Formal Methods in System Design (2021) 57:473-495
https://doi.org/10.1007/s10703-021-00381-5

®

Check for
updates

Vacuity in synthesis

Roderick Bloem' - Hana Chockler? - Masoud Ebrahimi® - Ofer Strichman3

Received: 8 July 2019 / Accepted: 11 August 2021 / Published online: 17 September 2021
© The Author(s) 2021

Abstract

In reactive synthesis, one begins with a temporal specification ¢, and automatically synthe-
sizes a system M such that M = ¢. As many systems can satisfy a given specification, it
is natural to seek ways to force the synthesis tool to synthesize systems that are of a higher
quality, in some well-defined sense. In this article we focus on a well-known measure of the
way in which a system satisfies its specification, namely vacuity. Our conjecture is that if the
synthesized system M satisfies ¢ non-vacuously, then M is likely to be closer to the user’s
intent, because it satisfies ¢ in a more “meaningful” way. Narrowing the gap between the
formal specification and the designer’s intent in this way, automatically, is the topic of this
article. Specifically, we propose a bounded synthesis method for achieving this goal. The
notion of vacuity as defined in the context of model checking, however, is not necessarily
refined enough for the purpose of synthesis. Hence, even when the synthesized system is
technically non-vacuous, there are yet more interesting (equivalently, less vacuous) systems,
and we would like to be able to synthesize them. To that end, we cope with the problem of
synthesizing a system that is as non-vacuous as possible, given that the set of interesting
behaviours with respect to a given specification induce a partial order on transition sys-
tems. On the theoretical side we show examples of specifications for which there is a single
maximal element in the partial order (i.e., the most interesting system), a set of equivalent
maximal elements, or a number of incomparable maximal elements. We also show examples
of specifications that induce infinite chains of increasingly interesting systems. These results
have implications on how non-vacuous the synthesized system can be. We implemented the
new procedure in our synthesis tool PARTY. For this purpose we added to it the capability to
synthesize a system based on a property which is a conjunction of universal and existential
LTL formulas.

Keywords Reactive synthesis - Vacuity - Bounded synthesis

This work was supported by the Austrian Research Promotion Agency (FFG) through project TRUSTED
(867558), Graz University of Technology’s LEAD project “Dependable Internet of Things in Adverse
Environments”.

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-021-00381-5&domain=pdf
http://orcid.org/0000-0001-9169-3751

474 Formal Methods in System Design (2021) 57:473-495

1 Introduction

Given a temporal specification ¢, the goal of reactive synthesis [9,17] is to build a transition
system M such that M = ¢. The motivation of synthesis is clear: rather than building a
design and then checking whether it adheres to the specification, focus on the specification
alone, and generate automatically a design that satisfies it. In recent years, the theory and
especially the tools for synthesis have made significant progress [11].

As many systems can satisfy a given specification, it is natural to seek ways to force the
synthesis tool to synthesize systems that are of a higher quality, in some well-defined sense.
In this article we focus on a well-known measure of the way in which a system satisfies its
specification, namely vacuity [2]. It is a standard concept in model-checking, for detecting
errors in the specification itself, the model, or both. So far it has not been used in the context
of synthesis, however. Our conjecture is that if the synthesized system M satisfies ¢ non-
vacuously, then M is likely to be closer to the user’s intent, because it satisfies ¢ in a more
“meaningful” way. Narrowing the gap between the formal specification and the designer’s
intent in this way, automatically, is the topic of this article.

Consider, for example, the property

¢ = G(req — Fgrant). (@)

A system M with one state satisfying grant (regardless of req) satisfies ¢, and is indeed a
legitimate outcome of synthesising (1). However, M also satisfies stronger properties such as
GFgrant. When a system satisfies a property regardless of some of its subformulas, as in this
example where the behavior of req is immaterial for the satisfaction of ¢, the specification
is said to be satisfied vacuously (see below a formal definition).

It is not likely that M captures the user’s intent: the intent is probably that the system also
permits a path 7 in which there are no grants from a point in which there are no requests. Such
a path is called an interesting witness [2]: it is an execution that demonstrates non-vacuous
satisfaction of the original property. However, the requirement that there exists an interesting
witness cannot be expressed in LTL, since it implicitly relies on an existential quantifier.

Previous work addressing the lack of expressibility of LTL in specifying high-quality
systems suggested the extension to quantitative specifications, in order to make it easier to
specify certain properties [4], and to be able to synthesize systems that are robust against
environment errors, even if the way to react to such errors has not been specified explicitly
[3,18].

There are multiple definitions of vacuity in the literature [1,2,6,7,14,15]; the vast majority
of them is based on the concept of strengthening the specification by changing a part of it
and checking whether the strengthened version is still satisfied in the system; if not, then the
system is considered to satisfy the specification non-vacuously. While the general method
that we will describe in this paper is orthogonal to the chosen definition as long as the
analysed formulas are still in LTL, for ease of exposition we will choose one definition
and use it throughout the paper. Most commercially used vacuity-detection tools use the
generalised definition by Kupferman and Vardi [14], which is what we will follow here:
Let ¢ be a subformula in ¢. The strengthening of ¢ with respect to v is ¢[y <« L].!If
M = o[y <« L] then ¢ is irrelevant for the satisfaction of ¢ in M, and we say that ¢
is satisfied in M vacuously with respect to . It follows that M satisfies ¢ non-vacuously
with respect to v iff M = E—¢[y <« _L]. As shown in [14], it is sufficient to consider

! This means that we swap Y with falseif ¥ is in positive polarity, and with trueotherwise. Hence, e.g., if
¢ =y = Wy, then [y < L] = 1.

@ Springer

Formal Methods in System Design (2021) 57:473-495 475

strengthenings of ¢ with respect to atomic propositions (literals, in fact) rather than all
subformulas. We note that the definitions of vacuity in the literature, including [14], did not
consider the division of the atomic propositions into inputs and outputs, as such division is
immaterial in model-checking. As we argue later, in synthesis this division is in fact important.

Our synthesis method requires systems with at least one interesting witness for every
possible strengthening of ¢. More formally, if ¢ is a specification in LTL, amodel M satisfies ¢
non vacuously if it satisfies a formula in a simple fragment of CTL* consisting of a conjunction
of universal and existential formulas:

MEADA N\ (MEE-ply < 1)), (@)

yeLit(p)

where Lit (¢) denotes the literals of ¢. One of the contributions of this article is the extension
of the bounded synthesis [10] algorithm to handle this fragment, based on a new ranking
function (the original bounded synthesis algorithm handles only universal formulas).

Even when the system satisfies the specification non-vacuously, our tool is capable of
improving it by synthesizing a system that has additional interesting witnesses. The users
decides when the system reflects their intent. In Sect. 3 we define a partial order of vacuity
on transition systems, stating that system M’ is less vacuous than M if it contains all of the
interesting witnesses permitted by M and at least one more. This condition can be stated as a
formula in the same fragment of CTL* mentioned above. We describe a synthesis procedure
for generating increasingly non-vacuous systems for a given number of states.

In Sect. 4, we revisit the partial order of vacuity and prove that this partial order can be
mapped to a partial order on subsets of input traces. This allows us to formally introduce the
concept of equivalent systems w.r.t. their degree of vacuity and discuss cases where there
is a single top element to the partial order of vacuity, multiple equivalent top elements, or
multiple incomparable top elements. This is also the main addition to the paper compared to
its conference version [5].

‘We have implemented the non-vacuous bounded synthesis algorithm on top of the PARTY
synthesizer [13], which is available for download.? Given the informal goal we stated (“cap-
turing the user’s intent”) naturally it is difficult to prove that our approach works, especially
since there are no users in the industry that specify real system for the purpose of synthesis.
Our experiments were based, then, on starting from previously published complete specifi-
cations, removing parts of them, and activating non-vacuous synthesis. In our experiments,
which we describe in Sect. 5, the removed parts of the specification were compensated by
our tool. In fact, the generated models not only satisfy the original, complete specifications,
but they also realize them less vacuously.

Motivating example

The following example will be used in the rest of the article as a running example. It is a
specification of an arbiter with two types of requests and two types of grants (i.e., ¢ and ¢7)
and a mutual exclusion between the grants (i.e., ¢3). The specification ¢ is a conjunction of
the following three properties:

01 =G(r1 > Fg1), ¢2=G(2—>Fg), ¢3=G(—(g11g)), 3)

where r1 and rp are inputs (the ‘requests’) and g; and g, are outputs (the ‘grants’). The
smallest system M satisfying ¢, synthesised by our tool, is depicted in Fig. 1a. It consists of

2 https://extgit.iaik.tugraz.at/scos/scos.sources/party-eris.

@ Springer

https://extgit.iaik.tugraz.at/scos/scos.sources/party-eris

476 Formal Methods in System Design (2021) 57:473-495

-ry -y
1 1
> >
1 2

(a) Vacuous system M (b) The second step — system M

Fig.1 Systems of the running example

two states, so and s1, where in each state exactly one of the grants is up. It is easy to see that
M, satisfies ¢ vacuously. In particular My = ¢1[r1 <= L] and My = @2[r2 < L], where
the L value for r| and r is true in both ¢ and ¢», respectively.

The system generated by our tool in the next step is M, depicted in Fig. 1b.3 This system
satisfies ¢ non-vacuously in all its subformulas. Indeed:

1. My [& @1lr1 < L], as the path w1 = s corresponding to the output trace {—g1, g2}“
falsifies GFgq;

2. My [@olra < L], as the path mo = sps{’ corresponding to the output trace
{—g1, g2}, {81, g2} falsifies GFga;

3. The formulas obtained by replacing one of the grants with false are unrealisable, i.e.,
there is no system that can satisfy, for example, G(—r}), because we have no control over
the inputs.

2 Preliminaries
2.1 Labeled transition systems

For the remainder of the paper, let us fix an input alphabet I and a disjoint output alphabet
O, and letus define AP=71U O, Y =P(I), ¥ =P(0),and ' = P(AP).

Definition 1 (Labeled Transition System) A finite, -labeled Y -transition system is a tuple
M = (S, so, T, 0), where S is nonempty set of states, sop € S is the initial state, 7 : SxY — S
is a transition function, and 0 : S — X is a labelling function.

Definition 2 (An LTS word) A word p of a labeled transition system M, is a sequence
(s0, V0, 00), (51, V1,01),...1n (S x T x X)® such that o; = o(s;) and s;+1 = T(s;, V;).

Definition 3 (Path) A path of a word p is the sequence of states induced by p.
Definition 4 (Trace) A trace of a word p is the sequence of input/output pairs induced by p.

We denote by traces (M) the set of all traces of M. The projection of atrace = € traces (M)
on Y (resp. X%) is an input (resp. output) trace denoted by v = (7w | Y) (resp. 0 =
(r | £)). Similarly, for an input trace v € Y%, we denote by M (v) the (unique) trace
€ traces (M) s.t.v = (x| T).

3 Note that these are Moore machines. As such the output of a transition leaving a state appears in the state
itself. Hence, for example, in the trace {g, r1}, {g1, 71,2}, {g2}“, the request r| on the outgoing edge of s
is granted by the label g1 in s7.

@ Springer

Formal Methods in System Design (2021) 57:473-495 477

Definition 5 (Parallel Composition) Given input trace v € T and output trace 0 € X%,
their parallel composition denoted by (v || o) is an infinite word @ = vg U 0p, v; Uo7, . ..
over I'.

2.2 Temporal logic

Throughout the paper, we denote by ¢ an LTL formula in negation normal form (NNF), over
the set AP of atomic propositions [16]. The semantics of LTL is defined over AP with respect
to infinite paths of M in a standard way. In this paper, we synthesize systems that satisfy the
following simple fragment of CTL*:

®:=Agp |Ep | d A O, @)

where ¢ is an LTL formula. The semantics of the universal and existential quantifiers over
LTL formulas are defined as expected:

So far we denoted by traces (M) the set of traces of M, where a trace corresponds to a
run, which in itself must start from an initial state of M (see Definition 2 and 4). We similarly
use traces (M, s) to refer to runs that begin at an arbitrary state s € S of M.

Definition 6 For a state s of a transition system M,

s = Ag iff Vtetraces(M,s).t E ¢,
s =Ep iff 3t etraces(M,s).t =¢.

A transition system M satisfies a formula ¢, written M = ¢, if all its initial states do.

2.3 Nondeterministic Blichi automata

An LTL formula can be represented by a nondeterministic Biichi automaton [19]: a tuple
A= (0, qo, p,), where Q is a finite set of states, go € Q is the initial state, p : Q x Y x
¥ — P(Q) is the transition relation, and « is the set of accepting states; recall ¥ and Y are
defined in Sect. 2.1.

Definition 7 (Run of a Biichi automaton) Given an infinite word w = vy U 0g, v U oy, ...
over I', The corresponding runs of a Biichi automaton A, denoted by run (w), are the infinite
paths & = qo, q1, - -- € Q¥ where foralli > 0, g;+1 € p(gi, V', 0").

Definition 8 (Accepting run) An accepting run of A is a run that visits some accepting state
infinitely often; a trace is accepted by A if it has a corresponding accepting run, and the
language of A is the set of all accepted traces.

From this point forward, we denote by A, the nondeterministic Biichi automata that
accepts exactly the traces that satisfy ¢.

2.4 Vacuity detection

Informally speaking, a transition system M satisfies a property ¢ vacuously if not all parts
of ¢ are instrumental for the satisfaction of ¢ in M (in other words, M satisfies ¢ in an
uninteresting way). As proved in [14], it is sufficient to check vacuity with respect to atomic
propositions of ¢, which, in case of an atomic proposition p appearing in ¢ in a pure polarity,
amounts to model-checking ¢[p < L], thatis, ¢ where p is replaced with its bottom value.

@ Springer

478 Formal Methods in System Design (2021) 57:473-495

Hence, we use the following definition of vacuity that allows for efficient detection algo-
rithm:

Definition 9 (Vacuity [2,14]) A transition system M satisfies an LTL property ¢ vacuously
iff M |= ¢ and there exists a literal ¥ of ¢ which is of pure polarity and M = [y <« L].

The formula @[y <— L] is a strengthening of ¢ since p[y <— L] =— ¢ and we call
the negation ¢y = —¢[y < L] of a strengthening a witness formula. A trace w of M that
satisfies ¢y, is called an interesting witness for ¥, since it demonstrates that v is instrumental
to the satisfaction of ¢ in M; 7 is an interesting witness of M if it is an interesting witness for
some subformula ¥ of . We note that if M = /\; ¢; then M = \/; ;[< L]is relevant
to check only for those ¢; in which v appears.

The concept of witnesses and strengthenings is not restricted to Definition 9, and it lends
itself, in theory, to other definitions of vacuity [1,7,8]. The framework proposed in this paper is
orthogonal to the particular definition of vacuity, as long as the strengthenings are w-regular.

2.5 Bounded synthesis

Bounded synthesis is a method to construct a finite-state labeled transition system that not
only satisfies a given temporal specification ¢, but also fulfills a constraint on its size [10].
The idea is to let an SMT solver synthesize a transition system M (i.e., choose the transitions
and the labeling of the states), such that M x A-, has an empty language.

The synchronous product G of a transition system M = (S, sg, 7, 0) and a Biichi automaton
A-y = (0, qo, p, a) is called the run graph of A-, on M 4 The states of G are annotated
with two functions: a reachability function A® : Q x § — B and a ranking function A* :

0 xS — CcN,where C ={0,...,|0| x |S| — 1}. Annotations of G (i.e., A* and AB
functions) are valid if they satisfy the following constraints. First, the initial state is reachable:
2% (qo. 50) - ®)
Second, the reachability predicate and the transition system are compatible:

/\ 2B(q.s) A g’ € plq.o(s),v) As' €t(s,v) = AB(g/,s) . (6)

q.9'€Q

s,s'€S

veY

Finally, the ranking function guarantees that the constraint is satisfiable only if the language
of the run graph is empty: For accepting states, we require that the labelling on the target
state is strictly larger than on the source (accepting) state:

N\ F @) rg €pg o) v)ns etis,v) > 3G s > g9 (D)
qea.q'€Q

s,s'eS
veY

and for non-accepting states the labelling on the target states is larger or equal than on the
source state:

/\ ABg,9)Aqg € p(g,o0s),v)As €t(s,v) > A s) =1 (q.s). (8
geQ\a,q'€eQ

s,s'eS

veY

4 Since G is only used for checking emptiness, the labels are immaterial, and it is customary to use a one-letter
automaton (i.e., |[X| = [Y] = 1).

@ Springer

Formal Methods in System Design (2021) 57:473-495 479

ao

Fig. 2 We can assign a number to each state on the left automaton, that satisfies the inequality constraints,
e.g., the 0/1 values labeling the states. Such a labeling is impossible for the automaton on the right, because it
has an accepting state in a loop

The intuition behind the ranking function is as follows: if the language is not empty, then
there is an accepting path (i.e., a lasso-shaped path in the product automaton that includes
an accepting state), and then it is impossible to satisfy these constraints over that path. This
is because the ranks of states on the cycle cannot be strictly descending. The two automata
in Fig. 2 illustrate this point—see caption. Hence, (5)—(8) are satisfiable if and only if the
language of the product automaton is empty. The correctness of this construction was proven
in [10].

Theorem 1 (Finkbeiner et al. [10]) Given a Biichi automaton A = (Q, qo, p, &) constructed
from —q, transition system M = (S, so, T, 0) satisfies A iff it corresponds to a solution to
the constraints (5)—(8).

Initially, the LTL specification ¢ is negated and translated to a Biichi automaton A—,. In
the next step, (5)—(8) are solved with an SMT solver based on .A-,. Being unknown, 7, 2B,
A* and o (the labeling function) are represented by uninterpreted functions; thus, the quest
for finding M is reduced to the problem of satisfiability modulo finite integer arithmetic with
uninterpreted functions, which is an NP-complete problem.

3 Non-vacuous bounded synthesis

In this section we describe non-vacuous bounded synthesis—our method for constructing a
finite-state labeled transition system that fulfils a constraint on its size and satisfies a given
temporal specification non-vacuously.

3.1 A specification for non-vacuous satisfaction

A specification g is satisfied non-vacuously in M if and only if M contains a witness for each
strengthening of ¢. In other words, as we stated earlier in (2),

MEApA N\ E-gly < 1] ©)
YeLit(p)

(note that (9) is based on our choice of definition for vacuity—see 9). We call oy, = —¢[¢ <«
L] the witness formulas for non-vacuity of ¢ with respect to V.

Note that not all witness formulas add usable information. For instance, for ¢ as defined
in (3), the witness formula @, (i.e., =¢1[g1 < L] = Fry) is clearly satisfied by a trace of
any system, and the same holds for any satisfiable witness formula that contains only input
signals.

We continue in the next subsection by showing how existentially-quantified formulas can
be synthesized. Then, we can use this technique to synthesise formulas of the form defined
in (9).

@ Springer

480 Formal Methods in System Design (2021) 57:473-495

<

~O=0— @b‘ ~O=0O0—ET=O0=0=0
* * * * * ? * * * * * *

Fig. 3 On the left there is no accepting run, and indeed there is no ranking function that can satisfy the

constraints. On the right there is an accepting run (the A* predicate is marked with “*”), and the fact that there

is no constraint on the outgoing edge of the accepting state allows to find a ranking function, namely the
numbers 0,1,2,3,4,5 that are marked inside the states

3.2 Bounded synthesis for existential formulas

Our goal is to synthesize a finite-state labeled transition system with a bound on its size, in
which there exists an execution path that satisfies a given temporal specification ¢. We will
define a set of constraints that is different than the case described in Sect. 2.5 to achieve this.
Initially, we translate ¢ to a nondeterministic Biichi automaton A, and create the run graph
G of A, on M. Then, we use a Boolean marking function 1* : Q x § — B to indicate that
a state is on our selected path in G. On that selected path, we impose a ranking function that
can only be satisfied if it corresponds to an accepting run.
First, the initial state is marked:
2*(q0, 50) - (10)

Next, if a non-accepting state is marked, then at least one of its successors is marked, and
the ranking of the destination state is strictly smaller:

/ I
q' € p(g,o(s),v) As" € T(s,v) A
A (g, s) —> . 11
A @.5) \/ (g) AN s) < A (g,) (1
qeQ\a q'€Q
SES s'eS
veY

On the other hand if an accepting state is marked, then we only require that one of its
successors is marked (but in contrast to the previous case, here there is no restriction on the
ranking of its successor):

"e ,o(s), V) As € 1(s,v) A
A= V(oA ey
qea q'€Q €

The two automata in Fig. 3 illustrate our construction—see caption. The following theorem
states that these constraints are correct.

Theorem 2 Given a Biichi automaton A = (Q, qo, p, «) constructed from a formula ¢', a
transition system M = (S, so, T, 0) satisfies E¢’ iff it corresponds to a solution to constraints

(10)—(12).

Proof (=) There is a unique run graph G = (G, E) for A on M. Assume M is accepted by
A; therefore, G contains at least one lasso-shaped path = = (qo, $0)(q1, 51) - - . [(qn, Sn) - - -
(gm» Sm)]1?® such that g; is accepting for some i € [n, m]. We have to show that in such a case
(10)-(12) are satisfiable. Marking all the states on the path clearly satisfies (10), and the A*
predicate is true along this path as required by constraints (11) and (12). It is left to show
that there exists a ranking function that satisfies (11). Indeed the following function, which

@ Springer

Formal Methods in System Design (2021) 57:473-495 481

annotates each state on by its distance to ¢;, is a valid ranking function:

i—j ifj<i
Mapsp={"" " L
m—j+i—n+1 ifi <j.
Indeed, k#(qj, 5j) > A#(qk, si) for all ((qj,s;)(qk,sk)) € m, unless j = i. Recall that
only non-accepting states are bound by constraint (11). The figure below demonstrates this

<
e OO0 020=020
j: 1 2 3 4 5 6
ranking forn =3, m = 6,and i = 5. n i m
(<) Assume that (10)—(12) are satisfiable. The set of marked states must include a lasso-

shaped path beginning from the initial state, and the fact that (11) is satisfied means that there
exists an accepting state in the loop. Hence the run graph must contain an accepting path. O

Finally, synthesising a non-vacuous system—a system that satisfies (2)—amounts to solv-
ing the conjunction of the constraints that were described in Sect. 2.5 (for the universal part),
and the constraints in Sect. 3.2 for each € Lit(¢) (for the existential part). A separate
discrete ranking function is required for ¢ and each of its witness formulas.

Corollary 1 A finite-state transition system M = (S, so, T, 0) satisfies a temporal specifi-
cation in the form of the CTL* fragment defined in (4) iff it corresponds to a solution to
constraints (5)—(8) and (10)—(12).

We note that the addition of (10)—(12) to the bounded synthesis formula, does not change
the asymptotic complexity of the problem.

4 Beyond vacuity

In the introduction we argued that non-vacuous systems are preferable to vacuous systems
because they are more likely to fulfill the designer’s intent. This guarantees that for specifi-
cations like ¢ = G(r — Fg), there will be at least one path on which GFg does not hold.
Intuitively, this corresponds to the idea that an input » should trigger the output g. However,
the definition of vacuity is somewhat too coarse for our purpose. We need a more refined
notion, which will enable us to distinguish between non-systems that are non-vacuous. In the
following subsection we introduce a partial order between systems realizing a given spec-
ification. We consider a system A strictly less vacuous (or, equivalently, more interesting)
than another system B if the set of interesting witnesses in A properly contains the set of
interesting witnesses in B. For the property above, for example, this corresponds to addi-
tional witnesses to —~GFg, i.e., additional traces in which g does not occur without first being
‘triggered’ by r. For some specifications, there exist least vacuous systems, that is, maximal
systems in the partial order of vacuity. In Sect. 4.2, however, we show that for some other
specifications the partial order gives rise to infinite vacuity chains, i.e., infinite chains of ever
less vacuous systems.

In Sect. 4.3 we show that given a system, we can use a variant of bounded synthesis to
synthesize a less vacuous one, which naturally leads to a most interesting (least-vacuous)
system of a given size, when such a system exists. Finally, in Sect. 4.4, we show that for our
running example there exists such a least-vacuous system.

@ Springer

482 Formal Methods in System Design (2021) 57:473-495

4.1 Partial order on non-vacuous systems

Let M7 and M, be transition systems that satisfy ¢. Given a witness formula ¢y, we define
arelation M| <y M> to indicate that M; has at least the same set of interesting witnesses
according to ¢y as M. Formally, given a specification ¢ and a witness formula ¢, of ¢, we
define

My <y Myiff Yo € Y. (My(v) | gy) — (Ma() [gy). (13)

We say that M5 is strictly less vacuous than M if in addition there is at least one input
sequence that leads to an interesting witness only in M:

My <y My iff My <y M and v € Y. (M (v) & oy) N (M2 (V) = @y). (14)

If My <y M and M> <y M, we say that M and M, are equivalent in the partial order
of vacuity with respect to ¥, denoted M| =y M>.

By extending the relation <y to the set of all witness formulas, we can compare two
transition systems in terms of vacuity. Let W be the set of all witness formulas for ¢. We
define the partial order <, as

M, < M ifqu)w e V. M <y M, , (15)
and the strict partial order <, as
M <p M, iff M, <y M, and 3(/71// e V. (M] <y Mz). (16)

In other words, M> is at least as non-vacuous as M| w.r.t. all possible witnesses and is
strictly less vacuous than M w.r.t. at least one witness formula. Similarly to the above, we say
that M is equivalent to M> in the partial order of vacuity, denoted M| =, M>, if M| <, M>
and M <4 M.

Since there is a finite number of transition systems of any size N, for a given LTL formula
@, there exists at least one least vacuous system My, of size N, according to <, assuming
that ¢ is realizable by a system with N states. This system may not be unique. Moreover, if
there are several least-vacuous systems of size N, they can be equivalent or incomparable.

It is easier to reason about equivalent and incomparable systems if we re-define the partial
order on systems as follows. We can view the above partial order on systems realizing ¢ as a
partial order on subsets of the (infinite) set of all input traces V = {v : v € T*}. A system M
realizing ¢ can be mapped to the set of input traces V (M, ¢) that induce interesting witness
traces in M with respect to some subformula of ¢. We can similarly denote by V (M, ¢y)
the set of input traces that induce interesting witness traces in M with respect to a particular
witness formula ¢y, . Then, it is easy to see that (13) is equivalent to

My <y My iff V(My, y) C V(Ma, ¢y), (17

and the strict inequality holds if the set V (M1, ¢y,) is a strict subset of V (M2, ¢y,). Also,
My =y My if V(IMy, oy) = V (M2, oy).
Similarly, (15) can be rewritten as

M <e M, iffV(p[/, e . V(My, ¢¢) C V (Mo, (pw), (18)

and the strict inequality holds if the set V (M1, ¢y) is a strict subset of V (M2, ¢y) for
some ¢y € W. Two systems M and M, realizing ¢ are equivalent with respect to ¢ (i.e.,
M =, M>) if and only if the following holds:

Yoy € V. V(M1, ¢y) = V (M2, ¢y). 19)

@ Springer

Formal Methods in System Design (2021) 57:473-495 483

Finally, if My &, M> and M> 4, My, we say that M| and M> are incomparable.
The following theorem clarifies the difference between incomparable and equivalent least-
vacuous systems using (18) and (19).

Theorem 3 The following claims hold for any LTL formula ¢.

(a) If there exists a system My, realizing ¢ such that

Yoy € W.V(Muar0y) = | VM, 0p), (20)

M realizes ¢

then My, is a least-vacuous system realizing ¢, and any other least-vacuous system M’
realizing ¢ is equivalent to My, .

(b) If ¢ is realizable and there is no system M,y that realizes ¢ and satisfies (20), then
either

— there is an infinite vacuity chain; or
— there are several incomparable least-vacuous systems.

Proof We prove the claims separately.

(a) If there exists My, realizing ¢ such that (20) holds, then by (18), for any other M
realizing ¢, we have M <y M4y, hence M, is a least-vacuous system realizing ¢.
Now assume that there is another system M’ that is a least-vacuous system realizing ¢.
Then,

Yoy eW. VM S | VM. gy 1)

M realizes ¢

(as M’ is one of the systems in the union), hence M’ <, Mnqy. Therefore, M" and M,
are not incomparable. Since M’ is least vacuous, it also holds that M’ > M,,,,, and
hence they are equivalent in the vacuity preorder.

(b) Assume that there is no system that satisfies (20) and let M| be a least-vacuous system
realizing ¢ (if there is no such M, then there is an infinite vacuity chain, and the claim
holds trivially). In particular, since M does not satisfy (20), we have

VML) | VML gy)

M realizes ¢

for at least one witness formula ¢y, of ¢. Consider an input trace

ve (U V(M,mf))\V(Ml,(Pw//)

M realizes ¢

Assume that there exists M realizing ¢ that contains an interesting witness trace for ¢y
induced by v. By construction, M; and M, are incomparable. Hence, either M5 is also
a least-vacuous system, which is incomparable to M; (which concludes the proof), or
there exists another system M3 such that M, <, M3 and M3 is a least-vacuous system
realizing ¢ (recall that we assumed that there are no infinite vacuity chains). Then, M
and M3 are two incomparable least-vacuous systems realizing ¢.

]
The following examples illustrate the notion of least-vacuous systems. Example 1 shows
a specification for which there exist two equivalent least-vacuous systems. Example 2 and

the example in “Appendix 1” show specifications for which there are two incomparable
least-vacuous systems.

@ Springer

484 Formal Methods in System Design (2021) 57:473-495

- T —-r
O O==
> ->
- r
(2) Mo (b) M,

Fig.4 Least-vacuous systems realizing G(r — Fg)

Example 1 [Equivalent least-vacuous systems] Consider the following specification:
¢=G(r = Fg),

where the sole interesting witness formula is ¢, = FG(—g). Figure 4 demonstrates two
systems of size 2 realizing ¢. It is easy to see that

V(MO, (pr) = V(Mla (ﬂr)v

that is, all non-vacuous traces of M are still non-vacuous in M; and vice-versa. In other
words, My =, M. Yet, the systems are not isomorphic. As an example of the difference
between My and M1, consider the run of My on the input trace (—r)®:

Mo((—r)®) = {—r, g} .
On the other hand, the run of M on the same input trace is:

M((=r)?) = {—r, g}, {—r, —g}* .

Proposition 1 My and M are least-vacuous systems realizing ¢.

Proof As My =, M, it suffices to prove that My is a least-vacuous system realizing ¢. Let
M be an arbitrary system that realizes ¢. For an input sequence v € Y%, assume that v
induces a path in M that satisfies ¢, = FG(—g). Since this path, in particular, satisfies ¢,
it also satisfies FG(—r) (otherwise there would have been requests that are never granted).
Observing Fig. 4, it is easy to see that the same input sequence v would induce a path in My
with an infinite suffix {s9}®, hence, in particular, it satisfies FG(—g). Hence, M is not less
vacuous than M.]

The following is an example of two incomparable least-vacuous systems, illustrating the
second case in 3(b).

Example 2 [Incomparable least-vacuous systems] Consider the specification ¢, which is the
conjunction of the following three properties:

pr=r—>Xg1, ¢p=r—>Xg, ¢3=X(g1Vg&), (22)
where r is an input, and g; and g; are outputs. The interesting witness formulas for ¢ are
—@ilr <= L1 =X(—g1), —¢lr < 1] =X(—g2) .

In any system that realizes ¢, satisfying the witness formula X(—g1) implies that the
second state must be labelled with —g; A g2 if —r is its input (because of ¢3). At the same
time in order to satisfy X(—g>) the second state of this system must be labelled with g1 A—g2,
which clearly contradicts the previous requirement.

On the other hand, least-vacuous systems for ¢ exist. For example, consider the two
systems in Fig. 5: the left satisfies EX(—g1) and the right satisfies EX(—g3), but neither

@ Springer

Formal Methods in System Design (2021) 57:473-495 485

—r -r

(a) M, satisfies EX g1 (b) M> satisfies E X g2

Fig.5 Both M| and M; realize ¢ from (22) least-vacuously, but are incomparable

Fig.6 An example of infinite vacuity chain

satisfies both. Furthermore, it is not hard to see that both M and M are least-vacuous with
respect to ¢ (the proof would be similar to the proof of Proposition 1).
O

4.2 Infinite vacuity chains

For some formulas, there is an infinite chain of ever less vacuous (and ever larger) systems.
As an example, consider the following LTL specification:

¢ =(Gr) = (Fg). (23)
The only useful witness formula for ¢ is
¢r =G—g. (24)

Figure 6 depicts an abstract transition system My of arbitrary size (i.e., k + 3) that realizes
specification ¢ non-vacuously for any k.

Proposition 2 Vk. My <y M.

Proof We have to show that My is as non-vacuous as My and that there exists an input
trace that makes My less vacuous w.r.t. ¢..

First we show Vk. My <y M. For each input trace w € Y, if My (7) |= G—g, then
7 = rd(=r)t(—=r 4+ r)® for some j <k, so My1(n) = G—g.

To see that Vk. My <y My holds, note that the input trace rk“(—'r)‘” leads to an
interesting trace in My but not in M. O

4.3 Synthesizing a less vacuous system

We now discuss how to synthesize a less vacuous system M3 given a correct system M. We
do this by expressing the partial order defined above in the simple fragment of CTL*defined
in (4).

@ Springer

486 Formal Methods in System Design (2021) 57:473-495

Fig.7 The final non-vacuous Ty, T
system M

Given a formula ¢ or a system M, we use a primed version (¢’ or M’, respectively) to
denote the formula/system obtained by replacing all output literals by primed versions. Given
a system M that satisfies ¢, we have My <y, M, iff

M| x My |= Ap A Algy, — ¢y) AE(—g), Apy) . (25)

Equation (25) follows directly from Eq. (14) after renaming the variables of M with their
primed versions. Note that ¢ and ¢y, refer to the outputs of M and <p:// refers to the outputs
of M1, while both systems receive the same inputs. The following theorem generalizes (25)
to all subformulas of ¢.

Theorem 4 M, is strictly less vacuous than M iff

M x My =A@ A N\ @) = o) ANEC\] (=g, Apy)) . (26)
py eV oy eV

Note that this equation has the form of Eq. (2) and can thus be solved as described in
Sect. 3.

We iteratively synthesize less and less vacuous systems by applying (26) where M5 is the
existing system. The result is M/, which then becomes M, of the next iteration. We repeat this
process until (26) becomes unrealizable with the current bound on the number of states. We
can then either stop or increase the bound. Every such step adds a linear number of variables.
Since the asymptotic complexity has an exponential dependence on the number of variables,
eventually this formula may become too hard to solve in practice.

4.4 Aleast-vacuous system for the running example

Consider once again our running example from the introduction. Figure 7 shows a least-
vacuous system M, with the bound 4 on the number of states (one of the intermediate
iterations resulted in M depicted in Fig. 7).

System M5 is strictly less vacuous than M;. Recall that the two witness formulas are
¢r, = FG—g; and ¢, = FG—g». It is not hard to verify that all interesting paths in My w.r.t.
to @, (W.I.t. to @,) are also interesting w.r.t. to ¢, (W.I.t. to ¢,,, resp.) in M>. Also, the trace
that results from leaving r; and r low all the time is interesting w.r.t. ¢, in M> but not in
M;.

Proposition 3 M, is a least-vacuous system with respect to {¢r,, ¢r, }.

Proof Let M be an arbitrary system that realizes ¢. For an input sequence v € T, assume
that v induces a path in M that satisfies ¢1[r; <— L] = FG—g;. Since this path, in particular,

@ Springer

Formal Methods in System Design (2021) 57:473-495 487

Fig.8 LTL specification for the assume assume
‘next’ arbiter of two clients. Note G ~(r1 Ara) G —(r1 Ara)
that the incomplete specification guarantee guarantee
excludes the right-to-left G(r1 +— Xg1) A G(r1 > Xg1) A
implications in the guarantee G(r X g2) A G(ra — X g2) A
G (g1 A g2) G (g1 A g2)
(a) Complete Specification (b) Incomplete Specification

satisfies ¢, it also satisfies FG—r; (otherwise there would have been requests that are never
granted). Observing Fig. 7, it is easy to see that the same input sequence v would induce a
path in M, with an infinite suffix {so, s2}*, hence, in particular, it satisfies FG—g;. A similar
argument holds for ¢»[rp <— L]. Hence, M is not less vacuous than M>. O

The question whether a given system is a least-vacuous one (again, such systems may not
be unique) is equivalent to asking whether a less vacuous one exists, which, by (26) can be
reduced to a CTL*realizability question.

5 Experimental evaluation

We implemented the described technique in the PARTY synthesizer [13]. We cannot check
directly whether non-vacuous synthesis leads to a system which is closer to ‘the user intent’.
However, we can check something with a similar flavor: the ability of this technique to
guess missing parts of a specification. Hence, we conducted the following experiment: first,
we synthesized models for three complete and correct specifications; then, we made them
incomplete by removing some of the conjuncts in the specification; finally, we ran non-
vacuous synthesis on these incomplete specifications, and checked whether the resulting
system satisfies the original, complete specification; A positive answer indicates that non-
vacuous synthesis can accelerate the convergence towards the desired system.

Indeed, in the three experiments that we conducted, non-vacuous synthesis was able to
synthesize a system that satisfies the original, full specification, although we emphasize that
this is not guaranteed in general. The synthesized system in all three cases is not identical
to the one synthesized according to the full specification, which reflects the fact that many
systems can satisfy the same specification. It is up to the user to choose between them.

More details about the experimental setting, as well as a performance comparison, is given
in 1. It is evident from the comparison that, as expected, on average non-vacuous bounded
synthesis takes more time than bounded synthesis.

5.1 A‘next’ arbiter

The ‘next’ arbiter of two clients issues a grant for each client in the next step if and only if
the client sends a request. The assumption is that clients never send requests simultaneously;
thus, issued grants should be mutually exclusive. The complete and incomplete specification
of this arbiter for two clients is shown in Fig. 8. The specification should be interpreted as
‘every run that satisfies the assume predicates should also satisfy the guarantee predicates’.

As depicted in Fig. 9a, b, even a slight modification in the specification results in a large
gap in the behaviors of the synthesized systems. On the other hand starting from the system
depicted in Fig. 9b, three iterations of the non-vacuous synthesis process result in the system
shown in Fig. 9c, which satisfies the original, full specification. Figure 10 depicts the runtime

@ Springer

488 Formal Methods in System Design (2021) 57:473-495

7T, T2

T, T2 T, T2 -1y, Ty
1,72

—ry, T2

L, T2

T, T2 | T T2

1 -y

1 1, T2
(a) Bounded synthesis of (b) Bounded synthesis of (¢) Non-vacuous synthesis of
complete specification incomplete specification incomplete specification

Fig. 9 Synthesized arbiters of the complete and incomplete specifications of the ‘next’ arbiter that appeared
in Fig. 8

Non-Vacuous
Bounded
B @ - Bounded
10° Synthesis Synthesis
Co-Buchi Translation 78360 78360
E 10 Buchi Translation 0 54641
o
E | ‘ % Co-Buchi Encoding 86 86
10° Buchi Encoding 0 193
‘ % SMT Solver 202536 325270
10° X040 Sum 280982 458550
|| ||
Bounded Non-Vacuous
Synthesis Bounded
Synthesis

(a) Runtime breakdown of the complete specification of the ‘next’ arbiter. Since the complete
specification already gives a least vacuous arbiter, runtime breakdown of less-vacuous bounded
synthesis is not applicable.

Non-Vacuous Less-Vacuous
10° B 2] g Oﬁﬁizi Bounded Bounded
Y Synthesis Synthesis
B Co-Buchi Translation 43991 43991 195379
g 10 Buchi Translation 1] 87428 113927
E Co-Buchi Encoding 78 78 99
3
10 Buchi Encoding 0 182 64
SMT Solver 69915 198081 193115
10°]
- - - Sum 113985 329760 502583
Bounded Non-Vacuous Less-Vacuous
Synthesis Bounded Bounded
Synthesis Synthesis

(b) Runtime breakdown of the incomplete specification of the ‘next’ arbiter.

Fig. 10 Runtime breakdown of synthesis of the ‘next’ arbiter

breakdown of bounded synthesis and non-vacuous bounded synthesis for both the complete
and incomplete versions of the ‘next’ arbiter.

5.2 A‘full’ arbiter

A “full’ arbiter of two clients eventually issues a grant for each client if the client sends
a request. The complete specification appears in Fig. 11 (left), and a partial specification

@ Springer

Formal Methods in System Design (2021) 57:473-495 489

guarantee guarantee
—\(—\’1“1 A —|gl) U(—\’rl A gl) AN
—\(—\Tz VAN —|g2) U(_‘TQ N g2) AN
—\F(g1 N X(—\T‘1 A —\gl) A X(—\T‘1 N g1) U(—|T1 AN gl)) AN
—\F(gg N X(_‘TQ N —\gg) A X(_‘T‘Q N gg) U(—|7’2 A gg)) AN
G((=r1 Ag1) = F((r1 Ag1) vV —g1)) A
G((-r2 Ag2) = F((r2 A g2) V —g2)) A

G(r1 = Fgi)A G(ri = Fgi) A
G(ra = Fg2) A G(ro = Fga) A
G (91 A g2) G (91 A g2)

(a) Complete Specification (b) Incomplete Specification

Fig. 11 LTL specification for ‘full’ arbiter of 2 clients

—ry, T L, 2 —ry, T r1, -
->
1| [7T1]72
(a) Bounded synthesis of (b) Bounded synthesis of (C) Non-vacuous synthesis of
complete specification incomplete specification incomplete specification

Fig. 12 Synthesized arbiters of complete and incomplete specifications of full arbiter as read in Fig. 11

appears in Fig. 11 (right). The properties that are removed in the partial specification state
that grants are never given “unnecessarily”.

The transition systems that are synthesized for the full and partial specification appear in
Fig. 12a, b respectively. On the other hand, starting from the partial specification, after four
iterations of the non-vacuous synthesis the system we get is as shown in Fig. 12c, which
again satisfies the full specification. Figure 10 depicts the runtime breakdown of bounded
synthesis and non-vacuous bounded synthesis for both the complete and incomplete versions
of the “full’ arbiter (Fig. 13).

5.3 A’Pnueli’ arbiter

A ‘Pnueli’ arbiter of two clients is a handshake mechanism such that whenever a client sets
a request the arbiter will set and keep the corresponding grant high as long as the request
is high [12]. The complete and incomplete specification of a ‘Pnueli’ arbiter of two clients
is shown in Fig. 14. The incomplete specification allows the arbiter to set a grant and never
unset it; therefore, the synthesized system may issue vacuous grants for each client infinitely
often unless the other client sends a request—see Fig. 15b.

@ Springer

490

Formal Methods in System Design (2021) 57:473-495

10 Bounded Non-Vacuous Less-Vacuous
Synthesis Bounded Bounded
Y Synthesis Synthesis
7
10 Co-Buchi Translation 464694 464694 1994477
’E; % @ Buchi Translation 0 505440 121539721
P
E 10° Co-Buchi Encoding 72 72 268
‘ ‘ ‘ ‘ ‘ Buchi Encoding 0 206 109
10’ SMT Solver 2137801 2623794 652392861
[
XXy Pt Sum 2602567 3594206 775927437
Bounded Non-Vacuous Less-Vacuous
Synthesis Bounded Bounded
Synthesis Synthesis

(a) Runtime breakdown of the complete specification of the ‘full’ arbiter.

Bounded Non-Vacuous Less-Vacuous

@ Synthesis Boundef:l Boundegl

10°] Y Synthesis Synthesis
Co-Buchi Translation 46561 46561 150155
E 10 m % ‘ | Buchi Translation 0 77427 566389
E ‘ ‘ ‘ ‘ ‘ | Co-Buchi Encoding 87 87 139
10° Buchi Encoding 0 201 82
‘ u SMT Solver 87179 174226 342458
Sum 133828 298502 1059222

Bounded Non-Vacuous Less-Vacuous
Synthesis Bounded Bounded
Synthesis Synthesis

(b) Runtime breakdown of the incomplete specification of the ‘full” arbiter.

Fig. 13 Runtime breakdown of synthesis of the ‘full’ arbiter

assume
=r1 A 2rg\
G((r1t A—gl — Xr1) A(—r1 A g — X-rl))A
G((r2AN=g2 = Xr2) A (=2 A g2 — X —r2))A
GF(—r1 V-g1) A
G F(-r2 V —g2)

guarantee
g1 A g2 A
G(((=r1 Amg1) = X=g1) A((ri Agr) = Xgi)) A
G(((-r2 A—g2) = X =g2) A ((r2 A g2) — Xg2)) A
GF(ri +—g1)A
GF(rg < g2) A
G (91 A g2)

(a) Complete Specification

assume

—ry A-rg A

G((Tl A gl — XT'1) A ("7'1 NgL — X‘\’l‘l))/\
G((r2 AN =g2 = Xra) A (-2 A g2 — X —r2))A

GF(—\Tl \% —‘gl) A

GF(-r2 V —g2)
guarantee

—g91 A g2 A

G(((-r1 A=g1) = X=g1) A((r1 A gr) = Xgi))A
G(((mr2 Amg2) = X=g2) A((r2 A g2) = X g2))A

GF(r1 = g1) A
GF(r2 = g2) A
G —(g1 A g2)

(b) Incomplete Specification

Fig. 14 LTL specification for a ‘Pnueli’ arbiter of two clients. The incomplete specification lacks the right-to-
left implication in the 4th and 5th lines of the guarantee

The result of our non-vacuous synthesis from the partial specification again satisfies the
full specification, as shown in Fig. 15c¢, and is synthesized in one step. This system also
satisfies the specification in a less vacuous way than the system synthesized from the complete
specification using the previous version of PARTY, without the new functionality of non-
vacuity. Figure 10 depicts runtime breakdown of both synthesis methods for complete and
incomplete versions of the ‘Pneuli’ arbiter (Fig. 16).

@ Springer

Formal Methods in System Design (2021) 57:473-495

491

(a) Bounded synthesis of
complete specification

2

Ty, T2

Y, T2

2

(b) Bounded synthesis of
incomplete specification

1

T2

(¢) Non-vacuous synthesis
of incomplete specification

Fig. 15 Synthesized arbiters of complete and incomplete specifications of a ‘Pnueli” arbiter as read in Fig. 14

Time (ps)

Time (ps)

B

Bounded
Synthesis

(a) Runtime breakdown of the

ENNN__E

Non-Vacuous
Bounded
Synthesis

Less-Vacuous
Bounded
Synthesis

&

Copa

SN\

IO\

Froied
Bounded Non-Vacuous Less-Vacuous
Synthesis Bounded Bounded
Synthesis Synthesis

Bounded Non-Vacuous Less-Vacuous

Synthesis ? Ou?lde.d g oux}llde_d

ynthesis ynthesis
Co-Buchi Translation 407917 407917 856014
Buchi Translation 0 40710 318516
Co-Buchi Encoding 71 71 366
Buchi Encoding 0 238 217
SMT Solver 1536610 1892877 7996624
Sum 1944598 2341812 9171737

complete specification of the ‘Pnueli’ arbiter.

Bounded Non-Vacuous Less-Vacuous

Synthesis g O‘Itr};déé g Dutl;‘dé_:q‘

ynthesis ynthesis
Co-Buchi Translation 873798 873798 2051211
Buchi Translation 0 232198 953098
Co-Buchi Encoding 77 77 194
Buchi Encoding 0 180 128
SMT Solver 3837228 8171791 26652266
Sum 4711103 9278045 29656898

(b) Runtime breakdown of the incomplete specification of the ‘Pnueli’ arbiter.

Fig. 16 Runtime breakdown of synthesis of the ‘Pnueli’ arbiter

6 Conclusion

In synthesis, it is hard to expect the designer to think of a complete specification. As a result,
the large range of possible systems that satisfy the specification permits designs that stand in
contrast to the designer’s intent. We proposed in this article to apply the concept of vacuity to
address this problem. Our method narrows down the range of legitimate synthesised system
to those that satisfy the (partial) specification in a meaningful way, a well-known concept
from using vacuity in model-checking. But as we argued, we do not have to commit to the
Boolean nature of the classical definition of vacuity: we showed how a system can be made

@ Springer

492 Formal Methods in System Design (2021) 57:473-495

less vacuous, even if it already satisfies the specification non-vacuously. Our experiments
showed that our method is capable of synthesising better designs, in the sense that they even
satisfy parts of the specification that we deliberately removed and were hence inaccessible to
the synthesis algorithm. Perhaps in the future synthesis will be used in the industry, and then
our conjecture that this process can save time to the designer will be tested with a user-study.

Our solution is based on a novel bounded synthesis technique that combines universal and
existential properties; It paves the way for generalizing our technique to full CTL*. Our tool
PARTY is available on the web to try and improve.

Acknowledgements We would like to thank Nir Piterman for his insights on infinite chains of ever less
vacuous systems and Ayrat Khalimov for his comments on existential bounded synthesis and his valuable
assistance with the implementation.

Funding Open access funding provided by Graz University of Technology.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A: An example of incomparable least-vacuous systems

Consider the specification ¢ that is a conjunction of the following four properties:

o1 =G0 = Fg1) . ¢2=G(=g1 = Xg2) .
@3 =G(r2 = Fg2) . ¢4 =G(=g2 — Xg1) ,
where r; is an input and g; is an output. The following interesting witness formulas

—1[r1 < 1] =FG(—g1),
—@3[ry < 1] =FG(—g2) .

give rise to incomparable least-vacuous systems as described in Fig. 17. Indeed, the witness
formula FG(—g1) (resp. FG(—g2)) requires a trace that satisfies it to have a suffix —g{’ (resp.
—g%), hence in order to satisfy the property ¢» (resp. ¢4), the same suffix should satisfy
X(gy) (resp. X(g{")). Thus, each trace either satisfies the interesting witness FG(—g1) or
FG(—g>), but not both, hence only one of the two sets of witness traces can be maximized.
The proof of the least vacuity is similar to the proofs of Propositions 1 and 3.

@ Springer

http://creativecommons.org/licenses/by/4.0/

Formal Methods in System Design (2021) 57:473-495 493

(2) Mo (b) My

Fig. 17 Incomparable least-vacuous systems realizing ¢

B: Performance comparison

Here we compare the performance of non-vacuous bounded synthesis to ‘normal’ bounded
synthesis, using a benchmark set of 164 specifications. The set includes the LTL-Real
benchmarks of synthcomp 2020,111y,genbuf,acacia+,and party-elli.Ourimple-
mentation uses Z3 4.8.10 and SPOT 2.9. It is worth mentioning that our implementation uses
integer encoding of co-biichi automata for both methods.

We ran each experiment twice and each time for a total of 60 minutes. In both runs, 70
experiments timed out, 85 were realizable, and 9 were unrealizable. We averaged the run-time
profile of both runs and computed the performance loss in making the synthesis non-vacuous.

Of all realizable experiments the non-vacuous bounded synthesis gained negligible perfor-
mance in three cases. Meanwhile, non-vacuous bounded synthesis timed out on 3 experiments
that were realizable through bounded synthesis. Table 1 gives a more detailed comparison.

The biggest factor in the performance loss is the solver time. This is evident in the plots
shown in Figs. 18 and 19. Other than the solver time, much of the run-time is spent on

Table 1 Performance comparison

Description Number of experiments
Non-vacuous bounded synthesis is up to 2x faster 3
Bounded synthesis is up to 2x faster 24
Bounded synthesis is (2x, 3x] faster 11
Bounded synthesis is (3x, 17x] faster 23
Bounded synthesis is (20x, 1000x] faster 21
Non-vacuous bounded synthesis timed out 3
Realizable 85
Unrealizable 9
Both timed out 70
Total 164

@ Springer

494

Formal Methods in System Design (2021) 57:473-495

= S
& S

Speed-down
S

Fig.

10*

2

3
3.35
%
Speed-down
- 2 S
I e 928.65
I e] 706.81
I] 314.87
I 301.89
[e 166
il sii—
| g 156,10
e 7478
I 68.50
I 51.69
I 48.33
I 45.76
I 38.29
I 3473
I 2653
e 25
I 24.68
I 24.09
I 2153
I 2143
I 20.68

H
g
3
<
z
g
&
g
E
g
3
2

19 Performance loss on solver time

translating each specification to a co-biichi automaton, which is shared by both synthesis
methods; thus, the total performance loss is typically less than the solver performance loss.

References

10.
11.

Armoni R, Fix L, Flaisher A, Grumberg O, Piterman N, Tiemeyer A, Vardi MY (2003) Enhanced vacuity
detection in linear temporal logic. In: CAV, LNCS, Springer, vol 2725, pp 368-380

. Beer I, Ben-David S, Eisner C, Rodeh Y (2001) Efficient detection of vacuity in ACTL formulas. Formal

Methods Syst Des 18(2):279-290

. Bloem R, Chatterjee K, Greimel K, Henzinger TA, Hofferek G, Jobstmann B, Konighofer B, Konighofer

R (2014) Synthesizing robust systems. Acta Inf 51:193-220

. BloemR, Chatterjee K, Henzinger TA, Jobstmann B (2009) Better quality in synthesis through quantitative

objectives. In: CAV, LNCS, Springer, vol 5643, pp 140-156

. Bloem R, Chockler H, Ebrahimi M, Strichman O (2017) Synthesizing non-vacuous systems. In: Pro-

ceedings of the 18th international conference in verification, model checking, and abstract interpretation
(VMCALI), Lecture notes in computer science, Springer, vol 10145, pp 55-72

. Bustan D, Flaisher A, Grumberg O, Kupferman O, Vardi M (2005) Regular vacuity. In: CHARME, LNCS,

Springer, vol 3725, pp 191-206

. Chechik M, Gurfinkel A (2004) Extending extended vacuity. In: FMCAD, LNCS, vol 3312
. Chockler H, Gurfinkel A, Strichman O (2013) Beyond vacuity: towards the strongest passing formula.

Formal Methods Syst Des 43(3):1-8

. Church A (1963) Logic, arithmetics, and automata. In: ICM, institut Mittag-Leffler, pp 23-35

Finkbeiner B, Schewe S (2012) Bounded synthesis. Int J Softw Tools Technol Transf 15(5):519-539
Jacobs S, Bloem R, Brenguier R, Konighofer R, Pérez GA, Raskin J, Ryzhyk L, Sankur O, Seidl M,
Tentrup L, Walker A (2015) The second reactive synthesis competition. In: SYNT

. Jobstmann B, Staber S, Griesmayer A, Bloem R (2012) Finding and fixing faults. J Comput Syst Sci

78(2):35-49

@ Springer

Formal Methods in System Design (2021) 57:473-495 495

16.
17.
18.

19.

Khalimov A, Jacobs S, Bloem R (2013) PARTY parameterized synthesis of token rings. In: CAV, pp
928-933

Kupferman O, Vardi M (2003) Vacuity detection in temporal model checking. J Softw Tools Technol
Transf 4(2):224-233

Namjoshi KS (2004) An efficiently checkable, proof-based formulation of vacuity in model checking. In:
CAV, LNCS, Springer, vol 3114, pp 57-69

Pnueli A (1977) The temporal logic of programs. In: FOCS, pp 46-57

Pnueli A, Rosner R (1989) On the synthesis of a reactive module. In: POPL, Austin, pp 179-190
Samanta R, Deshmukh JV, Chaudhuri S (2013) Robustness analysis of networked systems. In: VMCALI,
pp 229-247

Vardi M, Wolper P (1994) Reasoning about infinite computations. Inf Comput 115(1):1-37

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Roderick Bloem' - Hana Chockler? - Masoud Ebrahimi' - Ofer Strichman3

B

Ofer Strichman
ofers@ie.technion.ac.il

Roderick Bloem
roderick.bloem @iaik.tugraz.at

Hana Chockler
hana.chockler@kcl.ac.uk

Masoud Ebrahimi
masoud.ebrahimi @iaik.tugraz.at

Graz University of Technology, Graz, Austria
King’s College London, London, UK

Information Systems Engineering, IE, Technion , Haifa, Israel

@ Springer

http://orcid.org/0000-0001-9169-3751

	Vacuity in synthesis
	Abstract
	1 Introduction
	Motivating example

	2 Preliminaries
	2.1 Labeled transition systems
	2.2 Temporal logic
	2.3 Nondeterministic Büchi automata
	2.4 Vacuity detection
	2.5 Bounded synthesis

	3 Non-vacuous bounded synthesis
	3.1 A specification for non-vacuous satisfaction
	3.2 Bounded synthesis for existential formulas

	4 Beyond vacuity
	4.1 Partial order on non-vacuous systems
	4.2 Infinite vacuity chains
	4.3 Synthesizing a less vacuous system
	4.4 A least-vacuous system for the running example

	5 Experimental evaluation
	5.1 A `next' arbiter
	5.2 A `full' arbiter
	5.3 A `Pnueli' arbiter

	6 Conclusion
	Acknowledgements
	A: An example of incomparable least-vacuous systems
	B: Performance comparison
	References

