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Abstract
Wedescribe theAmber tool for proving and refuting the termination of a class of probabilistic
while-programs with polynomial arithmetic, in a fully automated manner. Amber combines
martingale theory with properties of asymptotic bounding functions and implements relaxed
versions of existing probabilistic termination proof rules to prove/disprove (positive) almost
sure termination of probabilistic loops.Amber supports programs parametrized by symbolic
constants and drawing from common probability distributions. Our experimental compar-
isons give practical evidence of Amber outperforming existing state-of-the-art tools.

Keywords Probabilistic programs · Almost sure termination · Martingales · Asymptotic
bounds · Recurrence equations

1 Introduction

Probabilistic programming obviates the need to manually provide inference methods for dif-
ferent stochastic models and enables rapid prototyping [1, 2]. Automated formal verification
of probabilistic programs, however, is still in its infancy. With our current work, we provide
a step towards closing this gap when it comes to automating the termination analysis of
probabilistic programs, which is an active research topic [3–12]. Probabilistic programs are
almost-surely terminating (AST) if they terminate with probability 1 on all inputs. They are
positively AST (PAST) if their expected runtime is finite [13].

Addressing the challenge of (P)AST analysis, in this paper we describe Amber, a fully
automated software artifact to prove/disprove (P)AST. Amber supports the analysis of a
class of polynomial probabilistic programs. Probabilistic programs supported in our program-
ming model consist of single loops whose body is a sequence of random assignments with
acyclic variable dependencies. Moreover, Amber’s programming model supports programs
parametrized by symbolic constants and drawing from common probability distributions,
such as Uniform or Normal (Sect. 3). To automate termination analysis, Amber automates
relaxations of various existing martingale-based proof rules ensuring (non-)(P)AST [14] and
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combines symbolic computation with asymptotic bounding functions (Sects. 4–5). Amber
certifies (non-)(P)AST without relying on user-provided templates/bounds over termination
conditions. Our experiments demonstrate Amber outperforming the state-of-the-art in auto-
mated termination analysis of probabilistic programs (Sect. 7). Our tool Amber is available
at https://github.com/probing-lab/amber.

Related work.While probabilistic termination is an actively studied research challenge, tool
support for probabilistic termination is limited. We compare Amber with computer-aided
verification approaches proving probabilistic termination. The tools MGen [4] and LexRSM
[7] use linear programming techniques to certify PAST and AST, respectively. A modular
approach verifying AST was recently proposed in [11]. Automated techniques for refuting
(P)AST were proposed in [8] and techniques for synthesizing polynomial ranking super-
martingales using semi-definite programming in [6]. The work [12] introduced a sound and
relatively complete algorithm to prove lower bounds on termination probabilities. However,
the works of [6, 8, 11, 12] lack full tool support. The recent tools Absynth [15],KoAT2 [16]
and ecoimp [17] can establish upper bounds on expected costs, therefore also on expected
runtimes, and thus certify PAST.While powerful on respective AST/PAST domains, we note
that none of the aforementioned tools support both proving and disproving AST or PAST.
Our toolAmber is the first to prove and/or disprove (P)AST in a unifying manner. Our recent
work [18] introduced relaxations of existing proof rules for probabilistic (non-)termination
together with automation techniques based on asymptotic bounding functions. We utilize
these proof rule relaxations in Amber and extend the technique of asymptotic bounds to
programs drawing from various probability distributions and including symbolic constants.

Contributions.This paper describes the toolAmber, a fully automatic open-source software
artifact for certifying probabilistic (non-)termination.

• Weprovide techniques to extend themethod of asymptotic bounds for probabilistic termi-
nation to support symbolic constants and drawing from common probability distributions
which can be continuous, discrete, finitely- or infinitely supported (Sects. 3 and 5).

• We describe the various components and give an overview of the implementation prin-
ciples of Amber (Sect. 6).

• We extensively compare Amber to related tools and report on our experimental findings
(Sect. 7).

• We provide a benchmark suite of 50 probabilistic programs as a publicly available repos-
itory of probabilistic program examples (Sect. 7).

Extensions to [19]. This paper is an extended version of the Amber tool demonstration
paper [19]. Extending [19], we provide the theoretical prerequisites in Sect. 2. Sections4–5
complement [19] with new material introducing the supported termination proof rules and
illustrating Amber’s algorithmic approach towards termination analysis. Moreover, Sect. 5
describes extensions of the asymptotic bound algorithm [18] to programs drawing from
common probability distributions and containing symbolic constants. Section6 goes beyond
the details of [19] in describing the different components of Amber and their interplay.

2 Preliminaries

By N, Q and R we denote the set of natural, rational, and real numbers, respectively. We
write Q, the real algebraic closure of Q, to denote the field of real algebraic numbers. We
write Q[x1, . . . , xk] for the polynomial ring of all polynomials P(x1, . . . , xk) in k variables
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x1, . . . , xk with coefficients inQ (with k ∈ N and k �= 0).We assume the reader to be familiar
with Markov chains and probability theory in general. For more details we refer to [20, 21].

2.1 C-finite recurrences

We recall some relevant notions and results from algebraic recurrences. For more details we
refer to [22, 23]. A sequence in Q is a function f : N → Q. A recurrence of order r for a
sequence is an equation f (i+r) = R( f (i+r−1), . . . , f (i+1), f (i), i), for some function
R : Rr+1 → R. A special class of recurrences relevant to ourwork are linear recurrenceswith
constant coefficients, or C-finite recurrences in short. A C-finite recurrence for a sequence
f (i) is an equation of the form

f (i+r) = ar−1· f (i+r−1) + ar−2· f (i+r−2) + · · · + a0· f (i) (1)

where a0, . . . , ar−1 ∈ Q are constants and a0 �= 0. A sequence satisfying a C-finite
recurrence (1) is a C-finite sequence and is uniquely determined by its initial values
f (0), . . . , f (r−1) ∈ Q. The terms of a C-finite sequence can be written in closed-form
as exponential polynomials (i.e. as a linear combination of exponential sequences and poly-
nomials), depending only on i and the initial values of the sequence. That is, if f (i) is
C-finite, then f (i) = ∑k

n=0 Pn(i)·λin where all Pn(i) ∈ Q[i] and all λn ∈ Q; we refer
to

∑k
n=0 Pn(i)λ

i
n as an exponential polynomial. Moreover, every polynomial exponential

over i ∈ N is the solution of some C-finite recurrence. Importantly, closed-forms of C-finite
sequences always exist and are computable [23].

Special recurrences relevant for the internals of Amber are inhomogeneous linear recur-
rences with exponential polynomials as inhomogeneous parts:

f (i+1) = a· f (i) +
k∑

n=0

Pn(i)·λin, (2)

where a ∈ Q. Every sequence satisfying a recurrence of form (2) is C-finite, because the
inhomogeneous part in (2) is C-finite and all components of systems of C-finite sequences
are C-finite. Moreover, if a ≥ 0 and all λn ≥ 0, then the exponential polynomial closed-form
for f (i) only contains positive exponential terms. For such exponential polynomials the limit
l ∈ R ∪ {−∞,∞} as i → ∞ can always be computed [24].

3 AMBER: Programmingmodel

Amber analyzes the probabilistic termination behavior of a class of probabilistic programs
involving polynomial arithmetic and random drawings from common probability distribu-
tions, parameterized by symbolic constants. The grammar in Fig. 1 defines the input programs
to Amber. Inputs to Amber consist of an initialization part and a while-loop, whose guard
is a polynomial inequality over program variables. The initialization part is a sequence of
assignments either assigning (symbolic) constants or values drawn from probability distri-
butions. Within the loop body, program variables are updated with either (i) a value drawn
from a distribution or (ii) one of multiple polynomials over program variables with some
probability. Additional to the structure imposed by the grammar in Fig. 1, input programs
are required to satisfy the following structural constraint: Each variable updated in the loop
body only depends linearly and non-negatively on itself and in a polynomial way on variables
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Fig. 1 The input syntax of Amber, where C[V ] denotes the set of polynomials in V (program variables) with
coefficients from C (constants); ** is used as the power operator to express polynomials in 〈poly〉

preceding it in the loop body. On a high level, this structural constraint is what enables the
use of algebraic recurrence relations in probabilistic termination analysis. More concretely,
the restriction to linear self-dependencies is necessary to ensure that the resulting recur-
rence relations (cf. Sect. 5) are C-finite and guaranteed to have computable closed-forms.
Even seemingly simple first-order quadratic recurrences are problematic: the recurrence
f (n+1) = r · f (n)2 − r · f (n) does not have known analytical closed-form solutions for
most values of r ∈ R [25]. Furthermore, coefficients in linear self-dependencies are required
to be non-negative to prevent oscillating dynamics. For instance, the sequence defined by
the recurrence f (n+1) = −1 · f (n) oscillates between 1 and −1 for f (0) = 1. Amber
computes asymptotic bounds for monomials in program variables using recurrences. A cen-
tral requirement of the termination analysis technique implemented in Amber (cf. Sect. 5)
is that the asymptotic bounds are eventually monotone and non-negative or non-positive.
Restricting coefficients in linear self-dependencies to be non-negative ensures this necessary
property. Moreover, the algorithm computing asymptotic bounds for a program variable x
first recursively computes the asymptotic bounds for all (monomials in) program variables
on which x depends. Hence, to ensure termination, the dependencies among variables must
be acyclic. This is guaranteed by restricting variable dependencies to preceding variables.

Despite the syntactical restrictions, most existing benchmarks on automated probabilistic
termination analysis [18] and dynamic Bayesian networks [26] can be encoded in our pro-
gramming language. Figure2 shows three example input programs to Amber. For each of
these examples, Amber automatically infers the respective termination behavior, by relying
on its workflow described in Sect. 6. Our programming model extends Prob-solvable loops
[27] with polynomial inequalities as loop guards. For a loop with loop guard G of the form
P > Q we write G for the expression P−Q. In the sequel, we refer to programs of our
programming model simply by loops or programs.

4 Proof rules for probabilistic termination

We now describe the theoretical foundations of existing proof rules for establishing proba-
bilistic (non-)termination, which are used and further refined in Amber (Sect. 5).
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Fig. 2 Examples of programs supported by Amber, with symbolic constants c, x0, e ∈ R
+; program 2a is

PAST; program 2b is AST but not PAST; program 2c is not AST

Loop space. Operationally, every program loop represents a Markov chain (MC) with state
space Rm if the loop has m program variables. This MC in turn induces a canonical prob-
ability space. In this way, every loop L is associated with a (filtered) probability space
(�L, �L, (RunLi ),PL). We omit the superscripts if L is clear from context. The sample
space � is the set of all infinite program runs. More precisely, if L has m program variables,
then � = (Rm)ω. � is the σ -algebra constructed from all finite program run prefixes. The
purpose of the loop filtration (Runi ) is to capture the information gain as the loop is executed.
Every σ -algebra Runi of the filtration is constructed from all finite program run prefixes of
length i+1. In this way, Runi allows measuring events concerned with the first i loop itera-
tions. Finally, P is the probability measure defined according to the intended semantics of the
program statements. For a formal definition of P and more details regarding the semantics
of probabilistic loops we refer to [18]. For an expression E over the program variables, Ei

denotes the random variable mapping a program run to the value of E after the i-th iteration.
With the loop space at hand, the notions of AST and PAST (originally considered in [28])
can be defined in terms of a random variable capturing the termination time.

Definition 1 [(Positive) Almost-sure Termination] The termination time of a loop L with
guard G is the random variable T¬G :

T¬G : � → N ∪ {∞} with T¬G(ϑ) := inf{i ∈ N | ϑi � ¬G}
L is said to be almost-surely terminating (AST) if P(T¬G < ∞) = 1 and positively almost-
surely terminating (PAST) if E(T¬G) < ∞.

4.1 Termination proof rules

Despite the fact that the problems of AST and PAST are undecidable in general [29], several
proof rules—sufficient conditions—have been developed to certify PAST, AST and their
negations. On a high level, many proof rules require a witness in the form of an arithmetic
expression over program variables that satisfies some conditions based on martingale theory.
Amber utilizes three martingale-based proof rules from the literature, one for PAST [4, 5],
one for AST [9] and one rule able to certify non-AST and non-PAST [8]. In [18], the authors
relaxed these three proof rules such that their conditions only need to hold eventually rather
than always. A property P(i) holds eventually, if P(i) is true for all i ≥ i0 for some i0 ∈ N.
These relaxations enable using asymptotic reasoning when automating the respective proof
rules. Amber implements the relaxed versions of these proof rules by choosing the loop
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guard expression G (defined as P−Q for loop guard G = P > Q for polynomials P and
Q) as the potential witness and checking the proof rule conditions using asymptotic bounds
(cf. Sect. 5). To certify PAST, Amber uses the Ranking SM-Rule.

Theorem 1 [Ranking SM-Rule [4, 5, 18]] LetL be a probabilistic loop with guardG. Assume
the following condition holds eventually:

E(Gi+1 − Gi | Runi ) ≤ −ε, for some ε > 0

Then, L is PAST. In this case, G is called a ranking supermartingale.

Probabilistic programs with an infinite expected runtime can still terminate with proba-
bility one. The symmetric one-dimensional random walk (Fig. 2b) is a well-known example
that is AST but not PAST. For such programs, the SM-Rule provides a solution to certify
AST.

Theorem 2 [SM-Rule [9, 18]] Let L be a probabilistic loop with guard G, d > 0 and
p ∈ (0, 1]. Assume the following conditions hold eventually:

1. E(Gi+1 − Gi | Runi ) ≤ 0
2. P(Gi+1 − Gi ≤ −d | Runi ) ≥ p

Then, L is AST. If G satisfies condition 1, it is called a supermartingale.

For non-terminating programs, the Repulsing SM-Rule can certify their divergence. It is
capable of certifying non-AST as well as non-PAST.

Theorem 3 [Repulsing SM-Rule [8, 18]] LetL be a probabilistic loop with guard G. Assume
∀i : P(Gi ) > 0 and that the following conditions hold eventually:

1. E(Gi − Gi+1 | Runi ) ≤ −ε, for some ε > 0
2. |Gi − Gi+1| < c, for some c > 0.

Then, L is not AST. If all conditions are true with the domain of ε in condition 1 relaxed to
include 0 (i.e. ε ≥ 0), then L is not PAST.

The Ranking SM-Rule as well as the SM-Rule require G, and the Repulsing SM-Rule −G,
to be a supermartingale. An expression E cannot be a supermartingale if E(Ei+1−Ei ) >

0 [18]. The tool Mora [27, 30] can compute an exponential polynomial closed-form of
E(Ei+1−Ei ) for Amber’s input programs. In Amber, we utilize the functionality of Mora
to compute a closed-form ofE(Gi+1−Gi ).Amber uses this closed-form in trying to rule-out
the applicability of some of the proof rules.

5 Effective termination analysis through asymptotic bounds

The conditions in the proof rules from Sect. 4.1 contain three types of inequalities:

• Type 1: Inequalities over conditional expected values, as
E(Gi+1−Gi | Runi ) ≤ −ε (≤ 0) in the Ranking SM-Rule (SM-Rule) for proving PAST
(AST).

• Type 2: Inequalities over conditional probabilities, as
P(Gi+1−Gi ≤ −d | Runi ) ≥ p in the SM-Rule for establishing AST.

• Type 3: Inequalities over absolute values, as |Gi−Gi+1| < c in the Repulsing SM-Rule
for disproving AST.
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In the sequel we detail how these three type of inequalities are handled in Amber for
proving/disproving (P)AST.

Type 1. For Amber’s programming model, the expression E(Gi+1−Gi | Runi ) is a poly-
nomial in the program variables. For the program in Fig. 2a we have G = c−x2−y2. The
expression E(Gi+1−Gi | Runi ) = E(Gi+1 | Runi )−Gi can be computed by starting with
G, substituting left-hand sides of assignments by right-hand sides in a bottom-up fashion,
averaging over probabilistic statements and finally subtracting G. For Fig. 2a, this leads to
the polynomial E(Gi+1−Gi | Runi ) = −x2i −11xi−115/6. Thus, the expected change of the
loop guard from an arbitrary iteration i to iteration i+1 is −x2i −11xi−115/6, where xi is the
value of program variable x after iteration i . For an input program and a polynomial poly,
E(polyi+1 | Runi ) itself is always a polynomial. That is because all expressions in proba-
bilistic branching statements are polynomials, all branching probabilities are constants and all
distributions input programs can draw from have constant parameters and thus also constant
moments. Crucially, all inequalities in the termination proof rules only need to hold even-
tually. Therefore, knowing the asymptotic behavior of the polynomial E(Gi+1−Gi | Runi )
can be helpful in answering the respective inequalities: for instance, an asymptotic upper
bound to E(Gi+1−Gi | Runi ) that tends to a negative number witnesses that eventually
E(Gi+1−Gi | Runi ) ≤ −ε for some ε > 0.

Type 2. After fixing the values drawn from distributions in the loop body at iteration i , every
expression, and in particular G, can only progress to finitely many expressions in iteration
i+1. We refer to these possible follow-up expressions, as branches. For the program in
Fig. 2b, the expression G (= x) is either x+c or x−c after one iteration. If for at least one
of these branches B of G, we have that eventually Bi−Gi ≤ −d for some d > 0 for any
choice of values drawn from distributions, then it holds that P(Gi+1−Gi ≤ −d | Runi ) ≥ p
for some p > 0. This holds, due to the fact that all probabilities in probabilistic branching
statements are constant and non-zero. Similar to the inequalities of type 1, asymptotic bounds
provide a method to answer inequalities of type 2: if for some branch B of G and any choice
of values drawn from probability distributions, the polynomial Bi−Gi obeys an asymptotic
upper bound tending to a negative number, then it holds that eventually P(Gi+1−Gi ≤ −d |
Runi ) ≥ p for some d > 0 and p ∈ (0, 1].
Type 3. In contrast to the inequalities of type 2 that have to hold with at least some non-zero
probability, inequalities of type 3 have to hold almost-surely, that means with probability
one. Nevertheless, type 3 inequalities can be approached similarly as type 2 inequalities: if
for every (in contrast to some as for type 2 inequalities) branch B of G and any choice of
values drawn from probability distributions, eventually |Gi−Bi | < c for some c > 0, then
eventually and almost-surely |Gi−Gi+1| < c. In contrast to type 1 and 2 inequalities, tackling
type 3 inequalities with asymptotic bounds requires one extra step. Due to the presence of the
absolute value function, asymptotic upper bounds for the polynomials Gi−Bi do not suffice.
Additional to upper bounds, asymptotic lower bounds are needed. Given an asymptotic upper
bound u(i) and an asymptotic lower bound l(i) for the polynomial Gi−Bi , max(−l(i), u(i))
is an asymptotic upper bound for |Gi−Bi |.

5.1 Computing asymptotic bounds

We argued that all main conditions of the termination proof rules from Sect. 4.1 reduce to the
task of finding asymptotic lower- and upper bounds for polynomials in program variables.
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For this purpose, Amber utilizes a recently introduced bound algorithm [18]. The algorithm
builds on the notion of dominant functions.

Definition 2 [Domination] Let f and g be two functions from N to R. We say f dominates
g if eventually c· f (i) ≥ g(i) for some c ∈ R

+. Let F be a finite set of functions from N to
R. A function f ∈ F is most dominant with respect to F , if f dominates all functions in F .
Similarly, f is least dominant with respect to F , if every g ∈ F dominates f .

The bound algorithm described in this section produces bounds in the form of exponential
polynomials with positive exponential terms as mentioned in Sect. 2. For every such function
f , we can always construct a monotonic and non-positive or non-negative function g with
the same asymptotic behavior, meaning that g dominates f and f dominates g. The function
g can be established by simplifying f to its fastest increasing or decreasing term, its leading
term. For instance, if f (i) = i2i − 2i − i2, then g(i) = i2i is monotonic, non-negative, and
has the same asymptotic behavior as f . In the remainder, we assume that every asymptotic
lower- and upper bound is simplified to its leading term. Moreover, for two exponential
polynomials with positive exponential terms, we can always decide which dominates the
other by comparing their leading terms.We illustrate the algorithm for computing asymptotic
bounds in the following example. For the algorithm’s pseudo-code and further details, we
refer to [18].

Example 1 Consider the following program:
1 x = x0
2 y = y0
3 while y > 0:
4 x = 2x+1 @1/2; x-1
5 y = y + x**2 - x

Assume, we want to compute an asymptotic lower bound and asymptotic upper bound for
the program variable y. This means that we are trying to find functions l(i) and u(i) such
that eventually and almost-surely c1·l(i) ≤ yi ≤ c2·u(i) for some positive constants c1 and
c2. For every iteration i , yi+1 is either equal to yi+4x2i +2xi or equal to yi+x2i −3xi+2, both
with probability 1/2. These polynomials are the branches of y. The algorithm in [18] first
recursively computes asymptotic lower- and upper bounds for the monomials x and x2 in
order to construct bounds for y.

Asymptotic bounds for x :The branches of x are 2xi+1 and xi−1with inhomogeneous parts
1 and −1 respectively. The bound algorithm first computes bounds for the inhomogeneous
parts. Because the inhomogeneous parts are both constants, both their lower- and upper
bounds are just given by the inhomogeneous parts themselves. This is the base case of the
algorithm. The base case will always be reached, because of the constraint of Amber’s
programming model that the dependencies among program variables in the loop body are
acyclic (cf. Sect. 3). The recurrence coefficients of x are 2 and 1 respectively. These are the
constant coefficients of xi in the branches of x . The results of [18] establish that an upper
bound for x is given by the solution of one of the following four recurrence relations:

f (i + 1) = a· f (i) + 1, for f (0) ∈ {d,−d}, a ∈ {2, 1} (3)

The recurrences (3) are inhomogeneous first-order recurrences. Their recurrence coef-
ficients are given by the minimum and maximum recurrence coefficients of x . The
inhomogeneous term in (3) is the most dominant upper bound of the inhomogeneous parts
of x . The initial values of the recurrences (3) are d or −d for a positive symbolic constant
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d . With a simple static analysis, Amber establishes that the program variable x can become
positive as well as negative. Because x can be positive, d is among the initial values, and
because x can be negative−d is also required as an initial value. The solutions (closed-forms)
to the four recurrences of f (i) are respectively given by

• (d+1)2i−1;
• (1−d)2i−1;
• i+d;
• i−d .

According to [18], one of these four solutions is an upper bound to x . The closed form
(d+1)2i−1 of f (i) dominates all other solutions. As we are only interested in asymptotic
bounds modulo a constant factor, an asymptotic upper bound for x is therefore given by the
leading term of (d+1)2i−1; that is, x is asymptotically upper bounded by 2i .

An asymptotic lower bound for x is computed analogously as the least dominant solution
to one of the recurrences

f (i + 1) = a· f (i) − 1, for f (0) ∈ {d,−d}, a ∈ {2, 1}. (4)

In contrast to the upper bound computation, the inhomogeneous term in (4) is given by
the least dominant lower bound of the inhomogeneous parts of x , i.e. −1. The leading term
in the least dominant solution of the recurrences (4) is −2i and provides an asymptotic lower
bound for x . Consequently, we established that eventually and almost surely

c1·(−2i ) ≤ xi ≤ c2·2i for some c1, c2 ∈ R
+.

An absolute bounding function of x is an asymptotic bound for |xi | and is given by the most
dominant function of u(i) = 2i and−l(i) = −(−2i ). Note, that all recurrences in (3)–(4) are
first-order inhomogeneous linear recurrences with non-negative coefficients and exponential
polynomials as inhomogeneous parts such that all exponential terms are positive. As argued
in Sect. 2, recurrences of this type can always be solved automatically and lead to solutions
for which their limits can be computed.

Asymptotic bounds for x2: The branches of themonomial x2 are 4x2+4x+1 and x2−2x+1.
Therefore the recurrence coefficients are given by 4 and 1. The inhomogeneous parts are
4x+1 and −2x+1. Utilizing the already computed bounds for x , we get that 4x+1 as well
as −2x + 1 are asymptotically upper bounded by 2i and lower bounded by −2i . Hence, the
most dominant upper bound of the inhomogeneous parts is 2i and the least dominant lower
bound is−2i . Following the bound algorithm of [18], we get that an asymptotic upper bound
is given by the most dominant solution of the following recurrences:

f (i + 1) = a· f (i) + 2i , for f (0) ∈ {d}, a ∈ {4, 1}
Computing the solutions of these recurrences and taking the leading termof themost dominant
solution leads to the asymptotic upper bound 4i for x2. Note that the possible initial values
are restricted to the positive constant d , as x2 can never be negative. An asymptotic lower of
−2i can be computed analogously. However, due to the non-negativity of x2, the constant 0
is a tighter lower bound which is taken into account by the bound algorithm.

Asymptotic bounds for y: Finally,we can compute asymptotic bounds for y using the bounds
for x and x2. The branches of y are y+4x2+2x and y+x2−3x+2 with inhomogeneous parts
4x2+2x and x2−3x+2, respectively. Moreover, y has a single recurrence coefficient of 1.
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An asymptotic upper bound for the inhomogeneous part x2−3x+2 can be established by
substituting the bounds for the individual monomials. For x2 we substitute its upper bound
and for x its lower bound, due to the negative coefficient of x in the respective branch. For
x2−3x+2 this leads to an asymptotic upper bound of 4i and an asymptotic lower bound of
−2i . Likewise, for the inhomogeneous part 4x2+2x , we get an asymptotic upper bound of
4i and an asymptotic lower bound of −2i . Therefore, the most dominant upper bound of
the inhomogeneous parts is 4i , and the least dominant lower bound is −2i . Similar to the
bounds computations for x and x2, an asymptotic upper bound is given by the most dominant
solution of

f (i + 1) = a· f (i) + 4i , for f (0) ∈ {d,−d}, a ∈ {1}.

The leading term of the most dominant solution is 4i and represents an asymptotic upper
bound for y. An asymptotic lower bound for y of −2i can be computed analogously.

The bound algorithm introduced in [18] only supports programs of Amber’s programming
model, where every assignment in the loop body is a probabilistic branching statement over
polynomials. In the remainder of this section, we describe how the techniques of [18] can be
extended to support symbolic constants and drawing from common probability distributions
with constant parameters.

5.2 Supporting symbolic constants

A symbolic constant represents an arbitrary number from an infinite set of real numbers.
For example, the program in Fig. 2b encodes a symmetric one-dimensional random walk
with symbolic step size c. For our purposes, defining a symbolic constant c to semantically
represent any arbitrary real number c ∈ R is problematic, as illustrated in the following
example.

Example 2 Consider the following program with symbolic constant c:
1 x = 1
2 while x > 0:
3 x = x+c @1/2; x

Following the bound algorithm of [18] for x would result in the lower bound of x being the
least dominant of c·i and 1. Now, if c semantically represents an arbitrary real number, we
cannot conclusively decide whether c · i or 1 is more dominant: if c > 0, then c·i dominates
1 and if c ≤ 0, then 1 dominates c·i .

To remedy the problem illustrated in the previous example, Amber adopts the semantic
that symbolic constants represent an arbitrary positive real number. Negative constants can
be modeled with the explicit use of “−”. Still, the bound algorithm is incomplete for input
programs with positive symbolic constants. A counter-example can be constructed from
Example 2 by replacing c with c−d where both c and d are symbolic constants. Now, the
lower bound for the variable x is the least dominant of (c−d)·i and 1 which cannot be
answered without a case distinction involving the symbolic constants c and d . Nevertheless,
experiments show that adopting the semantic of positive symbolic constants is useful and
provides a solution to many challenging benchmarks (cf. Sect. 7).
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5.3 Supporting common probability distributions

Amber supports programs drawing from various common probability distributions with
constant parameters (cf. Fig. 1). The first key property of every supported distribution D is
that E(D p) exists and is computable for every p ∈ N. This ensures that for any polynomial
poly in program variables, E(polyi+1 | Runi ) remains a polynomial.

The second key property is that D’s support is an interval. More precisely, if D is con-
tinuous, then supp(D) = (a, b) (or [a, b]) for a, b ∈ R ∪ {−∞,∞} and if D is discrete,
then supp(D) = {a, a+1, . . . , b−1, b} for a, b ∈ R ∪ {−∞,∞}. Because the support of D
is an interval, tight bounds for the support of D p for p ∈ N can be computed using interval
arithmetic.

Amber extends the main bound algorithm to support programs drawing from such distri-
butions. Let x be a program variable drawing from a probability distribution, M a monomial
of program variables not containing x , and p ∈ N. Then Amber computes the asymptotic
bounds for the monomial x p·M in the following way: First, an upper bound u(i) and lower
bound l(i) for M are computed recursively. Second, the boundaries a and b (with a ≤ b)
of the support of x p are computed using interval arithmetic. Finally, an upper bound (lower
bound) of x p ·M is given by the most dominant function (least dominant function) of a·u(i),
b·u(i), a·l(i) and b·l(i). Due to Amber supporting unbounded distributions, a, b, l(i) and
u(i) can be ±∞. The handle calculations involving infinities, we use the usual arithmetic
rules for ±∞: x+∞=∞; x−∞=−∞; if x > 0 then x ·∞=∞; if x < 0 then x ·∞=−∞.
Note that, because the asymptotic bounds b(i) are always monotonic and non-positive or
non-negative, Amber can always decide whether ∞ · b(i) is ∞ or −∞ (if b(i) itself is
not ±∞ or 0). In case of indeterminate forms (∞−∞ and 0·∞), Amber aborts the bound
computation and resorts to the loosest possible bounds of −∞ and ∞.

Example 3 Let x be a program variable drawing from a continuous uniform distribution
between −1 and 2 and M a monomial of program variables not containing x . Assume M
obeys an asymptotic lower bound l(i) = i and an asymptotic upper bound u(i) = i2.
Asymptotic bounds for x3·M are computed as follows. We have supp(x3) = (−1, 8). Let
F = {−1·i2, 8·i2,−1·i, 8·i}. The most dominant function in F is 8·i2 and because positive
constant factors of asymptotic bounds can be absorbed, i2 is an asymptotic upper bound for
x3·M .

Although Amber requires the parameters of distributions to be constant, some state-
dependent parameters can be modeled through distribution transformations. For instance,
Normal(poly, c) is equivalent to poly +Normal(0, c). Likewise, Uniform(poly1, poly2) is
equivalent to poly1+(poly2−poly1)·Uniform(0, 1) for the continuous uniform distribution.
Similar transformations exist for other distributions.

With the generalized bound algorithm, Amber can compute asymptotic upper- and lower
bounds for polynomials of program variables, even if the programs draw from probability
distributions. However, this generalization alone is not sufficient, in particular for the SM-
Rule.

Example 4 The following program models a symmetric 1-dimensional random walk:

1 x = 1
2 while x > 0:
3 s = RV(uniform, -1, 1)
4 x = x+s
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The program can be proven to be AST using the SM-Rule. We have G = x . Amber com-
putes E(xi+1−xi | Runi ) = 0 and hence establishes condition 1 of the SM-Rule. However,
condition 2 poses a problem.Amber extracts the only branch of x , that is x+s, and computes
the asymptotic bounds for x+s−x = s, resulting in the lower bound−1 and the upper bound
1. Because the upper bound is always positive, without further information Amber cannot
conclude that x decreases by some constant with constant probability. For this example, the
problem can be mitigated by constructing an equivalent program in which the variable s is
split into three different parts:

1 x = 1
2 while x > 0:
3 s1 = RV(uniform, -1, -1/2)
4 s2 = RV(uniform, -1/2, 1/2)
5 s3 = RV(uniform, 1/2, 1)
6 x = x+s1 @1/4; x+s2 @1/2; x+s3 @1/4;

Now, for the branch x+s1, Amber established the bounds for x+s1 − x = s1 to be −1
and −1/2. As the asymptotic upper bound is negative, Amber concludes that eventually x
decreases by at least some constant with at least some constant probability. Thus, condition
2 of the SM-Rule is verified and Amber certifies the program to be AST.

In Example 4, the program variable s is drawn from a uniform distribution whose support
contains positive and negative values.Without further information,Amber can only establish
that s is lower bounded by−1 and upper bounded by 1 but is oblivious to the fact that there is a
constant probability such that s is negative. In Example 4, this fact is made explicit toAmber
through constructing an equivalent program by splitting the uniform distribution into three
different parts such that two parts are bounded away from 0. In general, this exact approach
is not feasible when drawing from more complex distributions. However, note that neither
the exact probability of 1/4 of branch x+s1, nor the exact distribution of s1 are necessary
to answer condition 2 of the SM-Rule. It suffices that the branch is associated with some
constant positive probability and that the support of s1 is strictly negative and bounded away
from 0. In this sense, the only relevant information about the distribution of s is its support.

Following this observation,Amber implements an over-approximation when considering
the branches of expressions, abstracting from concrete distributions: let B be a branch con-
taining a variable s drawn from a probability distribution D with support boundaries a < 0
and b > 0. With Tr(D;α, β) we denote the truncated distribution of D with lower bound
α and upper bound β. Assume D is a continuous distribution. For discrete distributions, the
following process is analogous. Let ε > 0 with |a| > ε and b > ε and define

p1 :=
∫ −ε

a
dD p2 :=

∫ ε

−ε

dD p3 :=
∫ b

ε

dD.

We have p1, p2, p3 > 0 and can split D into three different parts such that one part has
strictly negative, one part strictly positive support, and both supports are bounded away from
0. With C ∼ Categorical(3, p1, p2, p3) we have

s ∼ [C = 1] · Tr(D, a,−ε)+
[C = 2] · Tr(D,−ε, ε)+
[C = 3] · Tr(D, ε, b).
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[P] denotes the Iverson bracket which equals 1 if P is true and 0 otherwise. Now, the goal
of Amber is to split the branch B containing s into three branches, where s is replaced by
s1 ∼ Tr(D, a,−ε), s2 ∼ Tr(D,−ε, ε) and s3 ∼ Tr(D, ε, b) respectively. However, the
distributions of s1, s2, and s3 are potentially more complex than the original distribution D,
and the constants p1, p2, and p3 each require solving an integral. Amber overcomes these
issues with over-approximation. As previously argued, the precise values of p1, p2, and p3
are not needed and only required to be positive, which is guaranteed. Moreover, the only
relevant information about the distributions of s1, s2, and s3 are their supports. Therefore,
Amber over-approximates Tr(D, α, β) by Symb(α, β), where Symb(α, β) represents any
distribution D′ with supp(D′) = [α, β]. With v ∼ Symb(α, β) we denote that v ∼ D′ for
someD′ ∈ Symb(α, β). Consequently, for condition 2 of the SM-Rule and for condition 2 of
the Repulsing SM-Rule, Amber splits every branch B containing a variable s drawn from a
probability distributionsDwithmixed-sign support into three newbranches B[s/s1], B[s/s2],
and B[s/s3]. The substituted variables are such that s1 ∼ Symb(a,−ε), s2 ∼ Symb(−ε, ε),
and s3 ∼ Symb(ε, b) where a and b are the boundaries of the support of D and ε is a
fresh positive symbolic constant. This process is repeated until all such variables s have been
eliminated and the only distributions with mixed-sign supports left are over-approximations.

Example 5 Consider the following program:
1 x = 1
2 while x > 0:
3 s = RV(normal, 0, 1)
4 x = x+s

For G = x , Amber computes the expression E(xi+1−xi | Runi ) = 0. Therefore, condi-
tion 1 of the SM-Rule is satisfied. Regarding condition 2,Amber starts with the only branch of
x which is x+s. The branch x+s contains the variable s whose distribution has themixed-sign
support (−∞,∞). Hence,Amber splits the branch x+s into the three branches (1) x+s1, (2)
x+s2, and (3) x+s3, where s1 ∼ Symb(−∞,−ε), s2 ∼ Symb(−ε, ε), s3 ∼ Symb(ε,∞)

and ε is a fresh positive symbolic constant. For the new branch (1) x+s1, an upper bound for
x+s1 − x = s1 is given by −ε. Therefore, x decreases by at least ε with some constant pos-
itive probability, confirming that also condition 2 of the SM-Rule is satisfied. Consequently,
Amber certifies AST for this example.

6 AMBER: Implementation and components

Implementation. Amber is implemented in python3 and relies on the lark-parser1

package to parse its input programs. Further, Amber uses the diofant2 package as its
computer-algebra system to (i) construct and manipulate mathematical expressions symboli-
cally; (ii) solve algebraic recurrence relations, and (iii) compute function limits. To compute
closed-form expressions for statistical moments of monomials over program variables only
depending on the loop counter, Amber uses the tool Mora [27]. However, for efficient inte-
gration withinAmber, we reimplemented and adapted the Mora functionalities exploited by
Amber (Mora v2), in particular by deploying dynamic programming to avoid redundant
computations. Altogether, Amber consists of ∼ 2000 lines of code. In what follows we
discuss the main components of Amber, as illustrated in Fig. 3.

1 https://github.com/lark-parser/lark.
2 https://github.com/diofant/diofant.
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Fig. 3 Main components of Amber and interactions between them

6.1 Decision inAMBER

After parsing the input program, the decision module of Amber is executed to initialize
and call the probabilistic termination proof rules to be used on the input program. In order
to initialize the proof rules, Amber’s decision module first constructs three expressions:
(1) E(Gi+1−Gi | Runi ) (martingale expression); (2) E(Gi−Gi+1 | Runi ) (negated mar-
tingale expression); and (3) E(Gi+1−Gi ) (expected loop guard change). For Fig. 2a with
loop guard x2+y2 < c, we get the following expressions: (1) E(Gi+1−Gi | Runi ) =
−x2i −11xi−115/6; (2) E(Gi−Gi+1 | Runi ) = x2i +11xi+115/6; and (3) E(Gi+1−Gi ) =
−(81/16)i2−(1225/48)i−121/6. Amber utilizes the relaxed proof rules from Sect. 4 and auto-
mates them using asymptotic bounds (cf. Sect. 5). As such, the decision module of Amber
initializes relaxed proof rules with the expressions above, applies the respective proof rules
to the input program, and reports the analysis result containing potential witnesses for (non-
)PAST or (non-)AST.

6.2 Probabilistic termination proof rules inAMBER

Initial state rule. The Initial State Rule checks whether or not the initial state, given by
the assignments preceding the loop, already falsifies the loop guard. More precisely, the rule
returns a witness for PAST if the initial state falsifies the loop guard with probability one. The
rule considers all possible combinations of lower and upper bounds of the initial assignments
to the variables given by the support of the respective distributions.

Example 6 In Fig. 2a, the symbolic constant c in the loop guard represents an arbitrary positive
constant. Therefore, for Fig. 2a the probability of the initial state falsifying the loop guard is
not 1 and the Initial State Rule does not return a witness for PAST.

Ranking SM-rule. The Ranking SM-Rule checks whether the polynomial G is eventually a
ranking supermartingale (i.e. E(Gi+1−Gi | Runi ) ≤ −ε) to conclude the input program to
be PAST. IfE(Gi+1−Gi ) > 0,G cannot be a (ranking) supermartingale. The rule determines
its own applicability using diofant and the expected loop guard change E(Gi+1−Gi ) to
checkE(Gi+1−Gi ) > 0. If the rule is applicable, theBound Storemodule of Amber is called
to compute an asymptotic upper bound u(i) for the martingale expression E(Gi+1−Gi |
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Runi ) (see Sect. 6.3). If limi→∞ u(i) < 0, thenG is eventually a ranking supermartingale and
the input program is PAST. TheRanking SM-Rule usesdiofant to verify limi→∞ u(i) < 0.
If the condition holds, the Ranking SM-Rule constructs and returns a witness for PAST.

Example 7 For Fig. 2a, we haveE(Gi+1−Gi ) = −(81/16)i2−(1225/48)i−121/6 �> 0. Thus the
Ranking SM-Rule is applicable. For themartingale expressionE(Gi+1−Gi | Runi ) = −x2i −
11xi − 115/6, the Bound Store module computes an upper bounding function u(i) = −i2.
Because limi→∞ u(i) = −∞ < 0, the Ranking SM-Rule returns the martingale expression
together with u(i) as a witness for Fig. 2a being PAST.

SM-rule. If the Ranking SM-Rule fails, the SM-Rule attempts to certify AST. The rule checks
whether G is eventually a supermartingale (i.e. E(Gi+1−Gi | Runi ) ≤ 0) and whether G
eventually decreases at least by some fixed constant with positive probability. The applica-
bility criterion for the proof rule is the same as for the Ranking SM-Rule (E(Gi+1−Gi ) �> 0),
implemented in the same way. Moreover, Amber concludes G to be a supermartingale sim-
ilarly to concluding it to be a ranking supermartingale. The only difference is that for the
martingale expression’s upper bound u(i), its limit is allowed to be 0 (instead of negative).
Amber automates the decrease condition by looping through all branches of G, splitting
them as described in Sect. 5.3, and checking whether for one of the resulting branches B, the
polynomial B − G has an upper bounding function with a negative limit. This entails that
eventually G decreases in any iteration with positive probability.

Example 8 For Fig. 2b,we haveG = x . Themartingale expression isE(Gi+1−Gi | Runi ) =
0, which has limit 0 implying that G is a supermartingale.Amber retrieves the two branches
of G, namely x+c and x−c, where c is a positive symbolic constant. For the second branch
Amber computes x−c−x = −cwhich it determines to have the negative limit−c. Therefore,
Amber concludes that G (eventually) decreases by (at least) −c with positive probability
and returns the martingale expression, the eventually decreasing branch and its asymptotic
bound as a witness for AST.

Repulsing SM-rule. The Repulsing SM-Rule can potentially certify non-AST and non-
PAST. It is applied in Amber whenever either the status of AST or PAST of the input
program is not yet known after applying the Ranking SM-Rule and the SM-Rule. Moreover,
E(Gi+1−Gi ) �< 0 has to hold in order for the rule to be applicable because −G needs to be
a (ranking) supermartingale to certify non-PAST (non-AST). The applicability criterion as
well as checking −G to be a (ranking) supermartingale is realized with the same techniques
as for the aforementioned proof rules. Additionally, Amber has to verify two more proper-
ties: (i) Eventually |Gi−Gi+1| < c for some c ∈ R

+; and (ii) in every iteration, there is a
positive probability of G not decreasing. The first property (i) is realized with retrieving an
absolute bounding function a(i) from the Bound Storemodule and checking whether a(i) is
dominated by 1.Amber verifies the property (ii) by looping through all branches of G, split-
ting them as described in Sect. 5.3, and checking whether for one of the resulting branches B,
the expression G−B is always non-negative, with a simple static analysis. This entails that
there is always a positive probability that G does not decrease. Amber returns a witness for
non-PAST (non-AST) if all properties are satisfied and −G is a (ranking) supermartingale.

Example 9 For Fig. 2c with −G = −x we have the negative martingale expression
E(Gi−Gi+1 | Runi ) = −2c·e, where c and e are positive symbolic constants. Therefore,
−G is a ranking supermartingale. The two branches of −x are (1) −x−c and (2) −x+c.
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For both branches B we have |B−(−x)| = c and a corresponding absolute bounding func-
tion a(i) = c. Hence, property (i) is satisfied. Property (ii) holds, because there is always a
possibility of G not decreasing through branch (2). Thus, for Fig. 2c as input, the Repulsing
SM-Rule returns a witness for non-AST.

6.3 Fundamentals inAMBER

Bound store.Amber’sBound Store component derives lower, upper and absolute bounds for
polynomials over program variables. These bounds are used by Amber’s termination proof
rules (cf. Sect. 6.2). Asymptotic bounding functions only depend on the loop counter i and
asymptotically bound thevalueof a programvariable polynomials (modulo apositive constant
factor). Asymptotic bounding functions for polynomials arise from combining bounding
functions of its monomials. For monomials, asymptotic bounding functions are computed
using the bound algorithm introduced in Sect. 5.

Other fundamentals. The Branch Store module provides the functionality for extracting
the branches of a given expression for the input program. The Asymptotics component of
Amber reasons about asymptotic properties of functions and simplifies expressions while
preserving their asymptotic behavior. Multiple termination proof rules require the capability
of checking whether some property over program variables is eventually invariant. This
common requirement is implemented in Amber’s Invariance module.

7 Evaluation

Experimental setup. Amber and our benchmarks are publicly available at https://github.
com/probing-lab/amber. The output of Amber includes the martingale expression and an
answer (“Yes”, “No” or “Maybe”) to PAST and AST for the input program. If the answer
to (P)AST is definite (“Yes” or “No”), the output additionally contains a witness of the
answer. We took all 39 benchmarks from [18] and extended them by 11 new programs to test
Amber’s capability to handle symbolic constants and drawing from probability distributions.
The 11 new benchmarks are constructed from the 39 original programs, by adding noise
drawn fromcommonprobability distributions and replacing concrete constantswith symbolic
ones. As such, we conduct experiments using a total of 50 challenging benchmarks. Further,
we compare Amber not only against Absynth and MGen, but also evaluate Amber in
comparison to the recent tools LexRSM [7], KoAT2 [16] and ecoimp [17]. Note that MGen
can only certify PAST and LexRSM only AST. Moreover, the tools Absynth, KoAT2 and
ecoimpmainly aim to find upper bounds on expected costs. Tables 1, 2 and 3 summarize our
experimental results, with benchmarks separated into PAST (Table 1), AST (Table 2), and not
AST (Table 3). Benchmarks marked with * are part of our 11 new examples. In every table,
✓ (✗) marks a tool (not) being able to certify the respective termination property. Moreover,
N symbolizes that a benchmark is out-of-scope for a tool, for instance, due to not supporting
some distributions or polynomial arithmetic. All benchmarks have been run on a machine
with a 2.6 GHz Intel i7 (Gen 10) processor and 32 GB of RAM and finished within a timeout
of 50 s, where most experiments terminated within a few seconds.

Experimental analysis. Amber successfully certifies 23 out of the 27 PAST benchmarks
(Table 1). Although Absynth, KoAT2 and ecosimp can find expected cost upper bounds
for large programs [15–17], they struggle on small programs whose termination is not known
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Table 1 27 programs which are PAST

Program Amber Absynth MGen LexRSM KoAT2 ecoimp

2d_bounded_random_walk ✓ ✗ N N ✗ ✗

biased_random_walk_const ✓ ✓ ✓ ✓ ✓ ✓

biased_random_walk_exp ✓ ✗ ✓ ✗ ✗ ✗

biased_random_walk_poly ✓ ✗ ✗ N ✗ ✗

binomial_past ✓ ✓ ✓ ✓ ✓ ✓

complex_past ✓ ✗ N N ✗ ✗

consecutive_bernoulli_trails ✓ ✓ ✓ ✓ ✓ ✓

coupon_collector_4 ✓ ✗ ✓ ✓ ✓ ✓

coupon_collector_5 ✓ ✗ ✓ ✓ ✓ ✓

dueling_cowboys ✓ ✓ ✓ ✓ ✓ ✓

exponential_past_1 ✓ N N N ✗ N

exponential_past_2 ✓ N N N ✗ N

geometric ✓ ✓ ✓ ✓ ✓ ✓

geometric_exp ✗ ✗ ✗ ✗ ✗ ✗

linear_past_1 ✓ ✗ ✗ ✗ ✗ ✗

linear_past_2 ✓ ✗ N ✗ ✗ ✗

nested_loops N ✓ ✗ ✓ ✓ ✓

polynomial_past_1 ✓ ✗ N N ✗ ✗

polynomial_past_2 ✓ ✗ N N ✗ ✗

sequential_loops N ✓ ✗ ✓ ✓ ✓

tortoise_hare_race ✓ ✓ ✓ ✓ ✓ ✓

dependent_dist* N N N N ✗ ✓

exp_rw_gauss_noise* ✓ N N N N N

gemoetric_gaussian* ✓ N N N N N

race_uniform_noise* ✓ ✗ ✓ ✓ ✗ ✓

symb_2d_rw* ✓ ✗ N N ✗ ✗

uniform_rw_walk* ✓ ✓ ✓ ✓ ✓ ✓

Total ✓ 23 9 11 12 11 13

a priori. For instance, they struggle when a benchmark probabilistically “chooses” between
two polynomials working against each other (one moving the program state away from a ter-
mination criterion and one towards it). Our experiments show thatAmber handles such cases
successfully. MGen supports the continuous uniform distribution and KoAT2 the geometric
distribution whose support is infinite. With these two exceptions, Amber is the only tool
supporting continuous distributions and distributions with infinite support. To the best of our
knowledge, Amber is the first tool certifying PAST supporting both discrete and continuous
distributions aswell as distributionswith finite and infinite support.Amber successfully certi-
fies 12 benchmarks to beASTwhich are potentially not PAST (Table 2).Whereas theLexRSM
tool can certify non-PAST programs to be AST, such programs need to contain subprograms
that are PAST [7]. The well-known example of symmetric_1D_random_walk, con-
tained in our benchmarks, does not have a PAST subprogram. Therefore, the LexRSM tool
cannot establish AST for it. In contrast, Amber using the SM-Rule can handle such pro-
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Table 2 14 programs which are
AST and not necessarily PAST

Program Amber LexRSM

fair_in_limit_random_walk N N

gambling ✓ ✗

symmetric_2d_random_walk ✗ N

symmetric_random_walk_constant_1 ✓ ✗

symmetric_random_walk_constant_2 ✓ ✗

symmetric_random_walk_exp_1 ✓ ✗

symmetric_random_walk_exp_2 ✓ N

symmetric_random_walk_linear_1 ✓ ✗

symmetric_random_walk_linear_2 ✓ ✗

symmetric_random_walk_poly_1 ✓ N

symmetric_random_walk_poly_2 ✓ N

gaussian_rw_walk* ✓ N

laplacian_noise* ✓ N

symb_1d_rw* ✓ N

Total ✓ 12 0

Table 3 9 programs which are
not AST

Program Amber

biased_random_walk_nast_1 ✓

biased_random_walk_nast_2 ✓

biased_random_walk_nast_3 ✓

biased_random_walk_nast_4 ✓

binomial_nast ✓

polynomial_nast ✗

binomial_nast_noise* ✓

symb_nast_1d_rw* ✓

hypergeo_nast* ✓

Total ✓ 8

grams. To the best of our knowledge, Amber is the first tool capable of certifying non-AST
for polynomial probabilistic programs involving drawing from distributions and symbolic
constants. Amber is also the first tool automating (non-)AST and (non-)PAST analysis in a
unifying manner for such programs.

Experimental summary. Tables 1, 2 and 3 demonstrate that (i) Amber outperforms the
state-of-the-art in certifying (P)AST, and (ii) amber determines (non-)(P)AST for programs
with various distributions and symbolic constants.

8 Conclusion

WedescribedAmber, an open-source tool analyzing the termination behavior for polynomial
probabilistic programs, in a fully automatic way. Amber computes asymptotic bounding
functions and martingale expressions and is the first tool to prove and/or disprove (P)AST in
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a unifyingmanner.Amber can analyze continuous, discrete, finitely- and infinitely supported
distributions in polynomial probabilistic programs parameterized by symbolic constants. Our
experimental comparisons give practical evidence that Amber can (dis)prove (P)AST for a
substantially larger class of programs than state-of-the-art tools.
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