
Formal Methods in System Design (2021) 57:246–269
https://doi.org/10.1007/s10703-021-00377-1

Temporal prophecy for proving temporal properties of
infinite-state systems

Oded Padon1 · Jochen Hoenicke2 · Kenneth L. McMillan3 · Andreas Podelski2 ·
Mooly Sagiv4 · Sharon Shoham4

Accepted: 30 April 2021 / Published online: 23 July 2021
© The Author(s) 2021

Abstract
Various verification techniques for temporal properties transform temporal verification to
safety verification. For infinite-state systems, these transformations are inherently imprecise.
That is, for some instances, the temporal property holds, but the resulting safety property does
not. This paper introduces amechanism for tackling this imprecision. Thismechanism,which
we call temporal prophecy, is inspired by prophecy variables. Temporal prophecy refines an
infinite-state system using first-order linear temporal logic formulas, via a suitable tableau
construction. For a specific liveness-to-safety transformation based on first-order logic, we
show that using temporal prophecy strictly increases the precision. Furthermore, temporal
prophecy leads to robustness of the proof method, which is manifested by a cut elimination
theorem. We integrate our approach into the Ivy deductive verification system, and show that
it can handle challenging temporal verification examples.

Part of the material of this article has appeared in a preliminary form in [37].

B Oded Padon
oded.padon@gmail.com

Jochen Hoenicke
hoenicke@informatik.uni-freiburg.de

Kenneth L. McMillan
kenmcm@cs.utexas.edu

Andreas Podelski
podelski@informatik.uni-freiburg.de

Mooly Sagiv
msagiv@cs.tau.ac.il

Sharon Shoham
sharon.shoham@gmail.com

1 VMware Research, Palo Alto, USA

2 University of Freiburg, Freiburg, Germany

3 University of Texas at Austin, Austin, USA

4 Tel-Aviv University, Tel Aviv-Yafo, Israel

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-021-00377-1&domain=pdf

Formal Methods in System Design (2021) 57:246–269 247

Keywords Liveness · Prophecy variables · Firs-order temporal logic · Infinite-state
systems · Deductive verification

1 Introduction

There are various techniques in the literature that transform the problem of verifying liveness
of a system to the problem of verifying safety of a different system. These transformations
compose the system with a device that has the known property that some safety condition σ

implies liveness. The classical example of this is proving termination of a while loop with a
ranking function. In this case, the device evaluates a chosen function r on loop entry, where
the range of r is a well-founded set. The safety property σ is that r decreases at every iteration,
which implies that the loop must terminate.

A related transformation, due to Biere et al. [6], applies to finite-state (possibly parameter-
ized) systems. The safety property σ is, in effect, that no state occurs twice, from which we
can infer termination. In the infinite-state case, this can be generalized using a function f that
projects the program state onto a finite set. We can think of this as a ranking that tracks the
set of unseen values of f and is ordered by set inclusion. However, the property that no value
of f occurs twice is simpler to verify, since the composed device can non-deterministically
guess the recurring value. In general, the effectiveness of a liveness-to-safety transformation
depends strongly on the difficulty of the resulting safety proof problem.

Other methods can be seen as instances of this general approach. For example, the Termi-
nator tool [12] might be seen as combining the ranking and the finite projection approaches.
Another approach by Fang et al. applies a collection of ad-hoc devices with known liveness-
to-safety properties to prove liveness of parameterized protocols [17]. Of greatest interest
here, a recent paper by Padon et al. uses a dynamically chosen finite projection that depends
on a finite prefix of the system’s execution [36]. The approach of [31] also has some similar
characteristics.

In the case of infinite-state systems, these transformations from liveness verification to
safety verification are not precise reductions. That is, while safety of the transformed system
implies liveness of the original system, a counterexample to the safety property does not
in general imply a counterexample to liveness. For example, in the projection method, a
terminating infinite-state system may have runs whose length exceeds the finite range of any
chosen projection f , forcing some value to repeat.

In this paper, we show that the precision of a liveness-to-safety transformation can be
usefully increased by the addition of prophecy variables. These variables are expressed as
first-order LTL formulas. For example, suppose we augment the state of the system with a
variable r�p that tracks the truth value of the proposition �p, which is true when p holds in
all future states.We can soundly add two constraints to the transition system. To the transition
relation, we add r�p ↔ (p∧r�p

′), where r�p
′ denotes the value of the prophecy variable in

the post-state. We also add the fairness constraint that r�p ∨¬p holds infinitely often. These
constraints are typical of tableau constructions that convert a temporal formula to a symbolic
automaton. As we show in this paper, the additional information they provide refines the
trace set of the transformed system, potentially eliminating false counterexamples.

In particular, we will show how to integrate tableau-based prophecy with the liveness-to-
safety transformation of [36] that uses a history-based finite projection, referred to as dynamic
abstraction. We show that the precision of this transformation is consequently increased. The

123

248 Formal Methods in System Design (2021) 57:246–269

result is that we can prove properties that otherwise would not be directly provable using the
technique.

This paper makes the following contributions:

1. Introduce the notion of temporal prophecy, including prophecy formulas and prophecy
witnesses, via a first-order LTL tableau construction.

2. Show that temporal prophecy increases the proof power (i.e., precision) of the liveness-to-
safety transformation based on dynamic abstraction, and further show that the properties
provable with temporal prophecy are closed under first-order reasoning, with cut elimi-
nation as a special case.

3. Integrate the liveness-to-safety transformation based on dynamic abstraction and temporal
prophecy into the Ivy deductive verification system [34], deriving the prophecy formulas
from an inductive invariant provided by the user (for proving the safety property).

4. Demonstrate the effectiveness of the approach on some challenging examples that cannot
be handled by the transformation without temporal prophecy.

5. Demonstrate that prophecy witnesses can eliminate quantifier alternations in the veri-
fication conditions generated for the safety problem obtained after the transformation,
facilitating decidable reasoning.

2 Illustrative example

We illustrate our approach using the ticket protocol for ensuring mutual exclusion with non
starvation among multiple threads, depicted in Fig. 1. The ticket protocol may be run by any
number of threads, and also allows dynamic spawning of threads. The protocol is an idealized
version of spinlocks used in the Linux kernel [14]. In the protocol, each thread can be in one
of three states: idle, waiting to enter the critical section, or in the critical section. The right to
enter the critical section is determined by a ticket number. A global variable n, records the
next available ticket, and a global variable s, records the ticket currently being served. Each
thread has a local variable m that records the ticket it holds. A thread only enters the critical
section when m ≤ s. In our example, each thread has a queue of tasks to perform. Once a
thread enters the critical section, it handles tasks that accumulated in its task queue, and stays
in the critical section until its queue is empty (importantly, tasks are only added to the queue
when the thread is outside the critical section). In Fig. 1, this is modeled by the task counter
q , a thread-local variable which is non-deterministically set when a thread enters the critical
section (to account for the unbounded, but finite, number of tasks), and is then decremented
in each step. When q = 0 the thread leaves the critical section, and increments s to allow
other threads to be served.

The protocol is designed to satisfy the following first-order temporal property:

(∀x .�♦scheduled(x)) → ∀y.� (wait(y) → ♦critical(y))

Fig. 1 The ticket mutual exclusion protocol. Edges are labeled by condition / action

123

Formal Methods in System Design (2021) 57:246–269 249

That is, if every process is scheduled infinitely often, then every waiting process eventually
enters its critical section. (Note that we encode fairness assumptions as part of the temporal
property.)
Insufficiency of liveness-to-safety transformations While the temporal property is clearly
satisfiedby the ticket protocol, proving it is challenging for liveness-to-safety transformations.
First, due to the unbounded values obtained by the ticket number and the task counter, and
also due to dynamic spawning of threads, this example does not belong to the class of
parameterized systems [39], where a simple lasso argument is sound (and complete) for
proving liveness. Second, while using a finite abstraction can recover soundness, no fixed
finite abstraction is precise enough to show the absence of a lasso-shaped counterexample in
this example. The reason is that a thread can go to the waiting state (wait) with any number
of threads waiting “ahead of it in line”.

For cases where no finite abstraction is sufficiently precise to prove liveness, we may
instead apply the liveness-to-safety transformation of [36]. This transformation relaxes the
requirement of proving absence of lassos over a fixed finite abstraction, and instead requires
one to prove absence of lassos over a dynamic finite abstraction that is only determined after
some prefix of the trace (allowing for better precision). Soundness is maintained since the
abstraction is still finite. Technically, the technique requires to prove that no abstract lasso
exists, where an abstract lasso is a finite execution prefix that (i) visits a freeze point, at which
a finite projection (abstraction) of the state space is fixed, (ii) the freeze point is followed
by two states that are equal in the projection. We refer to these as the repeating states, and
(iii) all fairness constraints are visited both before the freeze point and between the repeating
states.

Unlike fixed finite abstractions, dynamic abstractions allow us to prove that an eventuality
holds if there is a finite upper bound on the number of steps required at the time the eventuality
is asserted (the freeze point). The bound need not be fixed a priori. Unfortunately, due to the
non-determinism introduced by the task counter q , each of the k threads ahead of t in line
could require an unbounded number of steps to leave the critical section, and this number
is not yet determined when t makes its request. As a result, there is an abstract lasso which
freezes the abstraction when t makes its request, after which some other thread t0 enters
the critical section and loops, decrementing its task counter q . Since the value of the task
counter of t0 is not captured in the abstraction, the loop does not change the abstract state.
This spurious abstract lasso prevents this liveness-to-safety transformation from proving the
property.
Temporal prophecy to the rescue The key to fixing this problem is to predict the future to
the extent that a bound on the steps required for progress is determined at the freeze point.
Surprisingly, this is accomplished by the use of one temporal prophecy variable corresponding
to the truth value of the following formula:

∃x .♦�critical(x).

If this formula is initially true, there is some thread t0 that eventually enters the critical section
and stays there. At this point, we can prove it eventually exits (a contradiction) because the
number of steps needed for this is bounded by the current task counter of t0. Operationally, the
freeze point is delayed until �critical(x) holds at which point t0’s task counter is captured in
the finite projection, ruling out an abstract lasso. On the other hand if the prophecy variable is
initially false, then all threads are infinitely often out of the critical section. With this fairness
constraint, thread t requires only a finite number of steps to be served, determined by the
number of threads with lesser tickets. Operationally, the extra fairness constraint extends the
lasso loop until the abstract state must change, ruling out an abstract lasso.

123

250 Formal Methods in System Design (2021) 57:246–269

Though the liveness-to-safety transformation via dynamic abstraction and abstract lasso
detection cannot handle the problem as given, introducing suitable temporal prophecy elim-
inates the spurious abstract lassos. Some spurious lassos are eliminated by postponing the
freeze point, thus refining the finite abstraction, and others are eliminated by additional fair-
ness constraints on the lasso loop. This example is explained in greater detail in Sect. 5.

3 Preliminaries

In this section, we present the first-order formalism for specifying infinite-state systems and
their properties, as well as a tableau construction for first-order LTL formulas.

3.1 Transition systems in first-order logic

A first-order logic transition system is a triple (Σ, ι, τ), where Σ is a first-order vocabulary
that contains only relation symbols and constant symbols (functions can be encoded by
relations), ι is a closed formula over Σ defining the set of initial states, and τ is a closed
formula overΣ
Σ ′, whereΣ ′ = {�′ | � ∈ Σ}, defining the transition relation. The constants
in Σ represent the program variables.

A state of the transition system is a first-order structure, s = (D, I), over Σ , where
D denotes the (possibly infinite) domain of the structure and I denotes the interpretation
function. The set of initial states is the set of all states s such that s |� ι, and the set of
transitions is the set of all pairs of states (s, s′) with the same domain such that (s, s′) |� τ .
In the latter, (s, s′) denotes a structure over the vocabulary Σ
 Σ ′ with the same domain
as s and s′ in which the symbols in Σ are interpreted as in s, and the symbols in Σ ′ are
interpreted as in s′.

For a state s = (D, I) over Σ , and for D ⊆ D, we denote by s|D the partial structure
by projecting s to D, i.e., s|D = (D, I|D), where I|D interprets only constants c ∈ Σ for
which I(c) ∈ D (making it a partial interpretation), and for every relation symbol r ∈ Σ of
arity k, I|D(r) = I(r) ∩ Dk . For a vocabulary Σ ′ ⊆ Σ , we denote by s|Σ ′ the state over Σ ′
obtained by restricting the interpretation function to the symbols in Σ ′, i.e., s|Σ ′ = (D, I ′),
where for every symbol � ∈ Σ ′, I ′(�) = I(�).

A (finite or infinite) trace of (Σ, ι, τ) is a sequence of states π = s0, s1, . . . where
s0 |� ι and (si , si+1) |� τ for every 0 ≤ i < |π |. Every state along the trace has its own
interpretation of the constant and relation symbols, but they all share the same domain. For a
(finite or infinite) sequence of states π = s0, s1, . . ., we use π i = si , si+1, . . . for the suffix
of π starting at index i .

We note that first-order transition systems are Turing-complete. Furthermore, tools such
as Ivy [33,34,38] provide modeling languages that are closer to imperative programming
languages and compile to a first-order transition system. This makes it easier for a user to
provide a first-order specification of the transition system they wish to verify.
SafetyGiven a vocabulary Σ , a safety property P is a set of sequences of states over Σ , such
that for every sequence of states π /∈ P , there exists a finite prefix π ′ of π , such that π ′ and
all of its extensions are not in P . A transition system over Σ satisfies P if all of its traces are
in P .

123

Formal Methods in System Design (2021) 57:246–269 251

3.2 First-order linear temporal logic (FO-LTL)

To specify temporal properties of first-order transition systems we use First-Order Linear
Temporal Logic (FO-LTL), which combines LTL with first-order logic [1]. For simplicity,
we consider only the “globally” (�) temporal operator. The tableau construction extends to
other operators as well, and so does our approach.
Syntax Given a first-order vocabulary Σ , FO-LTL formulas are defined by:

f :: = r(t1, . . . , tn) | t1 = t2 | ¬ f | f1 ∨ f2 | ∃x . f | � f

t :: = c | x
where r is an n-ary relation symbol in Σ , c is a constant symbol in Σ , x is a variable, each ti
is a term over Σ and � denotes the “globally” temporal operator. We also use the standard
shorthand for the “eventually” temporal operator: ♦ f = ¬�¬ f , and the usual shorthands
for logical operators (e.g., ∀x . f = ¬∃x .¬ f).
Semantics FO-LTL formulas over Σ are interpreted over infinite sequences of states (first-
order structures) overΣ . Atomic formulas are interpreted over states, the temporal operators
are interpreted as in traditional LTL, and first-order quantifiers are interpreted over the shared
domainD of all states in the trace. Formally, the semantics is definedw.r.t. an infinite sequence
of states π = s0, s1, . . . and an assignment σ that maps variables to D — the shared domain
of all states in π . The semantics is defined as follows.

π, σ |� r(t1, . . . , tn) ⇔ s0, σ |� r(t1, . . . , tn)

π, σ |� t1 = t2 ⇔ s0, σ |� t1 = t2

π, σ |� ¬ψ ⇔ π, σ �|� ψ

π, σ |� ψ1 ∨ ψ2 ⇔ π, σ |� ψ1 or π, σ |� ψ2

π, σ |� ∃x .ψ ⇔ exists d ∈ D s.t. π, σ [x �→ d] |� ψ

π, σ |� �ψ ⇔ forall i ≥ 0, π i , σ |� ψ

When the formula has no free variables, we omit σ . A first-order transition system (Σ, ι, τ)

satisfies a closed FO-LTL formula ϕ over Σ if all of its traces satisfy ϕ.

3.3 Tableau for FO-LTL

As part of our liveness-to-safety transformation, we use a standard tableau construction for
FO-LTL formulas that results in a first-order transition system with fairness constraints.
Unlike the classical construction, we define the tableau for a set of formulas, not necessarily
a single temporal formula.

For an FO-LTL formula ϕ, we denote by sub(ϕ) the set of subformulas of ϕ, defined in
the usual way. In the sequel, we consider a finite set A of FO-LTL formulas that is closed
under subformulas, i.e. for every ϕ ∈ A, sub(ϕ) ⊆ A. Note that A may contain formulas
with free variables.

Definition 1 (Tableau vocabulary). Given a finite set A as above over a first-order vocabulary
Σ , the tableau vocabulary for A, denoted ΣA, is obtained from Σ by adding a fresh relation
symbol r�ϕ of arity k for every formula �ϕ ∈ A with k free variables.

Recall that � is the only primitive temporal operator we consider (a similar construction
can be done for other operators). The symbols added in ΣA will be used to “label” states

123

252 Formal Methods in System Design (2021) 57:246–269

by temporal subformulas that are satisfied by all outgoing fair traces. To translate temporal
formulas over Σ to first-order formulas over ΣA we use the following definition.

Definition 2 For a FO-LTL formula ϕ ∈ A (over Σ), its first-order representation, denoted
FO [ϕ], is a first-order formula over ΣA, defined inductively, as follows.

FO [ϕ] = ϕ if ϕ is r(t1, . . . , tn) or t1 = t2

FO [�ψ(x)] = r�ψ(x)(x)

FO [¬ψ] = ¬FO [ψ]

FO [ψ1 ∨ ψ2] = FO [ψ1] ∨ FO [ψ2]

FO [∃x .ψ] = ∃x .FO [ψ]

Note that FO [ϕ] has the same free variables as ϕ. We can now define the tableau for A as a
transition system.

Definition 3 (Tableau transition system). The tableau transition system for A is the first-
order transition system TA = (ΣA, true, τA), where τA (defined over ΣA
 ΣA

′) is defined
as follows:

τA =
∧

�ϕ∈A

∀x . (r�ϕ(x) ↔ (FO [ϕ(x)] ∧ r�ϕ
′(x))).

Note that the original symbols in Σ (and Σ ′) are not constrained by τA, and may change
arbitrarily with each transition. However, the r�ϕ relations are updated in accordance with
the property that π, σ |� �p iff s0, σ |� p and π1, σ |� �p (where s0 is the first state of π

and p is a first-order formula over Σ).

Definition 4 (Fairness). A sequence of states π = s0, s1, . . . over ΣA is A-fair if for every
temporal formula �ϕ(x) ∈ A and for every assignment σ , there are infinitely many i’s for
which si , σ |� FO [�ϕ(x) ∨ ¬ϕ(x)].

Note that �ϕ(x) ∨ ¬ϕ(x), used above, is equivalent to ♦¬ϕ(x) → ¬ϕ(x). So the definition
of fairness ensures an eventuality cannot be postponed forever. In the sequel, the set A is
always clear from the context (e.g., from the vocabulary), hence we omit it and simply say
that π is fair.

The next claims summarize the properties of the tableau; Lemma 1 states that the FO-LTL
formulas overΣ that hold in the outgoing traces of a tableau state correspond to the first-order
formulas over ΣA that hold in the state; Lemma 2 states that every sequence of states over
Σ has a representative trace in the tableau; finally, Theorem 1 states that a transition system
satisfies a FO-LTL formula iff its product with the tableau of the negated formula has no fair
traces.

Lemma 1 In a fair trace π = s0, s1, . . . of TA (over ΣA), for every FO-LTL formula ψ(x) ∈
A, for every assignment σ and for every index i ∈ N, we have that si , σ |� FO [ψ(x)] iff
π i , σ |� ψ(x).

Lemma 2 Every infinite sequence of states ŝ0, ŝ1, . . . over Σ can be extended to a fair trace
π = s0, s1, . . . of TA (over ΣA) s.t. for every i ∈ N, si |Σ = ŝi .

Definition 5 (Product system). Given a transition system TS = (Σ, ι, τ), a closed FO-LTL
formula ϕ over Σ , a finite set A of FO-LTL formulas over Σ closed under subformulas such
that ¬ϕ ∈ A, we define the product system of TS and ¬ϕ over A as the first-order transition
system TP = (ΣP , ιP , τP) given by ΣP = ΣA, ιP = ι ∧ FO [¬ϕ] and τP = τ ∧ τA, where
TA = (ΣA, true, τA) is the tableau for A.

123

Formal Methods in System Design (2021) 57:246–269 253

Theorem 1 Let TP be the product system of TS and ¬ϕ over A as defined in Definition 5.
Then TS |� ϕ iff TP has no fair traces.

Intuitively, the product system augments the states of TS with temporal formulas from A,
splitting each state into many (often infinitely many) states according to the future behavior
of its outgoing traces. For example, if A includes the formula �r(x), then each state is
augmented with information about the future behavior of r on every model element. If the
domain is infinite, then there are infinitely many states of the product system for one state of
the original system.

Note that Theorem 1 holds already when A = sub(¬ϕ). However, as we will see, taking
a larger set A is useful for proving fair termination via the liveness-to-safety transformation.

4 Liveness-to-safety with temporal prophecy

In this sectionwe present our liveness proof approach using temporal prophecy and a liveness-
to-safety transformation. As in earlier approaches, our transformation (i) uses a tableau
construction to construct a product transition system equipped with fairness constraints such
that the latter has no fair traces iff the temporal property holds of the original system, and
(ii) defines a safety property over the product transition system such that safety implies that
no fair traces exist (note that the opposite direction does not hold).

The gist of our liveness-to-safety transformation is that we augment the construction of the
product transition system with two forms of prophecy detailed in Sect. 4.2. We then use the
definition of the safety property from [36]. In the sequel, we first present the safety property
and then present the augmentation with temporal prophecy, whose goal is to “refine” the
product system such that it will be safe.

4.1 Safety property: absence of abstract lassos

Given a transition system TW = (ΣW , ιW , τW) with ΣW ⊇ ΣA (e.g., the product system
fromDefinition 5), we define a notion of an abstract lasso, whose absence is a safety property
that implies that TW has no A-fair traces. This section recapitulates material from [36].

The definition of an abstract lasso is based on a dynamic abstraction that is fixed at some
point along the trace, henceforth called the freeze point. The abstraction function is defined
by projecting a state (a first-order structure) into a finite subset of its domain. This finite
subset is defined by the union of the footprints of all states encountered until the freeze
point, where the footprint of a state includes the interpretation it gives all constants from
ΣW . Intuitively, the footprint includes all elements “exposed” in the state, including those
“touched” by outgoing transitions.

Definition 6 (Footprint). For a state s = (D, I) over ΣW , we define the footprint of s as
f (s) = {I(c) | c ∈ ΣW }. For a sequence of states π = s0, s1, . . . over ΣW , and an index
i < |π |, we define the footprint of s0, . . . , si as f (s0, . . . , si) = ⋃i

j=0 f (s j).

Importantly, the footprint of a finite trace always contains finitely many elements. As a result,
an abstraction function that maps each state to the result of projecting it to the footprint of
the trace until the freeze point has a finite range.

Definition 7 (Fair Segment). Let π = s0, s1, . . . be a sequence of states over ΣW . For
0 ≤ i ≤ j < |π |, we say the segment [i, j] is fair if for every formula �ψ(x) ∈ A, and for

123

254 Formal Methods in System Design (2021) 57:246–269

every assignment σ where every variable is assigned to an element of f (s0, . . . , si), there
exists i ≤ k ≤ j s.t. sk, σ |� FO [(�ψ(x)) ∨ ¬ψ(x)].

Definition 8 (Abstract Lasso). A finite trace s0, . . . , sn of TW is an abstract lasso if there are
0 ≤ i ≤ j < k ≤ n s.t. the segments [0, i] and [j, k] are fair, and s j | f (s0,...,si) = sk | f (s0,...,si).

Intuitively, in the above definition, i is the freeze point, where the abstraction is fixed. The
states s j and sk are the “repeating states” – states that are indistinguishable by the abstraction
that projects them to the footprint f (s0, . . . , si). The segment between j and k, respectively,
the segment between 0 and i , meet all the fairness constraints restricted to elements in
f (s0, . . . , s j), respectively, in f (s0). Fairness of the segment [0, i] is needed to prevent the
freeze point from being chosen too early, thus creating spurious abstract lassos. Note that the
absence of abstract lassos is a safety property.

Lemma 3 If TW has no abstract lassos then it also has no fair traces.

Proof Assume to the contrary that TW has a fair trace π = s0, s1, Let i be the first index
such that [0, i] is fair (such an index must exist since the set f (s0), which determines the
relevant fairness constraints is finite). Since f (s0, . . . , si) is also finite, there must exist an
infinite subsequence π ′ of π i such that for every s, s′ in this subsequence s| f (s0,...,si) =
s′| f (s0,...,si). Let j ≥ i be the index in π of the first state in π ′. f (s0, . . . , s j) is also finite,
hence there exists k′ > j such that the segment [j, k′] of π is fair. Take k to be the index in π

of the first state of πk′
that is also in π ′. Since π ′ is infinite, such a k must exist. Since k ≥ k′,

the segment [j, k] is also fair. This defines an abstract lasso s0, . . . , si , . . . , s j , . . . , sk , in
contradiction. ��

4.2 Augmenting the transition systemwith temporal prophecy

In this section we explain how our liveness-to-safety transformation constructs TW =
(ΣW , ιW , τW), to which we apply the safety property of Sect. 4.1. Our construction exploits
both temporal prophecy formulas and prophecy witnesses, explained below. For the rest of
this sectionwe fix a first-order transition system TS = (Σ, ι, τ) and a closed FO-LTL formula
ϕ over Σ that we wish to verify in TS .
Temporal ProphecyFormulasFirst, given a set A of (not necessarily closed) FO-LTL formulas
closed under subformula that contains ¬ϕ (i.e., ¬ϕ ∈ A and for any ψ ∈ A and ψ ′ a
subformula of ψ , ψ ′ ∈ A), we construct the product system TP = (ΣP , ιP , τP) defined in
Definition 5. By Theorem 1, TS |� ϕ iff TP has no fair traces. Note that classical tableau
constructions are defined with A = sub(¬ϕ), and we allow A to include more formulas.
These formulas act as “temporal prophecy variables” in the sense that they split the states of
TS , according to the future behavior of outgoing traces.

While the liveness-to-safety transformation is already sound with A = sub(¬ϕ), one of
the chief observations of this work is that temporal prophecy formulas improve its precision.
These additional formulas in A split the states of TS into more states in TP , and they cause
some non-determinism of the future trace to be “pulled backwards” (the outgoing traces
contain less non-determinism). For example, if r�ϕ holds for some elements in the current
state, then ϕ must continue to hold for these elements in the future of the trace. Similarly, for
elements where r�ϕ does not hold, there will be some time in the future of the trace where
ϕ would not hold for them.

123

Formal Methods in System Design (2021) 57:246–269 255

This is exploited by the liveness-to-safety transformation in three ways, eliminating spu-
rious abstract lassos. First, having more temporal formulas in A refines the definition of
a fair segment, and postpones the freeze point, thus making the abstraction defined by
the footprint up to the freeze point more precise. For example, if r�ϕ does not hold for
a ground formula ϕ in the initial state, then the freeze point would be postponed until after
ϕ does not hold for the first time. Second, it strengthens the requirement on the looping
segment s j . . . sk , in a similar way. Third, the additional relations in ΣP that come from
the tableau vocabulary (ΣA) are part of the state as considered by the transformation, and
a difference in these relations (projected to the footprint up to the freeze point) is a valid
difference. These three ways all played a role in the examples considered in our evalua-
tion.
Prophecy Witnesses The notion of an abstract lasso, used to define the safety property,
considers a finite abstraction according to the footprint, which depends on the con-
stants of the vocabulary. To increase the precision of the abstraction, we augment the
vocabulary with fresh constants that serve as prophecy witnesses for existential proper-
ties.

To illustrate the idea, consider the formula ψ(x) = ♦�p(x) where x is a free
variable. If ψ holds for some element, it is useful to include in the vocabulary a con-
stant that serves as a witness for ψ(x), and whose interpretation will be taken into
account by the abstraction. If ψ holds for some x , the interpretation of the constant
will be taken from such an x . Otherwise, this constant will be allowed to take any
value.

Temporal prophecy witnesses not only refine the abstraction, they can also be used in
the inductive invariant. In particular, as demonstrated in Hybrid Reliable Broadcast and the
TLB Shootdown examples (see Sects. 7.2.4 and 7.2.3), in some cases this allows to avoid
quantifier alternation cycles in the verification conditions, leading to decidability of VC
checking.

Formally, given a set B ⊆ A, we construct TW = (ΣW , ιW , τW) as follows.We extendΣP

to ΣW by adding fresh constant symbols c1, . . . , cn for every formula ψ(x1, . . . , xn) ∈ B.
We denote byC the set of new constants, i.e.,ΣW = ΣP ∪C . The transition relation formula
is extended to keep the new constants unchanged, i.e. τW = τP ∧∧

c∈C c = c′, and we define
ιW by

ιW = ιP ∧ FO [(∃x1, . . . , xn .ψ(x1, . . . , xn)) → ψ(c1, . . . , cn)]

Namely, c1, . . . , cn are required to serve as witnesses for ψ(x1, . . . , xn) in case it holds
in the initial state for some elements, and otherwise they may get any interpretation
at the initial state, after which their interpretation remains unchanged. Adding these
fresh constants and their defining formulas to the initial state is a conservative exten-
sion, in the sense that every fair trace of TP can be extended to a fair trace of TW
(fairness of traces over ΣW ⊇ ΣA is defined as in Definition 4), and every fair
trace of TW can be projected to a fair trace of TP . As such we have the follow-
ing:

Lemma 4 Let TP = (ΣP , ιP , τP) and TW = (ΣW , ιW , τW) be defined as above. Then TP
has no fair traces iff TW has no fair traces.

The overall soundness of the liveness-to-safety transformation is given by the following
theorem.

123

256 Formal Methods in System Design (2021) 57:246–269

Theorem 2 (Soundness). Given a first-order transition system TS and a closed FO-LTL for-
mula ϕ both over Σ , and given a set of temporal prophecy formulas A over Σ that contains
¬ϕ and is closed under subformula, and a set of temporal prophecy witness formulas B ⊆ A,
if TW as defined above does not contain an abstract lasso, then TS |� ϕ.

5 Proof of ticket with task queues

In this section we present a detailed model of the ticket protocol with task queues (introduced
in Sect. 2) as a first-order transition system, show that its liveness property cannot be proved
by the liveness-to-safety transformation without temporal prophecy, and show a complete
proof using temporal prophecy.

5.1 Model in first-order logic

In the ticket protocol, each thread operates according to the control flow graph of Fig. 1. We
model this protocol as a first-order transition system using the techniques of [33–35,38].
These techniques are implemented in the Ivy system, and benefit from decidability of
the EPR fragment, allowing us to mechanically check the proof, as explained in Sect. 7.
Figure 2 presents the ticket protocol model as a first-order transition system in RML syn-
tax.

We use a vocabulary with two sorts: thread and number. The first represents threads,
and the second represents ticket values and counter values. The vocabulary includes a static
binary relation symbol ≤: number,number, with suitable first-order axioms to make it a
total order, so ticket and counder values are abstracted to be a general total order. The state of
the system ismodeled by unary relations for the programcounter: idle,wait, critical, constant
symbols of sort number for the global variables n, s, and relations of sort thread,number
for the local variables m, q. We use relations rather than functions to avoid quantifier alter-
nation cycles. The vocabulary also includes a unary relation scheduled, which holds the last
scheduled thread.

The model includes an action for each edge of the control flow graph of Fig. 1. The
request action corresponds to an idle thread making a request to enter the critical section.
The wait action corresponds to the self-loop of the wait state; this action does not change
the threads’ state, but it does affect the scheduled relation used in the temporal specification
to capture the fair scheduling assumption. The enter action lets a thread enter the critical
section if it holds a suitable ticket number. The work action capture the self-loop of the
critical state, decrementing the thread’s task counter. Finally, the exit action allows a thread
with no more tasks (task counter zero) to leave the critical section, while incrementing the
global variable s.

5.2 Insufficiency of liveness-to-safety without temporal prophecy

We illustrate the need for temporal prophecy by showing that without it, the liveness-to-
safety transformation cannot prove liveness of the ticket protocol with task queues. Namely,
we show that without temporal prophecy, an abstract lasso exists in the obtained transition
system.

123

Formal Methods in System Design (2021) 57:246–269 257

1 sort thread
2 sort number
3

4 relation ≤ : number, number
5 axiom ∀x : number. x ≤ x
6 axiom ∀x : number, y : number, z : number. x ≤ y ∧ y ≤ z → x ≤ z
7 axiom ∀x : number, y : number. x ≤ y ∧ y ≤ x → x = y
8 axiom ∀x : number, y : number. x ≤ y ∨ y ≤ x
9

10 constant zero : number
11 axiom ∀x : number. zero ≤ x
12

13 variable n : number
14 variable s : number
15 relation idle : thread
16 relation wait : thread
17 relation critical : thread
18 relation m : thread, number
19 relation q : thread, number
20 relation scheduled : thread
21

22 init n = zero ∧ s = zero
23 init ∀t : thread. idle(t) ∧ ¬wait(t) ∧ ¬critical(t) ∧ ¬scheduled(t)
24 init ∀t : thread, k : number. (m(t, k) ↔ k = zero) ∧ (q(t, k) ↔ k = zero)
25

26 action request(t : thread) {
27 assume idle(t)
28 m(t,X) := X = n
29 n := succ(n)
30 idle(t) := false
31 wait(t) := true
32 scheduled(T) := T = t
33 }
34 action wait(t : thread, k : number) {
35 assume wait(t) ∧ m(t, k) ∧ k > s
36 scheduled(T) := T = t
37 }
38 action enter(t : thread, k : number, j : number) {
39 assume wait(t) ∧ m(t, k) ∧ k ≤ s
40 q(t,X) := X = j
41 wait(t) := false
42 critical(t) := true
43 scheduled(T) := T = t
44 }
45 action work(t : thread, j : number) {
46 assume critical(t) ∧ q(t, succ(j))
47 q(t,X) := X = j
48 scheduled(T) := T = t
49 }
50 action exit(t : thread) {
51 assume critical(t) ∧ q(t, zero)
52 s := succ(s)
53 critical(t) := false
54 idle(t) := true
55 scheduled(T) := T = t
56 }
57

58 specification (∀x : thread. �♦scheduled(x)) → ∀y : thread. � (wait(y) → ♦critical(y))

Fig. 2 RMLmodel of the ticket protocol with task queues. succ(a) is a macro used to obtain the successor of a
ground term a by introducing a fresh logical constant b and assuming the formula a < b∧∀x . a < x → b ≤ x .
The five actions match the five edges of the control flow graph depicted in Fig. 1

Supposewe do not augment the tableauwith additional prophecy. That is, take A to contain
just the subformulas of the temporal property:

(∀x .�♦scheduled(x)) → ∀y.� (wait(y) → ♦critical(y))

123

258 Formal Methods in System Design (2021) 57:246–269

We observe that the liveness-to-safety transformation results in a system TW that contains an
abstract lasso. This is regardless of the choice of B. To see this, consider the following trace
with two threads denoted t1 and t2:1

1. Thread t1 enters the wait state, obtaining ticket 0 (sets m(t1, 0)) and increasing n to 1;
2. Thread t2 enters the wait state, obtaining ticket 1 (sets m(t2, 1)) and increasing n to 2;
3. Thread t1 enters the critical section, setting its task counter to 4 (sets q(t1, 4));
4. Thread t2 is scheduled, and stays in the wait state;
5. Thread t1 is scheduled, decreasing its counter (sets q(t1, 3)) and staying in the critical

section.

This sequence forms an abstract lasso, with the freeze point occuring after step 2, and the
states before step 4 and after step 5 being the same under the projection. The freeze point
occurs after step 2, before t1 enters the critical section (in this point both threads have already
been scheduled, making the segment fair). Thus, the footprint contains only thread values
{t1, t2} and number values {0, 1, 2}. The projection of q to the footprint turns effectively
turns this relation from a total function to a partial function that is undefined for a thread
whose counter value is larger than 2. Because of this, steps 4 and 5 form the loop of the
abstract lasso. The segment of steps 4 and 5 satisfies the fairness constraints (both threads are
scheduled), and the starting and ending states agree on the value of all relations for elements
in the footprint. The only difference between the state prior to step 4 and the state after
step 5 is that the task counter of t1 changed from 4 to 3, but this change is invisible under the
projection to the footprint {t1, t2, 0, 1, 2}.

5.3 Proof with temporal prophecy

Next we show that when adding the temporal prophecy formula ∃x .♦�critical(x) to the
tableau construction, no abstract lasso exists in the augmented transition system, hence the
liveness-to-safety transformation succeeds to prove the property.

With the formula ∃x .♦�critical(x) added as temporal prophecy, A includes the following
two formulas and their subformulas:

¬ ((∃x .¬�¬�¬scheduled(x)) ∨ ¬∃x .¬� (¬wait(x) ∨ ¬�¬critical(x)))

∃x .¬�¬�critical(x)

And B = {¬� (¬wait(x) ∨ ¬�¬critical(x)) , ¬�¬�critical(x)}.When reading these for-
mulas, it is useful to keep the following identities in mind:

�¬�¬scheduled(x) ≡ �♦scheduled(x)

� (¬wait(x) ∨ ¬�¬critical(x)) ≡ � (wait(y) → ♦critical(y))
¬�¬�critical(x) ≡ ♦�critical(x)

With A and B as above, ΣW extends the original vocabulary with the following 6 unary
relations:

r�¬scheduled(x), r�¬�¬scheduled(x), r�¬critical(x),r�¬wait(x)∨¬�¬critical(x),

r�critical(x), r�¬�critical(x);

1 We use 0, 1, 2, 3, 4 to denote elements of the number sort, with the intention that the≤ relation is interpreted
as expected.

123

Formal Methods in System Design (2021) 57:246–269 259

as well as two constant symbols for temporal prophecy witnesses: c1 for the formula
¬� (¬wait(x) ∨ ¬�¬critical(x)), and c2 for the formula ¬�¬�critical(x).

We now explain why there is no abstract lasso. To do this, we show that the tableau
construction, combined with the dynamic abstraction and the fair segment requirements,
result in the same reasoning that was presented informally in Sect. 2.

First, observe that from the definition of c1 and the negation of the liveness property (both
assumed by ιW), we have that the initial state s0 |� FO [¬� (¬wait(c1) ∨ ¬�¬critical(c1))].
For brevity, denote p = (¬wait(c1) ∨ ¬�¬critical(c1)), so we have s0 |� FO [¬�p], i.e.,
s0 |� ¬r�p . Since c1 is also in the footprint of the initial state, the fair segment require-
ment ensures that the freeze point can only happen after encountering a state satisfying:
FO [(�p) ∨ ¬p] ≡ r�p ∨ FO [¬p]. Recall that the transition relation of the tableau (τA),
ensures (r�p) ↔ (FO [p] ∧ r�p

′). Therefore, on update from a state satisfying ¬r�p to a
state satisfying r�p can only happen if the pre-state satisfies FO [¬p]. Therefore, the freeze
point must come after encountering a state that satisfies FO [¬p] ≡ wait(c1)∧r�¬critical(c1).
From the freeze point onward, τA will ensure both r�¬critical(c1) and ¬critical(c1) continue
to hold, so c1 will stay in wait (since the protocol does not allow to go from wait to anything
but critical). So, we see that the mechanism of the tableau, combined with the temporal
prophecy witness and the fair segment requirement, ensures that the freeze point happens
after c1 makes a request that is never granted. This will ensure that the footprint used for the
dynamic abstraction will include all threads ahead of c1 in line, i.e., those with smaller ticket
numbers.

As for c2, the initial state will either satisfy FO [¬�¬�critical(c2)] or it would satisfy
FO [¬∃x .¬�¬�critical(x)]. In the first case, by an argument similar to the one used above
for c1, the freeze point will happen after c2 enters the critical section and then stays in it.
Therefore, the footprint used for the dynamic abstraction will include all numbers smaller
than q of c2 when it enters the critical section2. Since c2 is required to be scheduled between
the repeating states (again by the tableau construction and the fair segment requirement), its
value for q will be decreased, and this will be visible in the dynamic abstraction. Thus, in
this case, an abstract lasso is not possible.

In the second case the initial state satisfies FO [¬∃x .¬�¬�critical(x)]. By a similar
argument that combines the tableau with the fair segment requirement for the repeating
states, we will obtain that between the repeating states, any thread in the footprint of the
first repeating state, must both be scheduled and visit a state outside the critical section. In
particular, this includes all threads that are ahead of c1 in line. This entails a change to the
program counter of one of them (the one that had a ticket number equal to the service number
at the first repeating state), which will be visible in the abstraction. Thus, an abstract lasso is
not possible in this case either.

6 Closure under first-order reasoning

The transformation from temporal verification to safety verification developed in Sect. 4
introduces an abstraction, and incurs a loss of precision. That is, for some systems and
properties, liveness holds but the safety of the resulting system does not hold, no matter
what temporal prophecy is used. (This is unavoidable for a transformation from arbitrary
FO-LTL properties to safety properties [36].) However, in this section, we show that the set

2 When modeling natural numbers in first-order logic, the footprint is adjusted to include all numbers lower
than any constant (still being a finite set).

123

260 Formal Methods in System Design (2021) 57:246–269

of instances for which the transformation can be made precise (via temporal prophecy) is
closed under first-order reasoning. This is unlike the transformation of [36]. It shows that the
use of temporal prophecy results in a particular kind of robustness.

We consider a proof system in which the above transformation is performed and the
resulting safety property is checked by an oracle. That is, for a transition system TS and a
temporal property ϕ (a closed FO-LTL formula), we write TS � ϕ if there exist finite sets
of FO-LTL formulas A and B satisfying the conditions of Theorem 2, such that resulting
transition system TW is safe, i.e., does not contain an abstract lasso. We now show that the
relation � satisfies a powerful closure property.

Theorem 3 (Closure under first-order reasoning). Let TS be a transition system, and
ψ, ϕ1, . . . , ϕn be closed FO-LTL formulas, such that FO [ϕ1 ∧ . . . ∧ ϕn] |� FO [ψ]. If
TS � ϕi for all 1 ≤ i ≤ n, then TS � ψ .

The condition that FO [ϕ1 ∧ . . . ∧ ϕn] |� FO [ψ] means that ϕ1 ∧ . . . ∧ ϕn entails ψ

when using only first-order reasoning, and treating temporal operators as uninterpreted. The
theorem states that provability using the liveness-to-safety transformation is closed under
such reasoning. Two special cases of Theorem 3 given by the following corollaries:

Corollary 1 (Modus Ponens). If TS is a transition system and ϕ and ψ are closed FO-LTL
formulas such that TS � ϕ and TS � ϕ → ψ , then TS � ψ .

Corollary 2 (Cut). If TS is a transition system and ϕ andψ are closed FO-LTL formulas such
that TS � ϕ → ψ and TS � ¬ϕ → ψ , then TS � ψ .

Proof of Theorem 3 In the proof we use the notation TW (TS, ϕ, A, B) to denote the tran-
sition system constructed for TS and ϕ when using A, B as temporal prophecy formulas.
Likewise, we refer to the vocabulary, initial states and transition relation formulas of the
transition system as ΣW (TS, ϕ, A, B), ιW (TS, ϕ, A, B), and τW (TS, ϕ, A, B), respectively.
Let (A1, B1), . . . , (An, Bn) be such that TW (TS, ϕi , Ai , Bi) has no abstract lasso, for every
1 ≤ i ≤ n. Now, let A = ⋃n

i=1 Ai and B = ⋃n
i=1 Bi . We show that TW (TS, ψ, A, B) has no

abstract lasso. Assume to the contrary that s0, . . . , si , . . . , s j , . . . , sk, . . . , sn is an abstract
lasso for TW (TS, ψ, A, B). Since s0 |� ιW (TS, ψ, A, B), we know that s0 |� ¬FO [ψ], and
since FO [ϕ1 ∧ . . . ∧ ϕn] |� FO [ψ], there must be some 1 ≤ � ≤ n s.t. s0 |� ¬FO [ϕ�].
Denote Σ ′ = ΣW (TS, ϕ�, A�, B�). Now, s0|Σ ′ , . . . , si |Σ ′ , . . . , s j |Σ ′ , . . . , sk |Σ ′ , . . . , sn |Σ ′
is an abstract lasso of TW (TS, ϕ�, A�, B�), which is a contradiction. To see that, we first
simplify the notation and denote sm |Σ ′ by ŝm . The footprint f (s0, . . . , si) contains more
elements than the footprint f (ŝ0, . . . , ŝi), since ΣW (TS, ψ, A, B) ⊇ ΣW (TS, ϕ�, A�, B�).
Therefore, given that s j | f (s0,...,si) = sk | f (s0,...,si), we have that ŝ j | f (ŝ0,...,ŝi) = ŝk | f (ŝ0,...,ŝi)
as well. Moreover, the fairness constraints in TW (TS, ϕ�, A�, B�), determined by A�, are a
subset of those in TW (TS, ψ, A, B)), determined by A, so the segments [0, i] and [j, k] are
also fair in TW (TS, ϕ�, A�, B�). ��

The proof of Theorem 3 sheds more light on the power of using temporal prophecy
formulas that are not subformulas of the temporal property to prove. In particular,
the theorem does not hold if A is restricted to subformulas of the temporal proof
goal.

123

Formal Methods in System Design (2021) 57:246–269 261

7 Implementation and evaluation

7.1 Implementation in Ivy

We have implemented our approach for temporal verification and integrated it into the Ivy
deductive verification system [34]. This allows the user to model the transition system in the
Ivy language (which internally translates into a first-order transition system), and express
temporal properties directly in FO-LTL. In our implementation, the safety property that
results from the liveness-to-safety transformation is proven by a suitable inductive invariant,
provided by the user. To facilitate this process, Ivy internally constructs a suitable monitor
for the safety property, i.e., the absence of abstract lasso’s in TW . The user then provides
an inductive invariant for TW composed with this monitor. The monitor keeps track of the
footprint and the fairness constraints, and non-deterministically selects the freeze point and
repeated states of the abstract lasso. Similar to the construction of [6], the monitor keeps
a shadow copy of the “saved state”, which is the first of the two repeated states. These
are maintained via designated relation symbols (in addition to ΣW). The user’s induc-
tive invariant must then prove that it is impossible for the monitor to detect an abstract
lasso.
Mining Temporal Prophecy from the InvariantAspresented in previous sections, our liveness-
to-safety transformation is parameterized by sets of formulas A and B. In the implementation,
these sets are implicit, and are extracted automatically from the inductive invariant provided
by the user. Namely, the inductive invariant provided by the user contains temporal formulas,
and also prophecy witness constants, where every temporal formula �ϕ is a shorthand (and
is internally rewritten to) r�ϕ . The set A to be used in the construction is defined by all the
temporal subformulas that appear in the inductive invariant (and all their subformulas), and
the set B is defined according to the prophecy witness constants that are used in the inductive
invariant.

In particular, the user’s invariant may refer to the satisfaction of each fairness constraint
FO [�ϕ ∨ ¬ϕ] for �ϕ ∈ A, both before the freeze point and between the repeated states,
via a convenient syntax provided by Ivy.
Interacting with Ivy If the user provides an inductive invariant that is not inductive, Ivy
presents a graphical counterexample to induction. This guides the user to adjust the induc-
tive invariant, which may also lead to new formulas being added to A or B, if the user
adds new temporal formulas or prophecy witnesses to the inductive invariant. In this
process, the user’s mental image is of a liveness-to-safety transformation where A and
B include all (countably many) FO-LTL formulas over the system’s vocabulary, so the
user is free to use any temporal formula, or prophecy witness for any formula. However,
since the user’s inductive invariant is a finite formula, the liveness-to-safety transformation
needs only to be applied to finite A and B, and the infinite A and B are just a mental
model.

7.2 Verified protocols

We have used our implementation to prove liveness for several challenging examples, sum-
marized in Fig. 3. Our examples are publicly available3. We focused on examples that were
beyond reach for the liveness-to-safety transformation of [36]. In [36], such examples were
handled using a nesting structure. Our experience shows that with temporal prophecy, the

3 https://github.com/kenmcmil/ivy

123

https://github.com/kenmcmil/ivy

262 Formal Methods in System Design (2021) 57:246–269

invariants are simpler than with a nesting structure (for additional comparison with nesting
structure see Sect. 8). For all examples we considered, the verification conditions are in a
decidable fragment of first-order logic which is supported by Z3 (the stratified extension of
EPR [20,38]). Interestingly, for the TLB shootdown example, the proof presented in [36]
(using a nesting structure) required non-stratified quantifier alternation, which is eliminated
by the use of temporal prophecy witnesses. Due to the decidability of verification condi-
tions, Z3 behaves predictably, and whenever the invariant is not inductive it produces a finite
counterexample to induction, which Ivy presents graphically. Our experience shows that the
graphical counterexamples provide valuable guidance towards finding an inductive invariant,
and also for coming up with temporal prophecy formulas as needed. Below we provide more
detail on each example.

7.2.1 Ticket with task queues

The ticket example has been discussed in Sects. 1, and 5 contains more details about its
proof with temporal prophecy, using a single temporal prophecy formula and two prophecy
witness constants. To give a flavor of what the proof looks like in Ivy, we present a couple
of the conjectures that make up the inductive invariant for the resulting system, in Ivy’s
syntax. In Ivy, the prefix l2s indicates symbols that are introduced by the liveness-to-safety
transformation.

Some conjectures are needed to state that the footprint used in the dynamic abstraction
contains enough elements. An example of such a conjecture is:
l2s_frozen & (globally critical(c2)) -> forall N. N <= q(c2) -> l2s_a(N)

This conjecture states that after the freeze point (indicated by the special symbol
l2s_frozen), if the prophecy witness c2 (which is the prophecy witness defined for
♦�critical(x)) is globally in the critical section, then the finite domain of the frozen abstrac-
tion (stored in the unary relation l2s_a) contains all numbers up the c2’s value for q. Other
conjectures are needed to show that the current state is different from the saved state. One
example is:
l2s_saved & (globally critical(c2)) & ˜($l2s_w X. scheduled(X))(c2) ->

q(c2) ˜= ($l2s_s X. q(X))(c2)

The special operator $l2s_w lets the user query whether a fairness constraint has been
encountered, and $l2s_s exposes to the user the saved state. Both $l2s_w and $l2s_s
are syntactically λ-like binders, so the variable X (of sort thread, which is inferred) is
always bound in the above conjecture. This conjecture states that after we saved a shadow
state (indicated by l2s_saved), if the prophecy witness c2 is globally in the critical
section, and if we have encountered the fairness constraints associated with scheduled(x) ∨
�¬scheduled(x) instantiated for c2 (which can only happen after c2 has been scheduled),
then the current value c2 has for q is different from the same value in the shadow state.

7.2.2 Alternating bit protocol

The alternating bit protocol is a classic communication algorithm for transition of messages
using lossy first-in-first-out (FIFO) channels. The protocol uses two channels: a data channel
from the sender to the receiver, and an acknowledgment channel from the receiver to the
sender. The sender and the receiver each have a state bit, and messages include a bit that
functions as a “sequence number”. We assume that the sender has an (infinite) array of

123

Formal Methods in System Design (2021) 57:246–269 263

Protocol # A # B # LOC # C FO-LTL t [sec]
Ticket With Task Queues 1 2 90 60 22% 7
Alternating Bit Protocol 4 1 143 70 40% 25
Hybrid Reliable Broadcast 0 3 166 58 20% 25
TLB Shootdown 6 3 468 102 49% 240

Fig. 3 Protocols forwhichweverified liveness. For each protocol,# A reports the number of temporal prophecy
formulas used. # B reports the number of prophecy witnesses used. # LOC reports the number of lines of code
for the system model (without proof) in Ivy’s modeling language. # C reports the number of conjectures
used in the inductive invariant (a typical conjecture is one or few lines). FO-LTL reports the fraction of the
conjectures that use temporal formulas. Finally, t reports the run time (in seconds) for checking the verification
conditions using Ivy and Z3. The experiments were performed on a laptop with an Intel Core i7-8650U CPU,
using Z3 version 4.8.4

values to send, which is filled by some independent process. The liveness property we wish
to prove is that every value entered into the sender array is eventually received by the receiver.

The protocol is live under fair scheduling assumptions, as well as standard fairness con-
straints for the channels: if messages are infinitely often sent, then messages are infinitely
often received. This makes the structure of the temporal property more involved. Formally,
the liveness property we prove is:

(�♦sender_scheduled) ∧ (�♦receiver_scheduled)∧
((�♦data_sent) → (�♦data_received)) ∧
((�♦ack_sent) → (�♦ack_received)) →
∀x .�(sender_array(x) �= ⊥ → ♦receiver_array(x) �= ⊥))

This property cannot be proven without temporal prophecy, due to a spurious abstract
lasso [36, Section 5.2]. However, it can be proven using 4 temporal prophecy formulas
that eliminate the spurious lassos:

{♦� (sender_bit = s ∧ receiver_bit = r) | s, r ∈ {0, 1}} .

Intuitively, these formulas make a distinction between traces in which the sender and receiver
bits eventually become fixed, and traces in which they change infinitely often.

7.2.3 Hybrid reliable broadcast

Hybrid Reliable Broadcast is a distributed reliable broadcast [42] protocol that is designed
to tolerates four different types of faults: Byzantine faults, symmetric faults, clean crash,
and crash faults. This protocol constitutes the core of the clock synchronization algorithm
presented in [48]. The protocol relies on set cardiality thresholds, which we model in the
EPR fragment of first-order logic using the technique of [5].

As formalized in [29], the protocol’s correctness specification is composed of three prop-
erties: (i) Unforgeability: if no correct process receives the external message, then no correct
process ever accepts; (ii) Correctness: if all correct processes receive the external message,
then some correct process eventually accepts; and (iii) Relay: whenever a correct process
accepts, all correct processes will eventually accept. While Unforgeability is a safety prop-
erty, both Correctness and Relay are liveness properties. While these liveness proofs do not
require additional temporal prophecy formulas, they do require temporal prophecywitnesses,
as explained below.

123

264 Formal Methods in System Design (2021) 57:246–269

Our first attempt to prove Correctness and Relay resulted in inductive invariants with
quantifier alternation cycles, but we were able to use temporal prophecy witnesses to sim-
plify the inductive invariants and eliminate the cycles, such that ultimately all verification
conditions are in a decidable fragment. This required the use of one prophecy witness for
Correctness, and two witnesses for Relay. Coming up with these extra prophecy witnesses
and using them to simplify the invariants is a manual process, but it is guaranteed to be sound,
since the resulting invariants are checked by Ivy.

To illustrate the process of using prophecy witnesses to eliminate quantifier alternation
cycles, consider the following property required for the inductive invariant: if a correct process
received at least tB+tS+1 internalmessages, then it sent an internalmessage (where tB and tS
are bounds on the number of Byzantine-faulty and symmetric-faulty processes respectively).
This means that for any correct process p that did not send an internal message and any set
S of at least tB + tS + 1 processes, there must exist some process q ∈ S such that p did not
receive a message from q . This property translates (using the encoding of [5]) to:

∀p : process. ∀S : quorum. ∃q : process. ϕ(p, S, q),

where ϕ(p, S, q) is quantifier-free. This results in a quantifier alternation cycles (self-loop),
since we have ∀process∃process. The cycle can be eliminated by introducing a temporal
prophecy witness, based on the observation that the proof relies on the above property to
show that all correct processes must eventually send an internal message. Thus, by defining
w to be a witness for the formula:

ψ(x : process) = correct(x) ∧ �¬sent(x),

we can replace the cyclic invariant above by:

∀S : quorum. ∃q : process. ϕ(w, S, q),

which does not lead to quantifier-alternation cycles.

7.2.4 TLB shootdown

The TLB shootdown algorithm [7] is used (e.g. in the Mach operating system) to maintain
consistency of Translation Look-aside Buffers (TLB) across processors. When some proces-
sor (dubbed the initiator) changes the page table, it interrupts all other processors currently
using the page table (dubbed the responders) andwaits for them to receive the interrupt before
making changes. The liveness property we prove is that no processor can become stuck either
as an initiator or as a responder (formally, it will respond or initiate infinitely often). This
liveness depends on fair scheduling assumptions, as well as strong fairness assumptions for
the page table locks used by the protocol.

The algorithm itself is described by a state machine with 24 locations and 27 transitions,
closely following the presentation in [26]. To prove liveness we assume that there is a process
that gets stuck and show that there is no abstract lasso. We use one witness for the process
that does not satisfy the liveness property. Since this process may lock a pagemap, we need
to show that the lock operation will eventually succeed. Thus, we use a second witness for
a pagemap that is never unlocked, if this exists. A third witness is used for a process that
possibly gets stuck in the critical section protected by the pagemap lock. This can either be
the first process or a second process blocking the first process by holding the pagemap lock.
These witnesses allow for expressing all invariants required to prove the safety property in
the EPR fragment. As an example, instead of requiring that for every locked pagemap there

123

Formal Methods in System Design (2021) 57:246–269 265

is a process in the critical region holding the lock, we only require this for the pagemap that
is captured by the second witness.

We use several prophecy formulas to case split on where some process may get stuck.
For example, one prophecy formula ♦�pc(c1) = i2 is used to indicate that the first pro-
cess gets stuck while trying to take the lock transition from location i2. Another prophecy
formula ♦�pc(c3) ∈ {i3, . . . , i8} expresses that the process c3 gets stuck in the loop of the
algorithm spanning the locations i3, . . . , i8. For the pagemap c2 there is a prophecy formula
♦�plock(c2) to indicate that it is locked forever.

We then show that if the first process gets stuck, one of the prophecy variables that indicate
where this process gets stuck must hold. If the first process is not stuck in any loop or in the
lock operation, its program counter, which is part of the abstraction, indicates progress each
time the first process is scheduled. If the first process gets stuck while taking the lock, strong
fairness implies that the prophecy variable indicating that a page is locked forever holds.
This in turn implies that the second process, which locks the page must get stuck and one
of the corresponding prophecy variables holds. If the prophecy variable holds that indicate
that either the first or the second process gets stuck in one of the loops, we show the absence
of abstract lassos. The loops iterate over all active processes to send them an interrupt or to
check that they received the interrupt. To prove their termination, we utilize the fact that the
finite abstraction contains all processes the loop iterates over, because it is fixed at the time
the stuck process has entered the loop. After each loop iteration, the corresponding process is
marked as processed, which changes the abstraction. For the instruction that waits for another
process to receive the interrupt, we note that while that other process has not yet indicated
reception of the interrupt it moves only forward and each time it is scheduled the abstraction
changes.

Compared to the proof of [36], our proof is simpler due to the temporal prophecy, and
avoids non-stratified quantifier alternation, resulting in verification conditions that are in a
decidable fragment.

8 Related work

Prophecy variables were first introduced in [2], in the context of refinement mappings. There,
prophecy variables are required to range over a finite domain to ensure soundness. Our
notion of prophecy via first-order temporal formulas and witness constants does not meet
this criterion, but is still sound as assured by Theorem 2. In [27], LTL formulas are used to
define prophecy variables in away that is similar to ours, but only to show refinement between
finite-state processes. We use temporal prophecy defined by FO-LTL formulas in the context
of infinite-state systems. Furthermore, we consider a liveness-to-safety transformation (rather
than refinement mappings), which can be seen as a proof system for FO-LTL.

The liveness-to-safety transformation based on dynamic abstraction, butwithout temporal
prophecy, was introduced in [36]. There, a nesting structure was used to increase the power
of the transformation. A nesting structure is defined by the user (via first-order formulas),
and has the effect of splitting the transition system into levels (analogous to nested loops) and
proving each level separately. Temporal prophecy as we introduce here is more general, and
in particular, any proof that is possible with a nesting structure, is also possible with temporal
prophecy (by adding a temporal prophecy formula ♦�δ for every nesting level, defined by
δ). Moreover, the nesting structure does not admit cut elimination or closure under first-order
reasoning, and is therefore less robust.

123

266 Formal Methods in System Design (2021) 57:246–269

One effect of prophecy is to split cases in the proof on some aspect of the future. This very
general idea occurs in various approaches to liveness, particularly in the large body of work
on lexicographic or disjunctive rankings for termination [4,8,11–13,15,19,21,22,24,28,30,40,
41,43–46]. In the work of [23], the partitioning of the space of potentially infinite executions
is based on the a priori decomposition of regular expressions for iterated loop segments.
Often the partitioning here amounts to a split according to a fairness condition (“command
a is taken infinitely often or it is not”). The partitioning is constructed dynamically (and
represented explicitly through a union of Buchi automata) in [25] (for termination), in [16]
(for liveness), and in [18] (for liveness of parameterized systems). None of these works uses
a temporal tableau construction to partition the space of futures, however.

Here, we use prophecy to, in effect, partially determinize a system by making non-
deterministic choices earlier in an execution. This same effect was used for a different purpose
in refining an abstraction from LTL to ACTL [10] and checking CTL* properties [9]. The
prophecy in this case relates only to the next transition and is not expressed temporally. The
method of “temporal case splitting” in [32] can also be seen as a way to introduce prophecy
variables to increase the precision of an abstraction, though in that case the transformation
was to finite-state liveness, not infinite-state safety. Moreover, it only introduces temporal
witnesses.

We have considered only proof methods that transform liveness to safety (which includes
the classical ranking approach for while loops). There are approaches, however, which do
not transform liveness to safety. For example, the approaches in [3,15,47] are essentially
forms of widening in a CTL-style backwards fixpoint iteration. It is not clear to what extent
temporal prophecy might be useful in increasing the precision of such abstractions, but it
may be an interesting topic for future research.

9 Conclusion

We have seen that the addition of prophecy variables in the form of temporal formulas can
increase the precision of liveness-to-safety tranformations for infinite-state systems. The
prophecy variables are derived from additional temporal formulas that in our implemen-
tation were mined from the invariants a user provides to prove the safety property. This
approach is effective for proving challenging examples. By increasing the precision of the
dynamic abstraction, it avoided the need to decompose the proof into nested termination argu-
ments, reducing the human effort of proof construction. Though completeness is not possible,
we saw that the additional expressiveness of temporal prophecy provides a cut elimination
property. While we considered temporal prophecy using a particular liveness-to-safety con-
struction (based on dynamic abstraction), it seems reasonable to expect that the tableau-based
approach would apply to other constructions and abstractions, including constructions based
on rankings andwell-founded relations. Because our approach relies on an inductive invariant
supplied by the user, it requires the user to understand the liveness-to-safety transformation
and it requires both cleverness and a deep understanding of the protocol. For this reason, a
possible avenue for future research would be to explore invariant synthesis techniques, and
in particular ones that account for refinement due to temporal prophecy.

Acknowledgements We thank the anonymous referees for insightful comments which improved this paper.
Padon was supported by Google under a PhD fellowship. Padon and Sagiv were supported by the European
Research Council under the European Union’s Seventh Framework Program (FP7/2007–2013) / ERC grant
agreement no. [321174-VSSC]. This publication is part of a project that has received funding from theEuropean

123

Formal Methods in System Design (2021) 57:246–269 267

ResearchCouncil (ERC) under the EuropeanUnion’sHorizon 2020 research and innovation programme (grant
agreement No [759102-SVIS]). The research was partially supported by Len Blavatnik and the Blavatnik
Family foundation, and by the Blavatnik Interdisciplinary Cyber Research Center, Tel Aviv University. This
material is based upon work supported by the United States-Israel Binational Science Foundation (BSF) grants
No. 2016260 and 2012259.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abadi M (1989) The power of temporal proofs. Theor Comput Sci 65(1):35–83. https://doi.org/10.1016/
0304-3975(89)90138-2

2. Abadi M, Lamport L (1991) The existence of refinement mappings. Theor Comput Sci 82(2):253–284.
https://doi.org/10.1016/0304-3975(91)90224-P

3. Abdulla PA, Jonsson B, Rezine A, Saksena M (2006) Proving liveness by backwards reachability. In:
CONCUR, lecture notes in computer science, vol 4137. Springer, pp 95–109

4. Babic D, Hu AJ, Rakamaric Z, Cook B (2007) Proving termination by divergence. In: SEFM, pp 93–102
5. Berkovits I, Lazic M, Lossa G, Padon O, Shoham S (2019) Verification of threshold-based distributed

algorithms by decomposition to decidable logics. In: Computer aided verification—31th international
conference, CAV

6. Biere A, Artho C, Schuppan V (2002) Liveness checking as safety checking. Electr Notes Theor Comput
Sci 66(2):160–177

7. Black DL, Rashid RF, Golub DB, Hill CR (1989) Translation lookaside buffer consistency: a software
approach. In: Proceedings of the third international conference on architectural support for programming
languages and operating systems, ASPLOS III. ACM, New York, NY, USA, pp 113–122. https://doi.org/
10.1145/70082.68193

8. BrockschmidtM, CookB, Fuhs C (2013) Better termination proving through cooperation. In: Proceedings
of the computer aided verification—25th international conference, CAV 2013, Saint Petersburg, Russia,
July 13–19, 2013, pp 413–429

9. Cook B, Khlaaf H, Piterman N (2015) On automation of ctl* verification for infinite-state systems. In:
Kroening D, Pasareanu CS (eds) Proceedings of the computer aided verification—27th international
conference, CAV 2015, San Francisco, CA, USA, July 18–24, 2015, Part I, lecture notes in computer
science, vol 9206. Springer, pp 13–29. https://doi.org/10.1007/978-3-319-21690-4_2

10. CookB,KoskinenE (2011)Makingprophecieswith decisionpredicates. In:Ball T, SagivM(eds) Proceed-
ings of the 38th ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL
2011, Austin, TX, USA, January 26–28, 2011. ACM, pp 399–410. https://doi.org/10.1145/1926385.
1926431

11. Cook B, Podelski A, Rybalchenko A (2006) Termination proofs for systems code. In: PLDI, pp 415–426
12. Cook B, Podelski A, Rybalchenko A (2011) Proving program termination. Commun ACM 54(5):88–98
13. Cook B, See A, Zuleger F (2013) Ramsey vs. lexicographic termination proving. In: TACAS, pp 47–61
14. Corbet J (2008) Ticket spinlocks. https://lwn.net/Articles/267968/
15. Cousot P, Cousot R (2012) An abstract interpretation framework for termination. In: POPL, pp 245–258
16. Dietsch D, Heizmann M, Langenfeld V, Podelski A (2015) Fairness modulo theory: a new approach to

LTL software model checking. In: CAV, lecture notes in computer science, vol 9206. Springer, pp 49–66
17. Fang Y, McMillan KL, Pnueli A, Zuck LD (2006) Liveness by invisible invariants. In: Najm E, Pradat-

Peyre J, Donzeau-Gouge V (eds) Formal techniques for networked and distributed systems—FORTE
2006, 26th IFIP WG 6.1 international conference, Paris, France, September 26–29, 2006. Lecture notes
in computer science, vol 4229. Springer, pp 356–371. https://doi.org/10.1007/11888116_26

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0304-3975(89)90138-2
https://doi.org/10.1016/0304-3975(89)90138-2
https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1145/70082.68193
https://doi.org/10.1145/70082.68193
https://doi.org/10.1007/978-3-319-21690-4_2
https://doi.org/10.1145/1926385.1926431
https://doi.org/10.1145/1926385.1926431
https://lwn.net/Articles/267968/
https://doi.org/10.1007/11888116_26

268 Formal Methods in System Design (2021) 57:246–269

18. Farzan A, Kincaid Z, Podelski A (2016) Proving liveness of parameterized programs. In: LICS. ACM,
pp 185–196

19. Ganty P, Genaim S (2013) Proving termination starting from the end. In: Proceedings of the computer
aided verification—25th international conference, CAV 2013, Saint Petersburg, Russia, July 13–19, 2013,
pp 397–412

20. Ge Y, Moura LD (2009) Complete instantiation for quantified formulas in satisfiabiliby modulo theories.
In: International conference on computer aided verification. Springer, pp 306–320

21. Giesl J, Thiemann R, Schneider-Kamp P, Falke S (2004) Automated termination proofs with AProVE.
In: RTA, pp 210–220

22. Grebenshchikov S, Lopes NP, Popeea C, Rybalchenko A (2012) Synthesizing software verifiers from
proof rules. In: PLDI, pp 405–416

23. Gulwani S, Jain S, Koskinen E (2009) Control-flow refinement and progress invariants for bound analysis.
In: PLDI, pp 375–385

24. Harris WR, Lal A, Nori AV, Rajamani SK (2010) Alternation for termination. In: Proceedings of the
static analysis—17th international symposium, SAS 2010, Perpignan, France, September 14–16, 2010,
pp 304–319

25. Heizmann M, Hoenicke J, Podelski A (2014) Termination analysis by learning terminating programs. In:
CAV, lecture notes in computer science, vol 8559. Springer, pp 797–813

26. Hoenicke J, Majumdar R, Podelski A (2017) Thread modularity at many levels: a pearl in compositional
verification. In: POPL. ACM, pp 473–485

27. Kesten Y, Pnueli A, Shahar E, Zuck LD (2002) Network invariants in action. In: Proceedings of the 13th
international conference on concurrency theory, CONCUR ’02. Springer, Berlin, pp 101–115. http://dl.
acm.org/citation.cfm?id=646737.701938

28. KroeningD, SharyginaN, TsitovichA,WintersteigerCM(2010) Termination analysiswith compositional
transition invariants. In: Proceedings of the computer aided verification, 22nd international conference,
CAV 2010, Edinburgh, UK, July 15–19, 2010, pp 89–103

29. Lazic M, Konnov I, Widder J, Bloem R (2017) Synthesis of distributed algorithms with parameterized
threshold guards. In: 21st international conference on principles of distributed systems, OPODIS 2017,
Lisbon, Portugal, December 18–20, 2017, pp 32:1–32:20. https://doi.org/10.4230/LIPIcs.OPODIS.2017.
32

30. LeeW,Wang B, Yi K (2012) Termination analysis with algorithmic learning. In: 2012 Proceedings of the
computer aided verification—24th international conference, CAV 2012, Berkeley, CA, USA, July 7–13,
pp 88–104

31. Manevich R, Dogadov B, Rinetzky N (2016) From shape analysis to termination analysis in linear time.
In: CAV (1), lecture notes in computer science, vol 9779. Springer, pp 426–446

32. McMillan KL (2000) A methodology for hardware verification using compositional model checking. Sci
Comput Program 37(1–3):279–309. https://doi.org/10.1016/S0167-6423(99)00030-1

33. McMillan KL, Padon O (2018) Deductive verification in decidable fragments with Ivy. In: SAS, lecture
notes in computer science, vol 11002. Springer, pp 43–55

34. McMillan KL, Padon O (2020) Ivy: a multi-modal verification tool for distributed algorithms. In: Lahiri
SK, Wang C (eds) Proceedings of the computer aided verification—32nd international conference, CAV
2020, Los Angeles, CA, USA, July 21–24, 2020, Part II, lecture notes in computer science, vol 12225.
Springer, pp 190–202. https://doi.org/10.1007/978-3-030-53291-8_12

35. Padon O (2019) Deductive verification of distributed protocols in first-order logic. Ph.D. thesis, Tel Aviv
University

36. Padon O, Hoenicke J, Losa G, Podelski A, Sagiv M, Shoham S (2018) Reducing liveness to safety in
first-order logic. PACMPL 2(POPL):26:1-26:33. https://doi.org/10.1145/3158114

37. Padon O, Hoenicke J, McMillan KL, Podelski A, Sagiv M, Shoham S (2018) Temporal prophecy for
proving temporal properties of infinite-state systems. In: 2018 formal methods in computer-aided design,
FMCAD 2018, Austin, Texas, USA, October 30–November 2, 2018, pp 74–84

38. Padon O, McMillan KL, Panda A, Sagiv M, Shoham S (2016) Ivy: safety verification by interactive
generalization. In: Proceedings of the 37th ACMSIGPLAN conference on programming language design
and implementation, PLDI 2016, Santa Barbara, CA, USA, June 13–17, 2016, pp 614–630

39. Pnueli A, Shahar E (2000) Liveness and acceleration in parameterized verification. In: CAV, lecture notes
in computer science, vol 1855. Springer, pp 328–343

40. Podelski A, Rybalchenko A (2004) Transition invariants. In: Proceedings of the 19th IEEE symposium
on logic in computer science (LICS 2004), 14–17 July 2004, Turku, Finland, pp 32–41

41. Podelski A, Rybalchenko A (2005) Transition predicate abstraction and fair termination. In: Proceedings
of the 32nd ACMSIGPLAN-SIGACT symposium on principles of programming languages, POPL 2005,
Long Beach, California, USA, January 12–14, 2005, pp 132–144

123

http://dl.acm.org/citation.cfm?id=646737.701938
http://dl.acm.org/citation.cfm?id=646737.701938
https://doi.org/10.4230/LIPIcs.OPODIS.2017.32
https://doi.org/10.4230/LIPIcs.OPODIS.2017.32
https://doi.org/10.1016/S0167-6423(99)00030-1
https://doi.org/10.1007/978-3-030-53291-8_12
https://doi.org/10.1145/3158114

Formal Methods in System Design (2021) 57:246–269 269

42. Srikanth T, Toueg S (1987) Simulating authenticated broadcasts to derive simple fault-tolerant algorithms.
Dist Comput 2:80–94

43. Urban C (2013) The abstract domain of segmented ranking functions. In: SAS, lecture notes in computer
science, vol 7935. Springer, pp 43–62

44. Urban C, Gurfinkel A, Kahsai T (2016) Synthesizing ranking functions from bits and pieces. In: TACAS,
lecture notes in computer science, vol 9636. Springer, pp 54–70

45. Urban C, Miné A (2014) An abstract domain to infer ordinal-valued ranking functions. In: Proceedings
of the programming languages and systems—23rd European symposium on programming, ESOP 2014,
held as part of the European joint conferences on theory and practice of software, ETAPS 2014, Grenoble,
France, April 5–13, 2014, pp 412–431

46. Urban C, Miné A (2014) A decision tree abstract domain for proving conditional termination. In: SAS,
lecture notes in computer science, vol 8723. Springer, pp 302–318

47. Urban C, Miné A (2017) Inference of ranking functions for proving temporal properties by abstract
interpretation. Comput Lang Syst Struct 47:77–103

48. Widder J, Schmid U (2007) Booting clock synchronization in partially synchronous systems with hybrid
process and link failures. Dist Comput 20(2):115–140

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Temporal prophecy for proving temporal properties of infinite-state systems
	Abstract
	1 Introduction
	2 Illustrative example
	3 Preliminaries
	3.1 Transition systems in first-order logic
	3.2 First-order linear temporal logic (FO-LTL)
	3.3 Tableau for FO-LTL

	4 Liveness-to-safety with temporal prophecy
	4.1 Safety property: absence of abstract lassos
	4.2 Augmenting the transition system with temporal prophecy

	5 Proof of ticket with task queues
	5.1 Model in first-order logic
	5.2 Insufficiency of liveness-to-safety without temporal prophecy
	5.3 Proof with temporal prophecy

	6 Closure under first-order reasoning
	7 Implementation and evaluation
	7.1 Implementation in Ivy
	7.2 Verified protocols
	7.2.1 Ticket with task queues
	7.2.2 Alternating bit protocol
	7.2.3 Hybrid reliable broadcast
	7.2.4 TLB shootdown

	8 Related work
	9 Conclusion
	Acknowledgements
	References

