
Geoinformatica (2010) 14:425–446
DOI 10.1007/s10707-009-0086-3

Tightly-coupled spatial database features
in the Odysseus/OpenGIS DBMS
for high-performance

Kyu-Young Whang · Jae-Gil Lee · Min-Soo Kim ·
Min-Jae Lee · Ki-Hoon Lee · Wook-Shin Han ·
Jun-Sung Kim

Received: 13 December 2007 / Revised: 30 March 2009 /
Accepted: 15 April 2009 / Published online: 7 May 2009
© Springer Science + Business Media, LLC 2009

Abstract Conventional object-relational database management system (ORDBMS)
vendors provide extension mechanisms for adding user-defined types and functions
to their own DBMSs. Here, the extension mechanisms are implemented using a high-
level (typically, SQL-level) interface. We call this mechanism loose-coupling. The
advantage of loose-coupling is that it is easy to implement. However, it is not prefer-
able for implementing new data types and operations in large databases when high
performance is required. We have earlier proposed the tight-coupling architecture
(Whang et al. 2002, 2005) to satisfy this requirement. In tight-coupling, new data types
and operations are integrated into the core of the DBMS engine in the extensible

K.-Y. Whang (B) · J.-G. Lee · M.-S. Kim · M.-J. Lee · K.-H. Lee · J.-S. Kim
Department of Computer Science, Korea Advanced Institute of Science
and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu,
Daejeon 305-701, South Korea
e-mail: kywhang@mozart.kaist.ac.kr

J.-G. Lee
e-mail: jglee@mozart.kaist.ac.kr

M.-S. Kim
e-mail: mskim@mozart.kaist.ac.kr

M.-J. Lee
e-mail: mjlee@mozart.kaist.ac.kr

K.-H. Lee
e-mail: khlee@mozart.kaist.ac.kr

J.-S. Kim
e-mail: jskim@mozart.kaist.ac.kr

W.-S. Han
Department of Computer Engineering,
Kyungpook National University, Daegu, South Korea
e-mail: wshan@knu.ac.kr

426 Geoinformatica (2010) 14:425–446

type layer. Thus, they are supported in a consistent manner with high performance.
This tight-coupling architecture is being used to incorporate information retrieval
features and spatial database features into the Odysseus ORDBMS that has been
under development at KAIST/AITrc for 19 years. In this paper, we introduce the
tightly-coupled spatial database features of Odysseus/OpenGIS. By taking advantage
of tight-coupling, Odysseus/OpenGIS provides excellent performance in processing
spatial queries as well as flexible concurrency control and recovery on spatial
data. We show the performance through extensive experiments. Finally, we present
sample applications of a geographical information system (GIS) implemented using
Odysseus/OpenGIS.

Keywords Tight-coupling · Object-relational DBMSs · Spatial DBMSs ·
Geographical information system (GIS)

1 Introduction

The amount of data on the internet has been growing at a rate of 10 times for every
3∼4 years, and many applications handling new data types have been emerging
[2]. They include information retrieval (IR), spatial databases, data mining, and
data streaming. Accordingly, DBMSs have been evolving to support these new
applications. DBMS vendors provide extension mechanisms for adding new data
types and operations to their own DBMSs. Examples are Cartridge [13] for Oracle
and Extender [1] for IBM DB2. In these products, new data types are added by using
user-defined types [11], their operations by using user-defined functions [11], and
their indexes by using extensible indexing [20]. Here, user-defined types, functions,
and extensible indexing are implemented through the high-level (typically, SQL-
level) interface provided by the DBMS [20]. We call this mechanism loose-coupling.

In the loose-coupling architecture, the high-level interface causes the following
problems. First, inter-process communication or dynamic linking overhead is in-
curred because operations on new data types are performed outside the core DBMS
engine. Second, concurrency control and recovery in fine granularity are hard to
perform because low-level functions of the DBMS engine cannot be fully utilized
for new data types through the high-level interface [20].

We have earlier proposed the tight-coupling architecture [24, 25] to solve these
problems. In the tight-coupling architecture, new data types and operations are
implemented directly into the core of the DBMS engine (i.e., the storage system).
Hence, the problems above do not occur in the tight-coupling architecture. This
tight-coupling architecture is being used to incorporate IR and spatial database
features into the Odysseus ORDBMS [25]1 that has been under development at
KAIST/AITrc for 19 years. Whang et al. [25] have introduced the tightly-coupled
IR features of Odysseus.2

1The Odysseus ORDBMS consists of approximately 450,000 lines of C and C++ precision codes.
2This work received the Best Demonstration Award from the IEEE ICDE 2005.

Geoinformatica (2010) 14:425–446 427

In this paper, we present the tightly-coupled spatial database features of Odysseus/
OpenGIS. By taking advantage of tight-coupling, Odysseus/OpenGIS provides ex-
cellent performance in processing spatial queries as well as flexible concurrency
control and recovery on spatial data. Through extensive experiments, we show excel-
lence of Odysseus/OpenGIS in performance. Finally, we present sample applications
of a geographical information system (GIS) implemented using Odysseus/OpenGIS.3

2 Tight-coupling architecture

In this section, we present the characteristics of the tight-coupling architecture [25]
that is being used in the Odysseus DBMS.

2.1 The architecture of the Odysseus/OpenGIS DBMS

Figure 1 shows the architecture of the Odysseus/OpenGIS DBMS. Odysseus/
OpenGIS consists of a storage system (Odysseus/COSMOS) and a query proces-
sor (Odysseus/ OOSQL). Odysseus/COSMOS is a sub-system that stores and man-
ages objects in the database. It consists of Disk Manager, Small Object Manager,
Large Object Manager, Index Manager, Cursor Manager, Recovery Manager, and
Transaction Manager. Odysseus/COSMOS uses the Multi-Level Grid File (MLGF)
[22, 23] for spatial indexing and supports fine or coarse granularity concurrency
control and recovery on spatial data. We note that Odysseus/COSMOS contains
the extensible type layer for tight-coupling. Odysseus/OOSQL is a sub-system that
processes SQL queries. It consists of Query Analyzer, Query Plan Generator and
Optimizer, and Query Plan Executor.

2.2 The extensible type layer

We propose to employ the notion of the extensible type layer [25] to facilitate tight-
coupling. We define the extensible type layer as the layer that provides new data types,
their operators, and their indexes at the level of the storage system. More specifically,
the pseudo built-in types (Section 2.2.1) and type-management APIs (Section 2.2.2)
are implemented in the extensible type layer.

We first define loose-coupling and tight-coupling depending on the location of the
extensible type layer in Definition 1.

Definition 1 Loose-coupling is a mechanism of supporting new data types by locat-
ing the extensible type layer on top of the query processor; tight-coupling by locating
the extensible type layer inside the storage system.

Figure 2 compares loose-coupling with tight-coupling. Loose-coupling in Fig. 2a
is adopted by commercial DBMSs, and tight-coupling in Fig. 2b by the Odysseus/
OpenGIS DBMS. In loose-coupling, Cartridge or Extender correspond to the exten-
sible type layer.

3An extended abstract was presented as a demonstration paper in the IEEE International Confer-
ence on Data Engineering, Istanbul, Turkey, Apr. 2007 [26].

428 Geoinformatica (2010) 14:425–446

Query Analyzer

Odysseus/OOSQL User Interface

Query Plan Generator and Optimizer

Query Plan Executor

Odysseus/COSMOS User Interface

Cursor Manager

Small Object Manager Large Object Manager

Index Manager
(B+-Tree, MLGF)

Recovery
Manager

Transaction
Manager

Disk Manager

Database Database

Odysseus/OOSQL

Odysseus/COSMOS Extensible Type Layer

Fig. 1 The architecture of the Odysseus/OpenGIS DBMS [25]

2.2.1 The pseudo (built-in) type

We call a data type defined in the extensible type layer as the pseudo built-in
type (simply, the pseudo type) [25]. The reason for including the term “pseudo” is
as follows: although it is not a real built-in type, the pseudo built-in type has the
performance benefit equivalent to that of a built-in type. In general, built-in types

Fig. 2 Comparison between
loose-coupling and
tight-coupling (a, b)

Extensible Type Layer

Storage Manager

Query Processor

Storage Manager

Query Processor

Extensible Type Layer

(a) Loose-coupling. (b)Tight-coupling.

Geoinformatica (2010) 14:425–446 429

mean those specified in the SQL3 [11] standard, e.g., int and varchar. Pseudo built-
in types are supported not from the original storage system, but from the extended
storage system. In contrast, real built-in types are those supported from the original
storage system without any extension.

We define that a data type has the performance benefit equivalent to that of a
built-in type if using the data type does not require accessing the database catalog.
Using pseudo types does not require accessing the database catalog because the
information of pseudo types is hard-coded in the extensible type layer. In contrast,
user-defined types [11] employed in loose-coupling do not have the performance
benefit equivalent to those of built-in types according to this definition. The basic
reason for this difference is that pseudo types are added into the storage system,
while user-defined types are not.

2.2.2 Type-management API

The extensible type layer provides a programming interface. We call this interface
the type-management API. The type-management API is implemented using the
storage system API and is classified into the following categories.

– Column Definition API: to declare the type of a column to be a pseudo type
– Column Manipulation API: to insert a value into, delete a value from, and update

a value in a column of a pseudo type, or to maintain an index if one is available
– Index Definition API: to create or delete an index on a column of a pseudo type
– Index Scan API: to support index scan over a column of a pseudo type
– Sequential Scan API: to support sequential scan over a column of a pseudo type
– Operator API: to support execution of the operations defined for a pseudo type
– Statistics API: to support statistics for query processing and optimization

Tight-coupling using the extensible type layer is implemented in the following two
phases: (1) implementing the type-management API using the storage system API
and (2) modifying the query processor so as to call the type-management API.

2.3 Advantages of tight-coupling

The tight-coupling architecture has three major advantages over the loose-
coupling architecture in terms of performance, concurrency control, and flexible
implementation.

1. Performance of query processing is superior. In loose-coupling, the overhead of
executing an SQL query, such as those of parsing an SQL query and generating
a query plan, is incurred because the add-on packages perform operations using
SQL queries. In contrast, in tight-coupling, such overhead is not incurred because
the extensible type layer performs operations using the storage system API.
Some loose-coupling systems (e.g., PostGIS) exploit user APIs instead of SQL
queries, and those systems are relieved from this problem.

2. Flexible concurrency control is possible on pseudo types. We are able to imple-
ment arbitrary protocols because acquiring or releasing a lock on a page can be
done using the locking API of the storage system API. For example, it is possible
to implement the link-based concurrency control protocol [12] on a spatial index
such as the R-tree in tight-coupling, but it is hard in loose-coupling.

430 Geoinformatica (2010) 14:425–446

3. Implementable data types and operations are more flexible since the extensible
type layer uses the storage system API. The storage system API offers more
capabilities of the DBMS engine than the high-level interface does because the
former is a lower-level interface compared with the latter. For example, the
storage system API allows us accessing tuples at the byte (or page) granularity,
while the high-level interface accessing only at the column granularity. This
advantage also allows us to speed up query processing since we can implement
tailored query processing algorithms and perform sufficient optimizations. Please
see Section 4 for experimental results.

In addition, we are able to reduce the implementation overhead for tight-coupling
by virtue of the extensible type layer. The reason for easy implementation is
that implementations for new data types and operations are concentrated in the
extensible type layer, and thus, modifications of existing source codes in other layers
of the DBMS engine are minimized. Our experiences indicate that incorporating a
new data type in the extensible type layer of the DBMS engine requires modification
of approximately 20,000 lines of existing source codes in the query processor layer,
which is manageable, being a very small proportion of the total source code.
We estimate that the development effort is two person months, i.e., one expert
programmer can complete this modification within 2 months.

3 Tightly-coupled spatial database features

In this section, we present the tightly-coupled spatial database features of the
Odysseus/ OpenGIS DBMS. Section 3.1 explains the spatial types and operators
supported by Odysseus/OpenGIS. Section 3.2 explains the structure of the MLGF
spatial index. Section 3.3 presents the algorithms for spatial query processing.

In Odysseus/OpenGIS, users can specify the database schema using the spatial
types and the MLGF index just in the same way as using nonspatial types and their
indexes. Figure 3 shows the physical structure of a data record abiding by a schema
involving the Point type, an MLGF index, the integer type, and a B+-tree index. The
Point type is specified just in the same way as the integer type is specified. Likewise,
an MLGF index is specified in the same way as a B+-tree index is.

3.1 Spatial types and operators

In this section, we summarize the spatial types and operators supported by Odysseus/
OpenGIS. These spatial types and operators conform to the OpenGIS [15] standard.

Fig. 3 The structure of a data
record involving the Point type
and an MLGF index

Point Integerdata record

Spatial Index
(MLGF) B+-Tree

Geoinformatica (2010) 14:425–446 431

Table 1 Spatial types supported by Odysseus/OpenGIS

Types (classes) Description

Geometry A generic type for geometric objects
Point A 0-dimensional geometric object representing a single location

in coordinate space
Curve A one-dimensional geometric object usually stored as a sequence of points
LineString A Curve with linear interpolation between points
Surface A two-dimensional geometric object
Polygon A planar Surface defined by 1 exterior boundary and 0 or more

interior boundaries
GeometryCollection A collection of Geometry objects
MultiPoint A collection of Point objects
MultiCurve A collection of Curve objects
MultiLineString A collection of LineString objects
MultiSurface A collection of Surface objects
MultuPolygon A collection of Polygon objects

Table 14 shows the spatial types, which are implemented as pseudo types in the
extensible type layer.

The spatial operators are classified into three categories: relational operators,
geometric operators, and miscellaneous operators [15]. Relational operators return
true or false depending on whether a specified topological spatial relationship exists
between two spatial objects. Geometric operators return a geometric measure of a
spatial object or between two spatial objects. Miscellaneous operators include Buffer,
ConvexHull, Intersection, Union, Difference, and SymDifference. Tables4 2, 3,
and 4 show these three categories of operators, respectively.

3.2 Spatial index (MLGF)

The spatial index MLGF is implemented inside the storage system (Odysseus/
COSMOS) as shown in Fig. 1. Odysseus/COSMOS supports the B+-tree as a built-in
index for nonspatial attributes and the MLGF [22, 23] as that for spatial attributes.

The MLGF is a balanced tree consisting of a multilevel directory and data pages
[22]. Figure 4 shows the structure of the MLGF. A directory entry consists of a region
vector and a pointer to a data page or a lower-level directory page. A region vector in
an n-dimensional file consists of n hash values that uniquely identify the region. The
MLGF uses an order-preserving hashing function to map attribute values to four-
byte signed integers. The i-th hash value of the region vector is the common prefix
of the hash values for the i-th attribute of all the records that belong to the region.
For example, the region vector <10, 0> in Fig. 4a represents the regions E, F, and
G in Fig. 4b; the hash value ‘10’ is the common prefix of the hash values for the first
attribute of all the records in these regions, and the hash value ‘0’ is the common
prefix of the hash values for the second attribute.

The distinct characteristic of the MLGF is that it uses the local splitting strategy
[23], which splits only the region where splitting is required rather than across the

4Most descriptions in these tables are borrowed verbatim from the OpenGIS specification [15].

432 Geoinformatica (2010) 14:425–446

Table 2 Relational operators supported by Odysseus/OpenGIS

Operators Description

Equals Equals(g1, g2) returns true if g1 and g2 are equal
Disjoint Disjoint(g1, g2) returns true if the intersection of g1 and g2 is empty
Intersects Intersects(g1, g2) returns true if the intersection of g1 and g2 is non-empty
Crosses Crosses(g1, g2) returns true if the intersection of g1 and g2 results in a value

whose dimension is less than the maximum dimension of g1 and g2, and g1 and g2

are not equal
Overlaps Overlaps(g1, g2) returns true if the intersection of g1 and g2 results in a value of the

same dimension as those of g1 and g2, and g1 and g2 are not equal
Touches Touches(g1, g2) returns true if the points in common between g1 and g2 lie only

in the union of the boundaries of g1 and g2

Within Within(g1, g2) returns true if g1 is completely contained in g2

Contains Contains(g1, g2) returns true if g2 is completely contained in g1

entire hyperplane. As a result, the directory growth is linearly dependent on the
growth of the inserted records regardless of data distributions or data skew. Thus,
the MLGF gracefully adapts to highly skewed data.

Since the MLGF is a point access method (PAM), the objects with extents are
represented as points using corner transformation. Spatial join algorithms based on
the MLGF and corner transformation were proposed in our earlier work and will
be briefly mentioned in Section 3.3.2. Performance enhancement of these algorithms
over the ones using the R-tree was shown in the references [14, 19].

3.3 Spatial query processing

3.3.1 Region query

A region query finds all objects satisfying a given spatial relationship (e.g., Intersects
and Within) with a query region. Odysseus/OpenGIS processes region queries by
using the MLGF as follows. Until a leaf page is reached, the algorithm follows the
pointer to a lower-level directory page as long as the intersection of the region
specified by the region vector and the query region is non-empty. The intersection
of the two regions can be easily checked by comparing the minimum and maximum
hash values of those regions for each dimension.

3.3.2 Transform-based spatial join

Spatial join finds all pairs of objects satisfying a given spatial relationship (e.g.,
Intersects and Within) between two sets of spatial objects [18]. Odysseus/OpenGIS
uses the transform-based spatial join (TBSJ) algorithm proposed by Song et al. [19].

Table 3 Geometric
operators supported
by Odysseus/OpenGIS

Operators Description

Area Area(g1) returns the area of g1

Length Length(g1) returns the length of g1

Distance Distance(g1, g2) returns the shortest distance
between g1 and g2

Geoinformatica (2010) 14:425–446 433

Table 4 Miscellaneous
operators supported by
Odysseus/OpenGIS

Operators Description

Buffer Buffer(g1, d) returns a geometry defined by
buffering a distance d around g1

ConvexHull ConvexHull(g1) returns a geometry that is
the convex hull of g1

Intersection Intersection(g1, g2) returns g1∩ g2

Union Union(g1, g2) returns g1 ∪ g2

Difference Difference(g1, g2) returns g1 − g2

SymDifference SymDifference(g1, g2) returns (g1 − g2) ∪
(g2 − g1)

The TBSJ algorithm transforms spatial objects with extents into points without
extents using corner transformation [14, 19], and then, performs spatial join. Since
this algorithm deals only with points but no extents, global optimization is relatively
simple compared with existing algorithms [14]. Corner transformation transforms
a spatial object in the n-dimensional original space (o-space) into a point in the

Fig. 4 A two-level MLGF
directory and its domain space
partition (a, b)

 0 , -
 10, 0
 1 , 1
 11, 0

D2

000,00 Page A
001,00 Page B
00 ,01 Page C
01 , - Page D

100,00 Page E
100,01 Page F
101,0 Page G

1 ,10 Page H
1 ,11 Page I

110,01 Page J
111,01 Page K
11 ,00 Page L

T
O

D
A
T
A

P
A
G
E
S

D1

(a) The structure of a two-level MLGF directory.

A B

C

D

I

H

F

E

J K

L

G

11

10

01

00

000 001 010 011 100 101 110 111

(b) The regions represented by directory entries in D1.

434 Geoinformatica (2010) 14:425–446

2n-dimensional transform space (t-space). In corner transformation, the coordinates
of a point in the 2n-dimensional t-space are determined by the minimum and
maximum values of the MBR on each of the n axes in the o-space. For example,
a one-dimensional object whose minimum and maximum values on the x-axis are
lx and rx, respectively, is transformed into the point (lx, rx) in the two-dimensional
t-space.

An operation that finds spatial objects satisfying a given spatial relationship in
the o-space is transformed into an operation that finds points contained in a certain
region in the t-space [14, 19]. We refer to this region as the spatial join window (SJW).
The TBSJ algorithm optimizes the sequence of accessing disk pages in the SJW to
minimize the amount of disk I/O’s while performing spatial join.

3.3.3 k-Nearest neighbor search

k-Nearest neighbor search finds the first k spatial objects nearest to a given query
point [10]. The k-nearest neighbor search algorithm implemented in Odysseus/
OpenGIS is simple, consisting of two steps. In the first step, the algorithm visits the
data page containing a query point, and then, selects a candidate object whose z-
order [17] value is closest to that of the query point. In the second step, the algorithm
executes a region query over the region where spatial objects nearer to the query
point than the candidate object may exist. This region is a circle whose center is
the query point, and whose radius is the distance between the query point and the
candidate object. If more than k spatial objects are found in this region, the k-nearest
objects among them are selected as the k-nearest neighbor. Otherwise, the algorithm
doubles the radius of the region and repeats the second step.

3.3.4 Advantages of tightly-coupled spatial algorithms

The tightly-coupled spatial algorithms in Odysseus/OpenGIS have advantages over
loosely-coupled ones for the following reason. In tight-coupling, we can fully im-
plement tailored spatial query processing algorithms and perform sufficient opti-
mization since the spatial index structure can be accessed directly using the storage
system API. However, in loose coupling, we are not able to integrate spatial query
processing algorithms if they require a specific tree traversal. For example, in
order to implement transformation-based join, sophisticated tree traversal must be
controlled by the join algorithm to allow global optimization. The loosely coupled
algorithms cannot implement such tailored spatial join due to inflexibility of the
extensible interface of the loosely-coupled architecture. Therefore, the performance
improvement of the tightly-coupled spatial algorithms becomes more prominent
when optimization techniques implemented have an effect on spatial queries.

4 Performance evaluation

In this section, we evaluate the performance of the tightly-coupled spatial database
features of Odysseus/ OpenGIS. Section 4.1 describes the experimental data and
environment. Section 4.2 the results for spatial database features.

Geoinformatica (2010) 14:425–446 435

Table 5 The relations used in
the experiments

Relation name Description The number
of tuples

SUBWAY Subway lines 315
DISTRICT Districts 849
APARTMENT Apartments 37,821
STRUCTURE Geometric objects that do 78,260

not belong to any categories

4.1 Experimental setting

We compare the performance of the Odysseus/OpenGIS DBMS with that of Post-
GIS (http://postgis.refractions.net), which is a spatial database extension for the
PostreSQL DBMS.

We construct a geographical information system (GIS) to evaluate the perfor-
mance of spatial database features. We use the map data of Seoul, the capital of
Korea. The data contain approximately 850,000 spatial objects; among them, 250,000
objects represent buildings, and 600,000 objects the center lines of roads. The size of
the source data is approximately 40 MBytes. Table 5 shows the relations used in the
experiments, and Tables 6, 7, 8 and 9 show the schemas of the relations. We create
an MLGF index on the geometry attribute of each relation in Odysseus/OpenGIS,
and an R-Tree index in PostGIS. The relations are not clustered. Using this GIS, we
compare the performances of three kinds of queries: (i) region queries, (ii) spatial
join queries, and (iii) k-nearest neighbor queries.

We measure cold start time and warm start time. Cold start time is defined as the
wall clock time for executing a query when no data residing in the DBMS buffer.
Warm start time is defined as the wall clock time for executing a query when all the
relevant data residing in the DBMS buffer.

To make the comparison as fair as possible, we use the same parameter values for
Odysseus/OpenGIS and PostGIS. For both Odysseus/OpenGIS and PostGIS, we set
the page size for data and indexes to be 4 KBytes and the buffer size to be 32 MBytes.

We conduct all the experiments on a Sun Blade 2000 workstation with 900 MHz
CPU and 2 GBytes of main memory. Sun Blade 2000 is running on the operating
system Solaris 8. Disks are installed in a disk array Sun StorEdge T3+. The worksta-
tion and the disk array are connected through an optical channel whose bandwidth is
200 MBytes/s. The controller of the disk array has 1 GBytes of cache, but we disable
the cache to avoid the effect of the disk array cache. The transfer rate of the disks
installed is 59∼118 MBytes/s (59.5 MBytes/s on the average).

Table 6 The schema of the
SUBWAY relation

Attribute name Attribute type Description

name Varchar The name of a subway line
geometry LineString The line segments composing

a section of a subway line

http://postgis.refractions.net

436 Geoinformatica (2010) 14:425–446

Table 7 The schema of the
DISTRICT relation

Attribute name Attribute type Description

name Varchar The name of a district
geometry Polygon The polygon representing

a district

4.2 Spatial query performance

Region queries Figure 5 shows the wall clock time for processing region queries.
We execute queries that find buildings larger than a specific size within a given
rectangular query region. We vary the ratio of the size of the query region to that
of the entire domain space as 0.1%, 0.2%, 0.4%, 0.8%, 1.6%, 3.2%, and 6.4%.
Figure 5 shows that Odysseus/OpenGIS improves the performance by 1.0∼1.9 times
at cold start and by 2.0∼2.5 times at warm start compared with PostGIS. The primary
reason for this advantage is that, in Odysseus/OpenGIS, the spatial types, operators,
and index (MLGF) are implemented directly into the core of the DBMS engine. In
contrast, in PostGIS, only the spatial index (R-Tree) is implemented directly into
the core DBMS engine, and it is hard to implement sophisticated spatial algorithms
(e.g., index-level filtering) since the spatial operators reside outside the core DBMS
engine.

Spatial join queries Figure 6 shows the wall clock time for processing spatial join
queries. We execute queries that find districts overlapping with the Seoul subway
lines 1∼8, respectively. There are eight subway lines and 849 districts in the data set.
A subway line consists of multiple line segments: 39.4 tuples (sections) per subway
line on average, and each tuple consists of 9.6 line segments on average. A district is
represented by a polygon, and each polygon consists of 79.3 points on average. Thus,
spatial join is done between 3023 line segments and 849 polygons. Figure 6 shows that
Odysseus/OpenGIS improves the performance by 1.1∼2.8 times at cold start and by
1.3∼3.2 times at warm start compared with PostGIS.

We also execute a large spatial query that finds geometric objects in the STRUC-
TURE relation (having 78,260 tuples) containing apartment objects in the APART-
MENT relation (having 37,821 tuples). In fact, the two relations are disjoint, resulting
in an empty result. For this query, Odysseus/OpenGIS improves the performance by
9.5 times at cold start and by 10.2 times at warm start compared with PostGIS. The
reason why Odysseus/OpenGIS outperforms PostGIS is that Odysseus/ OpenGIS
uses the sophisticated transform-based spatial join algorithm [19] implemented in
the core DBMS engine, but PostGIS uses a naive index nested-loop join algorithm
which invokes user-defined geometry functions outside the core DBMS engine. The
transform-based spatial join allows global optimization and cannot be implemented
in PostGIS through the extensible interface.

Table 8 The schema of the
APARTMENT relation

Attribute name Attribute type Description

name Varchar The name of an apartment
geometry Polygon The polygon representing

an apartment

Geoinformatica (2010) 14:425–446 437

Table 9 The schema of the
STRUCTURE relation

Attribute name Attribute type Description

name Varchar The name of a geometric object
geometry Geometry A geometric object

k-Nearest neighbor queries Figure 7 shows the wall clock time for processing k-
nearest neighbor queries. We execute queries that find the k buildings nearest to
a given query point. Since PostGIS does not support k-nearest neighbor queries,
we have implemented it through the extensible interface of GIS using the same
algorithm as our algorithm in Section 3.3.3. We vary the value of k as 1, 4, 16,
64, and 256. Figure 7 shows that Odysseus/OpenGIS improves the performance
by 1.2∼1.5 times at cold start and by 1.3∼1.5 times at warm start compared with
PostGIS. In addition, the wall clock time of Odysseus/OpenGIS increases rapidly
when k increases from 64 to 256. The reason is that a region query is executed again
by doubling the radius (δ) if there are less than k objects in the region constructed
by the candidate object and the query point. We find out that no doubling occurs
when k ≤ 64, while doubling occurs once when k = 256. The performance advantage
of Odysseus/OpenGIS is due to the tight-coupling nature of the system.

5 Demonstration

We present sample applications [26] of a geographical information system (GIS)
implemented using Odysseus/OpenGIS to show excellence of the tightly-coupled
spatial database features. We store approximately 850,000 spatial objects in the
database; among them, 250,000 objects represent buildings in Seoul, and 600,000
objects the center lines of roads in Seoul. Our demo system runs on a PC with
2.5 GHz CPU and 1 GBytes of main memory. We provide a graphical user interface
using the Tcl/Tk package.

Our sample applications support four kinds of queries as follows.

(1) Finding the k buildings nearest to a point (k-nearest neighbor search): We
execute the k-nearest neighbor search algorithm explained in Section 3.3.3.

(a) Cold Start

0

100

200

300

400

500

0.1 0.2 0.4 0.8 1.6 3.2 6.4
Area of Query Region / Area of Domain Space (%)

W
al

l C
lo

ck
 T

im
e

(m
s)

PostGIS Odysseus/OpenGIS

(b) Warm Start

0

100

200

300

400

500

0.1 0.2 0.4 0.8 1.6 3.2 6.4

Area of Query Region / Area of Domain Space (%)

W
al

l C
lo

ck
 T

im
e

(m
s)

Fig. 5 The wall clock time for processing region queries (a, b)

438 Geoinformatica (2010) 14:425–446

(a) Cold Start

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

Subway Line

W
al

l C
lo

ck
 T

im
e

(m
s)

PostGIS Odysseus/OpenGIS

(b) Warm Start

0

50

100

150

200

250

1 2 3 4 5 6 7 8

Subway Line

W
al

l C
lo

ck
 T

im
e

(m
s)

Fig. 6 The wall clock time for processing spatial join queries (a, b)

(2) Finding the nearest neighbor of every point on a path (continuous nearest neigh-
bor search): We find the points where there is a change of neighborhood (called
split points) by using the scheme proposed by Tao et al. [21], and then, find each
nearest neighbor.

(3) Finding the districts overlapping with a subway line (spatial join): We execute
the spatial join algorithm explained in Section 3.3.2.

(4) Finding the shortest path between two points (shortest path search): We find
the shortest path incrementally using the hierarchical graph proposed by Chan
and Zhang [4]. This algorithm significantly reduces memory and computation
requirements since the entire graph need not be loaded into main memory at
the same time unlike Dijkstra’s algorithm.

Figure 8a–d show the results of executing the queries (1)–(4) above, respectively.
In Fig. 8a, our demo system highlights the k buildings nearest to the point selected.

(a) Cold Start

0

5

10

15

20

25

30

1 4 16 64 256

Number of Results Retrieved

W
al

l C
lo

ck
 T

im
e

(m
s)

PostGIS Odysseus/OpenGIS

(b) Warm Start

0

5

10

15

20

25

1 4 16 64 256

Number of Results Retrieved

W
al

l C
lo

ck
 T

im
e

(m
s)

Fig. 7 The wall clock time for processing k-nearest neighbor queries (a, b)

Geoinformatica (2010) 14:425–446 439

(a) k-Nearest Neighbor Search. (b) Continuous Nearest Neighbor Search.

(c) Spatial Join. (d) Shortest Path Search.

Fig. 8 A demo system implemented using the Odysseus/OpenGIS DBMS

In Fig. 8b, it highlights the pairs of an interval on the path selected and the building
nearest to the interval. In Fig. 8c, it highlights the districts overlapping with the
subway line selected. In Fig. 8d, it highlights the shortest path between two points
selected. Our demo system displays results very fast (in a fraction of a second) for
all queries above. These results demonstrate excellence of the tightly-coupled spatial
database features of Odysseus/OpenGIS.

6 Related work

6.1 Commercial DBMSs

We describe extension mechanisms provided by commercial DBMS vendors. In
Cartridge and Extender, new data types are added by using user-defined types,
and their operations by using user-defined functions [2, 7]. We do not explain user-
defined types and functions in detail since they are defined in the SQL3 [11] standard
and are already well known. However, Cartridge and Extender have differences in
extensible indexing schemes that are employed for adding indexing schemes on new
data types. Thus, we focus on extensible indexing schemes in this section.

440 Geoinformatica (2010) 14:425–446

6.1.1 Oracle cartridge

Oracle Cartridge is a package for adding application-specific features to the Oracle
DBMS. Various kinds of Cartridge have been developed: Text Cartridge, Spatial
Cartridge, interMedia Cartridge, etc.

Extensible indexing in Oracle is called cooperative indexing because the Cartridge
module and the DBMS server cooperate to provide an indexing scheme [2, 6, 20].
Here, the Cartridge module is responsible for defining an index structure, main-
taining the contents of the index, and searching the index. On the other hand, the
DBMS server is responsible for storing the index. The Cartridge module contains
the methods—implemented as external procedures—for index creation, insertion,
update, and fetch operations. The DBMS server stores the index in a table. This
newly added index is called the domain index.

Cartridge stores the domain index in a table [20]. Here, each tuple of a table stores
one entry of the domain index. The reason for using a table structure is that the
Oracle DBMS permits only the SQL interface for programming external procedures.
Thus, the domain index is stored in a table so that it can be accessed only using the
SQL interface.

Concurrency control on a domain index is performed using record-level locking
just like on ordinary tables. However, record-level locking may not be suitable for
concurrency control on a domain index [20]. We give an example using the R-tree.
Cartridge stores an R-tree node in each tuple of a table [16]. When updating a node,
we have to acquire exclusive locks on the nodes in the path between the root and
the node to be updated. Then, the whole R-tree is locked because an exclusive
lock is held on the tuple storing the root node. Hence, concurrency on the R-tree
is decreased drastically.

6.1.2 IBM DB2 extender

IBM DB2 Extender is a package for adding application-specific features to the
IBM DB2 DBMS. Various kinds of Extender have been developed: Text Extender,
Spatial Extender, XML Extender, AIV Extender, etc.

Extensible indexing in IBM DB2 is analogous to that in Oracle. That is, the
Extender module is responsible for providing operations related to the index, and the
DBMS server is responsible for storing the index. However, Cartridge and Extender
use different mechanisms for storing the index. Extender utilizes existing indexes
such as the B-tree rather than a relational table in Oracle.

Extender employs the notion of key transform for extensible indexing [5]. Given
the value of an index column of a user-defined type, one or more index key values are
generated through key transform. Then, these generated index key values are stored
in the B-tree index. Examples of key transform include transformation of a spatial
object into a z-value or integer values representing the MBR. The main advantage
of key transform is to allow us to use existing indexes such as the B-tree for indexing
values of a user-defined type.

6.2 PostGIS

PostGIS (http://postgis.refractions.net) is a package for adding spatial features to the
PostgreSQL DBMS like Spatial Cartridge of Oracle and Spatial Extender of IBM

http://postgis.refractions.net

Geoinformatica (2010) 14:425–446 441

DB2. It is an open-source software program that has been developed by Refractions
Research and is released under the GNU General Public License. In PostGIS, new
spatial data types, functions, and operators are implemented in C code and registered
using SQL statements [8]. The PostgreSQL server then incorporates the C code
(compiled into shared libraries) into itself through dynamic loading [8]. In effect,
PostGIS spatially enables the PostgreSQL server. PostGIS uses the R-Tree index for
spatial indexing, and the R-Tree index in PostGIS is implemented using the GiST
(Generalized Search Tree) index [9] in PostgreSQL.

PostGIS can be viewed as a slight variation of loose-coupling since its spatial query
processing algorithms are implemented using the user-level APIs but it supports
the R-tree at the storage system level. Thus, as explained in Section 3.3.4, not
every spatial query processing algorithm can be integrated into the DBMS—e.g.,
the depth-first R*-tree join algorithm [3]. PostGIS supports only tuple-based nested
loop join algorithms due to inherent inflexibility of the loose-coupling architecture.
As opposed to PostGIS, our system employs a true tight-coupling architecture in the
sense that spatial object types are treated as first-class citizens both in the storage and
query processing levels, thereby fully supporting tailored spatial query processing
algorithms.

7 Conclusions

In this paper, we have presented the tightly-coupled spatial database features of
Odysseus/ OpenGIS. Odysseus/OpenGIS provides excellent performance in process-
ing spatial queries as well as flexible concurrency control and recovery on spatial
data. In addition, Odysseus/OpenGIS is an ORDBMS and, at the same time, a spatial
DBMS since it is tightly-coupled with the spatial database features.

We have explained the tightly-coupled spatial database features: the spatial types
and operators conforming to the OpenGIS standard, the structure of the spatial index
MLGF, and the query processing algorithms for region queries, spatial join queries,
and k-nearest neighbor queries.

We have then performed extensive experiments using Odysseus/OpenGIS and
PostGIS. The results for spatial queries show that Odysseus/OpenGIS outperforms
PostGIS by 1.0∼2.5 times for region queries, by 1.1∼10.2 times for spatial join
queries, and by 1.2∼1.5 times for k-nearest neighbor queries. These results demon-
strate the superiority of the tight-coupling architecture of Odysseus/OpenGIS.

In summary, Odysseus/OpenGIS provides excellent performance in processing
spatial queries by taking advantage of tight-coupling and has a capability for sup-
porting various GIS applications with high performance.

Acknowledgements This work was primarily supported by the Korea Science and Engineering
Foundation (KOSEF) through the National Research Lab Program funded by the Korea gov-
ernment (MEST) (No. R0A-2007-000-20101-0) and was partially supported by the Engineering
Research Center of Excellence Program of Korea Ministry of Education, Science and Technol-
ogy(MEST) / Korea Science and Engineering Foundation(KOSEF), grant number R11-2008-007-
02004-0. Ki-Hoon Lee was partially supported by Brain Korea 21 Project, the School of Information
Technology, KAIST in 2009.

442 Geoinformatica (2010) 14:425–446

References

1. Adler DW (2001) DB2 spatial extender—spatial data within the RDBMS. In: Proc 27th int’l conf
on very large data bases, Rome, September, pp 687–690

2. Banerjee S, Krishnamurthy V, Murthy R (1999) All your data: the oracle extensibility architec-
ture. Oracle White Paper, Oracle Corp, Redwood Shores, February

3. Brinkhoff T, Kriegel H, Seeger B (1993) Efficient processing of spatial joins using R-trees. In:
Proc int’l conf on management of data. ACM SIGMOD, May, pp 237–246

4. Chan EPF, Zhang N (2001) Finding shortest paths in large network systems. In: Proc 9th ACM
int’l symp on advances in geographic information systems, Atlanta, November, pp 160–166

5. Chen W, Chow J, Fuh Y, Grandbois J, Jou M, Mattos NM, Tran BT, Wang Y (1999) High
level indexing of user-defined types. In: Proc 25th int’l conf on very large data bases, Edinburgh,
September, pp 554–564

6. DeFazio S, Daoud AM, Smith LA, Srinivasan J, Croft WB, Callan JP (1995) Integrating IR
and RDBMS using cooperative indexing. In: Proc 1995 ACM SIGIR int’l conf on information
retrieval, Seattle, July, pp 84–92

7. Fuh Y, Deßloch S, Chen W, Mattos N, Tran B, Lindsay B, DeMichel L, Rielau S, Mannhaupt D
(1999) Implementation of SQL3 structured types with inheritance and value substitutability. In:
Proc 25th int’l conf on very large data bases, Edinburgh, September, pp 565–574

8. Hall GB, Leahy MG (2008) Open source approaches in spatial data handling. Springer, Berlin
Heidelberg New York

9. Hellerstein JM, Naughton JF, Pfeffer A (1995) Generalized search trees for database systems.
In: Proc the 21st int’l conf on very large data bases, Zurich, September, pp 562–573

10. Hjaltason GR, Samet H (1999) Distance browsing in spatial databases. ACM Trans Database
Syst 24(2):265–318

11. ISO/IEC (1999) Database language—SQL3—part 2: foundation (SQL/Foundation). ISO/IEC
9075-2, December

12. Kornacker M, Banks D (1995) High-concurrency locking in R-trees. In: Proc the 21st int’l conf
on very large data bases, Zurich, September, pp 134–145

13. Kothuri RKV, Ravada S, Abugov D (2002) Quadtree and R-tree indexes in oracle spatial: a
comparison using GIS data. In: Proc 2002 ACM SIGMOD int’l conf on management of data,
Madison, June, pp 546–547

14. Lee M, Whang K, Han W, Song I (2006) Transform-space view: performing spatial join in the
transform space using original-space indexes. IEEE Trans Knowl Data Eng 18(2):1–16

15. Open GIS Consortium Inc (1999) OpenGIS simple features specification for SQL, rev 1.1,
OpenGIS project document 99-049, May

16. Oracle (2002) Oracle spatial user’s guide and reference release 9.2, March
17. Orenstein A, Merrett T (1984) A class of data structures for associative searching. In: Proc 3rd

ACM SIGACT-SIGMOD symp on principles of database systems, Waterloo, April, pp 181–
190

18. Seeger B, Kriegel H-P (1988) Techniques for design and implementation of efficient spatial
access methods. In: Proc 14th int’l conf on very large data bases, Los Angeles, August/September,
pp 360–371

19. Song J, Whang K, Lee Y, Kim S (1999) Spatial join processing using corner transformation. IEEE
Trans Knowl Data Eng 11(4):688–698

20. Srinivasan J, Murthy R, Sundara S, Agarwal N, DeFazio S (2000) Extensible indexing: a frame-
work for integrating domain-specific indexing schemes into Oracle8i. In: Proc 16th int’l conf on
data engineering, San Diego, February/March, pp 91–100

21. Tao Y, Papadias D, Shen Q (2002) Continuous nearest neighbor search. In: Proc 28th int’l conf
on very large data bases, Hong Kong, August, pp 287–298

22. Whang K, Krishnamurthy R (1985) Multilevel grid files. IBM research report RC11516, IBM
Thomas J. Watson Research Center, Yorktown Heights, New York, November

23. Whang K, Kim S, Wiederhold G (1994) Dynamic maintenance of data distribution for selectivity
estimation. VLDB J 3(1):29–51

24. Whang K, Park B, Han W, Lee Y (2002) An inverted index storage structure using subindexes
and large objects for tight coupling of information retrieval with database management systems.
US Patent no 6,349,308, 19 February 2002, Appl no 09/250,487, 15 February 1999

25. Whang K, Lee M, Lee J, Kim M, Han W (2005) Odysseus: a high-performance ORDBMS tightly-
coupled with IR features. In: Proc 21st int’l conf on data engineering, Tokyo, Japan, April,
pp 1104–1105 (This paper received the best demonstration award)

Geoinformatica (2010) 14:425–446 443

26. Whang K, Lee J, Kim M, Lee M, Lee K (2007) Odysseus: a high-performance ORDBMS tightly-
coupled with spatial database features. In: Proc 23rd int’l conf on data engineering, Istanbul,
April, pp 1493–1494

Kyu-Young Whang graduated (Summa Cum Laude) from Seoul National University in 1973 and
received the M.S. degrees from Korea Advanced Institute of Science and Technology (KAIST) in
1975, and Stanford University in 1982. He earned the Ph.D. degree from Stanford University in 1984.
From 1983 to 1991, he was a Research Staff Member at the IBM T. J. Watson Research Center,
Yorktown Heights, NY. In 1990, he joined KAIST, where he currently is a KAIST Distinguished
Professor at the Department of Computer Science. His research interests encompass database
systems/storage systems, object-oriented databases, multimedia databases, geographic information
systems (GIS), data mining/data warehouses, XML databases, and data streaming. He is an author of
over 100 papers in refereed international journals and conference proceedings (and over 150 papers
in domestic ones). He served as an IEEE Distinguished Visitor from 1989 to 1990, received the
Best Paper Award from the 6th IEEE International Conference on Data Engineering (ICDE) in
1990, served the ICDE six times as a program co-chair and vice chair from 1989 to 2003, and served
program committees of over 110 international conferences including VLDB and ACM SIGMOD.
He was the program chair (Asia and Pacific Rim) for COOPIS’98, the program chair (Asia, Pacific,
and Australia) for VLDB 2000, and a program co-chair of ICDE2006. He was the general chair of
VLDB2006, PAKDD 2003, and DASFAA 2004. He twice received the External Honor Recognition
from IBM. Dr. Whang is the Coordinating Editor-in-Chief of the VLDB Journal having served the
editorial board as a founding member for thirteen years. He was an associate editor of the IEEE
Data Engineering Bulletin from 1990 to 1993, Distributed and Parallel Databases Journal from 1991
to 1995, Int’l J. of GIS from 1994 to 2007, and IEEE TKDE from 2002–2006. He is on the editorial
board of the WWW Journal. He was a trustee of the VLDB Endowment from 1998 to 2004 and
currently is the steering committee chair of the DASFAA Conference and a steering committee
member of the IEEE ICDE, PAKDD, and APWeb Conferences. He served the IEEE Computer
Society Asia/Pacific Activities Group as the Korean representative from 1993 to 1997. Dr. Whang is
a Fellow of the IEEE, a member of the ACM, and a member of IFIP WG 2.6.

444 Geoinformatica (2010) 14:425–446

Jae-Gil Lee is a postdoctoral researcher in IBM Almaden Research Center. Before joining IBM, he
was a postdoc research associate in the Department of Computer Science, University of Illinois at
Urbana-Champaign. He earned his M.S. and Ph.D. in computer science at Korea Advanced Institute
of Science and Technology (KAIST). His research interests encompass spatio-temporal data mining,
data warehousing, information retrieval and search engines, and DB-IR integration. He is currently
working on acceleration of data warehouse queries.

Min-Soo Kim is a postdoctoral fellow of computer science at University of Illinois at Urbana-
Champaign (UIUC). His research interests include network/graph data mining, bio-informatics,
indexing & query processing, and information retrieval & search engines. He has a PhD in computer
science from Korea Advanced Institute of Science and Technology (KAIST).

Geoinformatica (2010) 14:425–446 445

Min-Jae Lee received the BS degree in computer science from the Korea Advanced Institute
of Science and Technology (KAIST) in 1995 and the MS and PhD degrees in computer science
from KAIST in 1997 and 2004, respectively. Until November 2004, he was a postdoctoral fellow at
the Advanced Information Technology Information Center, KAIST. In December 2004, he joined
Neowiz, Co., Ltd., in Korea as a research staff member. His research interests include spatial
databases, access methods, information retrieval, query processing, database systems, and storage
systems.

Ki-Hoon Lee received B.S. (2000), M.S. (2002), and Ph.D. (2009) degrees in Computer Science
from Korea Advanced Institute of Science and Technology (KAIST). He is currently a postdoctoral
researcher of Computer Science at KAIST. His research interests include XML and web databases,
IR and search engines, query optimization, object-relational database systems, and spatial databases
and GIS.

446 Geoinformatica (2010) 14:425–446

Wook-Shin Han received the B.S. degree in Computer Engineering from Kyungpook National
University in 1994, and the M.S. and Ph.D. degrees in Computer Science from Korea Advanced
Institute of Science and Technology (KAIST), in 1996 and 2001, respectively. He is currently a
tenured associate professor in the Department of Computer Engineering at Kyungpook National
University. In the past, he has worked as a post-doctoral researcher at IBM Almaden Research
Center working on parallel progressive optimization. His research interests include query processing
and optimization, simiarity search, XML databases, object-oriented/object-relational databases, and
information retrieval. He published at major international journals and conferences, including
VLDB, SIGMOD, ICDE, WWW, IEEE TKDE, and VLDB Journal. He is the co-PC chair of
APWeb 2010 and the workshop chair of CIKM 2009. He is an editorial board member of several
international journals.

Jun-Sung Kim received the B.S. degree in computer science from the Korea Advanced Institute of
Science and Technology (KAIST) in 2006. He is currently a Ph.D. Candidate in the Department of
Computer Science at KAIST. His research interests include spatial databases, geographic informa-
tion systems, information retrieval, and database systems.

	Tightly-coupled spatial database features in the Odysseus/OpenGIS DBMS for high-performance
	Abstract
	Introduction
	Tight-coupling architecture
	The architecture of the Odysseus/OpenGIS DBMS
	The extensible type layer
	The pseudo (built-in) type
	Type-management API

	Advantages of tight-coupling

	Tightly-coupled spatial database features
	Spatial types and operators
	Spatial index(MLGF)
	Spatial query processing
	Region query
	Transform-based spatial join
	k-Nearest neighbor search
	Advantages of tightly-coupled spatial algorithms

	Performance evaluation
	Experimental setting
	Spatial query performance

	Demonstration
	Related work
	Commercial DBMSs
	Oracle cartridge
	IBM DB2 extender

	PostGIS

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

