x∨y)∧¬y. Furthermore, (φτ )−τ =
(a)−τ = a.

Lemma 1 Let Π.φ be a QBF with variables X and σ : X → {�,⊥, ε} be a partial assign-
ment. Then (φσ )−σ and σ(φ) are equivalent.

Proof By induction over the formula structure. For the base case let φ = x with x ∈ X . If
σ(x) = ε, then σ(φ) = x , φσ = xω, and (φσ )−σ = x . Otherwise, φσ = σ(x). Obviously,
σ(φ) = σ(x) = (σ (x))−σ ∈ {�,⊥}. The induction step naturally follows from the semantics
of the logical connectives. ��

Finally, we specify the semantics of a QBF in terms of universal and existential expansion
on which expansion-based QBF solving is founded.

Lemma 2 Let Φ = Π.φ be a QBF with universal variables U. There is a set of assignments
A ⊆ ΣU with

∧
α∈A φα is unsatisfiable if and only if Φ is false.

The lemma above has a dual version for true QBFs. This duality plays a prominent role
in our novel solving algorithm.

Lemma 3 LetΦ = Π.φ be a QBF with existential variables E. There is a set of assignments
S ⊆ ΣE with

∨
σ∈S φσ is valid if and only if Φ is true.

5 A non-recursive algorithm for expansion-based QBF solving

The pseudo-code in Fig. 1 summarizes the basic idea of our novel approach for solving the
QBF Π.φ with universal variables U and existential variables E .

First, an arbitrary assignment α0 for the universal variables is selected in Line 1. The
instantiation φα0 is handed over to a SAT solver. If φα0 is unsatisfiable, then Π.φ is false and
the algorithm returns. Otherwise, τ : Eα0 → {�,⊥} is a satisfying assignment of φα0 . Let
σ1 denote the assignment τ−α0 . Then α0σ1 is a satisfying assignment of φ.
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Next, the propositional formula ¬φσ1 is handed over to a SAT solver for checking the
validity of φσ1 . If ¬φσ1 is unsatisfiable, then Π.φ is true and the algorithm returns. If ¬φσ1

is satisfiable, then ρ : Uσ1 → {�,⊥} is a satisfying assignment of ¬φσ1 . Let α1 denote the
assignment ρ−σ1 . Then α1σ1 is a satisfying assignment for ¬φ. The following lemma shows
that α0 and α1 are different.

Lemma 4 LetΠ.φ be aQBFwith universal variablesU and existential variables E. Further,
let α : U → {�,⊥} be an assignment such that the instantiation φα is satisfiable and has
the satisfying assignment τ : Eα → {�,⊥}. Let σ : E → {�,⊥} with σ = τ−α . Then α

falsifies (¬φσ )−σ .

Proof Since φα is satisfied by τ , φ is satisfied by the composite assignment ατ−α = ασ ,
and therefore ¬φ is falsified by ασ . Then α falsifies σ(¬φ). According to Lemma 1 σ(¬φ)

is equivalent to (¬φσ )−σ . Then α also falsifies (¬φσ )−σ . ��
In the next round of the algorithm, the propositional formula φα0 ∧ φα1 is handed over

to a SAT solver. If this formula is unsatisfiable, Π.φ is false and the algorithm returns.
Otherwise, it is satisfiable under some assignment τ : Eα0 ∪ Eα1 → {�,⊥}, then at least one
new assignment σ2 : E → {�,⊥} with σ2 	= σ1 can be extracted from τ |Eαi with 0 ≤ i ≤ 1.
This assignment is then used for obtaining a new propositional formulaφσ1∨φσ2 . To show the
validity of this formula, its negation is passed to a SAT solver. If this formula is unsatisfiable,
Π.φ is true and the algorithm returns. Otherwise, it is satisfiable under the assignment
ρ : Uσ1 ∪ Uσ2 → {�,⊥}. A new assignment α2 : U → {�,⊥} with α2 	= α1 	= α0 is
obtained from ρ|Aσi with 1 ≤ i ≤ 2. This assignment is then used in the next round of the
algorithm. In this way, the propositional formulas

∧
α∈ΣU

φα and
∨

σ∈ΣE
φσ are generated.

If
∧

α∈A φα is unsatisfiable for some A ⊆ ΣU , by Lemma 2Π.φ is false. Dually, if
∨

σ∈S φσ

is valid for some S ⊆ ΣE , by Lemma 3 Π.φ is true. The algorithm iteratively extends the
sets A and S by adding parts of satisfying assignments of φ to S and parts of falsifying
assignments to A. In particular, A is extended by assignments of the universal variables and
S is extended by assignments of the existential variables. The order in which assignments
are considered depends on the used SAT solver.

Example 4 We show how to solve the QBF ∀a∃x∀b∃y.φ with E = {x, y}, U = {a, b}, and
φ = ((a ∨ x ∨ y) ∧ (¬a ∨ ¬x ∨ y) ∧ (b ∨ ¬y)) with the algorithm presented above. This
formula can be solved in two iterations:

Init: We start with some random assignment α0 : U → {�,⊥}, for example with α0(a) =
� and α0(b) = ⊥.

Iteration 1: The formula φα0 = (¬x� ∨ y�⊥)∧¬y�⊥ is passed to a SAT solver and found
satisfiable under the assignment τ : Eα0 → {�,⊥} with τ(x�) = ⊥ and τ(y�⊥) = ⊥. By
removing the variable annotations we get assignment σ1 = (τ |Eα0 )−α0 , where σ1 : E →
{�,⊥} with σ1(x) = ⊥ and σ1(y) = ⊥. Based on this assignment we obtain φσ1 = a. The
formula ¬φσ1 is passed to a SAT solver. It is satisfiable and has the satisfying assignment
ρ : Uσ1 → {�,⊥}withρ(a) = ⊥ andρ(b⊥) = �,whichwe then reduce toα1 = (ρ|Uσ1 )−σ1

where α1 : U → {�,⊥} with α1(a) = ⊥ and α1(b) = �.
Iteration 2: The formula φα0 ∧ φα1 = (¬x� ∨ y�⊥) ∧ ¬y�⊥ ∧ (x⊥ ∨ y⊥�) is passed

to a SAT solver in the second iteration. It is satisfiable and one satisfying assignment is
τ : Eα0 ∪ Eα1 → {�,⊥} with τ(x�) = ⊥, τ (x⊥) = �, τ (y�⊥) = ⊥, τ (y⊥�) = ⊥.
From τ , we can extract the assignment σ2 = (τ |Eα1 )−α1 where σ2 : E → {�,⊥} with
σ2(x) = � and σ2(y) = ⊥. Note that for any choice of τ , σ2 	= σ1. Next, we construct
φσ1 ∨ φσ2 = a ∨ ¬a. This formula is a tautology, so its negation that is passed to a SAT
solver is unsatisfiable, hence Π.φ is true.
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Fig. 2 Expansion trees relating
the assignments found during
solving the QBF ∀a∃x∀b∃y.φ in
Example 5, with initial
assignment
α0(a) = ⊥, α0(b) = ⊥. The
assignments shown in the leaves
of the trees satisfy (left trees) or
falsify (right trees) φ

a

x⊥

b

y⊥⊥

α0σ1

a

x⊥

b

y⊥�

α1σ2

y⊥⊥

α0σ1

a

x

b�

y

α1σ1

a

x�

b

y��

α2σ3

x⊥

b

y⊥�

α1σ2

y⊥⊥

α0σ1

a

x

b�

y

α2σ2 α2σ1

a

x�

b

y�� y�⊥

x⊥

b

y⊥� y⊥⊥

a

x

b�

y

α2σ2 α2σ1

b⊥

y

α3σ3

v

v

v

Counter-Models of φModels of φ

Iteration 1

Iteration 2

Iteration 3

Iteration 4

σ1(x) = �, σ1(y) = ⊥

σ2(x) = �, σ2(y) = �

σ3(x) = ⊥, σ3(y) = ⊥

α1(a) = ⊥, α1(b) = �

α2(a) = �, α2(b) = �

α3(a) = �, α3(b) = ⊥

v set to ⊥

v set to �

v unassigned

The soundness of our algorithm immediately follows fromLemmas 2 and 3 : the algorithm
returns false (true) if, in some iteration i , it finds that the current partial expansion

∧
α∈Ai−1

φα

(respectively
∧

σ∈Si ¬φσ ) is unsatisfiable.

Theorem 1 The algorithm shown in Fig. 1 is sound.

For showing that the algorithm also terminates, we argue that sets Ai and Si increase in
iteration i +1. To this end, we have to relate the variables of the QBF, the annotated variables
as well as their assignments. Before we give the proof, we first consider another example in
which we illustrate how the different assignments are related.
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Example 5 We show one possible run of the algorithm presented above for the QBF Φ :=
∀a∃x∀b∃y.φ with

φ := (a ∧ b ∧ ¬x ∧ ¬y) ∨ (¬a ∧ x ∧ (b ↔ y))

and how it iteratively generates the sets ΣU and ΣE . Figure 2 shows the expansion trees that
are implicitly built during the search. An expansion tree relates the variables of the partial
expansion ofΦ constructed from Ai (left column) and Si (right column). Solid edges indicate
that the variable on the top has been set by an assignment from Ai or Si , and dotted edges
indicate that the variable has to be assigned a value by the SAT solver. The order of the
(annotated) variables in the expansion tree respects the order of the (original) variables in the
prefix.

Init: For the initialization of A0, an arbitrary assignment α0 : U → {�,⊥} is chosen. Let
α0(a) = ⊥ and α0(b) = ⊥.

Iteration 1: φα0 := x⊥ ∧¬y⊥⊥ is satisfiable. Assignment σ1 : E → {�,⊥}, with σ1(x) =
� and σ1(y) = ⊥, is extracted from model τ : Eα1 → {�,⊥} and added to S1. Now
φσ1 := ¬a ∧ ¬b� is checked for validity. Assignment α1 : U → {�,⊥}, with α1(a) = ⊥
and α1(b) = �, obtained from counter-example ρ : Uσ1 → {�,⊥} is added to A1.

Iteration2:Next,φα0∧φα1 withφα1 := x⊥∧y⊥� is checked. Frommodel τ : Eα0∪Eα1 →
{�,⊥}, again σ1 can be extracted for φα0 . For φα1 a new assignment σ2 which is not in S1
is found and added to S2. In particular, we get σ2 : E → {�,⊥} with σ2(x) = � and
σ2(y) = �. When the validity of φσ1 ∨ φσ2 with φσ2 := ¬a ∧ b� is checked, we get a
counter-example ρ : Uσ1 ∪ Uσ2 → {�,⊥}, from which α2 : U → {�,⊥}, with α2(a) = �
and α2(b) = �, can be extracted. Assignment α2 is added to A2 leading to a new path in the
left expansion tree (Iteration 3 in Fig. 2).

Iteration 3: Next, φα0 ∧ φα1 ∧ φα2 with φα2 := ¬x� ∧ ¬y�� is checked. From model
τ : Eα0∪Eα1∪Eα2 → {�,⊥},σ3 : E → {�,⊥} is extracted, satisfyingφα2 . This assignment
is different from both σ1 and σ2: σ3(x) = ⊥ and σ3(y) = ⊥. This again results in a new
branch of the expansion tree (see left expansion tree of Iteration 4 in Fig. 2). The resulting
formula φσ1 ∨ φσ2 ∨ φσ3 with φσ3 := a ∧ b⊥ is not valid, and from the counter-example
ρ : Uσ1 ∪Uσ2 ∪Uσ3 → {�,⊥} we get α3 : U → {�,⊥} with α3(a) = � and α3(b) = ⊥.

Iteration 4: Finally, the full expansion φα0 ∧ φα1 ∧ φα2 ∧ φα3 with φα3 := ⊥ is not
satisfiable, meaning that the original formula ∀a∃x∀b∃y.φ is false.

In the example above we saw that new assignments are generated in each iteration because
Ai and Si build models and counter-models of φ. The following definition formalizes the
relationship between Ai and Si .

Definition 2 Let Π.φ be a QBF over universally quantified variables U and existentially
quantified variables E . Further, let A ⊆ {α | α : U �→ {�,⊥}
} and S ⊆ {σ | σ : E �→
{�,⊥}
}. If for every assignment σ ∈ S, there exists an assignment α ∈ A such that
ασ(¬φ) is true, then we say that A completes S. If for every assignment α ∈ A, there exists
an assignment σ ∈ S such that ασ(φ) is true, then we say that S completes A.

We now show that Si completes Ai−1 and Ai completes Si if the algorithm does not
terminate in iteration i because of the unsatisfiability of the respective expansion.

Lemma 5 LetΠ.φ be a QBF over universally quantified variables U and existentially quan-
tified variables E. Further, let Ai−1 and Ai with Ai−1 ⊆ Ai be two sets of full assignments
to the universal variables and let Si be a set of full assignments to the existential variables
obtained by iteration i during an execution of the algorithm shown in Fig. 1.
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(1) If
∧

α∈Ai−1
φα is satisfiable, then Si completes Ai−1, i.e., for every μ ∈ Ai−1, there is an

assignment ν ∈ Si such that μν(φ) is true.
(2) If

∧
σ∈Si ¬φσ is satisfiable, then Ai completes Si , i.e., for every ν ∈ Si , there is an

assignment μ ∈ Ai such that νμ(¬φ) is true.

Proof By contradiction. For (1), assume there is an assignment μ ∈ Ai−1 such that there
is no assignment ν ∈ Si with μν(φ) is true. By assumption

∧
α∈Ai−1

φα is satisfiable, so
there is a satisfying assignment τ with τ |Eμ(φμ) is true. Then also μ(τ |Eμ)−μ(φ) is true.
But (τ |Eμ)−μ ∈ Si . For (2), assume that there is an assignment μ ∈ Si such that there is no
ν ∈ Ai with μν(¬φ) is true. The rest of the argument is similar as in (1). ��

Next, we show that the addition of new assignments A′ to a set A of universal assignments
forces a set S of existential assignments to increase if some completion criteria hold.

Lemma 6 Let Φ = Π.φ be a QBF over universally quantified variables U and existentially
quantified variables E. Further, let A ∪ A′ be a set of universal assignments such that
A∩ A′ = ∅ and A′ 	= ∅. Let S be a set of existential assignments and assume that∧σ∈S ¬φσ

has the satisfying assignment ρ, A′ ⊆ {(ρ|Uσ )−σ | σ ∈ S}.
If S completes A, and A ∪ A′ completes S, and

∧
α∈A∪A′ φα evaluates to true under

assignment τ , then there exists an assignment ν ∈ {(τ |Eα )−α | α ∈ A ∪ A′} with ν /∈ S.

Proof By induction over the number of variables in Π .
Base Case. Assume that Φ has only one variable, i.e., Π = Qx . Note that |A′| = 1

because x is outermost in the prefix and A′ is obtained from sub-assignments of ρ. If Q = ∀,
then the elements of A are full assignments of φ, and S is either empty, or it contains the
empty assignment ω : ∅ �→ {�,⊥}. Let A′ = {μ}. If S is empty, so is A (because S has to
complete A). If τ is a satisfying assignment of φμ, then ν = τ = ω is the empty assignment
and ν /∈ S. Otherwise, ω ∈ S. If there is an assignment α ∈ A, then φα ∧ φμ is a full
expansion of Φ. If this full expansion is true, then ¬φ is unsatisfiable. Otherwise, φα ∧ φμ

is unsatisfiable. In both cases, the necessary preconditions for the lemma are not fulfilled.
If A = ∅, then μω(¬φ) is true. Then φμ is unsatisfiable, again violating a precondition. If
Q = ∃, then μ = ω and A = ∅. If S = ∅ and φω = φ has the satisfying assignment τ , then
ν = τ and ν /∈ S. Otherwise, if there is an assignment σ ∈ S, then ωσ(¬φ) is true, because
A ∪ {μ} = {ω} completes S. Hence, if assignment τ satisfies φμ, then ν = τ , so ν /∈ S.

Induction Step. Assume the lemma holds for QBFs with n variables. We show that it also
holds for QBFs with n + 1 variables. Let Φ = QxΠ.φ be a QBF over existential variables
E and universal variables U with Π = Q1x1 . . . Qnxn and A ∪ A′ and S be as required (S
completes A, A∪A′ completes S,

∧
α∈A∪A′ φα has a satisfying assignment τ , and

∧
σ∈S ¬φσ

has a satisfying assignment ρ from which A′ is obtained).
If Q = ∀, then all assignments α ∈ A′ assign the same value t to x , i.e., α(x) = t , because

these assignments are extracted from assignment ρ and since x is the outermost variable of
the prefix of Φ, ρ(x) = t . Further, let At = {α ∈ A | α(x) = t}. It is easy to argue that
for Π.φ[x ← t] together with the assignment sets At ∪ A′ and S the induction hypothesis
applies, i.e., there is an assignment ν /∈ S with ν ∈ {(τ ′|Eα )−α | α ∈ At ∪ A′} where τ ′ is
the part of τ that satisfies

∧
α∈At∪A′(φ[x ← t])α . Obviously, ν ∈ {(τ |Eα )−α | α ∈ A ∪ A′}.

If Q = ∃, assume that τ(x) = t . Let {σ ∈ S | σ(x) = t} ⊆ St ⊆ S, and let At ⊆ A such
that the induction hypothesis applies to Π.φ[x ← t], At ∪ A′, and St . Let τ t be those sub-
assignments of τ that satisfy

∧
α∈At φα . Then there is an assignment ν that can be extracted

from τ t with ν /∈ St . Since ν(x) = t , ν /∈ S. This concludes the proof. ��
This property also holds in the other direction, i.e., adding a set S′ of new assignments to

S will force the set A to increase.
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(Axiom)
{l[τ ] | l ∈ C, l is existential} ∪ {τ(l) | l ∈ C, l is universal}

where

– C is a clause from the matrix of QBF Π.φ
– τ is an assignment to all universal variables UΠ

– [τ ] restricts τ to the universal variables that precede l in the prefix

C1 ∨ xτ C2 ∨ ¬xτ

(Res)
C1 ∨ C2

Fig. 3 The rules of the ∀Exp+Res [6,30,31]

Lemma 7 Let Φ = Π.φ be a QBF over universally quantified variables U and existentially
quantified variables E. Further, let S ∪ S′ be a set of existential assignments such that
S ∩ S′ = ∅, S′ 	= ∅, let A be a set of universal assignments,

∧
α∈A φα has the satisfying

assignment τ , S′ ⊆ {(τ |Eα )−α | α ∈ A}.
If A completes S and S ∪ S′ completes A and

∧
σ∈S∪S′ ¬φσ evaluates to true under

assignment ρ, then there exists an assignment ν ∈ {(ρ|Uσ )−σ | σ ∈ S ∪ S′} with ν /∈ A.

Proof The proof is analogous to the proof of Lemma 6. ��
Now that we have identified the relations between the sets of universal and existential

assignments, we use them to show that the algorithm from Fig. 1 terminates.

Theorem 2 The algorithm shown in Fig. 1 terminates for any QBF Φ = Π.φ.

Proof By induction over the number of iterations i, we argue that sets Ai−1 ⊂ Ai and
Si−1 ⊂ Si .

Base Case. Let i = 1 and A0 = {α0}. S0 ⊂ S1, because S0 = ∅ and σ1 ∈ S1 is a
satisfying assignment of φα0 (if φα0 is unsatisfiable, the algorithm terminates). A0 ⊂ A1

directly follows from Lemma 4.
Induction Step. For i > 1, we argue that Si ⊂ Si+1. By induction hypothesis the theorem

holds for iteration i , i.e., Ai = Ai−1∪ A′ with Ai−1∩ A′ = ∅ and A′ 	= ∅ and Si = Si−1∪ S′
with Si−1∩S′ = ∅ and S′ 	= ∅. Because of Lemma5, Si completes Ai−1, and Ai completes Si .
Furthermore, if

∧
σ∈Si ¬φσ is satisfiable under some assignment ρ (otherwise the algorithm

would terminate), by construction A′ ⊆ {(ρ|Uσ )−σ | σ ∈ Si }. Hence, Lemma 6 applies
and if

∧
α∈Ai

φα is satisfiable under some assignment τ (otherwise the algorithm would
immediately terminate), then there is an assignment ν ∈ {(τ |Eα )−α | α ∈ Ai } with ν /∈ Si .

The argument for Ai ⊂ Ai+1 is similar and uses the property shown in Lemma 7. ��
Note that the algorithm presented above does not make any assumptions on the formula

structure, i.e., for a QBF Π.φ it is not required that φ is in conjunctive normal form. Without
any modification, our algorithm also works on formulas in PCNF—as SAT solvers typically
process formulas in CNF only, we focus on this representation for the rest of the paper.

6 Relation to the ∀Exp+Res calculus
The ∀Exp+Res calculus [6,30,31] yields the theoretical foundation of our algorithm for
refuting a formula Π.φ in PCNF with universal variables U and existential variables E .
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Fig. 4 ∀Exp+Res proof of
∃x∀a∃y.((x ∨ a ∨ y) ∧ (¬x ∨
¬y) ∧ (¬x ∨ ¬a ∨ y) ∧ (¬y))

⊥

x

(x ∨ y⊥)

(x ∨ a ∨ y)

¬y⊥

¬y

¬x

(¬x ∨ y�)

(¬x ∨ ¬a ∨ y)

¬y�

¬y

The ∀Exp+Res calculus consists of the two rules shown in Fig. 3. Given an assignment
τ : UΠ → {�,⊥} of the universal variables UΠ and a clause occurring in a QBF Π.φ, then
the axiom rule instantiates C such that all universal literals u are assigned value τ(u) and the
remaining existential literals l are annotated by [τ ], i.e., by those universals that precede the
variable of l in the prefix. In the notation introduced before, we can write the axiom rule by

Cτ

Note that only clauses that do not contain τ(l) = � are of interest for a refutation proof.
Further, any occurrences of ⊥ are omitted in the proof.

The resolution rule corresponds exactly to propositional resolution, i.e., the annotated
variables are seen as propositional variables. Resolution between two clauses is only possible,
if one contains a literal xσ and the other clause contains a literal ¬xτ and σ = τ , i.e., the
pivot literals must have the same annotation. Note that we represent clauses as sets of literals.

A derivation in ∀Exp+Res is a sequence of clauses where each clause is either obtained by
the axiom rule or derived from previously derived clauses by the application of the resolution
rule. A refutation of a PCNF Π.φ is a derivation of the empty clause. The application of
the axiom rule instantiates the universal variables of one clause of φ. If enough of these
instantiations can be found in order to derive the empty clause by the application of the
resolution rule, the QBF Π.φ is false.

Our algorithm presented in Fig. 1 does not instantiate selected clauses of the input formula,
but all clauses of the matrix φ at once using a particular assignment of the universal variables.
Hence, when the SAT solver findsψ∀ = ∧

α∈Ai
φα unsatisfiable for some Ai , not necessarily

all clauses of ψ∀ are required to derive the empty clause via resolution, but only one minimal
unsatisfiable core ofψ∀, i.e., a subset of the clauses such that the removal of any clause would
make this formula satisfiable. This observation leads us to the following proposition.

Proposition 1 Let Π.φ be a false QBF. Further, let ψ∀ = ∧
α∈Ai

φα be obtained by the
application of the algorithm in Fig. 1. Further, let ψ ′∀ be a minimal unsatisfiable core of ψ∀.
Then there is a ∀Exp+Res refutation such that all clauses that are introduced by the axiom
rule occur in ψ ′∀.

Example 6 Consider the false QBF

∃x∀a∃y.((x ∨ a ∨ y) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ ¬a ∨ y) ∧ (¬y)).

When fully expanding universal a, we obtain the propositional formula

((¬x ∨ ¬y�) ∧ (¬x ∨ y�) ∧ (¬y�) ∧ (x ∨ y⊥) ∧ (¬x ∨ ¬y⊥) ∧ (¬y⊥)).

For proving unsatisfiability of this formula, it is enough to consider the formula ((¬x∨ y�)∧
(¬y�) ∧ (x ∨ y⊥) ∧ (¬y⊥)). The corresponding ∀Exp+Res proof is shown in Fig. 4. Since

123



Formal Methods in System Design (2021) 57:157–177 169

existential variable x occurs outermost in the prefix, it is not annotated during the applications
of the axiom rule.

Currently our implementation supports the generation of refutation proofs for false for-
mulas and checking them for correctness. In consequence, we are now able to efficiently
check the correctness of the solving results for false formulas, because the correctness check
is linear in the proof size. For such proofs, we designed a novel proof format, because to
best of our knowledge recent QBF solvers implementing expansion-based approaches do not
support any proof generation.

Conceptually, proof generation for true QBFs works dually: instead of refuting a set of
clauses, a set of cubes (conjunctions of literals) is shown to be valid. For this purpose, the
resolution rule has to bemodified to operate on cubes instead of clauses. In practice, however,
SAT solvers are used that operate on clauses, hence an extra transformation step introducing
fresh variables is required. This is currently not supported by our checker and is subject to
future work.

7 Implementation

The algorithm described in Sect. 5 is realized in the solver Ijtihad2 The most recent version
of Ijtihad is available at

https://extgit.iaik.tugraz.at/scos/ijtihad

The solver is implemented in C++ and currently processes formulas in PCNF available
in the QDIMACS format. For accessing SAT solvers, Ijtihad uses the IPASIR interface
[5], which makes changing the SAT solver very easy. The SAT solver used in all of our
experiments is Glucose [2]. Although the base implementation does reasonably well, we
have realized various optimizations to make Ijtihad even more viable in practice. Some of
them are discussed in the following.

For solving a QBF Π.φ, the basic algorithm shown in Fig. 1 adds instantiations of φ to
ψ∀ = ∧

α∈Ai−1
φα and ψ∃ = ∧

σ∈Si ¬φσ in each iteration i until the formula is decided.
The calls to the SAT solver in Line 5 and Line 8 are done incrementally, i.e., we create
two instances of the SAT solver and provide them with the clauses stemming from new
instantiations of φ at each iteration. For simplicity, we omit indices of sets A and S and refer
to an arbitrary iteration of the execution of the algorithm in the following discussion.

Figure 5 relates set sizes of A and S as well as the accumulated time that one SAT solver
needs to solve ψ∀ with the time the other SAT solver needs to solve ψ∃ for the formulas
of the PCNF track of QBFEVAL’17 (preprocessed with Bloqqer [8]). In this paper, we also
distinguish between true and false formulas. In Fig. 5a we see that for true formulas, set S
tends to be larger than A, while for false instances the picture is less clear. Figure 5b shows
the overall time needed for solvingψ∀ (y-axis) andψ∃ (x-axis). In almost all cases, the solver
that handles ψ∀ needs more time than the solver that handles ψ∃. This may be founded on
the observation that many QBFs have considerably more existential variables than universal
variables [39], hence the instantiations added to ψ∀ are much larger than the instantiations
added to ψ∃.

In Line 1 of Fig. 1, the set of universal assignments A is initialized with one arbitrary
assignment α0. Obviously, the set A may also be initialized with multiple assignments. In

2 The name Ijtihad refers to the effort of solving cases in Islamic law (for details see https://en.wikipedia.org/
wiki/Ijtihad).
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Fig. 5 Set sizes and time consumed during SAT calls for solved instances from QBFEVAL’17 preprocessed
by Bloqqer

our current implementation, we initialize A with the assignments that set the variables of one
universal quantifier block to ⊥ and the variables of all other universal quantifier blocks to �.
The impact of various initialization heuristics remains to be investigated in future work.

In Line 7 and Line 10 our algorithm increases the size of S and A in each iteration of the
main loop, as argued in Theorem 2. In the worst case, this leads to an exponential increase in
space consumption. Although we detect shared clauses among the instantiations, that alone is
not enough to significantly reduce the space consumption. However, some of the assignments
found in an earlier iteration could become obsolete after better assignments were found. It
is therefore beneficial to empty either S or A and then reconstruct them from ψ∀ and ψ∃,
similarly to what is done in Line 7 and Line 10.We evaluated several heuristics for scheduling
these set resets, and we found that resetting periodically and close to the memory limit works
best. The regular resetting of one set has a similar effect as restarts in SAT solvers, and
we observed a considerable improvement in performance, especially in terms of memory
consumption. Our implementation periodically resets the set A, since experiments indicate
that the resulting formula ψ∀ is much harder to solve than ψ∃ as seen in Fig. 5b. Besides the
aforementioned imbalance between universal and existential variables, it is also likely due
to the structure of ψ∃ which is a conjunction of formulas in disjunctive normal form. Note
that this reset of A does not affect the termination argument presented in Theorem 2, since
the sets A and S still complete each other.

Finally, we extended the presented approach with orthogonal reasoning techniques like
QCDCL [23] for exploiting the different strengths of ∀Exp+Res and Q-resolution, yielding a
hybrid solver that smoothly integrates both solving paradigms. To this end, we implemented
the prototypical solver called Hereticwhich pursues the following idea: The main loop of the
algorithm shown in Fig. 1 (Lines 4-12) is extended in a sequential portfolio style such that a
QCDCL solver is periodically called. After each call, all clauses that were learned through
QCDCL are added to Π.Φ, making them available in further iterations. These new clauses
potentially exclude assignments that would otherwise be possible and that could result in
more iterations of the main loop.

The solverHeretic extends Ijtihadby additional invocations of theQCDCLsolverDepQBF
[38]. About every 30 seconds, DepQBF is called and run for about 30 seconds. The learned
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clauses are obtained via the API of DepQBF. Leveraging learned cubes is subject to future
work.

8 Evaluation

We evaluate non-recursive expansion as implemented in our solvers Ijtihad and its hybrid
variantHeretic on the benchmarks from thePCNF track of theQBFEVAL’18 competition.All
experimentswere carried out on a cluster of Intel XeonCPUs (E5-2650v4, 2.20GHz) running
Ubuntu 16.04.1 with a CPU time limit of 1800 seconds and a memory limit of 7 GB. We
considered the following top-performing solvers from QBFEVAL’18: Qute [41], Rev-Qfun
[27], RAReQS [28],CAQE [42,47],DynQBF [14],GhostQ [28,36],DepQBF [38],QESTO [32],
and QSTS [11,12]. Our experiments are based on original benchmarks without preprocessing
and benchmarks preprocessed using QRATPre+ [40], HQSpre [50], and Bloqqer [8,25] with
a timeout of one hour.

The tables in the left columnof Fig. 6 show the total numbers of solved instances (S), solved
unsatisfiable (⊥) and satisfiable ones (�), and total CPU time including timeouts. The plots in
the right column of Fig. 6 visualize the runtimes of the respective solvers. In the first row, the
results without any preprocessing are shown. Our solver Heretic is ranked third solving the
most false formulas of all solvers. If the preprocessor QRATPre+ is applied,Heretic is ranked
second. Only CAQE solves more formula instances. Also with the other two preprocessors,
CAQE seems to be the solver that benefits most from the additional preprocessing step. In
general, preprocessing has a considerable impact on the number of solved instances. With
preprocessing enabled, Heretic solves up to 142 more formulas than without preprocessing.
Also Ijtihad strongly benefits from preprocessing: alone it solves 151 formulas, and with a
preprocessor it solves up to 229 formulas.

NotablyHeretic, despite its simple design, significantly outperforms Ijtihad on the QBFE-
VAL’18 benchmark set. Moreover, Heretic is ranked third and second on preprocessed
instances and thus is on par with state-of-the-art solvers. On the considered benchmark
set, the gap in solved instances between RAReQS and Heretic is considerably smaller than
the one between RAReQS and Ijtihad.

A direct comparison of our solver Heretic with RAReQS is shown in Fig. 7a. Unlike our
solver, RAReQS is based on a recursive implementation of expansion. While the plot looks
very balanced for the whole benchmark set, the picture changes for formulas with four or
more quantifier blocks, i.e., three or more quantifier alternations (see Fig. 7b and below).

On such formulas with many quantifier blocks, the strength of Heretic becomes apparent,
cf. [39]. As shown in Tables 8a, 8c and 8e, Heretic outperforms all other solvers on original
instances and on instanceswith preprocessing byQRATPre+ and Bloqqer. The only exception
are instances preprocessed by HQSpre (Table 8g).

Moreover, on entire benchmark sets without and with preprocessing (Tables 6a, 6c, 6e,
and 6g), Heretic significantly outperforms both DepQBF and Ijtihad. These results indicate
the potential of combining the orthogonal proof systems ∀Exp+Res as implemented in Ijtihad
and Q-resolution as implemented in DepQBF in a hybrid solver like Heretic.

Although RAReQS outperforms both Ijtihad and Heretic on instances preprocessed by
Bloqqer (Table 6e) RAReQS failed to solve certain instances that were solved by Ijtihad or
Heretic. Table 1 shows related statistics. E.g., on instances preprocessed by HQSpre (row
“HQ”), 258 instances were solved by both RAReQS and Heretic (column “R vs. H), 34
only by RAReQS, and 39 only by Heretic. Summing up these numbers yields a total of 331
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Solver S ⊥ � Time
Rev-Qfun 192 112 80 515K
GhostQ 183 89 94 524K
Heretic 155 122 33 569K
CAQE 151 107 44 586K
DepQBF 149 87 62 592K
RAReQS 147 115 32 588K
Ijtihad 126 110 16 611K
QSTS 121 91 30 635K
QESTO 109 76 33 662K
Qute 98 79 19 665K
DynQBF 66 22 44 726K

(a) Without preprocessing
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(b) Plot related to Table 6a.

Solver S ⊥ � Time
CAQE 211 135 76 487K
Heretic 191 133 58 507K
RAReQS 178 120 58 533K
DepQBF 165 83 82 562K
QSTS 164 98 66 562K
Rev-Qfun 163 106 57 563K
Ijtihad 151 111 40 565K
QESTO 150 88 62 589K
Qute 137 92 45 598K
GhostQ 128 69 59 619K
DynQBF 86 24 62 685K

(c) Preprocessing with QRATPre+
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(d) Plot related to Table 6c.

Solver S ⊥ � Time
CAQE 269 150 119 383K
RAReQS 258 159 99 399K
Heretic 252 166 86 394K
QSTS 229 135 94 435K
QESTO 215 115 100 480K
Rev-Qfun 212 123 89 473K
Ijtihad 198 128 70 480K
DepQBF 198 99 99 501K
Qute 189 114 75 512K
GhostQ 148 81 67 587K
DynQBF 131 62 69 608K

(e) Preprocessing with Bloqqer
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(f) Plot related to Table 6e.

Solver S ⊥ � Time
CAQE 322 183 139 290K
QESTO 298 175 123 323K
Heretic 297 194 103 320K
RAReQS 292 180 112 317K
QSTS 279 169 110 351K
DepQBF 270 160 110 364K
Qute 253 161 92 390K
Rev-Qfun 247 162 85 408K
Ijtihad 229 162 67 424K
DynQBF 220 129 91 454K
GhostQ 202 130 72 484K

(g) Preprocessing with HQSpre
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(h) Plot related to Table 6g.

Fig. 6 Results for the full QBFEval 2018 benchmark set with the application of different preprocessors
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(a) All original instances.
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quantifier blocks.

Fig. 7 Scatter plots of the run times of Heretic and RAReQS on original instances (related to Tablexxxxx 6a)
and on instances having four or more quantifier blocks (related to Table 8a)

Table 1 Statistics related to
Tables 6a, 6c, 6e, and 6g:
pairwise comparison of RAReQS
(R), Ijtihad (I), Heretic (H), and
DepQBF (D) by instances without
(N) and with preprocessing by
Bloqqer (B), HQSpre (HQ), and
QRATPre+ (Q) that were solved
by only one solver of the
considered pair (<, >) or by both
(=)

R vs. I R vs. H I vs. H D vs. H
< = > < = > < = > < = >

N 32 115 11 23 124 31 3 123 32 63 86 69

B 69 189 9 40 218 34 1 197 55 32 166 86

HQ 70 222 7 34 258 39 1 228 69 29 241 56

Q 36 142 6 29 149 42 1 150 41 52 113 78

solved instances (more than any individual solver in Table 6g) that could have been solved
by a hypothetical solver combining RAReQS and Heretic. This observation underlines the
strength of expansion in general and, in particular, of the hybrid approach implemented in
Heretic.Heretic solved a significant amount of instances not solved by RAReQS, and it clearly
outperformed Ijtihad and DepQBF on all benchmarks (columns “I vs. H” and “D vs. H”).

9 Conclusion

We presented a novel non-recursive algorithm for expansion-based QBF solving that uses
only two SAT solvers for incrementally refining the propositional abstraction and the negated
propositional abstraction of a QBF. We gave a concise proof of termination and soundness
and demonstrated with several experiments that our prototype compares well with the state
of the art. In addition to non-recursive expansion, we also studied the impact of combining
Q-resolution and ∀Exp+Res in a hybrid approach. To this end, we coupled a QCDCL solver
and non-recursive expansion to make clauses derived by the QCDCL solver available to
the expansion solver. Experimental results indicated that the hybrid approach significantly
outperforms our implementation of non-recursive expansion indicating the potential of com-
bining expansion-based approacheswithQ-resolutionwhichgives rise to an excitingdirection
of future work. Further, our current implementation supports only formulas in conjunctive
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Solver S ⊥ � Time
Heretic 73 57 16 147K
QSTS 64 47 17 167K
DepQBF 64 35 29 166K
Rev-Qfun 60 55 5 174K
CAQE 60 41 19 180K
Ijtihad 59 51 8 168K
RAReQS 58 52 6 173K
QESTO 46 30 16 204K
Qute 42 32 10 203K
GhostQ 22 17 5 235K
DynQBF 8 4 4 259K

(a) Without preprocessing
(152 instances)
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(b) Plot related to Table 8a.

Solver S ⊥ � Time
Heretic 79 61 18 137K
CAQE 65 45 20 173K
DepQBF 64 35 29 168K
RAReQS 61 55 6 168K
QSTS 59 42 17 177K
Ijtihad 59 51 8 168K
Rev-Qfun 58 53 5 181K
QESTO 50 36 14 194K
Qute 41 32 9 204K
GhostQ 21 16 5 236K
DynQBF 11 6 5 254K

(c) Preprocessing with QRATPre+ (152 in-
stances)
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(d) Plot related to Table 8c.

Solver S ⊥ � Time
Heretic 78 63 15 95K
CAQE 70 44 26 122K
RAReQS 69 59 10 115K
QSTS 69 52 17 114K
Rev-Qfun 65 49 16 125K
QESTO 62 39 23 130K
DepQBF 61 32 29 132K
Ijtihad 54 46 8 135K
Qute 51 39 12 147K
GhostQ 19 13 6 201K
DynQBF 12 7 5 212K

(e) Preprocessing with Bloqqer
(129 instances)
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(f) Plot related to Table 8e.

Solver S ⊥ � Time
DepQBF 49 23 26 76K
CAQE 36 15 21 102K
Heretic 34 24 10 99K
Rev-Qfun 31 23 8 108K
QESTO 31 18 13 106K
Qute 25 19 6 116K
QSTS 24 16 8 114K
RAReQS 21 18 3 120K
Ijtihad 18 17 1 124K
GhostQ 10 6 4 144K
DynQBF 4 2 2 150K

(g) Preprocessing with HQSpre
(87 instances)
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(h) Plot related to Table 8g.

Fig. 8 Results for the full QBFEval 2018 benchmark set with the application of different preprocessors such
that the formulas have at least four quantifier blocks
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normal form while in theory, our approach does not make any assumptions on the structure
of the propositional part of the QBF. We also plan to investigate how this formula structure
can be exploited for efficiently processing the negation of the formula.
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